WO2017004996A1 - 一种数据传输方法、装置、系统及计算机存储介质 - Google Patents

一种数据传输方法、装置、系统及计算机存储介质 Download PDF

Info

Publication number
WO2017004996A1
WO2017004996A1 PCT/CN2016/075260 CN2016075260W WO2017004996A1 WO 2017004996 A1 WO2017004996 A1 WO 2017004996A1 CN 2016075260 W CN2016075260 W CN 2016075260W WO 2017004996 A1 WO2017004996 A1 WO 2017004996A1
Authority
WO
WIPO (PCT)
Prior art keywords
wlan communication
wlan
network device
terminal
awl
Prior art date
Application number
PCT/CN2016/075260
Other languages
English (en)
French (fr)
Inventor
杨立
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US15/743,066 priority Critical patent/US20180213584A1/en
Publication of WO2017004996A1 publication Critical patent/WO2017004996A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/086Load balancing or load distribution among access entities
    • H04W28/0861Load balancing or load distribution among access entities between base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present invention relates to mobile communication technologies, and in particular, to a data transmission method, apparatus, system, and computer storage medium.
  • GSM Global System of Mobile Communication
  • UMTS Universal Mobile Telecommunications System
  • LTE Long Term Evolution
  • WLAN wireless local area network
  • the Area Networks system is used to complement the efficient and low-cost wireless capacity that is evolving toward the next generation of efficient wireless local area network (HEW) systems.
  • the WLAN system is technically simpler and cheaper than the 3GPP system, and operates in a free and bandwidth-free unlicensed frequency.
  • the unlicensed carrier within the spectrum it has its strong market vitality and competitiveness.
  • the mobile communication system basically consists of the following main logical network element nodes: a terminal supporting one RAT single mode or supporting multiple RAT multi-mode systems-UE/STA, radio access network-RAN/AP, core network (CN), network management - OMC and bearer network - TBN, etc.
  • the UMTS network side consists of its core network logical node unit - MSC / MGW / SGSN / GGSN and radio access network logical node unit - NodeB / RNC, and the terrestrial interface - Iu, Iub, which is standardized between them by the 3GPP standard.
  • the LTE system network side is composed of its core network logical node unit - MME / SGW / PGW / IMS and radio access network logical node unit - eNB, and the ground interface - S1, X2 between them;
  • the network side of the WLAN system is composed of a wireless control unit-AC and a wireless access unit-AP.
  • Multi-RATs wireless access and data transmission services are provided together, and key performance indicators (KPIs) for user mobile communication are enhanced in order to enhance inter-system mobility performance.
  • KPIs key performance indicators
  • Key Performance Indicator saving hardware and software development and maintenance costs, and facilitating operators to manage the operation and maintenance of "Multi-RAT large network”.
  • 3GPP has developed a variety of standardization technologies to implement the above various wireless communication systems. Coupled together in varying degrees/levels to form so-called cross-system joint interoperability.
  • the WLAN AP and the 3GPP main radio access network units are connected to the same converged CN.
  • the operators can flexibly co-transfer the capabilities/configurations/states between different RATs. Etc., develop a reasonable mobility policy, and let the UE be served by the most suitable RAT base station/cell according to the characteristics of service quality of service (QOS) and resource status.
  • QOS quality of service
  • the advantage of enhancing the inter-RAT interoperability is that different RATs can better utilize the advantages of their respective systems. Different RATs can share the wireless communication load of users more flexibly and evenly, and hardware resources can be formed between different RATs.
  • the dynamic complementarity of wireless coverage and capacity brings higher performance KPIs to the entire “Multi-RAT Large Network”, bringing better mobile communication experience and experience to users.
  • a terminal with WLAN/3GPP multi-mode capability can simultaneously be in a communication connection/data transmission state with a WLAN AP and a base station of a certain RAT in the 3GPP family.
  • the following will focus on the joint interoperability between WLAN and LTE systems (the principle is also applicable to joint interworking between other RATs), for example, a certain WLAN/LTE dual-mode capability terminal is simultaneously in the wireless signals of WLAN and LTE cells.
  • the terminal Under the coverage, the terminal first establishes an RRC (Radio Resource Control) connection with the LTE network, and then performs two-way data transmission of a certain IP service flow A, and then the user initiates a new IP service flow B.
  • RRC Radio Resource Control
  • the terminal Under the user's manual control mode UP (User Preference), the terminal searches for the WLAN coverage signal and completes the necessary AP network association authentication registration (this process is called WLAN network registration), and then the fusion CN can be based on certain The policy rule and the upper layer protocol signaling, the IP service flow B is migrated to the WLAN system that has been successfully registered before the terminal, and then the IP service flow A of the terminal is still carried in the LTE network, and the IP service flow B is carried in the WLAN network ( This process is called WLAN data offloading.
  • the basic process described above is illustrated in Figures 2 and 3.
  • MeNB main base station section
  • Anchor point is the centralized control node of all APs in the LWA working mode.
  • the MeNB selects the IP service flow B selected as the tightly coupled offload, first through the MeNB and The interface transmission between the target APs is forwarded to the tightly coupled AP, and then the AP performs uplink and downlink transmission of IP data packets on the WLAN air interface. Therefore, the IP traffic flow B that is offloaded is still controlled by the anchor MeNB, instead of the core network. .
  • the 3GPP system deployed on the network side of the carrier has fewer resources (for example, the deployed LTE authorized carrier is small and narrow, the baseband processing unit (BU) related to the 3GPP system processes less resources), and the WLAN-related deployed on the network side If there are many resources (for example, the deployed WLAN unlicensed carrier is large and wide, and the WLAN system has more BU processing resources), then for the "single AP connection capability" UE, it must be out of balance with the network side capability allocation ratio (Mismatch).
  • the 3GPP related capability resources in the UE are partially idle, and since the UE has only one WLAN resource module, the WLAN resources of the network side cannot be fully utilized.
  • UE mobility brings re-selection of the target AP, re-association/authentication, and the UE with "single AP connection capability" is limited by a set of WLAN resource modules, and a large transmission delay usually occurs in the mobility process.
  • the WLAN system has a fast BSS transitionor 802.11r amendment enhancement mechanism
  • data plane transmission interruption this will lead to more control plane signaling redundancy Overhead and user experience degradation in the scenario where the AP deployment is more intensive.
  • embodiments of the present invention provide a data transmission method, apparatus, system, and computer storage medium.
  • Embodiments of the present invention provide a data transmission method, which is applied to a communication system, where the communication system includes a terminal and a network device, the terminal is provided with at least two WLAN communication units, and the WLAN communication unit supports WLAN communication and next generation WLAN. Communication, the method includes:
  • the network device controls, according to the communication parameter, each of the WLAN communication units to establish at least two aggregated WLAN links (AWLs) with the APs that are accessible, and each of the AWLs is used to carry data, and each of the AWLs is not only It can carry data, stop carrying data, and can be maintained, reconfigured, and deleted separately.
  • AWLs aggregated WLAN links
  • the method further includes:
  • the terminal detects the status of each of the WLAN communication units by polling, and sends an AWL establishment request to the network device when detecting that the WLAN communication unit is in an idle or available state;
  • the network device controls the WLAN communication unit in an idle or available state to establish an AWL with the AP that is accessible according to the AWL establishment request.
  • the method further includes:
  • the network device detects the status of each of the WLAN communication units by polling based on the internally stored communication context information of the terminal, and when the WLAN communication unit is detected to be in an idle or available state, the control is idle or available.
  • the WLAN communication unit of the state establishes an AWL with the AP that is accessible.
  • the WLAN communication unit supports an LWA mechanism
  • the terminal sends the communication parameters of each of the WLAN communication units to the network device, including:
  • the terminal reports the communication parameters of each WLAN communication unit to the network device as required by the LTE or its evolved system air interface RRC signaling.
  • the network device configures an LWA-related policy criterion parameter to the WLAN communication unit in an idle or available state by using RRC dedicated signaling;
  • the selected accessible APs are respectively associated with the corresponding WLAN communication unit in the idle or available state, and the specified WLAN access authentication registration is completed to establish the aggregated WLAN link AWL.
  • the method further includes:
  • the network device coordinates the data offload bearer status of each AWL according to the internally stored communication context information parameter and/or the communication parameter fed back by the terminal, so that each AWL carries the offloaded data in an independent or coordinated manner.
  • An embodiment of the present invention provides a data transmission method, which is applied to a terminal, where the terminal is provided with at least two WLAN communication units, and the WLAN communication unit supports WLAN communication and next generation WLAN communication, and the method includes:
  • each of the WLAN communication units establishes at least two AWLs with the AP that can be accessed according to the control of the network device, where each of the AWLs is used to carry data, and each of the AWLs can not only carry data but also stop carrying data. It can also be maintained, reconfigured, and deleted separately.
  • the method further includes:
  • Detecting the status of each of the WLAN communication units by polling, when the WLAN is detected When the communication unit is in an idle or available state, sending an AWL setup request to the network device, so that the network device controls the WLAN communication unit in an idle or available state to establish an AP with an accessible AP according to the AWL establishment request. AWL.
  • the WLAN communication unit supports an LWA mechanism
  • the sending by the network device, the communication parameters of each of the WLAN communication units, including:
  • the communication parameters of each WLAN communication unit are reported to the network device as required by the LTE or its evolved system air interface RRC signaling.
  • the embodiment of the invention provides a data transmission method, which is applied to a network device, and the method includes:
  • the WLAN communication unit supports WLAN communication and next generation WLAN communication
  • each of the WLAN communication units Controlling, according to the communication parameter, each of the WLAN communication units to establish at least two AWLs with the AP that can be accessed, and each of the AWLs is used to carry data, and each of the AWLs can not only carry data but also stop carrying data. It can also be maintained, reconfigured, and deleted separately.
  • the method further includes:
  • the WLAN communication unit in the idle or available state of the terminal to establish an AWL with the AP that is accessible and the state of the WLAN communication unit is that the terminal detects by polling. of.
  • the method further includes:
  • the WLAN communication unit Detecting, according to internally stored communication context information of the terminal, a status of each of the WLAN communication units by polling, and when detecting that the WLAN communication unit is in an idle or available state, controlling the idle or available state
  • the WLAN communication unit establishes an AWL with the AP that can be accessed.
  • the selected accessible APs are respectively associated with the corresponding WLAN communication unit in an idle or available state, and the specified WLAN access authentication registration is completed to establish an AWL.
  • the method further includes:
  • the data offload bearer conditions of each of the AWLs are coordinated based on the internally stored communication context information parameters and/or the communication parameters fed back by the terminal, so that each of the AWLs carries the offloaded data in an independent or cooperative manner.
  • An embodiment of the present invention provides a terminal, which is applied to a communication system, where the communication system further includes a network device, where the terminal is provided with at least two WLAN communication units, and the WLAN communication unit supports WLAN communication and next generation WLAN communication.
  • the terminal includes:
  • a sending unit configured to send, to the network device, communication parameters of each of the WLAN communication units, so that the network device controls each of the WLAN communication units to establish at least two with an AP that can be accessed according to the communication parameter.
  • the processing unit is configured to enable each of the WLAN communication units to establish at least two aggregated WLAN links AWL with the AP that can be accessed according to the control of the network device, where each AWL is used to carry data, and each of the AWLs is not only It can carry data, stop carrying data, and can be maintained, reconfigured, and deleted separately.
  • the terminal further includes a detecting unit configured to detect a status of each of the WLAN communication units by polling, and when detecting that the WLAN communication unit is in an idle or available state, to the network device Sending an AWL setup request to cause the network device to control the WLAN communication unit in an idle or available state according to the AWL setup request Establish an AWL with an AP that can be accessed;
  • the processing unit is further configured to enable the WLAN communication unit to establish an AWL with the AP that is accessible according to the control of the network device.
  • the WLAN communication unit supports an LWA mechanism
  • the sending unit is configured to report the communication parameters of each WLAN communication unit to the network device as needed by using LTE or its evolved system air interface RRC signaling.
  • An embodiment of the present invention provides a network device, which is applied to a communication system, where the communication system further includes a terminal, where the terminal is provided with at least two WLAN communication units, and the WLAN communication unit supports WLAN communication and next generation WLAN communication.
  • the network equipment includes:
  • a receiving unit configured to receive communication parameters of each WLAN communication unit sent by the terminal
  • the control unit is configured to control, according to the communication parameter, each WLAN communication unit to establish at least two AWLs with the AP that can be accessed, and each of the AWLs is used to carry data, and each of the AWLs can not only carry data but also It can stop carrying data and can be maintained, reconfigured, and deleted separately.
  • the control unit is further configured to control, according to the AWL establishment request sent by the terminal, the WLAN communication unit in the idle or available state of the terminal to establish an AWL with the AP that is accessible, and the WLAN communication unit The status is detected by the terminal by polling.
  • the control unit is further configured to detect a status of each of the WLAN communication units by polling based on internally stored communication context information of the terminal, when detecting that the WLAN communication unit is in an idle or available state.
  • the WLAN communication unit that controls the idle or available state establishes an AWL with the AP that is accessible.
  • the control unit is configured to configure, by using RRC dedicated signaling, a policy norm parameter related to the LWA to the WLAN communication unit in an idle or available state;
  • the selected accessible APs are respectively associated with the corresponding WLAN communication unit in an idle or available state, and the specified WLAN access authentication registration is completed to establish an AWL.
  • the control unit based on the internally stored communication context information parameter and/or the communication parameter fed back by the terminal, coordinates the data offload bearer of each AWL, so that each AWL carries the offload in an independent or coordinated manner.
  • the data based on the internally stored communication context information parameter and/or the communication parameter fed back by the terminal, coordinates the data offload bearer of each AWL, so that each AWL carries the offload in an independent or coordinated manner.
  • An embodiment of the present invention provides a communication system, where the communication system includes a terminal and a network device, where the terminal is provided with at least two WLAN communication units, and the WLAN communication unit supports WLAN communication and next generation WLAN communication;
  • the terminal is configured to send, to the network device, communication parameters of each of the WLAN communication units;
  • the network device is configured to control, according to the communication parameter, each WLAN communication unit to establish at least two AWLs with the AP that can be accessed, and each of the AWLs is used to carry data, and each of the AWLs can not only carry data. It can also stop carrying data and can be maintained, reconfigured, and deleted separately.
  • the terminal is further configured to detect a status of each of the WLAN communication units by polling, and send an AWL establishment request to the network device when detecting that the WLAN communication unit is in an idle or available state;
  • the network device is further configured to control, according to the AWL establishment request, the WLAN communication unit in an idle or available state to establish an AWL with the AP that is accessible.
  • An embodiment of the present invention provides a computer storage medium, where the computer storage medium includes a set of instructions, when the instruction is executed, causing at least one processor to execute the data transmission method on the terminal side, or execute data on the network device side. Transmission method.
  • the technical solution of the embodiment of the present invention is applicable to a communication system, where the communication system includes a terminal and a network device, and the terminal is provided with at least two WLAN communication units, and the method includes: the terminal to the network Transmitting, by the device, a communication parameter of the WLAN communication unit; The network device controls the WLAN communication unit to establish at least two AWLs with the AP according to the communication parameter, where the AWL is used to carry data.
  • the technical solution of the embodiment of the present invention can not only reduce control plane signaling redundancy, but also fully utilize network side resources.
  • FIG. 1 is a schematic diagram of a WLAN/3GPP joint interoperation coupling according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a state before being diverted to an IP flow of a WLAN AP node according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a state after being diverted to an IP flow of a WLAN AP node according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a state before being tightly coupled to a WLAN AP node according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a state after being tightly coupled to a WLAN AP node according to an embodiment of the present invention
  • FIG. 6 is a schematic flowchart diagram of a first embodiment of a data transmission method according to the present invention.
  • FIG. 7 is a schematic flowchart diagram of a second embodiment of a data transmission method according to the present invention.
  • FIG. 8 is a schematic diagram of an application scenario according to a third embodiment of the present invention.
  • FIG. 9 is a schematic diagram of an application scenario according to a fourth embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of an embodiment of a data transmission apparatus according to the present invention.
  • FIG. 11 is a schematic structural diagram of another embodiment of a data transmission apparatus according to the present invention.
  • FIG. 12 is a schematic structural diagram of another embodiment of a data transmission system according to the present invention.
  • the terminal is provided with at least two WLAN communication units,
  • the terminal sends the communication parameter of the WLAN communication unit to the network device;
  • the network device controls the WLAN communication unit to establish at least two AWLs with the AP according to the communication parameter, where the AWL is used to carry data.
  • a first embodiment of the present invention provides a data transmission method, which is applied to a communication system, where the communication system includes a terminal and a network device, the terminal is provided with at least two WLAN communication units, and the WLAN communication unit supports WLAN communication and A generation of WLAN communication, such as HEW, as shown in FIG. 6, the method includes:
  • Step 601 The terminal sends communication parameters of each WLAN communication unit to the network device.
  • Step 602 The network device controls, according to the communication parameter, each WLAN communication unit to establish at least two AWLs with the AP, where each AWL is used to carry data, and each of the AWLs can not only carry data but also Stop bearing data, and can be maintained, reconfigured, and deleted separately.
  • the WLAN communication unit is hereinafter also referred to as a WLAN resource function module or a WLAN module.
  • the communication parameters include the ability to support the LWA mechanism, and the necessary parameters such as the supported WLAN radio frequency band and working bandwidth.
  • the network device may include a MeNB, a converged CN, and the like.
  • terminals described herein include mobile terminals.
  • the method may further include:
  • the terminal detects the status of each of the WLAN communication units by polling, and sends an AWL establishment request to the network device when detecting that the WLAN communication unit is in an idle or available state;
  • the network device controls the WLAN communication unit in an idle or available state to establish an AWL with the AP that is accessible according to the AWL establishment request.
  • the method further includes:
  • the network device detects the status of each of the WLAN communication units by polling based on the internally stored communication context information of the terminal, and when the WLAN communication unit is detected to be in an idle or available state, the control is idle or available.
  • the WLAN communication unit of the state establishes an AWL with the AP that is accessible.
  • the WLAN communication unit supports an LWA mechanism
  • the sending, by the terminal, the communication parameter of the WLAN communication unit to the network device may include:
  • the terminal reports the communication parameters of each WLAN communication unit to the network device, such as the MeNB, as required by the LTE or its evolved system air interface RRC signaling.
  • the network device such as the MeNB
  • controlling each of the WLAN communication units to establish at least two AWLs with the AP that can be accessed may include:
  • the network device such as the MeNB, configures the LWA-related policy criteria parameters for the WLAN communication unit in an idle or available state through RRC dedicated signaling;
  • the selected accessible APs are respectively associated with the corresponding WLAN communication unit in the idle or available state, and the specified WLAN access authentication registration is completed to establish the aggregated WLAN link AWL.
  • the method further includes: the network device, according to the internally stored communication context information parameter and/or the communication parameter fed back by the terminal, to coordinate data splitting bearer conditions of each of the AWLs, so that each of the AWL carries offloaded data in an independent or collaborative manner.
  • the processing mainly includes:
  • each of the WLAN communication units establishes at least two AWLs with the AP that can be accessed according to the control of the network device, where each of the AWLs is used to carry data, and each of the AWLs can not only carry data but also stop carrying data. It can also be maintained, reconfigured, and deleted separately.
  • the processing on the terminal side may further include:
  • the WLAN communication unit requesting control of the idle or available state establishes an AWL with the AP that is accessible.
  • the sending the communication parameters of each of the WLAN communication units to the network device may include:
  • the communication parameters of each WLAN communication unit are reported to the network device as required by the LTE or its evolved system air interface RRC signaling.
  • the processing mainly includes:
  • the WLAN communication unit supports WLAN communication and next generation WLAN communication
  • each of the WLAN communication units Controlling, according to the communication parameter, each of the WLAN communication units to establish at least two AWLs with the AP that can be accessed, and each of the AWLs is used to carry data, and each of the AWLs can not only carry data but also stop carrying data. It can also be maintained, reconfigured, and deleted separately.
  • controlling each of the WLAN communication units to establish at least two AWLs with the AP that can be accessed may include:
  • the unit forms an associated connection and completes the specified WLAN access authentication registration to establish an AWL.
  • the processing on the network device side may further include:
  • the WLAN communication unit in the idle or available state of the terminal to establish an AWL with the AP that is accessible and the state of the WLAN communication unit is that the terminal detects by polling. of.
  • processing on the network device side may further include:
  • the WLAN communication unit Detecting, according to internally stored communication context information of the terminal, a status of each of the WLAN communication units by polling, and when detecting that the WLAN communication unit is in an idle or available state, controlling the idle or available state
  • the WLAN communication unit establishes an AWL with the AP that can be accessed.
  • processing on the network device side may further include:
  • the data offload bearer conditions of each of the AWLs are coordinated based on the internally stored communication context information parameters and/or the communication parameters fed back by the terminal, so that each of the AWLs carries the offloaded data in an independent or cooperative manner.
  • a second embodiment of the present invention provides a data transmission method. Referring to FIG. 7, the main steps involved in this embodiment are as follows:
  • S0 Initialize the 3GPP network side (including: the converged CN and the converged radio access network RAN/AC/AP, etc.) to learn the "multi-AP connection related capability" of the terminal through air interface signaling; specifically: multiple sets of WLANs configured by the UE internal equipment Whether the resource function modules can support the capabilities of the LWA mechanism, and the necessary parameters such as the supported WLAN RF band and working bandwidth.
  • the LWA mechanism is the existing 3GPP/WLAN tight coupling joint interoperability mechanism.
  • the 3GPP network side enables the AP1 node deployed on the network side and the WLAN resource function in the UE according to the LWA mechanism that the UE can support according to the prior art.
  • the module first forms an association connection, completes the necessary WLAN access authentication registration process, and the UE is established to obtain the primary aggregation WLAN link. (PAWL, Primary Aggregated WLAN Link).
  • the 3GPP network side After successful establishment, the 3GPP network side based on the existing technology of the LWA mechanism, allows the MeNB, the AP1, and the UE to perform related air interface uplink and downlink data transmission, that is, according to the policy criterion parameters specified by the LWA mechanism, using the PAWL to offload the bearer or reverse Unloading to carry part of the IP Flows in the UE or some IP packets in the IP Flows.
  • S2 After S1, if there is still a certain WLAN resource function module in the UE that is idle and unused, the 3GPP network side is based on the LWA mechanism that it can support within the capability of the WLAN resource function module. Under certain conditions, according to the prior art, an AP2 node deployed on the network side and the WLAN resource function module in the UE form an association connection, and complete the necessary WLAN access authentication registration process, and the UE is established at this time.
  • the first secondary aggregated WLAN link SAWL (1st SAWL, 1st Secondary Aggregated WLAN Link).
  • the 3GPP network side uses the existing technology of the LWA mechanism to enable the MeNB, the AP2, and the UE to perform related air interface uplink and downlink data transmission, that is, to use the 1st SAWL to offload the bearer according to the policy criterion parameters specified by the LWA mechanism.
  • Reverse offloading carries some IP flows in the UE or partial IP packets in IP Flows.
  • the IP Flows or IP data packets carried by the 1st SAWL may be from the user data stream remaining by the UE on the 3GPP network side, or may be a user data stream or an IP data packet that the PAWL has been offloaded.
  • the 3GPP network side continues to detect the WLAN resource function module that has not been utilized in the UE. Based on the LWA mechanism that it can support, under certain conditions, try to deploy the network side according to the prior art.
  • the other APx nodes form an associated connection with the set of WLAN resource function modules in the UE, and complete the necessary WLAN access authentication registration process.
  • the UE is established to obtain more second/third/fourth secondary aggregation WLANs.
  • Link SAWL (2nd/3rd/4th...SAWL, 2nd/3rd/4th...Secondary Aggregated WLAN Link).
  • the 3GPP network side After the successful establishment, the 3GPP network side performs the relevant air interface uplink and downlink data transmission by the MeNB, the APx, and the UE according to the existing technology of the LWA mechanism, that is, according to the policy specified by the LWA mechanism. Slightly the criteria parameters, etc., use more 2nd/3rd/4th...SAWL to offload the bearer or reverse unload to carry some IP flows in the UE or some IP packets in the IP Flows.
  • the IP flows carried by the 2nd/3rd/4th...SAWL may be from the user data stream or IP data packet left by the UE on the 3GPP network side, or may be the user data stream or IP data packet that has been previously offloaded by the PAWL and the 1st SAWL. Recursively.
  • the stop condition of the above-mentioned sequential recursive processing is: the 3GPP network side detects that all LWA-capable WLAN resource function modules in the UE have been utilized, or for the UE, the 3GPP network side cannot temporarily provide a serviceable AP node.
  • the LWA mode association connection is formed with a WLAN resource function module in the UE, including the WLAN AP signal coverage strength quality, the radio load, the backhaul bandwidth, and the like, the WLAN authentication registration failure, and the like.
  • step S1/2/3 will be executed again, that is, the 3GPP network side and the UE always poll the detection update to do the "multi-AP connection" LWA.
  • the possibility of operation as much as possible, utilizes multiple WLAN APs resources on the network side and multiple sets of LWA-capable WLAN function module resources in the UE.
  • PAWL and 1st, 2nd, 3rd, 4th...SAWL correspond to multiple WLAN working links established between the UE and the LWA-capable multi-WLAN AP on the network side.
  • the Establishing that is, only logically processing the order difference, there is no time to establish a difference.
  • PAWL and 1st, 2nd, 3rd, 4th...SAWL can be based on the same set of LWA mechanisms corresponding to the policy criteria parameters (corresponding to the 3GPP network side to configure the same set of policy criteria parameters for all target APs, etc.), and the same In the case of state conditions, PAWL and 1st, 2nd, 3rd, 4th...SAWL are different from each other in order to facilitate the description.
  • PAWL and 1st , 2nd, 3rd, 4th...SAWL may also be based on different sets of LWA mechanisms corresponding to the policy criteria parameters (corresponding to different strategic policy parameters for different target APs on the 3GPP network side, etc.), or in different states Article It is built under the condition that PAWL and 1st, 2nd, 3rd, 4th...SAWL have multiple differences in LWA shunting ability and establishment/maintenance/release, so they need to be more strictly distinguished.
  • PAWLs and 1st, 2nd, 3rd, 4th...SAWL are logically independent between the network side multi-WLAN APs and multiple sets of WLAN function modules in the UE, they can work independently of each other, and work on any one WLAN link.
  • the state change does not affect the working state of other WLAN links, and is only affected by control and state conditions such as policy criterion parameters configured for each WLAN link on the 3GPP network side.
  • a third embodiment of the present invention provides a data transmission method.
  • an operator deploys an LTE macro cell network to provide basic wireless coverage for users.
  • the operator further operates non-authorized 2.4G and 5G.
  • a WLAN AP with a bandwidth of 40 M is deployed on an unlicensed carrier in the frequency band to divert IP flows carrying user services.
  • These WLAN APs have the ability to do LWA operations with the anchor MeNB, and they have a standardized Xw external interface with the MeNB.
  • a terminal UE 1 normally resides in an LTE macro cell, and maintains an RRC connection state with the MeNB base station, and the UE 1 is also under multiple WLAN AP radio signal coverage.
  • the internal hardware of UE 1 is equipped with: 1 set of WLAN radio frequency baseband function module A (referred to as WLAN module A) capable of supporting 2.4G band 40M bandwidth +1 sets of WLAN radio frequency baseband function module B capable of supporting 5G band 40M bandwidth (referred to as WLAN)
  • the module B) can perform the LWA operation, and the UE 1 reports the RRC information to the MeNB through the LTE air interface, so that the LTE network side learns that the UE 1 can support the related capability of the “multi-AP connection”.
  • the MeNB configures the LWA-related policy criterion parameters for the WLAN module A of the UE 1 by using the RRC-specific signaling.
  • the specific WLAN condition according to the existing LWA technology mode, an AP1 node and the UE 1 in the 2.4G frequency band are used.
  • the internal WLAN module A first forms an associated connection, completes the necessary WLAN access authentication registration, and the like, and at this time, the UE 1 is established to obtain the PAWL. After successful establishment, some IP Flows or IP data packets originally carried in the LTE macro cell are offloaded by the PAWL.
  • the MeNB further configures, by using the RRC dedicated signaling, the WLAN module B of the UE 1 and the LWA-related policy criterion parameters, and in a specific WLAN condition, according to the existing LWA technical mode, an AP2 node and the UE 1 in the 5G frequency band
  • the internal WLAN module B can also form an associated connection and complete the necessary WLAN access authentication registration process.
  • the UE 1 is established to obtain a secondary aggregated WLAN link SAWL. After successful establishment, some IP Flows or IP packets originally carried in the LTE macro cell can be offloaded by the SAWL.
  • the two WLAN modules in the UE 1 cannot perform LTE like on the vertical plane of the spectrum. Operation like carrier aggregation (the WLAN module cannot align the transmission time of multiple data blocks).
  • the UE 1 performs WLAN data offloading with the two target APs at the same time, which can further enhance the offloading capability of the LTE macro network to the WLAN network, and improve the user data throughput rate.
  • the MeNB temporarily detects that all WLAN modules in the UE 1 have been utilized, as the UE moves and the WLAN's own conditions change (such as signal coverage strength quality, wireless load), polling detection is required to update. Do "double AP connection" (such as based on the radio measurement report of UE 1 to the target AP), and use the network side WLAN AP resources and the two sets of WLAN modules in the UE as much as possible.
  • the target AP nodes in the 2.4G and 5G bands of the UE 1 will update and change independently, and the specific conditions of the offloaded IP Flows or IP data packets will continue to be performed according to the LWA-related policy criterion parameters respectively configured by the MeNB.
  • a fourth embodiment of the present invention provides a data transmission method.
  • an operator deploys an LTE macro cell network to provide basic wireless coverage for users.
  • the WLAN AP of the 80M bandwidth is deployed on the unlicensed carrier frequency of the unlicensed 2.4G to distribute IP flows carrying user services.
  • These WLAN APs all have the ability to do LWA operations with the anchor MeNB, and they have a standardized Xw external interface with the MeNB.
  • a terminal UE 2 normally camps in the LTE macro cell, and maintains an RRC connection state with the MeNB base station, and the UE 2 is also under the overlapping coverage of two adjacent WLAN AP radio signals.
  • the internal hardware of UE 2 is equipped with: 2 sets of WLAN RF baseband function modules (referred to as WLAN module A/B) that can support the 80G bandwidth of 2.4G band +1 sets of WLAN RF baseband function modules C capable of supporting 5G band 80M bandwidth (referred to as The WLAN module C) can perform the LWA operation, and the UE 2 reports the RRC information to the MeNB through the LTE air interface, so that the LTE network side learns that the UE 2 can support the related capability of the “multi-AP connection”.
  • WLAN module A/B 2 sets of WLAN RF baseband function modules
  • the WLAN module C can perform the LWA operation, and the UE 2 reports the RRC information to the MeNB through the LTE air interface, so that the LTE network side learns that the UE 2 can support the related capability of the “multi-AP connection”.
  • the MeNB configures the WLAN module A/B of the UE 2 and the LWA-related policy criterion parameters by using the RRC dedicated signaling, and according to the existing LWA technical mode, an AP1 node in the 2.4G frequency band and the specific WLAN condition
  • the WLAN module A in the UE 2 first forms an associated connection, completes the necessary WLAN access authentication registration, and the like, and at this time, the UE 2 is established to obtain the primary aggregated WLAN link PAWL. After successful establishment, some IP Flows or IP data packets originally carried in the LTE macro cell are offloaded by the PAWL.
  • the AP2 node adjacent to the AP1 node in the 2.4G band also forms an associated connection with the WLAN module B in the UE 2, and completes the necessary WLAN access network.
  • the UE 2 is established to obtain a secondary aggregate WLAN link SAWL. After successful establishment, some IP Flows or IP packets originally carried in the LTE macro cell and on the PAWL can be offloaded by the SAWL.
  • AP1 and AP2 on the same WLAN unlicensed working frequency point may not be able to simultaneously send data blocks to the UE 2, who First successfully seize the local channel resources, who will Data blocks can be sent.
  • the network side may also choose to allow adjacent AP1 and AP2 to carry the same IP Flow content or IP data packet to form a transmit-receive diversity gain.
  • the MeNB temporarily detects that all the WLAN modules in the UE 2 have been utilized as much as possible, the WLAN is entered into the 5G band as the UE moves and the WLAN's own conditions change (such as signal coverage strength, wireless load, and wireless load). Within the coverage of the AP node, the polling detection is also required to update the "multi-AP connection" (such as the radio measurement report based on the UE 2 to the target AP), and the network side WLAN AP resources and the UE are used as much as possible. Set of WLAN modules.
  • the target AP nodes in the 2.4G or 5G frequency band of the UE 2 will be updated and changed independently, and the specific IP Flows of the offloading will continue to be performed according to the LWA related policy criterion parameters respectively configured by the MeNB.
  • An embodiment of the present invention provides a terminal, which is applied to a communication system, where the communication system further includes a network device, where the terminal is provided with at least two WLAN communication units, and the WLAN communication unit supports WLAN communication and next-generation WLAN communication, such as As shown in FIG. 10, the terminal includes:
  • the sending unit 1001 is configured to send, to the network device, communication parameters of each of the WLAN communication units, so that the network device controls each of the WLAN communication units to establish at least two with an accessible AP according to the communication parameter.
  • Article AWL Article AWL
  • the processing unit 1002 is configured to establish, according to the control of the network device, each WLAN communication unit to establish at least two AWLs with the AP that can be accessed, and each of the AWLs is used to carry data, and each of the AWLs can not only carry data. It can also stop carrying data and can be maintained, reconfigured, and deleted separately.
  • the terminal further includes a detecting unit 1003, configured to detect a status of each of the WLAN communication units by polling, when detecting that the WLAN communication unit is in an idle or available state Sending an AWL to the network device Requesting, to enable the network device to control the WLAN communication unit in an idle or available state to establish an AWL with the AP that is accessible according to the AWL establishment request;
  • the processing unit 1002 is further configured to enable the WLAN communication unit to establish an AWL with the AP that is accessible according to the control of the network device.
  • the WLAN communication unit supports an LWA mechanism
  • the sending unit 1001 is configured to report the communication parameters of the WLAN communication unit to the network device, such as the MeNB, as required by the LTE or its evolved system air interface RRC signaling.
  • the network device such as the MeNB
  • the sending unit 1001 can be implemented by a transceiver in the terminal;
  • the processing unit 1002 and the detecting unit 1003 can be implemented by a central processing unit (CPU), a microprocessor (MCU, a Micro Control Unit) in the terminal. ), digital signal processor (DSP, Digital Signal Processor) or programmable logic array (FPGA, Field-Programmable Gate Array) implementation.
  • CPU central processing unit
  • MCU microprocessor
  • DSP Digital Signal Processor
  • FPGA Field-Programmable Gate Array
  • An embodiment of the present invention provides a network device, which is applied to a communication system, where the communication system further includes a terminal, where the terminal is provided with at least two WLAN communication units, and the WLAN communication unit supports WLAN communication and next-generation WLAN communication, such as As shown in FIG. 11, the network device includes:
  • the receiving unit 1101 is configured to receive communication parameters of the WLAN communication units sent by the terminal;
  • the control unit 1102 is configured to control, according to the communication parameter, each WLAN communication unit to establish at least two AWLs with the AP that can be accessed, and each of the AWLs is used to carry data, and each of the AWLs can not only carry Data can also stop carrying data and can be maintained, reconfigured, and deleted separately.
  • control unit 1102 is further configured to: according to the AWL establishment request sent by the terminal, control a WLAN communication unit in the idle or available state of the terminal to establish an AWL with the AP that is accessible,
  • the state of the WLAN communication unit is that the terminal passes the wheel Inquired about the detection.
  • control unit 1102 is further configured to detect a status of each of the WLAN communication units by polling based on internally stored communication context information of the terminal, when detecting that the WLAN communication unit is located In the idle or available state, the WLAN communication unit that controls the idle or available state establishes an AWL with the AP that is accessible.
  • control unit 1102 is configured to configure, by using RRC dedicated signaling, a WLAN communication unit in an idle or available state with an LWA-related policy criterion parameter;
  • the selected accessible APs are respectively associated with the corresponding WLAN communication unit in the idle or available state, and the specified WLAN access authentication registration is completed to establish the aggregated WLAN link AWL.
  • control unit 1102 is further configured to coordinate data splitting bearer conditions of each of the AWLs based on internally stored communication context information parameters and/or communication parameters fed back by the terminal, so that each of the AWLs The offloaded data is carried in an independent or collaborative manner.
  • the receiving unit 1101 can be implemented by a transceiver in a network device;
  • the control unit 1102 can be implemented by a CPU, an MCU, a DSP, or an FPGA in a network device in combination with a transceiver.
  • the embodiment of the present invention provides a communication system.
  • the communication system includes a terminal 1201 and a network device 1202.
  • the terminal is provided with at least two WLAN communication units, and the WLAN communication unit supports WLAN communication and Generation WLAN communication;
  • the terminal 1201 is configured to send, to the network device, a communication parameter of the WLAN communication unit;
  • the network device 1202 is configured to control, according to the communication parameter, each WLAN communication unit to establish at least two aggregated WLAN links AWL with the AP that can be accessed, and each of the AWLs is used to carry data, and each of the AWL can not only carry data, but also stop carrying data. It can also be maintained, reconfigured, and deleted separately.
  • the terminal 1201 is further configured to detect a status of each of the WLAN communication units by polling, and send an AWL to the network device when detecting that the WLAN communication unit is in an idle or available state. Establish a request;
  • the network device 1202 is further configured to control, according to the AWL establishment request, the WLAN communication unit in an idle or available state to establish an AWL with an accessible AP.
  • Embodiments of the present invention relate to a cellular mobile system within the 3GPP family of standards, such as the Long Term Evolution (LTE) system and its subsequent next generation cellular systems, and a cross-system joint interworking mode of operation between the WLAN and its subsequent next generation systems, such as HEW.
  • the UE implements a technique of tightly coupled data transmission by using a "multi-AP connection" under the LWA mechanism.
  • the LTE system includes a network side NW and a terminal side UE
  • the WLAN system includes a network side and a terminal side.
  • multiple sets of WLAN resource function modules are configured in the UE, which include basic functional components such as WLAN radio frequency and baseband.
  • the UE can simultaneously perform associated connection and data transmission with multiple logically independent WLAN AP nodes that provide services on the network side to form a "multi-AP connection" working mode.
  • the WLAN system is simpler in technology and lower in cost than the 3GPP system, multiple WLAN resource modules are not included in the total cost of the UE, and the UE design manufacturer can also be based on operators or other industries. The user needs to customize the terminal of different 3GPP and WLAN capability module cost ratios.
  • the technical solution provided by the embodiment of the present invention can not only reduce control plane signaling redundancy, but also fully utilize network side resources.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention can take the form of a hardware embodiment, a software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • an embodiment of the present invention further provides a computer storage medium, where the computer storage medium includes a set of instructions, when executed, causing at least one processor to execute the above A data transmission method on the terminal side or a data transmission method on the network device side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种数据传输方法、装置、系统及计算机存储介质,所述方法应用于通信系统,所述通信系统包括终端和网络设备,所述终端设置有至少两个WLAN通信单元,所述WLAN通信单元支持WLAN通信和下一代WLAN通信,所述方法包括:所述终端向所述网络设备发送各所述WLAN通信单元的通信参数;所述网络设备根据所述通信参数,控制各所述WLAN通信单元分别与可接入的AP建立至少两条聚合WLAN链路(AWL),各所述AWL用于承载数据,各所述AWL不仅能承载数据,也能停止承载数据,还能够被单独维护、重配、删除。

Description

一种数据传输方法、装置、系统及计算机存储介质 技术领域
本发明涉及移动通信技术,特别是一种数据传输方法、装置、系统及计算机存储介质。
背景技术
随着移动通信运营商签约用户数和用户语音数据等移动业务量的不断增多,未来呈现出指数级别地增长,移动通信网络基础设施的投入和部署规模也必须要相应地扩增,使得无线覆盖的广度深度和系统通信容量都能应对满足用户不断增长的客观需求。
以欧洲大部分移动通信运营商为例,它们在历史上先后部署了3种不同无线接入技术(RAT,Radio Access Technology)制式的移动通信系统:全球移动通信系统(GSM,Global Systemof Mobile communication),通用移动通信系统(UMTS,Universal Mobile Telecommunications System)和长期演进(LTE,Long TermEvolution)系统,上述系统都是第三代合作伙伴计划(3GPP,3rd GenerationPartnership)通信系统家族内的制式。这些蜂窝式移动系统都工作在授权频谱内的授权载波上。为了进一步增强移动通信网络的功能和扩充系统容量,移动通信运营商还广泛大量地部署了电气和电子工程师协会(IEEE,Institute of Electrical and Electronics Engineers)通信系统家族内诸如无线局域网(WLAN,Wireless Local Area Networks)系统,用来作为有效且低成本的无线容量补充,所述WLAN系统正在朝着下一代高效无线局域网(HEW)系统演进。虽然不能高性能地独立组建类似3GPP式的蜂窝移动网,但因为WLAN系统比3GPP系统在物理实现上要技术简单且成本低廉地很多,且工作在免费的且带宽更为广阔的非授权频 谱内的非授权载波上,因此有着其强大的市场生命力和竞争力。
无论上述哪种移动通信系统,基本由以下主要逻辑网元节点组成:支持一种RAT单模或者支持多种RAT多模制式的终端-UE/STA、无线接入网-RAN/AP、核心网(CN)、网管-OMC和承载网-TBN等。例如:UMTS网络侧由其核心网逻辑节点单元-MSC/MGW/SGSN/GGSN和无线接入网逻辑节点单元-NodeB/RNC,以及它们之间由3GPP标准规范化了的地面接口-Iu,Iub,Iur等组成;而LTE系统网络侧则由其核心网逻辑节点单元-MME/SGW/PGW/IMS和无线接入网逻辑节点单元-eNB,以及它们之间的地面接口-S1,X2等组成;而WLAN系统网络侧则由无线控制单元-AC和无线接入单元-AP等组成。
由于上述多种无线通信系统(Multi-RAT)长期地演进共存部署着,共同提供着无线接入和数据传输服务,为了增强跨系统间的移动性能,增强用户移动通信的关键绩效指标(KPI,Key Performance Indicator)体验,节约软硬件开发维护成本,便于运营商们对“Multi-RAT大网”的运维管理,3GPP已经开发制定出了多种版本的标准化技术,把上述各种无线通信系统以不同程度/级别的方式耦合在一起工作,形成所谓跨系统联合互操作。
如图1中的一个网络架构例子所示:WLAN AP和3GPP 3种主要无线接入网单元共同连接于同一个融合CN上,运营商能够较灵活地协同传输不同RAT间的能力/配置/状态等信息,制定合理的移动策略,根据业务服务质量(QOS)特点和资源状态的需要,让UE被服务于最合适的RAT基站/小区下。增强不同RAT间联合互操作的好处在于:不同RAT可以更好地发挥出各自系统的优势特点,不同RAT间可以更加灵活均衡地去分担广大用户的无线通信负荷,不同RAT间能够形成硬件资源,无线覆盖和容量的动态互补,从而为整个“Multi-RAT大网”带来更高性能KPI,为广大用户带来更好的移动通信体验和感受。
根据现有公开技术,具备WLAN/3GPP多模能力的终端,可以同时和WLAN AP和3GPP家族中某种RAT的基站同时处于通信连接/数据传输状态。下面将集中以WLAN和LTE系统间联合互操作为例(原理对于其他RAT间的联合互操作基本也都适用),比如某种WLAN/LTE双模能力的终端同时处于WLAN和LTE小区的无线信号覆盖下,某时刻该终端率先和LTE网络建立RRC(Radio Resource Control)连接,继而进行某种IP业务流A的双向数据传输,后来用户又发起了一个新的IP业务流B。在用户手动控制模UP(User Preference)下,终端搜寻发现了WLAN的覆盖信号并且完成了必要的AP入网关联鉴权注册Attach(这个过程称为WLAN选网注册),随后融合CN可以根据一定的策略规则和上层协议信令,把IP业务流B迁移到终端之前已经成功注册的WLAN系统中,此后终端的IP业务流A仍然承载在LTE网络中,而IP业务流B承载在WLAN网络中(这个过程称为WLAN数据分流),上述基本过程如图2和图3示意。
截止到3GPP Rel-13版本,针对WLAN-LTE的耦合联合互操作已经有多种基本机制,除了上面示例的手动UP,还有(e)ANDSF(Enhacend Access Network Discovery SelectionFunction),(e)ITW(Enhanced RAN Rule Based Interworking),LWA(LTE WLAN Aggregation)等机制。上述这些机制除了LWA机制之外,都需要依赖UE释放掉原本在LTE网络内的IP Flow/DRB(Data Radio Bearer)无线承载,通过WLAN空口信令和目标AP建立/维护WLAN连接,实现承载用户业务数据的IP Flows在核心网侧的迁移和分流。
作为紧耦合方式的LWA机制并不会导致IP Flows在核心网侧的迁移,仅仅让LTE网络内的IP Flow/DRB无线承载的用户面部分数据通过相互紧耦合的目标AP来传输,由无线接入侧的锚点-MeNB来控制目标AP的添加/重配/删除和相关分流数据的转发回收等,可以理解为:MeNB(主基站节 点,也称锚点)是所有处于LWA工作模式下的AP的集中控制节点,上述基本过程如图4和图5示意,MeNB把被选择做紧耦合分流的IP业务流B,先通过MeNB和目标AP之间的接口传输转发到紧耦合的AP,再由AP在WLAN空口进行IP数据包的上下行传输,因此被分流出去的IP业务流B仍然受到锚点MeNB的控制,而不是核心网。
过去3GPP针对上述机制的广泛讨论中,都是基于“单AP连接能力”的UE,即特定UE在某个特定时刻最多只能和一个目标AP发生关联认证,同时只能通过一条WLAN空口链路进行数据传输。这种“单AP连接能力”的UE通常在内部只配置了一套WLAN相关的射频基带资源,这种UE能力配置上的物理限制有如下几个缺点:
1:如果运营商网络侧部署的3GPP系统相关资源较少(比如:部署的LTE授权载波少且窄,3GPP系统相关的基带处理单元(BU)处理资源少),而网络侧部署的WLAN相关的资源较多(比如:部署的WLAN非授权载波多且宽,WLAN系统相关BU处理资源多),那么对于“单AP连接能力”UE,它必然和网络侧的能力配置比例发生失衡(Mismatch),造成UE内的3GPP相关能力资源部分被闲置,而由于UE只有一套WLAN资源模块,却无法充分地利用网络侧富余的WLAN资源。
2:UE移动性带来目标AP的重选,重新关联/认证,“单AP连接能力”的UE由于受到一套WLAN资源模块的限制,在移动性过程中通常会发生较大的传输延时(虽然WLAN系统已有fast BSS transitionor 802.11r amendment增强机制)和数据面传输中断;这在AP部署较为密集的场景下,会带来较多的控制面信令冗余Overhead和用户体验的下降。
3:由于单套WLAN资源模块总有最大支持带宽的限制(如目前的160MHz),因此可能还不能最大程度地去聚合网络侧提供的尽可能多的WLAN载波资源;无法取得更高的用户吞吐率和峰值速率。
发明内容
为解决现有存在的技术问题,本发明实施例提供一种数据传输方法、装置、系统及计算机存储介质。
本发明实施例提供一种数据传输方法,应用于通信系统,所述通信系统包括终端和网络设备,所述终端设置有至少两个WLAN通信单元,所述WLAN通信单元支持WLAN通信和下一代WLAN通信,所述方法包括:
所述终端向所述网络设备发送各所述WLAN通信单元的通信参数;
所述网络设备根据所述通信参数,控制各所述WLAN通信单元分别与可接入的AP建立至少两条聚合WLAN链路(AWL),各所述AWL用于承载数据,各所述AWL不仅能承载数据,也能停止承载数据,还能够被单独维护、重配、删除。
其中,所述方法还包括:
所述终端通过轮询检测各所述WLAN通信单元的状态,当检测到有所述WLAN通信单元处于空闲或可用状态时,向所述网络设备发送AWL建立请求;
所述网络设备根据所述AWL建立请求,控制处于空闲或可用状态的所述WLAN通信单元与可接入的AP建立AWL。
其中,所述方法还包括:
所述网络设备基于内部存储的所述终端的通信上下文信息,通过轮询检测各所述WLAN通信单元的状态,当检测到有所述WLAN通信单元处于空闲或可用状态时,控制处于空闲或可用状态的所述WLAN通信单元与可接入的AP建立AWL。
其中,所述WLAN通信单元支持LWA机制;
相应地,所述终端向所述网络设备发送各所述WLAN通信单元的通信参数,包括:
所述终端通过LTE或其演进系统空口RRC信令将各所述WLAN通信单元的通信参数按需上报给所述网络设备。
其中,所述控制各所述WLAN通信单元分别与可接入的AP建立至少两条AWL,包括:
所述网络设备通过RRC专有信令给处于空闲或可用状态的WLAN通信单元配置和LWA相关的策略准则参数;
根据收到的所述WLAN通信单元的通信参数选取可接入的AP;
将选取的可接入AP分别与对应的处于空闲或可用状态的WLAN通信单元形成关联连接,完成指定的WLAN入网鉴权注册,以建立聚合WLAN链路AWL。
其中,所述方法还包括:
所述网络设备基于内部存储的通信上下文信息参数和/或所述终端反馈的通信参数来协调各所述AWL的数据分流承载情况,使各所述AWL以独立或者协作方式来承载分流的数据。
本发明实施例提供一种一种数据传输方法,应用于终端,所述终端设置有至少两个WLAN通信单元,所述WLAN通信单元支持WLAN通信和下一代WLAN通信,所述方法包括:
向网络设备发送各所述WLAN通信单元的通信参数,以使所述网络设备根据所述通信参数控制各所述WLAN通信单元分别与可接入的AP建立至少两条AWL;
根据所述网络设备的控制使各所述WLAN通信单元分别与可接入的AP建立至少两条AWL,各所述AWL用于承载数据,各所述AWL不仅能承载数据,也能停止承载数据,还能够被单独维护、重配、删除。
其中,所述方法还包括:
通过轮询检测各所述WLAN通信单元的状态,当检测到有所述WLAN 通信单元处于空闲或可用状态时,向所述网络设备发送AWL建立请求,以使所述网络设备根据所述AWL建立请求控制处于空闲或可用状态的所述WLAN通信单元与可接入的AP建立AWL。
其中,所述WLAN通信单元支持LWA机制;
相应地,所述向所述网络设备发送各所述WLAN通信单元的通信参数,包括:
通过LTE或其演进系统空口RRC信令将各所述WLAN通信单元的通信参数按需上报给所述网络设备。
本发明实施例提供一种数据传输方法,应用于网络设备,所述方法包括:
接收设置有至少两个WLAN通信单元的终端发送的各所述WLAN通信单元的通信参数;所述WLAN通信单元支持WLAN通信和下一代WLAN通信,
根据所述通信参数,控制各所述WLAN通信单元分别与可接入的AP建立至少两条AWL,各所述AWL用于承载数据,各所述AWL不仅能承载数据,也能停止承载数据,还能够被单独维护、重配、删除。
其中,所述方法还包括:
根据所述终端发来的AWL建立请求,控制所述终端中处于空闲或可用状态的WLAN通信单元与可接入的AP建立AWL,所述WLAN通信单元的状态是所述终端通过轮询检测到的。
其中,所述方法还包括:
基于内部存储的所述终端的通信上下文信息,通过轮询检测各所述WLAN通信单元的状态,当检测到有所述WLAN通信单元处于空闲或可用状态时,控制处于空闲或可用状态的所述WLAN通信单元与可接入的AP建立AWL。
其中,所述控制各所述WLAN通信单元分别与可接入的AP建立至少两条AWL,包括:
通过RRC专有信令给处于空闲或可用状态的WLAN通信单元配置和LWA相关的策略准则参数;
根据收到的所述WLAN通信单元的通信参数选取可接入的AP;
将选取的可接入AP分别与对应的处于空闲或可用状态的WLAN通信单元形成关联连接,完成指定的WLAN入网鉴权注册,以建立AWL。
其中,所述方法还包括:
基于内部存储的通信上下文信息参数和/或所述终端反馈的通信参数来协调各所述AWL的数据分流承载情况,使各所述AWL以独立或者协作方式来承载分流的数据。
本发明实施例提供一种终端,应用于通信系统,所述通信系统还包括网络设备,所述终端设置有至少两个WLAN通信单元,所述WLAN通信单元支持WLAN通信和下一代WLAN通信,所述终端包括:
发送单元,配置为向所述网络设备发送各所述WLAN通信单元的通信参数,以使所述网络设备根据所述通信参数控制各所述WLAN通信单元分别与可接入的AP建立至少两条AWL;
处理单元,配置为根据所述网络设备的控制使各所述WLAN通信单元分别与可接入的AP建立至少两条聚合WLAN链路AWL,各所述AWL用于承载数据,各所述AWL不仅能承载数据,也能停止承载数据,还能够被单独维护、重配、删除。
其中,所述终端还包括检测单元,所述检测单元配置为通过轮询检测各所述WLAN通信单元的状态,当检测到有所述WLAN通信单元处于空闲或可用状态时,向所述网络设备发送AWL建立请求,以使所述网络设备根据所述AWL建立请求控制处于空闲或可用状态的所述WLAN通信单元 与可接入的AP建立AWL;
所述处理单元,还配置为根据所述网络设备的控制使所述WLAN通信单元与可接入的AP建立AWL。
其中,所述WLAN通信单元支持LWA机制;
所述发送单元,配置为通过LTE或其演进系统空口RRC信令将各所述WLAN通信单元的通信参数按需上报给所述网络设备。
本发明实施例提供一种网络设备,应用于通信系统,所述通信系统还包括终端,所述终端设置有至少两个WLAN通信单元,所述WLAN通信单元支持WLAN通信和下一代WLAN通信,所述网络设备包括:
接收单元,配置为接收所述终端发来的各所述WLAN通信单元的通信参数;
控制单元,配置为根据所述通信参数,控制各所述WLAN通信单元分别与可接入的AP建立至少两条AWL,各所述AWL用于承载数据,各所述AWL不仅能承载数据,也能停止承载数据,还能够被单独维护、重配、删除。
其中,所述控制单元,还配置为根据所述终端发来的AWL建立请求,控制所述终端中处于空闲或可用状态的WLAN通信单元与可接入的AP建立AWL,所述WLAN通信单元的状态是所述终端通过轮询检测到的。
其中,所述控制单元,还配置为基于内部存储的所述终端的通信上下文信息,通过轮询检测各所述WLAN通信单元的状态,当检测到有所述WLAN通信单元处于空闲或可用状态时,控制处于空闲或可用状态的所述WLAN通信单元与可接入的AP建立AWL。
其中,所述控制单元,配置为通过RRC专有信令给处于空闲或可用状态的WLAN通信单元配置和LWA相关的策略准则参数;
根据收到的所述WLAN通信单元的通信参数选取可接入的AP;
将选取的可接入AP分别与对应的处于空闲或可用状态的WLAN通信单元形成关联连接,完成指定的WLAN入网鉴权注册,以建立AWL。
其中,所述控制单元,基于内部存储的通信上下文信息参数和/或所述终端反馈的通信参数来协调各所述AWL的数据分流承载情况,使各所述AWL以独立或者协作方式来承载分流的数据。
本发明实施例提供一种通信系统,所述通信系统包括终端和网络设备,所述终端设置有至少两个WLAN通信单元,所述WLAN通信单元支持WLAN通信和下一代WLAN通信;
所述终端,配置为向所述网络设备发送各所述WLAN通信单元的通信参数;
所述网络设备,配置为根据所述通信参数,控制各所述WLAN通信单元分别与可接入的AP建立至少两条AWL,各所述AWL用于承载数据,各所述AWL不仅能承载数据,也能停止承载数据,还能够被单独维护、重配、删除。
其中,所述终端,还配置为通过轮询检测各所述WLAN通信单元的状态,当检测到有所述WLAN通信单元处于空闲或可用状态时,向所述网络设备发送AWL建立请求;
所述网络设备,还配置为根据所述AWL建立请求,控制处于空闲或可用状态的所述WLAN通信单元与可接入的AP建立AWL。
本发明实施例提供一种计算机存储介质,所述计算机存储介质包括一组指令,当执行所述指令时,引起至少一个处理器执行上述终端侧的数据传输方法,或者执行上述网络设备侧的数据传输方法。
由上可知,本发明实施例的技术方案应于通信系统,所述通信系统包括终端和网络设备,所述终端设置有至少两个WLAN通信单元,所述方法包括:所述终端向所述网络设备发送所述WLAN通信单元的通信参数;所 述网络设备根据所述通信参数,控制所述WLAN通信单元与所述AP建立至少两条AWL,所述AWL用于承载数据。本发明实施例的技术方案不仅能够减少控制面信令冗余,而且能够充分利用网络侧资源。
附图说明
图1为本发明实施例提供的一种WLAN/3GPP联合互操作耦合的架构;
图2为本发明实施例提供的向WLAN AP节点IP Flow分流前的状态示意;
图3为本发明实施例提供的向WLAN AP节点IP Flow分流后的状态示意;
图4为本发明实施例提供的向WLAN AP节点紧耦合分流前的状态示意;
图5为本发明实施例提供的向WLAN AP节点紧耦合分流后的状态示意;
图6为本发明提供的一种数据传输方法的第一实施例的流程示意图;
图7为本发明提供的一种数据传输方法的第二实施例的流程示意图;
图8为本发明第三实施例的应用场景示意图;
图9为本发明第四实施例的应用场景示意图;
图10为本发明提供的一种数据传输装置的实施例的结构示意图;
图11为本发明提供的另一种数据传输装置的实施例的结构示意图;
图12为本发明提供的另一种数据传输系统的实施例的结构示意图。
具体实施方式
应当理解,此处所描述的多个具体实施例,仅仅用以解释本发明内容,并不用于限定本发明内容。
在本发明的各种实施例中:终端设置有至少两个WLAN通信单元,所 述终端向网络设备发送所述WLAN通信单元的通信参数;所述网络设备根据所述通信参数,控制所述WLAN通信单元与所述AP建立至少两条AWL,所述AWL用于承载数据。
本发明第一实施例提供一种数据传输方法,应用于通信系统,所述通信系统包括终端和网络设备,所述终端设置有至少两个WLAN通信单元,所述WLAN通信单元支持WLAN通信和下一代WLAN通信,如HEW,如图6所示,所述方法包括:
步骤601、所述终端向所述网络设备发送各所述WLAN通信单元的通信参数;
步骤602、所述网络设备根据所述通信参数,控制各所述WLAN通信单元与所述AP建立至少两条AWL,各所述AWL用于承载数据,各所述AWL不仅能承载数据,也能停止承载数据,还能够被单独维护、重配、删除。
这里,要说明的是,所述WLAN通信单元在下文也称为WLAN资源功能模块或WLAN模块。
所述通信参数包括是否能够支持LWA机制的能力,以及支持的WLAN射频频段和工作带宽等必要参数。
不难理解,所述网络设备可以包括MeNB、融合CN等。
可以理解的是,本文所述的终端包括移动终端。
在一实施例中,所述方法还可以包括:
所述终端通过轮询检测各所述WLAN通信单元的状态,当检测到有所述WLAN通信单元处于空闲或可用状态时,向所述网络设备发送AWL建立请求;
所述网络设备根据所述AWL建立请求,控制处于空闲或可用状态的所述WLAN通信单元与可接入的AP建立AWL。
在一实施例中,所述方法还包括:
所述网络设备基于内部存储的所述终端的通信上下文信息,通过轮询检测各所述WLAN通信单元的状态,当检测到有所述WLAN通信单元处于空闲或可用状态时,控制处于空闲或可用状态的所述WLAN通信单元与可接入的AP建立AWL。
在一实施例中,所述WLAN通信单元支持LWA机制;
相应地,所述终端向所述网络设备发送所述WLAN通信单元的通信参数,可以包括:
所述终端通过LTE或其演进系统空口RRC信令将各所述WLAN通信单元的通信参数按需上报给所述网络设备如MeNB。
在一实施例中,所述控制各所述WLAN通信单元分别与可接入的AP建立至少两条AWL,可以包括:
所述网络设备如MeNB通过RRC专有信令给处于空闲或可用状态的WLAN通信单元配置和LWA相关的策略准则参数;
根据收到的所述WLAN通信单元的通信参数选取可接入的AP;
将选取的可接入AP分别与对应的处于空闲或可用状态的WLAN通信单元形成关联连接,完成指定的WLAN入网鉴权注册,以建立聚合WLAN链路AWL。
在一实施例中,所述方法还包括:所述网络设备基于内部存储的通信上下文信息参数和/或所述终端反馈的通信参数来协调各所述AWL的数据分流承载情况,使各所述AWL以独立或者协作方式来承载分流的数据。
基于此,在终端侧,其处理过程主要包括:
向网络设备发送各所述WLAN通信单元的通信参数,以使所述网络设备根据所述通信参数控制各所述WLAN通信单元分别与可接入的AP建立至少两条AWL;
根据所述网络设备的控制使各所述WLAN通信单元分别与可接入的AP建立至少两条AWL,各所述AWL用于承载数据,各所述AWL不仅能承载数据,也能停止承载数据,还能够被单独维护、重配、删除。
其中,终端侧的处理还可以包括:
通过轮询检测各所述WLAN通信单元的状态,当检测到有所述WLAN通信单元处于空闲或可用状态时,向所述网络设备发送AWL建立请求,以使所述网络设备根据所述AWL建立请求控制处于空闲或可用状态的所述WLAN通信单元与可接入的AP建立AWL。
另外,当所述WLAN通信单元支持LWA机制时,所述向所述网络设备发送各所述WLAN通信单元的通信参数,可以包括:
通过LTE或其演进系统空口RRC信令将各所述WLAN通信单元的通信参数按需上报给所述网络设备。
在网络设备侧,其处理过程主要包括:
接收设置有至少两个WLAN通信单元的终端发送的各所述WLAN通信单元的通信参数;所述WLAN通信单元支持WLAN通信和下一代WLAN通信,
根据所述通信参数,控制各所述WLAN通信单元分别与可接入的AP建立至少两条AWL,各所述AWL用于承载数据,各所述AWL不仅能承载数据,也能停止承载数据,还能够被单独维护、重配、删除。
这里,所述控制各所述WLAN通信单元分别与可接入的AP建立至少两条AWL,可以包括:
通过RRC专有信令给处于空闲或可用状态的WLAN通信单元配置和LWA相关的策略准则参数;
根据收到的所述WLAN通信单元的通信参数选取可接入的AP;
将选取的可接入AP分别与对应的处于空闲或可用状态的WLAN通信 单元形成关联连接,完成指定的WLAN入网鉴权注册,以建立AWL。
其中,网络设备侧的处理还可以包括:
根据所述终端发来的AWL建立请求,控制所述终端中处于空闲或可用状态的WLAN通信单元与可接入的AP建立AWL,所述WLAN通信单元的状态是所述终端通过轮询检测到的。
实际应用时,网络设备侧的处理还可以包括:
基于内部存储的所述终端的通信上下文信息,通过轮询检测各所述WLAN通信单元的状态,当检测到有所述WLAN通信单元处于空闲或可用状态时,控制处于空闲或可用状态的所述WLAN通信单元与可接入的AP建立AWL。
在一实施例中,网络设备侧的处理还可以包括:
基于内部存储的通信上下文信息参数和/或所述终端反馈的通信参数来协调各所述AWL的数据分流承载情况,使各所述AWL以独立或者协作方式来承载分流的数据。
本发明第二实施例提供一种数据传输方法,参见图7所示,本实施例涉及的主要步骤流程如下:
S0:初始化3GPP网络侧(包含:融合CN和融合无线接入网RAN/AC/AP等)通过空口信令获悉终端的“多AP连接相关能力”;具体包括:UE内部装备配置的多套WLAN资源功能模块各自是否能够支持LWA机制的能力,以及支持的WLAN射频频段和工作带宽等必要参数。其中LWA机制就是现有的3GPP/WLAN紧耦合联合互操作机制。
S1:在UE内部某套WLAN资源功能模块的能力范围内,3GPP网络侧基于它能支持的LWA机制,按照现有技术方式,让网络侧部署的某AP1节点和该UE内该套WLAN资源功能模块先形成关联连接,完成必要的WLAN入网鉴权注册等过程,此时UE被建立而获得主聚合WLAN链路 (PAWL,Primary Aggregated WLAN Link)。成功建立后,3GPP网络侧基于LWA机制现有技术,让MeNB、AP1和UE进行相关的空口上下行数据传输,即按照该LWA机制所规定的策略准则参数等,用PAWL去分流承载或者反向卸流去承载UE中的部分IP Flows或者IP Flows中的部分IP数据包。
S2:在S1之后,如果UE内还有某套WLAN资源功能模块处于闲置没被利用的状态,则在该套WLAN资源功能模块的能力范围内,3GPP网络侧基于它能支持的LWA机制,在一定的条件下,按照现有技术方式,让网络侧部署的某AP2节点和UE内该套WLAN资源功能模块形成关联连接,完成必要的WLAN入网鉴权注册等过程,此时UE被建立而获得第一辅聚合WLAN链路SAWL(1st SAWL,1st Secondary Aggregated WLAN Link)。成功建立后,3GPP网络侧基于该LWA机制现有技术,让MeNB、AP2和UE进行相关的空口上下行数据传输,即按照该LWA机制所规定的策略准则参数等,用1st SAWL去分流承载或者反向卸流去承载UE中的部分IP Flows或者IP Flows中的部分IP数据包。1st SAWL承载的IP Flows或者IP数据包可以来自UE在3GPP网络侧剩下的用户数据流,也可以是PAWL已经分流承载的用户数据流或者IP数据包。
S3:类似S2处理的原则方式,3GPP网络侧继续检测UE内部尚未被利用的WLAN资源功能模块,基于它能支持的LWA机制,在一定的条件下,按照现有技术方式,尝试让网络侧部署的其它APx节点和UE内该套WLAN资源功能模块形成关联连接,完成必要的WLAN入网鉴权注册等过程,此时UE被建立而获得更多的第二/第三/第四等辅聚合WLAN链路SAWL(2nd/3rd/4th…SAWL,2nd/3rd/4th…Secondary Aggregated WLAN Link)。成功建立后,3GPP网络侧基于该LWA机制现有技术,让MeNB、APx和UE进行相关的空口上下行数据传输,即按照该LWA机制规定的策 略准则参数等,用更多的2nd/3rd/4th…SAWL去分流承载或者反向卸流去承载UE中的部分IP Flows或者IP Flows中的部分IP数据包。2nd/3rd/4th…SAWL承载的IP Flows可以来自UE在3GPP网络侧剩下的用户数据流或者IP数据包,也可以是之前PAWL和1st SAWL已经分流承载的用户数据流或者IP数据包,后续依次递推。
S4:上述顺序递推处理的停止条件为:3GPP网络侧检测到UE内部所有有LWA能力的WLAN资源功能模块都已经被利用,或者针对该UE,3GPP网络侧暂时不能再提供可服务的AP节点和该UE内某WLAN资源功能模块形成LWA方式的关联连接,包括WLAN AP信号覆盖强度质量,无线负荷,回传带宽等不满足接入条件,WLAN鉴权注册失败等情况。随着时间推移,当3GPP网络侧和UE条件状态发生变化之后,步骤S1/2/3会再次被执行,即:3GPP网络侧和UE总是轮询检测更新地去做“多AP连接”LWA操作的可能性,尽可能地去多利用网络侧多WLAN APs资源和UE内多套有LWA能力的WLAN功能模块资源。
上述PAWL和1st,2nd,3rd,4th…SAWL对应于UE和网络侧有LWA能力的多WLAN AP间建立的多条WLAN工作链路,在建立的时间顺序上,如果条件被满足,可以同时被建立,即只有逻辑上处理先后的顺序差别,没有时间上较大的先后建立差别。
PAWL和1st,2nd,3rd,4th…SAWL之间既可以是基于同一套LWA机制所对应的策略准则参数等(对应3GPP网络侧为所有目标AP配置同一套策略准则参数等),和在相同的状态条件下建立而成,这种情况下PAWL和1st,2nd,3rd,4th…SAWL之间除了名称不同为了方便描述上的区别,实质并无本质差别(可以都称为PAWL);PAWL和1st,2nd,3rd,4th…SAWL之间也可以是基于不同套的LWA机制所对应的策略准则参数等(对应3GPP网络侧为不同的目标APs配置不同的策略准则参数等),或在不同的状态条 件下建立而成,这种情况下PAWL和1st,2nd,3rd,4th…SAWL之间有着LWA分流能力和建立/维护/释放等方面的多重差别,因此需要更严格地被区分。
由于不同的PAWL和1st,2nd,3rd,4th…SAWL逻辑上独立存在于网络侧多WLAN APs和UE内多套WLAN功能模块之间,因此它们可以彼此独立地工作,任何一条WLAN链路的工作状态变化不会影响到其他WLAN链路的工作状态,仅仅受到3GPP网络侧为各条WLAN链接配置的策略准则参数等控制和状态条件的影响。
本发明第三实施例提供一种数据传输方法,如图8所示,某运营商部署了LTE宏小区网络提供用户基本无线覆盖,为了增强网络容量,该运营商进一步在非授权2.4G和5G频段内的某非授权载波频点上,又分别部署了40M带宽的WLAN AP,用来分流承载用户业务的IP Flows。这些WLAN APs都具备和锚点MeNB做LWA操作的能力,它们和MeNB存在标准化的Xw外部接口。某终端UE 1正常驻留在LTE宏小区内,和MeNB基站保持着RRC连接态,同时该UE 1也处于多个WLAN AP无线信号覆盖之下。
S100:UE 1内部硬件装配了:1套能支持2.4G频段40M带宽的WLAN射频基带功能模块A(简称WLAN模块A)+1套能支持5G频段40M带宽的WLAN射频基带功能模块B(简称WLAN模块B),且都可以做LWA操作,UE 1通过LTE空口将RRC信息上报给了MeNB,从而LTE网络侧获悉UE 1能支持“多AP连接”的相关能力。
S101:MeNB通过RRC专有信令给UE 1的WLAN模块A配置和LWA相关的策略准则参数,在特定的WLAN条件下,按照现有LWA技术方式,2.4G频段上的某AP1节点和UE 1内WLAN模块A先形成了关联连接,完成必要的WLAN入网鉴权注册等过程,此时UE 1被建立而获得PAWL。 成功建立后,原先承载在LTE宏小区内的某些IP Flows或者IP数据包被PAWL分流出去。
S102:MeNB进一步通过RRC专有信令给UE 1的WLAN模块B配置和LWA相关的策略准则参数,在特定的WLAN条件下,按照现有LWA技术方式,5G频段上的某AP2节点和UE 1内WLAN模块B也能形成了关联连接,完成必要的WLAN入网鉴权注册等过程,此时UE 1被建立而获得一条辅聚合WLAN链路SAWL。成功建立后,原先承载在LTE宏小区内的某些IP Flows或者IP数据包又能被SAWL分流出去。
这里需要说明的是,由于WLAN系统在空口基于非授权无线资源竞争的先听后说(LBT,ListenBefore Talk)的工作方式,因此UE 1内两套WLAN模块在频谱垂直面上,无法进行像LTE载波聚合那样的操作(WLAN模块无法对齐多个数据块的传输时间)。UE 1同时和两个目标AP进行WLAN数据分流,这能进一步增强LTE宏网络向WLAN网络的分流能力,提升用户数据吞吐率。
S103:由于UE 1只有两套WLAN模块,且都已经被利用,因此无法建立更多的SAWL。
S104:虽然MeNB暂时检测到UE 1内部所有的WLAN模块都已经被利用,但是随着UE位置移动和WLAN自身条件的变化(比如信号覆盖强度质量,无线负荷),还需要轮询检测更新地去做“双AP连接”(比如基于UE 1对目标AP的无线测量报告),尽可能地去多利用网络侧WLAN AP资源和UE内两套WLAN模块。UE 1在2.4G和5G频段内的目标AP节点会独立地发生更新变化,而分流的IP Flows或者IP数据包的具体情况继续按照MeNB分别配置的LWA相关的策略准则参数而进行。
本发明第四实施例提供一种数据传输方法,如图9所示,某运营商部署了LTE宏小区网络提供用户基本无线覆盖,为了增强网络容量,该运营 商进一步在非授权2.4G的某非授权载波频点上,又连续相邻部署了80M带宽的WLAN AP,用来分流承载用户业务的IP Flows。这些WLAN AP都具备和锚点MeNB做LWA操作的能力,它们和MeNB存在标准化的Xw外部接口。某终端UE 2正常驻留在LTE宏小区内,和MeNB基站保持着RRC连接态,同时该UE 2也处于两个相邻的WLAN AP无线信号的重叠覆盖之下。
S200:UE 2内部硬件装配了:2套能支持2.4G频段80M带宽的WLAN射频基带功能模块(简称WLAN模块A/B)+1套能支持5G频段80M带宽的WLAN射频基带功能模块C(简称WLAN模块C),且都可以做LWA操作,UE 2通过LTE空口将RRC信息上报给了MeNB,从而LTE网络侧获悉UE 2能支持“多AP连接”的相关能力。
S201:MeNB通过RRC专有信令给UE 2的WLAN模块A/B配置和LWA相关的策略准则参数,在特定的WLAN条件下,按照现有LWA技术方式,2.4G频段上的某AP1节点和UE 2内WLAN模块A先形成了关联连接,完成必要的WLAN入网鉴权注册等过程,此时UE 2被建立而获得主聚合WLAN链路PAWL。成功建立后,原先承载在LTE宏小区内的某些IP Flows或者IP数据包被PAWL分流出去。
S202:进一步地,在特定的WLAN条件下,按照现有LWA技术方式,2.4G频段上与AP1节点相邻的AP2节点也和UE 2内WLAN模块B形成了关联连接,完成必要的WLAN入网鉴权注册等过程,此时UE 2被建立而获得一条辅聚合WLAN链路SAWL。成功建立后,原先承载在LTE宏小区内和PAWL上的某些IP Flows或者IP数据包又能被SAWL分流出去。
这里需要说明的是,由于WLAN系统在空口基于非授权无线资源竞争的LBT的工作方式,因此在同一WLAN非授权工作频点上的AP1和AP2不一定能同时地向UE 2发送数据块,谁先成功抢占到本地信道资源,谁就 可以发送数据块。网络侧也可以选择让相邻的AP1和AP2承载相同的IP Flow内容或者IP数据包,形成发送接收分集增益。
S203:虽然UE 2还有1套闲置的WLAN模块C,但是因为网络侧没有提供5G频段内的WLAN AP节点资源,因此无法建立更多的SAWL。
S204:虽然MeNB暂时检测到UE 2内部所有的WLAN模块都已经尽可能地被利用,但是随着UE位置移动和WLAN自身条件的变化(比如信号覆盖强度质量,无线负荷,进入到5G频段内WLAN AP节点覆盖范围内),还需要轮询检测更新地去做“多AP连接”(比如基于UE 2对目标AP的无线测量报告),尽可能地去多利用网络侧WLAN AP资源和UE内3套WLAN模块。UE 2在2.4G或者5G频段内的目标AP节点会独立地发生更新变化,而分流的IP Flows具体情况继续按照MeNB分别配置的LWA相关的策略准则参数而进行。
本发明实施例提供一种终端,应用于通信系统,所述通信系统还包括网络设备,所述终端设置有至少两个WLAN通信单元,所述WLAN通信单元支持WLAN通信和下一代WLAN通信,如图10所示,所述终端包括:
发送单元1001,配置为向所述网络设备发送各所述WLAN通信单元的通信参数,以使所述网络设备根据所述通信参数控制各所述WLAN通信单元分别与可接入的AP建立至少两条AWL;
处理单元1002,配置为根据所述网络设备的控制使各所述WLAN通信单元分别与可接入的AP建立至少两条AWL,各所述AWL用于承载数据,各所述AWL不仅能承载数据,也能停止承载数据,还能够被单独维护、重配、删除。
在一实施例中,所述终端还包括检测单元1003,所述检测单元1003,配置为通过轮询检测各所述WLAN通信单元的状态,当检测到有所述WLAN通信单元处于空闲或可用状态时,向所述网络设备发送AWL建立 请求,以使所述网络设备根据所述AWL建立请求控制处于空闲或可用状态的所述WLAN通信单元与可接入的AP建立AWL;
所述处理单元1002,还配置为根据所述网络设备的控制使所述WLAN通信单元与可接入的AP建立AWL。
在一实施例中,所述WLAN通信单元支持LWA机制;
所述发送单元1001,配置为通过LTE或其演进系统空口RRC信令将个所述WLAN通信单元的通信参数按需上报给网络设备如MeNB。
实际应用时,所述发送单元1001可由终端中的收发机实现;所述处理单元1002及检测单元1003可由终端中的中央处理器(CPU,Central Processing Unit)、微处理器(MCU,Micro Control Unit)、数字信号处理器(DSP,Digital Signal Processor)或可编程逻辑阵列(FPGA,Field-Programmable Gate Array)实现。
本发明实施例提供一种网络设备,应用于通信系统,所述通信系统还包括终端,所述终端设置有至少两个WLAN通信单元,所述WLAN通信单元支持WLAN通信和下一代WLAN通信,如图11所示,所述网络设备包括:
接收单元1101,配置为接收所述终端发来的所各述WLAN通信单元的通信参数;
控制单元1102,配置为根据所述通信参数,控制各所述WLAN通信单元分别与可接入的所述AP建立至少两条AWL,各所述AWL用于承载数据,各所述AWL不仅能承载数据,也能停止承载数据,还能够被单独维护、重配、删除。
在一实施例中,所述控制单元1102,还配置为根据所述终端发来的AWL建立请求,控制所述终端中处于空闲或可用状态的WLAN通信单元与可接入的AP建立AWL,所述WLAN通信单元的状态是所述终端通过轮 询检测到的。
在一实施例中,所述控制单元1102,还配置为基于内部存储的所述终端的通信上下文信息,通过轮询检测各所述WLAN通信单元的状态,当检测到有所述WLAN通信单元处于空闲或可用状态时,控制处于空闲或可用状态的所述WLAN通信单元与可接入的AP建立AWL。
在一实施例中,所述控制单元1102,配置为通过RRC专有信令给处于空闲或可用状态的WLAN通信单元配置和LWA相关的策略准则参数;
根据收到的所述WLAN通信单元的通信参数选取可接入的AP;
将选取的可接入AP分别与对应的处于空闲或可用状态的WLAN通信单元形成关联连接,完成指定的WLAN入网鉴权注册,以建立聚合WLAN链路AWL。
在一实施例中,所述控制单元1102,还配置为基于内部存储的通信上下文信息参数和/或所述终端反馈的通信参数来协调各所述AWL的数据分流承载情况,使各所述AWL以独立或者协作方式来承载分流的数据。
实际应用时,所述接收单元1101可由网络设备中的收发机实现;所述控制单元1102可由网络设备中的CPU、MCU、DSP或FPGA结合收发机实现。
本发明实施例提供一种通信系统,如图12所示,所述通信系统包括终端1201和网络设备1202,所述终端设置有至少两个WLAN通信单元,所述WLAN通信单元支持WLAN通信和下一代WLAN通信;
所述终端1201,配置为向所述网络设备发送所述WLAN通信单元的通信参数;
所述网络设备1202,配置为根据所述通信参数,控制各所述WLAN通信单元分别与可接入的AP建立至少两条聚合WLAN链路AWL,各所述AWL用于承载数据,各所述AWL不仅能承载数据,也能停止承载数据, 还能够被单独维护、重配、删除。
在一实施例中,所述终端1201,还配置为通过轮询检测各所述WLAN通信单元的状态,当检测到有所述WLAN通信单元处于空闲或可用状态时,向所述网络设备发送AWL建立请求;
所述网络设备1202,还配置为根据所述AWL建立请求,控制处于空闲或可用状态的所述WLAN通信单元与可接入的AP建立AWL。
本发明实施例涉及3GPP家族制式内的蜂窝移动系统,如长期演进系统LTE及其后续下一代蜂窝系统,和WLAN及其后续下一代系统,如HEW之间的跨系统联合互操作工作模式。尤其涉及UE在LWA机制下,利用“多AP连接”,实现紧耦合数据传输的技术。所述LTE系统包括网络侧NW和终端侧UE,所述WLAN系统包括网络侧和终端侧。
本发明实施例中UE内部配置多套WLAN资源功能模块,其中含WLAN射频和基带等基本功能组成部分。此时,在一定的条件下,UE能够和网络侧提供服务的多个逻辑独立的WLAN AP节点同时进行关联连接和数据传输,形成“多AP连接”工作模式。因WLAN系统比3GPP系统在物理实现上要技术简单且成本低廉很多,因此内配多套WLAN资源模块,并不会明显地增加UE的总成本,而UE设计厂家也能够根据运营商或者其他行业用户的需要去定制不同3GPP与WLAN能力模块成本比例的终端。
综上所述,本发明实施例提供的技术方案不仅能够减少控制面信令冗余,而且能够充分利用网络侧资源。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。本发明 不限制于任何特定形式的硬件和软件的结合。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
基于此,本发明实施例还提供了一种计算机存储介质,所述计算机存储介质包括一组指令,当执行所述指令时,引起至少一个处理器执行上述 终端侧的数据传输方法,或者执行网络设备侧的数据传输方法。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。当然,本发明还可有其他多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

Claims (25)

  1. 一种数据传输方法,应用于通信系统,所述通信系统包括终端和网络设备,所述终端设置有至少两个WLAN通信单元,所述WLAN通信单元支持WLAN通信和下一代WLAN通信,所述方法包括:
    所述终端向所述网络设备发送各所述WLAN通信单元的通信参数;
    所述网络设备根据所述通信参数,控制各所述WLAN通信单元分别与可接入的AP建立至少两条聚合WLAN链路AWL,各所述AWL用于承载数据,各所述AWL不仅能承载数据,也能停止承载数据,还能够被单独维护、重配、删除。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述终端通过轮询检测各所述WLAN通信单元的状态,当检测到有所述WLAN通信单元处于空闲或可用状态时,向所述网络设备发送AWL建立请求;
    所述网络设备根据所述AWL建立请求,控制处于空闲或可用状态的所述WLAN通信单元与可接入的AP建立AWL。
  3. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述网络设备基于内部存储的所述终端的通信上下文信息,通过轮询检测各所述WLAN通信单元的状态,当检测到有所述WLAN通信单元处于空闲或可用状态时,控制处于空闲或可用状态的所述WLAN通信单元与可接入的AP建立AWL。
  4. 根据权利要求1所述的方法,其中,所述WLAN通信单元支持LWA机制;
    相应地,所述终端向所述网络设备发送各所述WLAN通信单元的通信参数,包括:
    所述终端通过LTE或其演进系统空口RRC信令将各所述WLAN通信 单元的通信参数按需上报给所述网络设备。
  5. 根据权利要求4所述的方法,其中,所述控制各所述WLAN通信单元分别与可接入的AP建立至少两条AWL,包括:
    所述网络设备通过RRC专有信令给处于空闲或可用状态的WLAN通信单元配置和LWA相关的策略准则参数;
    根据收到的所述WLAN通信单元的通信参数选取可接入的AP;
    将选取的可接入AP分别与对应的处于空闲或可用状态的WLAN通信单元形成关联连接,完成指定的WLAN入网鉴权注册,以建立AWL。
  6. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述网络设备基于内部存储的通信上下文信息参数和/或所述终端反馈的通信参数来协调各所述AWL的数据分流承载情况,使各所述AWL以独立或者协作方式来承载分流的数据。
  7. 一种数据传输方法,应用于终端,所述终端设置有至少两个WLAN通信单元,所述WLAN通信单元支持WLAN通信和下一代WLAN通信,所述方法包括:
    向网络设备发送各所述WLAN通信单元的通信参数,以使所述网络设备根据所述通信参数控制各所述WLAN通信单元分别与可接入的AP建立至少两条AWL;
    根据所述网络设备的控制使各所述WLAN通信单元分别与可接入的AP建立至少两条AWL,各所述AWL用于承载数据,各所述AWL不仅能承载数据,也能停止承载数据,还能够被单独维护、重配、删除。
  8. 根据权利要求7所述的方法,其中,所述方法还包括:
    通过轮询检测各所述WLAN通信单元的状态,当检测到有所述WLAN通信单元处于空闲或可用状态时,向所述网络设备发送AWL建立请求,以使所述网络设备根据所述AWL建立请求控制处于空闲或可用状态的所述 WLAN通信单元与可接入的AP建立AWL。
  9. 根据权利要求7所述的方法,其中,所述WLAN通信单元支持LWA机制;
    相应地,所述向所述网络设备发送各所述WLAN通信单元的通信参数,包括:
    通过LTE或其演进系统空口RRC信令将各所述WLAN通信单元的通信参数按需上报给所述网络设备。
  10. 一种数据传输方法,应用于网络设备,所述方法包括:
    接收设置有至少两个WLAN通信单元的终端发送的各所述WLAN通信单元的通信参数;所述WLAN通信单元支持WLAN通信和下一代WLAN通信,
    根据所述通信参数,控制各所述WLAN通信单元分别与可接入的AP建立至少两条AWL,各所述AWL用于承载数据,各所述AWL不仅能承载数据,也能停止承载数据,还能够被单独维护、重配、删除。
  11. 根据权利要求10所述的方法,其中,所述方法还包括:
    根据所述终端发来的AWL建立请求,控制所述终端中处于空闲或可用状态的WLAN通信单元与可接入的AP建立AWL,所述WLAN通信单元的状态是所述终端通过轮询检测到的。
  12. 根据权利要求10所述的方法,其中,所述方法还包括:
    基于内部存储的所述终端的通信上下文信息,通过轮询检测各所述WLAN通信单元的状态,当检测到有所述WLAN通信单元处于空闲或可用状态时,控制处于空闲或可用状态的所述WLAN通信单元与可接入的AP建立AWL。
  13. 根据权利要求10所述的方法,其中,所述控制各所述WLAN通信单元分别与可接入的AP建立至少两条AWL,包括:
    通过RRC专有信令给处于空闲或可用状态的WLAN通信单元配置和LWA相关的策略准则参数;
    根据收到的所述WLAN通信单元的通信参数选取可接入的AP;
    将选取的可接入AP分别与对应的处于空闲或可用状态的WLAN通信单元形成关联连接,完成指定的WLAN入网鉴权注册,以建立AWL。
  14. 根据权利要求10所述的方法,其中,所述方法还包括:
    基于内部存储的通信上下文信息参数和/或所述终端反馈的通信参数来协调各所述AWL的数据分流承载情况,使各所述AWL以独立或者协作方式来承载分流的数据。
  15. 一种终端,应用于通信系统,所述通信系统还包括网络设备,所述终端设置有至少两个WLAN通信单元,所述WLAN通信单元支持WLAN通信和下一代WLAN通信,所述终端包括:
    发送单元,配置为向所述网络设备发送各所述WLAN通信单元的通信参数,以使所述网络设备根据所述通信参数控制各所述WLAN通信单元分别与可接入的AP建立至少两条AWL;
    处理单元,配置为根据所述网络设备的控制使各所述WLAN通信单元分别与可接入的AP建立至少两条聚合WLAN链路AWL,各所述AWL用于承载数据,各所述AWL不仅能承载数据,也能停止承载数据,还能够被单独维护、重配、删除。
  16. 根据权利要求15所述的终端,其中,所述终端还包括检测单元,所述检测单元配置为通过轮询检测各所述WLAN通信单元的状态,当检测到有所述WLAN通信单元处于空闲或可用状态时,向所述网络设备发送AWL建立请求,以使所述网络设备根据所述AWL建立请求控制处于空闲或可用状态的所述WLAN通信单元与可接入的AP建立AWL;
    所述处理单元,还配置为根据所述网络设备的控制使所述WLAN通信 单元与可接入的AP建立AWL。
  17. 根据权利要求15所述的终端,其中,所述WLAN通信单元支持LWA机制;
    所述发送单元,配置为通过LTE或其演进系统空口RRC信令将各所述WLAN通信单元的通信参数按需上报给所述网络设备。
  18. 一种网络设备,应用于通信系统,所述通信系统还包括终端,所述终端设置有至少两个WLAN通信单元,所述WLAN通信单元支持WLAN通信和下一代WLAN通信,所述网络设备包括:
    接收单元,配置为接收所述终端发来的各所述WLAN通信单元的通信参数;
    控制单元,配置为根据所述通信参数,控制各所述WLAN通信单元分别与可接入的AP建立至少两条AWL,各所述AWL用于承载数据,各所述AWL不仅能承载数据,也能停止承载数据,还能够被单独维护、重配、删除。
  19. 根据权利要求18所述的网络设备,其中,所述控制单元,还配置为根据所述终端发来的AWL建立请求,控制所述终端中处于空闲或可用状态的WLAN通信单元与可接入的AP建立AWL,所述WLAN通信单元的状态是所述终端通过轮询检测到的。
  20. 根据权利要求18所述的网络设备,其中,所述控制单元,还配置为基于内部存储的所述终端的通信上下文信息,通过轮询检测各所述WLAN通信单元的状态,当检测到有所述WLAN通信单元处于空闲或可用状态时,控制处于空闲或可用状态的所述WLAN通信单元与可接入的AP建立AWL。
  21. 根据权利要求18所述的网络设备,其中,所述控制单元,配置为通过RRC专有信令给处于空闲或可用状态的WLAN通信单元配置和LWA 相关的策略准则参数;
    根据收到的所述WLAN通信单元的通信参数选取可接入的AP;
    将选取的可接入AP分别与对应的处于空闲或可用状态的WLAN通信单元形成关联连接,完成指定的WLAN入网鉴权注册,以建立AWL。
  22. 根据权利要求18所述的网络设备,其中,所述控制单元,基于内部存储的通信上下文信息参数和/或所述终端反馈的通信参数来协调各所述AWL的数据分流承载情况,使各所述AWL以独立或者协作方式来承载分流的数据。
  23. 一种通信系统,所述通信系统包括终端和网络设备,所述终端设置有至少两个WLAN通信单元,所述WLAN通信单元支持WLAN通信和下一代WLAN通信;
    所述终端,配置为向所述网络设备发送各所述WLAN通信单元的通信参数;
    所述网络设备,配置为根据所述通信参数,控制各所述WLAN通信单元分别与可接入的AP建立至少两条AWL,各所述AWL配置为承载数据,各所述AWL不仅能承载数据,也能停止承载数据,还能够被单独维护、重配、删除。
  24. 根据权利要求23所述的通信系统,其中,所述终端,还配置为通过轮询检测各所述WLAN通信单元的状态,当检测到有所述WLAN通信单元处于空闲或可用状态时,向所述网络设备发送AWL建立请求;
    所述网络设备,还配置为根据所述AWL建立请求,控制处于空闲或可用状态的所述WLAN通信单元与可接入的AP建立AWL。
  25. 一种计算机存储介质,所述计算机存储介质包括一组指令,当执行所述指令时,引起至少一个处理器执行如权利要求7至9任一项所述的数据传输方法,或者执行如权利要求10至14任一项所述的数据传输方法。
PCT/CN2016/075260 2015-07-09 2016-03-01 一种数据传输方法、装置、系统及计算机存储介质 WO2017004996A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/743,066 US20180213584A1 (en) 2015-07-09 2016-03-01 Data transmission method, device and system, and computer storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510400353.5A CN106341907B (zh) 2015-07-09 2015-07-09 一种数据传输方法、装置和系统
CN201510400353.5 2015-07-09

Publications (1)

Publication Number Publication Date
WO2017004996A1 true WO2017004996A1 (zh) 2017-01-12

Family

ID=57684806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/075260 WO2017004996A1 (zh) 2015-07-09 2016-03-01 一种数据传输方法、装置、系统及计算机存储介质

Country Status (3)

Country Link
US (1) US20180213584A1 (zh)
CN (1) CN106341907B (zh)
WO (1) WO2017004996A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3761614A1 (en) 2016-04-01 2021-01-06 Samsung Electronics Co., Ltd. Method and apparatus for wireless communication in wireless communication system
ES2901374T3 (es) 2016-05-18 2022-03-22 Samsung Electronics Co Ltd Procedimiento y aparato para realizar una función de capa 2 eficiente en un sistema de comunicación móvil
CN107979860B (zh) * 2016-10-25 2020-07-07 华为技术有限公司 支持non-3GPP接入的用户面功能实体选择方法、设备及系统
CN106899582B (zh) * 2017-02-13 2020-05-12 重庆邮电大学 一种LTE-Advanced Pro系统实现LWA功能的协议配置方法
US10708966B2 (en) * 2017-03-17 2020-07-07 Huawei Technologies Co., Ltd. Method and apparatus for uplink data transmission using multiple radio access technologies
CN109246768A (zh) * 2017-05-05 2019-01-18 中兴通讯股份有限公司 网络连接方法及装置
US11202277B2 (en) * 2018-07-23 2021-12-14 Qualcomm Incorporated Overbooking handling for multiple transceiver nodes
TWI700947B (zh) * 2018-09-27 2020-08-01 明泰科技股份有限公司 通訊資源分配方法與相關的行動通訊基地台裝置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103582079A (zh) * 2012-08-10 2014-02-12 中兴通讯股份有限公司 一种联合传输的实现方法和系统
WO2014179319A1 (en) * 2013-04-29 2014-11-06 Qualcomm Incorporated Lte-wlan centralized downlink scheduler
EP2833690A1 (en) * 2013-07-31 2015-02-04 BlackBerry Limited System and method for managing communications for two networks in a communication device
CN104640215A (zh) * 2013-11-14 2015-05-20 网件公司 多无线电无线局域网

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9072077B2 (en) * 2010-04-01 2015-06-30 Qualcomm Incorporated Method and apparatus for performing fractional system selection by a wireless device
US9055556B2 (en) * 2010-04-01 2015-06-09 Qualcomm Incorporated Method and apparatus for selecting radios and mapping applications to radios on a wireless device
GB2486926B (en) * 2011-06-02 2013-10-23 Renesas Mobile Corp Frequency hopping in license-exempt/shared bands
CN107426799B (zh) * 2012-02-29 2020-01-03 华为技术有限公司 多模无线通信系统的控制方法、控制服务器和终端
US9510356B2 (en) * 2012-09-28 2016-11-29 Broadcom Corporation Mechanism for controlling multi-band communication
US8923880B2 (en) * 2012-09-28 2014-12-30 Intel Corporation Selective joinder of user equipment with wireless cell
US10178616B2 (en) * 2013-02-21 2019-01-08 Avago Technologies International Sales Pte. Limited Enhanced discovery channel for interworking between a cellular wide-area communication system and a wireless local-area communication system
US9474067B2 (en) * 2013-03-26 2016-10-18 Qualcomm Incorporated WLAN uplink scheduler for LTE-WLAN aggregation
US9503173B2 (en) * 2013-07-31 2016-11-22 Broadcom Corporation WLAN and cellular shared antennas
US9923581B2 (en) * 2013-10-14 2018-03-20 Netgear, Inc. Front-end module and antenna design for a wireless device simultaneously using WLAN modules operating in different wireless bands
US9585048B2 (en) * 2013-10-30 2017-02-28 Qualcomm Incorporated Techniques for aggregating data from WWAN and WLAN
EP2869629B1 (en) * 2013-10-31 2017-06-07 Telefonica Digital España, S.L.U. Method and device for coordinating access points for backhaul aggregation in a telecommunications network
US9674853B2 (en) * 2014-05-16 2017-06-06 Qualcomm Incorporated Techniques for managing wireless network connections for traffic aggregation
US9860784B2 (en) * 2014-08-01 2018-01-02 Qualcomm Incorporated Techniques for scheduling communications in wireless networks with traffic aggregation
US20160119924A1 (en) * 2014-10-22 2016-04-28 Telefonaktiebolaget L M Ericsson (Publ) Mitigation of periodic interference in a wireless local area network
US9699800B2 (en) * 2014-10-23 2017-07-04 Intel IP Corporation Systems, methods, and appartatuses for bearer splitting in multi-radio HetNet
US9788242B2 (en) * 2015-02-05 2017-10-10 Mediatek Inc. Network selection and data aggregation with LTE-WLAN aggregation
US9781652B2 (en) * 2015-02-05 2017-10-03 Mediatek Inc. Method and apparatus of LWA PDU routing
AR103916A1 (es) * 2015-03-13 2017-06-14 ERICSSON TELEFON AB L M (publ) Método y aparato para la instalación de la agregación del tráfico entre wlan y 3gpp
US10264481B2 (en) * 2015-03-19 2019-04-16 Qualcomm Incorporated Techniques for managing power operation modes of a user equipment (UE) communicating with a plurality of radio access technologies (RATs)
US10070461B2 (en) * 2015-05-15 2018-09-04 Mediatek Inc. QoS provisioning for LTE-WLAN aggregation
US9918252B2 (en) * 2015-05-15 2018-03-13 Mediatek Inc. Rate adaptation for LTE-WLAN aggregation
EP3104643B1 (en) * 2015-06-10 2019-03-13 HTC Corporation Device and method of aggregating wlan and lte system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103582079A (zh) * 2012-08-10 2014-02-12 中兴通讯股份有限公司 一种联合传输的实现方法和系统
WO2014179319A1 (en) * 2013-04-29 2014-11-06 Qualcomm Incorporated Lte-wlan centralized downlink scheduler
EP2833690A1 (en) * 2013-07-31 2015-02-04 BlackBerry Limited System and method for managing communications for two networks in a communication device
CN104640215A (zh) * 2013-11-14 2015-05-20 网件公司 多无线电无线局域网

Also Published As

Publication number Publication date
CN106341907B (zh) 2021-03-16
CN106341907A (zh) 2017-01-18
US20180213584A1 (en) 2018-07-26

Similar Documents

Publication Publication Date Title
WO2017004996A1 (zh) 一种数据传输方法、装置、系统及计算机存储介质
US20210352549A1 (en) Radio access network node, radio terminal, core network node, and method therefor
EP3152954B1 (en) Radio resource control (rrc) protocol for integrated wlan/3gpp radio access technologies
EP2868135B1 (en) Offloading of user plane packets from a macro base station to an access point
JP6566985B2 (ja) セルラ基地局、プロセッサ、及び方法
CN112312503B (zh) 具有lte-wlan聚合的网络选择及数据聚合
CN105009678B (zh) 用于在多个e节点b和用户设备之间提供同时连接的方法和系统
EP2804422B1 (en) Offloading at a small cell access point
JP7302683B2 (ja) マスターノード、セカンダリノード、通信システム並びにマスターノード及びセカンダリノードの制御方法
US9986595B2 (en) Updating WLAN aggregation configuration
CN105684543A (zh) 承载配置信令
CN108293203B (zh) 网络节点、无线通信系统及方法
KR20160139025A (ko) 레거시 wlan/3gpp 상호 연동 솔루션들을 갖는 통합 wlan/3gpp rat 아키텍처들의 상호 연동/공존
CN106412949B (zh) 一种3gpp-wlan融合组网聚合的方法和装置
CN106358294B (zh) 一种移动宽带数据传输的管理方法和装置
JP6917979B2 (ja) 端末、基地局及び測定方法
Manjeshwar et al. Enhanced UE slice mobility for 5G multi-rat networks
WO2015103759A1 (en) Method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16820652

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15743066

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16820652

Country of ref document: EP

Kind code of ref document: A1