WO2017003079A1 - Oblique incidence, prism-incident, silicon-based, immersion microchannel-based measurement device and measurement method - Google Patents

Oblique incidence, prism-incident, silicon-based, immersion microchannel-based measurement device and measurement method Download PDF

Info

Publication number
WO2017003079A1
WO2017003079A1 PCT/KR2016/004386 KR2016004386W WO2017003079A1 WO 2017003079 A1 WO2017003079 A1 WO 2017003079A1 KR 2016004386 W KR2016004386 W KR 2016004386W WO 2017003079 A1 WO2017003079 A1 WO 2017003079A1
Authority
WO
WIPO (PCT)
Prior art keywords
incident
prism
substrate
microchannel
light
Prior art date
Application number
PCT/KR2016/004386
Other languages
French (fr)
Korean (ko)
Inventor
조현모
제갈원
조용재
Original Assignee
한국표준과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국표준과학연구원 filed Critical 한국표준과학연구원
Priority to US15/532,896 priority Critical patent/US10921241B2/en
Priority to SE1750873A priority patent/SE541939C2/en
Priority to JP2017531737A priority patent/JP6483834B2/en
Publication of WO2017003079A1 publication Critical patent/WO2017003079A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/211Ellipsometry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/4133Refractometers, e.g. differential
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0654Lenses; Optical fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/168Specific optical properties, e.g. reflective coatings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/211Ellipsometry
    • G01N2021/213Spectrometric ellipsometry

Definitions

  • This study relates to the inclination structure of molecular bonding properties of biomaterials and the refractive index of buffer solution under the immersion microfluidic environment. More specifically, by measuring the bottom of the prism and the substrate attached to the trapezoidal micro-channel inclined to effectively remove the light reflected from the interface between the prism and the medium, and to minimize the scattering of the micro-channel interface and the measuring device capable of high sensitivity measurement method using the same It is about.
  • Reflectometry and ellipsometry are optical analysis techniques that determine the thickness or optical properties of a sample by measuring the change in reflectance or polarization state of the reflected light reflected from the surface of the sample and analyzing the measured values.
  • the ellipsometer has a measurement sensitivity of less than 0.01 nm compared to the reflectance measuring instrument.
  • the measurement sensitivity is high under conditions where the refractive index is large, such as the thickness of an oxide film having a smaller refractive index than that of a semiconductor on a high refractive index semiconductor substrate.
  • a surface plasmon resonance sensor (hereinafter referred to as an 'SPR sensor') in which a reflectance measuring method and a surface plasmon resonance (SPR) technology is mixed have.
  • SPR Surface plasmon resonance
  • SPR sensor uses the principle that the structure of the glass is coated with a metal thin film of tens of nanometers on the material such as glass and the biomaterial can be bonded on it, and the resonance angle changes when the sample dissolved in the buffer solution is bonded to the sensor.
  • the resonance angle is achieved by measuring the reflectance.
  • the glass material becomes the incident medium and passes through the thin film layer to which the biomaterial is bonded.
  • the buffer solution corresponds to the substrate.
  • the refractive index of the complete solution corresponding to the substrate material directly affects the movement of the resonance angle, similar to the change of the biological thin film layer due to the bonding of the sample to be measured. Therefore, in order to measure only pure bonding dynamics, the refractive index of the buffer solution should be measured and corrected independently.
  • the conventional SPR sensor has a fundamental difficulty in measuring the adsorption and dissociation characteristics of a material having a low molecular weight, such as a low molecule, due to the limitation of the above measurement method.
  • the conventional SPR sensor uses a metal thin film of a noble metal such as gold (Au), silver (Ag) for the surface plasmon resonance is expensive manufacturing of the sensor.
  • the metal thin film has an uneven surface roughness depending on the manufacturing process, and the variation in refractive index is severe, and because of unstable optical properties, it is difficult to quantitatively measure biomaterials and to detect errors due to different sensitivity characteristics at different positions when compared with reference channels. There is a problem to include.
  • a biomaterial junction sensor layer is formed on a substrate material such as silicon, and the ellipsometric method measures the amplitude and phase of the light reflected from the substrate material through a buffer solution under an immersion microenvironment under p-wave antireflection conditions.
  • the buffer solution becomes the incident medium and the light passing through the biomaterial adsorption layer is reflected from the substrate material as opposed to the SPR measurement.
  • the measured elliptic measurement angle is not sensitive to the change in the refractive index of the incident medium, which is a buffer solution, but only a change in the biofilm and the substrate material.
  • the measured elliptic measurement angle ⁇ is sensitive only to changes in the biofilm, and the elliptic measurement angle ⁇ represents a signal sensitive only to the refractive index of the buffer solution.
  • the substrate parallel to a planar incidence structure such as a prism
  • the light reflected from the interface between the prism and the buffer solution should be removed and only the light reflected from the substrate should be used.
  • the distance between the surface of the prism and the substrate material should be reduced.
  • the two reflecting lights are located at a very close distance, which makes it difficult to separate and cause a measurement error. Therefore, in a planar incident structure such as a prism, a new structure measuring method is required to distinguish the light reflected from the interface between the prism and the buffer solution and the light reflected from the substrate material including the sensor.
  • the biomaterial bonding characteristic sensor according to the prior patent has a microchannel structure 100, a substrate 120, a cover 140, a microchannel 150, a sample injection unit 200, It consists of a polarization generating unit 300 and a polarization detecting unit 400.
  • the adsorption layer 160 is placed on the substrate 120 or the dielectric thin film 130, and the liquid immersion microchannel 150 is formed.
  • the buffer solution 210 in which the sample 1 of the biomaterial is dissolved is injected into the micro channel 150, the biomaterial is adsorbed onto the ligand 2 formed on the surface of the adsorption layer 160.
  • an adsorption layer having a predetermined thickness is formed.
  • the polarized incident light generated from the polarization generator 300 is incident on the interface between the buffer solution 210 and the substrate 120 at an angle causing p-wave antireflection conditions through the incident surface 142.
  • the reflected light reflected from the substrate 120 includes optical data regarding the refractive index of the adsorption layer and the buffer solution of the sample 1. That is, in the process of adsorbing and dissociating the sample 1 to the ligand 2, the molecular adsorption and dissociation kinetics such as the adsorption concentration, the thickness or refractive index of the adsorption layer, and the refractive index of the buffer solution are changed, As a result, the measured elliptic measurement angles are changed.
  • the reflected light including the optical data is detected by the polarization detector 400 via the buffer solution 210 and the reflective surface 144.
  • the polarization detector 400 may determine the molecular adsorption and dissociation dynamics of the sample 1 and the refractive index of the buffer solution by measuring the change according to the polarization component of the reflected light, that is, the ellipsometric angles.
  • FIG. 2 shows an adsorption curve showing a process in which the sample 32 is adsorbed to the metal thin film 20, and a dissociation curve showing a dissociation process.
  • the solid line graph has a refractive index of 1.3330 and the dotted line graph corresponds to the refractive index of 1.3332 of the buffer solution 210.
  • the measurement result due to the change of the incident angle shows that the change of ⁇ value acts in a direction that cancels the small change in the vertical incidence structure and hardly shows a change, whereas ⁇ shows a large change. That is, since the elliptic measurement constant ⁇ of the phase difference shows a sensitive change only in the refractive index change of the buffer solution and is hardly affected by the bonding property, only the change in the refractive index of the buffer solution can be measured with high sensitivity.
  • the change in elliptic measurement constant ⁇ shows a very large change as the thickness of the thin film material becomes very small, and when used in an applied study for analyzing the change in material properties or bonding properties by measuring the change in refractive index, It is a measuring method that can measure high sensitivity refractive index.
  • a buffer solution having a different refractive index such as a buffer solution continuously supplied and a solvent used in a sample
  • pure bonding dynamics and a change in the refractive index of the buffer solution can be simultaneously measured.
  • the present invention is to solve the above problems, the measuring device and measuring method for separating the light reflected from the substrate material and the reflected light at the interface between the prism and the buffer solution when the distance between the bottom of the prism and the substrate material is small To provide.
  • the present invention provides a measuring apparatus and a measuring method for solving the problem that measurement errors occur because the intensity of light reflected from the substrate material is relatively weaker than the light reflected at the interface between the prism and the buffer solution because it is measured under p-wave antireflection conditions. .
  • An inclined incident structure prism incident type silicon-based liquid immersion microfluidic measuring apparatus for realizing the above object is provided with a substrate or a prism structure composed of a semiconductor or a dielectric formed on a support and a support on the support.
  • a micro channel structure having a cover part to be installed and a micro channel formed at any one of the upper part of the support and the lower part of the cover part;
  • a sample injection unit injecting a buffer solution containing a sample of a biomaterial into a micro channel to form an adsorption layer of the sample on a substrate;
  • a polarization generator for irradiating incident light polarized through the incident surface of the prism to the adsorption layer at an incident angle satisfying a p-wave antireflection condition;
  • a polarization detector configured to receive first reflected light reflected from at least one of the adsorption layer and the substrate through the reflective surface of the prism, and detect a change in polarization of the first reflected light. It may be formed to form a predetermined inclination angle with the bottom surface of the prism.
  • the first reflected light travels in a different direction from the light reflected from the bottom of the prism.
  • the polarization detection unit may separate and detect the first reflected light and the light reflected from the bottom of the prism.
  • an opening portion may be formed on an upper surface of the support.
  • the through part may have a trapezoidal shape, and the through part may have a trapezoidal shape such that an upper side of the penetrating part has a length smaller than a lower side of the penetrating surface.
  • the incident light may be irradiated onto the adsorption layer through the opened through part, and the trapezoidal shape may block reflection of a portion of the incident light.
  • the upper side of the trapezoidal shape forms a first inclined portion inclined upper side
  • the lower side of the trapezoidal shape forms a second inclined portion inclined upper side
  • cross sections of the first inclined portion and the second inclined portion become narrower toward the tip, and the tip of the first inclined portion is located below the tip of the second inclined portion.
  • an inflow path through which the buffer solution flows into the microchannel is formed on an upper side of the trapezoidal upper side of the penetrating part, and a discharge path through which the buffer solution is discharged into the microfluid flower introduced below the trapezoidal lower side of the penetrating part. Can be formed.
  • the angle of inclination has a range between 0 seconds and 10 degrees.
  • the through part may be formed in a trapezoidal shape, and the trapezoidal shape of the through part may be formed such that an upper side of the penetrating surface has a length greater than a lower side of the penetrating surface.
  • the microchannel structure may further include a dielectric thin film provided between the substrate and the absorption layer, and the first reflected light may further include light reflected from the dielectric thin film.
  • the liquid immersion microfluidic measuring device for realizing the above-described object is a substrate composed of a semiconductor or a dielectric formed on a support and a support, a cover portion provided with a flat plate structure and installed on the support and the A micro channel structure having a micro channel formed on one of an upper portion of the support and a lower portion of the cover part;
  • a sample injection unit injecting a buffer solution containing a sample of a biomaterial into a micro channel to form an adsorption layer of the sample on a substrate;
  • a polarization generator for irradiating incident light polarized through the plane of incidence of the flat plate to the adsorption layer at an incidence angle satisfying a p-wave antireflection condition;
  • a polarization detector configured to receive first reflected light reflected from at least one of the adsorption layer and the substrate through the reflective surface of the flat plate, and detect a change in polarization of the first reflected light. It may be formed to form a
  • the microfluidic structure according to an example of the present invention for realizing the above object, the support; A substrate composed of a semiconductor or dielectric formed on a support; A cover part provided in a prism structure and installed on the support; And a microchannel formed at any one of the upper portion of the support and the lower portion of the lid, wherein a buffer solution containing a sample of a biomaterial is injected into the microchannel to form an adsorption layer of the sample on the substrate.
  • the incident light polarized through the incidence plane of the prism is irradiated onto the adsorption layer at an incidence angle satisfying the p-wave antireflection condition, and the first reflected light reflected from at least one of the adsorption layer and the substrate is reflected through the reflection plane of the prism. It is emitted, the surface of the substrate may be formed to form a predetermined inclination angle with the bottom surface of the prism.
  • the microfluidic structure according to an example of the present invention for realizing the above object, the support; A substrate composed of a semiconductor or dielectric formed on a support; A cover part provided in a flat structure and installed on the support; And a microchannel formed at any one of the upper portion of the support and the lower portion of the lid, wherein a buffer solution containing a sample of a biomaterial is injected into the microchannel to form an adsorption layer of the sample on the substrate.
  • the incident light polarized through the plane of incidence of the plate is irradiated onto the adsorption layer at an incidence angle that satisfies the p-wave antireflection condition, and the first reflected light reflected from at least one of the adsorption layer and the substrate passes through the plane of reflection of the plate. It is emitted, the surface of the substrate may be formed to form a predetermined inclination angle with the bottom surface of the plate.
  • the liquid immersion microchannel measurement method for realizing the above object, the first step of injecting a buffer containing a sample of the biomaterial into the microchannel of the sample flow path microchannel structure; A second step of adsorbing the sample onto the substrate of the microchannel structure to form an adsorption layer; A third step of polarizing the light polarizing unit incident light on the adsorption layer through an incident surface of the prism of the microchannel structure at an incident angle satisfying the p-wave antireflection condition; A fourth step in which first reflected light reflected from at least one of the adsorption layer and the substrate is incident through a reflecting surface of the prism; And a fifth step of detecting a polarization change of the first reflected light by the polarization detector, wherein the surface of the substrate may be formed to have a predetermined inclination angle with a bottom surface of the prism.
  • the liquid immersion microchannel measurement method for realizing the above object, the first step of injecting a buffer containing a sample of the biomaterial into the microchannel of the sample flow path microchannel structure; A second step of adsorbing the sample onto the substrate of the microchannel structure to form an adsorption layer; A third step of polarizing the polarizer generating light to be incident on the adsorption layer at an incident angle satisfying a p-wave antireflection condition through an incident surface of the flat plate of the microchannel structure; A fourth step in which first reflected light reflected from at least one of the adsorption layer and the substrate is incident through a reflecting surface of the plate; And a fifth step of detecting a polarization change of the first reflected light by the polarization detector, wherein the surface of the substrate may be formed to have a predetermined inclination angle with a bottom surface of the flat plate.
  • the first reflected light may travel in a different direction from the light reflected from the bottom of the prism.
  • the polarization detector may separate and detect the first reflected light and the light reflected from the bottom of the prism. have.
  • the fifth step may include polarizing the first reflected light by an analyzer; Detecting the polarized first reflected light by a photodetector to obtain predetermined optical data; And an analysis means obtains an elliptic measurement constant relating to the phase difference of the elliptic measurement method based on the optical data, obtains the refractive index of the buffer solution, obtains an elliptic measurement constant relating to the amplitude ratio, and includes a measurement including adsorption concentration, adsorption and dissociation constant of the sample. Deriving a value; may further include.
  • the inclined incident structure prism incident type silicon-based liquid immersion microfluidic measuring apparatus and measuring method incline the substrate attached to the bottom of the prism and the microfluidic, so that the sensor is attached to the interface between the prism and the medium.
  • the signal reflected from the substrate material is separated and detected, thereby obtaining a high sensitivity measurement sensitivity.
  • the light reflected from the interface between the prism and the measuring medium has a larger energy than the light reflected from the substrate material and is difficult to separate, which may cause a measurement error.
  • the narrow microchannel structure acts as a preliminary aperture,
  • a multi-channel micro-channel can be manufactured and light can be incident on a large area using a cylinder lens or the like to measure a simple and highly sensitive multi-channel micro-channel.
  • the microchannel structure of the present invention has a trapezoidal microchannel coupled with a prism structure optimized for analysis of biomaterials, and consists of a single channel formed with a multichannel or a plurality of self-assembled monolayer films. Therefore, it is possible to provide various types of experimental conditions, such as varying the concentration of the sample into the multi-channel microchannel or injecting the self-assembled monolayer membrane, thereby increasing the efficiency in the analysis of biomaterials. have.
  • the present invention can be used in a variety of industries, such as bio, medical, food, environment can be measured highly sensitive to the biomaterial in a non-labeled manner in the immersion micro-channel environment.
  • FIG. 1 is a cross-sectional view showing a biomaterial bonding characteristics measuring sensor according to the prior patent
  • Figure 2 is a schematic diagram showing the adsorption concentration change in the process of the sample is adsorbed, dissociated to the metal thin film,
  • Figure 3 is a schematic diagram for explaining the problems of the prior art in which the inherent adsorption and dissociation dynamics of the sample appearing through the adsorption, dissociation process of the sample and the change of the refractive index by the buffer solution is mixed,
  • FIG. 5 is a cross-sectional view showing the configuration of an inclined incident structure prism incident type silicon-based liquid immersion microchannel measuring apparatus according to an embodiment of the present invention
  • Figure 6a is a perspective view of a multi-channel microchannel structure in accordance with an embodiment of the present invention.
  • 6B is an exploded perspective view of a multichannel microchannel structure according to an embodiment of the present invention.
  • FIG. 7 is a perspective view of a multichannel microchannel structure according to another embodiment of the present invention.
  • FIG. 8A is a perspective view of a support according to an embodiment of the present invention.
  • FIG. 8B is a bottom perspective view of a support according to an embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of the support according to an embodiment of the present invention.
  • FIG. 10 is a flow chart of a method of measuring the immersion microfluidic channel according to an embodiment of the present invention.
  • Figure 11 is a schematic diagram showing the path of the light reflected from the sample in the prism vertical incidence structure of the prior patent
  • 12A is a schematic diagram showing a path of light reflected by an immersion microfluidic measuring device according to an embodiment of the present invention
  • 12B is a method of measuring a trapezoidal microfluidic structure and an oblique incidence structure prism-incident type silicon-based liquid immersion microchannel according to an embodiment of the present invention
  • Figure 13a is a schematic diagram showing the path of the light reflected from the immersion microfluidic measuring apparatus according to another embodiment of the present invention.
  • FIG. 13B illustrates a structure of a trapezoidal microchannel and an oblique incidence structure prism-incident type silicon-based immersion microchannel measurement method according to another exemplary embodiment of the present invention.
  • Figure 5 is a schematic diagram showing the configuration of an inclined incident structure prism incident type silicon-based liquid immersion microfluidic measuring apparatus according to an embodiment of the present invention.
  • an apparatus for simultaneously measuring molecular bonding characteristics and a buffer solution refractive index according to an exemplary embodiment of the present invention provides an incident light with the microfluidic structure 100 and the sample injector 200 that provide a large immersion microchannel environment.
  • the optical system includes a polarization generator 300 and a polarization detector 400 for detecting a change in polarization of reflected light.
  • the present invention is to measure the adsorption and dissociation dynamics of biomaterials, including low molecular weight using an ellipsometric method, a buffer (210) containing a sample (not shown) of the biomaterial in the sample injection unit 200 It has a structure which is injected into this micro flow path structure 100.
  • the micro-channel structure 100 as described below, the micro-channel 150 is composed of a multi-channel or a single channel.
  • FIG. 6A is a perspective view illustrating an example of a multichannel microchannel structure according to the present invention
  • FIG. 6B is an exploded perspective view of the multichannel microchannel structure.
  • the microchannel structure 100 includes a support 110, a substrate 120, an adsorption layer 160, and a cover 140, and a plurality of microchannels 150. Is formed to form a multi-channel structure.
  • the support 110 has a rectangular plate shape as shown in FIG. 6B, and a groove 112 for forming the substrate 120 and the adsorption layer 160 is formed.
  • the inflow path 152 and the discharge path 154 of the micro flow path 150 are formed at one side and the other side around the groove 112.
  • the groove 112, the inflow path 152 and the discharge path 154 are formed using a semiconductor etching technique or an exposure technique.
  • the substrate 120 is formed in the groove 112 of the support 110 in the form of a square plate.
  • the substrate 120 uses silicon (Si) having a complex refractive index of about 3.8391 + i0.018186 at 655 nm and providing constant and stable physical properties at low cost.
  • the material of the substrate 120 may be a semiconductor or dielectric material other than silicon.
  • the adsorption layer 160 serves to absorb and dissociate a sample of a low molecular weight biomaterial and reflect incident light.
  • the surface junction 160 is formed on the upper side of the substrate 120, as shown in Figure 5 and 6b.
  • Adsorption layer 160 may be composed of at least one of a self-assembled thin film and a bio thin film.
  • the dielectric thin film 130 may be further included between the silicon substrate 120 and the adsorption layer 160.
  • the dielectric thin film 130 is a thin film material of a transparent material including a semiconductor oxide film or a glass film is used.
  • the thickness of the dielectric thin film is preferably 0 to 1000 nm.
  • an example of the dielectric thin film 130 that can be easily obtained is a silicon oxide film (SiO 2) grown to several nanometers by naturally oxidizing silicon. Since the refractive index of the silicon oxide film is about 1.456 at 655 nm, the difference in refractive index between the silicon oxide film and the substrate 120 made of silicon is large, which helps to increase the measurement sensitivity of the present invention.
  • a glass film made of optical glass may be used for the dielectric thin film 130.
  • the dielectric thin film 130 made of silicon, silicon oxide film, or glass film can provide a stable refractive index compared to a metal thin film such as gold or silver, thereby providing stable optical characteristics and lowering manufacturing costs. .
  • the cover part 140 may be installed on the support 110 as shown in FIGS. 5 to 6B, and may include a prism 142 and a partition wall 146.
  • the light incident on the incident surface 143 of the prism 142 causes the microfluidic medium to be refracted by the microfluidic structure combined with the prism 142.
  • the refracted light is angled to satisfy the p-wave antireflection condition on the substrate material. To be incident.
  • the cover part 140 is provided with a plurality of partitions 146 for forming the micro-channel micro-channel 150 as the lower surface of the prism 142 as shown in FIG. 6B.
  • the prism 142 and the fine flow path structure may be made of a transparent material such as glass or transparent synthetic resin material, but for ease of fabrication, the whole including the fine flow path partition wall 146 may be integrally formed using a molding method or the like. Can be.
  • an acrylic resin such as polymethyl methacrylate (PMMA) may be used.
  • silicon-based materials such as silicon phosphate polymer (PDMS, polydimethylsiloxane) may also be used.
  • the micro-channel 150 is a plurality of passages through which the buffer solution 210 including the sample is introduced or discharged. That is, as described above, each space between the partition walls 146 of the cover part 140 communicates with the inflow passage 152 and the discharge passage 154 formed in the support 110 so that a plurality of the microfluidic structures 100 may be formed.
  • the micro channel 150 is formed. At this time, the width of the micro channel 150 has a micro scale of about several mm or less than 1 mm.
  • FIG. 7 is a perspective view showing another example of the multi-channel microchannel structure according to the present invention.
  • the cross-section of the prism 142 may have a trapezoidal shape in the multichannel microchannel structure 100.
  • the polarization generating unit 300 and the polarization detecting unit 400 illustrated in FIG. 5 may cause incident light and reflected light to the incident surface 143 and the reflective surface 144 of the prism 142 to be vertical or polarized. It is fixed at a position where it is incident or close to perpendicular at an angle that does not change.
  • a flat plate is used instead of a prism structure, there is a loss of incident light.
  • a flat plate structure may be used for a simple structure.
  • Figure 8a is a perspective view of the support according to an embodiment of the present invention
  • Figure 8b is a bottom perspective view of the support according to an embodiment of the present invention
  • Figure 9 is a cross-sectional view of the support according to an embodiment of the present invention.
  • An open through portion 116 is formed on the upper surface of the support 110, and the through portion 116 is opened in a trapezoidal shape.
  • the trapezoidal shape of the through part 116 is formed so that the upper side located in the incident surface direction has a length smaller than the lower side located in the reflective surface direction. Accordingly, the through part 116 may act as an aperture to prevent scattering due to the micro channel structure.
  • the upper side of the trapezoidal shape of the penetrating portion 116 forms a first inclined portion 114 having an inclined upper side, and the lower side of the trapezoidal shape of the penetrating portion 116 is inclined upper side.
  • the two inclined portion 115 is formed.
  • the second inclined portion 115 is inclined in a direction opposite to the first inclined portion 114.
  • the angle formed by the first inclination part 114 and the second inclination part 115 is represented by 10 °, but the present invention is not limited thereto and may be designed at an angle within a range of approximately 10 ° to 80 °. Can be.
  • the inclination of the first inclined portion 114 and the second inclined portion 115 smoothly induces the flow of the micro-channel 150.
  • the buffer solution 210 introduced into the microchannel 150 through the inflow path 152 may proceed smoothly along the inclination of the first inclination part 114, and the discharge path along the inclination of the second inclination part 115. You may proceed smoothly to 154.
  • Cross sections of the first inclination portion 114 and the second inclination portion 115 become narrower toward the tip, and the tip of the first inclination portion 114 is located below the tip of the second inclination portion 115. do.
  • the angle between the line segment formed on the upper surface of the support 110 and the line segment connecting the tip of the first inclined portion 114 and the tip of the second inclined portion 115 is preferably set to about 2 °.
  • the present invention may be implemented as a single channel microchannel structure.
  • the microchannel structure 100 of one channel includes one microchannel 150. That is, the cover part 140 includes a prism 142 and a pair of partition walls 146 formed at both ends of the lower surface of the prism, and the support 110 has one inflow path 152 and a discharge path 154. As a result, the microchannel 150 of the single channel is formed.
  • each of the self-assembled monolayer films 132 has a sensor structure that varies the degree of adsorption and dissociation with the sample, and can simultaneously measure various adsorption and dissociation dynamics of the biomaterial.
  • the sample injector 200 injects a buffer solution 210 including a sample (not shown) of a low molecular weight biomaterial into the inflow path 152 of the microchannel 150.
  • the sample injecting unit 200 has a structure for dissolving the sample in a predetermined concentration in the buffer solution 210, a valve device (not shown) that can inject and block the buffer solution 210 in the micro-channel (150) Equipped.
  • the sample injection unit 200 may inject the buffer solution 210 into the micro-channel 150 of each channel by varying the concentration of the sample or by placing a time difference. Meanwhile, when the buffer solution 210 is injected into the micro channel 150, a portion of the sample (not shown) is adsorbed on the dielectric thin film 130 to form an adsorption layer 160 having a predetermined thickness.
  • the adsorption layer 160 may be a multilayer film composed of various biomaterials including a self-assembled monolayer film 132 suitable for bonding characteristics of various biomaterials, an immobilization material, and low molecules bonded to the immobilization material.
  • the polarization generator 300 irradiates the absorption layer 160 with incident light polarized through the incident surface 143 of the prism 142 of the micro-channel structure 100.
  • the polarization generator 300 may include a light source 310, a polarizer 320, and other collimating lenses 330, a focusing lens 340, or a first compensator 350 as essential components. have.
  • the polarizer 320 and the first compensator 350 may be configured to be rotatable or may further include other polarization modulating means.
  • the polarized incident light has a polarization component of p-wave and s-wave, and in order to increase the signal-to-noise ratio, light of nearly p-wave can be incident.
  • the incident light should be irradiated at an incident angle ⁇ that satisfies the p-wave antireflection condition.
  • the p-wave antireflection condition is similar to the surface plasmon resonance condition of the conventional SPR sensor, and is a condition in which the measurement sensitivity of the present invention is maximized.
  • the light source 310 irradiates monochromatic light in the infrared, visible or ultraviolet wavelength range, or irradiates white light.
  • various lamps, light emitting diodes (LEDs), lasers, laser diodes (LDs), and the like may be used.
  • the light source 310 may have a structure capable of varying the wavelength according to the structure of the optical system.
  • the magnitude of the optical signal of the reflected light may be relatively small.
  • a high sensitivity is generated by irradiating light with a high amount of light using a laser or a laser diode (LD) to increase the signal-to-noise ratio. Measurements can be made possible.
  • the polarizer 320 is provided with a polarizing plate to polarize the light emitted from the light source 310.
  • the polarization component has an s wave in a direction perpendicular to a p wave in a direction parallel to the incident surface.
  • the collimating lens 330 receives light from the light source 310 to provide parallel light to the polarizer 320.
  • the focusing lens 340 may converge parallel light passing through the polarizer 320 to increase the amount of incident light.
  • the first compensator 350 serves to retard the polarization component of the incident light.
  • the polarization detector 400 receives the reflected light reflected from the adsorption layer 160 through the reflective surface 144 of the prism 142 and detects a change in the polarization state.
  • the polarization detector 400 includes an analyzer 410, a detector 420, and an operation processor 430 as essential components, and a second compensator 440 and a spectrometer 450. It may be provided.
  • the analyzer 410 corresponds to the polarizer 320 and may include a polarizing plate to polarize the reflected light again to control the degree of polarization of the reflected light or the direction of the polarization plane.
  • the analyzer 410 may be configured to be rotatable according to the structure of the optical system, or may further include polarization modulating means capable of performing a function such as phase change and cancellation of the polarization component.
  • the photodetector 420 detects polarized reflected light to obtain optical data, and converts it into an electrical signal. At this time, the optical data includes information on the change of the polarization state in the reflected light.
  • the photodetector 420 may be a CCD solid-state image pickup device, a photomultiplier tube (PMT), or a silicon photodiode.
  • the operation processor 430 serves to derive a measurement value by obtaining an electrical signal from the photodetector 420.
  • the arithmetic processor 430 includes a predetermined analysis program using a reflectance measuring method and an elliptic measurement method.
  • the arithmetic processor 430 extracts and analyzes optical data converted into an electrical signal, so that the adsorption concentration and the adsorption layer 160 of the sample are absorbed.
  • the measured values such as the thickness, the adsorption constant, the dissociation constant, and the refractive index are derived.
  • it is preferable that the operation processor 430 derives a measurement value by obtaining elliptic measurement constants ⁇ , ⁇ regarding the phase difference of the elliptic measurement method in order to improve measurement sensitivity.
  • the second compensator 440 plays a role of retarding and adjusting the polarization component of the reflected light.
  • the second compensator 440 may be configured to be rotatable or may further include other polarization modulating means.
  • the spectrometer 450 is used when the light source 310 is white light. This is for spectroscopy of the reflected light and for separating the reflected light having a narrow wavelength range and sending the reflected light to the photodetector 420.
  • the photodetector 420 may obtain optical data regarding the distribution of reflected light with a two-dimensional image sensor such as a CCD solid-state image pickup device.
  • FIG. 10 is a flowchart illustrating a method for simultaneously measuring molecular bonding characteristics and a refractive index of a buffer solution according to the present invention. As shown in Figure 10, the measuring method of the present invention is subjected to the first step (S100) to the fifth step (S500).
  • the sample injection unit 200 dissolves a sample (not shown) of a biomaterial including a low molecule in the buffer solution 210 to form a microchannel 150 of the microchannel structure 100. ) Will be injected.
  • the sample injector 100 may inject the buffer solution 210 including the samples having different concentrations in each of the microchannels 150 of the multichannel.
  • the buffer solution 210 may be injected with a time difference for each microchannel 150.
  • the buffer solution 210 may be injected into only some of the microchannels 150, and the remaining microchannels 150 may not be used.
  • a sample (not shown) of the biomaterial is adsorbed onto the substrate 120 or the dielectric thin film 130 to form the adsorption layer 160.
  • the sample has different bonding characteristics by adsorbing the plurality of different self-assembled monolayer films 132 formed on the single channel microchannel structure 100 of FIG. 8 or the plurality of adsorption layers on the same self-assembled monolayer films.
  • An adsorption layer can also be formed.
  • the polarizer 320 polarizes predetermined light irradiated from the light source 310 and enters the adsorption layer 160 through the prism 142 of the microchannel structure 100.
  • the light passes through the incident surface of the prism 142, is refracted at a predetermined angle by the refractive index of the buffer solution 210 existing at the lower end of the prism 142, and then enters the adsorption layer 160.
  • the polarized incident light has a polarization component of p-wave and s-wave.
  • the incident light should have an incident angle ⁇ that satisfies the p-wave antireflection condition.
  • the reflected light reflected by the adsorption layer 160 is incident on the polarization detector 400 through the prism 142 of the microchannel structure 100. At this time, the reflected light is an elliptically polarized state.
  • the polarization detector 400 detects the polarization state of the reflected light. Specifically, the analyzer 410 first receives the elliptically polarized reflected light from the adsorption layer 160 to pass only the light according to the polarization characteristics.
  • the photodetector 420 obtains predetermined optical data by detecting a change in the polarization component of the reflected light, converts it into an electrical signal, and transmits the converted optical signal to the operation processor 430.
  • an arithmetic processor 430 with a program using a reflectance measuring method or an ellipsometric method extracts and analyzes optical data converted into an electrical signal, and the adsorption concentration of the sample, the adsorption and dissociation constant, the refractive index, the refractive index of the buffer solution, The same measurement is derived.
  • the operation processor 430 obtains the elliptic measurement constant ⁇ of the phase difference of the elliptic measurement method, measures the refractive index measurement value of the buffer solution, and measures the elliptic measurement constant?
  • the elliptic measurement constant ⁇ of the phase difference under the p-wave antireflection condition is sensitive to the change in the refractive index of the buffer solution and is hardly affected by the bonding characteristics. Therefore, only the change in the refractive index of the buffer solution can be measured. This is because the elliptic measurement constant ⁇ regarding the amplitude ratio changes mainly with high sensitivity to the bonding properties of the material.
  • the bonding characteristics of the sample introduced into the buffer solution are measured as ⁇ and the refractive index change of the buffer solution including the refractive index that changes when dissolved in the buffer solution or the solvent such as DMSO used to dissolve the sample is measured at the same time as ⁇ Only the bonding characteristics are obtained.
  • 11 is a view showing the path of the light after reflecting from the sample in the prism vertical incident structure of the prior patent.
  • the wavelength of the light source 310 is 532 nm
  • Polarized light enters the sensor on the silicon substrate at 72.15 °.
  • the light reflected from the interface between the prism and the buffer solution and the light reflected from the silicon substrate proceed in parallel.
  • the two lights diffuse as they progress, making it difficult to separate from the photodetector, which is a major factor of measurement error.
  • the separated light travels in a direction different from that of the microfluidic structure attached to the prism interface, thereby reducing noise caused by light scattered from the microfluidic structure.
  • FIG. 12B illustrates a method for measuring a trapezoidal microfluidic structure and an oblique incidence structure prism incident silicon-based liquid immersion microfluidic channel.
  • laser light is incident on the narrow microchannel of the trapezoidal microchannel by the cylindrical lens, it is reflected from a 2 ° inclined silicon surface, then passes through the wide microchannel, and then passes through the wide microchannel to act as an aperture. It is possible to minimize noise caused by light scattered irregularly at the microfluidic interface by passing light without scattering the interface of the flow path.
  • FIGS. 13A and 13B illustrate an apparatus for measuring immersion microchannels according to another embodiment of the present invention.
  • the structure of the support 110 is used in the opposite direction in FIGS. 13A and 13B. That is, the embodiment of FIGS. 13A and 13B is configured such that light is incident on the wide microchannel of the trapezoidal microchannel and passes through the narrow microchannel.
  • the scattering may occur more than the structures of FIGS. 12A and 12B, which may cause an error.
  • the embodiments of FIGS. 13A and 13B have an advantage that the angle reflected from the bottom of the prism is incident at an angle 2 ° smaller than the angle corresponding to the p-wave antireflection condition, thereby greatly reducing the intensity of the reflected light.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Measuring Cells (AREA)

Abstract

An oblique incidence, prism-incident, silicon-based, immersion microchannel-based measurement device related to one example of the present invention may comprise: a microchannel structure having a support, a substrate formed, from a semiconductor or a dielectric material, on the support, a cover part having a prism structure and installed on the support, and a microchannel formed in the upper portion of the support or the lower portion of the cover part; a sample injection part for injecting a buffer solution containing a sample of a biomaterial into the microchannel so as to form, on the substrate, an adsorption layer of the sample; a polarized light generation part which radiates, through an incident surface of the prism, polarized incident light onto the adsorption layer at an incident angle meeting a P-wave antireflection condition; and a polarized light detection part to which first reflected light, reflected from the adsorption layer and/or the substrate, is incident, having passed through a reflective surface of the prism, and which detects the change in polarization of the first reflected light.

Description

경사 입사구조 프리즘 입사형 실리콘 기반 액침 미세유로 측정장치 및 측정방법Device and method for measuring immersion structure prism incident silicon-based immersion microchannel
액침(液浸) 미세유로 환경하에서 반사율 측정 및 타원계측법 측정을 이용한 바이오물질 등의 분자접합특성 및 완충용액 굴절률 측정방법시 경사입사구조에 대한 것이다. 보다 상세하게는, 프리즘 밑면과 사다리꼴 미세유로에 부착된 기판을 경사지게 함으로써 프리즘과 매질의 경계면에서 반사된 빛을 효과적으로 제거하고 미세유로 경계면의 산란을 최소화하여 고감도 측정이 가능한 측정장치 및 이를 이용한 측정방법에 관한 것이다.This study relates to the inclination structure of molecular bonding properties of biomaterials and the refractive index of buffer solution under the immersion microfluidic environment. More specifically, by measuring the bottom of the prism and the substrate attached to the trapezoidal micro-channel inclined to effectively remove the light reflected from the interface between the prism and the medium, and to minimize the scattering of the micro-channel interface and the measuring device capable of high sensitivity measurement method using the same It is about.
반사율 측정법(Reflectometry)과 타원계측법(Ellipsometry)은 시료의 표면에서 반사한 반사광의 반사율 변화 또는 편광상태를 측정하고, 그 측정값을 분석함으로써 시료의 두께나 광학적 물성을 찾아내는 광분석기술이다.Reflectometry and ellipsometry are optical analysis techniques that determine the thickness or optical properties of a sample by measuring the change in reflectance or polarization state of the reflected light reflected from the surface of the sample and analyzing the measured values.
이를 이용한 계측장비로서 반사율 측정기(Reflectometer)와 타원계측기(Ellipsometer)가 있다. 이들은 반도체 산업의 나노 박막 제조공정에서 다양한 나노수준의 박막 두께와 물성을 평가하는데 활용되고 있다. 또한, 바이오산업으로 그 활용범위를 넓혀 단백질, DNA, 바이러스, 신약물질 등과 같은 바이오물질의 계면 분석에 응용하고자 하는 노력이 계속되고 있다.As measurement equipment using this, there is a reflectometer and an ellipsometer. They are used to evaluate various thin film thickness and physical properties of nano thin film manufacturing process in semiconductor industry. In addition, efforts are being made to extend the scope of application to the bio industry and apply it to interface analysis of bio materials such as proteins, DNA, viruses, and new drugs.
종래의 반사율 측정기는 수 나노미터(nm) 이상의 크기를 갖는 나노 박막의 두께와 물성을 평가하기에는 충분하지만, 대략 1 ~ 0.001 나노미터 범위의 감도가 필요한 저분자 바이오물질을 분석하는 데 있어 측정감도가 낮아 신뢰성이 저하되는 문제점이 있다. 반사율 측정기에 비해 타원계측기의 경우 0.01 nm 이하의 측정감도를 가지며 특히 고굴절률의 반도체 기판 위의 반도체에 비해 상대적으로 굴절률이 작은 산화막의 두께 측정과 같이 굴절률 대비가 큰 조건에서 측정감도가 높다.Conventional reflectometers are sufficient to evaluate the thickness and physical properties of nano-films with dimensions of several nanometers (nm) or more, but have low sensitivity in analyzing low molecular weight biomaterials that require sensitivity in the range of approximately 1 to 0.001 nanometers. There is a problem that the reliability is lowered. The ellipsometer has a measurement sensitivity of less than 0.01 nm compared to the reflectance measuring instrument. In particular, the measurement sensitivity is high under conditions where the refractive index is large, such as the thickness of an oxide film having a smaller refractive index than that of a semiconductor on a high refractive index semiconductor substrate.
그러나, 타원계측기의 경우 저분자 바이오물질까지 분석하기 위해서는 감도가 향상된 측정방법이 요구된다.However, in the case of an ellipsometer, a measurement method with improved sensitivity is required to analyze even low molecular weight biomaterials.
바이오물질의 분석시 측정감도를 개선하기 위한 종래의 기술로서, 반사율 측정법과 표면 플라즈몬 공명(SPR;Surface Plasmon Resonance)기술이 혼합된 형태의 표면 플라즈몬 공명 센서(이하, 'SPR 센서'라고 함)가 있다.As a conventional technique for improving measurement sensitivity when analyzing a biomaterial, a surface plasmon resonance sensor (hereinafter referred to as an 'SPR sensor') in which a reflectance measuring method and a surface plasmon resonance (SPR) technology is mixed have.
표면 플라즈몬 공명(SPR) 현상은 광파(light waves)에 의해 금속표면에 존재하는 전자들이 여기되어 표면의 종방향(normal)으로 집단적인 요동(collective vibration)을 하게 되고, 이때 빛에너지가 흡수되는 현상을 말한다. SPR 센서는 빛의 편광특성에 민감한 표면 플라즈몬 공명 현상을 이용하여 금속표면에 접하는 나노 박막의 두께 및 굴절률 변화를 측정할 수 있을 뿐만 아니라 바이오물질의 흡착농도 변화를 형광물질을 사용하지 않는 비표지방식으로(non-labeling) 실시간으로 측정할 수 있는 것으로 알려져 있다.Surface plasmon resonance (SPR) is a phenomenon in which electrons present on a metal surface are excited by light waves, causing collective vibration in the longitudinal direction of the surface, where light energy is absorbed. Say SPR sensor can measure the change of thickness and refractive index of nano thin film in contact with metal surface by using surface plasmon resonance which is sensitive to the polarization property of light. It is known that non-labeling can be measured in real time.
SPR 센서는 그 구조가 유리 등의 재질에 수십 나노미터의 금속박막을 입히고 그 위에 생체물질이 접합할 수 있는 센서를 만들고 완충용액에 녹아 있는 시료가 센서에 접합하게 되면 공명각이 변하는 원리를 이용한 것으로 공명각은 반사율 측정을 통해 이루어진다. SPR 센서에 빛이 입사하면 유리재질이 입사 매질이 되고 생체물질이 접합하는 박막층을 통과하여 최종적으로 완충용액이 기판에 해당한다. SPR sensor uses the principle that the structure of the glass is coated with a metal thin film of tens of nanometers on the material such as glass and the biomaterial can be bonded on it, and the resonance angle changes when the sample dissolved in the buffer solution is bonded to the sensor. The resonance angle is achieved by measuring the reflectance. When light enters the SPR sensor, the glass material becomes the incident medium and passes through the thin film layer to which the biomaterial is bonded. Finally, the buffer solution corresponds to the substrate.
이러한 구조에서는 측정하고자 하는 시료의 접합에 의한 생체 박막층의 변화와 마찬가지로 기판물질에 해당하는 완층용액의 굴절률이 공명각의 이동에 직접적으로 영향을 준다. 따라서 순순한 접합동특성만 측정하기 위해서는 완충용액의 굴절률을 독립적으로 측정하여 보정해 주어야 한다. In such a structure, the refractive index of the complete solution corresponding to the substrate material directly affects the movement of the resonance angle, similar to the change of the biological thin film layer due to the bonding of the sample to be measured. Therefore, in order to measure only pure bonding dynamics, the refractive index of the buffer solution should be measured and corrected independently.
완충용액의 굴절률 변화를 보정하고 시료와 완충용액 사이의 확산으로 인한 오차를 방지하기 위해 정교한 밸브장치와 공기 주입장치, 2개 이상의 채널을 사용하여 1개를 기준채널로 이용하고 보정하는 방법 등이 사용되고 있다. 그러나 완충용액의 굴절률 변화에 의한 SPR 각도 변화와 순수한 흡착, 해리특성에 의한 SPR 각도변화를 구분하기 어렵고 항상 측정오차요인으로 작용할 수 있다. 결국, 종래의 SPR 센서는 위와 같은 측정방법의 한계로 인해 저분자와 같이 분자량이 작은 물질의 흡착, 해리특성 측정시 근본적인 어려움이 있다.In order to correct the refractive index change of the buffer solution and to prevent errors due to diffusion between the sample and the buffer solution, a sophisticated valve device, an air injection device, and a method of using one as a reference channel using two or more channels and correcting It is used. However, it is difficult to distinguish between the SPR angle change due to the refractive index change of the buffer solution and the SPR angle change due to the pure adsorption and dissociation characteristics, and it can always act as a measurement error factor. As a result, the conventional SPR sensor has a fundamental difficulty in measuring the adsorption and dissociation characteristics of a material having a low molecular weight, such as a low molecule, due to the limitation of the above measurement method.
또한, 종래의 SPR 센서는 표면 플라즈몬 공명을 위해 금(Au), 은(Ag)과 같은 귀금속의 금속박막이 사용되어 센서의 제작비가 많이 소요된다. 그리고, 금속박막은 제작공정에 따라 표면조도가 고르지 못하여 굴절률의 편차가 심하고, 불안정한 광특성으로 인해 바이오물질의 정량적인 측정이 어렵고 기준 채널과 상대적인 비교시 서로 다른 위치의 다른 감도특성에 의한 오차를 포함하는 문제점이 있다. In addition, the conventional SPR sensor uses a metal thin film of a noble metal such as gold (Au), silver (Ag) for the surface plasmon resonance is expensive manufacturing of the sensor. In addition, the metal thin film has an uneven surface roughness depending on the manufacturing process, and the variation in refractive index is severe, and because of unstable optical properties, it is difficult to quantitatively measure biomaterials and to detect errors due to different sensitivity characteristics at different positions when compared with reference channels. There is a problem to include.
SPR 센서의 단점을 개선하기 위하여 실리콘 등의 기판물질 위에 생체물질 접합센서 층을 만들고 액침미세유로 환경하에서 완충용액을 통과하여 기판물질에서 반사된 광의 진폭과 위상을 p-파 무반사 조건에서 타원계측 방법으로 측정하면 측정된 진폭이 완충용액의 굴절률 변화에 민감하지 않고 생체물질의 접합동특성에 민감한 신호를 얻을 수 있다. 액침미세유로 환경하에서 기판물질에 흡착하는 생체물질의 접합특성을 측정할 경우 SPR 측정과는 반대로 완충용액은 입사매질이 되고 생체물질 흡착층을 통과한 빛이 기판물질에서 반사하게 된다. To improve the shortcomings of the SPR sensor, a biomaterial junction sensor layer is formed on a substrate material such as silicon, and the ellipsometric method measures the amplitude and phase of the light reflected from the substrate material through a buffer solution under an immersion microenvironment under p-wave antireflection conditions. When measured by, it is possible to obtain a signal whose amplitude is not sensitive to the change in refractive index of the buffer solution and sensitive to the bonding dynamics of the biological material. In the case of measuring the bonding characteristics of the biomaterial adsorbed to the substrate material under the immersion microfluidic environment, the buffer solution becomes the incident medium and the light passing through the biomaterial adsorption layer is reflected from the substrate material as opposed to the SPR measurement.
이러한 측정 조건에서는 측정된 타원계측각이 완충용액인 입사매질의 굴절률 변화에는 민감하지 않고 생체박막과 기판물질의 변화에만 민감한 변화를 보이게 된다. 실리콘과 같은 굴절률이 안정된 기판인 경우 측정된 타원계측각 Ψ는 생체박막의 변화에만 민감한 신호를 얻을 수 있고 타원계측각 Δ는 완충용액의 굴절률에만 민감한 신호를 나타내어 생체박막의 두께와 완충용액의 굴절률을 동시에 측정할 수 있다. 그러나 프리즘과 같은 평면 입사구조와 평행한 기판을 사용할 경우 프리즘과 완충용액의 경계면에서 반사하는 빛을 제거하고 기판에서 반사하는 빛만 사용해야 한다. 시료의 사용량을 최소화하기 위해서는 프리즘 표면과 기판물질과의 간격을 줄여야 하는데 이 경우 반사하는 두 빛이 아주 가까운 거리에 위치하여 분리가 어렵고 측정오차로 작용한다. 따라서 프리즘과 같은 평면 입사형 구조에서 프리즘과 완충용액의 경계면에서 반사되는 빛과 센서를 포함한 기판물질에서 반사하는 빛을 구분하기 위한 새로운 구조의 측정방법이 요구된다.Under these measurement conditions, the measured elliptic measurement angle is not sensitive to the change in the refractive index of the incident medium, which is a buffer solution, but only a change in the biofilm and the substrate material. In the case of a stable refractive index substrate such as silicon, the measured elliptic measurement angle Ψ is sensitive only to changes in the biofilm, and the elliptic measurement angle Δ represents a signal sensitive only to the refractive index of the buffer solution. Can be measured simultaneously. However, when using a substrate parallel to a planar incidence structure such as a prism, the light reflected from the interface between the prism and the buffer solution should be removed and only the light reflected from the substrate should be used. In order to minimize the amount of sample used, the distance between the surface of the prism and the substrate material should be reduced. In this case, the two reflecting lights are located at a very close distance, which makes it difficult to separate and cause a measurement error. Therefore, in a planar incident structure such as a prism, a new structure measuring method is required to distinguish the light reflected from the interface between the prism and the buffer solution and the light reflected from the substrate material including the sensor.
도 1은 SPR 센서의 단점을 개선하기 위하여 실리콘 등의 기판물질 위에 센서 층을 만들고 액침미세유로 환경하에서 타원계측 방법으로 측정하는 선행특허의 구성도이다. 도 1에 도시된 바와 같이, 선행특허에 따른 생체물질 접합특성 센서는 대략 미세유로 구조체(100), 기판(120), 덮개부(140), 미세유로(150), 시료주입부(200), 편광발생부(300) 및 편광검출부(400)로 구성된다. 선행특허에 따른 생체물질 접합특성 센서는 기판(120) 혹은 유전체 박막(130) 위에 흡착층(160)을 올리고 액침 미세유로(150) 환경이 형성된다. 이때, 바이오물질의 시료(1)가 용해된 완충용액(210)을 미세유로(150)에 주입하게 되면, 흡착층(160)의 표면에 형성된 리간드(ligand, 2) 물질에 바이오물질이 흡착에 하여 소정두께의 흡착층을 형성하게 된다. 1 is a configuration of the prior patent to measure the sensor layer on the substrate material such as silicon in order to improve the shortcomings of the SPR sensor and measured by the ellipsometric method under the immersion microfluidic environment. As shown in FIG. 1, the biomaterial bonding characteristic sensor according to the prior patent has a microchannel structure 100, a substrate 120, a cover 140, a microchannel 150, a sample injection unit 200, It consists of a polarization generating unit 300 and a polarization detecting unit 400. In the biomaterial bonding characteristic sensor according to the prior patent, the adsorption layer 160 is placed on the substrate 120 or the dielectric thin film 130, and the liquid immersion microchannel 150 is formed. At this time, when the buffer solution 210 in which the sample 1 of the biomaterial is dissolved is injected into the micro channel 150, the biomaterial is adsorbed onto the ligand 2 formed on the surface of the adsorption layer 160. Thus, an adsorption layer having a predetermined thickness is formed.
그리고, 편광발생부(300)으로부터 발생된 편광된 입사광은 입사면(142)을 거쳐 완충용액(210)과 기판(120)의 경계면에 p-파 무반사 조건을 일으키는 각도로 입사된다. 이때, 기판(120)에서 반사된 반사광은 시료(1)의 흡착층 및 완충용액의 굴절률에 관한 광학데이터를 포함하고 있다. 즉, 시료(1)가 리간드(2)에 흡착, 해리되는 과정에서 흡착농도, 흡착층의 두께 또는 굴절률, 완충용액의 굴절률과 같은 분자 흡착 및 해리 동특성(binding and dissociation kinetics)이 변화하게 되고, 이에 따라 측정된 타원계측각들이 달라지게 된다. 그리고, 광학데이터를 포함한 반사광은 완충용액(210)과 반사면(144)을 거쳐 편광검출부(400)에서 검출된다. 이때, 편광검출부(400)는 반사광의 편광 성분에 따른 변화, 즉 타원계측각도들을 측정함으로써 시료(1)의 분자 흡착 및 해리 동특성, 완충용액의 굴절률을 파악할 수 있다.The polarized incident light generated from the polarization generator 300 is incident on the interface between the buffer solution 210 and the substrate 120 at an angle causing p-wave antireflection conditions through the incident surface 142. In this case, the reflected light reflected from the substrate 120 includes optical data regarding the refractive index of the adsorption layer and the buffer solution of the sample 1. That is, in the process of adsorbing and dissociating the sample 1 to the ligand 2, the molecular adsorption and dissociation kinetics such as the adsorption concentration, the thickness or refractive index of the adsorption layer, and the refractive index of the buffer solution are changed, As a result, the measured elliptic measurement angles are changed. The reflected light including the optical data is detected by the polarization detector 400 via the buffer solution 210 and the reflective surface 144. In this case, the polarization detector 400 may determine the molecular adsorption and dissociation dynamics of the sample 1 and the refractive index of the buffer solution by measuring the change according to the polarization component of the reflected light, that is, the ellipsometric angles.
도 2에는 시료(32)가 금속박막(20)에 흡착되는 과정을 나타내는 흡착곡선과, 해리되는 과정을 나타내는 해리곡선이 도시되어 있다. 흡착률 상수(association rate constant, ka)가 클수록 바이오물질의 빠른 흡수를 의미하고, 해리율 상수(dissociation rate constant, kd)가 작을수록 느리게 해리됨을 의미한다.2 shows an adsorption curve showing a process in which the sample 32 is adsorbed to the metal thin film 20, and a dissociation curve showing a dissociation process. The larger the association rate constant (ka), the faster the absorption of the biomaterial, and the smaller the dissociation rate constant (kd), the slower the dissociation.
즉, 흡착률 상수와 해리율 상수를 측정함으로써 평형상태의 해리상수(KD = kd / ka)를 구할 수 있다. 예를 들면, 발암 억제제로 사용될 수 있는 저분자 신약후보물질이 발암 유발인자를 포함하는 단백질에 흡착 혹은 탈착하는 특성을 측정하여 신약으로 사용될 수 있는지 여부를 판단할 수 있는 것이다.That is, the dissociation constant (KD = kd / ka) at equilibrium can be obtained by measuring the adsorption rate constant and dissociation rate constant. For example, it is possible to determine whether a low-molecular drug candidate that can be used as a carcinogen can be used as a new drug by measuring the adsorption or desorption property of a protein including a carcinogenic factor.
이하, 도 3과 도 4를 참고하여 선행특성에 따른 바이오물질 분석용 센서의 특징 및 한계를 설명한다. 도 3과 같은 프리즘 입사구조를 사용하여 빛을 입사시킬 경우 대략 θ2=70.85°정도의 경사각으로 경계면에 입사하게 되며 완충용액의 굴절률 변화(0.0002)에 의해 프리즘에서 완충용액으로 입사할 때 약 -0.024°정도 각도변화가 나타나게 된다. p-파 무반사 조건은 θ2=70.85° 근처인데 완충용액 굴절률 변화에 의한 현재의 각도는 0.024°작은 70.826°로 바뀌므로 도 4에 도시된 바와 같이, Ψ, △의 그래프가 나타나고 굴절률 변화에 따라 p-파 무반사 각도는 거의 바뀌지 않기 때문에 0.24°작은 각도인 70.826°에서 Ψ, △의 값을 측정하게 된다.Hereinafter, the features and limitations of the biomaterial analysis sensor according to the preceding characteristics will be described with reference to FIGS. 3 and 4. When the light is incident using the prism incidence structure as shown in FIG. 3, the light is incident on the interface at an inclination angle of about θ 2 = 70.85 °, and when the light is incident from the prism to the buffer solution by a change in refractive index of the buffer solution (0.0002). An angle change of 0.024 ° will appear. The p-wave antireflection condition is near θ 2 = 70.85 °, but the current angle due to the change in the refractive index of the buffer solution is changed to 0.024 ° to 70.826 °, so as shown in FIG. 4, graphs of Ψ and △ are displayed and the refractive index changes. Since the p-wave antireflection angle hardly changes, the values of Ψ and Δ are measured at 70.826 °, a small angle of 0.24 °.
도 4에서 완충용액(210)의 굴절률이 서로 다른 경우의 실선 그래프는 완충용액(210)의 굴절률이 1.3330이고, 점선(dashdot line) 그래프는 완충용액(210)의 굴절률 1.3332에 해당한다. 프리즘 구조를 사용할 경우 입사각의 변화에 의한 측정결과는 도 4에서처럼 Ψ값의 변화는 수직입사구조에서 작은 변화를 더욱 상쇄하는 방향으로 작용하여 거의 변화를 보이지 않게 되고 반면에 △는 큰 변화를 보여준다. 즉, 위상차에 관한 타원계측상수 △는 완충용액의 굴절률 변화에만 민감한 변화를 보이고 접합특성에는 거의 영향을 받지 않기 때문에 완충용액의 굴절률 변화만을 고감도로 측정할 수 있게 된다. 타원계측상수 △의 변화는 박막물질의 두께가 아주 작아질수록 아주 큰 변화를 나타내며 굴절률 변화를 측정하여 물질의 물성이나 접합특성의 변화를 분석하는 응용연구에 활용될 경우 기존 SPR 측정방법에 비해 초고감도 굴절률 측정이 가능한 측정방법이다. In FIG. 4, when the refractive indexes of the buffer solution 210 are different from each other, the solid line graph has a refractive index of 1.3330 and the dotted line graph corresponds to the refractive index of 1.3332 of the buffer solution 210. When the prism structure is used, the measurement result due to the change of the incident angle shows that the change of Ψ value acts in a direction that cancels the small change in the vertical incidence structure and hardly shows a change, whereas Δ shows a large change. That is, since the elliptic measurement constant Δ of the phase difference shows a sensitive change only in the refractive index change of the buffer solution and is hardly affected by the bonding property, only the change in the refractive index of the buffer solution can be measured with high sensitivity. The change in elliptic measurement constant △ shows a very large change as the thickness of the thin film material becomes very small, and when used in an applied study for analyzing the change in material properties or bonding properties by measuring the change in refractive index, It is a measuring method that can measure high sensitivity refractive index.
연속적으로 공급되는 완충용액과 시료에 사용된 용매 등으로 굴절률이 달라진 완충용액이 미세유로를 통해 센서에 공급될 때 순수한 접합동특성과 완충용액의 굴절률 변화를 동시에 측정할 수 있다. When a buffer solution having a different refractive index, such as a buffer solution continuously supplied and a solvent used in a sample, is supplied to a sensor through a microchannel, pure bonding dynamics and a change in the refractive index of the buffer solution can be simultaneously measured.
그러나 도 3에서 프리즘의 밑면과 기판물질과의 간격이 작을 경우 프리즘과 완충용액 경계면에서 반사된 빛과 기판물질에서 반사된 빛이 분리되기 어렵다. p-파 무반사 조건에서 측정하기 때문에 기판물질에서 반사된 빛의 세기가 프리즘과 완충용액 경계면에서 반사된 빛보다 상대적으로 약해서 측정오차가 발생하는 문제점이 발생할 수 있다.However, in FIG. 3, when the distance between the bottom of the prism and the substrate material is small, it is difficult to separate the light reflected from the interface between the prism and the buffer solution and the light reflected from the substrate material. Because the measurement under the p-wave antireflection conditions, the intensity of the light reflected from the substrate material is relatively weaker than the light reflected at the interface between the prism and the buffer solution may cause a measurement error.
본 발명은 상기와 같은 문제를 해결하고자 하는 것으로, 프리즘의 밑면과 기판물질과의 간격이 작을 경우 프리즘과 완충용액 경계면에서 반사된 빛과 기판물질에서 반사된 빛을 분리하는 측정장치 및 측정방법을 제공하는 것이다. 특히 p-파 무반사 조건에서 측정하기 때문에 기판물질에서 반사된 빛의 세기가 프리즘과 완충용액 경계면에서 반사된 빛보다 상대적으로 약해서 측정오차가 발생하는 문제점을 해결하는 측정장치 및 측정방법을 제공하는 것이다.The present invention is to solve the above problems, the measuring device and measuring method for separating the light reflected from the substrate material and the reflected light at the interface between the prism and the buffer solution when the distance between the bottom of the prism and the substrate material is small To provide. In particular, the present invention provides a measuring apparatus and a measuring method for solving the problem that measurement errors occur because the intensity of light reflected from the substrate material is relatively weaker than the light reflected at the interface between the prism and the buffer solution because it is measured under p-wave antireflection conditions. .
본 발명의 그 밖에 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 관련되어 이하의 상세한 설명과 바람직한 실시예로부터 더욱 명확해질 것이다.Other objects, specific advantages and novel features of the present invention will become more apparent from the following detailed description and preferred embodiments in conjunction with the accompanying drawings.
상술한 과제를 실현하기 위한 본 발명의 일례와 관련된 경사 입사구조 프리즘 입사형 실리콘 기반 액침 미세유로 측정장치는, 지지대와 지지대 상에 형성된 반도체 또는 유전체로 구성된 기판, 프리즘 구조로 구비되어 상기 지지대 상에 설치되는 덮개부 및 상기 지지대 상부와 상기 덮개부 하단 중 어느 하나에 형성되는 미세유로를 구비한 미세유로 구조체; 미세유로에 바이오물질의 시료가 포함된 완충용액을 주입하여 기판 상에 시료의 흡착층을 형성시키는 시료주입부; 상기 프리즘의 입사면을 통해 편광된 입사광을 p파 무반사 조건에 만족되는 입사각으로 상기 흡착층에 조사하는 편광발생부; 및 상기 흡착층 및 상기 기판 중 적어도 하나로부터 반사되는 제 1 반사광이 상기 프리즘의 반사면을 통해 입사되고, 상기 제 1 반사광의 편광변화를 검출하는 편광검출부;를 포함하되, 상기 기판의 표면은 상기 프리즘의 밑면과 소정의 경사각을 이루도록 형성될 수 있다.An inclined incident structure prism incident type silicon-based liquid immersion microfluidic measuring apparatus according to an example of the present invention for realizing the above object is provided with a substrate or a prism structure composed of a semiconductor or a dielectric formed on a support and a support on the support. A micro channel structure having a cover part to be installed and a micro channel formed at any one of the upper part of the support and the lower part of the cover part; A sample injection unit injecting a buffer solution containing a sample of a biomaterial into a micro channel to form an adsorption layer of the sample on a substrate; A polarization generator for irradiating incident light polarized through the incident surface of the prism to the adsorption layer at an incident angle satisfying a p-wave antireflection condition; And a polarization detector configured to receive first reflected light reflected from at least one of the adsorption layer and the substrate through the reflective surface of the prism, and detect a change in polarization of the first reflected light. It may be formed to form a predetermined inclination angle with the bottom surface of the prism.
또한, 상기 제 1 반사광은 상기 프리즘 밑면에서 반사되는 광과 서로 다른 방향으로 진행된다.In addition, the first reflected light travels in a different direction from the light reflected from the bottom of the prism.
또한, 상기 편광검출부는, 상기 제 1 반사광과 상기 프리즘 밑면에서 반사되는 광을 분리하여 검출할 수 있다.The polarization detection unit may separate and detect the first reflected light and the light reflected from the bottom of the prism.
또한, 상기 지지대의 상면에는 개구된 관통부가 형성될 수 있다.In addition, an opening portion may be formed on an upper surface of the support.
또한, 상기 관통부는 사다리꼴 형상으로 이루어지고, 상기 관통부의 사다리꼴 형상은 상기 입사면 방향에 위치한 윗변이 상기 반사면 방향에 위치한 아랫변보다 작은 길이를 갖도록 형성될 수 있다.In addition, the through part may have a trapezoidal shape, and the through part may have a trapezoidal shape such that an upper side of the penetrating part has a length smaller than a lower side of the penetrating surface.
또한, 상기 입사광은 상기 개구된 관통부를 통하여 상기 흡착층에 조사되고, 상기 사다리꼴 형상은 상기 입사광의 일부의 반사를 차단할 수 있다.In addition, the incident light may be irradiated onto the adsorption layer through the opened through part, and the trapezoidal shape may block reflection of a portion of the incident light.
또한, 상기 사다리꼴 형상의 윗변은 상측이 기울어진 제1경사부를 이루고, 상기 사다리꼴 형상의 아랫변은 상측이 기울어진 제2경사부를 이룬다.In addition, the upper side of the trapezoidal shape forms a first inclined portion inclined upper side, the lower side of the trapezoidal shape forms a second inclined portion inclined upper side.
*또한, 상기 제1경사부와 상기 제2경사부의 단면은 첨단으로 갈수록 폭이 좁아지고, 상기 제1경사부의 첨단은 상기 제2경사부의 첨단보다 하측에 위치된다.Further, cross sections of the first inclined portion and the second inclined portion become narrower toward the tip, and the tip of the first inclined portion is located below the tip of the second inclined portion.
또한, 상기 관통부의 사다리꼴 형상 윗변의 상측에는 상기 완충용액이 상기 미세유로에 유입되는 유입로가 형성되고, 상기 관통부의 사다리꼴 형상 아랫변의 하측에는 유입된 상기 미세유로에 상기 완충용액이 배출되는 배출로가 형성될 수 있다.In addition, an inflow path through which the buffer solution flows into the microchannel is formed on an upper side of the trapezoidal upper side of the penetrating part, and a discharge path through which the buffer solution is discharged into the microfluid flower introduced below the trapezoidal lower side of the penetrating part. Can be formed.
또한, 상기 경사각은 0초 내지 10° 사이의 범위를 갖는다.In addition, the angle of inclination has a range between 0 seconds and 10 degrees.
또한, 상기 관통부는 사다리꼴 형상으로 이루어지고, 상기 관통부의 사다리꼴 형상은 상기 입사면 방향에 위치한 윗변이 상기 반사면 방향에 위치한 아랫변보다 큰 길이를 갖도록 형성될 수 있다.In addition, the through part may be formed in a trapezoidal shape, and the trapezoidal shape of the through part may be formed such that an upper side of the penetrating surface has a length greater than a lower side of the penetrating surface.
또한, 상기 미세유로 구조체는, 상기 기판과 상기 흡착층 사이에 구비되는 유전체 박막을 더 포함하고, 상기 제 1 반사광은 상기 유전체 박막에서 반사되는 광을 더 포함할 수 있다.The microchannel structure may further include a dielectric thin film provided between the substrate and the absorption layer, and the first reflected light may further include light reflected from the dielectric thin film.
한편, 상술한 과제를 실현하기 위한 본 발명의 일례와 관련된 액침 미세유로 측정장치는, 지지대와 지지대 상에 형성된 반도체 또는 유전체로 구성된 기판, 평판 구조로 구비되어 상기 지지대 상에 설치되는 덮개부 및 상기 지지대 상부와 상기 덮개부 하단 중 어느 하나에 형성되는 미세유로를 구비한 미세유로 구조체; 미세유로에 바이오물질의 시료가 포함된 완충용액을 주입하여 기판 상에 시료의 흡착층을 형성시키는 시료주입부; 상기 평판의 입사면을 통해 편광된 입사광을 p파 무반사 조건에 만족되는 입사각으로 상기 흡착층에 조사하는 편광발생부; 및 상기 흡착층 및 상기 기판 중 적어도 하나로부터 반사되는 제 1 반사광이 상기 평판의 반사면을 통해 입사되고, 상기 제 1 반사광의 편광변화를 검출하는 편광검출부;를 포함하되, 상기 기판의 표면은 상기 평판의 밑면과 소정의 경사각을 이루도록 형성될 수 있다.On the other hand, the liquid immersion microfluidic measuring device according to an embodiment of the present invention for realizing the above-described object is a substrate composed of a semiconductor or a dielectric formed on a support and a support, a cover portion provided with a flat plate structure and installed on the support and the A micro channel structure having a micro channel formed on one of an upper portion of the support and a lower portion of the cover part; A sample injection unit injecting a buffer solution containing a sample of a biomaterial into a micro channel to form an adsorption layer of the sample on a substrate; A polarization generator for irradiating incident light polarized through the plane of incidence of the flat plate to the adsorption layer at an incidence angle satisfying a p-wave antireflection condition; And a polarization detector configured to receive first reflected light reflected from at least one of the adsorption layer and the substrate through the reflective surface of the flat plate, and detect a change in polarization of the first reflected light. It may be formed to form a predetermined inclination angle with the bottom of the plate.
한편, 상술한 과제를 실현하기 위한 본 발명의 일례와 관련된 미세유로 구조체는, 지지대; 지지대 상에 형성된 반도체 또는 유전체로 구성된 기판; 프리즘 구조로 구비되어 상기 지지대 상에 설치되는 덮개부; 및 상기 지지대 상부와 상기 덮개부 하단 중 어느 하나에 형성되는 미세유로;를 포함하되, 상기 미세유로에 바이오물질의 시료가 포함된 완충용액을 주입되어 상기 기판 상에 시료의 흡착층이 형성되고, 상기 프리즘의 입사면을 통해 편광된 입사광이 p파 무반사 조건에 만족되는 입사각으로 상기 흡착층에 조사되며, 상기 흡착층 및 상기 기판 중 적어도 하나로부터 반사되는 제 1 반사광이 상기 프리즘의 반사면을 통해 출사되고, 상기 기판의 표면은 상기 프리즘의 밑면과 소정의 경사각을 이루도록 형성될 수 있다.On the other hand, the microfluidic structure according to an example of the present invention for realizing the above object, the support; A substrate composed of a semiconductor or dielectric formed on a support; A cover part provided in a prism structure and installed on the support; And a microchannel formed at any one of the upper portion of the support and the lower portion of the lid, wherein a buffer solution containing a sample of a biomaterial is injected into the microchannel to form an adsorption layer of the sample on the substrate. The incident light polarized through the incidence plane of the prism is irradiated onto the adsorption layer at an incidence angle satisfying the p-wave antireflection condition, and the first reflected light reflected from at least one of the adsorption layer and the substrate is reflected through the reflection plane of the prism. It is emitted, the surface of the substrate may be formed to form a predetermined inclination angle with the bottom surface of the prism.
한편, 상술한 과제를 실현하기 위한 본 발명의 일례와 관련된 미세유로 구조체는, 지지대; 지지대 상에 형성된 반도체 또는 유전체로 구성된 기판; 평판 구조로 구비되어 상기 지지대 상에 설치되는 덮개부; 및 상기 지지대 상부와 상기 덮개부 하단 중 어느 하나에 형성되는 미세유로;를 포함하되, 상기 미세유로에 바이오물질의 시료가 포함된 완충용액을 주입되어 상기 기판 상에 시료의 흡착층이 형성되고, 상기 평판의 입사면을 통해 편광된 입사광이 p파 무반사 조건에 만족되는 입사각으로 상기 흡착층에 조사되며, 상기 흡착층 및 상기 기판 중 적어도 하나로부터 반사되는 제 1 반사광이 상기 평판의 반사면을 통해 출사되고, 상기 기판의 표면은 상기 평판의 밑면과 소정의 경사각을 이루도록 형성될 수 있다.On the other hand, the microfluidic structure according to an example of the present invention for realizing the above object, the support; A substrate composed of a semiconductor or dielectric formed on a support; A cover part provided in a flat structure and installed on the support; And a microchannel formed at any one of the upper portion of the support and the lower portion of the lid, wherein a buffer solution containing a sample of a biomaterial is injected into the microchannel to form an adsorption layer of the sample on the substrate. The incident light polarized through the plane of incidence of the plate is irradiated onto the adsorption layer at an incidence angle that satisfies the p-wave antireflection condition, and the first reflected light reflected from at least one of the adsorption layer and the substrate passes through the plane of reflection of the plate. It is emitted, the surface of the substrate may be formed to form a predetermined inclination angle with the bottom surface of the plate.
한편, 상술한 과제를 실현하기 위한 본 발명의 일례와 관련된 액침 미세유로 측정방법은, 시료주입부가 미세유로 구조체의 미세유로에 바이오물질의 시료가 포함된 완충용액을 주입하는 제 1 단계; 상기 시료가 상기 미세유로 구조체의 기판에 흡착하여 흡착층을 형성하는 제 2 단계; 편광발생부가 광을 편광시켜 상기 미세유로 구조체의 프리즘의 입사면을 통해 p파 무반사 조건에 만족되는 입사각으로 상기 흡착층에 입사시키는 제 3 단계; 상기 흡착층 및 상기 기판 중 적어도 하나로부터 반사되는 제 1 반사광이 상기 프리즘의 반사면을 통해 입사되는 제 4 단계; 및 편광검출부가 상기 제 1 반사광의 편광변화를 검출하는 제 5 단계;를 포함하되, 상기 기판의 표면은 상기 프리즘의 밑면과 소정의 경사각을 이루도록 형성될 수 있다.On the other hand, the liquid immersion microchannel measurement method according to an example of the present invention for realizing the above object, the first step of injecting a buffer containing a sample of the biomaterial into the microchannel of the sample flow path microchannel structure; A second step of adsorbing the sample onto the substrate of the microchannel structure to form an adsorption layer; A third step of polarizing the light polarizing unit incident light on the adsorption layer through an incident surface of the prism of the microchannel structure at an incident angle satisfying the p-wave antireflection condition; A fourth step in which first reflected light reflected from at least one of the adsorption layer and the substrate is incident through a reflecting surface of the prism; And a fifth step of detecting a polarization change of the first reflected light by the polarization detector, wherein the surface of the substrate may be formed to have a predetermined inclination angle with a bottom surface of the prism.
한편, 상술한 과제를 실현하기 위한 본 발명의 일례와 관련된 액침 미세유로 측정방법은, 시료주입부가 미세유로 구조체의 미세유로에 바이오물질의 시료가 포함된 완충용액을 주입하는 제 1 단계; 상기 시료가 상기 미세유로 구조체의 기판에 흡착하여 흡착층을 형성하는 제 2 단계; 편광발생부가 광을 편광시켜 상기 미세유로 구조체의 평판의 입사면을 통해 p파 무반사 조건에 만족되는 입사각으로 상기 흡착층에 입사시키는 제 3 단계; 상기 흡착층 및 상기 기판 중 적어도 하나로부터 반사되는 제 1 반사광이 상기 평판의 반사면을 통해 입사되는 제 4 단계; 및 편광검출부가 상기 제 1 반사광의 편광변화를 검출하는 제 5 단계;를 포함하되, 상기 기판의 표면은 상기 평판의 밑면과 소정의 경사각을 이루도록 형성될 수 있다.On the other hand, the liquid immersion microchannel measurement method according to an example of the present invention for realizing the above object, the first step of injecting a buffer containing a sample of the biomaterial into the microchannel of the sample flow path microchannel structure; A second step of adsorbing the sample onto the substrate of the microchannel structure to form an adsorption layer; A third step of polarizing the polarizer generating light to be incident on the adsorption layer at an incident angle satisfying a p-wave antireflection condition through an incident surface of the flat plate of the microchannel structure; A fourth step in which first reflected light reflected from at least one of the adsorption layer and the substrate is incident through a reflecting surface of the plate; And a fifth step of detecting a polarization change of the first reflected light by the polarization detector, wherein the surface of the substrate may be formed to have a predetermined inclination angle with a bottom surface of the flat plate.
또한, 상기 제 1 반사광은 상기 프리즘 밑면에서 반사되는 광과 서로 다른 방향으로 진행되고, 상기 제 5 단계에서 상기 편광검출부는, 상기 제 1 반사광과 상기 프리즘 밑면에서 반사되는 광을 분리하여 검출할 수 있다.The first reflected light may travel in a different direction from the light reflected from the bottom of the prism. In the fifth step, the polarization detector may separate and detect the first reflected light and the light reflected from the bottom of the prism. have.
또한, 상기 제 5 단계는, 검광자에 의해 상기 제 1 반사광을 편광시키는 단계; 광검출기에 의해 상기 편광된 제 1 반사광을 검출하여 소정의 광학데이터를 얻는 단계; 및 분석수단이 상기 광학데이터에 기초하여 타원계측법의 위상차에 관한 타원계측상수를 구하여 상기 완충용액의 굴절률을 구하고, 진폭비에 관한 타원계측상수를 구하여 상기 시료의 흡착농도, 흡착 및 해리상수를 포함한 측정값을 도출하는 단계;를 더 포함할 수 있다.In addition, the fifth step may include polarizing the first reflected light by an analyzer; Detecting the polarized first reflected light by a photodetector to obtain predetermined optical data; And an analysis means obtains an elliptic measurement constant relating to the phase difference of the elliptic measurement method based on the optical data, obtains the refractive index of the buffer solution, obtains an elliptic measurement constant relating to the amplitude ratio, and includes a measurement including adsorption concentration, adsorption and dissociation constant of the sample. Deriving a value; may further include.
이상에서 설명한 바와 같이, 본 발명에 따른 경사 입사구조 프리즘 입사형 실리콘 기반 액침 미세유로 측정장치 및 측정방법은 프리즘 밑면과 미세유로에 부착된 기판을 경사지게 함으로써 프리즘과 매질의 경계면에 부착된 센서의 미세유로 구조에서 반사된 산란광의 진행방향과 다르게 기판물질에서 반사된 신호만 분리해서 검출함으로써 고감도 측정감도를 얻을 수 있는 장점이 있다. 기존 측정방법에서는 프리즘과 측정매질의 경계면에서 반사한 빛이 기판물질에서 반사한 빛보다 에너지가 크고 분리하기가 어려워서 측정오차를 일으킬 수 있고 분리하기 위한 조리개를 사용할 경우 굴절률 변화에 따라 변화하는 다른 각도에 대해 측정할 수 있는 측정범위가 제한되는 문제점이 있었으나 2도 정도의 각도만 기울여서 제작하더라도 프리즘과 측정매질의 경계면에서 반사한 빛과 기판물질에서 반사한 빛을 충분히 분리할 수 있는 장점이 있다. As described above, the inclined incident structure prism incident type silicon-based liquid immersion microfluidic measuring apparatus and measuring method according to the present invention incline the substrate attached to the bottom of the prism and the microfluidic, so that the sensor is attached to the interface between the prism and the medium. In contrast to the propagation direction of the scattered light reflected from the flow path structure, only the signal reflected from the substrate material is separated and detected, thereby obtaining a high sensitivity measurement sensitivity. In the conventional measuring method, the light reflected from the interface between the prism and the measuring medium has a larger energy than the light reflected from the substrate material and is difficult to separate, which may cause a measurement error. Although there was a problem that the measurement range that can be measured for is limited, even when manufactured by inclining an angle of about 2 degrees, there is an advantage that the light reflected from the interface between the prism and the measurement medium and the light reflected from the substrate material can be sufficiently separated.
특히 사다리꼴 모양의 미세유로 구조를 사용하고 폭이 좁은 미세유로 구조로 빛을 입사시키고 폭이 넓은 미세유로 구조로 빛이 진행하게 함으로써 폭이 좁은 미세유로 구조가 선행 조리개 역할을 하여 미세유로 구조에 의한 이중의 산란을 최소화 할 수 있는 장점이 있다. 그리고 다채널 미세유로로 제작하고 실린터 렌즈 등을 사용하여 넓은 면적의 빛을 입사시켜 간편하고 고감도의 다채널 미세유로 측정이 가능한 장점이 있다.In particular, by using a trapezoidal microchannel structure and injecting light into a narrow microchannel structure and allowing light to travel through the wide microchannel structure, the narrow microchannel structure acts as a preliminary aperture, There is an advantage to minimize the double scattering. In addition, a multi-channel micro-channel can be manufactured and light can be incident on a large area using a cylinder lens or the like to measure a simple and highly sensitive multi-channel micro-channel.
또한, 본 발명의 미세유로 구조체는 바이오물질의 분석에 최적화된 프리즘 구조와 결합된 사다리꼴 미세유로를 구비하고, 다채널 혹은 다수의 자기 조립 단층막이 형성된 단일채널로 구성된다. 따라서, 다채널의 미세유로에 시료의 농도를 변화시켜 주입하거나 자기 조립 단층막의 흡착정도를 달리하는 등 다양한 형태의 실험조건을 제공할 수 있어 바이오물질의 분석 실험에 있어서 효율성을 높일 수 있는 이점이 있다.In addition, the microchannel structure of the present invention has a trapezoidal microchannel coupled with a prism structure optimized for analysis of biomaterials, and consists of a single channel formed with a multichannel or a plurality of self-assembled monolayer films. Therefore, it is possible to provide various types of experimental conditions, such as varying the concentration of the sample into the multi-channel microchannel or injecting the self-assembled monolayer membrane, thereby increasing the efficiency in the analysis of biomaterials. have.
나아가, 본 발명은 액침 미세유로 환경하에서 비표지방식으로 바이오물질을 고감도 측정이 가능하여 바이오, 의료, 식품, 환경 등 다양한 산업에 널리 활용될 수 있을 것이다.In addition, the present invention can be used in a variety of industries, such as bio, medical, food, environment can be measured highly sensitive to the biomaterial in a non-labeled manner in the immersion micro-channel environment.
비록 본 발명이 상기에서 언급한 바람직한 실시예와 관련하여 설명되어 졌지만, 본 발명의 요지와 범위로부터 벗어남이 없이 다른 다양한 수정 및 변형이 가능한 것은 당업자라면 용이하게 인식할 수 있을 것이며, 이러한 변경 및 수정은 모두 첨부된 특허 청구 범위에 속함은 자명하다.Although the present invention has been described in connection with the above-mentioned preferred embodiments, it will be readily apparent to those skilled in the art that various other modifications and variations are possible without departing from the spirit and scope of the present invention. Are all within the scope of the appended claims.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 일 실시예를 예시하는 것이며, 발명의 상세한 설명과 함께 본 발명의 기술적 사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.The following drawings, which are attached to this specification, illustrate one preferred embodiment of the present invention, and together with the detailed description thereof, serve to further understand the technical spirit of the present invention. It should not be construed as limited.
도 1은 선행특허에 따른 생체물질 접합특성 측정센서를 나타내는 단면도, 1 is a cross-sectional view showing a biomaterial bonding characteristics measuring sensor according to the prior patent,
도 2는 시료가 금속박막에 흡착, 해리되는 과정에서의 흡착농도변화를 나타내는 모식도, Figure 2 is a schematic diagram showing the adsorption concentration change in the process of the sample is adsorbed, dissociated to the metal thin film,
도 3은 시료의 흡착, 해리과정을 통해 나타나는 시료의 고유한 흡착 및 해리 동특성과 완충용액에 의한 굴절률의 변화가 혼재되어 나타나는 종래기술의 문제점을 설명하기 위한 모식도, Figure 3 is a schematic diagram for explaining the problems of the prior art in which the inherent adsorption and dissociation dynamics of the sample appearing through the adsorption, dissociation process of the sample and the change of the refractive index by the buffer solution is mixed,
도 4는 선행특허의 생체물질 접합특성 측정센서를 이용한 생체물질 흡착과 완충용액의 굴절률 변화에 의한 타원계측상수 Ψ, △를 측정한 그래프, 4 is a graph measuring elliptic measurement constants Ψ and △ by the change of the refractive index of the biomaterial adsorption and buffer solution using a biomaterial bonding characteristic measurement sensor of the prior patent,
도 5는 본 발명의 일실시예에 따른 경사 입사구조 프리즘 입사형 실리콘 기반 액침 미세유로 측정장치의 구성을 나타낸 단면도, 5 is a cross-sectional view showing the configuration of an inclined incident structure prism incident type silicon-based liquid immersion microchannel measuring apparatus according to an embodiment of the present invention;
도 6a는 본 발명의 일실시예에 따른 다채널 미세유로 구조체의 사시도, Figure 6a is a perspective view of a multi-channel microchannel structure in accordance with an embodiment of the present invention,
도 6b는 본 발명의 일실시예에 따른 다채널 미세유로 구조체의 분해사시도, 6B is an exploded perspective view of a multichannel microchannel structure according to an embodiment of the present invention;
도 7은 본 발명의 또 다른 실시예에 따른 다채널 미세유로 구조체의 사시도, 7 is a perspective view of a multichannel microchannel structure according to another embodiment of the present invention;
도 8a는 본 발명의 일실시예에 따른 지지대의 사시도,8A is a perspective view of a support according to an embodiment of the present invention;
도 8b는 본 발명의 일실시예에 따른 지지대의 저면 사시도,8B is a bottom perspective view of a support according to an embodiment of the present invention;
도 9는 본 발명의 일실시예에 따른 지지대의 단면도,9 is a cross-sectional view of the support according to an embodiment of the present invention,
도 10은 본 발명의 일실시예에 따른 액침 미세유로 측정방법의 흐름도, 10 is a flow chart of a method of measuring the immersion microfluidic channel according to an embodiment of the present invention;
도 11은 선행특허의 프리즘 수직 입사구조에서 시료에서 반사된 빛의 경로를 나타내는 모식도,Figure 11 is a schematic diagram showing the path of the light reflected from the sample in the prism vertical incidence structure of the prior patent,
도 12a는 본 발명의 일실시예에 따른 액침 미세유로 측정장치에서 반사된 빛의 경로를 나타내는 모식도,12A is a schematic diagram showing a path of light reflected by an immersion microfluidic measuring device according to an embodiment of the present invention;
도 12b는 본 발명의 일실시예에 따른 사다리꼴 미세유로의 구조와 경사 입사구조 프리즘 입사형 실리콘 기반 액침 미세유로 측정방법,12B is a method of measuring a trapezoidal microfluidic structure and an oblique incidence structure prism-incident type silicon-based liquid immersion microchannel according to an embodiment of the present invention;
도 13a는 본 발명의 다른 실시예에 따른 액침 미세유로 측정장치에서 반사된 빛의 경로를 나타내는 모식도,Figure 13a is a schematic diagram showing the path of the light reflected from the immersion microfluidic measuring apparatus according to another embodiment of the present invention,
도 13b는 본 발명의 다른 실시예에 따른 사다리꼴 미세유로의 구조와 경사 입사구조 프리즘 입사형 실리콘 기반 액침 미세유로 측정방법을 나타낸다.FIG. 13B illustrates a structure of a trapezoidal microchannel and an oblique incidence structure prism-incident type silicon-based immersion microchannel measurement method according to another exemplary embodiment of the present invention.
먼저, 첨부된 도면을 참조하여 본 발명의 일실시예에 따른 경사 입사구조 프리즘 입사형 실리콘 기반 액침 미세유로 측정장치의 구성에 대하여 살펴본다.First, with reference to the accompanying drawings looks at the configuration of the inclined incident structure prism incident type silicon-based immersion microfluidic measuring apparatus according to an embodiment of the present invention.
도 5는 본 발명의 일실시예에 따른 경사 입사구조 프리즘 입사형 실리콘 기반 액침미세유로 측정장치의 구성을 나타내는 개략도이다. 도 5에 도시된 바와 같이 본 발명의 일실시예에 따른 분자접합특성 및 완충용액 굴절률 동시 측정장치는 크게 액침 미세유로 환경을 제공하는 미세유로 구조체(100) 및 시료 주입부(200)와 입사광을 제공하는 편광발생부(300)와 반사광의 편광 변화를 검출하는 편광검출부(400)로 이루어진 광학계로 구성된다.Figure 5 is a schematic diagram showing the configuration of an inclined incident structure prism incident type silicon-based liquid immersion microfluidic measuring apparatus according to an embodiment of the present invention. As shown in FIG. 5, an apparatus for simultaneously measuring molecular bonding characteristics and a buffer solution refractive index according to an exemplary embodiment of the present invention provides an incident light with the microfluidic structure 100 and the sample injector 200 that provide a large immersion microchannel environment. The optical system includes a polarization generator 300 and a polarization detector 400 for detecting a change in polarization of reflected light.
본 발명은 타원계측법을 이용하여 저분자를 비롯한 바이오물질의 흡착 및 해리 동특성을 측정하기 위한 것으로, 시료 주입부(200)에서 바이오물질의 시료(미도시)가 포함된 완충용액(buffer)(210)이 미세유로 구조체(100)에 주입되는 구조를 갖는다. 이때, 미세유로 구조체(100)는 다음에서 설명하는 바와 같이 미세유로(150)가 다채널로 구성되거나 단일채널로 구성된다.The present invention is to measure the adsorption and dissociation dynamics of biomaterials, including low molecular weight using an ellipsometric method, a buffer (210) containing a sample (not shown) of the biomaterial in the sample injection unit 200 It has a structure which is injected into this micro flow path structure 100. At this time, the micro-channel structure 100, as described below, the micro-channel 150 is composed of a multi-channel or a single channel.
도 6a는 본 발명에 따른 다채널 미세유로 구조체의 일례를 나타내는 사시도이고, 도 6b는 다채널 미세유로 구조체의 분해사시도이다. 도 6a 및 도 6b에 도시된 바와 같이, 미세유로 구조체(100)는 지지대(110), 기판(120), 흡착층(160) 및 덮개부(140)로 구성되고, 복수의 미세유로(150)가 형성되어 다채널을 이루는 구조를 갖는다.6A is a perspective view illustrating an example of a multichannel microchannel structure according to the present invention, and FIG. 6B is an exploded perspective view of the multichannel microchannel structure. As shown in FIGS. 6A and 6B, the microchannel structure 100 includes a support 110, a substrate 120, an adsorption layer 160, and a cover 140, and a plurality of microchannels 150. Is formed to form a multi-channel structure.
지지대(110)는 도 6b에 도시된 바와 같이 사각판 형태를 갖고, 기판(120) 및 흡착층(160)이 형성되기 위한 홈부(112)가 형성된다. 그리고, 홈부(112)를 중심으로 미세유로(150)의 유입로(152) 및 배출로(154)가 일측과 타측에 형성된다. 이때, 홈부(112), 유입로(152) 및 배출로(154)는 반도체 식각기술 또는 노광기술을 이용하여 형성된다.The support 110 has a rectangular plate shape as shown in FIG. 6B, and a groove 112 for forming the substrate 120 and the adsorption layer 160 is formed. In addition, the inflow path 152 and the discharge path 154 of the micro flow path 150 are formed at one side and the other side around the groove 112. In this case, the groove 112, the inflow path 152 and the discharge path 154 are formed using a semiconductor etching technique or an exposure technique.
기판(120)은 사각판 형태로 지지대(110)의 홈부(112)에 형성된다. 본 발명의 일실시예에 의하면 기판(120)은 655 nm에서 약 3.8391 + i0.018186의 복소굴절률을 갖고, 저렴한 비용으로 일정하고 안정된 물성을 제공하는 실리콘(Si)을 사용한다. 그러나, 기판(120)의 재료는 실리콘 이외에 반도체 또는 유전체 물질이 이용될 수 있다.The substrate 120 is formed in the groove 112 of the support 110 in the form of a square plate. According to an embodiment of the present invention, the substrate 120 uses silicon (Si) having a complex refractive index of about 3.8391 + i0.018186 at 655 nm and providing constant and stable physical properties at low cost. However, the material of the substrate 120 may be a semiconductor or dielectric material other than silicon.
흡착층(160)은 저분자 바이오물질의 시료(미도시)가 흡착 및 해리되고, 입사광을 반사시키는 역할을 한다. 이러한 표면접합부(160)는 도 5 및 도 6b에 도시된 바와 같이, 기판(120)의 상부측에 형성된다.The adsorption layer 160 serves to absorb and dissociate a sample of a low molecular weight biomaterial and reflect incident light. The surface junction 160 is formed on the upper side of the substrate 120, as shown in Figure 5 and 6b.
본 발명의 일실시예에 따른 흡착층(160)은 자기조립박막 및 바이오박막 중 적어도 어느 하나로 구성될 수 있다. 또한, 본 발명의 일실시예에서는 실리콘 기판(120)과 흡착층(160) 사이에 유전체 박막(130) 층을 더 포함하여 구성될 수 있다. Adsorption layer 160 according to an embodiment of the present invention may be composed of at least one of a self-assembled thin film and a bio thin film. In addition, in an embodiment of the present invention, the dielectric thin film 130 may be further included between the silicon substrate 120 and the adsorption layer 160.
이러한 유전체 박막(130)은 반도체 산화막 또는 유리막을 포함하는 투명한 재질의 박막물질이 사용된다. 그리고, 유전체 박막의 두께는 0 ~ 1000nm인 것이 바람직하다. 한편, 가장 쉽게 구할 수 있는 유전체박막(130)의 예로 실리콘을 자연산화시켜 수 나노미터 두께로 성장시킨 실리콘 산화막(SiO2)이 있다. 실리콘 산화막의 굴절률은 655nm에서 약 1.456로서 실리콘으로 이루어진 기판(120)과의 굴절률 차이가 커서 본 발명의 측정감도를 높이는데 일조하게 된다. The dielectric thin film 130 is a thin film material of a transparent material including a semiconductor oxide film or a glass film is used. The thickness of the dielectric thin film is preferably 0 to 1000 nm. On the other hand, an example of the dielectric thin film 130 that can be easily obtained is a silicon oxide film (SiO 2) grown to several nanometers by naturally oxidizing silicon. Since the refractive index of the silicon oxide film is about 1.456 at 655 nm, the difference in refractive index between the silicon oxide film and the substrate 120 made of silicon is large, which helps to increase the measurement sensitivity of the present invention.
또한, 유전체 박막(130)은 광학유리로 이루어진 유리막이 사용될 수 있다. 실리콘이나 실리콘 산화막 또는 유리막으로 이루어진 유전체 박막(130)은 금 또는 은과 같은 금속박막에 비해 굴절률이 일정하게 제조될 수 있어 안정적인 광특성을 제공할 수 있고, 제작비용을 낮출 수 있는 장점이 존재한다. In addition, a glass film made of optical glass may be used for the dielectric thin film 130. The dielectric thin film 130 made of silicon, silicon oxide film, or glass film can provide a stable refractive index compared to a metal thin film such as gold or silver, thereby providing stable optical characteristics and lowering manufacturing costs. .
덮개부(140)는 도 5 내지 도 6b에 도시된 바와 같이 지지대(110)상에 설치되고, 프리즘(142)과 격벽(146)을 포함하여 구성될 수 있다. 프리즘(142)의 입사면(143)에 입사된 광은 프리즘(142)과 결합된 미세유로 구조에서 미세유로 매질로 굴절을 일으키며 굴절된 광은 기판물질에 p-파 무반사 조건을 만족하는 각도로 입사되도록 한다. The cover part 140 may be installed on the support 110 as shown in FIGS. 5 to 6B, and may include a prism 142 and a partition wall 146. The light incident on the incident surface 143 of the prism 142 causes the microfluidic medium to be refracted by the microfluidic structure combined with the prism 142. The refracted light is angled to satisfy the p-wave antireflection condition on the substrate material. To be incident.
그리고, 덮개부(140)는 프리즘(142)의 하부면으로 도 6b에 도시된 바와 같이 마이크로 스케일의 미세유로(150)를 형성시키기 위한 다수의 격벽(146)이 구비된다. 프리즘(142) 및 미세유로 구조는 유리 또는 투명한 합성수지재와 같은 투과성 물질로 이루어지는 것도 가능하지만 제작의 용이성을 위해 미세유로 격벽(146)을 포함한 전체가 몰딩(molding)법 등을 이용하여 일체로 이루어질 수 있다. In addition, the cover part 140 is provided with a plurality of partitions 146 for forming the micro-channel micro-channel 150 as the lower surface of the prism 142 as shown in FIG. 6B. The prism 142 and the fine flow path structure may be made of a transparent material such as glass or transparent synthetic resin material, but for ease of fabrication, the whole including the fine flow path partition wall 146 may be integrally formed using a molding method or the like. Can be.
한편, 합성수지재의 예로는 PMMA(polymethyl methacrylate)와 같은 아크릴수지가 사용될 수 있다. 그리고, 규소인산폴리머(PDMS, polydimethylsiloxane)와 같은 실리콘계 재료도 사용될 수 있다.Meanwhile, as an example of the synthetic resin material, an acrylic resin such as polymethyl methacrylate (PMMA) may be used. And silicon-based materials such as silicon phosphate polymer (PDMS, polydimethylsiloxane) may also be used.
미세유로(150)는 시료를 포함한 완충용액(210)이 유입 또는 배출되는 통로로서 복수개가 형성된다. 즉, 앞서 설명한 바와 같이 덮개부(140)의 격벽(146) 사이의 각 공간이 지지대(110)에 형성된 유입로(152) 및 배출로(154)와 연통됨으로써 미세유로 구조체(100)에 복수의 미세유로(150)가 형성되는 것이다. 이때, 미세유로(150)의 폭은 수mm 근방이나 1mm 이하의 마이크로 스케일을 갖는다.The micro-channel 150 is a plurality of passages through which the buffer solution 210 including the sample is introduced or discharged. That is, as described above, each space between the partition walls 146 of the cover part 140 communicates with the inflow passage 152 and the discharge passage 154 formed in the support 110 so that a plurality of the microfluidic structures 100 may be formed. The micro channel 150 is formed. At this time, the width of the micro channel 150 has a micro scale of about several mm or less than 1 mm.
도 7은 본 발명에 따른 다채널 미세유로 구조체의 다른 예를 나타내는 사시도이다. 도 7에 도시된 바와 같이 다채널 미세유로 구조체(100)는 프리즘(142)의 단면이 사다리꼴로 형태로 형성될 수 있다. 이와 같은 경우 도 5에 도시된 편광발생부(300)와 편광검출부(400)가 프리즘(142)의 입사면(143)과 반사면(144)에 입사광과 반사광을 각각 수직 혹은 편광상태를 심각하게 변화시키지 않을 정도의 수직에 가까운 각도로 입사시키거나 수직 입사되는 위치에 고정된다. 프리즘 구조 대신에 평판을 사용할 경우 입사광의 손실이 있지만 간편한 구조로 제작할 때는 평판구조를 사용할 수도 있다.7 is a perspective view showing another example of the multi-channel microchannel structure according to the present invention. As shown in FIG. 7, the cross-section of the prism 142 may have a trapezoidal shape in the multichannel microchannel structure 100. In this case, the polarization generating unit 300 and the polarization detecting unit 400 illustrated in FIG. 5 may cause incident light and reflected light to the incident surface 143 and the reflective surface 144 of the prism 142 to be vertical or polarized. It is fixed at a position where it is incident or close to perpendicular at an angle that does not change. If a flat plate is used instead of a prism structure, there is a loss of incident light. However, a flat plate structure may be used for a simple structure.
본 발명에 적용되는 지지대(110)의 구조를 살펴본다. 도 8a는 본 발명의 일실시예에 따른 지지대의 사시도, 도 8b는 본 발명의 일실시예에 따른 지지대의 저면 사시도, 도 9는 본 발명의 일실시예에 따른 지지대의 단면도이다.Looking at the structure of the support 110 is applied to the present invention. Figure 8a is a perspective view of the support according to an embodiment of the present invention, Figure 8b is a bottom perspective view of the support according to an embodiment of the present invention, Figure 9 is a cross-sectional view of the support according to an embodiment of the present invention.
지지대(110) 상면에는 개구된 관통부(116)가 형성되어 있으며, 관통부(116)는 사다리꼴 형상으로 개구되어 있다. 관통부(116)의 사다리꼴 형상은 입사면 방향에 위치한 윗변이 반사면 방향에 위치한 아랫변보다 작은 길이를 갖도록 형성된다. 이에 따라, 관통부(116)는 조리개 역할을 하면서 미세유로 구조에 의한 산란을 방지할 수 있다. An open through portion 116 is formed on the upper surface of the support 110, and the through portion 116 is opened in a trapezoidal shape. The trapezoidal shape of the through part 116 is formed so that the upper side located in the incident surface direction has a length smaller than the lower side located in the reflective surface direction. Accordingly, the through part 116 may act as an aperture to prevent scattering due to the micro channel structure.
도 9에 도시된 것과 같이, 관통부(116)의 사다리꼴 형상의 윗변은 상측이 기울어진 제1경사부(114)를 이루고, 관통부(116)의 사다리꼴 형상의 아랫변은 상측이 기울어진 제2경사부(115)를 이룬다. 제2경사부(115)는 제1경사부(114)와 반대 방향으로 기울어져 있다. As shown in FIG. 9, the upper side of the trapezoidal shape of the penetrating portion 116 forms a first inclined portion 114 having an inclined upper side, and the lower side of the trapezoidal shape of the penetrating portion 116 is inclined upper side. The two inclined portion 115 is formed. The second inclined portion 115 is inclined in a direction opposite to the first inclined portion 114.
도 9에서는 제1경사부(114)와 제2경사부(115)가 이루는 각도를 10°로 표현하였으나, 본 발명은 이에 한정되는 것은 아니고, 대략적으로 10°내지 80° 범위 내의 각도로 설계될 수 있다. 이러한 제1경사부(114)와 제2경사부(115)의 경사는 미세유로(150)의 흐름을 원활하게 유도한다. 유입로(152)를 통하여 미세유로(150)에 유입된 완충용액(210)은 제1경사부(114)의 경사를 따라 매끄럽게 진행할 수 있고, 제2경사부(115)의 경사를 따라 배출로(154)로 매끄럽게 진행할 수 있다.In FIG. 9, the angle formed by the first inclination part 114 and the second inclination part 115 is represented by 10 °, but the present invention is not limited thereto and may be designed at an angle within a range of approximately 10 ° to 80 °. Can be. The inclination of the first inclined portion 114 and the second inclined portion 115 smoothly induces the flow of the micro-channel 150. The buffer solution 210 introduced into the microchannel 150 through the inflow path 152 may proceed smoothly along the inclination of the first inclination part 114, and the discharge path along the inclination of the second inclination part 115. You may proceed smoothly to 154.
제1경사부(114)와 제2경사부(115)의 단면은 첨단으로 갈수록 폭이 좁아지게 되며, 제1경사부(114)의 첨단은 제2경사부(115)의 첨단보다 하측에 위치된다. 지지대(110)의 윗면이 이루는 선분과 제1경사부(114)의 첨단과 제2경사부(115)의 첨단을 잇는 선분이 이루는 각도는 약 2°내외로 설정되는 것이 바람직하다.Cross sections of the first inclination portion 114 and the second inclination portion 115 become narrower toward the tip, and the tip of the first inclination portion 114 is located below the tip of the second inclination portion 115. do. The angle between the line segment formed on the upper surface of the support 110 and the line segment connecting the tip of the first inclined portion 114 and the tip of the second inclined portion 115 is preferably set to about 2 °.
본 발명은 단일채널 미세유로 구조체로 구현될 수도 있다. 일채널의 미세유로 구조체(100)는 1개의 미세유로(150)를 구비한다. 즉, 덮개부(140)는 프리즘(142)과 프리즘 하부면의 양단에 형성된 한 쌍의 격벽(146)을 구비하고, 지지대(110)에는 1개의 유입로(152)와 배출로(154)가 형성됨으로써 단일채널의 미세유로(150)가 형성되는 것이다. The present invention may be implemented as a single channel microchannel structure. The microchannel structure 100 of one channel includes one microchannel 150. That is, the cover part 140 includes a prism 142 and a pair of partition walls 146 formed at both ends of the lower surface of the prism, and the support 110 has one inflow path 152 and a discharge path 154. As a result, the microchannel 150 of the single channel is formed.
그리고, 기판상에는 복수의 서로 다른 자기 조립 단층막(SAM, self assembled monolayer)(132) 혹은 동일한 자기 조립 단층막 위에 다른 흡착층이 형성된다. 자기 조립 단층막(132)은 머리기와 꼬리기(tail group)로 형성된 단량체가 분자들의 화학적 흡착에 의한 방법으로 자발적으로 배열됨으로써 형성된다. 이때, 각 자기 조립 단층막(132)의 꼬리기가 갖고 있는 기능기를 화학적으로 변환시킴으로써 각 자기 조립 단층막(132)의 계면 특성을 달리할 수 있다. 즉, 각 자기 조립 단층막(132)은 시료와의 흡착 및 해리정도를 달리하는 센서구조를 갖고, 바이오물질의 다양한 흡착 및 해리 동특성을 동시에 측정할 수 있다.Then, a different adsorption layer is formed on a plurality of different self assembled monolayer (SAM) 132 or the same self assembled monolayer film. The self-assembled monolayer film 132 is formed by spontaneously arranging monomers formed of a head and a tail group by a chemical adsorption of molecules. In this case, the interface characteristics of the self-assembled tomography films 132 may be changed by chemically converting the functional groups of the tail groups of the self-assembled tomography films 132. That is, each of the self-assembled monolayer films 132 has a sensor structure that varies the degree of adsorption and dissociation with the sample, and can simultaneously measure various adsorption and dissociation dynamics of the biomaterial.
시료 주입부(200)는 도 5에 도시된 바와 같이 미세유로(150)의 유입로(152)에 저분자 바이오물질의 시료(미도시)가 포함된 완충용액(210)을 주입하게 된다. 시료 주입부(200)는 시료를 완충용액(210)에 일정농도로 용해시키기 위한 구조를 갖고, 미세유로(150)에 완충용액(210)을 주입 및 차단시킬 수 있는 밸브장치(미도시)를 구비한다. As illustrated in FIG. 5, the sample injector 200 injects a buffer solution 210 including a sample (not shown) of a low molecular weight biomaterial into the inflow path 152 of the microchannel 150. The sample injecting unit 200 has a structure for dissolving the sample in a predetermined concentration in the buffer solution 210, a valve device (not shown) that can inject and block the buffer solution 210 in the micro-channel (150) Equipped.
이때, 시료 주입부(200)는 시료의 농도를 달리하거나 시간차를 두어 완충용액(210)을 각 채널의 미세유로(150)에 주입할 수 있다. 한편, 완충용액(210)이 미세유로(150)에 주입되면 시료(미도시)의 일부가 유전체 박막(130)상에 흡착하여 소정두께의 흡착층(160)을 형성하게 된다. 이때, 흡착층(160)은 다양한 바이오물질의 접합특성에 맞는 자기조립 단층막(132), 고정화 물질, 고정화 물질에 접합하는 저분자를 포함한 각종 바이오물질로 구성되는 다층막일 수 있다.In this case, the sample injection unit 200 may inject the buffer solution 210 into the micro-channel 150 of each channel by varying the concentration of the sample or by placing a time difference. Meanwhile, when the buffer solution 210 is injected into the micro channel 150, a portion of the sample (not shown) is adsorbed on the dielectric thin film 130 to form an adsorption layer 160 having a predetermined thickness. In this case, the adsorption layer 160 may be a multilayer film composed of various biomaterials including a self-assembled monolayer film 132 suitable for bonding characteristics of various biomaterials, an immobilization material, and low molecules bonded to the immobilization material.
편광발생부(300)는 도 5에 도시된 바와 같이 미세유로 구조체(100)의 프리즘(142)의 입사면(143)을 통해 편광된 입사광을 흡착층(160)에 조사하는 역할을 한다. 편광발생부(300)는 필수 구성요소로 광원(310), 편광자(320)가 구비되고, 그밖에 시준렌즈(330), 집속렌즈(340) 또는 제1 보상기(compensator)(350)가 구비될 수 있다. As shown in FIG. 5, the polarization generator 300 irradiates the absorption layer 160 with incident light polarized through the incident surface 143 of the prism 142 of the micro-channel structure 100. The polarization generator 300 may include a light source 310, a polarizer 320, and other collimating lenses 330, a focusing lens 340, or a first compensator 350 as essential components. have.
이때, 편광자(320)와 제1 보상기(350)는 회전가능하도록 구성되거나 혹은 다른 편광 변조수단이 더 구비될 수 있다. 한편, 편광된 입사광은 p파와 s파의 편광 성분을 갖고 있으며, 신호대 잡음비를 높이기 위해 거의 p파에 가까운 광을 입사시킬 수 있다. 이때, 본 발명에 있어서 입사광은 p파 무반사조건에 만족되는 입사각(θ)로 조사되어야 한다. 타원계측 방정식에서 복소반사계수비(ρ)는 s파의 반사계수비(Rs)에 대한 p파의 반사계수비(Rp)의 비, 즉 ρ= Rp/Rs 로 나타낼 수 있는데, p파 무반사 조건은 p파의 반사계수비(Rp)가 0에 가까운 값을 갖는 조건을 말한다. p파 무반사 조건은 종래의 SPR 센서의 표면 플라즈몬 공명조건과 유사한 것으로, 본 발명의 측정감도가 최대가 되는 조건이다.In this case, the polarizer 320 and the first compensator 350 may be configured to be rotatable or may further include other polarization modulating means. On the other hand, the polarized incident light has a polarization component of p-wave and s-wave, and in order to increase the signal-to-noise ratio, light of nearly p-wave can be incident. At this time, in the present invention, the incident light should be irradiated at an incident angle θ that satisfies the p-wave antireflection condition. In the elliptic measurement equation, the complex reflection coefficient ratio (ρ) can be expressed as the ratio of the reflection coefficient ratio (Rp) of the p wave to the reflection coefficient ratio (Rs) of the s wave, that is, ρ = Rp / Rs. Denotes a condition that the reflection coefficient ratio Rp of the p-wave is close to zero. The p-wave antireflection condition is similar to the surface plasmon resonance condition of the conventional SPR sensor, and is a condition in which the measurement sensitivity of the present invention is maximized.
광원(310)은 적외선, 가시광선 또는 자외선 파장대의 단색광을 조사하거나, 백색광을 조사하게 된다. 광원(310)으로는 각종 램프, 발광 다이오드(LED), 레이저, 레이저 다이오드(LD) 등이 사용될 수 있다. 이때, 광원(310)은 광학계의 구조에 따라 파장을 가변시킬 수 있는 구조를 구비할 수 있다. 한편, 상술된 p파 무반사 조건의 근방에서는 반사광의 광학 신호의 크기가 상대적으로 작을 수 있으며, 이 경우 레이저 또는 레이저 다이오드(LD)를 사용하여 높은 광량으로 빛을 조사하여 신호대 잡음비를 높임으로써 고감도의 측정을 가능하게 할 수 있다.The light source 310 irradiates monochromatic light in the infrared, visible or ultraviolet wavelength range, or irradiates white light. As the light source 310, various lamps, light emitting diodes (LEDs), lasers, laser diodes (LDs), and the like may be used. In this case, the light source 310 may have a structure capable of varying the wavelength according to the structure of the optical system. On the other hand, in the vicinity of the above-described p-wave anti-reflective conditions, the magnitude of the optical signal of the reflected light may be relatively small. In this case, a high sensitivity is generated by irradiating light with a high amount of light using a laser or a laser diode (LD) to increase the signal-to-noise ratio. Measurements can be made possible.
편광자(320)는 편광판이 구비되어 광원(310)에서 조사된 광을 편광시키게 된다. 이때, 편광 성분에는 입사면에 평행한 방향의 p파와 수직한 방향의 s파가 있다.The polarizer 320 is provided with a polarizing plate to polarize the light emitted from the light source 310. At this time, the polarization component has an s wave in a direction perpendicular to a p wave in a direction parallel to the incident surface.
시준렌즈(330)는 광원(310)으로부터 빛을 수광하여 편광자(320)에 평행광을 제공한다. 그리고, 집속렌즈(340)는 편광자(320)를 통과한 평행광을 수렴하여 입사광의 광량을 증가시킬 수 있다. 또한, 제1 보상기(350)는 입사광의 편광 성분을 위상지연시키는 역할을 한다.The collimating lens 330 receives light from the light source 310 to provide parallel light to the polarizer 320. In addition, the focusing lens 340 may converge parallel light passing through the polarizer 320 to increase the amount of incident light. In addition, the first compensator 350 serves to retard the polarization component of the incident light.
편광검출부(400)는 도 5에 도시된 바와 같이 흡착층(160)에서 프리즘(142)의 반사면(144)을 통해 반사하는 반사광이 입사되고, 그 편광상태의 변화를 검출하는 역할을 한다. 편광검출부(400)는 필수 구성요소로 검광자(analyzer)(410), 광검출기(detector)(420) 및 연산처리기(430)가 구비되고, 그 밖에 제2 보상기(440)와 분광기(450)가 구비될 수 있다. 이때, 검광자(410)는 편광자(320)에 대응되는 것으로 편광판을 구비하여 반사광을 다시 편광시킴으로써 반사광의 편광 정도나 편광면의 방향을 제어할 수 있다. 또한, 검광자(410)는 광학계의 구조에 따라 회전가능하도록 구성되거나 혹은 편광 성분의 위상변화, 소거와 같은 기능을 수행할 수 있는 편광 변조수단이 더 구비될 수 있다.As illustrated in FIG. 5, the polarization detector 400 receives the reflected light reflected from the adsorption layer 160 through the reflective surface 144 of the prism 142 and detects a change in the polarization state. The polarization detector 400 includes an analyzer 410, a detector 420, and an operation processor 430 as essential components, and a second compensator 440 and a spectrometer 450. It may be provided. In this case, the analyzer 410 corresponds to the polarizer 320 and may include a polarizing plate to polarize the reflected light again to control the degree of polarization of the reflected light or the direction of the polarization plane. In addition, the analyzer 410 may be configured to be rotatable according to the structure of the optical system, or may further include polarization modulating means capable of performing a function such as phase change and cancellation of the polarization component.
광검출기(420)는 편광된 반사광을 검출하여 광학데이터를 얻고, 이를 전기적인 신호로 바꾸는 역할을 한다. 이때, 광학데이터는 반사광에 있어서 편광상태의 변화에 관한 정보를 포함하고 있게 된다. 광검출기(420)는 CCD형 고체촬상소자, 광전증배관(PMT) 또는 실리콘 포토다이오드가 사용될 수 있다.The photodetector 420 detects polarized reflected light to obtain optical data, and converts it into an electrical signal. At this time, the optical data includes information on the change of the polarization state in the reflected light. The photodetector 420 may be a CCD solid-state image pickup device, a photomultiplier tube (PMT), or a silicon photodiode.
연산처리기(430)는 전기적인 신호를 광검출기(420)로부터 수득하여 측정값을 도출하는 역할을 한다. 연산처리기(430)에는 반사율 측정법 및 타원계측법을 이용한 소정의 해석 프로그램이 내장되어 있어 전기적인 신호로 변환된 광학데이터를 연산처리기(430)가 추출, 해석함으로써 시료의 흡착농도, 흡착층(160)의 두께, 흡착상수, 해리상수, 굴절률 등과 같은 측정값을 도출하게 된다. 이때, 연산처리기(430)는 측정감도의 향상을 위해 타원계측법의 위상차에 관한 타원계측상수 Ψ,Δ를 구하여 측정값을 도출하는 것이 바람직하다.The operation processor 430 serves to derive a measurement value by obtaining an electrical signal from the photodetector 420. The arithmetic processor 430 includes a predetermined analysis program using a reflectance measuring method and an elliptic measurement method. The arithmetic processor 430 extracts and analyzes optical data converted into an electrical signal, so that the adsorption concentration and the adsorption layer 160 of the sample are absorbed. The measured values such as the thickness, the adsorption constant, the dissociation constant, and the refractive index are derived. In this case, it is preferable that the operation processor 430 derives a measurement value by obtaining elliptic measurement constants Ψ, Δ regarding the phase difference of the elliptic measurement method in order to improve measurement sensitivity.
제2 보상기(440)는 반사광의 편광 성분을 위상지연시켜 조절하는 역할을 한다. 제2 보상기(440)는 회전가능하도록 구성되거나 혹은 다른 편광 변조수단이 더 구비될 수 있다.The second compensator 440 plays a role of retarding and adjusting the polarization component of the reflected light. The second compensator 440 may be configured to be rotatable or may further include other polarization modulating means.
분광기(450)는 광원(310)이 백색광인 경우 사용된다. 이는 반사광을 분광시키고, 좁은 영역의 파장을 갖는 반사광을 분리시켜 광검출기(420)로 보내기 위함이다. 이때, 광검출기(420)는 CCD형 고체촬상소자와 같은 2차원 이미지센서로 반사광의 분포에 관한 광학데이터를 얻을 수 있다.The spectrometer 450 is used when the light source 310 is white light. This is for spectroscopy of the reflected light and for separating the reflected light having a narrow wavelength range and sending the reflected light to the photodetector 420. In this case, the photodetector 420 may obtain optical data regarding the distribution of reflected light with a two-dimensional image sensor such as a CCD solid-state image pickup device.
[경사 입사구조 프리즘 입사형 실리콘 기반 액침 미세유로 측정방법][Method for Measuring Inclined Structure Prism Incident Type Silicon-Based Liquid Immersion Microfluidic Channel]
이하, 첨부된 도면을 참조하여 분자접합특성 및 완충용액 굴절률 동시 측정방법 및 원리에 대해 설명한다.Hereinafter, a method and a principle of simultaneous measurement of molecular bonding properties and a buffer solution refractive index will be described with reference to the accompanying drawings.
도 10은 본 발명에 따른 분자접합특성 및 완충용액 굴절률 동시 측정방법을 나타내는 흐름도이다. 도 10에 도시된 바와 같이, 본 발명의 측정방법은 제1 단계(S100) 내지 제5 단계(S500)를 거치게 된다. 10 is a flowchart illustrating a method for simultaneously measuring molecular bonding characteristics and a refractive index of a buffer solution according to the present invention. As shown in Figure 10, the measuring method of the present invention is subjected to the first step (S100) to the fifth step (S500).
제1 단계(S100)는 도 5에서와 같이 시료주입부(200)가 저분자를 비롯한 바이오물질의 시료(미도시)를 완충용액(210)에 용해하여 미세유로 구조체(100)의 미세유로(150)에 주입하게 된다. 이때, 시료 주입부(100)는 다채널의 각 미세유로(150)마다 서로 다른 농도의 시료가 포함된 완충용액(210)을 주입할 수 있다. In the first step (S100), as shown in FIG. 5, the sample injection unit 200 dissolves a sample (not shown) of a biomaterial including a low molecule in the buffer solution 210 to form a microchannel 150 of the microchannel structure 100. ) Will be injected. In this case, the sample injector 100 may inject the buffer solution 210 including the samples having different concentrations in each of the microchannels 150 of the multichannel.
또한, 각 미세유로(150)마다 시간차를 두어 완충용액(210)을 주입할 수 있다. 또한, 일부 미세유로(150)에만 완충용액(210)을 주입하고, 나머지 미세유로(150)는 사용하지 않을 수 있다.In addition, the buffer solution 210 may be injected with a time difference for each microchannel 150. In addition, the buffer solution 210 may be injected into only some of the microchannels 150, and the remaining microchannels 150 may not be used.
제2 단계(S200)는 바이오물질의 시료(미도시)가 기판(120) 또는 유전체 박막(130)에 흡착하여 흡착층(160)을 형성하게 된다.In the second step S200, a sample (not shown) of the biomaterial is adsorbed onto the substrate 120 or the dielectric thin film 130 to form the adsorption layer 160.
이와 달리, 시료가 도 8의 단일채널의 미세유로 구조체(100)에 형성된 복수의 서로 다른 자기 조립 단층막(132) 또는 동일한 자기 조립 단층막 위에 복수의 흡착층에 흡착함으로써 서로 다른 접합특성을 갖는 흡착층을 형성할 수도 있다.On the contrary, the sample has different bonding characteristics by adsorbing the plurality of different self-assembled monolayer films 132 formed on the single channel microchannel structure 100 of FIG. 8 or the plurality of adsorption layers on the same self-assembled monolayer films. An adsorption layer can also be formed.
제3 단계(S300)는 광원(310)으로부터 조사된 소정의 광을 편광자(320)가 편광시키고, 미세유로 구조체(100)의 프리즘(142)을 통해 흡착층(160)에 입사시키게 된다. 이때, 프리즘(142)의 입사면을 통과하고, 프리즘(142) 하단에 존재하는 완충용액(210)의 굴절률에 의해 소정각도로 굴절된 후 흡착층(160)으로 입사되게 된다. 이때, 편광된 입사광은 p파와 s파의 편광 성분을 갖고 있다. 한편, 입사광은 p파 무반사 조건에 만족되는 입사각(θ)을 가져야 한다.In the third step S300, the polarizer 320 polarizes predetermined light irradiated from the light source 310 and enters the adsorption layer 160 through the prism 142 of the microchannel structure 100. At this time, the light passes through the incident surface of the prism 142, is refracted at a predetermined angle by the refractive index of the buffer solution 210 existing at the lower end of the prism 142, and then enters the adsorption layer 160. At this time, the polarized incident light has a polarization component of p-wave and s-wave. On the other hand, the incident light should have an incident angle θ that satisfies the p-wave antireflection condition.
제4 단계(S400)는 흡착층(160)에서 반사된 반사광은 미세유로 구조체(100)의 프리즘(142)을 통해 편광검출부(400)에 입사된다. 이때, 반사광은 타원 편광된 상태이다.In the fourth step S400, the reflected light reflected by the adsorption layer 160 is incident on the polarization detector 400 through the prism 142 of the microchannel structure 100. At this time, the reflected light is an elliptically polarized state.
제5 단계(S500)는 편광검출부(400)가 반사광의 편광상태를 검출하게 된다. 구체적으로 설명하면, 먼저 검광자(410)가 흡착층(160)에서 타원 편광된 반사광을 수광하여 편광특성에 따른 광만 통과시키게 된다.In the fifth step S500, the polarization detector 400 detects the polarization state of the reflected light. Specifically, the analyzer 410 first receives the elliptically polarized reflected light from the adsorption layer 160 to pass only the light according to the polarization characteristics.
다음으로, 광검출기(420)가 반사광의 편광 성분의 변화를 검출함으로써 소정의 광학데이터를 얻게 되고, 이를 전기적인 신호로 변환하여 연산처리기(430)로 전송한다.Next, the photodetector 420 obtains predetermined optical data by detecting a change in the polarization component of the reflected light, converts it into an electrical signal, and transmits the converted optical signal to the operation processor 430.
다음으로, 반사율 측정법 또는 타원계측법을 이용한 프로그램이 내장된 연산처리기(430)가 전기신호로 변환된 광학데이터를 추출 및 해석하고, 시료의 흡착농도, 흡착 및 해리상수, 굴절률, 완충용액의 굴절률과 같은 측정값을 도출하게 된다.Next, an arithmetic processor 430 with a program using a reflectance measuring method or an ellipsometric method extracts and analyzes optical data converted into an electrical signal, and the adsorption concentration of the sample, the adsorption and dissociation constant, the refractive index, the refractive index of the buffer solution, The same measurement is derived.
이때, 본 발명은 연산처리기(430)가 타원계측법의 위상차에 관한 타원계측상수 Δ를 구하여 완충용액의 굴절률 측정값을 측정하고 진폭비에 관한 타원계측상수 Ψ를 측정하여 접합동특성을 구한다. 그 이유는 p-파 무반사 조건에서 위상차에 관한 타원계측상수 Δ는 완충용액의 굴절률 변화에만 민감한 변화를 보이고 접합특성에는 거의 영향을 받지 않기 때문에 완충용액의 굴절률 변화만을 측정할 수 있는 장점이 있고, 진폭비에 관한 타원계측상수 Ψ는 주로 물질의 접합특성에 고감도로 변하기 때문이다. At this time, in the present invention, the operation processor 430 obtains the elliptic measurement constant Δ of the phase difference of the elliptic measurement method, measures the refractive index measurement value of the buffer solution, and measures the elliptic measurement constant? The reason is that the elliptic measurement constant Δ of the phase difference under the p-wave antireflection condition is sensitive to the change in the refractive index of the buffer solution and is hardly affected by the bonding characteristics. Therefore, only the change in the refractive index of the buffer solution can be measured. This is because the elliptic measurement constant Ψ regarding the amplitude ratio changes mainly with high sensitivity to the bonding properties of the material.
따라서 완충용액에 포함되어 유입되는 시료의 접합특성은 Ψ로 측정하고 완충용액에 용해될 때 변하는 굴절률이나 시료를 용해하기 위해 사용한 DMSO 등의 용매를 포함한 완충용액의 굴절률 변화는 Δ로 동시에 측정하여 순수한 접합특성만을 구하게 된다. Therefore, the bonding characteristics of the sample introduced into the buffer solution are measured as Ψ and the refractive index change of the buffer solution including the refractive index that changes when dissolved in the buffer solution or the solvent such as DMSO used to dissolve the sample is measured at the same time as Δ Only the bonding characteristics are obtained.
[실험예]Experimental Example
도 11은 선행특허의 프리즘 수직입사구조에서 시료에서 반사한 뒤 빛의 경로를 나타낸 그림이다.11 is a view showing the path of the light after reflecting from the sample in the prism vertical incident structure of the prior patent.
본 실험에서는, 광원(310)의 파장이 532 nm, 프리즘의 굴절률은 n= 1.5195(BK7)이고 프리즘과 완충용액(n=1.333)의 경계면에서 굴절이 일어나서 p파 무반사 조건에 해당하는 72.14°∼72.15°로 실리콘 기판위 센서에 편광된 빛이 입사한다.In this experiment, the wavelength of the light source 310 is 532 nm, the refractive index of the prism is n = 1.5195 (BK7), and the refraction occurs at the interface between the prism and the buffer solution (n = 1.333), which corresponds to the p-wave antireflection condition. Polarized light enters the sensor on the silicon substrate at 72.15 °.
도 11에서처럼 프리즘 밑면과 실리콘 기판이 평행할 경우 프리즘과 완충용액의 경계면에서 반사된 빛과 실리콘 기판에서 반사된 빛이 평행으로 진행한다. 시료의 소모를 최소한으로 하기 위해 프리즘 경계면과 실리콘 기판 사이의 간격을 1 mm 정도 이내로 줄일 경우 두 빛이 진행하면서 확산되어 광검출기에서 분리하기 어렵고 측정오차의 주요요인이 된다. When the bottom surface of the prism and the silicon substrate are parallel as shown in FIG. 11, the light reflected from the interface between the prism and the buffer solution and the light reflected from the silicon substrate proceed in parallel. In order to minimize the consumption of the sample, if the distance between the prism interface and the silicon substrate is reduced to within about 1 mm, the two lights diffuse as they progress, making it difficult to separate from the photodetector, which is a major factor of measurement error.
그러나 도 12a와 같이 프리즘 밑면과 실리콘 기판을 2° 정도 기울인 경사 입사구조 프리즘 입사형 실리콘 기반 액침 미세유로 측정방법을 사용할 경우 빛이 진행하면서 프리즘과 완충용액의 경계면에서 반사된 빛과 실리콘 기판에서 반사된 빛을 완전히 분리할 수 있어 선행특허의 문제점을 해결할 수 있다.However, as shown in FIG. 12A, when the incidence incident structure prism incident silicon-based liquid immersion microfluidic measurement method inclined the bottom of the prism and the silicon substrate is about 2 °, the light is reflected and reflected from the silicon substrate and the light reflected at the interface between the prism and the buffer solution. The light can be completely separated can solve the problems of the prior patent.
또한 분리된 빛이 프리즘 경계면에 부착된 미세유로 구조와 다른 방향으로 진행하여 미세유로 구조에서 산란된 빛에 의한 잡음을 줄일 수 있다. In addition, the separated light travels in a direction different from that of the microfluidic structure attached to the prism interface, thereby reducing noise caused by light scattered from the microfluidic structure.
도 12b는 사다리꼴 미세유로 구조 및 경사 입사구조 프리즘 입사형 실리콘 기반 액침미세유로 측정방법을 나타낸다. 사다리꼴 미세유로의 폭이 좁은 미세유로에 실린더 렌즈로 레이저 광을 입사시키면 2° 기울어진 실리콘 표면에서 반사한 다음 폭이 넓은 미세유로를 통과하여 먼저 통과한 미세유로가 조리개 역할을 하여 폭이 넓은 미세유로의 경계면에 빛이 산란되지 않고 통과하여 미세유로 경계면에서 불규칙하게 산란된 빛에 의한 잡음을 최소할 할 수 있다.12B illustrates a method for measuring a trapezoidal microfluidic structure and an oblique incidence structure prism incident silicon-based liquid immersion microfluidic channel. When laser light is incident on the narrow microchannel of the trapezoidal microchannel by the cylindrical lens, it is reflected from a 2 ° inclined silicon surface, then passes through the wide microchannel, and then passes through the wide microchannel to act as an aperture. It is possible to minimize noise caused by light scattered irregularly at the microfluidic interface by passing light without scattering the interface of the flow path.
도 13a 및 도 13b는 본 발명의 다른 실시예에 따른 액침 미세유로 측정장치를 나타낸다. 도 12a 및 도 12b와 달리, 도 13a 및 도 13b에서는 지지대(110) 구조를 반대방향으로 이용하고 있다. 즉, 도 13a 및 도 13b의 실시예는 사다리꼴 미세유로의 폭이 넓은 미세유로에 광이 입사되고, 폭이 좁은 미세유로를 통과하도록 구성된다.13A and 13B illustrate an apparatus for measuring immersion microchannels according to another embodiment of the present invention. Unlike FIGS. 12A and 12B, the structure of the support 110 is used in the opposite direction in FIGS. 13A and 13B. That is, the embodiment of FIGS. 13A and 13B is configured such that light is incident on the wide microchannel of the trapezoidal microchannel and passes through the narrow microchannel.
도 13a 및 도 13b의 실시예의 경우, 도 12a 및 도 12b 구조에 비하여 산란이 많이 생기게 되어 오차가 발생할 수 있다는 문제점이 발생할 수 있다. 그러나, 도 13a 및 도 13b의 실시예는 프리즘 밑면에서 반사되는 각도가 p파 무반사 조건에 해당하는 각도보다 2° 작은 각도로 입사되어 반사광의 세기를 크게 줄일 수 있는 장점을 갖는다.In the case of the embodiment of FIGS. 13A and 13B, the scattering may occur more than the structures of FIGS. 12A and 12B, which may cause an error. However, the embodiments of FIGS. 13A and 13B have an advantage that the angle reflected from the bottom of the prism is incident at an angle 2 ° smaller than the angle corresponding to the p-wave antireflection condition, thereby greatly reducing the intensity of the reflected light.
100:미세유로 구조체100: fine flow structure
110:지지대110: support
112:홈부112: groove
114:제1경사부114: first slope
115:제2경사부115: second slope
116:관통부116: through
120:기판120: substrate
130:유전체 박막130: dielectric thin film
132:자기조립단층막132: self-assembled monolayer
140:덮개부140: cover part
142:프리즘142: Prism
143:입사면143: entrance
144:반사면144: reflecting surface
146:격벽146: bulkhead
150:미세유로150: fine euro
152:유입로152: Inflow path
154:배출로154: by discharge
160:흡착층160: adsorption layer
200:시료주입부200: sample injection part
210:완충용액210: buffer solution
300:편광발생부300: polarization generating section
310:광원310: light source
320:편광자320: polarizer
330:시준렌즈330: collimation lens
340:집속렌즈340: focusing lens
350:제1보상기350: first compensator
400:편광검출부400: polarization detection unit
410:검광자410: The protagonist
420:광검출기420: photodetector
430:연산처리기430: operation processor
440:제2보상기440: the second compensator
450:분광기450: Spectrometer

Claims (19)

  1. 지지대와 지지대 상에 형성된 반도체 또는 유전체로 구성된 기판, 프리즘 구조로 구비되어 상기 지지대 상에 설치되는 덮개부 및 상기 지지대 상부와 상기 덮개부 하단 중 어느 하나에 형성되는 미세유로를 구비한 미세유로 구조체;A microchannel structure including a substrate formed of a support and a semiconductor or a dielectric formed on the support, a prism structure, a cover installed on the support, and a microchannel formed on one of the upper and lower ends of the cover;
    미세유로에 바이오물질의 시료가 포함된 완충용액을 주입하여 기판 상에 시료의 흡착층을 형성시키는 시료주입부;A sample injection unit injecting a buffer solution containing a sample of a biomaterial into a micro channel to form an adsorption layer of the sample on a substrate;
    상기 프리즘의 입사면을 통해 편광된 입사광을 p파 무반사 조건에 만족되는 입사각으로 상기 흡착층에 조사하는 편광발생부; 및A polarization generator for irradiating incident light polarized through the incident surface of the prism to the adsorption layer at an incident angle satisfying a p-wave antireflection condition; And
    상기 흡착층 및 상기 기판 중 적어도 하나로부터 반사되는 제 1 반사광이 상기 프리즘의 반사면을 통해 입사되고, 상기 제 1 반사광의 편광변화를 검출하는 편광검출부;를 포함하되,And a polarization detector configured to receive first reflected light reflected from at least one of the adsorption layer and the substrate through the reflective surface of the prism, and detect a polarization change of the first reflected light.
    상기 기판의 표면은 상기 프리즘의 밑면과 소정의 경사각을 이루도록 형성되는 것을 특징으로 하는 경사 입사구조 프리즘 입사형 실리콘 기반 액침 미세유로 측정장치.An inclined incident structure prism incident type silicon-based liquid immersion microfluidic measuring device, wherein a surface of the substrate is formed to form a predetermined inclination angle with a bottom surface of the prism.
  2. 제 1항에 있어서,The method of claim 1,
    상기 제 1 반사광은 상기 프리즘 밑면에서 반사되는 광과 서로 다른 방향으로 진행되는 것을 특징으로 하는 경사 입사구조 프리즘 입사형 실리콘 기반 액침 미세유로 측정장치.The first incident light is inclined incident structure prism incident type silicon-based liquid immersion micro-flow measuring apparatus, characterized in that proceed in a different direction from the light reflected from the bottom of the prism.
  3. 제 2항에 있어서,The method of claim 2,
    상기 편광검출부는,The polarization detection unit,
    상기 제 1 반사광과 상기 프리즘 밑면에서 반사되는 광을 분리하여 검출하는 것을 특징으로 하는 경사 입사구조 프리즘 입사형 실리콘 기반 액침 미세유로 측정장치.An inclined incident structure prism-incident type silicon-based liquid immersion microchannel measuring device, characterized in that for detecting the first reflected light and the light reflected from the bottom of the prism separated.
  4. 제 1항에 있어서,The method of claim 1,
    상기 지지대의 상면에는 개구된 관통부가 형성되는 것을 특징으로 하는 경사 입사구조 프리즘 입사형 실리콘 기반 액침 미세유로 측정장치.An inclined incident structure prism incident silicon-based liquid immersion microfluidic measuring device, characterized in that the opening is formed on the upper surface of the support.
  5. 제 4항에 있어서,The method of claim 4, wherein
    상기 관통부는 사다리꼴 형상으로 이루어지고,The through part is made of a trapezoidal shape,
    상기 관통부의 사다리꼴 형상은 상기 입사면 방향에 위치한 윗변이 상기 반사면 방향에 위치한 아랫변보다 작은 길이를 갖도록 형성되는 것을 특징으로 하는 경사 입사구조 프리즘 입사형 실리콘 기반 액침 미세유로 측정장치.The trapezoidal shape of the penetrating portion has an inclined incident structure prism incident type silicon-based liquid immersion microfluidic measuring device, characterized in that the upper side in the incident surface direction is formed to have a length smaller than the lower side in the reflective surface direction.
  6. 제 5항에 있어서,The method of claim 5,
    상기 입사광은 상기 개구된 관통부를 통하여 상기 흡착층에 조사되고,The incident light is irradiated to the adsorption layer through the opened through part,
    상기 사다리꼴 형상은 상기 입사광의 일부의 반사를 차단하는 것을 특징으로 하는 경사 입사구조 프리즘 입사형 실리콘 기반 액침 미세유로 측정장치.The trapezoidal shape is oblique incident structure prism incident type silicon-based immersion micro-flow measuring apparatus, characterized in that for blocking the reflection of a portion of the incident light.
  7. 제 5항에 있어서,The method of claim 5,
    상기 사다리꼴 형상의 윗변은 상측이 기울어진 제1경사부를 이루고,The upper side of the trapezoidal shape forms a first inclined portion inclined upper side,
    상기 사다리꼴 형상의 아랫변은 상측이 기울어진 제2경사부를 이루는 것을 특징으로 하는 경사 입사구조 프리즘 입사형 실리콘 기반 액침 미세유로 측정장치.The lower side of the trapezoidal shape is characterized in that the inclined incident structure prism incident type silicon-based immersion microfluidic measuring device, characterized in that the inclined second side.
  8. 제 7항에 있어서,The method of claim 7, wherein
    상기 제1경사부와 상기 제2경사부의 단면은 첨단으로 갈수록 폭이 좁아지고,Cross sections of the first inclined portion and the second inclined portion become narrower toward the tip,
    상기 제1경사부의 첨단은 상기 제2경사부의 첨단보다 하측에 위치되는 것을 특징으로 하는 경사 입사구조 프리즘 입사형 실리콘 기반 액침 미세유로 측정장치.An inclined incident structure prism incident type silicon-based liquid immersion microfluidic measuring device, characterized in that the tip of the first inclined portion is located below the tip of the second inclined portion.
  9. 제 5항에 있어서,The method of claim 5,
    상기 관통부의 사다리꼴 형상 윗변의 상측에는 상기 완충용액이 상기 미세유로에 유입되는 유입로가 형성되고,On the upper side of the trapezoidal upper side of the penetrating portion is formed an inflow passage in which the buffer solution flows into the microchannel,
    상기 관통부의 사다리꼴 형상 아랫변의 하측에는 유입된 상기 미세유로에 상기 완충용액이 배출되는 배출로가 형성되는 것을 특징으로 하는 경사 입사구조 프리즘 입사형 실리콘 기반 액침 미세유로 측정장치.An inclined incident structure prism-incident type silicon-based liquid immersion microchannel measuring apparatus, characterized in that a discharge path for discharging the buffer solution is formed in the microchannel introduced below the trapezoidal bottom side of the through portion.
  10. 제 1항에 있어서,The method of claim 1,
    상기 경사각은 0초 내지 10° 사이의 범위를 갖는 것을 특징으로 하는 경사 입사구조 프리즘 입사형 실리콘 기반 액침 미세유로 측정장치.And the inclination angle is in a range between 0 seconds and 10 °.
  11. 제 4항에 있어서,The method of claim 4, wherein
    상기 관통부는 사다리꼴 형상으로 이루어지고,The through part is made of a trapezoidal shape,
    상기 관통부의 사다리꼴 형상은 상기 입사면 방향에 위치한 윗변이 상기 반사면 방향에 위치한 아랫변보다 큰 길이를 갖도록 형성되는 것을 특징으로 하는 경사 입사구조 프리즘 입사형 실리콘 기반 액침 미세유로 측정장치.The trapezoidal shape of the penetrating portion has an inclined incident structure prism incident type silicon-based liquid immersion microfluidic measuring device, characterized in that the upper side in the incident surface direction is formed to have a length greater than the lower side in the reflective surface direction.
  12. 제 1항에 있어서,The method of claim 1,
    상기 미세유로 구조체는,The micro channel structure,
    상기 기판과 상기 흡착층 사이에 구비되는 유전체 박막을 더 포함하고,Further comprising a dielectric thin film provided between the substrate and the adsorption layer,
    상기 제 1 반사광은 상기 유전체 박막에서 반사되는 광을 더 포함하는 것을 특징으로 하는 경사 입사구조 프리즘 입사형 실리콘 기반 액침 미세유로 측정장치.And the first reflected light further includes light reflected from the dielectric thin film.
  13. 지지대와 지지대 상에 형성된 반도체 또는 유전체로 구성된 기판, 평판 구조로 구비되어 상기 지지대 상에 설치되는 덮개부 및 상기 지지대 상부와 상기 덮개부 하단 중 어느 하나에 형성되는 미세유로를 구비한 미세유로 구조체;A microchannel structure having a support and a substrate formed of a semiconductor or a dielectric formed on the support, a flat structure having a cover installed on the support, and a microchannel formed on one of the upper and lower ends of the cover;
    미세유로에 바이오물질의 시료가 포함된 완충용액을 주입하여 기판 상에 시료의 흡착층을 형성시키는 시료주입부;A sample injection unit injecting a buffer solution containing a sample of a biomaterial into a micro channel to form an adsorption layer of the sample on a substrate;
    상기 평판의 입사면을 통해 편광된 입사광을 p파 무반사 조건에 만족되는 입사각으로 상기 흡착층에 조사하는 편광발생부; 및A polarization generator for irradiating incident light polarized through the plane of incidence of the flat plate to the adsorption layer at an incidence angle satisfying a p-wave antireflection condition; And
    상기 흡착층 및 상기 기판 중 적어도 하나로부터 반사되는 제 1 반사광이 상기 평판의 반사면을 통해 입사되고, 상기 제 1 반사광의 편광변화를 검출하는 편광검출부;를 포함하되,And a polarization detector configured to receive first reflected light reflected from at least one of the adsorption layer and the substrate through the reflective surface of the flat plate, and detect a polarization change of the first reflected light.
    상기 기판의 표면은 상기 평판의 밑면과 소정의 경사각을 이루도록 형성되는 것을 특징으로 하는 액침 미세유로 측정장치.And the surface of the substrate is formed to form a predetermined inclination angle with the bottom surface of the flat plate.
  14. 지지대;support fixture;
    지지대 상에 형성된 반도체 또는 유전체로 구성된 기판;A substrate composed of a semiconductor or dielectric formed on a support;
    프리즘 구조로 구비되어 상기 지지대 상에 설치되는 덮개부; 및A cover part provided in a prism structure and installed on the support; And
    상기 지지대 상부와 상기 덮개부 하단 중 어느 하나에 형성되는 미세유로;를 포함하되,Includes; a micro flow path formed in any one of the upper support and the lower cover portion;
    상기 미세유로에 바이오물질의 시료가 포함된 완충용액을 주입되어 상기 기판 상에 시료의 흡착층이 형성되고, 상기 프리즘의 입사면을 통해 편광된 입사광이 p파 무반사 조건에 만족되는 입사각으로 상기 흡착층에 조사되며, 상기 흡착층 및 상기 기판 중 적어도 하나로부터 반사되는 제 1 반사광이 상기 프리즘의 반사면을 통해 출사되고, 상기 기판의 표면은 상기 프리즘의 밑면과 소정의 경사각을 이루도록 형성되는 것을 특징으로 하는 미세유로 구조체.A buffer solution containing a sample of a biomaterial is injected into the microchannel to form an adsorption layer of the sample on the substrate, and the absorption light polarized through the incident surface of the prism is incident at an angle of incidence satisfying a p-wave antireflection condition. Irradiated to the layer, the first reflected light reflected from at least one of the adsorption layer and the substrate is emitted through the reflecting surface of the prism, the surface of the substrate is formed to have a predetermined inclination angle with the bottom surface of the prism A micro flow path structure made of.
  15. 지지대;support fixture;
    지지대 상에 형성된 반도체 또는 유전체로 구성된 기판;A substrate composed of a semiconductor or dielectric formed on a support;
    평판 구조로 구비되어 상기 지지대 상에 설치되는 덮개부; 및A cover part provided in a flat structure and installed on the support; And
    상기 지지대 상부와 상기 덮개부 하단 중 어느 하나에 형성되는 미세유로;를 포함하되,Includes; a micro flow path formed in any one of the upper support and the lower cover portion;
    상기 미세유로에 바이오물질의 시료가 포함된 완충용액을 주입되어 상기 기판 상에 시료의 흡착층이 형성되고, 상기 평판의 입사면을 통해 편광된 입사광이 p파 무반사 조건에 만족되는 입사각으로 상기 흡착층에 조사되며, 상기 흡착층 및 상기 기판 중 적어도 하나로부터 반사되는 제 1 반사광이 상기 평판의 반사면을 통해 출사되고, 상기 기판의 표면은 상기 평판의 밑면과 소정의 경사각을 이루도록 형성되는 것을 특징으로 하는 미세유로 구조체.A buffer solution containing a sample of a biomaterial is injected into the microchannel to form an adsorption layer of the sample on the substrate, and the absorption light polarized through the plane of incidence of the plate is incident at an angle of incidence satisfying a p-wave antireflection condition. Irradiated to the layer, the first reflected light reflected from at least one of the adsorption layer and the substrate is emitted through the reflecting surface of the plate, the surface of the substrate is formed to have a predetermined inclination angle with the bottom surface of the plate A micro flow path structure made of.
  16. 시료주입부가 미세유로 구조체의 미세유로에 바이오물질의 시료가 포함된 완충용액을 주입하는 제 1 단계;A first step of injecting a buffer containing a sample of the biomaterial into the microchannel of the microchannel structure;
    상기 시료가 상기 미세유로 구조체의 기판에 흡착하여 흡착층을 형성하는 제 2 단계;A second step of adsorbing the sample onto the substrate of the microchannel structure to form an adsorption layer;
    편광발생부가 광을 편광시켜 상기 미세유로 구조체의 프리즘의 입사면을 통해 p파 무반사 조건에 만족되는 입사각으로 상기 흡착층에 입사시키는 제 3 단계;A third step of polarizing the light polarizing unit incident light on the adsorption layer through an incident surface of the prism of the microchannel structure at an incident angle satisfying the p-wave antireflection condition;
    상기 흡착층 및 상기 기판 중 적어도 하나로부터 반사되는 제 1 반사광이 상기 프리즘의 반사면을 통해 입사되는 제 4 단계; 및A fourth step in which first reflected light reflected from at least one of the adsorption layer and the substrate is incident through a reflecting surface of the prism; And
    편광검출부가 상기 제 1 반사광의 편광변화를 검출하는 제 5 단계;를 포함하되,And a fifth step of detecting a polarization change of the first reflected light by the polarization detector.
    상기 기판의 표면은 상기 프리즘의 밑면과 소정의 경사각을 이루도록 형성되는 것을 특징으로 하는 액침 미세유로 측정방법.And a surface of the substrate is formed to form a predetermined inclination angle with a bottom surface of the prism.
  17. 시료주입부가 미세유로 구조체의 미세유로에 바이오물질의 시료가 포함된 완충용액을 주입하는 제 1 단계;A first step of injecting a buffer containing a sample of the biomaterial into the microchannel of the microchannel structure;
    상기 시료가 상기 미세유로 구조체의 기판에 흡착하여 흡착층을 형성하는 제 2 단계;A second step of adsorbing the sample onto the substrate of the microchannel structure to form an adsorption layer;
    편광발생부가 광을 편광시켜 상기 미세유로 구조체의 평판의 입사면을 통해 p파 무반사 조건에 만족되는 입사각으로 상기 흡착층에 입사시키는 제 3 단계;A third step of polarizing the polarizer generating light to be incident on the adsorption layer at an incident angle satisfying a p-wave antireflection condition through an incident surface of the flat plate of the microchannel structure;
    상기 흡착층 및 상기 기판 중 적어도 하나로부터 반사되는 제 1 반사광이 상기 평판의 반사면을 통해 입사되는 제 4 단계; 및A fourth step in which first reflected light reflected from at least one of the adsorption layer and the substrate is incident through a reflecting surface of the plate; And
    편광검출부가 상기 제 1 반사광의 편광변화를 검출하는 제 5 단계;를 포함하되,And a fifth step of detecting a polarization change of the first reflected light by the polarization detector.
    상기 기판의 표면은 상기 평판의 밑면과 소정의 경사각을 이루도록 형성되는 것을 특징으로 하는 액침 미세유로 측정방법.And the surface of the substrate is formed to form a predetermined inclination angle with the bottom surface of the flat plate.
  18. 제 16항 또는 제 17항에 있어서,The method according to claim 16 or 17,
    상기 제 1 반사광은 상기 프리즘 밑면에서 반사되는 광과 서로 다른 방향으로 진행되고,The first reflected light travels in a different direction from the light reflected from the bottom of the prism,
    상기 제 5 단계에서 상기 편광검출부는, 상기 제 1 반사광과 상기 프리즘 밑면에서 반사되는 광을 분리하여 검출하는 것을 특징으로 하는 액침 미세유로 측정방법.The method of claim 5, wherein the polarization detector detects the light reflected from the bottom surface of the prism and the first reflected light separately.
  19. 제 16항 또는 제 17항에 있어서,The method according to claim 16 or 17,
    상기 제 5 단계는,The fifth step,
    검광자에 의해 상기 제 1 반사광을 편광시키는 단계;Polarizing the first reflected light by an analyzer;
    광검출기에 의해 상기 편광된 제 1 반사광을 검출하여 소정의 광학데이터를 얻는 단계; 및Detecting the polarized first reflected light by a photodetector to obtain predetermined optical data; And
    분석수단이 상기 광학데이터에 기초하여 타원계측법의 위상차에 관한 타원계측상수를 구하여 상기 완충용액의 굴절률을 구하고, 진폭비에 관한 타원계측상수를 구하여 상기 시료의 흡착농도, 흡착 및 해리상수를 포함한 측정값을 도출하는 단계;를 더 포함하는 것을 특징으로 하는 액침 미세유로 측정방법.The analysis means obtains an elliptic measurement constant relating to the phase difference of the elliptic measurement method based on the optical data, obtains the refractive index of the buffer solution, obtains an elliptic measurement constant relating to the amplitude ratio, and includes a measured value including the adsorption concentration, adsorption and dissociation constant of the sample. Deriving a; immersion micro-flow measurement method further comprising.
PCT/KR2016/004386 2015-06-30 2016-04-27 Oblique incidence, prism-incident, silicon-based, immersion microchannel-based measurement device and measurement method WO2017003079A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/532,896 US10921241B2 (en) 2015-06-30 2016-04-27 Oblique incidence, prism-incident, silicon-based, immersion microchannel-based measurement device and measurement method
SE1750873A SE541939C2 (en) 2015-06-30 2016-04-27 Oblique incidence, prism-incident, silicon-based, immersion microchannel-based measurement device and measurement method
JP2017531737A JP6483834B2 (en) 2015-06-30 2016-04-27 Inclined incidence structure, prism incidence type, silicon-based immersion fine channel measuring device and measuring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0093229 2015-06-30
KR1020150093229A KR101684138B1 (en) 2015-06-30 2015-06-30 Apparatus and method for small degree off-axis micro-channel system to improve performance of solution immersed silicon biosensors

Publications (1)

Publication Number Publication Date
WO2017003079A1 true WO2017003079A1 (en) 2017-01-05

Family

ID=57609041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/004386 WO2017003079A1 (en) 2015-06-30 2016-04-27 Oblique incidence, prism-incident, silicon-based, immersion microchannel-based measurement device and measurement method

Country Status (5)

Country Link
US (1) US10921241B2 (en)
JP (1) JP6483834B2 (en)
KR (1) KR101684138B1 (en)
SE (1) SE541939C2 (en)
WO (1) WO2017003079A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108088815A (en) * 2017-11-28 2018-05-29 北京碳世纪科技有限公司 Highly sensitive multiple beam refractive index detection device and method based on graphene surface ripple
WO2018179950A1 (en) * 2017-03-30 2018-10-04 コニカミノルタ株式会社 Sensor chip for sample detection system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101884091B1 (en) * 2016-11-30 2018-08-02 한국표준과학연구원 Apparatus and method for trapezoid micro-channel system to improve performance of solution immersed silicon biosensor
KR102056971B1 (en) * 2017-12-28 2019-12-19 한국표준과학연구원 Apparatus and method for double prism solution immersed silicon biosensor
KR102103077B1 (en) * 2018-08-20 2020-04-22 한국표준과학연구원 High-sensitivity ellipsometry-based biosensing technique by using a tracer having high absorption coefficient and a dielectric substrate
KR102418637B1 (en) * 2020-09-21 2022-07-08 한국표준과학연구원 Apparatus and method for multiple reflection solution immersed silicon biosensor
WO2024082717A1 (en) * 2022-10-19 2024-04-25 The Hong Kong University Of Science And Technology System and method for rapid and label-free imaging of biological tissues based on microscopy with ultraviolet single-plane illumination

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002171999A (en) * 2000-12-08 2002-06-18 Olympus Optical Co Ltd Method and apparatus for assaying nucleic acid amplification reaction
US20080204713A1 (en) * 2004-06-03 2008-08-28 Pierre F Indermuehle Methods and Apparatus for Label-Independent Monitoring of Biological Interactions on Sensitized Substrates
JP2010019594A (en) * 2008-07-08 2010-01-28 Nagaoka Univ Of Technology Method and apparatus for determining bio-compatibility of bio-molecule and ceramics
KR101105328B1 (en) * 2009-11-23 2012-01-16 한국표준과학연구원 Apparatus and method for quantifying the binding and dissociation kinetics of molecular interactions
KR101383652B1 (en) * 2012-10-15 2014-04-09 한국표준과학연구원 Apparatus and method for simultaneously quantifying the binding kinetics and refractive index of molecular interactions

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3135196A1 (en) * 1981-09-05 1983-03-17 Merck Patent Gmbh, 6100 Darmstadt METHOD, MEANS AND DEVICE FOR DETERMINING BIOLOGICAL COMPONENTS
US6611634B2 (en) * 1996-03-19 2003-08-26 University Of Utah Research Foundation Lens and associatable flow cell
US7452713B2 (en) * 2000-02-29 2008-11-18 Stmicroelectronics S.R.L. Process for manufacturing a microfluidic device with buried channels
AU2001296551A1 (en) * 2000-10-05 2002-04-15 E.I. Du Pont De Nemours And Company Polymeric microfabricated fluidic device suitable for ultraviolet detection
US7373255B2 (en) * 2003-06-06 2008-05-13 Biacore Ab Method and system for determination of molecular interaction parameters
JP2005030905A (en) 2003-07-11 2005-02-03 Mitsubishi Chemicals Corp Analytical chip
US7551294B2 (en) * 2005-09-16 2009-06-23 University Of Rochester System and method for brewster angle straddle interferometry
WO2009059014A2 (en) * 2007-10-30 2009-05-07 University Of Rochester Flow cell and system for detection of target in aqueous environment using arrayed imaging reflectometry
CN102084252B (en) * 2008-05-02 2017-03-22 罗切斯特大学 Arrayed detector system for measurement of influenza immune response
DK2376226T3 (en) * 2008-12-18 2018-10-15 Opko Diagnostics Llc IMPROVED REAGENT STORAGE IN MICROFLUIDIC SYSTEMS AND RELATED ARTICLES AND PROCEDURES
WO2010087999A1 (en) * 2009-02-02 2010-08-05 Claros Diagnostics, Inc. Structures for controlling light interaction with microfluidic devices
EP2406587B1 (en) * 2009-03-10 2020-11-18 Sensortechnics GmbH Semiconductor based flow sensing device with packaging
US9133499B2 (en) * 2010-09-14 2015-09-15 The Regents Of The University Of California Method and device for isolating cells from heterogeneous solution using microfluidic trapping vortices
US9167684B2 (en) * 2013-05-24 2015-10-20 Nokia Technologies Oy Apparatus and method for forming printed circuit board using fluid reservoirs and connected fluid channels
US10162162B2 (en) * 2014-09-24 2018-12-25 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona, Acting For And On Behalf Of Arizona State University Microfluidic systems and methods for hydrodynamic microvortical cell rotation in live-cell computed tomography

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002171999A (en) * 2000-12-08 2002-06-18 Olympus Optical Co Ltd Method and apparatus for assaying nucleic acid amplification reaction
US20080204713A1 (en) * 2004-06-03 2008-08-28 Pierre F Indermuehle Methods and Apparatus for Label-Independent Monitoring of Biological Interactions on Sensitized Substrates
JP2010019594A (en) * 2008-07-08 2010-01-28 Nagaoka Univ Of Technology Method and apparatus for determining bio-compatibility of bio-molecule and ceramics
KR101105328B1 (en) * 2009-11-23 2012-01-16 한국표준과학연구원 Apparatus and method for quantifying the binding and dissociation kinetics of molecular interactions
KR101383652B1 (en) * 2012-10-15 2014-04-09 한국표준과학연구원 Apparatus and method for simultaneously quantifying the binding kinetics and refractive index of molecular interactions

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179950A1 (en) * 2017-03-30 2018-10-04 コニカミノルタ株式会社 Sensor chip for sample detection system
JPWO2018179950A1 (en) * 2017-03-30 2020-02-06 コニカミノルタ株式会社 Sensor chip for sample detection system
CN108088815A (en) * 2017-11-28 2018-05-29 北京碳世纪科技有限公司 Highly sensitive multiple beam refractive index detection device and method based on graphene surface ripple

Also Published As

Publication number Publication date
US20180100795A1 (en) 2018-04-12
SE1750873A1 (en) 2017-07-04
KR101684138B1 (en) 2016-12-21
SE541939C2 (en) 2020-01-07
US10921241B2 (en) 2021-02-16
JP2018503810A (en) 2018-02-08
JP6483834B2 (en) 2019-03-13

Similar Documents

Publication Publication Date Title
WO2014061924A1 (en) Apparatus and method for simultaneously measuring characteristics of molecular junctions and refractive index of buffer solution
WO2017003079A1 (en) Oblique incidence, prism-incident, silicon-based, immersion microchannel-based measurement device and measurement method
WO2018101528A1 (en) Liquid immersion micro-channel measurement device and measurement method which are based on trapezoidal incident structure prism incident-type silicon
WO2011062377A2 (en) Apparatus and method for quantifying binding and dissociation kinetics of molecular interactions
US8830481B2 (en) Polarization based interferometric detector
US6335793B1 (en) Planar waveguide chemical sensor
WO2010062149A2 (en) Multi-channel surface plasmon resonance sensor using beam profile ellipsometry
WO2010062150A2 (en) Surface plasmon resonance sensor using beam profile ellipsometry
WO2012013093A1 (en) Chip for detecting water based on surface plasmon resonance and biological sensing
US8004676B1 (en) Method for detecting analytes using surface plasmon resonance
CN1963464A (en) Total internal reflection ellipsometry imaging device and method therefor
Zeng et al. High-sensitive surface plasmon resonance imaging biosensor based on dual-wavelength differential method
JP2001041881A (en) Spr apparatus and method for spr measuring using polarization
KR102056971B1 (en) Apparatus and method for double prism solution immersed silicon biosensor
JP2007225354A (en) Measuring device
WO2022059824A1 (en) Device and method for multi-reflection solution immersed silicon-based microchannel measurement
WO2020040509A1 (en) High-sensitive biosensor chip using high extinction coefficient marker and dielectric substrate, measurement system, and measurement method
WO2024147429A1 (en) Elliptical amplitude sensor device comprising semiconductor oxide film and measurement method
JP2006029781A (en) Diffusion measuring instrument
JP2006220605A (en) Measurement method and measurement device
JPH11258050A (en) Polarization analyzer
JP2002174590A (en) Optical detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16818112

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15532896

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017531737

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1750873-0

Country of ref document: SE

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16818112

Country of ref document: EP

Kind code of ref document: A1