WO2017002852A1 - Crystal polyester pellet, application thereof and production method therefor - Google Patents

Crystal polyester pellet, application thereof and production method therefor Download PDF

Info

Publication number
WO2017002852A1
WO2017002852A1 PCT/JP2016/069262 JP2016069262W WO2017002852A1 WO 2017002852 A1 WO2017002852 A1 WO 2017002852A1 JP 2016069262 W JP2016069262 W JP 2016069262W WO 2017002852 A1 WO2017002852 A1 WO 2017002852A1
Authority
WO
WIPO (PCT)
Prior art keywords
pellet
polyester
pellets
mass
polymerization
Prior art date
Application number
PCT/JP2016/069262
Other languages
French (fr)
Japanese (ja)
Inventor
豪 坂野
雅紀 田中
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2017526395A priority Critical patent/JP6689846B2/en
Publication of WO2017002852A1 publication Critical patent/WO2017002852A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/672Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/85Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion

Definitions

  • the present invention relates to a crystalline polyester pellet comprising a resin composition containing a polyester containing terephthalic acid units and ethylene glycol units as main components and composite particles. Moreover, it is related with the use and its manufacturing method.
  • Polyesters such as polyethylene terephthalate (hereinafter sometimes abbreviated as PET) are excellent in properties such as transparency, mechanical properties, gas barrier properties, and flavor barrier properties. Furthermore, polyester has less concern about residual monomers and harmful additives when formed into molded articles, and is excellent in hygiene and safety. Therefore, taking advantage of these characteristics, polyester is a hollow container for filling juice, soft drinks, seasonings, oils, cosmetics, detergents, beverage cans, etc. Widely used as a coating film for laminated steel plates. In recent years, it has been widely used as an optical film such as a protective film for a liquid crystal display.
  • the film Since the contamination of foreign substances in optical films is severely restricted, the film is often formed by removing foreign substances from the molten resin using a fine filter. Therefore, in the polyester resin used as the raw material for the optical film, if the content of unmelted foreign matter is large, it will cause clogging of the extrusion filter during melt molding. Therefore, a polyester resin pellet having a small size and a small amount of foreign matter is desired.
  • PET resin is industrially produced by the esterification or transesterification of terephthalic acid or dimethyl terephthalate with ethylene glycol, and then using bis (2-hydroxyethyl) terephthalate as a catalyst at high temperature under vacuum. Obtained by polycondensation.
  • a method for removing minute foreign matters during polymerization of such polyester a method of filtering a high temperature oligomer with a heat resistant filter and a method of filtering a PET resin after polycondensation with a heat resistant filter are generally used.
  • One of the main factors of foreign particles contained in the polyester resin is a polymerization catalyst.
  • catalysts have their own problems.
  • antimony oxide (Sb 2 O 3 ) is used, since the transparency of the resulting polyester resin is lowered, it is not suitable for applications requiring high transparency.
  • an organic titanium catalyst such as titanium (IV) tetraisoproxide, the resulting polyester resin is colored yellow, and the inherent viscosity is lowered due to thermal decomposition during melt molding, and further the coloration proceeds. ing.
  • germanium dioxide GeO 2
  • the carboxyl group content of the resulting polyester is increased, and a decrease in intrinsic viscosity when the resin is recovered and melt-formed again cannot be avoided, and the catalyst cost is greatly increased. To rise.
  • a copolymerized PET resin containing a comonomer component is used.
  • comonomer components can be used depending on the application.
  • a PET resin in which is copolymerized is used (see, for example, Patent Documents 1 and 2).
  • a polyester resin having a high intrinsic viscosity is used in order to improve the strength of the molded product. Therefore, after polycondensation is performed in the liquid phase to obtain pellets, the pellets are solid-phase polymerized to produce crystalline polyester pellets with high intrinsic viscosity.
  • a preliminary crystallization step is performed in which crystallization is performed by heating at a relatively low temperature before solid phase polymerization.
  • it is unmodified PET, it can be sufficiently pre-crystallized in a short time, but in the case of copolymerized PET containing a certain amount of comonomer component or more, the crystallization speed is greatly reduced, and pre-crystallization The process took a long time. This not only reduced productivity, but also increased energy consumption.
  • Patent Document 3 reports a composite particle catalyst in which the surface of solid base particles is covered with titanium oxide as a polyester polymerization catalyst, and a high molecular weight polyester having excellent color and transparency by using it. Is supposed to be obtained. However, in that example, only liquid phase polymerization of unmodified PET is carried out.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide copolymerized PET crystal pellets having a low environmental load and uses thereof. Moreover, it aims at manufacturing such a pellet by the method excellent in productivity.
  • the above problem is a crystalline polyester pellet comprising a resin composition containing polyester and composite particles
  • the polyester comprises 25 to 50 mol% terephthalic acid units, 25 to 49.5 mol% ethylene glycol units, 0.5 to 2.5 mol% diethylene glycol units, and other comonomer units having 5 or more carbon atoms. Containing 1.5 to 25 mol%, The polyester has an intrinsic viscosity of 0.75 to 1.5 dL / g, The crystal melting enthalpy of the pellet is 20 J / g or more, This is solved by providing pellets characterized in that the composite particles are composite particles of hydrotalcite and titanium dioxide, and the content of the composite particles is 10 to 300 ppm.
  • the total volume of particles having a diameter of 1 to 5 ⁇ m contained in 1 g of the pellet was 5.0 ⁇ 10. It is preferably ⁇ 14 m 3 / g or more.
  • the total volume of particles having a diameter of 5 to 20 ⁇ m contained in 1 g of the pellet was 1.2 ⁇ 10 ⁇ 12 m. It is also preferable that it is 3 / g or less.
  • the polyester has a carboxyl group content of 18 ⁇ mol / g or less.
  • a preferred embodiment of the present invention is a film formed by molding the pellet.
  • Another preferred embodiment of the present invention is a laminated metal plate in which a film formed by forming the pellet is laminated on a metal plate.
  • Another preferred embodiment of the present invention is an extrusion blow molded container formed by molding the pellet.
  • terephthalic acid or its ester-forming derivative, ethylene glycol, and another comonomer having 5 or more carbon atoms are melt-polymerized in the presence of a catalyst composed of composite particles of hydrotalcite and titanium dioxide and then cut.
  • a catalyst composed of composite particles of hydrotalcite and titanium dioxide and then cut.
  • the crystalline polyester pellets of the present invention include copolymerized PET, but have a high crystallization speed during preliminary crystallization, excellent productivity, and a low environmental load. Since the pellet contains copolymerized PET having a high degree of polymerization and the content of foreign matter having a large particle size is small, it is excellent in strength, transparency, moldability, adhesiveness, etc., and suitable for various applications. Can be used. Moreover, since the density
  • the present invention relates to a crystalline polyester pellet made of a resin composition containing polyester and composite particles.
  • the composite particles are composite particles of hydrotalcite and titanium dioxide, the crystallization rate can be increased even if the polyester is a copolymer polyester having a lowered crystallinity.
  • precrystallization can be performed in a short time prior to solid phase polymerization, a polyester having a high degree of polymerization can be obtained with high productivity.
  • the polyester contained in the crystal pellet of the present invention comprises 25 to 50 mol% of terephthalic acid units, 25 to 49.5 mol% of ethylene glycol units, 0.5 to 2.5 mol% of diethylene glycol units, and 5 carbon atoms. It contains 1.5 to 25 mol% of the above other comonomer units.
  • polyethylene terephthalate units are the main constituents.
  • the regularity of the polyethylene terephthalate crystal is lowered, so that the melting point is lowered and the crystallinity is also lowered.
  • the content of the terephthalic acid unit is 25 to 50 mol%, and if it is less than this, the melting point and the crystallinity are significantly lowered.
  • the content of the terephthalic acid unit is preferably 30 mol% or more, and more preferably 35 mol% or more.
  • the content of ethylene glycol units is 25 to 49.5 mol%, and if it is less than this, the melting point and crystallinity are remarkably lowered.
  • the content of ethylene glycol units is preferably 30 mol% or more, and more preferably 35 mol% or more.
  • the content of the diethylene glycol unit is 0.5 to 2.5 mol%, and usually, a unit by-produced by dimerization of ethylene glycol during the polycondensation reaction is contained in the polyester.
  • the content of diethylene glycol units is preferably 2 mol% or less.
  • the polyester contained in the crystal pellet of the present invention contains 1.5 to 25 mol% of another comonomer unit having 5 or more carbon atoms.
  • the crystallinity of polyethylene terephthalate can be reduced, and transparency, moldability, adhesiveness, and the like can be improved.
  • the content of other comonomer units is more preferably 2 mol% or more, and even more preferably 2.5 mol% or more.
  • the content of other comonomer units is more preferably 20 mol% or less, further preferably 15 mol% or less, and particularly preferably 10 mol% or less.
  • the polyester contained in the crystal pellet of the present invention contains a comonomer unit other than a terephthalic acid unit, an ethylene glycol unit, and a diethylene glycol unit.
  • the comonomer unit has 5 or more carbon atoms. When the number of carbon atoms is less than 5, the boiling point is lowered and volatilizes during the condensation polymerization reaction, which may make it difficult to recover ethylene glycol. Moreover, crystallinity can be reduced effectively by having 5 or more carbon atoms.
  • the carbon number of the dicarboxylic acid unit or diol unit is more preferably 8 or more. The upper limit of the carbon number is not particularly limited, but is usually 50 or less.
  • the method for producing the crystal pellet of the present invention is not particularly limited, but a catalyst comprising terephthalic acid or an ester-forming derivative thereof, ethylene glycol, and another comonomer having 5 or more carbon atoms, composed of composite particles of hydrotalcite and titanium dioxide. It is preferable to melt-polymerize in the presence of and then cut to produce amorphous polyester pellets, and then to pre-crystallize the amorphous polyester pellets before solid-phase polymerization.
  • bifunctional compounds such as dicarboxylic acid and ester-forming derivatives thereof, diol, hydroxycarboxylic acid and ester-forming derivatives thereof are mainly used.
  • a polyfunctional compound having three or more carboxyl groups, hydroxyl groups, or ester-forming groups thereof, or a monofunctional compound that is a monocarboxylic acid, a monoalcohol, or an ester-forming derivative thereof may be used in combination.
  • Dicarboxylic acids and ester-forming derivatives thereof include aliphatic dicarboxylic acids and ester-forming derivatives thereof such as glutaric acid, adipic acid, azelaic acid, sebacic acid and dimer acid (and hydrogenated products thereof); cyclohexanedicarboxylic acid and norbornene Alicyclic dicarboxylic acids such as dicarboxylic acid and tricyclodecane dicarboxylic acid and ester-forming derivatives thereof; isophthalic acid, phthalic acid, biphenyldicarboxylic acid, diphenylether dicarboxylic acid, diphenylsulfonedicarboxylic acid, diphenylketonedicarboxylic acid, sulfoisophthalic acid Aromatic dicarboxylic acids such as sodium, 2,6-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, and ester
  • diol examples include aliphatic diols such as 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, and methylpentanediol; alicyclic diols such as cyclohexanedimethanol, norbornene dimethanol, and tricyclodecane dimethanol.
  • Etc. A diol in which one or more molecules of ethylene oxide are added to two hydroxyl groups of an aromatic diol can also be used.
  • a diol (bisphenol A ethylene oxide adduct) in which 1 to 8 molecules of ethylene oxide are added to two phenolic hydroxyl groups of bisphenol A can be exemplified.
  • Hydroxycarboxylic acid and its ester-forming derivatives include aliphatic hydroxycarboxylic acids such as 10-hydroxyoctadecanoic acid or ester-forming derivatives thereof; hydroxymethylcyclohexanecarboxylic acid, hydroxymethylnorbornenecarboxylic acid, hydroxymethyltricyclodecanecarboxylic acid Alicyclic hydroxycarboxylic acids such as acids or ester-forming derivatives thereof; hydroxybenzoic acid, hydroxytoluic acid, hydroxynaphthoic acid, 3- (hydroxyphenyl) propionic acid, hydroxyphenylacetic acid, 3-hydroxy-3-phenylpropion Aromatic hydroxycarboxylic acids such as acids and their ester-forming derivatives.
  • polyfunctional compounds having three or more carboxyl groups, hydroxyl groups or ester-forming groups thereof include trimellitic acid, pyromellitic acid, trimesic acid, cyclohexane-1,2,4-tricarboxylic acid, trimethylolpropane, pentaerythritol And triol components contained in bisphenol A ethylene oxide adducts, and ester-forming derivatives thereof. These can be added in a small amount to increase the melt tension and can be used to adjust the melt extrusion moldability.
  • the content of the unit derived from the polyfunctional compound is preferably 1 mol% or less, and more preferably 0.5 mol% or less. If the ratio of the polyfunctional compound unit exceeds 1 mol%, gelation tends to occur, which is not preferable.
  • Examples of monofunctional compounds having only one carboxyl group, hydroxyl group or ester-forming group thereof include benzoic acid, 2,4,6-trimethoxybenzoic acid, 2-naphthoic acid, stearic acid and stearyl alcohol. . These function as sealing monomer units, seal molecular chain end groups in the polyester, and may be blended to prevent excessive crosslinking and gel formation in the polyester.
  • the content of the unit derived from the monofunctional compound is preferably 1 mol% or less, and more preferably 0.5 mol% or less. When the ratio of the monofunctional compound unit exceeds 1 mol%, the polymerization rate in producing the polyester is slowed, and the productivity tends to be lowered.
  • terephthalic acid or an ester-forming derivative thereof and ethylene glycol are heated to advance an esterification reaction or a transesterification reaction to obtain an oligomer.
  • another comonomer having 5 or more carbon atoms may be added in advance and an esterification reaction or transesterification reaction may be allowed to proceed simultaneously to obtain an oligomer, or another comonomer having 5 or more carbon atoms may be obtained after obtaining the oligomer. May be added to the melt polymerization reaction.
  • the esterification reaction or transesterification reaction is preferably carried out at a temperature of 180 to 300 ° C.
  • the ratio of raw materials in the esterification reaction or transesterification reaction is preferably such that the molar ratio (diol component / dicarboxylic acid component) is in the range of 1.1 to 2.5.
  • a cocatalyst for improving the speed of the polycondensation reaction may be added, or the reaction can be carried out without a catalyst.
  • the cocatalyst include zinc compounds, nickel compounds, and cobalt compounds.
  • the zinc compound include fatty acid zinc salts such as zinc acetate, zinc carbonate, zinc chloride, zinc acetylacetonate salt, zinc phosphate, zinc phosphite and the like, and zinc acetate and zinc carbonate are particularly preferable.
  • cobalt compound examples include fatty acid cobalt salts such as cobalt acetate, cobalt carbonate, cobalt chloride, cobalt acetylacetonate salt, and the like, and cobalt acetate and cobalt carbonate are particularly preferable.
  • nickel compound examples include fatty acid nickel salts such as nickel acetate, nickel carbonate, nickel chloride, nickel acetylacetonate salt, and nickel acetate and nickel carbonate are particularly preferable.
  • the amount of the cocatalyst used is preferably 0.001 to 0.02 parts by mass with respect to 100 parts by mass of the dicarboxylic acid component. When the amount of the cocatalyst is too small, the reaction rate is not sufficiently improved. On the other hand, when the amount of the cocatalyst is too large, the pressure increase speed of the filter used at the time of extrusion molding may be increased.
  • the amount of the cocatalyst is more preferably 0.015 parts by mass or less.
  • the transesterification reaction when the transesterification reaction is performed using dimethyl terephthalate, one or more metal compounds such as calcium, manganese, magnesium, zinc, titanium, sodium and lithium are preferably used as the transesterification catalyst.
  • metal compounds such as calcium, manganese, magnesium, zinc, titanium, sodium and lithium are preferably used as the transesterification catalyst.
  • composite particles of hydrotalcite and titanium dioxide can be added in advance as a polymerization catalyst, but after the esterification reaction is completed, the polymerization catalyst is added and the subsequent melt polymerization reaction It is preferable to use it for increasing the precrystallization rate.
  • the melt polycondensation reaction following the esterification reaction or transesterification reaction is performed in the presence of a catalyst composed of composite particles of hydrotalcite and titanium dioxide.
  • a catalyst composed of composite particles of hydrotalcite and titanium dioxide it is important to use a catalyst composed of composite particles of hydrotalcite and titanium dioxide, and amorphous pellets having a high crystallization rate can be obtained by polymerization using the catalyst.
  • the composite particles may have a structure in which titanium dioxide is introduced between the layers of hydrotalcite, or may have a structure in which the surface of the hydrotalcite particles is covered with titanium dioxide. It preferably comprises 50 to 95% by weight of hydrotalcite and 5 to 50% by weight of titanium dioxide.
  • the particle size is not particularly limited, but is preferably fine particles having an average particle size of 1 ⁇ m or less, and more preferably fine particles having an average particle size of 0.4 ⁇ m or less.
  • Hydrotalcite is a compound comprising magnesium and aluminum carbonate and hydroxide, typically having a chemical composition that Mg 6 Al 2 (CO 3) (OH) 16 ⁇ 4 (H 2 O).
  • the amount of the catalyst used is preferably 0.001 to 0.03 parts by mass with respect to 100 parts by mass of the dicarboxylic acid component. When the amount of the catalyst used is too small, the polymerization reaction rate decreases. The amount of the catalyst used is more preferably 0.002 parts by mass or more, and further preferably 0.003 parts by mass or more. On the other hand, when the amount of the catalyst used is too large, the pressure increase rate of the filter used during extrusion molding increases. The amount of the catalyst used is more preferably 0.02 parts by mass or less, and further preferably 0.015 parts by mass or less.
  • melt polycondensation reaction if necessary, an additive such as a coloring inhibitor or an antioxidant is added to obtain a polyester having a desired viscosity at a temperature of 200 to 300 ° C. under a reduced pressure of 1 kPa or less. It is preferable to carry out until it is done.
  • the melt polycondensation reaction can be performed using, for example, a tank-type batch polycondensation apparatus or a continuous polycondensation apparatus including a biaxial rotating horizontal reactor.
  • an anti-coloring agent for example, phosphorous acid, phosphoric acid, trimethyl phosphite, triphenyl phosphite, tridecyl phosphite, trimethyl phosphate, tridecyl phosphate, triphenyl Phosphorus compounds such as phosphate can be used. These phosphorus compounds may be used alone or in combination of two or more. When using an anti-coloring agent comprising the above-described phosphorus compound, it is preferably in the range of 0.001 to 0.5 mass% based on the mass of the dicarboxylic acid component.
  • the phosphorus compound When adding a promoter such as a zinc compound, a nickel compound, or a cobalt compound, it is preferable to use the phosphorus compound in combination from the viewpoint of preventing coloring. At this time, the phosphorus compound is preferably added at the time of the esterification reaction. By doing so, it is possible to suppress a decrease in the polymerization rate due to the addition of the phosphorus compound and obtain pellets with good color tone.
  • a promoter such as a zinc compound, a nickel compound, or a cobalt compound
  • antioxidants such as antioxidants, UV absorbers, light stabilizers, antistatic agents, antiblocking agents, lubricants (fatty acid amides, etc.), flame retardants, inorganic or organic fillers, crosslinking agents, dyes, Colorants such as pigments and additives such as modifying resins may be blended.
  • Such an additive may be mixed with the raw material slurry, may be added during the esterification reaction, or may be added during the polycondensation.
  • the intrinsic viscosity of the polyester obtained by melt polycondensation is preferably in the range of 0.4 to 0.85 dL / g from the viewpoint of handleability.
  • the intrinsic viscosity of the polyester obtained by melt polycondensation is less than 0.4 dL / g, when the polyester is taken out from the reactor, the melt viscosity is too low and it becomes difficult to extrude in the form of a strand or a sheet, Moreover, it becomes difficult to cut into pellets uniformly. Furthermore, when solid-phase polymerization is performed, it takes a long time to increase the molecular weight, resulting in a decrease in productivity.
  • the intrinsic viscosity is more preferably 0.5 dL / g or more, and still more preferably 0.6 dL / g or more.
  • the melt viscosity is too high, so that it is difficult to take out the polyester from the reactor, and coloration due to thermal deterioration tends to occur.
  • the intrinsic viscosity is more preferably 0.8 dL / g or less, and still more preferably 0.75 dL / g or less.
  • the polyester obtained by melt polymerization as described above is extruded into a strand shape, a sheet shape, and the like, cooled, and then cut with a strand cutter or a sheet cutter to obtain a cylindrical shape, an elliptical column shape, a disk shape, a die shape. Amorphous pellets of the shape such as are manufactured.
  • the above-described cooling after extrusion can be performed by, for example, a water cooling method using a water tank, a method using a cooling drum, an air cooling method, or the like.
  • the amorphous pellets thus obtained are preferably heated in a temperature range of 100 to 160 ° C. and preliminarily crystallized before being subjected to solid phase polymerization. If it is not pre-crystallized, the pellets will easily stick together during solid phase polymerization. In the case of precrystallization, unmodified PET can be sufficiently crystallized in a short time, but in the case of copolymerized PET containing a certain amount of comonomer components, the crystallization speed is greatly reduced and precrystallization is performed. The problem was that the process took a long time. The present inventors have found that the crystallization rate can be greatly improved by producing amorphous pellets using a catalyst comprising composite particles of hydrotalcite and titanium dioxide.
  • crystallization may be performed in a vacuum tumbler, or crystallization may be performed by heating in an air circulation type heating apparatus.
  • the time required for the precrystallization is not particularly limited, but is usually about 30 minutes to 24 hours.
  • the pellets Prior to precrystallization, the pellets may be dried at a temperature below 100 ° C.
  • the amorphous pellets used for the precrystallization may be a blend of two or more kinds of polyesters.
  • amorphous pellets obtained by melt-kneading two or more kinds of polyester pellets obtained by melt polymerization can be subjected to preliminary crystallization. In this case, what is necessary is just to satisfy the ratio of the monomer unit contained, a polymerization degree, etc. as the whole amorphous pellet obtained by blending.
  • the pellets obtained by pre-crystallizing the amorphous pellets and solid-phase polymerization may satisfy the conditions defined by the present invention as a whole.
  • the solid-state polymerization of the pre-crystallized pellet is preferably performed under reduced pressure or in an inert gas such as nitrogen gas. Further, it is preferable to carry out solid phase polymerization while moving the pellets by an appropriate method such as a rolling method or a gas fluidized bed method so that no sticking occurs between the pellets of the polyester resin composition. Among these, it is preferable to perform solid-state polymerization under reduced pressure.
  • the pressure when solid-state polymerization is performed under reduced pressure is preferably 10 kPa or less, and more preferably 1 kPa or less.
  • the solid phase polymerization temperature is preferably 170 to 230 ° C. When the solid-phase polymerization temperature is less than 170 ° C., the solid-phase polymerization time becomes long and the productivity may be lowered.
  • the solid state polymerization temperature is more preferably 180 ° C. or higher. On the other hand, when the solid phase polymerization temperature exceeds 230 ° C., the pellets may be stuck.
  • the solid state polymerization temperature is more preferably 220 ° C. or lower, and further preferably 210 ° C. or lower.
  • the solid phase polymerization time is usually about 5 to 70 hours.
  • the intrinsic viscosity of the polyester after solid phase polymerization is 0.75 to 1.5 dL / g.
  • the intrinsic viscosity is more preferably 0.8 dL / g or more, and even more preferably 0.85 dL / g or more.
  • the intrinsic viscosity exceeds 1.5 dL / g, the melt viscosity becomes too high, the melt moldability is lowered, and the productivity is also lowered.
  • the intrinsic viscosity is more preferably 1.4 dL / g or less, and even more preferably 1.3 dL / g or less.
  • the intrinsic viscosity of the polyester after the solid phase polymerization is preferably 1.15 times or more, more preferably 1.2 times or more, more preferably 1.25 times or more of the intrinsic viscosity of the polyester before melt kneading. More preferably.
  • the carboxyl group content of the polyester after the solid phase polymerization is preferably 18 ⁇ mol / g or less.
  • it is widely practiced to produce molded products by blending scrap crushed material collected in the factory, such as pinch-off parts generated during extrusion blow molding and ear parts generated during film extrusion, into crystal pellets. It has been broken.
  • the degree of polymerization decreases when the molded product is remelted and recycled. Therefore, when using a polyester having a low carboxyl group content, it is possible to suppress a decrease in the degree of polymerization during remelting and facilitate recycling. Thus, it is possible to realize a manufacturing process with little waste and a low environmental load.
  • the carboxyl group content is more preferably 15 ⁇ mol / g or less.
  • the crystal melting enthalpy of the polyester contained in the crystal pellet of the present invention is 20 J / g or more. Since the crystal pellets obtained by solid-phase polymerization contain polyester that has been crystallized at high temperature for a long time, it has a larger crystal melting enthalpy than the polyester contained in the pellet after precrystallization. ing. The polyester contained in the pellets of the present invention has a large crystal melting enthalpy despite the fact that it contains a certain amount or more of another comonomer unit having 5 or more carbon atoms and thus the crystallinity is lowered.
  • the crystal melting enthalpy is preferably 25 J / g or more, and more preferably 30 J / g or more.
  • the crystal melting enthalpy is usually 50 J / g or less.
  • the melting point of the polyester contained in the crystal pellet of the present invention is preferably 190 to 250 ° C. Decreasing the melting point can improve transparency, moldability, adhesion and the like.
  • the melting point is more preferably 245 ° C. or less, and further preferably 240 ° C. or less. On the other hand, when the melting point is less than 190 ° C., the crystallinity and the melting point become too low, and it becomes easy to stick at the time of solid phase polymerization, and the heat resistance of the obtained molded product is lowered.
  • the melting point is more preferably 200 ° C. or higher, and even more preferably 205 ° C. or higher.
  • the content of the composite particles of hydrotalcite and titanium dioxide contained in the pellet of the present invention is 10 to 300 ppm.
  • the content of the composite particles is more preferably 20 ppm or more, and further preferably 30 ppm or more.
  • the content of the composite particles is more preferably 200 ppm or less, and even more preferably 140 ppm or less.
  • the crystal pellet of the present invention may contain a resin component other than polyester as long as the effects of the present invention are not impaired.
  • the content is usually 5% by mass or less, preferably 1% by mass, and more preferably substantially not contained.
  • the crystal pellet of the present invention may contain inorganic particles other than the composite particles of hydrotalcite and titanium dioxide as long as the effects of the present invention are not impaired.
  • the content is usually 1000 ppm or less, preferably 100 ppm or less, and more preferably substantially free.
  • the crystal pellet of the present invention When the crystal pellet of the present invention was dissolved in an equal mass mixed solvent of phenol and tetrachloroethane and measured with a particle counter, the total volume of particles having a diameter of 1 to 5 ⁇ m contained in 1 g of the pellet was 5.0 ⁇ 10. It is preferably ⁇ 14 m 3 / g or more. It has now been clarified that the crystallization rate of amorphous pellets increases as the total volume of particles having a diameter of 1 to 5 ⁇ m increases. As shown in FIG. 1 and FIG. 2, it seems that a large number of particles having a diameter of less than 1 ⁇ m does not affect the crystallization rate, and particles in a specific particle size range affect the crystallization rate. It seems.
  • the total volume of particles having a diameter of 1 to 5 ⁇ m is more preferably 1.0 ⁇ 10 ⁇ 13 m 3 / g or more, and further preferably 2.5 ⁇ 10 ⁇ 13 m 3 / g or more.
  • the total volume of particles having a diameter of 1 to 5 ⁇ m is usually 1 ⁇ 10 ⁇ 10 m 3 / g or less, and in many cases 1 ⁇ 10 ⁇ 11 m 3 / g or less.
  • the crystal pellet of the present invention when the crystal pellet of the present invention is dissolved in an equal mass mixed solvent of phenol and tetrachloroethane and measured with a particle counter, the total volume of particles having a diameter of 5 to 20 ⁇ m contained in 1 g of the pellet is 1.2. X10 ⁇ 12 m 3 / g or less is preferable. Since the total volume of particles having a diameter of 5 to 20 ⁇ m is small, the pressure increase rate of the filter during extrusion molding can be reduced, and a highly transparent molded product can be continuously melt-formed over a long period of time.
  • the total volume of particles having a diameter of 5 to 20 ⁇ m is more preferably 1.0 ⁇ 10 ⁇ 12 m 3 / g or less, and further preferably 0.9 ⁇ 10 ⁇ 12 m 3 / g or less.
  • the total volume of particles having a diameter of 5 to 20 ⁇ m is usually 1 ⁇ 10 ⁇ 14 m 3 / g or more, and in many cases 1 ⁇ 10 ⁇ 13 m 3 / g or more.
  • the use of the crystalline polyester pellets thus obtained is not particularly limited. Since it contains copolymerized PET containing a comonomer component, it is suitably used for applications that require transparency, adhesion, or moldability. Further, since the degree of polymerization is increased by solid phase polymerization, it is suitably used for applications requiring further strength and impact resistance. Optical films that require a high degree of transparency, film-laminated metal plates that require adhesion and formability, and extrusion blow molded containers that require transparency and impact resistance are particularly suitable applications.
  • the optical film is suitably used as a surface protective film for flat display devices such as liquid crystal displays and organic EL displays, and a polarizing plate support film for liquid crystal displays. Since the crystalline polyester pellets of the present invention have a low pressure increase rate even when a fine filter is used during extrusion molding, by using the pellets, a film having excellent transparency with few coarse particles can be obtained with high productivity. Can be molded.
  • a film laminated metal plate for can making is suitable.
  • the pellet of the present invention having good adhesion and formability.
  • the polyester of the present invention having a high degree of polymerization is preferable because the film is hardly damaged when the molded can is deformed.
  • the metal plate on which the polyester film is laminated include a steel plate and an aluminum plate.
  • the extrusion blow molded container it is suitably used as a blow molded bottle for storing cosmetics, beverages, pharmaceuticals, seasonings and the like.
  • the crystalline polyester pellet of the present invention has high transparency and is less likely to be whitened due to crystallization during molding.
  • the degree of polymerization is high and the impact resistance is also excellent.
  • a polyfunctional monomer as a comonomer, it is possible to obtain pellets having good draw-down resistance and good moldability.
  • the volume of particles having a diameter of 1 to 5 ⁇ m was integrated, and the total volume was determined as a value per 1 g of pellets. Further, the volume of particles having a diameter of 5 to 20 ⁇ m was integrated, and the total volume was determined as a value per 1 g of pellets.
  • the resin color (b value) of the crystal pellets after solid-phase polymerization is determined according to ASTM-D2244 (color scale system 2), a colorimetric color difference meter “ZE-2000” manufactured by Nippon Denshoku Industries Co., Ltd. It measured using.
  • Example 1 Melt polycondensation A slurry consisting of 85.0 parts by mass of terephthalic acid (TA), 15.0 parts by mass of isophthalic acid (IPA) and 44.8 parts by mass of ethylene glycol (EG) was prepared and subjected to pressure (gauge pressure 0 The oligomer was produced by heating to 250 ° C. at a temperature of 250 MPa for esterification reaction. The obtained oligomer was transferred to a polycondensation tank, and 0.033 parts by mass of SATICA SPC-124-20 (manufactured by Sakai Chemical Industry Co., Ltd.), which is an ethylene glycol dispersion of composite particles of hydrotalcite and titanium dioxide.
  • SATICA SPC-124-20 manufactured by Sakai Chemical Industry Co., Ltd.
  • polyester having an intrinsic viscosity of 0.69 dL / g was produced by melt polycondensation at 0.1 kPa and 280 ° C. for 90 minutes. The obtained polyester was extruded into a strand form from a nozzle and cooled with water, and then cut into a cylindrical shape (diameter: about 2.5 mm, length: about 2.5 mm) to obtain an amorphous pellet of polyester.
  • the melting point (Tm), glass transition temperature (Tg) and melting enthalpy ( ⁇ Hm) were 212 ° C., 76 ° C. and 38 J / g, respectively.
  • the b value was 8.
  • the volume of particles having a diameter of 1 to 5 ⁇ m is 7.2 ⁇ 10 ⁇ 13 m 3 / g
  • the volume of particles having a diameter of 5 to 20 ⁇ m is 7.6 ⁇ 10 ⁇ 13 m 3 / g. there were.
  • the melt viscosity at 260 ° C. and 15 sec ⁇ 1 was 2000 Pa ⁇ sec.
  • Example 2 Example 1 except that the amount of the polymerization catalyst was 0.0023 parts by mass, the amount of phosphorous acid was 0.0023 parts by mass, the melt polymerization time was 120 minutes, and the solid-phase polymerization time was 40 hours. In the same manner, crystal pellets were produced and evaluated. The results are summarized in Tables 1 and 2.
  • Example 3 Example 1 except that the amount of the polymerization catalyst was 0.010 parts by mass, the amount of phosphorous acid was 0.010 parts by mass, the melt polymerization time was 80 minutes, and the solid phase polymerization time was 17 hours. In the same manner, crystal pellets were produced and evaluated. The results are summarized in Tables 1 and 2.
  • Example 4 Example 1 except that the amount of the polymerization catalyst was 0.017 parts by mass, the amount of phosphorous acid was 0.017 parts by mass, the melt polymerization time was 75 minutes, and the solid phase polymerization time was 12 hours. In the same manner, crystal pellets were produced and evaluated. The results are summarized in Tables 1 and 2.
  • Comparative Example 1 Melt polymerization was carried out in the same manner as in Example 1 except that the amount of the polymerization catalyst was 0.0006 parts by mass and the amount of phosphorous acid was 0.0006 parts by mass, but the degree of polymerization was sufficiently increased. As a result, pellets could not be obtained and subsequent evaluation was not performed. The results are summarized in Tables 1 and 2.
  • Comparative Example 2 Example except that 0.041 parts by mass of titanium (IV) tetraisopropoxide was added as a polymerization catalyst, the amount of phosphorous acid was 0.007 parts by mass, and the solid phase polymerization time was 35 hours. In the same manner as in Example 1, crystal pellets were produced and evaluated. The results are summarized in Tables 1 and 2.
  • Comparative Example 3 As a polymerization catalyst, it is the same as Example 1 except that 0.012 parts by mass of germanium dioxide (GeO 2 ) is added, the amount of phosphorous acid is 0.012 parts by mass, and the solid phase polymerization time is 20 hours. Crystal pellets were manufactured and evaluated. The results are summarized in Tables 1 and 2.
  • Comparative Example 4 Example except that 0.042 parts by mass of antimony trioxide (Sb 2 O 3 ) was compounded as a polymerization catalyst, the amount of phosphorous acid was 0.012 parts by mass, and the solid phase polymerization time was 25 hours.
  • Sb 2 O 3 antimony trioxide
  • Example 5 A slurry composed of 85.0 parts by mass of terephthalic acid, 15.0 parts by mass of isophthalic acid, and 44.8 parts by mass of ethylene glycol was prepared, and “SATA SPC-124-20” (manufactured by Sakai Chemical Industry Co., Ltd.) 033 parts by mass (of which 0.007 parts by mass of composite particles as a polymerization catalyst and 0.026 parts by mass of ethylene glycol) and 0.007 parts by mass of phosphorous acid were added.
  • This slurry was heated to a temperature of 250 ° C. under pressure (gauge pressure of 0.25 MPa) to carry out an esterification reaction to produce a low polymer.
  • crystal pellets were produced and evaluated in the same manner as in Example 1 except that the solid phase polymerization time was set to 70 hours. The results are summarized in Tables 1 and 2.
  • Example 5 except that 0.041 parts by mass of titanium (IV) tetraisopropoxide was added as a polymerization catalyst, the amount of phosphorous acid was 0.007 parts by mass, and the solid-state polymerization time was 40 hours. In the same manner, crystal pellets were produced and evaluated. The results are summarized in Tables 1 and 2.
  • Comparative Example 6 As Example 5, except that 0.012 parts by mass of germanium dioxide (GeO 2 ), 0.012 parts by mass of phosphorous acid, and 20 hours of solid phase polymerization were used. Crystal pellets were manufactured and evaluated. The results are summarized in Tables 1 and 2.
  • Comparative Example 7 Example except that 0.042 parts by mass of antimony trioxide (Sb 2 O 3 ) was compounded as a polymerization catalyst, the amount of phosphorous acid was 0.012 parts by mass, and the solid phase polymerization time was 25 hours. In the same manner as in Example 5, crystal pellets were produced and evaluated. The results are summarized in Tables 1 and 2.
  • Sb 2 O 3 antimony trioxide
  • Example 6 That 0.007 parts by mass of zinc acetate was added before the esterification reaction, that the addition time of 0.007 parts by mass of phosphorous acid was changed before the esterification reaction, that the melt polymerization time was 80 minutes, Crystal pellets were produced and evaluated in the same manner as in Example 1 except that the polymerization time was 25 hours. The results are summarized in Tables 1 and 2.
  • Example 7 A slurry composed of 73.1 parts by mass of terephthalic acid, 10.7 parts by mass of isophthalic acid, 16.2 parts by mass of hydrogenated dimer acid (HDA) and 39.0 parts by mass of ethylene glycol was prepared, and the solid-state polymerization time was 30 hours. Except that, crystal pellets were produced and evaluated in the same manner as in Example 1. The results are summarized in Tables 1 and 2.
  • Example 8 (1) Production of crystal pellets A slurry consisting of 100 parts by mass of terephthalic acid, 42.6 parts by mass of ethylene glycol and 9.5 parts by mass of bisphenol A ethylene oxide adduct (BPE) was prepared. Crystal pellets were produced and evaluated in the same manner as in Example 1 except that the phase polymerization time was 40 hours. The filter pressurization test during extrusion was not performed. The results are summarized in Tables 1 and 2.
  • Bottle drop test After putting water (water temperature 20-25 ° C) so that the total weight becomes 263 g ⁇ 0.5 g in the bottle immediately after molding, it is passed through a 10 cm diameter cylinder installed vertically, From a height of 100 cm, it was dropped alternately on a horizontal concrete surface and a concrete surface inclined 45 degrees. The number of cycles until the bottle was cracked or cracked (the bottle was dropped twice in total, once on the horizontal surface and once on the 45 ° slope) was measured. Up to 10 cycles were repeated. As a result of a drop test of a total of 10 bottles, no bottles were broken.
  • Example 9 That 0.007 parts by mass of cobalt acetate was added before the esterification reaction, that the addition time of 0.007 parts by mass of phosphorous acid was changed before the esterification reaction, that the melt polymerization time was 80 minutes, Crystal pellets and extrusion blow molded bottles were produced and evaluated in the same manner as in Example 8 except that the polymerization time was 35 hours. The results are summarized in Tables 1 and 2.
  • Example 10 A slurry consisting of 100 parts by weight of terephthalic acid, 38.1 parts by weight of ethylene glycol and 13.0 parts by weight of cyclohexanedimethanol (CHDM) is prepared and heated to a temperature of 250 ° C. under pressure (gauge pressure of 0.25 MPa) to form an ester. A low polymer was produced by carrying out a polymerization reaction. The obtained low polymer was transferred to a polycondensation tank, and 0.033 parts by mass of SATICA SPC-124-20 (manufactured by Sakai Chemical Industry Co., Ltd.) (of which, composite particles as a polymerization catalyst were 0.007 parts by mass).
  • CHDM cyclohexanedimethanol
  • ethylene glycol is 0.026 parts by mass
  • hindered phenol-based antioxidant (“Irganox 1010” manufactured by BASF) 0.012 parts by mass
  • phosphite-based antioxidant (“ADEKA STAB PEP-36 manufactured by ADEKA Corporation) ]
  • Polyester having an intrinsic viscosity of 0.69 dL / g was produced by melt polycondensation at 280 ° C. for 90 minutes under 0.1 kPa. The obtained polyester was extruded into a strand form from a nozzle and cooled with water, and then cut into a cylindrical shape (diameter: about 2.5 mm, length: about 2.5 mm) to obtain an amorphous pellet of polyester.
  • Comparative Example 8 Except that a slurry consisting of 98.0 parts by mass of terephthalic acid, 2.0 parts by mass of isophthalic acid and 44.8 parts by mass of ethylene glycol was prepared, the solid phase polymerization temperature was 225 ° C., and the solid phase polymerization time was 20 hours. As in Example 8, crystal pellets and extrusion blow molded bottles were produced and evaluated. Since the mouth of the bottle was whitened during molding and a bottle with good transparency could not be obtained, the bottle drop test was not performed. The results are summarized in Tables 1 and 2.
  • FIG. 1 and FIG. 2 show the particle size distribution measurement charts of Example 1 using composite particles of hydrotalcite and titanium dioxide as a catalyst and Comparative Example 3 using germanium dioxide (GeO 2 ) as a catalyst. Contrast. In Comparative Example 3, the peak of the particle size distribution was 0.60 ⁇ m, whereas in Example 1, it was 1.04 ⁇ m, and the peak value of Comparative Example 3 was smaller. However, the number of particles having a diameter of 1 to 5 ⁇ m was larger in Example 1, and the number of particles having a diameter of 5 to 20 ⁇ m was larger in Comparative Example 3. From this, it is presumed that particles having a diameter of 1 to 5 ⁇ m have an influence on the crystallization speed.

Abstract

This crystal polyester pellet comprises a resin composition containing polyester and a complex particle. The polyester contains 25-50% by mole of terephthalic acid units, 25-49.5% by mole of ethylene glycol units, 0.5-2.5% by mole of diethylene glycol units, and 1.5-25% by mole of other co-monomer units having 5 carbons or more. The intrinsic viscosity of the polyester is 0.75-1.5 dL/g. The crystal melting enthalpy of the pellet is 20 J/g or greater. The complex particle is a complex particle of hydrotalcite and titanium dioxide. The complex particle content of the pellet is 10-300 ppm. In this manner, a copolymer PET crystal pellet causing little environmental stress can be produced by a method having excellent productivity.

Description

結晶ポリエステルペレット、その用途及びその製造方法Crystalline polyester pellets, their use and production method
 本発明は、テレフタル酸単位及びエチレングリコール単位を主成分として含むポリエステルと複合体粒子とを含有する樹脂組成物からなる結晶ポリエステルペレットに関する。また、その用途及びその製造方法に関する。 The present invention relates to a crystalline polyester pellet comprising a resin composition containing a polyester containing terephthalic acid units and ethylene glycol units as main components and composite particles. Moreover, it is related with the use and its manufacturing method.
 ポリエチレンテレフタレート(以下、PETと略すことがある。)などのポリエステルは、透明性、力学的特性、ガスバリア性、フレーバーバリア性などの特性に優れている。さらに、ポリエステルは、成形品にした際に残留モノマーや有害な添加剤の心配が少なく、衛生性および安全性にも優れている。そのため、ポリエステルは、それらの特性を活かして、従来用いられてきた塩化ビニルに代わるものとして、ジュース、清涼飲料、調味料、油、化粧品、洗剤などを充填するための中空容器や、飲料缶などのラミネート鋼鈑のコーティングフィルムとして広く使用されている。また、近年では、液晶ディスプレイの保護フィルムなど、光学フィルムとしても広く使用されている。 Polyesters such as polyethylene terephthalate (hereinafter sometimes abbreviated as PET) are excellent in properties such as transparency, mechanical properties, gas barrier properties, and flavor barrier properties. Furthermore, polyester has less concern about residual monomers and harmful additives when formed into molded articles, and is excellent in hygiene and safety. Therefore, taking advantage of these characteristics, polyester is a hollow container for filling juice, soft drinks, seasonings, oils, cosmetics, detergents, beverage cans, etc. Widely used as a coating film for laminated steel plates. In recent years, it has been widely used as an optical film such as a protective film for a liquid crystal display.
 光学フィルムは異物の混入が厳しく制限されるため、細かいフィルタを用いて溶融樹脂から異物を除去してフィルムを形成することが多い。したがって、光学フィルムの原料として使用されるポリエステル樹脂において、未溶融の異物の含有量が多いと溶融成形時の押し出しフィルタの目詰まりを引き起こす原因となる。したがって、大きなサイズの異物量が少ないポリエステル樹脂ペレットが望まれている。 Since the contamination of foreign substances in optical films is severely restricted, the film is often formed by removing foreign substances from the molten resin using a fine filter. Therefore, in the polyester resin used as the raw material for the optical film, if the content of unmelted foreign matter is large, it will cause clogging of the extrusion filter during melt molding. Therefore, a polyester resin pellet having a small size and a small amount of foreign matter is desired.
 PET樹脂は、工業的にはテレフタル酸もしくはテレフタル酸ジメチルとエチレングリコールとのエステル化もしくはエステル交換によってビス(2-ヒドロキシエチル)テレフタレート等のオリゴマーを製造し、これを高温、真空下で触媒を用いて重縮合することで得られる。このようなポリエステルの重合時に微小な異物を除去する方法としては、高温のオリゴマーを耐熱フィルタでろ過する方法や、重縮合後のPET樹脂を耐熱フィルタでろ過する方法が一般的である。 PET resin is industrially produced by the esterification or transesterification of terephthalic acid or dimethyl terephthalate with ethylene glycol, and then using bis (2-hydroxyethyl) terephthalate as a catalyst at high temperature under vacuum. Obtained by polycondensation. As a method for removing minute foreign matters during polymerization of such polyester, a method of filtering a high temperature oligomer with a heat resistant filter and a method of filtering a PET resin after polycondensation with a heat resistant filter are generally used.
 しかしながら、光学フィルムを製造する際に使用するような目開きの細かいフィルタを重合工程に適用した場合、重縮合後のポリエステル樹脂はもちろんのこと、重合途中のオリゴマーを通過させる場合でさえもフィルタの昇圧が激しくなるため、目開きの小さなフィルタを実際の重合工程に適用することは現実的ではない。 However, when a fine filter such as that used in the production of an optical film is applied to the polymerization process, not only the polyester resin after polycondensation but also the oligomer in the polymerization is allowed to pass through. Since the pressure increase becomes intense, it is not practical to apply a filter with a small mesh size to the actual polymerization process.
 ポリエステル樹脂に含まれる異物粒子の主な要因の一つは重合触媒である。現在広く用いられている触媒は、それぞれ問題点を有している。酸化アンチモン(Sb)を用いた場合、得られるポリエステル樹脂の透明性が低下するので、高度な透明性が要求される用途には適していない。チタン(IV)テトライソプロキシドなどの有機チタン触媒を用いた場合、得られるポリエステル樹脂が黄色く着色するとともに、溶融成形時の熱分解によって固有粘度が低下したり、さらに着色が進行する問題を有している。また、二酸化ゲルマニウム(GeO)を用いた場合、得られるポリエステルのカルボキシル基含有量が上昇し、樹脂を回収して再度溶融成形する際の固有粘度の低下が避けられないし、触媒コストが大幅に上昇する。 One of the main factors of foreign particles contained in the polyester resin is a polymerization catalyst. Currently widely used catalysts have their own problems. When antimony oxide (Sb 2 O 3 ) is used, since the transparency of the resulting polyester resin is lowered, it is not suitable for applications requiring high transparency. When using an organic titanium catalyst such as titanium (IV) tetraisoproxide, the resulting polyester resin is colored yellow, and the inherent viscosity is lowered due to thermal decomposition during melt molding, and further the coloration proceeds. ing. In addition, when germanium dioxide (GeO 2 ) is used, the carboxyl group content of the resulting polyester is increased, and a decrease in intrinsic viscosity when the resin is recovered and melt-formed again cannot be avoided, and the catalyst cost is greatly increased. To rise.
 透明性、接着性あるいは成形性を重視する場合には、コモノマー成分を含む共重合PET樹脂が用いられる。高度な透明性が要求される光学フィルム、接着性及び成形性が要求される製缶用フィルム積層金属板、透明性及び成形性が要求される押出ブロー成形容器などでは、用途に応じてコモノマー成分が共重合されたPET樹脂が用いられる(例えば、特許文献1及び2を参照)。そしてこれらのいずれの用途も、成形品の強度を向上させるために固有粘度の高いポリエステル樹脂が用いられている。そのため、液相で重縮合を行ってペレットを得た後に、そのペレットを固相重合して固有粘度の高い結晶ポリエステルペレットを製造している。 In the case where importance is attached to transparency, adhesiveness or moldability, a copolymerized PET resin containing a comonomer component is used. In the case of optical films that require a high degree of transparency, film laminated metal plates for cans that require adhesiveness and formability, and extrusion blow-molded containers that require transparency and formability, comonomer components can be used depending on the application. A PET resin in which is copolymerized is used (see, for example, Patent Documents 1 and 2). In any of these applications, a polyester resin having a high intrinsic viscosity is used in order to improve the strength of the molded product. Therefore, after polycondensation is performed in the liquid phase to obtain pellets, the pellets are solid-phase polymerized to produce crystalline polyester pellets with high intrinsic viscosity.
 一般に、液相重合後の非晶ペレットをそのまま固相重合に適した温度まで上昇させると、固相重合中にペレット同士が膠着する。そのため通常は、固相重合する前に比較的低温で加熱して結晶化させる予備結晶化工程を設ける。このとき、未変性PETであれば短時間で十分に予備結晶化させることが可能であるが、コモノマー成分を一定量以上含む共重合PETの場合、結晶化速度が大きく低下して、予備結晶化工程に長時間を要していた。これによって、生産性が低下するのみならず、エネルギー消費量も大きくなっていた。 Generally, when the amorphous pellets after liquid phase polymerization are raised as they are to a temperature suitable for solid phase polymerization, the pellets are stuck together during solid phase polymerization. Therefore, usually, a preliminary crystallization step is performed in which crystallization is performed by heating at a relatively low temperature before solid phase polymerization. At this time, if it is unmodified PET, it can be sufficiently pre-crystallized in a short time, but in the case of copolymerized PET containing a certain amount of comonomer component or more, the crystallization speed is greatly reduced, and pre-crystallization The process took a long time. This not only reduced productivity, but also increased energy consumption.
 特許文献3には、ポリエステルの重合触媒として、固体塩基の粒子の表面を酸化チタンで覆った複合粒子の触媒が報告されていて、それを用いることで優れた色調と透明性を有する高分子量ポリエステルが得られるとされている。しかしながら、その実施例では、未変性PETの液相重合が実施されているだけである。 Patent Document 3 reports a composite particle catalyst in which the surface of solid base particles is covered with titanium oxide as a polyester polymerization catalyst, and a high molecular weight polyester having excellent color and transparency by using it. Is supposed to be obtained. However, in that example, only liquid phase polymerization of unmodified PET is carried out.
特開平9-176296号公報JP-A-9-176296 特開平6-263893号公報JP-A-6-263893 特開2006-188567号公報JP 2006-188567 A
 本発明は、上記課題を解決するためになされたものであり、環境負荷の小さい共重合PETの結晶ペレット及びその用途を提供することを目的とするものである。また、そのようなペレットを、生産性に優れた方法で製造することを目的とするものである。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide copolymerized PET crystal pellets having a low environmental load and uses thereof. Moreover, it aims at manufacturing such a pellet by the method excellent in productivity.
 上記課題は、ポリエステルと複合体粒子を含有する樹脂組成物からなる結晶ポリエステルペレットであって、
 前記ポリエステルが、テレフタル酸単位を25~50モル%、エチレングリコール単位を25~49.5モル%、ジエチレングリコール単位を0.5~2.5モル%、及び炭素数5以上の他のコモノマー単位を1.5~25モル%含有し、
 前記ポリエステルの固有粘度が0.75~1.5dL/gであり、
 前記ペレットの結晶融解エンタルピーが20J/g以上であり、
 前記複合体粒子がハイドロタルサイトと二酸化チタンの複合体粒子であり、かつ
 該複合体粒子の含有量が10~300ppmであることを特徴とするペレットを提供することによって解決される。
The above problem is a crystalline polyester pellet comprising a resin composition containing polyester and composite particles,
The polyester comprises 25 to 50 mol% terephthalic acid units, 25 to 49.5 mol% ethylene glycol units, 0.5 to 2.5 mol% diethylene glycol units, and other comonomer units having 5 or more carbon atoms. Containing 1.5 to 25 mol%,
The polyester has an intrinsic viscosity of 0.75 to 1.5 dL / g,
The crystal melting enthalpy of the pellet is 20 J / g or more,
This is solved by providing pellets characterized in that the composite particles are composite particles of hydrotalcite and titanium dioxide, and the content of the composite particles is 10 to 300 ppm.
 このとき、前記ペレットを、フェノールとテトラクロロエタンとの等質量混合溶媒に溶解させてパーティクルカウンタで測定した時に、該ペレット1g中に含まれる直径1~5μmの粒子の合計体積が5.0×10-14/g以上であることが好ましい。前記ペレットを、フェノールとテトラクロロエタンとの等質量混合溶媒に溶解させてパーティクルカウンタで測定した時に、該ペレット1g中に含まれる直径5~20μmの粒子の合計体積が1.2×10-12/g以下であることも好ましい。前記ポリエステルのカルボキシル基含有量が18μmol/g以下であることも好ましい。 At this time, when the pellet was dissolved in an equal mass mixed solvent of phenol and tetrachloroethane and measured with a particle counter, the total volume of particles having a diameter of 1 to 5 μm contained in 1 g of the pellet was 5.0 × 10. It is preferably −14 m 3 / g or more. When the pellet was dissolved in an equal mass mixed solvent of phenol and tetrachloroethane and measured with a particle counter, the total volume of particles having a diameter of 5 to 20 μm contained in 1 g of the pellet was 1.2 × 10 −12 m. It is also preferable that it is 3 / g or less. It is also preferred that the polyester has a carboxyl group content of 18 μmol / g or less.
 本発明の好適な実施態様は、前記ペレットを成形してなるフィルムである。本発明の他の好適な実施態様は、前記ペレットを成形してなるフィルムが金属板に積層されてなる積層金属板である。また、本発明の他の好適な実施態様は、前記ペレットを成形してなる押出ブロー成形容器である。 A preferred embodiment of the present invention is a film formed by molding the pellet. Another preferred embodiment of the present invention is a laminated metal plate in which a film formed by forming the pellet is laminated on a metal plate. Another preferred embodiment of the present invention is an extrusion blow molded container formed by molding the pellet.
 上記課題は、テレフタル酸又はそのエステル形成性誘導体、エチレングリコール、及び炭素数5以上の他のコモノマーを、ハイドロタルサイトと二酸化チタンの複合体粒子からなる触媒の存在下に溶融重合してから切断して非晶ポリエステルペレットを製造し、引き続き該非晶ポリエステルペレットを予備結晶化させてから固相重合することを特徴とする、前記結晶ポリエステルペレットの製造方法を提供することによっても解決される。このとき少なくともテレフタル酸又はそのエステル形成性誘導体と、エチレングリコールとを加熱してエステル化反応を進行させてオリゴマーを得てから、前記触媒を添加して溶融重合することが好ましい。 The above problem is that terephthalic acid or its ester-forming derivative, ethylene glycol, and another comonomer having 5 or more carbon atoms are melt-polymerized in the presence of a catalyst composed of composite particles of hydrotalcite and titanium dioxide and then cut. This can also be solved by providing a method for producing the crystalline polyester pellets, characterized in that amorphous polyester pellets are produced, followed by solid-phase polymerization after pre-crystallization of the amorphous polyester pellets. At this time, it is preferable that at least terephthalic acid or an ester-forming derivative thereof and ethylene glycol are heated to advance an esterification reaction to obtain an oligomer, and then the catalyst is added to perform melt polymerization.
 本発明の結晶ポリエステルペレットは、共重合PETを含みながらも、予備結晶化時の結晶化速度が速く、生産性に優れていて、環境負荷が小さい。当該ペレットは、高重合度の共重合PETを含んでいて、粒径の大きい異物の含有量が少ないので、強度、透明性、成形性、接着性などに優れていて、各種の用途に好適に用いることができる。また、末端カルボキシル基の濃度を低くすることができるので、成形品のスクラップを回収して再度溶融成形する際の樹脂の劣化を抑制することもできる。このように、生産性に優れていて必要エネルギーを抑制することができるとともに、リサイクル性にも優れているので、環境負荷の小さい結晶ポリエステルペレットであるといえる。また、本発明の製造方法によれば、そのような結晶ペレットを、環境に大きな負荷をかけずに予備結晶化してから固相重合して、生産性良く製造することができる。 The crystalline polyester pellets of the present invention include copolymerized PET, but have a high crystallization speed during preliminary crystallization, excellent productivity, and a low environmental load. Since the pellet contains copolymerized PET having a high degree of polymerization and the content of foreign matter having a large particle size is small, it is excellent in strength, transparency, moldability, adhesiveness, etc., and suitable for various applications. Can be used. Moreover, since the density | concentration of a terminal carboxyl group can be made low, degradation of the resin at the time of collect | recovering the scraps of a molded article and melt-molding again can also be suppressed. Thus, it can be said that it is a crystalline polyester pellet with low environmental load because it is excellent in productivity and can suppress required energy and is also excellent in recyclability. In addition, according to the production method of the present invention, such crystal pellets can be pre-crystallized without imposing a heavy load on the environment and then solid phase polymerized to produce with good productivity.
実施例1と比較例3のペレット中の粒度分布(20μm以下)Particle size distribution in pellets of Example 1 and Comparative Example 3 (20 μm or less) 実施例1と比較例3のペレット中の粒度分布(5~20μm拡大)Particle size distribution in the pellets of Example 1 and Comparative Example 3 (enlarged by 5 to 20 μm)
 本発明は、ポリエステルと複合体粒子を含有する樹脂組成物からなる結晶ポリエステルペレットに関する。当該複合体粒子がハイドロタルサイトと二酸化チタンの複合体粒子であることによって、結晶性の低下した共重合ポリエステルであっても、結晶化速度を速くすることができる。これにより、固相重合するのに先立って短時間で予備結晶化を行うことができるので、生産性良く高重合度のポリエステルを得ることができる。 The present invention relates to a crystalline polyester pellet made of a resin composition containing polyester and composite particles. When the composite particles are composite particles of hydrotalcite and titanium dioxide, the crystallization rate can be increased even if the polyester is a copolymer polyester having a lowered crystallinity. Thereby, since precrystallization can be performed in a short time prior to solid phase polymerization, a polyester having a high degree of polymerization can be obtained with high productivity.
 本発明の結晶ペレットに含まれるポリエステルは、テレフタル酸単位を25~50モル%、エチレングリコール単位を25~49.5モル%、ジエチレングリコール単位を0.5~2.5モル%、及び炭素数5以上の他のコモノマー単位を1.5~25モル%含有するものである。 The polyester contained in the crystal pellet of the present invention comprises 25 to 50 mol% of terephthalic acid units, 25 to 49.5 mol% of ethylene glycol units, 0.5 to 2.5 mol% of diethylene glycol units, and 5 carbon atoms. It contains 1.5 to 25 mol% of the above other comonomer units.
 ジカルボン酸単位のうちの半分以上をテレフタル酸単位が占め、ジオール単位の半分以上をエチレングリコール単位が占めているので、ポリエチレンテレフタレート単位が主たる構成成分である。そして、炭素数5以上の他のコモノマー単位を1.5~25モル%含有することによって、ポリエチレンテレフタレートの結晶の規則性が低下するので、融点が低下するとともに、結晶性も低下する。 Since terephthalic acid units occupy more than half of dicarboxylic acid units and ethylene glycol units occupy more than half of diol units, polyethylene terephthalate units are the main constituents. By containing 1.5 to 25 mol% of another comonomer unit having 5 or more carbon atoms, the regularity of the polyethylene terephthalate crystal is lowered, so that the melting point is lowered and the crystallinity is also lowered.
 テレフタル酸単位の含有量は25~50モル%であり、これより少なすぎると融点と結晶性の低下が著しい。テレフタル酸単位の含有量は、好適には30モル%以上であり、より好適には35モル%以上である。エチレングリコール単位の含有量は25~49.5モル%であり、これより少なすぎると融点と結晶性の低下が著しい。エチレングリコール単位の含有量は、好適には30モル%以上であり、より好適には35モル%以上である。ジエチレングリコール単位の含有量は0.5~2.5モル%であり、通常、重縮合反応中にエチレングリコールの二量化によって副生した単位がポリエステル中に含まれる。ジエチレングリコール単位の含有量は、好適には2モル%以下である。 The content of the terephthalic acid unit is 25 to 50 mol%, and if it is less than this, the melting point and the crystallinity are significantly lowered. The content of the terephthalic acid unit is preferably 30 mol% or more, and more preferably 35 mol% or more. The content of ethylene glycol units is 25 to 49.5 mol%, and if it is less than this, the melting point and crystallinity are remarkably lowered. The content of ethylene glycol units is preferably 30 mol% or more, and more preferably 35 mol% or more. The content of the diethylene glycol unit is 0.5 to 2.5 mol%, and usually, a unit by-produced by dimerization of ethylene glycol during the polycondensation reaction is contained in the polyester. The content of diethylene glycol units is preferably 2 mol% or less.
 本発明の結晶ペレットに含まれるポリエステルは、炭素数5以上の他のコモノマー単位を1.5~25モル%含有する。このような他のコモノマー単位を1.5モル%以上含有することによって、ポリエチレンテレフタレートの結晶性を低下させることができ、透明性、成形性、接着性などを向上させることができる。他のコモノマー単位の含有量は、より好適には2モル%以上であり、さらに好適には2.5モル%以上である。一方、他のコモノマー単位を25モル%以上含有した場合には、結晶性及び融点が低くなり過ぎて、固相重合時に膠着しやすくなるとともに、得られる成形品の耐熱性が低下する。他のコモノマー単位の含有量は、より好適には20モル%以下であり、さらに好適には15モル%以下であり、特に好適には10モル%以下である。 The polyester contained in the crystal pellet of the present invention contains 1.5 to 25 mol% of another comonomer unit having 5 or more carbon atoms. By containing 1.5 mol% or more of such other comonomer units, the crystallinity of polyethylene terephthalate can be reduced, and transparency, moldability, adhesiveness, and the like can be improved. The content of other comonomer units is more preferably 2 mol% or more, and even more preferably 2.5 mol% or more. On the other hand, when other comonomer units are contained in an amount of 25 mol% or more, the crystallinity and the melting point are too low, and the resulting molded product is liable to be stuck at the time of solid phase polymerization, and the heat resistance of the obtained molded product is lowered. The content of other comonomer units is more preferably 20 mol% or less, further preferably 15 mol% or less, and particularly preferably 10 mol% or less.
 本発明の結晶ペレットに含まれるポリエステルは、テレフタル酸単位、エチレングリコール単位、ジエチレングリコール単位以外の他のコモノマー単位を含む。当該コモノマー単位の炭素数は5以上である。炭素数が5未満の場合には、沸点が低下して縮重合反応中に揮発するのでエチレングリコールの回収を困難にするおそれがある。また、炭素数が5以上であることによって、結晶性を効果的に低下させることができる。当該ジカルボン酸単位又はジオール単位のより好適な炭素数は8以上である。炭素数の上限値は特に限定されないが、通常50以下である。 The polyester contained in the crystal pellet of the present invention contains a comonomer unit other than a terephthalic acid unit, an ethylene glycol unit, and a diethylene glycol unit. The comonomer unit has 5 or more carbon atoms. When the number of carbon atoms is less than 5, the boiling point is lowered and volatilizes during the condensation polymerization reaction, which may make it difficult to recover ethylene glycol. Moreover, crystallinity can be reduced effectively by having 5 or more carbon atoms. The carbon number of the dicarboxylic acid unit or diol unit is more preferably 8 or more. The upper limit of the carbon number is not particularly limited, but is usually 50 or less.
 本発明の結晶ペレットの製造方法は特に限定されないが、テレフタル酸又はそのエステル形成性誘導体、エチレングリコール、及び炭素数5以上の他のコモノマーを、ハイドロタルサイトと二酸化チタンの複合体粒子からなる触媒の存在下に溶融重合してから切断して非晶ポリエステルペレットを製造し、引き続き該非晶ポリエステルペレットを予備結晶化させてから固相重合する方法が好適である。 The method for producing the crystal pellet of the present invention is not particularly limited, but a catalyst comprising terephthalic acid or an ester-forming derivative thereof, ethylene glycol, and another comonomer having 5 or more carbon atoms, composed of composite particles of hydrotalcite and titanium dioxide. It is preferable to melt-polymerize in the presence of and then cut to produce amorphous polyester pellets, and then to pre-crystallize the amorphous polyester pellets before solid-phase polymerization.
 炭素数5以上の他のコモノマーとしては、ジカルボン酸及びそのエステル形成性誘導体、ジオール、ヒドロキシカルボン酸及びそのエステル形成性誘導体などの二官能化合物が主に用いられる。このとき更に、カルボキシル基、水酸基又はそれらのエステル形成性基を3個以上有する多官能化合物や、モノカルボン酸、モノアルコール又はそれらのエステル形成性誘導体である単官能化合物を併用することもできる。 As other comonomers having 5 or more carbon atoms, bifunctional compounds such as dicarboxylic acid and ester-forming derivatives thereof, diol, hydroxycarboxylic acid and ester-forming derivatives thereof are mainly used. At this time, a polyfunctional compound having three or more carboxyl groups, hydroxyl groups, or ester-forming groups thereof, or a monofunctional compound that is a monocarboxylic acid, a monoalcohol, or an ester-forming derivative thereof may be used in combination.
 ジカルボン酸及びそのエステル形成性誘導体としては、グルタル酸、アジピン酸、アゼライン酸、セバシン酸、ダイマー酸(及びその水素添加物)などの脂肪族ジカルボン酸及びそのエステル形成性誘導体;シクロヘキサンジカルボン酸、ノルボルネンジカルボン酸、トリシクロデカンジカルボン酸などの脂環式ジカルボン酸及びそれらのエステル形成性誘導体;イソフタル酸、フタル酸、ビフェニルジカルボン酸、ジフェニルエーテルジカルボン酸、ジフェニルスルホンジカルボン酸、ジフェニルケトンジカルボン酸、スルホイソフタル酸ナトリウム、2,6-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸などの芳香族ジカルボン酸及びそれらのエステル形成性誘導体が挙げられる。 Dicarboxylic acids and ester-forming derivatives thereof include aliphatic dicarboxylic acids and ester-forming derivatives thereof such as glutaric acid, adipic acid, azelaic acid, sebacic acid and dimer acid (and hydrogenated products thereof); cyclohexanedicarboxylic acid and norbornene Alicyclic dicarboxylic acids such as dicarboxylic acid and tricyclodecane dicarboxylic acid and ester-forming derivatives thereof; isophthalic acid, phthalic acid, biphenyldicarboxylic acid, diphenylether dicarboxylic acid, diphenylsulfonedicarboxylic acid, diphenylketonedicarboxylic acid, sulfoisophthalic acid Aromatic dicarboxylic acids such as sodium, 2,6-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, and ester-forming derivatives thereof.
 ジオールとしては、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、メチルペンタンジオールなどの脂肪族ジオール;シクロヘキサンジメタノール、ノルボルネンジメタノール、トリシクロデカンジメタノールなどの脂環式ジオールなどが挙げられる。また、芳香族ジオールの2つの水酸基にエチレンオキシドがそれぞれ1分子以上付加したジオールを用いることもできる。例えば、ビスフェノールAの2つのフェノール性水酸基に、それぞれエチレンオキシドが1~8分子付加しているジオール(ビスフェノールAエチレンオキシド付加体)などを例示することができる。 Examples of the diol include aliphatic diols such as 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, and methylpentanediol; alicyclic diols such as cyclohexanedimethanol, norbornene dimethanol, and tricyclodecane dimethanol. Etc. A diol in which one or more molecules of ethylene oxide are added to two hydroxyl groups of an aromatic diol can also be used. For example, a diol (bisphenol A ethylene oxide adduct) in which 1 to 8 molecules of ethylene oxide are added to two phenolic hydroxyl groups of bisphenol A can be exemplified.
 ヒドロキシカルボン酸及びそのエステル形成性誘導体としては、10-ヒドロキシオクタデカン酸などの脂肪族ヒドロキシカルボン酸またはそれらのエステル形成性誘導体;ヒドロキシメチルシクロヘキサンカルボン酸、ヒドロキシメチルノルボルネンカルボン酸、ヒドロキシメチルトリシクロデカンカルボン酸などの脂環式ヒドロキシカルボン酸またはそれらのエステル形成性誘導体;ヒドロキシ安息香酸、ヒドロキシトルイル酸、ヒドロキシナフトエ酸、3-(ヒドロキシフェニル)プロピオン酸、ヒドロキシフェニル酢酸、3-ヒドロキシ-3-フェニルプロピオン酸などの芳香族ヒドロキシカルボン酸およびそれらのエステル形成性誘導体が挙げられる。 Hydroxycarboxylic acid and its ester-forming derivatives include aliphatic hydroxycarboxylic acids such as 10-hydroxyoctadecanoic acid or ester-forming derivatives thereof; hydroxymethylcyclohexanecarboxylic acid, hydroxymethylnorbornenecarboxylic acid, hydroxymethyltricyclodecanecarboxylic acid Alicyclic hydroxycarboxylic acids such as acids or ester-forming derivatives thereof; hydroxybenzoic acid, hydroxytoluic acid, hydroxynaphthoic acid, 3- (hydroxyphenyl) propionic acid, hydroxyphenylacetic acid, 3-hydroxy-3-phenylpropion Aromatic hydroxycarboxylic acids such as acids and their ester-forming derivatives.
 カルボキシル基、水酸基又はそれらのエステル形成性基を3個以上有する多官能化合物としては、トリメリット酸、ピロメリット酸、トリメシン酸、シクロヘキサン-1,2,4-トリカルボン酸、トリメチロールプロパン、ペンタエリスリトールおよびビスフェノールAエチレンオキシド付加体中に含まれるトリオール成分、ならびにそれらのエステル形成性誘導体が挙げられる。これらは、少量添加することで溶融張力を増加させることができ、溶融押出成形性を調整するために用いることができる。多官能化合物に由来する単位の含有量は1モル%以下であることが好ましく、0.5モル%以下であることがより好ましい。多官能化合物単位の割合が1モル%を超えると、ゲル化しやすくなり好ましくない。 Examples of polyfunctional compounds having three or more carboxyl groups, hydroxyl groups or ester-forming groups thereof include trimellitic acid, pyromellitic acid, trimesic acid, cyclohexane-1,2,4-tricarboxylic acid, trimethylolpropane, pentaerythritol And triol components contained in bisphenol A ethylene oxide adducts, and ester-forming derivatives thereof. These can be added in a small amount to increase the melt tension and can be used to adjust the melt extrusion moldability. The content of the unit derived from the polyfunctional compound is preferably 1 mol% or less, and more preferably 0.5 mol% or less. If the ratio of the polyfunctional compound unit exceeds 1 mol%, gelation tends to occur, which is not preferable.
 カルボキシル基、水酸基又はそれらのエステル形成性基を1個だけ有する単官能化合物としては、安息香酸、2,4,6-トリメトキシ安息香酸、2-ナフトエ酸、ステアリン酸およびステアリルアルコールなどが例示される。これらは、封止単量体単位として機能し、ポリエステルにおける分子鎖末端基の封止を行い、ポリエステルにおける過度の架橋およびゲルの発生を防止するために配合されることがある。単官能化合物に由来する単位の含有量は1モル%以下であることが好ましく、0.5モル%以下であることがより好ましい。単官能化合物単位の割合が1モル%を超えると、ポリエステルを製造する際の重合速度が遅くなって、生産性が低下し易い。 Examples of monofunctional compounds having only one carboxyl group, hydroxyl group or ester-forming group thereof include benzoic acid, 2,4,6-trimethoxybenzoic acid, 2-naphthoic acid, stearic acid and stearyl alcohol. . These function as sealing monomer units, seal molecular chain end groups in the polyester, and may be blended to prevent excessive crosslinking and gel formation in the polyester. The content of the unit derived from the monofunctional compound is preferably 1 mol% or less, and more preferably 0.5 mol% or less. When the ratio of the monofunctional compound unit exceeds 1 mol%, the polymerization rate in producing the polyester is slowed, and the productivity tends to be lowered.
 本発明の結晶ペレットを製造するに際しては、まず、テレフタル酸又はそのエステル形成性誘導体とエチレングリコールとを加熱してエステル化反応又はエステル交換反応を進行させてオリゴマーを得る。このとき、炭素数5以上の他のコモノマーを予め加えて、同時にエステル化反応又はエステル交換反応を進行させてオリゴマーを得てもよいし、当該オリゴマーを得てから炭素数5以上の他のコモノマーを加えて溶融重合反応に供してもよい。エステル化反応またはエステル交換反応は、絶対圧で約5kg/cm以下の加圧下または常圧下に、180~300℃の温度で、生成する水またはアルコールを留去させながら行うことが好ましい。エステル化反応又はエステル交換反応における原料の比率は、モル比(ジオール成分/ジカルボン酸成分)が1.1~2.5の範囲となるようにすることが好ましい。 In producing the crystal pellet of the present invention, first, terephthalic acid or an ester-forming derivative thereof and ethylene glycol are heated to advance an esterification reaction or a transesterification reaction to obtain an oligomer. At this time, another comonomer having 5 or more carbon atoms may be added in advance and an esterification reaction or transesterification reaction may be allowed to proceed simultaneously to obtain an oligomer, or another comonomer having 5 or more carbon atoms may be obtained after obtaining the oligomer. May be added to the melt polymerization reaction. The esterification reaction or transesterification reaction is preferably carried out at a temperature of 180 to 300 ° C. while distilling off the generated water or alcohol under an absolute pressure of about 5 kg / cm 2 or less or under normal pressure. The ratio of raw materials in the esterification reaction or transesterification reaction is preferably such that the molar ratio (diol component / dicarboxylic acid component) is in the range of 1.1 to 2.5.
 テレフタル酸を用いてエステル化反応を行う場合は、重縮合反応の速度を向上させる助触媒を添加してもよいし、無触媒で反応を行うこともできる。助触媒としては、亜鉛化合物、ニッケル化合物およびコバルト化合物が例示される。亜鉛化合物としては、酢酸亜鉛などの脂肪酸亜鉛塩、炭酸亜鉛、塩化亜鉛、亜鉛のアセチルアセトナート塩、リン酸亜鉛、亜リン酸亜鉛などが挙げられ、特に酢酸亜鉛および炭酸亜鉛が好ましい。コバルト化合物としては、酢酸コバルトなどの脂肪酸コバルト塩、炭酸コバルト、塩化コバルト、コバルトのアセチルアセトナート塩などが挙げられ、特に酢酸コバルトおよび炭酸コバルトが好ましい。ニッケル化合物としては、酢酸ニッケルなどの脂肪酸ニッケル塩、炭酸ニッケル、塩化ニッケル、ニッケルのアセチルアセトナート塩などが挙げられ、特に酢酸ニッケルおよび炭酸ニッケルが好ましい。助触媒の使用量は、ジカルボン酸成分100質量部に対して、0.001~0.02質量部であることが好ましい。助触媒の量が少なすぎる場合には、反応速度の向上が十分でない。一方、助触媒の量が多すぎる場合には、押出成形時に用いるフィルタの昇圧速度が大きくなるおそれがある。助触媒の量は、より好適には0.015質量部以下である。 When the esterification reaction is carried out using terephthalic acid, a cocatalyst for improving the speed of the polycondensation reaction may be added, or the reaction can be carried out without a catalyst. Examples of the cocatalyst include zinc compounds, nickel compounds, and cobalt compounds. Examples of the zinc compound include fatty acid zinc salts such as zinc acetate, zinc carbonate, zinc chloride, zinc acetylacetonate salt, zinc phosphate, zinc phosphite and the like, and zinc acetate and zinc carbonate are particularly preferable. Examples of the cobalt compound include fatty acid cobalt salts such as cobalt acetate, cobalt carbonate, cobalt chloride, cobalt acetylacetonate salt, and the like, and cobalt acetate and cobalt carbonate are particularly preferable. Examples of the nickel compound include fatty acid nickel salts such as nickel acetate, nickel carbonate, nickel chloride, nickel acetylacetonate salt, and nickel acetate and nickel carbonate are particularly preferable. The amount of the cocatalyst used is preferably 0.001 to 0.02 parts by mass with respect to 100 parts by mass of the dicarboxylic acid component. When the amount of the cocatalyst is too small, the reaction rate is not sufficiently improved. On the other hand, when the amount of the cocatalyst is too large, the pressure increase speed of the filter used at the time of extrusion molding may be increased. The amount of the cocatalyst is more preferably 0.015 parts by mass or less.
 一方、テレフタル酸ジメチルを用いてエステル交換反応を行う場合は、エステル交換触媒として、カルシウム、マンガン、マグネシウム、亜鉛、チタン、ナトリウム、リチウムなどの金属化合物の1種以上を用いるのがよい。しかしながら、不要な微粒子がペレット中に残存するのを防ぐためには、エステル交換触媒を用いずにエステル化反応を行う方が好ましい。エステル化反応を進行させるに際し、予め重合触媒としてハイドロタルサイトと二酸化チタンの複合体粒子を加えておくこともできるが、エステル化反応が終了してから重合触媒を加えて、その後の溶融重合反応に供する方が、予備結晶化速度が大きくなり好ましい。 On the other hand, when the transesterification reaction is performed using dimethyl terephthalate, one or more metal compounds such as calcium, manganese, magnesium, zinc, titanium, sodium and lithium are preferably used as the transesterification catalyst. However, in order to prevent unnecessary fine particles from remaining in the pellet, it is preferable to perform the esterification reaction without using a transesterification catalyst. In proceeding the esterification reaction, composite particles of hydrotalcite and titanium dioxide can be added in advance as a polymerization catalyst, but after the esterification reaction is completed, the polymerization catalyst is added and the subsequent melt polymerization reaction It is preferable to use it for increasing the precrystallization rate.
 エステル化反応またはエステル交換反応に続く溶融重縮合反応は、ハイドロタルサイトと二酸化チタンの複合体粒子からなる触媒の存在下に行われる。ここで、ハイドロタルサイトと二酸化チタンの複合体粒子からなる触媒を用いることが重要であり、これを用いて重合することによって、結晶化速度が速い非晶ペレットを得ることができる。この複合体粒子は、ハイドロタルサイトの層間に二酸化チタンが導入された構造を有していてもよく、ハイドロタルサイト粒子の表面を二酸化チタンで覆った構造を有していてもよい。ハイドロタルサイト50~95質量%及び二酸化チタン5~50質量%からなることが好ましい。粒径は特に限定されないが、平均粒径が1μm以下の微粒子であることが好ましく、平均粒径が0.4μm以下の微粒子であることがより好ましい。ハイドロタルサイトは、マグネシウムとアルミニウムの炭酸塩と水酸化物を含む化合物であり、代表的にはMgAl(CO)(OH)16・4(HO)という化学組成を有する。当該触媒の使用量は、ジカルボン酸成分100質量部に対して、0.001~0.03質量部であることが好ましい。触媒の使用量が少なすぎると、重合反応速度が低下する。触媒の使用量はより好適には0.002質量部以上であり、さらに好適には0.003質量部以上である。一方、触媒の使用量が多すぎると、押出成形時に用いるフィルタの昇圧速度が大きくなる。触媒の使用量はより好適には0.02質量部以下であり、さらに好適には0.015質量部以下である。 The melt polycondensation reaction following the esterification reaction or transesterification reaction is performed in the presence of a catalyst composed of composite particles of hydrotalcite and titanium dioxide. Here, it is important to use a catalyst composed of composite particles of hydrotalcite and titanium dioxide, and amorphous pellets having a high crystallization rate can be obtained by polymerization using the catalyst. The composite particles may have a structure in which titanium dioxide is introduced between the layers of hydrotalcite, or may have a structure in which the surface of the hydrotalcite particles is covered with titanium dioxide. It preferably comprises 50 to 95% by weight of hydrotalcite and 5 to 50% by weight of titanium dioxide. The particle size is not particularly limited, but is preferably fine particles having an average particle size of 1 μm or less, and more preferably fine particles having an average particle size of 0.4 μm or less. Hydrotalcite is a compound comprising magnesium and aluminum carbonate and hydroxide, typically having a chemical composition that Mg 6 Al 2 (CO 3) (OH) 16 · 4 (H 2 O). The amount of the catalyst used is preferably 0.001 to 0.03 parts by mass with respect to 100 parts by mass of the dicarboxylic acid component. When the amount of the catalyst used is too small, the polymerization reaction rate decreases. The amount of the catalyst used is more preferably 0.002 parts by mass or more, and further preferably 0.003 parts by mass or more. On the other hand, when the amount of the catalyst used is too large, the pressure increase rate of the filter used during extrusion molding increases. The amount of the catalyst used is more preferably 0.02 parts by mass or less, and further preferably 0.015 parts by mass or less.
 溶融重縮合反応に際しては、必要に応じて、着色防止剤や酸化防止剤などの添加剤を添加して、1kPa以下の減圧下に、200~300℃の温度で、所望の粘度のポリエステルが得られるまで行うのが好ましい。溶融重縮合反応は、例えば、槽型のバッチ式重縮合装置、2軸回転式の横型反応器からなる連続式重縮合装置などを用いて行うことができる。また、溶融重縮合反応において着色防止剤を使用する場合は、例えば、亜リン酸、リン酸、トリメチルフォスファイト、トリフェニルフォスファイト、トリデシルフォスファイト、トリメチルフォスフェート、トリデシルフォスフェート、トリフェニルフォスフェートなどのリン化合物を用いることができる。これらのリン化合物は単独で使用してもまたは2種以上を併用してもよい。前記したリン化合物からなる着色防止剤を使用する場合は、ジカルボン酸成分の質量に基づいて0.001~0.5質量%の範囲内であるのが好ましい。亜鉛化合物、ニッケル化合物、コバルト化合物などの助触媒を添加する場合には、着色を防止する観点から、上記リン化合物を併用することが好ましい。このとき、当該リン化合物は、エステル化反応時に添加することが好ましく、こうすることによってリン化合物の添加による重合速度の低下を抑制することができるとともに色調の良好なペレットを得ることができる。 In the melt polycondensation reaction, if necessary, an additive such as a coloring inhibitor or an antioxidant is added to obtain a polyester having a desired viscosity at a temperature of 200 to 300 ° C. under a reduced pressure of 1 kPa or less. It is preferable to carry out until it is done. The melt polycondensation reaction can be performed using, for example, a tank-type batch polycondensation apparatus or a continuous polycondensation apparatus including a biaxial rotating horizontal reactor. In addition, when using an anti-coloring agent in the melt polycondensation reaction, for example, phosphorous acid, phosphoric acid, trimethyl phosphite, triphenyl phosphite, tridecyl phosphite, trimethyl phosphate, tridecyl phosphate, triphenyl Phosphorus compounds such as phosphate can be used. These phosphorus compounds may be used alone or in combination of two or more. When using an anti-coloring agent comprising the above-described phosphorus compound, it is preferably in the range of 0.001 to 0.5 mass% based on the mass of the dicarboxylic acid component. When adding a promoter such as a zinc compound, a nickel compound, or a cobalt compound, it is preferable to use the phosphorus compound in combination from the viewpoint of preventing coloring. At this time, the phosphorus compound is preferably added at the time of the esterification reaction. By doing so, it is possible to suppress a decrease in the polymerization rate due to the addition of the phosphorus compound and obtain pellets with good color tone.
 また、用途に応じて、酸化防止剤、紫外線吸収剤、光安定剤、帯電防止剤、アンチブロッキング剤、滑剤(脂肪酸アミド等)、難燃化剤、無機ないし有機充填剤、架橋剤、染料、顔料等の着色剤、改質用樹脂等の添加剤を配合してもよい。このような添加剤は、原料スラリーに混合してもよいし、エステル化反応時に添加してもよいし、重縮合時に添加してもよい。 Depending on the application, antioxidants, UV absorbers, light stabilizers, antistatic agents, antiblocking agents, lubricants (fatty acid amides, etc.), flame retardants, inorganic or organic fillers, crosslinking agents, dyes, Colorants such as pigments and additives such as modifying resins may be blended. Such an additive may be mixed with the raw material slurry, may be added during the esterification reaction, or may be added during the polycondensation.
 溶融重縮合により得られるポリエステルの固有粘度は、取り扱い性などの点から0.4~0.85dL/gの範囲内であることが好ましい。溶融重縮合により得られるポリエステルの固有粘度が0.4dL/g未満であると、ポリエステルを反応器から取り出す際に、溶融粘度が低すぎて、ストランド状またはシート状などの形状で押し出し難くなり、しかもペレット状に均一に裁断することが困難になる。さらに、固相重合する際に、高分子量化に長い時間を要するようになり生産性が低下する。固有粘度は、より好ましくは0.5dL/g以上であり、さらに好ましくは0.6dL/g以上である。一方、ポリエステルの固有粘度が0.85dL/gよりも高いと、溶融粘度が高すぎるために、反応器からポリエステルを取り出すことが困難になり、しかも熱劣化による着色が生じ易くなる。固有粘度は、より好ましくは0.8dL/g以下であり、さらに好ましくは0.75dL/g以下である。 The intrinsic viscosity of the polyester obtained by melt polycondensation is preferably in the range of 0.4 to 0.85 dL / g from the viewpoint of handleability. When the intrinsic viscosity of the polyester obtained by melt polycondensation is less than 0.4 dL / g, when the polyester is taken out from the reactor, the melt viscosity is too low and it becomes difficult to extrude in the form of a strand or a sheet, Moreover, it becomes difficult to cut into pellets uniformly. Furthermore, when solid-phase polymerization is performed, it takes a long time to increase the molecular weight, resulting in a decrease in productivity. The intrinsic viscosity is more preferably 0.5 dL / g or more, and still more preferably 0.6 dL / g or more. On the other hand, if the intrinsic viscosity of the polyester is higher than 0.85 dL / g, the melt viscosity is too high, so that it is difficult to take out the polyester from the reactor, and coloration due to thermal deterioration tends to occur. The intrinsic viscosity is more preferably 0.8 dL / g or less, and still more preferably 0.75 dL / g or less.
 上記のようにして溶融重合して得られたポリエステルをストランド状、シート状などの形状に押出し、冷却後、ストランドカッターやシートカッターなどにより裁断して、円柱状、楕円柱状、円盤状、ダイス状などの形状の非晶ペレットを製造する。前記した押出し後の冷却は、例えば、水槽を用いる水冷法、冷却ドラムを用いる方法、空冷法などにより行うことができる。 The polyester obtained by melt polymerization as described above is extruded into a strand shape, a sheet shape, and the like, cooled, and then cut with a strand cutter or a sheet cutter to obtain a cylindrical shape, an elliptical column shape, a disk shape, a die shape. Amorphous pellets of the shape such as are manufactured. The above-described cooling after extrusion can be performed by, for example, a water cooling method using a water tank, a method using a cooling drum, an air cooling method, or the like.
 こうして得られた非晶ペレットは、100~160℃の温度範囲で加熱して、予備結晶化させてから固相重合に供することが好ましい。予備結晶化させなかった場合には、固相重合中にペレット同士が膠着し易くなる。予備結晶化に際し、未変性PETであれば短時間で十分に結晶化させることが可能であるが、コモノマー成分を一定量以上含む共重合PETの場合、結晶化速度が大きく低下して予備結晶化工程に長時間を要することが問題であった。本発明者らは、ハイドロタルサイトと二酸化チタンの複合体粒子からなる触媒を用いて非晶ペレットを製造することにより、結晶化速度を大きく向上させることができることを見出した。これによって、固相重合時間を短縮することができ、生産性が向上するのみならず、エネルギー消費量を低減することもできる。予備結晶化の方法としては、真空タンブラー中で結晶化させてもよいし、空気循環式加熱装置内で加熱して結晶化させてもよい。予備結晶化に要する時間は特に限定されないが、通常30分~24時間程度である。予備結晶化に先立って、100℃未満の温度でペレットを乾燥してもよい。 The amorphous pellets thus obtained are preferably heated in a temperature range of 100 to 160 ° C. and preliminarily crystallized before being subjected to solid phase polymerization. If it is not pre-crystallized, the pellets will easily stick together during solid phase polymerization. In the case of precrystallization, unmodified PET can be sufficiently crystallized in a short time, but in the case of copolymerized PET containing a certain amount of comonomer components, the crystallization speed is greatly reduced and precrystallization is performed. The problem was that the process took a long time. The present inventors have found that the crystallization rate can be greatly improved by producing amorphous pellets using a catalyst comprising composite particles of hydrotalcite and titanium dioxide. Thereby, the solid phase polymerization time can be shortened, and not only productivity is improved, but also energy consumption can be reduced. As a precrystallization method, crystallization may be performed in a vacuum tumbler, or crystallization may be performed by heating in an air circulation type heating apparatus. The time required for the precrystallization is not particularly limited, but is usually about 30 minutes to 24 hours. Prior to precrystallization, the pellets may be dried at a temperature below 100 ° C.
 予備結晶化に供する非晶ペレットは、2種類以上のポリエステルのブレンド物であっても構わない。例えば、溶融重合によって得た2種類以上のポリエステルペレットを溶融混練して得られた非晶ペレットを予備結晶化に供することができる。この場合、ブレンドして得られた非晶ペレット全体として、含まれる単量体単位の割合や重合度などを満足すればよい。また、この非晶ペレットを予備結晶化し、固相重合して得られるペレットについても、全体として本発明の規定する条件を満足すればよい。 The amorphous pellets used for the precrystallization may be a blend of two or more kinds of polyesters. For example, amorphous pellets obtained by melt-kneading two or more kinds of polyester pellets obtained by melt polymerization can be subjected to preliminary crystallization. In this case, what is necessary is just to satisfy the ratio of the monomer unit contained, a polymerization degree, etc. as the whole amorphous pellet obtained by blending. In addition, the pellets obtained by pre-crystallizing the amorphous pellets and solid-phase polymerization may satisfy the conditions defined by the present invention as a whole.
 予備結晶化されたペレットの固相重合は、減圧下または窒素ガスなどの不活性ガス中で行うことが好ましい。また、ポリエステル樹脂組成物のペレット間の膠着が生じないように、転動法、気体流動床法などの適当な方法でペレットを動かしながら固相重合を行うことが好ましい。なかでも、減圧下で固相重合を行うことが好ましい。減圧下で固相重合を行う場合の圧力は好適には10kPa以下であり、より好適には1kPa以下である。 The solid-state polymerization of the pre-crystallized pellet is preferably performed under reduced pressure or in an inert gas such as nitrogen gas. Further, it is preferable to carry out solid phase polymerization while moving the pellets by an appropriate method such as a rolling method or a gas fluidized bed method so that no sticking occurs between the pellets of the polyester resin composition. Among these, it is preferable to perform solid-state polymerization under reduced pressure. The pressure when solid-state polymerization is performed under reduced pressure is preferably 10 kPa or less, and more preferably 1 kPa or less.
 固相重合温度は、好適には170~230℃である。固相重合温度が170℃未満の場合には、固相重合時間が長くなり生産性が低下するおそれがある。固相重合温度は、より好適には180℃以上である。一方、固相重合温度が230℃を超える場合には、ペレットが膠着するおそれがある。固相重合温度は、より好適には220℃以下であり、さらに好適には210℃以下である。固相重合時間は、通常5~70時間程度である。 The solid phase polymerization temperature is preferably 170 to 230 ° C. When the solid-phase polymerization temperature is less than 170 ° C., the solid-phase polymerization time becomes long and the productivity may be lowered. The solid state polymerization temperature is more preferably 180 ° C. or higher. On the other hand, when the solid phase polymerization temperature exceeds 230 ° C., the pellets may be stuck. The solid state polymerization temperature is more preferably 220 ° C. or lower, and further preferably 210 ° C. or lower. The solid phase polymerization time is usually about 5 to 70 hours.
 固相重合後のポリエステルの固有粘度は、0.75~1.5dL/gである。固有粘度が0.75dL/g未満の場合には、得られる成形品の強度、耐衝撃性及び透明性が低下する。固有粘度は、より好適には0.8dL/g以上であり、さらに好適には0.85dL/g以上である。一方、固有粘度が1.5dL/gを超える場合には、溶融粘度が高くなりすぎて溶融成形性が低下するとともに、生産性も低下する。固有粘度は、より好適には1.4dL/g以下であり、さらに好適には1.3dL/g以下である。固相重合後のポリエステルの固有粘度が、溶融混練する前のポリエステルの固有粘度の1.15倍以上になることが好ましく、1.2倍以上になることがより好ましく、1.25倍以上になることがさらに好ましい。 The intrinsic viscosity of the polyester after solid phase polymerization is 0.75 to 1.5 dL / g. When the intrinsic viscosity is less than 0.75 dL / g, the strength, impact resistance and transparency of the obtained molded product are lowered. The intrinsic viscosity is more preferably 0.8 dL / g or more, and even more preferably 0.85 dL / g or more. On the other hand, when the intrinsic viscosity exceeds 1.5 dL / g, the melt viscosity becomes too high, the melt moldability is lowered, and the productivity is also lowered. The intrinsic viscosity is more preferably 1.4 dL / g or less, and even more preferably 1.3 dL / g or less. The intrinsic viscosity of the polyester after the solid phase polymerization is preferably 1.15 times or more, more preferably 1.2 times or more, more preferably 1.25 times or more of the intrinsic viscosity of the polyester before melt kneading. More preferably.
 固相重合後のポリエステルのカルボキシル基含有量が18μmol/g以下であることが好ましい。一般に、押出ブロー成形時に発生するピンチオフ部分やフィルムの押出成形時に発生する耳の部分など、工場内で回収されたスクラップの粉砕物を、結晶ペレットに配合して成形品を製造することが広く行われている。ここで、ポリエステルの末端のカルボキシル基の含有量が増加すると、成形品を再溶融してリサイクルする際に重合度が低下することが知られている。したがって、カルボキシル基の含有量の小さいポリエステルを用いる場合には、再溶融時の重合度の低下を抑制することができ、リサイクルを容易にすることができる。これによって、廃棄物の少ない環境負荷の小さい製造工程を実現することができる。カルボキシル基含有量が15μmol/g以下であることがより好ましい。 The carboxyl group content of the polyester after the solid phase polymerization is preferably 18 μmol / g or less. In general, it is widely practiced to produce molded products by blending scrap crushed material collected in the factory, such as pinch-off parts generated during extrusion blow molding and ear parts generated during film extrusion, into crystal pellets. It has been broken. Here, it is known that when the content of the carboxyl group at the end of the polyester increases, the degree of polymerization decreases when the molded product is remelted and recycled. Therefore, when using a polyester having a low carboxyl group content, it is possible to suppress a decrease in the degree of polymerization during remelting and facilitate recycling. Thus, it is possible to realize a manufacturing process with little waste and a low environmental load. The carboxyl group content is more preferably 15 μmol / g or less.
 また、本発明の結晶ペレットに含まれるポリエステルの結晶融解エンタルピーは20J/g以上である。固相重合して得られた結晶ペレットには長時間高温下で結晶化を進行させたポリエステルが含まれているので、予備結晶化後のペレットに含まれるポリエステルよりも大きな結晶融解エンタルピーを有している。本発明のペレットに含まれるポリエステルは、炭素数5以上の他のコモノマー単位を一定量以上含んでいるために結晶性が低下しているにもかかわらず、大きい結晶融解エンタルピーを有している。結晶融解エンタルピーは、好適には25J/g以上であり、より好適には30J/g以上である。結晶融解エンタルピーは、通常50J/g以下である。 The crystal melting enthalpy of the polyester contained in the crystal pellet of the present invention is 20 J / g or more. Since the crystal pellets obtained by solid-phase polymerization contain polyester that has been crystallized at high temperature for a long time, it has a larger crystal melting enthalpy than the polyester contained in the pellet after precrystallization. ing. The polyester contained in the pellets of the present invention has a large crystal melting enthalpy despite the fact that it contains a certain amount or more of another comonomer unit having 5 or more carbon atoms and thus the crystallinity is lowered. The crystal melting enthalpy is preferably 25 J / g or more, and more preferably 30 J / g or more. The crystal melting enthalpy is usually 50 J / g or less.
 本発明の結晶ペレットに含まれるポリエステルの融点は、190~250℃であることが好ましい。融点が低下することによって、透明性、成形性、接着性などを向上させることができる。融点は、より好適には245℃以下であり、さらに好適には240℃以下である。一方、融点が190℃未満の場合には、結晶性及び融点が低くなり過ぎて、固相重合時に膠着しやすくなるとともに、得られる成形品の耐熱性が低下する。融点は、より好適には200℃以上であり、さらに好適には205℃以上である。 The melting point of the polyester contained in the crystal pellet of the present invention is preferably 190 to 250 ° C. Decreasing the melting point can improve transparency, moldability, adhesion and the like. The melting point is more preferably 245 ° C. or less, and further preferably 240 ° C. or less. On the other hand, when the melting point is less than 190 ° C., the crystallinity and the melting point become too low, and it becomes easy to stick at the time of solid phase polymerization, and the heat resistance of the obtained molded product is lowered. The melting point is more preferably 200 ° C. or higher, and even more preferably 205 ° C. or higher.
 本発明のペレットに含まれる、ハイドロタルサイトと二酸化チタンの複合体粒子の含有量は、10~300ppmである。重合触媒である当該複合体粒子の含有量が少なすぎると、非晶ペレットの結晶化速度が低下する。複合体粒子の含有量はより好適には20ppm以上であり、さらに好適には30ppm以上である。一方、複合体粒子の含有量が多すぎると、押出成形時に用いるフィルタの昇圧速度が大きくなる。また、透明性が低下するおそれがあるとともに製造コストも上昇する。複合体粒子の含有量はより好適には200ppm以下であり、さらに好適には140ppm以下である。 The content of the composite particles of hydrotalcite and titanium dioxide contained in the pellet of the present invention is 10 to 300 ppm. When there is too little content of the said composite particle which is a polymerization catalyst, the crystallization rate of an amorphous pellet will fall. The content of the composite particles is more preferably 20 ppm or more, and further preferably 30 ppm or more. On the other hand, when the content of the composite particles is too large, the pressure increase rate of the filter used during extrusion molding increases. In addition, the transparency may be lowered and the manufacturing cost is also increased. The content of the composite particles is more preferably 200 ppm or less, and even more preferably 140 ppm or less.
 本発明の結晶ペレットは、本発明の効果を阻害しない範囲であればポリエステル以外の樹脂成分を含んでも構わない。しかしながらその含有量は、通常5質量%以下であり、1質量%であることが好ましく、実質的に含まないことがより好ましい。また、本発明の結晶ペレットは、本発明の効果を阻害しない範囲であれば、ハイドロタルサイトと二酸化チタンの複合体粒子以外の無機粒子を含んでも構わない。しかしながらその含有量は、通常1000ppm以下であり、100ppm以下であることが好ましく、実質的に含まないことがより好ましい。 The crystal pellet of the present invention may contain a resin component other than polyester as long as the effects of the present invention are not impaired. However, the content is usually 5% by mass or less, preferably 1% by mass, and more preferably substantially not contained. The crystal pellet of the present invention may contain inorganic particles other than the composite particles of hydrotalcite and titanium dioxide as long as the effects of the present invention are not impaired. However, the content is usually 1000 ppm or less, preferably 100 ppm or less, and more preferably substantially free.
 本発明の結晶ペレットを、フェノールとテトラクロロエタンとの等質量混合溶媒に溶解させてパーティクルカウンタで測定した時に、該ペレット1g中に含まれる直径1~5μmの粒子の合計体積が5.0×10-14/g以上であることが好ましい。直径1~5μmの粒子の合計体積が多いことによって、非晶ペレットの結晶化速度が高くなることが、今回明らかになった。図1と図2に示されるように、直径1μm未満の粒子が多いことは結晶化速度に影響を与えていないようであり、特定の粒径範囲の粒子が結晶化速度に影響を与えているようである。結晶化速度が高くなることで、予備結晶化に要する時間を短縮することができ、生産性が向上するとともに、消費エネルギーを低減することができる。直径1~5μmの粒子の合計体積は、より好適には1.0×10-13/g以上であり、さらに好適には2.5×10-13/g以上である。直径1~5μmの粒子の合計体積は、通常、1×10-10/g以下であり、多くの場合1×10-11/g以下である。 When the crystal pellet of the present invention was dissolved in an equal mass mixed solvent of phenol and tetrachloroethane and measured with a particle counter, the total volume of particles having a diameter of 1 to 5 μm contained in 1 g of the pellet was 5.0 × 10. It is preferably −14 m 3 / g or more. It has now been clarified that the crystallization rate of amorphous pellets increases as the total volume of particles having a diameter of 1 to 5 μm increases. As shown in FIG. 1 and FIG. 2, it seems that a large number of particles having a diameter of less than 1 μm does not affect the crystallization rate, and particles in a specific particle size range affect the crystallization rate. It seems. By increasing the crystallization speed, the time required for the precrystallization can be shortened, productivity can be improved, and energy consumption can be reduced. The total volume of particles having a diameter of 1 to 5 μm is more preferably 1.0 × 10 −13 m 3 / g or more, and further preferably 2.5 × 10 −13 m 3 / g or more. The total volume of particles having a diameter of 1 to 5 μm is usually 1 × 10 −10 m 3 / g or less, and in many cases 1 × 10 −11 m 3 / g or less.
 一方、本発明の結晶ペレットを、フェノールとテトラクロロエタンとの等質量混合溶媒に溶解させてパーティクルカウンタで測定した時に、該ペレット1g中に含まれる直径5~20μmの粒子の合計体積が1.2×10-12/g以下であることが好ましい。直径5~20μmの粒子の合計体積が少ないことによって、押出成形時のフィルタの昇圧速度を小さくすることができ、透明性の高い成形品を長時間にわたり連続的に溶融成形することができる。直径5~20μmの粒子の合計体積は、より好適には1.0×10-12/g以下であり、さらに好適には0.9×10-12/g以下である。直径5~20μmの粒子の合計体積は、通常、1×10-14/g以上であり、多くの場合1×10-13/g以上である。 On the other hand, when the crystal pellet of the present invention is dissolved in an equal mass mixed solvent of phenol and tetrachloroethane and measured with a particle counter, the total volume of particles having a diameter of 5 to 20 μm contained in 1 g of the pellet is 1.2. X10 −12 m 3 / g or less is preferable. Since the total volume of particles having a diameter of 5 to 20 μm is small, the pressure increase rate of the filter during extrusion molding can be reduced, and a highly transparent molded product can be continuously melt-formed over a long period of time. The total volume of particles having a diameter of 5 to 20 μm is more preferably 1.0 × 10 −12 m 3 / g or less, and further preferably 0.9 × 10 −12 m 3 / g or less. The total volume of particles having a diameter of 5 to 20 μm is usually 1 × 10 −14 m 3 / g or more, and in many cases 1 × 10 −13 m 3 / g or more.
 こうして得られた結晶ポリエステルペレットの用途は特に限定されない。コモノマー成分を含む共重合PETを含むことから、透明性、接着性あるいは成形性が要求される用途に好適に用いられる。また、固相重合によって重合度が上昇しているので、さらに強度や耐衝撃性が要求される用途に好適に用いられる。高度な透明性が要求される光学フィルム、接着性及び成形性が要求されるフィルム積層金属板、透明性及び耐衝撃性が要求される押出ブロー成形容器などが、特に好適な用途として挙げられる。 The use of the crystalline polyester pellets thus obtained is not particularly limited. Since it contains copolymerized PET containing a comonomer component, it is suitably used for applications that require transparency, adhesion, or moldability. Further, since the degree of polymerization is increased by solid phase polymerization, it is suitably used for applications requiring further strength and impact resistance. Optical films that require a high degree of transparency, film-laminated metal plates that require adhesion and formability, and extrusion blow molded containers that require transparency and impact resistance are particularly suitable applications.
 光学フィルムとしては、液晶ディスプレイ、有機ELディスプレイなどのフラットディスプレイデバイスの表面保護フィルムや、液晶ディスプレイの偏光板支持フィルムなどとして好適に用いられる。本発明の結晶ポリエステルペレットは、押出成形時に細かいフィルタを用いた場合であっても圧力の上昇速度が低いので、当該ペレットを用いることで、粗大粒子の少ない透明性に優れたフィルムを生産性良く成形することができる。 The optical film is suitably used as a surface protective film for flat display devices such as liquid crystal displays and organic EL displays, and a polarizing plate support film for liquid crystal displays. Since the crystalline polyester pellets of the present invention have a low pressure increase rate even when a fine filter is used during extrusion molding, by using the pellets, a film having excellent transparency with few coarse particles can be obtained with high productivity. Can be molded.
 ポリエステルフィルムが積層された積層金属板としては、製缶用のフィルム積層金属板が好適である。缶を成形する際に、金属板とともに絞りしごき成形をするので、接着性及び成形性の良好な本発明のペレットを用いることが好ましい。また、重合度が高い本発明のポリエステルは、成形された缶が変形した時にフィルムが破損されにくくて好ましい。ポリエステルフィルムが積層される金属板としては、鋼板、アルミニウム板などが挙げられる。ポリエステルフィルムを金属板に積層するに際しては、予め成形されたフィルムを金属板に重ねて加熱加圧して積層することもできるし、金属板上に溶融樹脂をコーティングしてフィルムを積層することもできる。 As the laminated metal plate on which the polyester film is laminated, a film laminated metal plate for can making is suitable. When forming a can, it is drawn and ironed together with a metal plate, so it is preferable to use the pellet of the present invention having good adhesion and formability. Moreover, the polyester of the present invention having a high degree of polymerization is preferable because the film is hardly damaged when the molded can is deformed. Examples of the metal plate on which the polyester film is laminated include a steel plate and an aluminum plate. When laminating a polyester film on a metal plate, a pre-formed film can be laminated on the metal plate by heating and pressing, or a film can be laminated by coating a molten resin on the metal plate. .
 押出ブロー成形容器としては、化粧品、飲料、医薬品、調味料などを収容するブロー成形ボトルなどとして好適に用いられる。本発明の結晶ポリエステルペレットは、透明性が高く、成形時の結晶化に由来する白化が起こりにくい。また、重合度が高く耐衝撃性にも優れる。さらに、コモノマーとして多官能モノマーを用いることによって、耐ドローダウン性能が良好で成形性の良好なペレットとすることも可能である。 As the extrusion blow molded container, it is suitably used as a blow molded bottle for storing cosmetics, beverages, pharmaceuticals, seasonings and the like. The crystalline polyester pellet of the present invention has high transparency and is less likely to be whitened due to crystallization during molding. In addition, the degree of polymerization is high and the impact resistance is also excellent. Furthermore, by using a polyfunctional monomer as a comonomer, it is possible to obtain pellets having good draw-down resistance and good moldability.
 以下、実施例により本発明をさらに詳細に説明するが、本発明はかかる実施例により何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the examples.
(1)固有粘度
 非晶ペレット及び固相重合後の結晶ペレット中のポリエステルの固有粘度は、フェノールと1,1,2,2-テトラクロロエタンとの等質量混合物を溶媒として用いて、温度30℃にて測定した。当該ペレット中に含まれている粒子の質量は微量なので無視した。
(1) Intrinsic viscosity The intrinsic viscosity of the polyester in the amorphous pellets and the crystal pellets after solid-phase polymerization is 30 ° C. using an equal mass mixture of phenol and 1,1,2,2-tetrachloroethane as a solvent. Measured with Since the mass of the particles contained in the pellet was very small, it was ignored.
(2)融点(Tm)、融解エンタルピー(ΔHm)およびガラス転移温度(Tg)
 固相重合後の結晶ペレットの融点(Tm)及び融解エンタルピー(ΔHm)は、示差走査熱量計(TA インスツルメント製TA Q2000型)を用い、昇温速度10℃/分で測定した。ポリエステルのガラス転移温度(Tg)は、同じ装置を用い、固相重合後の結晶ペレットを試料とし、昇温速度10℃/分で280℃まで昇温した後、-50℃/分で30℃まで急冷してから、再び昇温速度10℃/分で昇温したときのデータより算出した。また、予備結晶化ペレットの融解エンタルピーも上記と同様にして測定した。
(2) Melting point (Tm), melting enthalpy (ΔHm) and glass transition temperature (Tg)
The melting point (Tm) and melting enthalpy (ΔHm) of the crystal pellet after solid-phase polymerization were measured using a differential scanning calorimeter (TA Q2000 model, manufactured by TA Instruments) at a heating rate of 10 ° C./min. The glass transition temperature (Tg) of the polyester was the same apparatus, using the crystal pellets after solid-phase polymerization as a sample, heated to 280 ° C. at a temperature increase rate of 10 ° C./min, and then 30 ° C. at −50 ° C./min. The temperature was calculated from the data when the temperature was increased again at a rate of temperature increase of 10 ° C./min. Further, the melting enthalpy of the pre-crystallized pellet was also measured in the same manner as described above.
(3)粒度分布
 目開き1ミクロンのフィルタでろ過した、フェノールと1,1,2,2-テトラクロロエタンとの等質量混合物500g中に固相重合後の結晶ペレット0.4gを100℃で溶解させ、室温に戻して1日間静置した。50mL(65g)の溶液を液中パーティクルカウンタ(Particle Sizing Systems社製 アキュサイザー780SIS)に通液させ、溶液中に含まれる粒子数を計測した。この計測値からペレットを含んでいないブランク溶液の計測値を差し引くことで、ペレット中に含まれる粒子数を算出した。測定は3回行い、平均値を用いた。直径1~5μmの粒子の体積を積算して、その合計体積をペレット1g当たりの値として求めた。また、直径5~20μmの粒子の体積を積算して、その合計体積をペレット1g当たりの値として求めた。
(3) Particle size distribution 0.4 g of crystal pellets after solid-phase polymerization was dissolved at 100 ° C. in 500 g of an equal mass mixture of phenol and 1,1,2,2-tetrachloroethane filtered through a 1 micron mesh filter. And returned to room temperature and allowed to stand for 1 day. 50 mL (65 g) of the solution was passed through an in-liquid particle counter (Accurizer 780SIS manufactured by Particle Sizing Systems), and the number of particles contained in the solution was measured. The number of particles contained in the pellet was calculated by subtracting the measured value of the blank solution not containing the pellet from this measured value. The measurement was performed 3 times and the average value was used. The volume of particles having a diameter of 1 to 5 μm was integrated, and the total volume was determined as a value per 1 g of pellets. Further, the volume of particles having a diameter of 5 to 20 μm was integrated, and the total volume was determined as a value per 1 g of pellets.
(4)カルボキシル基含有量
 固相重合後の結晶ペレット0.1gをベンジルアルコール10mlに加熱溶解した後、0.1NのNaOHのメタノール/ベンジルアルコール=1/9(質量比)の溶液を使用して滴定により酸価を求め、それをポリエステルのカルボキシル基含有量(μmol/g)とした。当該ペレット中に含まれている粒子の質量は微量なので無視した。
(4) Carboxyl group content After 0.1 g of crystal pellets after solid-phase polymerization were dissolved in 10 ml of benzyl alcohol by heating, a 0.1N NaOH methanol / benzyl alcohol = 1/9 (mass ratio) solution was used. Then, the acid value was determined by titration, and this was defined as the carboxyl group content (μmol / g) of the polyester. Since the mass of the particles contained in the pellet was very small, it was ignored.
(5)溶融粘度
 固相重合後の結晶ペレットを、120℃で24時間真空乾燥し、ペレットが含有する水分率が50~100ppmになったサンプルを用い、株式会社東洋精機製作所製キャピラリーレオメーター「キャピログラフ1D」により溶融粘度を測定した。測定温度は260℃、せん断速度は10sec-1から6000sec-1の範囲で測定を行い、15sec-1での値を、溶融粘度として得た。
(5) Melt Viscosity Crystal pellets after solid-phase polymerization were vacuum-dried at 120 ° C. for 24 hours, and using a sample with a moisture content of 50 to 100 ppm contained in the pellets, a capillary rheometer “Toyo Seiki Seisakusho Co., Ltd.” The melt viscosity was measured by “Capillograph 1D”. Measurement temperature 260 ° C., a shear rate was measured in the range of 6000Sec -1 from 10 sec -1, the values at 15 sec -1, was obtained as a melt viscosity.
(6)b値
 固相重合後の結晶ペレットの樹脂色(b値)を、ASTM-D2244(color scale system2)に準拠して、日本電色工業株式会社製測色色差計「ZE-2000」を用いて測定した。
(6) b value The resin color (b value) of the crystal pellets after solid-phase polymerization is determined according to ASTM-D2244 (color scale system 2), a colorimetric color difference meter “ZE-2000” manufactured by Nippon Denshoku Industries Co., Ltd. It measured using.
実施例1
(1)溶融重縮合
 テレフタル酸(TA)85.0質量部、イソフタル酸(IPA)15.0質量部およびエチレングリコール(EG)44.8質量部からなるスラリーをつくり、加圧下(ゲージ圧0.25MPa)で250℃の温度に加熱してエステル化反応を行ってオリゴマーを製造した。得られたオリゴマーを重縮合槽に移し、これにハイドロタルサイトと二酸化チタンの複合体粒子のエチレングリコール分散液であるSATICA SPC-124-20(堺化学工業株式会社製)0.033質量部(このうち、重合触媒である複合体粒子が0.007質量部、エチレングリコールが0.026質量部)および亜リン酸0.007質量部を加えた。エチレングリコール中での複合体粒子の平均粒径は0.3μmである。0.1kPa下、280℃で90分間溶融重縮合させて、固有粘度0.69dL/gのポリエステルを製造した。得られたポリエステルをノズルからストランド状に押出し水冷した後、円柱状(直径約2.5mm、長さ約2.5mm)に切断して、ポリエステルの非晶ペレットを得た。
Example 1
(1) Melt polycondensation A slurry consisting of 85.0 parts by mass of terephthalic acid (TA), 15.0 parts by mass of isophthalic acid (IPA) and 44.8 parts by mass of ethylene glycol (EG) was prepared and subjected to pressure (gauge pressure 0 The oligomer was produced by heating to 250 ° C. at a temperature of 250 MPa for esterification reaction. The obtained oligomer was transferred to a polycondensation tank, and 0.033 parts by mass of SATICA SPC-124-20 (manufactured by Sakai Chemical Industry Co., Ltd.), which is an ethylene glycol dispersion of composite particles of hydrotalcite and titanium dioxide. Of these, 0.007 parts by mass of composite particles as a polymerization catalyst and 0.026 parts by mass of ethylene glycol) and 0.007 parts by mass of phosphorous acid were added. The average particle size of the composite particles in ethylene glycol is 0.3 μm. Polyester having an intrinsic viscosity of 0.69 dL / g was produced by melt polycondensation at 0.1 kPa and 280 ° C. for 90 minutes. The obtained polyester was extruded into a strand form from a nozzle and cooled with water, and then cut into a cylindrical shape (diameter: about 2.5 mm, length: about 2.5 mm) to obtain an amorphous pellet of polyester.
(2)非晶ペレットの予備結晶化
 以上のようにして得られたポリエステルの非晶ペレットを転動式真空固相重合装置に投入し、0.1kPa下、120℃で10時間予備結晶化を行った。こうして得られた予備結晶化ペレットの融解エンタルピーを測定したところ、14J/gであった。
(2) Precrystallization of amorphous pellets The polyester amorphous pellets obtained as described above were put into a rolling vacuum solid-phase polymerization apparatus and precrystallized at 120 ° C for 10 hours under 0.1 kPa. went. The melting enthalpy of the precrystallized pellet thus obtained was measured and found to be 14 J / g.
(3)固相重合
 前記予備結晶化の後に、温度を上昇させて、0.1kPa下、185℃で30時間固相重合させて、結晶ペレットを得た。得られた共重合ポリエステルの固有粘度は0.89dL/gであった。また、当該共重合ポリエステルを構成する単量体成分の比率を1H-NMRスペクトル(装置:日本電子社製「JNM-GX-500型」、溶媒:重水素化トリフルオロ酢酸)により確認したところ、テレフタル酸単位:イソフタル酸単位:エチレングリコール単位:ジエチレングリコール単位=42.5:7.5:48.5:1.5(モル比)であった。カルボキシル基含有量は10μmol/gであった。融点(Tm)、ガラス転移温度(Tg)及び融解エンタルピー(ΔHm)は、それぞれ、212℃、76℃及び38J/gであった。b値は8であった。また、粒度分布測定における直径1~5μmの粒子の体積は7.2×10-13/gであり、直径5~20μmの粒子の体積は7.6×10-13/gであった。260℃、15sec-1における溶融粘度は2000Pa・secであった。
(3) Solid Phase Polymerization After the preliminary crystallization, the temperature was raised and solid phase polymerization was performed at 185 ° C. under 0.1 kPa for 30 hours to obtain crystal pellets. The intrinsic viscosity of the obtained copolyester was 0.89 dL / g. The ratio of the monomer components constituting the copolymerized polyester was confirmed by 1 H-NMR spectrum (apparatus: “JNM-GX-500 type” manufactured by JEOL Ltd., solvent: deuterated trifluoroacetic acid). Terephthalic acid unit: isophthalic acid unit: ethylene glycol unit: diethylene glycol unit = 42.5: 7.5: 48.5: 1.5 (molar ratio). The carboxyl group content was 10 μmol / g. The melting point (Tm), glass transition temperature (Tg) and melting enthalpy (ΔHm) were 212 ° C., 76 ° C. and 38 J / g, respectively. The b value was 8. In the particle size distribution measurement, the volume of particles having a diameter of 1 to 5 μm is 7.2 × 10 −13 m 3 / g, and the volume of particles having a diameter of 5 to 20 μm is 7.6 × 10 −13 m 3 / g. there were. The melt viscosity at 260 ° C. and 15 sec −1 was 2000 Pa · sec.
(4)押出時のフィルタ昇圧試験
 20φの単軸押出機に三連フィルタ(目開き50μm/500μm/10μm)を取り付けて1時間連続押出して、押出開始時と押出終了時の樹脂圧の変化から、1時間当たりの樹脂圧の上昇速度(MPa/h)を測定した。スクリュの回転数は130rpm、吐出量は8kg/hrとした。シリンダー温度は280-290℃に設定し、押出時の樹脂温度は270-285℃であった。その結果、フィルタの昇圧速度は0.8MPa/hrであった。
(4) Filter pressurization test during extrusion Attach a triple filter (mesh size 50μm / 500μm / 10μm) to a 20φ single-screw extruder and continuously extrude for 1 hour. From the change in resin pressure at the start and end of extrusion The rate of increase in the resin pressure per hour (MPa / h) was measured. The rotation speed of the screw was 130 rpm, and the discharge rate was 8 kg / hr. The cylinder temperature was set at 280-290 ° C., and the resin temperature during extrusion was 270-285 ° C. As a result, the pressure increase rate of the filter was 0.8 MPa / hr.
実施例2
 重合触媒の配合量を0.0023質量部とし、亜リン酸の配合量を0.0023質量部とし、溶融重合時間を120分とし、固相重合時間を40時間とした以外は、実施例1と同様にして結晶ペレットを製造し、評価した。結果をまとめて表1及び2に示す。
Example 2
Example 1 except that the amount of the polymerization catalyst was 0.0023 parts by mass, the amount of phosphorous acid was 0.0023 parts by mass, the melt polymerization time was 120 minutes, and the solid-phase polymerization time was 40 hours. In the same manner, crystal pellets were produced and evaluated. The results are summarized in Tables 1 and 2.
実施例3
 重合触媒の配合量を0.010質量部とし、亜リン酸の配合量を0.010質量部とし、溶融重合時間を80分とし、固相重合時間を17時間とした以外は、実施例1と同様にして結晶ペレットを製造し、評価した。結果をまとめて表1及び2に示す。
Example 3
Example 1 except that the amount of the polymerization catalyst was 0.010 parts by mass, the amount of phosphorous acid was 0.010 parts by mass, the melt polymerization time was 80 minutes, and the solid phase polymerization time was 17 hours. In the same manner, crystal pellets were produced and evaluated. The results are summarized in Tables 1 and 2.
実施例4
 重合触媒の配合量を0.017質量部とし、亜リン酸の配合量を0.017質量部とし、溶融重合時間を75分とし、固相重合時間を12時間とした以外は、実施例1と同様にして結晶ペレットを製造し、評価した。結果をまとめて表1及び2に示す。
Example 4
Example 1 except that the amount of the polymerization catalyst was 0.017 parts by mass, the amount of phosphorous acid was 0.017 parts by mass, the melt polymerization time was 75 minutes, and the solid phase polymerization time was 12 hours. In the same manner, crystal pellets were produced and evaluated. The results are summarized in Tables 1 and 2.
比較例1
 重合触媒の配合量を0.0006質量部とし、亜リン酸の配合量を0.0006質量部とした以外は、実施例1と同様にして溶融重合を行ったが、重合度が十分に上昇しなかったのでペレットを得ることができず、その後の評価は行わなかった。結果をまとめて表1及び2に示す。
Comparative Example 1
Melt polymerization was carried out in the same manner as in Example 1 except that the amount of the polymerization catalyst was 0.0006 parts by mass and the amount of phosphorous acid was 0.0006 parts by mass, but the degree of polymerization was sufficiently increased. As a result, pellets could not be obtained and subsequent evaluation was not performed. The results are summarized in Tables 1 and 2.
比較例2
 重合触媒として、チタン(IV)テトライソプロポキシドを0.041質量部を配合し、亜リン酸の配合量を0.007質量部とし、固相重合時間を35時間とした以外は、実施例1と同様にして結晶ペレットを製造し、評価した。結果をまとめて表1及び2に示す。
Comparative Example 2
Example except that 0.041 parts by mass of titanium (IV) tetraisopropoxide was added as a polymerization catalyst, the amount of phosphorous acid was 0.007 parts by mass, and the solid phase polymerization time was 35 hours. In the same manner as in Example 1, crystal pellets were produced and evaluated. The results are summarized in Tables 1 and 2.
比較例3
 重合触媒として、二酸化ゲルマニウム(GeO)を0.012質量部配合し、亜リン酸の配合量を0.012質量部とし、固相重合時間を20時間とした以外は、実施例1と同様にして結晶ペレットを製造し、評価した。結果をまとめて表1及び2に示す。
Comparative Example 3
As a polymerization catalyst, it is the same as Example 1 except that 0.012 parts by mass of germanium dioxide (GeO 2 ) is added, the amount of phosphorous acid is 0.012 parts by mass, and the solid phase polymerization time is 20 hours. Crystal pellets were manufactured and evaluated. The results are summarized in Tables 1 and 2.
比較例4
 重合触媒として、三酸化アンチモン(Sb)を0.042質量部配合し、亜リン酸の配合量を0.012質量部とし、固相重合時間を25時間とした以外は、実施例1と同様にして結晶ペレットを製造し、評価した。結果をまとめて表1及び2に示す。
Comparative Example 4
Example except that 0.042 parts by mass of antimony trioxide (Sb 2 O 3 ) was compounded as a polymerization catalyst, the amount of phosphorous acid was 0.012 parts by mass, and the solid phase polymerization time was 25 hours. In the same manner as in Example 1, crystal pellets were produced and evaluated. The results are summarized in Tables 1 and 2.
実施例5
 テレフタル酸85.0質量部、イソフタル酸15.0質量部およびエチレングリコール44.8質量部からなるスラリーをつくり、これに、「SATICA SPC-124-20」(堺化学工業株式会社製)0.033質量部(このうち、重合触媒である複合体粒子が0.007質量部、エチレングリコールが0.026質量部)、および亜リン酸0.007質量部を加えた。このスラリーを加圧下(ゲージ圧0.25MPa)で250℃の温度に加熱してエステル化反応を行って低重合体を製造した。この低重合体を用いて、固相重合時間を70時間とした以外は実施例1と同様にして、結晶ペレットを製造し、評価した。結果をまとめて表1及び2に示す。
Example 5
A slurry composed of 85.0 parts by mass of terephthalic acid, 15.0 parts by mass of isophthalic acid, and 44.8 parts by mass of ethylene glycol was prepared, and “SATA SPC-124-20” (manufactured by Sakai Chemical Industry Co., Ltd.) 033 parts by mass (of which 0.007 parts by mass of composite particles as a polymerization catalyst and 0.026 parts by mass of ethylene glycol) and 0.007 parts by mass of phosphorous acid were added. This slurry was heated to a temperature of 250 ° C. under pressure (gauge pressure of 0.25 MPa) to carry out an esterification reaction to produce a low polymer. Using this low polymer, crystal pellets were produced and evaluated in the same manner as in Example 1 except that the solid phase polymerization time was set to 70 hours. The results are summarized in Tables 1 and 2.
比較例5
 重合触媒として、チタン(IV)テトライソプロポキシドを0.041質量部配合し、亜リン酸の配合量を0.007質量部とし、固相重合時間を40時間とした以外は、実施例5と同様にして結晶ペレットを製造し、評価した。結果をまとめて表1及び2に示す。
Comparative Example 5
Example 5 except that 0.041 parts by mass of titanium (IV) tetraisopropoxide was added as a polymerization catalyst, the amount of phosphorous acid was 0.007 parts by mass, and the solid-state polymerization time was 40 hours. In the same manner, crystal pellets were produced and evaluated. The results are summarized in Tables 1 and 2.
比較例6
 重合触媒として、二酸化ゲルマニウム(GeO)を0.012質量部配合し、亜リン酸の配合量を0.012質量部とし、固相重合時間を20時間とした以外は、実施例5と同様にして結晶ペレットを製造し、評価した。結果をまとめて表1及び2に示す。
Comparative Example 6
As Example 5, except that 0.012 parts by mass of germanium dioxide (GeO 2 ), 0.012 parts by mass of phosphorous acid, and 20 hours of solid phase polymerization were used. Crystal pellets were manufactured and evaluated. The results are summarized in Tables 1 and 2.
比較例7
 重合触媒として、三酸化アンチモン(Sb)を0.042質量部配合し、亜リン酸の配合量を0.012質量部とし、固相重合時間を25時間とした以外は、実施例5と同様にして結晶ペレットを製造し、評価した。結果をまとめて表1及び2に示す。
Comparative Example 7
Example except that 0.042 parts by mass of antimony trioxide (Sb 2 O 3 ) was compounded as a polymerization catalyst, the amount of phosphorous acid was 0.012 parts by mass, and the solid phase polymerization time was 25 hours. In the same manner as in Example 5, crystal pellets were produced and evaluated. The results are summarized in Tables 1 and 2.
実施例6
 エステル化反応前に酢酸亜鉛0.007質量部を添加したこと、亜リン酸0.007質量部の添加時期をエステル化反応前に変更したこと、溶融重合時間を80分にしたこと、固相重合時間を25時間とした以外は、実施例1と同様にして結晶ペレットを製造し、評価した。結果をまとめて表1及び2に示す。
Example 6
That 0.007 parts by mass of zinc acetate was added before the esterification reaction, that the addition time of 0.007 parts by mass of phosphorous acid was changed before the esterification reaction, that the melt polymerization time was 80 minutes, Crystal pellets were produced and evaluated in the same manner as in Example 1 except that the polymerization time was 25 hours. The results are summarized in Tables 1 and 2.
実施例7
 テレフタル酸73.1質量部、イソフタル酸10.7質量部、水素添加ダイマー酸(HDA)16.2質量部およびエチレングリコール39.0質量部からなるスラリーをつくり、固相重合時間を30時間とした以外は、実施例1と同様にして、結晶ペレットを製造し、評価した。結果をまとめて表1及び2に示す。
Example 7
A slurry composed of 73.1 parts by mass of terephthalic acid, 10.7 parts by mass of isophthalic acid, 16.2 parts by mass of hydrogenated dimer acid (HDA) and 39.0 parts by mass of ethylene glycol was prepared, and the solid-state polymerization time was 30 hours. Except that, crystal pellets were produced and evaluated in the same manner as in Example 1. The results are summarized in Tables 1 and 2.
実施例8
(1)結晶ペレットの製造
 テレフタル酸100質量部、エチレングリコール42.6質量部およびビスフェノールAエチレンオキサイド付加物(BPE)9.5質量部からなるスラリーをつくり、固相重合温度を210℃、固相重合時間を40時間とした以外は、実施例1と同様にして、結晶ペレットを製造し、評価した。押出時のフィルタ昇圧試験は行わなかった。結果をまとめて表1及び2に示す。
Example 8
(1) Production of crystal pellets A slurry consisting of 100 parts by mass of terephthalic acid, 42.6 parts by mass of ethylene glycol and 9.5 parts by mass of bisphenol A ethylene oxide adduct (BPE) was prepared. Crystal pellets were produced and evaluated in the same manner as in Example 1 except that the phase polymerization time was 40 hours. The filter pressurization test during extrusion was not performed. The results are summarized in Tables 1 and 2.
(2)ボトルの作製
 得られた結晶ペレットを用い、押出ブロー成形装置(株式会社タハラ製「MSE-40E型」)を用いて、シリンダー温度260-290℃、ダイス温度240-250℃、成形サイクル15秒、スクリュ回転数20-24rpm、押出し樹脂圧19-25MPa、金型温度20℃にて、容積220mLの透明ボトル(27.5g±0.5g)を成形した。得られたボトルは透明性が良好であった。
(2) Production of bottles Using the obtained crystal pellets, using an extrusion blow molding apparatus (“MSE-40E type” manufactured by Tahara Co., Ltd.), cylinder temperature 260-290 ° C., die temperature 240-250 ° C., molding cycle A transparent bottle (27.5 g ± 0.5 g) having a volume of 220 mL was molded at 15 seconds, a screw rotational speed of 20-24 rpm, an extrusion resin pressure of 19-25 MPa, and a mold temperature of 20 ° C. The obtained bottle had good transparency.
(3)ボトル落下試験
 成形直後のボトルに総重量が263g±0.5gになるように水(水温20-25℃)を入れた後、垂直に設置された直径10cmの筒中を通過させて、高さ100cmから水平なコンクリート面と45度傾斜したコンクリート面に交互に落下させた。ボトルに割れ又は亀裂が発生するまでのサイクル数(1サイクルにつき、ボトルを、水平面に1回、45度斜面に1回の計2回落下させた)を測定した。最大10サイクル繰り返した。合計10本のボトルの落下試験を行った結果、ボトルは1本も破損しなかった。
(3) Bottle drop test After putting water (water temperature 20-25 ° C) so that the total weight becomes 263 g ± 0.5 g in the bottle immediately after molding, it is passed through a 10 cm diameter cylinder installed vertically, From a height of 100 cm, it was dropped alternately on a horizontal concrete surface and a concrete surface inclined 45 degrees. The number of cycles until the bottle was cracked or cracked (the bottle was dropped twice in total, once on the horizontal surface and once on the 45 ° slope) was measured. Up to 10 cycles were repeated. As a result of a drop test of a total of 10 bottles, no bottles were broken.
実施例9
 エステル化反応前に酢酸コバルト0.007質量部を添加したこと、亜リン酸0.007質量部の添加時期をエステル化反応前に変更したこと、溶融重合時間を80分にしたこと、固相重合時間を35時間とした以外は、実施例8と同様にして結晶ペレット及び押出ブロー成形ボトルを製造し、評価した。結果をまとめて表1及び2に示す。
Example 9
That 0.007 parts by mass of cobalt acetate was added before the esterification reaction, that the addition time of 0.007 parts by mass of phosphorous acid was changed before the esterification reaction, that the melt polymerization time was 80 minutes, Crystal pellets and extrusion blow molded bottles were produced and evaluated in the same manner as in Example 8 except that the polymerization time was 35 hours. The results are summarized in Tables 1 and 2.
実施例10
 テレフタル酸100質量部、エチレングリコール38.1質量部およびシクロヘキサンジメタノール(CHDM)13.0質量部からなるスラリーをつくり、加圧下(ゲージ圧0.25MPa)で250℃の温度に加熱してエステル化反応を行って低重合体を製造した。得られた低重合体を重縮合槽に移し、これにSATICA SPC-124-20(堺化学工業株式会社製)0.033質量部(このうち、重合触媒である複合体粒子が0.007質量部、エチレングリコールが0.026質量部)、ヒンダードフェノール系酸化防止剤(BASF製「Irganox1010」)0.012質量部質量部およびホスファイト系酸化防止剤(株式会社ADEKA製「アデカスタブPEP-36」)0.029質量部を加えた。0.1kPa下、280℃で90分間溶融重縮合させて、極限粘度0.69dL/gのポリエステルを製造した。得られたポリエステルをノズルからストランド状に押出し水冷した後、円柱状(直径約2.5mm、長さ約2.5mm)に切断して、ポリエステルの非晶ペレットを得た。得られた非晶ペレットを用いて、固相重合温度を205℃とした以外は実施例8と同様にして、結晶ペレット及び押出ブロー成形ボトルを製造し、評価した。ボトル落下試験の結果、ボトルは1本も破損しなかった。結果をまとめて表1及び2に示す。
Example 10
A slurry consisting of 100 parts by weight of terephthalic acid, 38.1 parts by weight of ethylene glycol and 13.0 parts by weight of cyclohexanedimethanol (CHDM) is prepared and heated to a temperature of 250 ° C. under pressure (gauge pressure of 0.25 MPa) to form an ester. A low polymer was produced by carrying out a polymerization reaction. The obtained low polymer was transferred to a polycondensation tank, and 0.033 parts by mass of SATICA SPC-124-20 (manufactured by Sakai Chemical Industry Co., Ltd.) (of which, composite particles as a polymerization catalyst were 0.007 parts by mass). Parts, ethylene glycol is 0.026 parts by mass), hindered phenol-based antioxidant (“Irganox 1010” manufactured by BASF) 0.012 parts by mass and phosphite-based antioxidant (“ADEKA STAB PEP-36 manufactured by ADEKA Corporation) ]) 0.029 parts by weight were added. Polyester having an intrinsic viscosity of 0.69 dL / g was produced by melt polycondensation at 280 ° C. for 90 minutes under 0.1 kPa. The obtained polyester was extruded into a strand form from a nozzle and cooled with water, and then cut into a cylindrical shape (diameter: about 2.5 mm, length: about 2.5 mm) to obtain an amorphous pellet of polyester. Using the obtained amorphous pellets, crystal pellets and extrusion blow molded bottles were produced and evaluated in the same manner as in Example 8 except that the solid-state polymerization temperature was set to 205 ° C. As a result of the bottle drop test, no bottle was damaged. The results are summarized in Tables 1 and 2.
比較例8
 テレフタル酸98.0質量部、イソフタル酸2.0質量部およびエチレングリコール44.8質量部からなるスラリーをつくり、固相重合温度を225℃、固相重合時間を20時間とした以外は、実施例8と同様にして、結晶ペレット及び押出ブロー成形ボトルを製造し、評価した。成形時にボトルの口部が白化してしまい、透明性の良好なボトルを得ることができなかったため、ボトル落下試験は実施しなかった。結果をまとめて表1及び2に示す。
Comparative Example 8
Except that a slurry consisting of 98.0 parts by mass of terephthalic acid, 2.0 parts by mass of isophthalic acid and 44.8 parts by mass of ethylene glycol was prepared, the solid phase polymerization temperature was 225 ° C., and the solid phase polymerization time was 20 hours. As in Example 8, crystal pellets and extrusion blow molded bottles were produced and evaluated. Since the mouth of the bottle was whitened during molding and a bottle with good transparency could not be obtained, the bottle drop test was not performed. The results are summarized in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び表2に示されるように、触媒としてハイドロタルサイトと二酸化チタンの複合体粒子を用いた実施例では、非晶ペレットの結晶化速度が速くなり、色調が良好で、カルボキシル濃度の低い結晶ポリエステルペレットを生産性良く得ることができた。当該結晶ペレットは、粗大粒子が少ないために、透明性が高く、押出成形時のフィルタ圧力の上昇速度も小さい。このとき、エステル化反応の後に触媒を添加して溶融重合する方がエステル化反応の前に触媒を添加するよりも、非晶ペレットの結晶化速度が速いことがわかった(実施例1及び5の対比)。 As shown in Tables 1 and 2, in the examples using the composite particles of hydrotalcite and titanium dioxide as the catalyst, the crystallization speed of the amorphous pellets is increased, the color tone is good, and the carboxyl concentration is low. Crystalline polyester pellets could be obtained with good productivity. Since the crystal pellet has few coarse particles, it has high transparency, and the rate of increase in the filter pressure during extrusion molding is also small. At this time, it was found that the crystallization rate of amorphous pellets was faster in the melt polymerization by adding the catalyst after the esterification reaction than in the case of adding the catalyst before the esterification reaction (Examples 1 and 5). Contrast).
 触媒としてチタン(IV)テトライソプロポキシドを用いた場合(比較例2及び5)には、ペレットの色調が悪化した。触媒として二酸化ゲルマニウムを用いた場合(比較例3及び6)には、予備結晶化速度が低下するとともに、カルボキシル基含有量が大きくなった。触媒として三酸化アンチモンを用いた場合(比較例4及び7)には、予備結晶化速度が低下するとともに、押出成形時のフィルタ圧力の上昇速度が大きくなった。 When titanium (IV) tetraisopropoxide was used as a catalyst (Comparative Examples 2 and 5), the color tone of the pellet deteriorated. When germanium dioxide was used as the catalyst (Comparative Examples 3 and 6), the precrystallization rate decreased and the carboxyl group content increased. When antimony trioxide was used as a catalyst (Comparative Examples 4 and 7), the precrystallization rate decreased and the filter pressure increase rate during extrusion molding increased.
 ハイドロタルサイトと二酸化チタンの複合体粒子を触媒として用いた実施例1と、二酸化ゲルマニウム(GeO)を触媒として用いた比較例3について、粒度分布測定のチャートを図1及び図2に示して対比した。比較例3では粒度分布のピークが0.60μmであるのに対し、実施例1では1.04μmであり、ピーク値は比較例3の方が小さかった。しかしながら、直径1~5μmの粒子の数は実施例1の方が多く、直径5~20μmの粒子の数は比較例3の方が多かった。このことからも、直径1~5μmの粒子が結晶化速度に影響していることが推測される。 FIG. 1 and FIG. 2 show the particle size distribution measurement charts of Example 1 using composite particles of hydrotalcite and titanium dioxide as a catalyst and Comparative Example 3 using germanium dioxide (GeO 2 ) as a catalyst. Contrast. In Comparative Example 3, the peak of the particle size distribution was 0.60 μm, whereas in Example 1, it was 1.04 μm, and the peak value of Comparative Example 3 was smaller. However, the number of particles having a diameter of 1 to 5 μm was larger in Example 1, and the number of particles having a diameter of 5 to 20 μm was larger in Comparative Example 3. From this, it is presumed that particles having a diameter of 1 to 5 μm have an influence on the crystallization speed.
 実施例1と実施例6の対比、及び実施例8と実施例9の対比から、エステル化反応の前に助触媒と亜リン酸を添加することによって、重合時間が短縮されるとともに、色調の良好なペレットが得られることがわかった。 From the comparison between Example 1 and Example 6 and the comparison between Example 8 and Example 9, the addition of the cocatalyst and phosphorous acid prior to the esterification reaction shortens the polymerization time and improves the color tone. It was found that good pellets were obtained.

Claims (9)

  1.  ポリエステルと複合体粒子を含有する樹脂組成物からなる結晶ポリエステルペレットであって;
     前記ポリエステルが、テレフタル酸単位を25~50モル%、エチレングリコール単位を25~49.5モル%、ジエチレングリコール単位を0.5~2.5モル%、及び炭素数5以上の他のコモノマー単位を1.5~25モル%含有し、
     前記ポリエステルの固有粘度が0.75~1.5dL/gであり、
     前記ペレットの結晶融解エンタルピーが20J/g以上であり、
     前記複合体粒子がハイドロタルサイトと二酸化チタンの複合体粒子であり、かつ
     該複合体粒子の含有量が10~300ppmであることを特徴とするペレット。
    A crystalline polyester pellet comprising a resin composition containing polyester and composite particles;
    The polyester comprises 25 to 50 mol% terephthalic acid units, 25 to 49.5 mol% ethylene glycol units, 0.5 to 2.5 mol% diethylene glycol units, and other comonomer units having 5 or more carbon atoms. Containing 1.5 to 25 mol%,
    The polyester has an intrinsic viscosity of 0.75 to 1.5 dL / g,
    The crystal melting enthalpy of the pellet is 20 J / g or more,
    A pellet characterized in that the composite particles are composite particles of hydrotalcite and titanium dioxide, and the content of the composite particles is 10 to 300 ppm.
  2.  前記ペレットを、フェノールとテトラクロロエタンとの等質量混合溶媒に溶解させてパーティクルカウンタで測定した時に、該ペレット1g中に含まれる直径1~5μmの粒子の合計体積が5.0×10-14/g以上である、請求項1に記載のペレット。 When the pellet was dissolved in an equal mass mixed solvent of phenol and tetrachloroethane and measured with a particle counter, the total volume of particles having a diameter of 1 to 5 μm contained in 1 g of the pellet was 5.0 × 10 −14 m. The pellet of Claim 1 which is 3 / g or more.
  3.  前記ペレットを、フェノールとテトラクロロエタンとの等質量混合溶媒に溶解させてパーティクルカウンタで測定した時に、該ペレット1g中に含まれる直径5~20μmの粒子の合計体積が1.2×10-12/g以下である、請求項1又は2に記載のペレット。 When the pellet was dissolved in an equal mass mixed solvent of phenol and tetrachloroethane and measured with a particle counter, the total volume of particles having a diameter of 5 to 20 μm contained in 1 g of the pellet was 1.2 × 10 −12 m. The pellet of Claim 1 or 2 which is 3 / g or less.
  4.  前記ポリエステルのカルボキシル基含有量が18μmol/g以下である請求項1~3のいずれかに記載のペレット。 The pellet according to any one of claims 1 to 3, wherein the polyester has a carboxyl group content of 18 µmol / g or less.
  5.  請求項1~4のいずれかに記載のペレットを成形してなるフィルム。 A film formed by molding the pellet according to any one of claims 1 to 4.
  6.  請求項1~4のいずれかに記載のペレットを成形してなるフィルムが金属板に積層されてなる積層金属板。 A laminated metal plate obtained by laminating a film formed by molding the pellet according to any one of claims 1 to 4 on a metal plate.
  7.  請求項1~4のいずれかに記載のペレットを成形してなる押出ブロー成形容器。 An extrusion blow-molded container formed by molding the pellet according to any one of claims 1 to 4.
  8.  テレフタル酸又はそのエステル形成性誘導体、エチレングリコール、及び炭素数5以上の他のコモノマーを、ハイドロタルサイトと二酸化チタンの複合体粒子からなる触媒の存在下に溶融重合してから切断して非晶ポリエステルペレットを製造し、引き続き該非晶ポリエステルペレットを予備結晶化させてから固相重合することを特徴とする請求項1~4のいずれかに記載の結晶ポリエステルペレットの製造方法。 Amorphous terephthalic acid or its ester-forming derivative, ethylene glycol, and other comonomers having 5 or more carbon atoms are melt-polymerized in the presence of a catalyst composed of composite particles of hydrotalcite and titanium dioxide, and then cut to amorphous. The method for producing crystalline polyester pellets according to any one of claims 1 to 4, wherein the polyester pellets are produced and subsequently the amorphous polyester pellets are pre-crystallized and then subjected to solid phase polymerization.
  9.  少なくともテレフタル酸又はそのエステル形成性誘導体と、エチレングリコールとを加熱してエステル化反応を進行させてオリゴマーを得てから、前記触媒を添加して溶融重合する、請求項8に記載のペレットの製造方法。 The pellet production according to claim 8, wherein at least terephthalic acid or an ester-forming derivative thereof and ethylene glycol are heated to advance an esterification reaction to obtain an oligomer, and then the catalyst is added to perform melt polymerization. Method.
PCT/JP2016/069262 2015-06-30 2016-06-29 Crystal polyester pellet, application thereof and production method therefor WO2017002852A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017526395A JP6689846B2 (en) 2015-06-30 2016-06-29 Crystalline polyester pellets, uses thereof and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015130552 2015-06-30
JP2015-130552 2015-06-30

Publications (1)

Publication Number Publication Date
WO2017002852A1 true WO2017002852A1 (en) 2017-01-05

Family

ID=57609294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069262 WO2017002852A1 (en) 2015-06-30 2016-06-29 Crystal polyester pellet, application thereof and production method therefor

Country Status (3)

Country Link
JP (1) JP6689846B2 (en)
TW (1) TWI704166B (en)
WO (1) WO2017002852A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018150468A (en) * 2017-03-14 2018-09-27 三菱ケミカル株式会社 Manufacturing method of polyester
WO2022209940A1 (en) * 2021-04-02 2022-10-06 住友化学株式会社 Pellet

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188567A (en) * 2004-12-30 2006-07-20 Sakai Chem Ind Co Ltd Polycondensation catalyst for producing polyester and method for producing polyester using the same
WO2008001473A1 (en) * 2006-06-28 2008-01-03 Sakai Chemical Industry Co., Ltd. Polycondensation catalyst for polyester production and production of polyester
JP2008007588A (en) * 2006-06-28 2008-01-17 Sakai Chem Ind Co Ltd Polycondensation catalyst for producing polyester, and method for producing polyester by using the same
JP2009046593A (en) * 2007-08-20 2009-03-05 Sakai Chem Ind Co Ltd Polycondensation catalyst for manufacturing polyester, manufacturing method therefor, and manufacturing method for polyester using the same
JP2010209358A (en) * 2010-06-28 2010-09-24 Sakai Chem Ind Co Ltd Polycondensation catalyst for producing polyester, and method for producing polyester by using the same
JP2011063640A (en) * 2009-09-15 2011-03-31 Sakai Chem Ind Co Ltd Polycondensation catalyst for producing polyester, and method for producing polyester using the same
JP2012077112A (en) * 2010-09-30 2012-04-19 Sakai Chem Ind Co Ltd Polycondensation catalyst for manufacturing polyester and method for manufacturing polyester by using the same
WO2014021206A1 (en) * 2012-07-31 2014-02-06 堺化学工業株式会社 Polycondensation catalyst for polyester production and production of polyester using polycondensation catalyst for polyester production
WO2015041271A1 (en) * 2013-09-20 2015-03-26 堺化学工業株式会社 Polyester production method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1244549B (en) * 1991-02-06 1994-07-15 Montedipe Srl POLYESTER-BASED MOLDING COMPOSITIONS
US9777111B2 (en) * 2005-10-20 2017-10-03 Grupo Petrotemex, S.A. De C.V. PET polymer with improved properties

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188567A (en) * 2004-12-30 2006-07-20 Sakai Chem Ind Co Ltd Polycondensation catalyst for producing polyester and method for producing polyester using the same
WO2008001473A1 (en) * 2006-06-28 2008-01-03 Sakai Chemical Industry Co., Ltd. Polycondensation catalyst for polyester production and production of polyester
JP2008007588A (en) * 2006-06-28 2008-01-17 Sakai Chem Ind Co Ltd Polycondensation catalyst for producing polyester, and method for producing polyester by using the same
JP2009046593A (en) * 2007-08-20 2009-03-05 Sakai Chem Ind Co Ltd Polycondensation catalyst for manufacturing polyester, manufacturing method therefor, and manufacturing method for polyester using the same
JP2011063640A (en) * 2009-09-15 2011-03-31 Sakai Chem Ind Co Ltd Polycondensation catalyst for producing polyester, and method for producing polyester using the same
JP2010209358A (en) * 2010-06-28 2010-09-24 Sakai Chem Ind Co Ltd Polycondensation catalyst for producing polyester, and method for producing polyester by using the same
JP2012077112A (en) * 2010-09-30 2012-04-19 Sakai Chem Ind Co Ltd Polycondensation catalyst for manufacturing polyester and method for manufacturing polyester by using the same
WO2014021206A1 (en) * 2012-07-31 2014-02-06 堺化学工業株式会社 Polycondensation catalyst for polyester production and production of polyester using polycondensation catalyst for polyester production
WO2015041271A1 (en) * 2013-09-20 2015-03-26 堺化学工業株式会社 Polyester production method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018150468A (en) * 2017-03-14 2018-09-27 三菱ケミカル株式会社 Manufacturing method of polyester
WO2022209940A1 (en) * 2021-04-02 2022-10-06 住友化学株式会社 Pellet

Also Published As

Publication number Publication date
TWI704166B (en) 2020-09-11
JP6689846B2 (en) 2020-04-28
JPWO2017002852A1 (en) 2018-04-19
TW201718700A (en) 2017-06-01

Similar Documents

Publication Publication Date Title
US6284866B1 (en) Method of preparing modified polyester bottle resins
WO2003037956A9 (en) Crystalline polyglycolic acid, polyglycolic acid composition and processes for production of both
CN114514286B (en) Polyester resin blend, polyester film and preparation method thereof
TW201833175A (en) Polyester, method for producing the same and shaped article of the same
TW201731908A (en) Polyester resin, preparation method thereof and resin article formed therefrom
JP6689846B2 (en) Crystalline polyester pellets, uses thereof and manufacturing method thereof
TW202110994A (en) Polyester resin blend
TWI754709B (en) Polyester, method for producing the same and shaped article of the same
JP6757669B2 (en) Polyester resin pellets, their manufacturing methods and molded products made from them
JP6152989B2 (en) Mixed pellet containing polyester pellet and resin composition
KR20090008809A (en) Method for preparing polyester blends with high molecular weight and polyester blends produced with the same
JP6300266B2 (en) Copolyester resin and its hollow container
KR20050100648A (en) Extrusion blow molded articles
JP5606803B2 (en) Method for producing solid phase polymerization pellets comprising polyester resin composition
KR20010019041A (en) Co-Polyester with high clarity and process for producing them
JP5188726B2 (en) Polyester molded product
KR20240050423A (en) Copolyester made with germanium catalyst
KR20240050421A (en) Method for producing articles comprising copolyester made with germanium catalyst
KR20240050424A (en) Copolyester containing 1,4-cyclohexanedimethanol prepared with germanium catalyst
KR20240046799A (en) Copolyester blend
KR20240050422A (en) Articles containing copolyesters made with germanium catalyst
TW202344554A (en) Polyester and shaped article of the same
JP2004107489A (en) Polyester-based sealing material
CN116529284A (en) Shrinkable polyester film
JP2007168840A (en) Stretch-blow-molded container

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817960

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017526395

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16817960

Country of ref document: EP

Kind code of ref document: A1