WO2017004887A1 - Procédé et appareil servant à mesurer un débit ultrasonore de type à décalage temporel - Google Patents

Procédé et appareil servant à mesurer un débit ultrasonore de type à décalage temporel Download PDF

Info

Publication number
WO2017004887A1
WO2017004887A1 PCT/CN2015/089218 CN2015089218W WO2017004887A1 WO 2017004887 A1 WO2017004887 A1 WO 2017004887A1 CN 2015089218 W CN2015089218 W CN 2015089218W WO 2017004887 A1 WO2017004887 A1 WO 2017004887A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
time difference
ultrasonic
flow rate
ultrasonic sensor
Prior art date
Application number
PCT/CN2015/089218
Other languages
English (en)
Chinese (zh)
Inventor
郭楚文
王信用
王凤超
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to ZA2016/04937A priority Critical patent/ZA201604937B/en
Publication of WO2017004887A1 publication Critical patent/WO2017004887A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters

Definitions

  • the invention relates to a flow measuring method and device, in particular to a time difference ultrasonic flow measuring method and device.
  • the time difference method ultrasonic flowmeter determines the flow velocity of the measured fluid by measuring the difference of the propagation time of the ultrasonic wave with the countercurrent and the downstream flow.
  • the information of the fluid flow velocity is loaded, and the time difference of the ultrasonic wave received can be The flow rate of the fluid is detected and converted to flow.
  • the time difference method ultrasonic flowmeter assumes that the fluid flow velocity of the ultrasonic beam in the propagation path is uniform, and in fact the velocity distribution of the fluid is related to the flow state, and the velocity distribution on the cross section of the circular tube in the laminar flow is a paraboloid of rotation.
  • the turbulent flow the velocity distribution on the cross section of the circular tube is a boss type, which inevitably causes a large measurement error.
  • the object of the present invention is to provide a time difference type ultrasonic flow measuring method and device with simple device, convenient implementation and high measuring precision, and solve the problem that the current time difference ultrasonic flow meter does not consider the error caused by non-uniform velocity distribution.
  • the object of the invention is achieved in that the flow measurement method is as follows:
  • the propagation time difference of the ultrasonic beam along the forward and reverse flow is:
  • R is the radius of the pipe to be tested;
  • u m is the maximum flow velocity of the pipe axis;
  • is the angle between the ultrasonic beam and the direction of fluid flow;
  • c is the propagation velocity of the ultrasonic wave in the fluid to be measured;
  • the flow rate during laminar flow is:
  • the coefficient K is taken as 1, 2, 4 respectively;
  • the ultrasonic propagation time difference is calculated according to the average velocity, and the measured flow rate is:
  • n is the empirical index of the turbulent velocity distribution, which generally increases with the increase of the Reynolds number
  • the flow measuring device comprises: a measuring pipe segment, a main single chip microcomputer, a transmitting circuit, a downstream ultrasonic sensor, an upstream ultrasonic sensor, a first receiving processing circuit, a second receiving processing circuit, a time difference measuring, a clock, a memory, a keyboard and an LCD display; and a downstream ultrasonic sensor
  • the upstream ultrasonic sensors are respectively connected to the measured pipe section, and the output end of the downstream ultrasonic sensor is connected to the input end of the time difference measurement through the first receiving processing circuit, and the output end of the upstream ultrasonic sensor passes through the input end of the second receiving processing circuit and the time difference measuring.
  • the output of the time difference measurement is bidirectionally connected with the main MCU; the clock, the memory, the keyboard and the LCD display are all connected with the main MCU, the output end of the main MCU is connected with the input end of the transmitting circuit, and the output end of the transmitting circuit is respectively connected with the downstream ultrasonic wave.
  • the sensor is connected to the output of the upstream ultrasonic sensor.
  • the transmitting circuit After the main MCU issues the measurement command, the transmitting circuit generates a certain waveform, first clears the counter, then synchronously starts the transmitting circuit to trigger the ultrasonic transducer to transmit the ultrasonic pulse, and uses the downstream ultrasonic sensor, the upstream ultrasonic sensor, the first receiving processing circuit, and the first
  • the second receiving processing circuit and the time difference measurement can obtain the downstream propagation time and the reverse current propagation time of the ultrasonic wave; the main single chip microcomputer uses the digital filtering count to filter the time signals, and calculates the corresponding flow rate and flow rate according to the actual situation, and saves to the memory. Medium and sent to the LCD display for display.
  • the main microcontroller uses an integration algorithm to calculate the flow rate and flow rate.
  • the flow rate obtained by the method according to the present invention is much more accurate when assuming that the flow velocity on the ultrasonic propagation path is uniform will result in a large measurement error.
  • the correction coefficient for different flow states is obtained by theoretical derivation calculation. And design a set of devices to achieve time difference method ultrasonic flow measurement. The problem that the current time difference type ultrasonic flowmeter does not consider the unevenness of the speed distribution is solved.
  • the method is reliable in theory, simple in device, reliable in method, convenient in implementation, high in measurement accuracy, and can improve the measurement result by 5% to 33% compared with the existing time difference ultrasonic flow measurement result, suitable for all measurement based on propagation time difference Ultrasonic flow meter for flow.
  • Fig. 1 is a view showing the arrangement of an ultrasonic sensor according to the Z-shape of the present invention.
  • FIG. 2 is a view showing a structure of an ultrasonic sensor according to the present invention in a V-shaped arrangement.
  • Fig. 3 is a view showing the arrangement of the ultrasonic sensor according to the W type of the present invention.
  • Embodiment 1 The flow measurement method is as follows:
  • the propagation time difference of the ultrasonic beam along the forward and reverse flow is:
  • R is the radius of the pipe to be tested;
  • u m is the maximum flow velocity of the pipe axis;
  • is the angle between the ultrasonic beam and the direction of fluid flow;
  • c is the propagation velocity of the ultrasonic wave in the fluid to be measured;
  • the flow rate during laminar flow is:
  • the coefficient K is taken as 1, 2, 4 respectively;
  • the ultrasonic propagation time difference is calculated according to the average speed, and the measured flow rate is:
  • the laminar flow rate measured by the existing time difference type ultrasonic flowmeter is 1.33 times the flow rate measured by the method of the present invention, and the error is obvious.
  • n is the empirical index of the turbulent velocity distribution, which generally increases with the increase of the Reynolds number
  • the empirical index n of the turbulent velocity distribution is generally 4 to 10, and the turbulent flow rate measured by the existing time difference type ultrasonic flowmeter is 1.16 to 1.05 times the flow rate measured by the method of the present invention, and the error is obvious.
  • the flow measuring device comprises: a measured pipe segment 1, a main single chip 2, a transmitting circuit 3, a downstream ultrasonic sensor 4, an upstream ultrasonic sensor 5, a first receiving processing circuit 6, a second receiving processing circuit 7, a time difference measuring 8, a clock 9, a memory 10.
  • the keyboard 11 and the LCD display 12; the downstream ultrasonic sensor 4 and the upstream ultrasonic sensor 5 are respectively connected to the measured pipe section 1, and the output end of the downstream ultrasonic sensor 4 is connected to the input end of the time difference measurement 8 through the first receiving processing circuit 6.
  • the output end of the upstream ultrasonic sensor 5 is connected to the input end of the time difference measurement 8 through the second receiving processing circuit 7; the output end of the time difference measuring 8 is bidirectionally connected to the main MCU 2; the clock 9, the memory 10, the keyboard 11 and the LCD display 12 are both Connected to the main microcontroller 2, the output of the main microcontroller 2 is connected to the input of the transmitting circuit 3, and the output of the transmitting circuit 3 is connected to the output of the downstream ultrasonic sensor 4 and the upstream ultrasonic sensor 5, respectively.
  • the transmitting circuit 3 After the main MCU 2 issues a measurement command, the transmitting circuit 3 generates a certain waveform, first clears the counter, and then synchronously activates the transmitting circuit 3 to trigger the ultrasonic transducer to transmit an ultrasonic pulse, and uses the downstream ultrasonic sensor 4, the upstream ultrasonic sensor 5, and the first
  • the receiving processing circuit 6, the second receiving processing circuit 7 and the time difference measuring 8 can obtain the downstream propagation time and the reverse current propagation time of the ultrasonic wave; the main single chip microcomputer 2 filters the time signals by digital filtering, and calculates according to the actual situation.
  • the corresponding flow rate and flow rate are saved to memory 10 and sent to LCD display 12 for display.
  • the main microcontroller 2 uses an integration algorithm to calculate the flow rate and flow rate.
  • a Z-shaped arrangement will be described as an example.
  • the ultrasonic sensor is arranged in a Z-shape such that the downstream ultrasonic sensor 4 is located on the lower side, and the upstream ultrasonic sensor 5 is located on the upper side of the front end of the downstream ultrasonic sensor 4.
  • the flow measuring device includes: a measured pipe segment 1, a main single chip 2, a transmitting circuit 3, a downstream ultrasonic sensor 4, an upstream ultrasonic sensor 5, a first receiving processing circuit 6, a second receiving processing circuit 7, and a time difference measurement.
  • the clock 9, the memory 10, the keyboard 11 and the LCD display 12; the downstream ultrasonic sensor 4 and the upstream ultrasonic sensor 5 are respectively connected to the measured pipe section 1, and the output end of the downstream ultrasonic sensor 4 passes the first receiving processing circuit 6 and the time difference measurement.
  • the input end of the upstream ultrasonic sensor 5 is connected to the input end of the time difference measurement 8 through the second receiving processing circuit 7; the output end of the time difference measuring 8 is bidirectionally connected with the main single chip 2; the clock 9, the memory 10, the keyboard 11 and the LCD display 12 are both connected to the main single chip 2, the output end of the main single chip 2 is connected to the input end of the transmitting circuit 3, and the output end of the transmitting circuit 3 is connected to the output ends of the downstream ultrasonic sensor 4 and the upstream ultrasonic sensor 5, respectively.
  • the transmitting circuit 3 After the main MCU 2 issues a measurement command, the transmitting circuit 3 generates a certain waveform, first clears the counter, then synchronously starts the transmitting circuit 3 to trigger the ultrasonic transducer to transmit an ultrasonic pulse, and uses the downstream ultrasonic sensor 4, the upstream ultrasonic sensor 5, and the receiving process.
  • the circuit I 6, the reception processing circuit II 7 and the time difference measurement 8 can obtain the downstream propagation time and the counter current propagation time of the ultrasonic wave.
  • the main MCU 2 filters the time signals by digital filtering, and calculates the corresponding flow rate and flow rate according to the actual situation, saves them in the memory 10, and sends them to the LCD display 12 for display.
  • the main microcontroller 2 uses an integration algorithm to calculate the flow rate and flow rate.
  • the ultrasonic wave propagates in a forward or countercurrent flow, its propagation speed is equal to the hydrostatic sound velocity plus or minus the fluid flow velocity. Therefore, when an ultrasonic wave is emitted from a sensor, it will traverse a flow layer of different flow rates, that is, the speed of the ultrasonic wave during propagation varies. In order to accurately measure the downstream propagation time of the ultrasonic wave and the countercurrent propagation time difference, an integral method must be used. The propagation time difference of the ultrasonic beam along the forward and reverse flows is obtained by the following integration:
  • R is the radius of the pipe to be tested;
  • u is the flow velocity distribution inside the pipe;
  • is the angle between the ultrasonic beam and the direction of fluid flow;
  • c is the propagation velocity of the ultrasonic wave in the fluid to be measured.
  • the velocity profile across the cross section of the tube is:
  • u m is the maximum flow rate of the pipe axis.
  • the flow rate of the Z-type installation mode during laminar flow is:
  • the ultrasonic propagation time difference is calculated according to the average speed, and the measured flow rate is:
  • the laminar flow rate measured by the existing time difference type ultrasonic flowmeter is 1.16 to 0.39 times the flow rate measured by the method of the present invention, and the error is obvious.
  • n is the empirical index of the turbulent velocity distribution, which generally increases with the increase of the Reynolds number.
  • the empirical index n of the turbulent velocity distribution is generally 4 to 10, and the turbulent flow rate measured by the existing time difference type ultrasonic flowmeter is 1.16 to 1.05 times the flow rate measured by the method of the present invention, and the error is obvious.
  • Embodiment 2 In Fig. 2, the ultrasonic sensor is arranged in a V-shape, the downstream ultrasonic sensor 4 is on the same side as the upstream ultrasonic sensor 5, and the downstream ultrasonic sensor 4 is located on the lower side of the upstream ultrasonic sensor 5; the other is the same as in the first embodiment.
  • FIG. 3 is a structural diagram of a W-shaped arrangement of an ultrasonic sensor according to the present invention.
  • the downstream ultrasonic sensor 4 is on the same side as the upstream ultrasonic sensor 5, and the downstream ultrasonic sensor 4 is located on the lower two V-shaped distances of the upstream ultrasonic sensor 5; the other is the same as in the first embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

L'invention concerne un procédé pour mesurer un débit ultrasonore de type à décalage temporel comprenant : acquérir un décalage temporel de propagation d'un faisceau ultrasonore le long d'un courant régulier et d'un contre-courant ; lorsqu'un débit mesuré correspond à un écoulement laminaire, remplacer la distribution de vitesse d'écoulement laminaire dans une formule par l'intégration afin d'obtenir un décalage temporel et d'obtenir un débit de l'écoulement laminaire ; calculer un décalage temporel de propagation ultrasonore selon une vitesse moyenne sans tenir compte de la non-uniformité de la distribution de vitesse, de manière à obtenir le débit mesuré ; lorsque le débit mesuré correspond à un écoulement turbulent, remplacer la distribution de vitesse d'écoulement turbulent dans la formule par l'intégration afin d'obtenir un décalage temporel ; obtenir un débit de l'écoulement turbulent ; et obtenir un débit sans tenir compte de la non-uniformité de la distribution de vitesse. L'invention concerne également un appareil servant à mesurer un débit ultrasonore de type à décalage temporel.
PCT/CN2015/089218 2015-07-03 2015-09-09 Procédé et appareil servant à mesurer un débit ultrasonore de type à décalage temporel WO2017004887A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2016/04937A ZA201604937B (en) 2015-07-03 2016-07-15 Time-difference ultrasonic flow measurement method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510387517.5 2015-07-03
CN201510387517.5A CN105157771B (zh) 2015-07-03 2015-07-03 一种时差式超声波流量测量方法及装置

Publications (1)

Publication Number Publication Date
WO2017004887A1 true WO2017004887A1 (fr) 2017-01-12

Family

ID=54798710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089218 WO2017004887A1 (fr) 2015-07-03 2015-09-09 Procédé et appareil servant à mesurer un débit ultrasonore de type à décalage temporel

Country Status (3)

Country Link
CN (1) CN105157771B (fr)
WO (1) WO2017004887A1 (fr)
ZA (1) ZA201604937B (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109506727A (zh) * 2018-12-24 2019-03-22 西安安森智能仪器股份有限公司 一种超声波流量测量方法及低功耗超声波流量计
CN112484798A (zh) * 2020-11-27 2021-03-12 江西中科智慧水产业研究股份有限公司 一种基于改进卡尔曼滤波器的时差超声波流量测量方法
CN112945518A (zh) * 2021-02-04 2021-06-11 武汉大学 明渠恒定流能量损失确定方法
CN114019185A (zh) * 2021-09-28 2022-02-08 江苏启泰物联网科技有限公司 铁路用液体流速监测方法
CN115628786A (zh) * 2022-09-26 2023-01-20 浙江启尔机电技术有限公司 一种超声波流量测量方法及利用该方法的流量计

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108168630B (zh) * 2016-12-07 2019-11-01 辽宁思凯科技股份有限公司 一种超声波水表检测装置及测定方法
CN106996811A (zh) * 2017-03-30 2017-08-01 山东思达特测控设备有限公司 一种高准确度的智能液体超声波流量计的计量方法
EP3388794B2 (fr) * 2017-04-13 2022-03-09 SICK Engineering GmbH Dispositif de mesure du débit destiné à mesurer le débit d'un fluide
CN108120481B (zh) * 2017-11-10 2023-10-31 天津新科成套仪表有限公司 一种超声流量计量方法与计量处理装置
CN108414039A (zh) * 2018-05-18 2018-08-17 广东万家乐燃气具有限公司 一种水流量、水温检测方法及水流量传感器
CN110375818A (zh) * 2019-04-12 2019-10-25 宁夏隆基宁光仪表股份有限公司 全温度范围超声波流量计量高精度低功耗补偿方法
CN110296912B (zh) * 2019-06-19 2020-07-21 北京理工大学 基于超声的粉尘云团扩散动态湍流动能的检测系统及方法
CN110455360B (zh) * 2019-08-28 2021-08-06 杭州乾博科技有限公司 一种超声波水表
CN111473827B (zh) * 2020-05-28 2022-04-01 宁波大学 V形声道零飘消除方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005047790A1 (de) * 2005-10-05 2007-04-12 Endress + Hauser Flowtec Ag Vorrichtung zur Bestimmung oder Überwachung des Volumen- oder Massedurchflusses eines Mediums durch eine Rohrleitung
US20070255514A1 (en) * 2006-04-28 2007-11-01 Tokyo Keiso Co., Ltd Ultrasonic flow meter
CN101118170A (zh) * 2007-08-28 2008-02-06 南京申瑞电气系统控制有限公司 多声路时差式超声波流量计
CN101907473A (zh) * 2010-07-05 2010-12-08 李俊国 一种超声波流量测量装置
CN103090916A (zh) * 2013-02-22 2013-05-08 呼和浩特市睿城科技有限责任公司 一种超声波流量测量装置及其测量方法
US20150260556A1 (en) * 2014-03-17 2015-09-17 Siemens Aktiengesellschaft Ultrasonic transit-time flowmeter and method for detecting a failure in an ultrasonic transit-time flowmeter

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6950768B2 (en) * 2003-09-08 2005-09-27 Daniel Industries, Inc. Self-tuning ultrasonic meter
CN100434875C (zh) * 2005-08-03 2008-11-19 侯安亮 一种超声波流量计测量流体流量的方法
CN1804557A (zh) * 2006-01-24 2006-07-19 天津大学 传播速度差式超声波流量计的信号处理方法
CN102207398B (zh) * 2011-04-07 2013-06-12 托肯恒山科技(广州)有限公司 用于燃油终端结算的超声波流量测量的装置和方法
CN102288235B (zh) * 2011-04-26 2014-09-24 广州昉时工业自动控制系统有限公司 一种双道混合型超声波流量计及测量方法
CN103528717A (zh) * 2013-10-21 2014-01-22 天津鸥翼科技发展有限公司 用于管段式小口径超声波热量表的低阻管段

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005047790A1 (de) * 2005-10-05 2007-04-12 Endress + Hauser Flowtec Ag Vorrichtung zur Bestimmung oder Überwachung des Volumen- oder Massedurchflusses eines Mediums durch eine Rohrleitung
US20070255514A1 (en) * 2006-04-28 2007-11-01 Tokyo Keiso Co., Ltd Ultrasonic flow meter
CN101118170A (zh) * 2007-08-28 2008-02-06 南京申瑞电气系统控制有限公司 多声路时差式超声波流量计
CN101907473A (zh) * 2010-07-05 2010-12-08 李俊国 一种超声波流量测量装置
CN103090916A (zh) * 2013-02-22 2013-05-08 呼和浩特市睿城科技有限责任公司 一种超声波流量测量装置及其测量方法
US20150260556A1 (en) * 2014-03-17 2015-09-17 Siemens Aktiengesellschaft Ultrasonic transit-time flowmeter and method for detecting a failure in an ultrasonic transit-time flowmeter

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109506727A (zh) * 2018-12-24 2019-03-22 西安安森智能仪器股份有限公司 一种超声波流量测量方法及低功耗超声波流量计
CN109506727B (zh) * 2018-12-24 2023-12-26 西安安森智能仪器股份有限公司 一种超声波流量测量方法及低功耗超声波流量计
CN112484798A (zh) * 2020-11-27 2021-03-12 江西中科智慧水产业研究股份有限公司 一种基于改进卡尔曼滤波器的时差超声波流量测量方法
CN112484798B (zh) * 2020-11-27 2024-03-19 中科水研(江西)科技股份有限公司 一种基于改进卡尔曼滤波器的时差超声波流量测量方法
CN112945518A (zh) * 2021-02-04 2021-06-11 武汉大学 明渠恒定流能量损失确定方法
CN112945518B (zh) * 2021-02-04 2023-05-05 武汉大学 明渠恒定流能量损失确定方法
CN114019185A (zh) * 2021-09-28 2022-02-08 江苏启泰物联网科技有限公司 铁路用液体流速监测方法
CN115628786A (zh) * 2022-09-26 2023-01-20 浙江启尔机电技术有限公司 一种超声波流量测量方法及利用该方法的流量计

Also Published As

Publication number Publication date
ZA201604937B (en) 2022-05-25
CN105157771B (zh) 2018-04-03
CN105157771A (zh) 2015-12-16

Similar Documents

Publication Publication Date Title
WO2017004887A1 (fr) Procédé et appareil servant à mesurer un débit ultrasonore de type à décalage temporel
CA2702666C (fr) Procede et systeme pour detecter une accumulation de depot a l'interieur d'un debitmetre a ultrasons
CN103808381B (zh) 一种时差式超声波流量计的温度影响消除方法
CN104501889B (zh) 基于互相关时差法超声波流量的检测方法
CN206930321U (zh) 非满管超声波流量计
US9140594B2 (en) Ultrasonic, flow measuring device
CN103868555A (zh) 一种用于超声波流量计的循环时差检测方法
CN101598580B (zh) 一种提高时差式超声波流量计精度的方法
CN106768103A (zh) 一种超声波流量计自动校准时间偏差的方法
WO2018045754A1 (fr) Procédé de mesure de vitesse de fluide, procédé de mesure de fluide et débitmètre
CN105403265A (zh) 一种自动校正零点漂移的超声水表及其校正方法
CN104457871A (zh) 一种流量计及流体测量方法
CN105181997A (zh) 非接触式超声波水流流速计及非接触式流速检测方法
JP2006078362A (ja) 同一軸型ドップラー超音波流速計
CN206291930U (zh) 一种超声波质量流量计
JP5282955B2 (ja) 超音波流量計の補正方法、及び超音波流量計
CN104964718A (zh) 一种小流量超声波流量系统及测量方法
CN106092228A (zh) 超声波式累计热量计
US20230243682A1 (en) Ultrasonic flow measurement
JP2015132488A (ja) 超音波流量計
JPH07260532A (ja) 超音波流量計
CN108775937A (zh) 一种具有定位功能的超声波流量计
JPH0882540A (ja) 超音波流量測定方法及びその超音波流量計
CN214465267U (zh) 一种非介入式液压系统流量检测装置
RU2517996C1 (ru) Датчик ультразвукового расходомера

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15897543

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15897543

Country of ref document: EP

Kind code of ref document: A1