WO2017002705A1 - Polishing composition - Google Patents

Polishing composition Download PDF

Info

Publication number
WO2017002705A1
WO2017002705A1 PCT/JP2016/068701 JP2016068701W WO2017002705A1 WO 2017002705 A1 WO2017002705 A1 WO 2017002705A1 JP 2016068701 W JP2016068701 W JP 2016068701W WO 2017002705 A1 WO2017002705 A1 WO 2017002705A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
abrasive grains
alumina
alumina abrasive
polishing composition
Prior art date
Application number
PCT/JP2016/068701
Other languages
French (fr)
Japanese (ja)
Inventor
修平 ▲高▼橋
正利 戸松
Original Assignee
株式会社フジミインコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジミインコーポレーテッド filed Critical 株式会社フジミインコーポレーテッド
Publication of WO2017002705A1 publication Critical patent/WO2017002705A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a polishing composition. Specifically, the present invention relates to a polishing composition used for polishing a high hardness material such as a silicon carbide single crystal. Note that this international application claims priority based on Japanese Patent Application No. 2015-1331086 filed on June 30, 2015, the entire contents of which are incorporated herein by reference. ing.
  • Polishing (wrapping) of flat surfaces of high hardness materials such as diamond, sapphire (aluminum oxide), silicon carbide, boron carbide, tungsten carbide, silicon nitride, titanium nitride, etc.
  • polishing performed by supplying a polishing slurry between the polishing pad and an object to be polished using a polishing pad after lapping using diamond abrasive grains or instead of lapping has been studied. Yes.
  • Patent documents 1 to 4 are cited as documents disclosing this type of prior art.
  • the polishing rate (amount for removing the surface of the object to be polished per unit time) by devising the components (abrasive grains, oxidizing agent, etc.) of the slurry (polishing composition) used for polishing. Improvement of surface flatness after polishing has been proposed. However, even such a technique is insufficient to satisfy the practical requirement level regarding the polishing rate and the surface flatness, and there is still room for improvement.
  • the present invention has been made in view of the above circumstances, and its main object is a polishing composition that can be realized at a high level of both a polishing rate and surface flatness with respect to the surface of a high hardness material. Is to provide.
  • a polishing composition for polishing a material having a Vickers hardness of 1500 Hv or more includes a first alumina abrasive grain having an average secondary particle diameter D2 f and a second alumina abrasive grain having an average secondary particle diameter D2 s smaller than the first alumina abrasive grain.
  • ⁇ -alumina is included as the first alumina abrasive grains.
  • the second alumina abrasive grains include at least one selected from the group consisting of alumina sol (also referred to as colloidal alumina) and intermediate alumina.
  • alumina sol also referred to as colloidal alumina
  • Such second alumina abrasive grains can effectively contribute to improvement of surface flatness. Therefore, by using the first alumina abrasive grains and the second alumina abrasive grains in combination so as to satisfy the above average secondary particle diameter, it is possible to more effectively realize both the polishing rate and the surface flatness. Can be done.
  • the relationship between the average secondary particle diameter D2 f of the first alumina abrasive grains and the average secondary particle diameter D2 s of the second alumina abrasive grains is represented by the following formula: : 1 ⁇ (D2 f / D2 s ) ⁇ 20;
  • the average secondary particle diameter D2 f of the first alumina abrasive grains is 350 nm or more and 1000 nm or less.
  • the average secondary particle diameter D2 s of the second alumina abrasive grains is 20nm or more 300nm or less.
  • the content ratio of the first alumina abrasive grains and the second alumina abrasive grains is based on weight.
  • the range is 95: 5 to 5:95.
  • the pH is in the range of 8-11.
  • the application effect of the present invention can be suitably exhibited.
  • the polishing composition disclosed herein is used for polishing a material having a Vickers hardness of 1500 Hv or higher (high hardness material).
  • the Vickers hardness of the high hardness material is preferably 1800 Hv or higher (for example, 2000 Hv or higher, typically 2200 Hv or higher).
  • the upper limit of Vickers hardness is not particularly limited, but may be about 7000 Hv or less (for example, 5000 Hv or less, typically 3000 Hv or less).
  • the Vickers hardness can be measured based on JIS R 1610: 2003.
  • An international standard corresponding to the JIS standard is ISO 14705: 2000.
  • Examples of the material having a Vickers hardness of 1500 Hv or more include diamond, sapphire (aluminum oxide), silicon carbide, boron carbide, tungsten carbide, silicon nitride, and titanium nitride.
  • the polishing method disclosed herein can be preferably applied to a single crystal surface of the above material that is mechanically and chemically stable. Especially, it is preferable that the grinding
  • the polishing composition disclosed herein is particularly preferably applied to a silicon carbide single crystal surface.
  • the polishing composition disclosed herein includes a first alumina abrasive grain having an average secondary particle diameter D2 f, and a second alumina abrasive grain having an average secondary particle diameter D2 s smaller than the first alumina abrasive grain. Containing.
  • alumina abrasive grains having different average secondary particle diameters it is possible to achieve a high level of both the polishing rate and the surface flatness with respect to the surface of the high hardness material.
  • the average secondary particle diameter of the first alumina abrasive grains (hereinafter sometimes simply referred to as “D2 f ”) is the average secondary particle diameter of the second alumina abrasive grains (hereinafter simply referred to as “D2 s ”). (That is, D2 f > D2 s is sufficient) and is not particularly limited.
  • D2 f is suitably, for example, 100 nm or more, usually 150 nm or more, typically 200 nm or more. From the viewpoint of polishing efficiency, the D2 f, preferably 300nm or more, more preferably 350nm or more, more preferably 400nm or more.
  • first alumina abrasive grains having a D2 f of 200 nm to 3000 nm are preferred, first alumina abrasive grains having a diameter of 300 nm to 2000 nm are preferred, and 350 nm to 1000 nm (for example, 800 nm or less). ) Is particularly preferred.
  • the second alumina abrasive grains are not particularly limited as long as the average secondary particle diameter D2 s is smaller than D2 f .
  • second alumina abrasive grains having a D2 s of 20 nm to 450 nm are preferable, second alumina abrasive grains having a diameter of 50 nm to 400 nm are preferable, and those having a diameter of 75 nm to 300 nm are preferable.
  • the second alumina abrasive grains may have D2 f of 75 nm or more and 150 nm or less (for example, 100 nm or less).
  • the relationship between D2 f and D2 s satisfies 1 ⁇ (D2 f / D2 s ) ⁇ 20 from the viewpoint of better exhibiting the effect of using the first alumina abrasive grains and the second alumina abrasive grains together.
  • the first alumina abrasive grains and the second alumina abrasive grains in combination so as to have a specific average secondary particle diameter ratio, both the polishing rate and the surface flatness can be realized at a higher level.
  • the relationship between D2 f and D2 s is 1.2 ⁇ (D2 f / D2 s ) ⁇ 15, more preferably 1.5 ⁇ (D2 f / D2 s ) ⁇ 10. More preferably, 1.8 ⁇ (D2 f / D2 s ) ⁇ 8, particularly preferably 2 ⁇ (D2 f / D2 s ) ⁇ 6.
  • D2 f is preferably 100 nm or more larger than D2 s, and more preferably 200 nm or more.
  • the value obtained by subtracting D2 s from D2 f is preferably 1000 nm or less, more preferably 800 nm or less, and further preferably 500 nm or less.
  • D2 f ⁇ D2 s may be 250 nm or less.
  • the average secondary particle diameter of the abrasive grains is less than 500 nm, for example, by a dynamic light scattering method using a model “UPA-UT151” manufactured by Nikkiso Co., Ltd.
  • the average diameter can be measured as Mv).
  • grains it can measure as a volume average particle diameter by the pore electrical resistance method etc. using the model "Multisizer 3" by BECKMAN COULTER.
  • the ratio (weight basis) between the content of the first alumina abrasive grains and the content of the second alumina abrasive grains is not particularly limited. From the viewpoint of better exerting the effect of using the first alumina abrasive grains and the second alumina abrasive grains together, the weight ratio of the first alumina abrasive grains to the second alumina abrasive grains is 95: 5 to 5:95. It is appropriate that it is 95: 5 to 20:80, more preferably 95: 5 to 40:60. From the viewpoint of polishing efficiency and the like, it is effective to set the content of the first alumina abrasive grains to be equal to or more than the content of the second alumina abrasive grains.
  • the technique disclosed herein can be preferably implemented in an embodiment in which the weight ratio of the first alumina abrasive grains to the second alumina abrasive grains is 95: 5 to 70:30, for example.
  • Each of the first alumina abrasive grains and the second alumina abrasive grains can be used by appropriately selecting those having an appropriate average secondary particle diameter from various known alumina particles.
  • known alumina particles include ⁇ -alumina and intermediate alumina.
  • intermediate alumina is a general term for alumina particles other than ⁇ -alumina, and specific examples include ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, and ⁇ -alumina. Is done.
  • alumina called fumed alumina typically alumina fine particles produced when high-temperature firing of an alumina salt
  • alumina referred to as alumina hydrate such as boehmite
  • colloidal alumina or alumina sol is also included in the examples of the known alumina particles.
  • alumina particles that can be preferably used as the first alumina abrasive grains include ⁇ -alumina. Such first alumina abrasive grains can effectively contribute to the improvement of the polishing rate.
  • ⁇ -alumina having an average secondary particle diameter smaller than that of the first alumina abrasive grains may be used, or alumina particles other than ⁇ -alumina may be used.
  • the first alumina abrasive grains and the second alumina abrasive grains can be selected such that the hardness of the second alumina abrasive grains is lower than the hardness of the first alumina abrasive grains.
  • the polishing rate improvement effect by the 1st alumina abrasive grain and the surface flatness improvement effect by the 2nd alumina abrasive grain can each be exhibited efficiently, and both coexistence with a polishing rate and surface flatness is higher.
  • various intermediate aluminas can be preferably used as the second alumina abrasive grains.
  • the intermediate alumina may be fumed alumina.
  • Alumina sol colloidal alumina
  • the polishing composition disclosed herein contains alumina abrasive grains other than the first alumina abrasive grains and the second alumina abrasive grains (that is, third and subsequent alumina abrasive grains) as long as the effects of the present invention are not impaired. May be.
  • the total weight of the first alumina abrasive grains and the second alumina abrasive grains in the total weight of the alumina abrasive grains contained in the polishing composition may be 70% by weight. It is suitable, preferably 80% by weight or more, more preferably 90% by weight or more.
  • a polishing composition in which 100% by weight of the alumina abrasive grains contained in the polishing composition is a first alumina abrasive grain and a second alumina abrasive grain is preferable.
  • the polishing composition disclosed herein may contain abrasive grains made of a material other than alumina (hereinafter also referred to as non-alumina abrasive grains) as long as the effects of the present invention are not impaired.
  • non-alumina abrasive grains include oxide particles such as silica particles, cerium oxide particles, chromium oxide particles, titanium dioxide particles, zirconium oxide particles, magnesium oxide particles, manganese dioxide particles, zinc oxide particles, and iron oxide particles.
  • Nitride particles such as silicon nitride particles and boron nitride particles; carbide particles such as silicon carbide particles and boron carbide particles; diamond particles; carbonates such as calcium carbonate and barium carbonate; An abrasive is mentioned.
  • the content of the non-alumina abrasive is suitably, for example, 30% by weight or less, preferably 20% by weight or less, more preferably 10% by weight, based on the total weight of the abrasive grains contained in the polishing composition. % Or less.
  • the technique disclosed here can be preferably implemented in a mode in which the total proportion of alumina abrasive grains is greater than 90% by weight of the total weight of abrasive grains contained in the polishing composition.
  • the ratio of the alumina abrasive grains is more preferably 95% by weight or more, further preferably 98% by weight or more, and particularly preferably 99% by weight or more.
  • a polishing composition in which 100% by weight of the abrasive grains contained in the polishing composition is alumina abrasive grains is preferable.
  • the polishing composition disclosed herein does not substantially contain diamond particles as abrasive grains.
  • Diamond particles can be a limiting factor for improving smoothness due to their high hardness.
  • diamond particles are generally expensive, they cannot be said to be an advantageous material in terms of cost performance. From a practical aspect, it is desirable that the degree of dependence on high-priced materials such as diamond particles is low.
  • the polishing composition disclosed herein preferably contains a polishing aid.
  • the polishing aid is a component that enhances the effect of polishing, and typically a water-soluble one is used.
  • the polishing aid is not particularly limited, but exhibits an action of modifying the surface of the object to be polished (typically oxidative deterioration) in polishing, thereby causing weakening of the surface of the object to be polished. It is thought that it contributes to polishing with abrasive grains.
  • Polishing aids include peroxides such as hydrogen peroxide; nitric acid and its salts: iron nitrate, silver nitrate, aluminum nitrate, nitrates such as its complex, cerium ammonium nitrate; potassium peroxomonosulfate, peroxodisulfuric acid, etc.
  • permanganic acid or a salt thereof permanganic acid or a salt thereof, chromic acid or a salt thereof, iron acid or a salt thereof is preferable, and sodium permanganate or potassium permanganate is particularly preferable.
  • the polishing composition contains a composite metal oxide as a polishing aid.
  • the composite metal oxide include nitrate metal salts, iron acids, permanganic acids, chromic acids, vanadic acids, ruthenium acids, molybdic acids, rhenic acids, and tungstic acids.
  • iron acids, permanganic acids, and chromic acids are more preferable, and permanganic acids are more preferable.
  • the composite metal oxide includes a monovalent or divalent metal element (excluding transition metal elements) and a fourth periodic transition metal element in the periodic table.
  • CMO is used.
  • Preferred examples of the monovalent or divalent metal element (excluding transition metal elements) include Na, K, Mg, and Ca. Of these, Na and K are more preferable.
  • Preferable examples of the fourth periodic transition metal element in the periodic table include Fe, Mn, Cr, V, and Ti. Among these, Fe, Mn, and Cr are more preferable, and Mn is more preferable.
  • the polishing composition disclosed herein contains a composite metal oxide (preferably a composite metal oxide CMO) as a polishing aid, it may or may not contain a polishing aid other than the composite metal oxide. Also good.
  • the technique disclosed herein can also be preferably implemented in an embodiment that does not substantially contain a polishing aid (for example, hydrogen peroxide) other than a composite metal oxide (preferably a composite metal oxide CMO) as a polishing aid.
  • the polishing composition disclosed herein is a chelating agent, a thickener, a dispersant, a pH adjuster, a surfactant, an organic acid, an organic acid salt, an inorganic acid, an inorganic material, as long as the effects of the present invention are not impaired.
  • Known additives that can be used in polishing compositions typically high-hardness material polishing compositions such as silicon carbide substrate polishing compositions
  • acid salts, rust inhibitors, antiseptics, and fungicides May be further contained as necessary.
  • the content of the additive may be set as appropriate according to the purpose of the addition, and does not characterize the present invention, so a detailed description is omitted.
  • the solvent used in the polishing composition is not particularly limited as long as it can disperse the abrasive grains.
  • ion exchange water deionized water
  • pure water pure water
  • ultrapure water distilled water and the like
  • the polishing composition disclosed herein may further contain an organic solvent (lower alcohol, lower ketone, etc.) that can be uniformly mixed with water, if necessary.
  • 90% by volume or more of the solvent contained in the polishing composition is preferably water, and more preferably 95% by volume or more (typically 99 to 100% by volume) is water.
  • the polishing composition disclosed herein is typically supplied to a polishing object in the form of a polishing liquid containing the polishing composition, and used for polishing the polishing object.
  • the polishing liquid may be prepared, for example, by diluting (typically diluting with water) any of the polishing compositions disclosed herein. Or you may use this polishing composition as polishing liquid as it is. That is, the concept of the polishing composition in the technology disclosed herein is used as a polishing liquid diluted with a polishing liquid (working slurry) that is supplied to a polishing object and used for polishing the polishing object. Both concentrated liquid (polishing liquid stock solution) are included.
  • Another example of the polishing liquid containing the polishing composition disclosed herein is a polishing liquid obtained by adjusting the pH of the composition.
  • the abrasive content (total content of a plurality of abrasive grains) in the polishing liquid disclosed herein is not particularly limited, but is typically 0.1% by weight or more from the viewpoint of polishing efficiency. It is preferably 5% by weight or more, more preferably 1% by weight or more, further preferably 3% by weight or more, and particularly preferably 5% by weight or more. Higher polishing rates can be achieved by increasing the abrasive content. Further, from the viewpoint of dispersion stability of the polishing composition, the content is usually suitably 30% by weight or less, preferably 20% by weight or less, more preferably 15% by weight or less, and still more preferably. 10% by weight or less.
  • the content of the first alumina abrasive grains in the polishing liquid is greater than the content of the second alumina abrasive grains.
  • the value obtained by subtracting the content of the second alumina abrasive grains from the content of the first alumina abrasive grains is preferably 1% by weight or more, more preferably 2% by weight or more, and further preferably 3% by weight from the viewpoint of polishing efficiency and the like. % Or more.
  • the content of the polishing aid in the polishing liquid is not particularly limited, but is usually suitably 0.1% by weight or more. From the viewpoint of polishing rate and the like, the content is preferably 0.5% by weight or more, and more preferably 1% by weight or more. On the other hand, if the content of the polishing aid is too large, the polishing rate improvement effect tends to slow down, and the stability of the composition may decrease. From the viewpoint of the stability of the polishing composition, the content of the polishing aid is usually suitably 10% by weight or less, preferably 8% by weight or less, and 5% by weight or less. More preferably.
  • the pH of the polishing liquid is preferably 2 or more (for example, 3 or more), more preferably 6 or more, still more preferably 8 or more, and particularly preferably 8.5 or more.
  • the upper limit of the pH of the polishing liquid is not particularly limited, but is preferably 12 or less (for example, 11 or less), and more preferably 10 or less (for example, 9.5 or less). As a result, the object to be polished can be more evenly polished.
  • the polishing composition disclosed herein may be in a concentrated form (that is, in the form of a polishing liquid concentrate) before being supplied to the object to be polished.
  • the polishing composition in such a concentrated form is advantageous from the viewpoints of convenience, cost reduction, etc. during production, distribution, storage and the like.
  • the concentration rate can be, for example, about 2 to 5 times in terms of volume.
  • the polishing composition in the form of a concentrated liquid can be used in such a manner that a polishing liquid is prepared by diluting at a desired timing and the polishing liquid is supplied to an object to be polished.
  • the dilution can be typically performed by adding the aforementioned solvent to the concentrated solution and mixing.
  • a part of them may be diluted and then mixed with another agent to prepare a polishing liquid, or a plurality of agents may be mixed. Later, the mixture may be diluted to prepare a polishing liquid.
  • the content of abrasive grains in the concentrated liquid can be, for example, 40% by weight or less.
  • the content is usually 30% by weight or less, and 20% by weight or less (for example, 15% by weight or less).
  • the content of the abrasive grains can be, for example, 0.2% by weight or more, preferably 1% by weight or more, and more preferably Is 3% by weight or more (for example, 4% by weight or more).
  • the polishing composition disclosed herein may be a one-part type or a multi-part type including a two-part type.
  • the liquid A containing a part of the constituent components (typically components other than the solvent) of the polishing composition and the liquid B containing the remaining components are mixed to polish the polishing object. It may be configured to be used.
  • each component contained in the polishing composition may be mixed using a well-known mixing device such as a blade-type stirrer, an ultrasonic disperser, or a homomixer.
  • a well-known mixing device such as a blade-type stirrer, an ultrasonic disperser, or a homomixer.
  • the aspect which mixes these components is not specifically limited, For example, all the components may be mixed at once and may be mixed in the order set suitably.
  • a polishing method for polishing a material to be polished having a Vickers hardness of 1500 Hv or more is provided.
  • the above polishing method is characterized by including a step of polishing an object to be polished using the polishing composition disclosed herein.
  • a polishing method according to a preferred embodiment includes a step of performing preliminary polishing (preliminary polishing step) and a step of performing final polishing (finishing polishing step).
  • the preliminary polishing step is a step of performing preliminary polishing on a polishing object made of a material having at least a surface (surface to be polished) having a Vickers hardness of 1500 Hv or more.
  • the preliminary polishing process is a polishing process that is arranged immediately before the finishing polishing process.
  • the preliminary polishing process may be a single-stage polishing process or a multi-stage polishing process of two or more stages.
  • the finish polishing step referred to here is a step of performing finish polishing on the polishing target that has been subjected to preliminary polishing, and is the last of the polishing steps performed using a polishing slurry containing abrasive grains ( That is, it means a polishing step arranged on the most downstream side.
  • the polishing composition disclosed herein may be used in the preliminary polishing step, may be used in the final polishing step, or preliminary polishing. It may be used in both the process and the finish polishing process.
  • the polishing step using the polishing composition is a preliminary polishing step.
  • a required polishing rate is larger than that in the finishing polishing process. Therefore, the polishing composition disclosed herein is suitable as a polishing composition (preliminary polishing composition) used in a preliminary polishing step on the surface of a high hardness material.
  • the polishing composition disclosed herein can be preferably applied to the preliminary (upstream) preliminary polishing. Especially, it can be preferably used in the first preliminary polishing step (typically the primary polishing step) that has passed through the lapping step described later.
  • Pre-polishing and finish polishing can be applied to both polishing using a single-side polishing apparatus and polishing using a double-side polishing apparatus.
  • a polishing object is affixed to a ceramic plate with wax, or a polishing object is held using a holder called a carrier, and a polishing pad is pressed against one side of the polishing object while supplying a polishing composition. Then, one side of the object to be polished is polished by relatively moving both of them (for example, rotational movement).
  • a polishing object is held by using a holder called a carrier, and a polishing pad is pressed against the opposite surface of the polishing object while supplying a polishing composition from above, and these are rotated in a relative direction.
  • a polishing pad is pressed against the opposite surface of the polishing object while supplying a polishing composition from above, and these are rotated in a relative direction.
  • the polishing pad used in each polishing step disclosed herein is not particularly limited.
  • any of a non-woven fabric type, a suede type, a rigid foamed polyurethane type, a product containing abrasive grains, a product containing no abrasive grains, and the like may be used.
  • the polishing object polished by the method disclosed herein is typically cleaned after polishing. This washing can be performed using an appropriate washing solution.
  • the cleaning liquid to be used is not particularly limited, and a known and commonly used cleaning liquid can be appropriately selected and used.
  • the polishing method disclosed herein may include any other process in addition to the preliminary polishing process and the finishing polishing process.
  • An example of such a process is a lapping process performed before the preliminary polishing process.
  • the lapping step is a step of polishing the polishing object by pressing the surface of the polishing surface plate (for example, cast iron surface plate) against the polishing object. Therefore, no polishing pad is used in the lapping process.
  • the lapping process is typically performed by supplying abrasive grains (typically diamond abrasive grains) between the polishing surface plate and the object to be polished.
  • the polishing method disclosed herein may include an additional process (a cleaning process or a polishing process) before the preliminary polishing process or between the preliminary polishing process and the finishing polishing process.
  • ⁇ Preparation of polishing composition> (Example 1) ⁇ -alumina (average secondary particle diameter 500 nm) as the first alumina abrasive grains, alumina sol (average secondary particle diameter 90 nm) as the second alumina abrasive grains, and potassium permanganate (KMnO 4 ) as the polishing aid ) And deionized water were mixed to prepare a polishing composition.
  • the ⁇ -alumina content in the polishing composition was 6%, the alumina sol content was 2%, and the KMnO 4 content was 1.2%.
  • the pH of the polishing composition was adjusted to 9.0 using potassium hydroxide (KOH).
  • Example 2 Example 1 except that hydrogen peroxide (H 2 O 2 ) was used instead of KMnO 4 and the content of H 2 O 2 in the polishing composition was 1.2%. A polishing composition was prepared.
  • Example 3 For polishing in the same manner as in Example 1 except that fumed alumina (average secondary particle size 250 nm) was used instead of alumina sol and the content of fumed alumina in the polishing composition was 2%. A composition was prepared.
  • Example 1 A polishing composition was prepared in the same manner as in Example 1 except that alumina sol as the second alumina abrasive grains was not used.
  • Example 2 A polishing composition was prepared in the same manner as in Example 1 except that ⁇ -alumina as the first alumina abrasive grains was not used and the content of the alumina sol was 6%.
  • Example 3 A polishing composition was prepared in the same manner as in Example 3 except that ⁇ -alumina as the first alumina abrasive grains was not used and the content of fumed alumina was 6%.
  • polishing rate was computed according to the following formulas (1) and (2). The results are shown in the corresponding column of Table 1.
  • Model “EJ-380IN” Polishing pad “SUBA800” manufactured by Nitta Haas Polishing pressure: 300 g / cm 2 Surface plate rotation speed: 80 rotations / minute Polishing time: 1 hour Head rotation speed: 40 rotations / minute Polishing liquid supply rate: 20 mL / minute (flowing) Polishing liquid temperature: 25 ° C Polishing object: SiC wafer (conduction type: n-type, crystal type 4H 4 ° off) 2 inches
  • the polishing composition of Example 1 using a combination of ⁇ -alumina and alumina sol having a smaller average secondary particle diameter as the first alumina abrasive grains and the second alumina abrasive grains While maintaining the same polishing rate as that of the polishing composition of Comparative Example 1 using the above ⁇ -alumina alone, the surface roughness was suppressed to be smaller.
  • the polishing composition of Example 2 using a combination of the same ⁇ -alumina and alumina sol as in Example 1 has an improved polishing rate compared to the polishing composition of Comparative Example 2 using the above-mentioned alumina sol alone, In addition, the surface roughness was kept small.
  • the polishing composition of Example 3 using a combination of the first alumina abrasive grains and fumed alumina having a smaller average secondary particle size than that of the first alumina abrasive grains was used for polishing of Comparative Example 3 using the fumed alumina alone. Compared with the composition, the polishing rate was improved, and the surface roughness was also kept small. From these results, it was confirmed that by using a combination of alumina abrasive grains having different average secondary particle diameters, both the polishing rate and the surface flatness can be achieved at a high level. In the polishing composition of Example 1, a higher polishing rate was realized as compared with Example 2.
  • polishing composition that can achieve both a polishing rate and surface flatness at a higher level.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

Provided is a polishing composition for polishing a material having a Vickers hardness not lower than 1500 Hv. This polishing composition contains first alumina abrasive grains having an average secondary-particle diameter D2f and second alumina abrasive grains having an average secondary-particle diameter D2s which is smaller than that of the first alumina abrasive grains.

Description

研磨用組成物Polishing composition
 本発明は、研磨用組成物に関する。詳しくは、炭化ケイ素単結晶等の高硬度材料の研磨に用いられる研磨用組成物に関する。
 なお、本国際出願は2015年6月30日に出願された日本国特許出願第2015-131086号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。
The present invention relates to a polishing composition. Specifically, the present invention relates to a polishing composition used for polishing a high hardness material such as a silicon carbide single crystal.
Note that this international application claims priority based on Japanese Patent Application No. 2015-1331086 filed on June 30, 2015, the entire contents of which are incorporated herein by reference. ing.
 ダイヤモンド、サファイア(酸化アルミニウム)、炭化ケイ素、炭化ホウ素、炭化タングステン、窒化ケイ素、窒化チタン等の高硬度材料の平坦表面は、通常、研磨定盤にダイヤモンド砥粒を供給して行う研磨(ラッピング)によって実現される。しかし、ダイヤモンド砥粒を用いるラッピングでは、スクラッチの発生、残存等のため、表面平坦性の向上には限度がある。そこで、ダイヤモンド砥粒を用いたラッピングの後に、あるいは当該ラッピングに代えて、研磨パッドを用いて当該研磨パッドと研磨対象物との間に研磨スラリーを供給して行う研磨(ポリシング)が検討されている。この種の従来技術を開示する文献として、特許文献1~4が挙げられる。 Polishing (wrapping) of flat surfaces of high hardness materials such as diamond, sapphire (aluminum oxide), silicon carbide, boron carbide, tungsten carbide, silicon nitride, titanium nitride, etc., usually by supplying diamond abrasive grains to a polishing surface plate It is realized by. However, in lapping using diamond abrasive grains, there is a limit to the improvement of surface flatness due to generation and remaining of scratches. Therefore, polishing (polishing) performed by supplying a polishing slurry between the polishing pad and an object to be polished using a polishing pad after lapping using diamond abrasive grains or instead of lapping has been studied. Yes. Patent documents 1 to 4 are cited as documents disclosing this type of prior art.
日本国特許出願公開2011-121153号公報Japanese Patent Application Publication No. 2011-121153 日本国特許出願公開2012-248569号公報Japanese Patent Application Publication No. 2012-248569 日本国特許出願公開2014-24154号公報Japanese Patent Application Publication No. 2014-24154 日本国特許第5592276号公報Japanese Patent No. 5592276
 上記従来技術文献では、ポリシングに使用されるスラリー(研磨用組成物)の含有成分(砥粒、酸化剤等)の工夫により、研磨レート(単位時間当たりに研磨対象物の表面を除去する量)や研磨後の表面平坦性の改善が提案されている。しかし、このような技術によっても、研磨レートおよび表面平坦性に関する実用的な要求レベルを満足させるには不十分であり、なお改善の余地がある。 In the above-mentioned prior art documents, the polishing rate (amount for removing the surface of the object to be polished per unit time) by devising the components (abrasive grains, oxidizing agent, etc.) of the slurry (polishing composition) used for polishing. Improvement of surface flatness after polishing has been proposed. However, even such a technique is insufficient to satisfy the practical requirement level regarding the polishing rate and the surface flatness, and there is still room for improvement.
 本発明は、上記の事情に鑑みてなされたものであり、その主な目的は、高硬度材料表面に対して、研磨レートと表面平坦性との両立が高いレベルで実現され得る研磨用組成物を提供することである。 The present invention has been made in view of the above circumstances, and its main object is a polishing composition that can be realized at a high level of both a polishing rate and surface flatness with respect to the surface of a high hardness material. Is to provide.
 本発明によると、1500Hv以上のビッカース硬度を有する材料を研磨するための研磨用組成物が提供される。この研磨用組成物は、平均二次粒子径D2を有する第1アルミナ砥粒と、前記第1アルミナ砥粒よりも小さい平均二次粒子径D2を有する第2アルミナ砥粒とを含む。このように平均二次粒子径が異なるアルミナ砥粒を組み合わせて用いることにより、高硬度材料表面に対して、研磨レートと表面平坦性との両立が高いレベルで実現され得る。 According to the present invention, a polishing composition for polishing a material having a Vickers hardness of 1500 Hv or more is provided. The polishing composition includes a first alumina abrasive grain having an average secondary particle diameter D2 f and a second alumina abrasive grain having an average secondary particle diameter D2 s smaller than the first alumina abrasive grain. As described above, by using a combination of alumina abrasive grains having different average secondary particle diameters, it is possible to achieve a high level of both the polishing rate and the surface flatness with respect to the surface of the high hardness material.
 ここに開示される研磨用組成物の好ましい一態様では、前記第1アルミナ砥粒としてα-アルミナを含む。かかる第1アルミナ砥粒は、研磨レートの向上に効果的に寄与し得る。また、前記第2アルミナ砥粒としてアルミナゾル(コロイダルアルミナとも称する。)および中間アルミナからなる群から選択される少なくとも一種を含む。かかる第2アルミナ砥粒は、表面平坦性の向上に効果的に寄与し得る。したがって、このような第1アルミナ砥粒と第2アルミナ砥粒とを上記平均二次粒子径を満たすように組み合わせて使用することにより、研磨レートと表面平坦性との両立がより効果的に実現され得る。 In a preferred embodiment of the polishing composition disclosed herein, α-alumina is included as the first alumina abrasive grains. Such first alumina abrasive grains can effectively contribute to the improvement of the polishing rate. The second alumina abrasive grains include at least one selected from the group consisting of alumina sol (also referred to as colloidal alumina) and intermediate alumina. Such second alumina abrasive grains can effectively contribute to improvement of surface flatness. Therefore, by using the first alumina abrasive grains and the second alumina abrasive grains in combination so as to satisfy the above average secondary particle diameter, it is possible to more effectively realize both the polishing rate and the surface flatness. Can be done.
 ここに開示される研磨用組成物の好ましい一態様では、前記第1アルミナ砥粒の平均二次粒子径D2と前記第2アルミナ砥粒の平均二次粒子径D2との関係が次式:1<(D2/D2)<20;を満たす。上記特定の平均二次粒子径比となるように第1アルミナ砥粒と第2アルミナ砥粒とを組み合わせて用いることにより、研磨レートと表面平坦性との両立がより高いレベルで実現され得る。 In a preferred embodiment of the polishing composition disclosed herein, the relationship between the average secondary particle diameter D2 f of the first alumina abrasive grains and the average secondary particle diameter D2 s of the second alumina abrasive grains is represented by the following formula: : 1 <(D2 f / D2 s ) <20; By using a combination of the first alumina abrasive grains and the second alumina abrasive grains so as to have the specific average secondary particle diameter ratio, both the polishing rate and the surface flatness can be realized at a higher level.
 ここに開示される研磨用組成物の好ましい一態様では、前記第1アルミナ砥粒の平均二次粒子径D2が350nm以上1000nm以下である。また、前記第2アルミナ砥粒の平均二次粒子径D2が20nm以上300nm以下である。第1アルミナ砥粒の平均二次粒子径D2および第2アルミナ砥粒の平均二次粒子径D2がそれぞれ上記の範囲内であると、研磨レートと表面平坦性との両立が好適に実現され得る。 In a preferred embodiment of the polishing composition disclosed herein, the average secondary particle diameter D2 f of the first alumina abrasive grains is 350 nm or more and 1000 nm or less. The average secondary particle diameter D2 s of the second alumina abrasive grains is 20nm or more 300nm or less. When the average secondary particle diameter D2 f of the first alumina abrasive grains and the average secondary particle diameter D2 s of the second alumina abrasive grains are within the above ranges, both the polishing rate and the surface flatness are suitably realized. Can be done.
 ここに開示される研磨用組成物の好ましい一態様では、前記第1アルミナ砥粒および前記第2アルミナ砥粒の含有量の比(第1アルミナ砥粒:第2アルミナ砥粒)が重量基準で95:5~5:95の範囲である。このような第1アルミナ砥粒および第2アルミナ砥粒の含有量の比の範囲内であると、研磨レート向上効果および平坦化効果がより好適に発揮され得る。 In a preferred aspect of the polishing composition disclosed herein, the content ratio of the first alumina abrasive grains and the second alumina abrasive grains (first alumina abrasive grains: second alumina abrasive grains) is based on weight. The range is 95: 5 to 5:95. When the content ratio of the first alumina abrasive grains and the second alumina abrasive grains is within this range, the polishing rate improvement effect and the planarization effect can be more suitably exhibited.
 ここに開示される研磨用組成物の好ましい一態様では、pHが、8~11の範囲内である。pHが上記範囲内にある研磨用組成物において、本発明の適用効果が好適に発揮され得る。 In a preferred embodiment of the polishing composition disclosed herein, the pH is in the range of 8-11. In the polishing composition having a pH within the above range, the application effect of the present invention can be suitably exhibited.
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。 Hereinafter, preferred embodiments of the present invention will be described. Note that matters other than matters specifically mentioned in the present specification and necessary for the implementation of the present invention can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.
 <研磨対象物>
 ここに開示される研磨用組成物は、1500Hv以上のビッカース硬度を有する材料(高硬度材料)を研磨するために用いられる。高硬度材料のビッカース硬度は、好ましくは1800Hv以上(例えば2000Hv以上、典型的には2200Hv以上)である。ビッカース硬度の上限は特に限定されないが、凡そ7000Hv以下(例えば5000Hv以下、典型的には3000Hv以下)であってもよい。なお、本明細書において、ビッカース硬度は、JIS R 1610:2003に基づいて測定することができる。上記JIS規格に対応する国際規格はISO 14705:2000である。
<Polishing object>
The polishing composition disclosed herein is used for polishing a material having a Vickers hardness of 1500 Hv or higher (high hardness material). The Vickers hardness of the high hardness material is preferably 1800 Hv or higher (for example, 2000 Hv or higher, typically 2200 Hv or higher). The upper limit of Vickers hardness is not particularly limited, but may be about 7000 Hv or less (for example, 5000 Hv or less, typically 3000 Hv or less). In the present specification, the Vickers hardness can be measured based on JIS R 1610: 2003. An international standard corresponding to the JIS standard is ISO 14705: 2000.
 1500Hv以上のビッカース硬度を有する材料としては、ダイヤモンド、サファイア(酸化アルミニウム)、炭化ケイ素、炭化ホウ素、炭化タングステン、窒化ケイ素、窒化チタン等が挙げられる。ここに開示される研磨方法は、機械的かつ化学的に安定な上記材料の単結晶表面に対して好ましく適用することができる。なかでも、研磨対象物表面は、炭化ケイ素から構成されていることが好ましい。炭化ケイ素は、電力損失が少なく耐熱性等に優れる半導体基板材料として期待されており、その表面性状を改善することの実用上の利点は特に大きい。ここに開示される研磨用組成物は、炭化ケイ素の単結晶表面に対して特に好ましく適用される。 Examples of the material having a Vickers hardness of 1500 Hv or more include diamond, sapphire (aluminum oxide), silicon carbide, boron carbide, tungsten carbide, silicon nitride, and titanium nitride. The polishing method disclosed herein can be preferably applied to a single crystal surface of the above material that is mechanically and chemically stable. Especially, it is preferable that the grinding | polishing target object surface is comprised from the silicon carbide. Silicon carbide is expected as a semiconductor substrate material with low power loss and excellent heat resistance, and the practical advantage of improving its surface properties is particularly great. The polishing composition disclosed herein is particularly preferably applied to a silicon carbide single crystal surface.
 <研磨用組成物>
 (砥粒)
 ここに開示される研磨用組成物は、平均二次粒子径D2を有する第1アルミナ砥粒と、第1アルミナ砥粒よりも小さい平均二次粒子径D2を有する第2アルミナ砥粒とを含有する。このように平均二次粒子径が異なるアルミナ砥粒を組み合わせて用いることにより、高硬度材料表面に対して、研磨レートと表面平坦性との両立が高いレベルで実現され得る。
<Polishing composition>
(Abrasive grains)
The polishing composition disclosed herein includes a first alumina abrasive grain having an average secondary particle diameter D2 f, and a second alumina abrasive grain having an average secondary particle diameter D2 s smaller than the first alumina abrasive grain. Containing. As described above, by using a combination of alumina abrasive grains having different average secondary particle diameters, it is possible to achieve a high level of both the polishing rate and the surface flatness with respect to the surface of the high hardness material.
 第1アルミナ砥粒の平均二次粒子径(以下、単に「D2」と表記することがある。)は、第2アルミナ砥粒の平均二次粒子径(以下、単に「D2」と表記することがある。)よりも大きければよく(すなわち、D2>D2であればよく)、特に限定されない。D2は、例えば100nm以上にすることが適当であり、通常は150nm以上、典型的には200nm以上である。研磨効率等の観点から、D2は、好ましくは300nm以上、より好ましくは350nm以上、さらに好ましくは400nm以上である。研磨レートと表面平坦性とを両立する観点から、D2が200nm以上3000nm以下の第1アルミナ砥粒が好ましく、300nm以上2000nm以下の第1アルミナ砥粒が好ましく、350nm以上1000nm以下(例えば800nm以下)のものが特に好ましい。 The average secondary particle diameter of the first alumina abrasive grains (hereinafter sometimes simply referred to as “D2 f ”) is the average secondary particle diameter of the second alumina abrasive grains (hereinafter simply referred to as “D2 s ”). (That is, D2 f > D2 s is sufficient) and is not particularly limited. D2 f is suitably, for example, 100 nm or more, usually 150 nm or more, typically 200 nm or more. From the viewpoint of polishing efficiency, the D2 f, preferably 300nm or more, more preferably 350nm or more, more preferably 400nm or more. From the viewpoint of achieving both a polishing rate and surface flatness, first alumina abrasive grains having a D2 f of 200 nm to 3000 nm are preferred, first alumina abrasive grains having a diameter of 300 nm to 2000 nm are preferred, and 350 nm to 1000 nm (for example, 800 nm or less). ) Is particularly preferred.
 一方、第2アルミナ砥粒としては、その平均二次粒子径D2がD2より小さければよく、特に限定されない。平坦化効果の観点から、第2アルミナ砥粒としては、D2が500nm以下のものを好ましく採用することができる。例えば、研磨効率および表面平坦性を両立させる観点から、D2が20nm以上450nm以下の第2アルミナ砥粒が好ましく、50nm以上400nm以下の第2アルミナ砥粒が好ましく、75nm以上300nm以下のものが特に好ましい。例えば、D2が75nm以上150nm以下(例えば100nm以下)の第2アルミナ砥粒であってもよい。 On the other hand, the second alumina abrasive grains are not particularly limited as long as the average secondary particle diameter D2 s is smaller than D2 f . From the viewpoint of flattening effect, the second alumina abrasive grains can D2 s is preferably adopted as the 500nm or less. For example, from the viewpoint of achieving both polishing efficiency and surface flatness, second alumina abrasive grains having a D2 s of 20 nm to 450 nm are preferable, second alumina abrasive grains having a diameter of 50 nm to 400 nm are preferable, and those having a diameter of 75 nm to 300 nm are preferable. Particularly preferred. For example, the second alumina abrasive grains may have D2 f of 75 nm or more and 150 nm or less (for example, 100 nm or less).
 第1アルミナ砥粒と第2アルミナ砥粒とを併用することによる効果をよりよく発揮させる観点から、D2とD2との関係が1<(D2/D2)<20を満たすことが好ましい。第1アルミナ砥粒と第2アルミナ砥粒とを特定の平均二次粒子径比となるように組み合わせて用いることにより、研磨レートと表面平坦性との両立がより高いレベルで実現され得る。ここに開示される技術は、例えば、D2とD2との関係が、1.2≦(D2/D2)≦15、より好ましくは1.5≦(D2/D2)≦10、さらに好ましくは1.8≦(D2/D2)≦8、特に好ましくは2≦(D2/D2)≦6である態様で好ましく実施され得る。 The relationship between D2 f and D2 s satisfies 1 <(D2 f / D2 s ) <20 from the viewpoint of better exhibiting the effect of using the first alumina abrasive grains and the second alumina abrasive grains together. preferable. By using the first alumina abrasive grains and the second alumina abrasive grains in combination so as to have a specific average secondary particle diameter ratio, both the polishing rate and the surface flatness can be realized at a higher level. In the technology disclosed herein, for example, the relationship between D2 f and D2 s is 1.2 ≦ (D2 f / D2 s ) ≦ 15, more preferably 1.5 ≦ (D2 f / D2 s ) ≦ 10. More preferably, 1.8 ≦ (D2 f / D2 s ) ≦ 8, particularly preferably 2 ≦ (D2 f / D2 s ) ≦ 6.
 D2は、D2より100nm以上大きいことが好ましく、200nm以上大きいことがより好ましい。また、D2からD2を減じた値(すなわち、D2-D2)は、好ましくは1000nm以下であり、より好ましくは800nm以下、さらに好ましくは500nm以下である。例えば、D2-D2が250nm以下であってもよい。 D2 f is preferably 100 nm or more larger than D2 s, and more preferably 200 nm or more. The value obtained by subtracting D2 s from D2 f (that is, D2 f −D2 s ) is preferably 1000 nm or less, more preferably 800 nm or less, and further preferably 500 nm or less. For example, D2 f −D2 s may be 250 nm or less.
 なお、砥粒の平均二次粒子径は、500nm未満の粒子については、例えば、日機装社製の型式「UPA-UT151」を用いた動的光散乱法により、体積平均粒子径(体積基準の算術平均径;Mv)として測定することができる。また、500nm以上の粒子についてはBECKMAN COULTER社製の型式「Multisizer 3」を用いた細孔電気抵抗法等により、体積平均粒子径として測定することができる。 The average secondary particle diameter of the abrasive grains is less than 500 nm, for example, by a dynamic light scattering method using a model “UPA-UT151” manufactured by Nikkiso Co., Ltd. The average diameter can be measured as Mv). Moreover, about 500 nm or more particle | grains, it can measure as a volume average particle diameter by the pore electrical resistance method etc. using the model "Multisizer 3" by BECKMAN COULTER.
 第1アルミナ砥粒の含有量と第2アルミナ砥粒の含有量との比(重量基準)は特に限定されない。第1アルミナ砥粒と第2アルミナ砥粒とを併用することによる効果をよりよく発揮させる観点から、第1アルミナ砥粒と第2アルミナ砥粒との重量比が95:5~5:95であることが適当であり、95:5~20:80であることが好ましく、95:5~40:60であることがより好ましい。研磨効率等の観点からは、第1アルミナ砥粒の含有量を第2アルミナ砥粒の含有量以上とすることが効果的である。ここに開示される技術は、例えば、第1アルミナ砥粒と第2アルミナ砥粒との重量比が95:5~70:30である態様で好ましく実施され得る。 The ratio (weight basis) between the content of the first alumina abrasive grains and the content of the second alumina abrasive grains is not particularly limited. From the viewpoint of better exerting the effect of using the first alumina abrasive grains and the second alumina abrasive grains together, the weight ratio of the first alumina abrasive grains to the second alumina abrasive grains is 95: 5 to 5:95. It is appropriate that it is 95: 5 to 20:80, more preferably 95: 5 to 40:60. From the viewpoint of polishing efficiency and the like, it is effective to set the content of the first alumina abrasive grains to be equal to or more than the content of the second alumina abrasive grains. The technique disclosed herein can be preferably implemented in an embodiment in which the weight ratio of the first alumina abrasive grains to the second alumina abrasive grains is 95: 5 to 70:30, for example.
 第1アルミナ砥粒および第2アルミナ砥粒の各々は、公知の各種アルミナ粒子のなかから、適切な平均二次粒子径を有するものを適宜選択して使用することができる。そのような公知のアルミナ粒子の例には、α-アルミナおよび中間アルミナが含まれる。ここで中間アルミナとは、α-アルミナ以外のアルミナ粒子の総称であり、具体的には、γ-アルミナ、δ-アルミナ、θ-アルミナ、η-アルミナ、κ-アルミナ、χ-アルミナ等が例示される。また、製法による分類に基づきヒュームドアルミナと称されるアルミナ(典型的にはアルミナ塩を高温焼成する際に生産されるアルミナ微粒子)を使用してもよい。さらに、コロイダルアルミナまたはアルミナゾルと称されるアルミナ(例えばベーマイト等のアルミナ水和物)も、上記公知のアルミナ粒子の例に含まれる。 Each of the first alumina abrasive grains and the second alumina abrasive grains can be used by appropriately selecting those having an appropriate average secondary particle diameter from various known alumina particles. Examples of such known alumina particles include α-alumina and intermediate alumina. Here, intermediate alumina is a general term for alumina particles other than α-alumina, and specific examples include γ-alumina, δ-alumina, θ-alumina, η-alumina, κ-alumina, and χ-alumina. Is done. Further, alumina called fumed alumina (typically alumina fine particles produced when high-temperature firing of an alumina salt) may be used based on classification according to the production method. Further, alumina (referred to as alumina hydrate such as boehmite) called colloidal alumina or alumina sol is also included in the examples of the known alumina particles.
 第1アルミナ砥粒として好ましく採用し得るアルミナ粒子の具体例として、α-アルミナが挙げられる。かかる第1アルミナ砥粒は、研磨レートの向上に効果的に寄与し得る。第2アルミナ砥粒としては、第1アルミナ砥粒よりも平均二次粒子径の小さいα-アルミナを用いてもよく、α-アルミナ以外のアルミナ粒子を使用してもよい。 Specific examples of alumina particles that can be preferably used as the first alumina abrasive grains include α-alumina. Such first alumina abrasive grains can effectively contribute to the improvement of the polishing rate. As the second alumina abrasive grains, α-alumina having an average secondary particle diameter smaller than that of the first alumina abrasive grains may be used, or alumina particles other than α-alumina may be used.
 好ましい一態様において、第1アルミナ砥粒および第2アルミナ砥粒は、第1アルミナ砥粒の硬度よりも第2アルミナ砥粒の硬度が低くなるように選択することができる。このことによって、第1アルミナ砥粒による研磨レート向上効果と第2アルミナ砥粒による表面平坦性向上効果とをそれぞれ効率的に発揮させることができ、研磨レートと表面平坦性との両立がより高いレベルで実現され得る。例えば、第1アルミナ砥粒としてα-アルミナを使用する場合、第2アルミナ砥粒としては、各種の中間アルミナを好ましく採用することができる。上記中間アルミナはヒュームドアルミナであってもよい。アルミナゾル(コロイダルアルミナ)もまた、第2アルミナ砥粒として好ましく使用することができる。 In a preferred embodiment, the first alumina abrasive grains and the second alumina abrasive grains can be selected such that the hardness of the second alumina abrasive grains is lower than the hardness of the first alumina abrasive grains. By this, the polishing rate improvement effect by the 1st alumina abrasive grain and the surface flatness improvement effect by the 2nd alumina abrasive grain can each be exhibited efficiently, and both coexistence with a polishing rate and surface flatness is higher. Can be realized at a level. For example, when α-alumina is used as the first alumina abrasive grains, various intermediate aluminas can be preferably used as the second alumina abrasive grains. The intermediate alumina may be fumed alumina. Alumina sol (colloidal alumina) can also be preferably used as the second alumina abrasive grains.
 ここに開示される研磨用組成物は、本発明の効果を損なわない範囲で、第1アルミナ砥粒および第2アルミナ砥粒以外のアルミナ砥粒(すなわち、第3以降のアルミナ砥粒)を含有してもよい。第3以降のアルミナ砥粒を含有する場合、研磨用組成物に含まれるアルミナ砥粒の全重量のうち第1アルミナ砥粒と第2アルミナ砥粒との合計重量が70重量%とすることが適当であり、好ましくは80重量%以上、より好ましくは90重量%以上である。なかでも、研磨用組成物に含まれるアルミナ砥粒の100重量%が第1アルミナ砥粒および第2アルミナ砥粒である研磨用組成物が好ましい。 The polishing composition disclosed herein contains alumina abrasive grains other than the first alumina abrasive grains and the second alumina abrasive grains (that is, third and subsequent alumina abrasive grains) as long as the effects of the present invention are not impaired. May be. When the third and subsequent alumina abrasive grains are contained, the total weight of the first alumina abrasive grains and the second alumina abrasive grains in the total weight of the alumina abrasive grains contained in the polishing composition may be 70% by weight. It is suitable, preferably 80% by weight or more, more preferably 90% by weight or more. Among these, a polishing composition in which 100% by weight of the alumina abrasive grains contained in the polishing composition is a first alumina abrasive grain and a second alumina abrasive grain is preferable.
 ここに開示される研磨用組成物は、本発明の効果を損なわない範囲で、アルミナ以外の材質からなる砥粒(以下、非アルミナ砥粒ともいう。)を含有してもよい。そのような非アルミナ砥粒の例として、シリカ粒子、酸化セリウム粒子、酸化クロム粒子、二酸化チタン粒子、酸化ジルコニウム粒子、酸化マグネシウム粒子、二酸化マンガン粒子、酸化亜鉛粒子、酸化鉄粒子等の酸化物粒子;窒化ケイ素粒子、窒化ホウ素粒子等の窒化物粒子;炭化ケイ素粒子、炭化ホウ素粒子等の炭化物粒子;ダイヤモンド粒子;炭酸カルシウムや炭酸バリウム等の炭酸塩;等のいずれかから実質的に構成される砥粒が挙げられる。 The polishing composition disclosed herein may contain abrasive grains made of a material other than alumina (hereinafter also referred to as non-alumina abrasive grains) as long as the effects of the present invention are not impaired. Examples of such non-alumina abrasive grains include oxide particles such as silica particles, cerium oxide particles, chromium oxide particles, titanium dioxide particles, zirconium oxide particles, magnesium oxide particles, manganese dioxide particles, zinc oxide particles, and iron oxide particles. Nitride particles such as silicon nitride particles and boron nitride particles; carbide particles such as silicon carbide particles and boron carbide particles; diamond particles; carbonates such as calcium carbonate and barium carbonate; An abrasive is mentioned.
 上記非アルミナ砥粒の含有量は、研磨用組成物に含まれる砥粒の全重量のうち、例えば30重量%以下とすることが適当であり、好ましくは20重量%以下、より好ましくは10重量%以下である。
 ここに開示される技術は、研磨用組成物に含まれる砥粒の全重量のうちアルミナ砥粒の合計割合が90重量%よりも大きい態様で好ましく実施され得る。上記アルミナ砥粒の割合は、より好ましくは95重量%以上、さらに好ましくは98重量%以上、特に好ましくは99重量%以上である。なかでも、研磨用組成物に含まれる砥粒の100重量%がアルミナ砥粒である研磨用組成物が好ましい。
The content of the non-alumina abrasive is suitably, for example, 30% by weight or less, preferably 20% by weight or less, more preferably 10% by weight, based on the total weight of the abrasive grains contained in the polishing composition. % Or less.
The technique disclosed here can be preferably implemented in a mode in which the total proportion of alumina abrasive grains is greater than 90% by weight of the total weight of abrasive grains contained in the polishing composition. The ratio of the alumina abrasive grains is more preferably 95% by weight or more, further preferably 98% by weight or more, and particularly preferably 99% by weight or more. Among these, a polishing composition in which 100% by weight of the abrasive grains contained in the polishing composition is alumina abrasive grains is preferable.
 また、ここに開示される研磨用組成物は、砥粒としてダイヤモンド粒子を実質的に含まないことが好ましい。ダイヤモンド粒子はその高硬度ゆえ、平滑性向上の制限要因となり得る。また、ダイヤモンド粒子は概して高価であることから、コストパフォーマンスの点で有利な材料とはいえず、実用面からは、ダイヤモンド粒子等の高価格材料への依存度は低いことが望ましい。 Further, it is preferable that the polishing composition disclosed herein does not substantially contain diamond particles as abrasive grains. Diamond particles can be a limiting factor for improving smoothness due to their high hardness. Further, since diamond particles are generally expensive, they cannot be said to be an advantageous material in terms of cost performance. From a practical aspect, it is desirable that the degree of dependence on high-priced materials such as diamond particles is low.
 (研磨助剤)
 ここに開示される研磨用組成物は研磨助剤を含むことが好ましい。研磨助剤は、ポリシングによる効果を増進する成分であり、典型的には水溶性のものが用いられる。研磨助剤は、特に限定的に解釈されるものではないが、ポリシングにおいて研磨対象物表面を変質(典型的には酸化変質)する作用を示し、研磨対象物表面の脆弱化をもたらすことで、砥粒による研磨に寄与していると考えられる。
(Polishing aid)
The polishing composition disclosed herein preferably contains a polishing aid. The polishing aid is a component that enhances the effect of polishing, and typically a water-soluble one is used. The polishing aid is not particularly limited, but exhibits an action of modifying the surface of the object to be polished (typically oxidative deterioration) in polishing, thereby causing weakening of the surface of the object to be polished. It is thought that it contributes to polishing with abrasive grains.
 研磨助剤としては、過酸化水素等の過酸化物;硝酸、その塩である硝酸鉄、硝酸銀、硝酸アルミニウム、その錯体である硝酸セリウムアンモニウム等の硝酸化合物;ペルオキソ一硫酸カリウム、ペルオキソ二硫酸等の過硫酸、その塩である過硫酸アンモニウム、過硫酸カリウム等の過硫酸化合物;塩素酸やその塩、過塩素酸、その塩である過塩素酸カリウム等の塩素化合物;臭素酸、その塩である臭素酸カリウム等の臭素化合物;ヨウ素酸、その塩であるヨウ素酸アンモニウム、過ヨウ素酸、その塩である過ヨウ素酸ナトリウム、過ヨウ素酸カリウム等のヨウ素化合物;鉄酸、その塩である鉄酸カリウム等の鉄酸類;過マンガン酸、その塩である過マンガン酸ナトリウム、過マンガン酸カリウム等の過マンガン酸類;クロム酸、その塩であるクロム酸カリウム、ニクロム酸カリウム等のクロム酸類;バナジン酸、その塩であるバナジン酸アンモニウム、バナジン酸ナトリウム、バナジン酸カリウム等のバナジン酸類;過ルテニウム酸またはその塩等のルテニウム酸類;モリブデン酸、その塩であるモリブデン酸アンモニウム、モリブデン酸二ナトリウム等のモリブデン酸類;過レニウムまたはその塩等のレニウム酸類;タングステン酸、その塩であるタングステン酸二ナトリウム等のタングステン酸類;が挙げられる。これらは1種を単独で用いてもよく2種以上を適宜組み合わせて用いてもよい。なかでも、研磨効率等の観点から、過マンガン酸またはその塩、クロム酸またはその塩、鉄酸またはその塩が好ましく、過マンガン酸ナトリウム、過マンガン酸カリウムが特に好ましい。 Polishing aids include peroxides such as hydrogen peroxide; nitric acid and its salts: iron nitrate, silver nitrate, aluminum nitrate, nitrates such as its complex, cerium ammonium nitrate; potassium peroxomonosulfate, peroxodisulfuric acid, etc. Persulfuric acid, persulfate compounds such as ammonium persulfate and potassium persulfate; chloric acid and salts thereof, perchloric acid and perchloric acid such as potassium perchlorate; and bromine acid and salts thereof Bromine compounds such as potassium bromate; iodine compounds such as iodic acid, its salt ammonium iodate, periodic acid, its salt sodium periodate, potassium periodate, etc .; iron acid, its salt iron acid Ferric acids such as potassium; permanganic acid, its salt sodium permanganate, permanganate such as potassium permanganate; chromic acid, its salt Chromic acids such as potassium chromate and potassium dichromate; vanadic acid and its salts vanadate such as ammonium vanadate, sodium vanadate and potassium vanadate; ruthenium acids such as perruthenic acid and its salts; molybdic acid and its Examples thereof include molybdic acids such as ammonium molybdate and disodium molybdate as salts; rhenium acids such as perrhenium and salts thereof; and tungstic acids such as tungstic acid and disodium tungstate as salts thereof. These may be used alone or in combination of two or more. Among these, from the viewpoint of polishing efficiency and the like, permanganic acid or a salt thereof, chromic acid or a salt thereof, iron acid or a salt thereof is preferable, and sodium permanganate or potassium permanganate is particularly preferable.
 好ましい一態様では、研磨用組成物は、研磨助剤として複合金属酸化物を含む。上記複合金属酸化物としては、硝酸金属塩、鉄酸類、過マンガン酸類、クロム酸類、バナジン酸類、ルテニウム酸類、モリブデン酸類、レニウム酸類、タングステン酸類が挙げられる。なかでも、鉄酸類、過マンガン酸類、クロム酸類がより好ましく、過マンガン酸類がさらに好ましい。 In a preferred embodiment, the polishing composition contains a composite metal oxide as a polishing aid. Examples of the composite metal oxide include nitrate metal salts, iron acids, permanganic acids, chromic acids, vanadic acids, ruthenium acids, molybdic acids, rhenic acids, and tungstic acids. Among these, iron acids, permanganic acids, and chromic acids are more preferable, and permanganic acids are more preferable.
 さらに好ましい一態様では、上記複合金属酸化物として、1価または2価の金属元素(ただし、遷移金属元素を除く。)と、周期表の第4周期遷移金属元素と、を有する複合金属酸化物CMOが用いられる。上記1価または2価の金属元素(ただし、遷移金属元素を除く。)の好適例としては、Na、K、Mg、Caが挙げられる。なかでも、Na、Kがより好ましい。周期表の第4周期遷移金属元素の好適例としては、Fe、Mn、Cr、V、Tiが挙げられる。なかでも、Fe、Mn、Crがより好ましく、Mnがさらに好ましい。 In a more preferable embodiment, the composite metal oxide includes a monovalent or divalent metal element (excluding transition metal elements) and a fourth periodic transition metal element in the periodic table. CMO is used. Preferred examples of the monovalent or divalent metal element (excluding transition metal elements) include Na, K, Mg, and Ca. Of these, Na and K are more preferable. Preferable examples of the fourth periodic transition metal element in the periodic table include Fe, Mn, Cr, V, and Ti. Among these, Fe, Mn, and Cr are more preferable, and Mn is more preferable.
 ここに開示される研磨用組成物が、研磨助剤として複合金属酸化物(好ましくは複合金属酸化物CMO)を含む場合、複合金属酸化物以外の研磨助剤をさらに含んでもよく、含まなくてもよい。ここに開示される技術は、研磨助剤として複合金属酸化物(好ましくは複合金属酸化物CMO)以外の研磨助剤(例えば過酸化水素)を実質的に含まない態様でも好ましく実施され得る。 When the polishing composition disclosed herein contains a composite metal oxide (preferably a composite metal oxide CMO) as a polishing aid, it may or may not contain a polishing aid other than the composite metal oxide. Also good. The technique disclosed herein can also be preferably implemented in an embodiment that does not substantially contain a polishing aid (for example, hydrogen peroxide) other than a composite metal oxide (preferably a composite metal oxide CMO) as a polishing aid.
 (その他の成分)
 ここに開示される研磨用組成物は、本発明の効果を損なわない範囲で、キレート剤、増粘剤、分散剤、pH調整剤、界面活性剤、有機酸、有機酸塩、無機酸、無機酸塩、防錆剤、防腐剤、防カビ剤等の、研磨用組成物(典型的には高硬度材料研磨用組成物、例えば炭化ケイ素基板ポリシング用組成物)に用いられ得る公知の添加剤を、必要に応じてさらに含有してもよい。上記添加剤の含有量は、その添加目的に応じて適宜設定すればよく、本発明を特徴づけるものではないため、詳しい説明は省略する。
(Other ingredients)
The polishing composition disclosed herein is a chelating agent, a thickener, a dispersant, a pH adjuster, a surfactant, an organic acid, an organic acid salt, an inorganic acid, an inorganic material, as long as the effects of the present invention are not impaired. Known additives that can be used in polishing compositions (typically high-hardness material polishing compositions such as silicon carbide substrate polishing compositions), such as acid salts, rust inhibitors, antiseptics, and fungicides May be further contained as necessary. The content of the additive may be set as appropriate according to the purpose of the addition, and does not characterize the present invention, so a detailed description is omitted.
 (溶媒)
 研磨用組成物に用いられる溶媒は、砥粒を分散させることができるものであればよく、特に制限されない。溶媒としては、イオン交換水(脱イオン水)、純水、超純水、蒸留水等を好ましく用いることができる。ここに開示される研磨用組成物は、必要に応じて、水と均一に混合し得る有機溶剤(低級アルコール、低級ケトン等)をさらに含有してもよい。通常は、研磨用組成物に含まれる溶媒の90体積%以上が水であることが好ましく、95体積%以上(典型的には99~100体積%)が水であることがより好ましい。
(solvent)
The solvent used in the polishing composition is not particularly limited as long as it can disperse the abrasive grains. As the solvent, ion exchange water (deionized water), pure water, ultrapure water, distilled water and the like can be preferably used. The polishing composition disclosed herein may further contain an organic solvent (lower alcohol, lower ketone, etc.) that can be uniformly mixed with water, if necessary. Usually, 90% by volume or more of the solvent contained in the polishing composition is preferably water, and more preferably 95% by volume or more (typically 99 to 100% by volume) is water.
 <研磨液>
 ここに開示される研磨用組成物は、典型的には該研磨用組成物を含む研磨液の形態で研磨対象物に供給されて、その研磨対象物の研磨に用いられる。上記研磨液は、例えば、ここに開示されるいずれかの研磨用組成物を希釈(典型的には、水により希釈)して調製されたものであり得る。あるいは、該研磨用組成物をそのまま研磨液として使用してもよい。すなわち、ここに開示される技術における研磨用組成物の概念には、研磨対象物に供給されて該研磨対象物の研磨に用いられる研磨液(ワーキングスラリー)と、希釈して研磨液として用いられる濃縮液(研磨液の原液)との双方が包含される。ここに開示される研磨用組成物を含む研磨液の他の例として、該組成物のpHを調整してなる研磨液が挙げられる。
<Polishing liquid>
The polishing composition disclosed herein is typically supplied to a polishing object in the form of a polishing liquid containing the polishing composition, and used for polishing the polishing object. The polishing liquid may be prepared, for example, by diluting (typically diluting with water) any of the polishing compositions disclosed herein. Or you may use this polishing composition as polishing liquid as it is. That is, the concept of the polishing composition in the technology disclosed herein is used as a polishing liquid diluted with a polishing liquid (working slurry) that is supplied to a polishing object and used for polishing the polishing object. Both concentrated liquid (polishing liquid stock solution) are included. Another example of the polishing liquid containing the polishing composition disclosed herein is a polishing liquid obtained by adjusting the pH of the composition.
 ここに開示される研磨液における砥粒の含有量(複数の砥粒の合計含有量)は特に制限されないが、研磨効率の観点から、典型的には0.1重量%以上であり、0.5重量%以上であることが好ましく、1重量%以上であることがより好ましく、3重量%以上であることがさらに好ましく、5重量%以上であることが特に好ましい。砥粒の含有量の増大によって、より高い研磨レートが実現され得る。また、研磨用組成物の分散安定性等の観点から、通常は、上記含有量は、30重量%以下が適当であり、好ましくは20重量%以下、より好ましくは15重量%以下、さらに好ましくは10重量%以下である。好ましい一態様では、研磨液における第1アルミナ砥粒の含有量は、第2アルミナ砥粒の含有量よりも多い。第1アルミナ砥粒の含有量から第2アルミナ砥粒の含有量を減じた値は、研磨効率等の観点から、好ましくは1重量%以上、より好ましくは2重量%以上、さらに好ましくは3重量%以上である。 The abrasive content (total content of a plurality of abrasive grains) in the polishing liquid disclosed herein is not particularly limited, but is typically 0.1% by weight or more from the viewpoint of polishing efficiency. It is preferably 5% by weight or more, more preferably 1% by weight or more, further preferably 3% by weight or more, and particularly preferably 5% by weight or more. Higher polishing rates can be achieved by increasing the abrasive content. Further, from the viewpoint of dispersion stability of the polishing composition, the content is usually suitably 30% by weight or less, preferably 20% by weight or less, more preferably 15% by weight or less, and still more preferably. 10% by weight or less. In a preferred embodiment, the content of the first alumina abrasive grains in the polishing liquid is greater than the content of the second alumina abrasive grains. The value obtained by subtracting the content of the second alumina abrasive grains from the content of the first alumina abrasive grains is preferably 1% by weight or more, more preferably 2% by weight or more, and further preferably 3% by weight from the viewpoint of polishing efficiency and the like. % Or more.
 研磨液における研磨助剤(複数の研磨助剤を含む場合には、それらの合計含有量)の含有量は特に制限されないが、通常は0.1重量%以上とすることが適当である。研磨レート等の観点から、上記含有量は0.5重量%以上が好ましく、1重量%以上がより好ましい。一方、研磨助剤の含有量が多すぎると、研磨レート向上効果が鈍化傾向になることに加えて、当該組成物の安定性が低下する場合があり得る。研磨用組成物の安定性等の観点から、上記研磨助剤の含有量は、通常は10重量%以下とすることが適当であり、8重量%以下とすることが好ましく、5重量%以下とすることがより好ましい。 The content of the polishing aid in the polishing liquid (in the case where a plurality of polishing aids are included, the total content thereof) is not particularly limited, but is usually suitably 0.1% by weight or more. From the viewpoint of polishing rate and the like, the content is preferably 0.5% by weight or more, and more preferably 1% by weight or more. On the other hand, if the content of the polishing aid is too large, the polishing rate improvement effect tends to slow down, and the stability of the composition may decrease. From the viewpoint of the stability of the polishing composition, the content of the polishing aid is usually suitably 10% by weight or less, preferably 8% by weight or less, and 5% by weight or less. More preferably.
 上記研磨液のpHは、2以上(例えば3以上)であることが好ましく、より好ましくは6以上、さらに好ましくは8以上、特に好ましくは8.5以上である。研磨液のpHの上限値は特に制限されないが、12以下(例えば11以下)であることが好ましく、10以下(例えば9.5以下)であることがより好ましい。このことによって、研磨対象物をより平坦に研磨することができる。 The pH of the polishing liquid is preferably 2 or more (for example, 3 or more), more preferably 6 or more, still more preferably 8 or more, and particularly preferably 8.5 or more. The upper limit of the pH of the polishing liquid is not particularly limited, but is preferably 12 or less (for example, 11 or less), and more preferably 10 or less (for example, 9.5 or less). As a result, the object to be polished can be more evenly polished.
 <濃縮液>
 ここに開示される研磨用組成物は、研磨対象物に供給される前には濃縮された形態(すなわち、研磨液の濃縮液の形態)であってもよい。このように濃縮された形態の研磨用組成物は、製造、流通、保存等の際における利便性やコスト低減等の観点から有利である。濃縮倍率は、例えば、体積換算で2倍~5倍程度とすることができる。
<Concentrate>
The polishing composition disclosed herein may be in a concentrated form (that is, in the form of a polishing liquid concentrate) before being supplied to the object to be polished. The polishing composition in such a concentrated form is advantageous from the viewpoints of convenience, cost reduction, etc. during production, distribution, storage and the like. The concentration rate can be, for example, about 2 to 5 times in terms of volume.
 このように濃縮液の形態にある研磨用組成物は、所望のタイミングで希釈して研磨液を調製し、その研磨液を研磨対象物に供給する態様で使用することができる。上記希釈は、典型的には、上記濃縮液に前述の溶媒を加えて混合することにより行うことができる。また、上記溶媒が混合溶媒である場合、該溶媒の構成成分のうち一部の成分のみを加えて希釈してもよく、それらの構成成分を上記溶媒とは異なる量比で含む混合溶媒を加えて希釈してもよい。また、後述するように多剤型の研磨用組成物においては、それらのうち一部の剤を希釈した後に他の剤と混合して研磨液を調製してもよく、複数の剤を混合した後にその混合物を希釈して研磨液を調製してもよい。 Thus, the polishing composition in the form of a concentrated liquid can be used in such a manner that a polishing liquid is prepared by diluting at a desired timing and the polishing liquid is supplied to an object to be polished. The dilution can be typically performed by adding the aforementioned solvent to the concentrated solution and mixing. Moreover, when the said solvent is a mixed solvent, you may add and dilute only some components among the structural components of this solvent, and add the mixed solvent which contains those structural components in a different ratio than the said solvent May be diluted. In addition, as will be described later, in a multi-component polishing composition, a part of them may be diluted and then mixed with another agent to prepare a polishing liquid, or a plurality of agents may be mixed. Later, the mixture may be diluted to prepare a polishing liquid.
 上記濃縮液における砥粒の含有量は、例えば40重量%以下とすることができる。研磨用組成物の安定性(例えば、砥粒の分散安定性)や濾過性等の観点から、通常、上記含有量は、30重量%以下としてもよく、20重量%以下(例えば15重量%以下)としてもよい。また、製造、流通、保存等の際における利便性やコスト低減等の観点から、砥粒の含有量は、例えば0.2重量%以上とすることができ、好ましくは1重量%以上、より好ましくは3重量%以上(例えば4重量%以上)である。 The content of abrasive grains in the concentrated liquid can be, for example, 40% by weight or less. From the viewpoint of the stability of the polishing composition (for example, dispersion stability of abrasive grains) and filterability, the content is usually 30% by weight or less, and 20% by weight or less (for example, 15% by weight or less). ). Further, from the viewpoints of convenience, cost reduction, etc. during production, distribution, storage, etc., the content of the abrasive grains can be, for example, 0.2% by weight or more, preferably 1% by weight or more, and more preferably Is 3% by weight or more (for example, 4% by weight or more).
 ここに開示される研磨用組成物は、一剤型であってもよいし、二剤型を始めとする多剤型であってもよい。例えば、該研磨用組成物の構成成分(典型的には、溶媒以外の成分)のうち一部の成分を含むA液と、残りの成分を含むB液とが混合されて研磨対象物の研磨に用いられるように構成されていてもよい。 The polishing composition disclosed herein may be a one-part type or a multi-part type including a two-part type. For example, the liquid A containing a part of the constituent components (typically components other than the solvent) of the polishing composition and the liquid B containing the remaining components are mixed to polish the polishing object. It may be configured to be used.
 <研磨用組成物の調製>
 ここに開示される研磨用組成物の製造方法は特に限定されない。例えば、翼式攪拌機、超音波分散機、ホモミキサー等の周知の混合装置を用いて、研磨用組成物に含まれる各成分を混合するとよい。これらの成分を混合する態様は特に限定されず、例えば全成分を一度に混合してもよく、適宜設定した順序で混合してもよい。
<Preparation of polishing composition>
The manufacturing method of polishing composition disclosed here is not specifically limited. For example, each component contained in the polishing composition may be mixed using a well-known mixing device such as a blade-type stirrer, an ultrasonic disperser, or a homomixer. The aspect which mixes these components is not specifically limited, For example, all the components may be mixed at once and may be mixed in the order set suitably.
 <研磨方法>
 この明細書によると、1500Hv以上のビッカース硬度を有する研磨対象材料を研磨する研磨方法が提供される。上記研磨方法は、ここに開示される研磨用組成物を用いて研磨対象物を研磨する工程を含むことによって特徴づけられる。好ましい一態様に係る研磨方法は、予備ポリシングを行う工程(予備ポリシング工程)と、仕上げポリシングを行う工程(仕上げポリシング工程)と、を含んでいる。ここでいう予備ポリシング工程とは、少なくとも表面(研磨対象面)が1500Hv以上のビッカース硬度を有する材料から構成された研磨対象物に対して、予備ポリシングを行う工程である。典型的な一態様では、予備ポリシング工程は、仕上げポリシング工程の直前に配置されるポリシング工程である。予備ポリシング工程は、1段のポリシング工程であってもよく、2段以上の複数段のポリシング工程であってもよい。また、ここでいう仕上げポリシング工程は、予備ポリシングが行われた研磨対象物に対して仕上げポリシングを行う工程であって、砥粒を含むポリシング用スラリーを用いて行われるポリシング工程のうち最後に(すなわち、最も下流側に)配置される研磨工程のことをいう。このように予備ポリシング工程と仕上げポリシング工程とを含む研磨方法において、ここに開示される研磨用組成物は、予備ポリシング工程で用いられてもよく、仕上げポリシング工程で用いられてもよく、予備ポリシング工程および仕上げポリシング工程の両方で用いられてもよい。
<Polishing method>
According to this specification, a polishing method for polishing a material to be polished having a Vickers hardness of 1500 Hv or more is provided. The above polishing method is characterized by including a step of polishing an object to be polished using the polishing composition disclosed herein. A polishing method according to a preferred embodiment includes a step of performing preliminary polishing (preliminary polishing step) and a step of performing final polishing (finishing polishing step). Here, the preliminary polishing step is a step of performing preliminary polishing on a polishing object made of a material having at least a surface (surface to be polished) having a Vickers hardness of 1500 Hv or more. In a typical embodiment, the preliminary polishing process is a polishing process that is arranged immediately before the finishing polishing process. The preliminary polishing process may be a single-stage polishing process or a multi-stage polishing process of two or more stages. Further, the finish polishing step referred to here is a step of performing finish polishing on the polishing target that has been subjected to preliminary polishing, and is the last of the polishing steps performed using a polishing slurry containing abrasive grains ( That is, it means a polishing step arranged on the most downstream side. Thus, in the polishing method including the preliminary polishing step and the final polishing step, the polishing composition disclosed herein may be used in the preliminary polishing step, may be used in the final polishing step, or preliminary polishing. It may be used in both the process and the finish polishing process.
 好ましい一態様において、上記研磨用組成物を用いるポリシング工程は、予備ポリシング工程である。予備ポリシング工程では、仕上げポリシング工程に比べて要求される研磨レートが大きい。そのため、ここに開示される研磨用組成物は、高硬度材料表面の予備ポリシング工程に用いられる研磨用組成物(予備ポリシング用組成物)として好適である。予備ポリシング工程が2段以上の複数段のポリシング工程を含む場合、ここに開示される研磨用組成物は、前段(上流側)の予備ポリシングに好ましく適用することができる。なかでも、後述するラッピング工程を経た最初の予備ポリシング工程(典型的には1次研磨工程)において好ましく使用され得る。 In a preferred embodiment, the polishing step using the polishing composition is a preliminary polishing step. In the preliminary polishing process, a required polishing rate is larger than that in the finishing polishing process. Therefore, the polishing composition disclosed herein is suitable as a polishing composition (preliminary polishing composition) used in a preliminary polishing step on the surface of a high hardness material. When the preliminary polishing step includes two or more stages of multiple polishing steps, the polishing composition disclosed herein can be preferably applied to the preliminary (upstream) preliminary polishing. Especially, it can be preferably used in the first preliminary polishing step (typically the primary polishing step) that has passed through the lapping step described later.
 予備ポリシングおよび仕上げポリシングは、片面研磨装置による研磨、両面研磨装置による研磨のいずれにも適用可能である。片面研磨装置では、セラミックプレートにワックスで研磨対象物を貼りつけたり、キャリアと呼ばれる保持具を用いて研磨対象物を保持し、ポリシング用組成物を供給しながら研磨対象物の片面に研磨パッドを押しつけて両者を相対的に移動(例えば回転移動)させることにより研磨対象物の片面を研磨する。両面研磨装置では、キャリアと呼ばれる保持具を用いて研磨対象物を保持し、上方よりポリシング用組成物を供給しながら、研磨対象物の対向面に研磨パッドを押しつけ、それらを相対方向に回転させることにより研磨対象物の両面を同時に研磨する。 Pre-polishing and finish polishing can be applied to both polishing using a single-side polishing apparatus and polishing using a double-side polishing apparatus. In a single-side polishing machine, a polishing object is affixed to a ceramic plate with wax, or a polishing object is held using a holder called a carrier, and a polishing pad is pressed against one side of the polishing object while supplying a polishing composition. Then, one side of the object to be polished is polished by relatively moving both of them (for example, rotational movement). In a double-side polishing apparatus, a polishing object is held by using a holder called a carrier, and a polishing pad is pressed against the opposite surface of the polishing object while supplying a polishing composition from above, and these are rotated in a relative direction. Thus, both surfaces of the object to be polished are polished simultaneously.
 ここに開示される各ポリシング工程で使用される研磨パッドは、特に限定されない。例えば、不織布タイプ、スウェードタイプ、硬質発泡ポリウレタンタイプ、砥粒を含むもの、砥粒を含まないもの等のいずれを用いてもよい。 The polishing pad used in each polishing step disclosed herein is not particularly limited. For example, any of a non-woven fabric type, a suede type, a rigid foamed polyurethane type, a product containing abrasive grains, a product containing no abrasive grains, and the like may be used.
 ここに開示される方法により研磨された研磨物は、典型的にはポリシング後に洗浄される。この洗浄は、適当な洗浄液を用いて行うことができる。使用する洗浄液は特に限定されず、公知、慣用のものを適宜選択して用いることができる。 The polishing object polished by the method disclosed herein is typically cleaned after polishing. This washing can be performed using an appropriate washing solution. The cleaning liquid to be used is not particularly limited, and a known and commonly used cleaning liquid can be appropriately selected and used.
 なお、ここに開示される研磨方法は、上記予備ポリシング工程および仕上げポリシング工程に加えて任意の他の工程を含み得る。そのような工程としては、予備ポリシング工程の前に行われるラッピング工程が挙げられる。上記ラッピング工程は、研磨定盤(例えば鋳鉄定盤)の表面を研磨対象物に押し当てることにより研磨対象物の研磨を行う工程である。したがって、ラッピング工程では研磨パッドは使用しない。ラッピング工程は、典型的には、研磨定盤と研磨対象物との間に砥粒(典型的にはダイヤモンド砥粒)を供給して行われる。また、ここに開示される研磨方法は、予備ポリシング工程の前や、予備ポリシング工程と仕上げポリシング工程との間に追加の工程(洗浄工程やポリシング工程)を含んでもよい。 Note that the polishing method disclosed herein may include any other process in addition to the preliminary polishing process and the finishing polishing process. An example of such a process is a lapping process performed before the preliminary polishing process. The lapping step is a step of polishing the polishing object by pressing the surface of the polishing surface plate (for example, cast iron surface plate) against the polishing object. Therefore, no polishing pad is used in the lapping process. The lapping process is typically performed by supplying abrasive grains (typically diamond abrasive grains) between the polishing surface plate and the object to be polished. Further, the polishing method disclosed herein may include an additional process (a cleaning process or a polishing process) before the preliminary polishing process or between the preliminary polishing process and the finishing polishing process.
 以下、本発明に関するいくつかの実施例を説明するが、本発明を実施例に示すものに限定することを意図したものではない。なお、以下の説明において「%」は、特に断りがない限り重量基準である。 Hereinafter, some examples related to the present invention will be described, but the present invention is not intended to be limited to the examples shown in the examples. In the following description, “%” is based on weight unless otherwise specified.
 <研磨用組成物の調製>
  (実施例1)
 第1アルミナ砥粒としてのα-アルミナ(平均二次粒子径500nm)と、第2アルミナ砥粒としてのアルミナゾル(平均二次粒子径90nm)と、研磨助剤としての過マンガン酸カリウム(KMnO)と脱イオン水とを混合して研磨用組成物を調製した。研磨用組成物中におけるα-アルミナの含有量は6%、アルミナゾルの含有量は2%、KMnOの含有量は1.2%とした。研磨用組成物のpHは、水酸化カリウム(KOH)を用いて9.0に調整した。
<Preparation of polishing composition>
(Example 1)
Α-alumina (average secondary particle diameter 500 nm) as the first alumina abrasive grains, alumina sol (average secondary particle diameter 90 nm) as the second alumina abrasive grains, and potassium permanganate (KMnO 4 ) as the polishing aid ) And deionized water were mixed to prepare a polishing composition. The α-alumina content in the polishing composition was 6%, the alumina sol content was 2%, and the KMnO 4 content was 1.2%. The pH of the polishing composition was adjusted to 9.0 using potassium hydroxide (KOH).
  (実施例2)
 KMnOに代えて過酸化水素(H)を使用し、かつ、研磨用組成物中におけるHの含有量を1.2%としたこと以外は実施例1と同様にして研磨用組成物を調製した。
(Example 2)
Example 1 except that hydrogen peroxide (H 2 O 2 ) was used instead of KMnO 4 and the content of H 2 O 2 in the polishing composition was 1.2%. A polishing composition was prepared.
  (実施例3)
 アルミナゾルに代えてヒュームドアルミナ(平均二次粒子径250nm)を使用し、かつ、研磨用組成物中におけるヒュームドアルミナの含有量を2%としたこと以外は実施例1と同様にして研磨用組成物を調製した。
(Example 3)
For polishing in the same manner as in Example 1 except that fumed alumina (average secondary particle size 250 nm) was used instead of alumina sol and the content of fumed alumina in the polishing composition was 2%. A composition was prepared.
  (比較例1)
 第2アルミナ砥粒としてのアルミナゾルを用いなかったこと以外は実施例1と同様にして研磨用組成物を作製した。
(Comparative Example 1)
A polishing composition was prepared in the same manner as in Example 1 except that alumina sol as the second alumina abrasive grains was not used.
  (比較例2)
 第1アルミナ砥粒としてのα-アルミナを用いなかったこと、および、アルミナゾルの含有量を6%としたこと以外は実施例1と同様にして研磨用組成物を調製した。
(Comparative Example 2)
A polishing composition was prepared in the same manner as in Example 1 except that α-alumina as the first alumina abrasive grains was not used and the content of the alumina sol was 6%.
  (比較例3)
 第1アルミナ砥粒としてのα-アルミナを用いなかったこと、および、ヒュームドアルミナの含有量を6%としたこと以外は実施例3と同様にして研磨用組成物を調製した。
(Comparative Example 3)
A polishing composition was prepared in the same manner as in Example 3 except that α-alumina as the first alumina abrasive grains was not used and the content of fumed alumina was 6%.
 <研磨レートの評価>
 用意した研磨用組成物をそのまま研磨液として使用して、平均粒子径5μmのダイヤモンド砥粒を用いてラッピングを予め実施したSiCウェーハの表面に対し、下記の条件でポリシングを実施した。そして、以下の計算式(1)、(2)に従って研磨レートを算出した。結果を表1の該当欄に示す。
(1)研磨取り代[cm]=研磨前後のSiCウェーハの重量の差[g]/SiCの密度[g/cm](=3.21g/cm)/研磨対象面積[cm](=19.62cm
(2)研磨レート[nm/時間]=研磨取り代[cm]×10/研磨時間(=1時間)
  [ポリシング条件]
 研磨装置:日本エンギス社製の片面研磨装置、型式「EJ-380IN」
 研磨パッド:ニッタ・ハース社製「SUBA800」
 研磨圧力:300g/cm
 定盤回転数:80回転/分
 研磨時間:1時間
 ヘッド回転数:40回転/分
 研磨液の供給レート:20mL/分(掛け流し)
 研磨液の温度:25℃
 研磨対象物:SiCウェーハ(伝導型:n型、結晶型4H 4°off)2インチ
<Evaluation of polishing rate>
The prepared polishing composition was directly used as a polishing liquid, and polishing was performed on the surface of an SiC wafer that had been lapped in advance using diamond abrasive grains having an average particle diameter of 5 μm under the following conditions. And the polishing rate was computed according to the following formulas (1) and (2). The results are shown in the corresponding column of Table 1.
(1) Polishing allowance [cm] = SiC wafer weight difference before and after polishing [g] / SiC density [g / cm 3 ] (= 3.21 g / cm 3 ) / Polishing target area [cm 2 ] ( = 19.62 cm 2 )
(2) Polishing rate [nm / hour] = polishing allowance [cm] × 10 7 / polishing time (= 1 hour)
[Policing condition]
Polishing device: Single-side polishing device manufactured by Nippon Engis Co., Ltd. Model “EJ-380IN”
Polishing pad: “SUBA800” manufactured by Nitta Haas
Polishing pressure: 300 g / cm 2
Surface plate rotation speed: 80 rotations / minute Polishing time: 1 hour Head rotation speed: 40 rotations / minute Polishing liquid supply rate: 20 mL / minute (flowing)
Polishing liquid temperature: 25 ° C
Polishing object: SiC wafer (conduction type: n-type, crystal type 4H 4 ° off) 2 inches
 <平坦性>
 各例に係る研磨後の研磨物表面につき、非接触表面形状測定機(商品名「NewView 5032」、Zygo社製)を用いて、倍率10倍、測定領域700μm×500μmの条件で表面粗さRa(nm)を測定した。結果を表1に示す。
<Flatness>
Using a non-contact surface shape measuring instrument (trade name “NewView 5032”, manufactured by Zygo), the surface roughness Ra is measured under the conditions of a magnification of 10 times and a measurement area of 700 μm × 500 μm. (Nm) was measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、第1アルミナ砥粒および第2アルミナ砥粒としてα-アルミナとこれより平均二次粒子径の小さいアルミナゾルとを組み合わせて使用した実施例1の研磨用組成物は、上記α-アルミナを単独で使用した比較例1の研磨用組成物と同程度の研磨レートを維持しつつ、表面粗さがより小さく抑えられていた。実施例1と同じα-アルミナとアルミナゾルとを組み合わせて使用した実施例2の研磨用組成物は、上記アルミナゾルを単独で使用した比較例2の研磨用組成物に比べて研磨レートが向上し、なおかつ表面粗さも小さく抑えられていた。上記第1アルミナ砥粒とこれより平均二次粒子径の小さいヒュームドアルミナとを組み合わせて使用した実施例3の研磨用組成物は、上記ヒュームドアルミナを単独で使用した比較例3の研磨用組成物に比べて研磨レートが向上し、なおかつ表面粗さも小さく抑えられていた。これらの結果から、平均二次粒子径が異なるアルミナ砥粒を組み合わせて用いることにより、研磨レートと表面平坦性との両立を高いレベルで実現し得ることが確認できた。実施例1の研磨用組成物では、実施例2に比べてさらに高い研磨レートが実現された。 As shown in Table 1, the polishing composition of Example 1 using a combination of α-alumina and alumina sol having a smaller average secondary particle diameter as the first alumina abrasive grains and the second alumina abrasive grains, While maintaining the same polishing rate as that of the polishing composition of Comparative Example 1 using the above α-alumina alone, the surface roughness was suppressed to be smaller. The polishing composition of Example 2 using a combination of the same α-alumina and alumina sol as in Example 1 has an improved polishing rate compared to the polishing composition of Comparative Example 2 using the above-mentioned alumina sol alone, In addition, the surface roughness was kept small. The polishing composition of Example 3 using a combination of the first alumina abrasive grains and fumed alumina having a smaller average secondary particle size than that of the first alumina abrasive grains was used for polishing of Comparative Example 3 using the fumed alumina alone. Compared with the composition, the polishing rate was improved, and the surface roughness was also kept small. From these results, it was confirmed that by using a combination of alumina abrasive grains having different average secondary particle diameters, both the polishing rate and the surface flatness can be achieved at a high level. In the polishing composition of Example 1, a higher polishing rate was realized as compared with Example 2.
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.
 本発明によれば、研磨レートと表面平坦性との両立がより高いレベルで実現され得る研磨用組成物を提供することができる。 According to the present invention, it is possible to provide a polishing composition that can achieve both a polishing rate and surface flatness at a higher level.

Claims (6)

  1.  1500Hv以上のビッカース硬度を有する材料を研磨するための研磨用組成物であって、
     平均二次粒子径D2を有する第1アルミナ砥粒と、
     前記第1アルミナ砥粒よりも小さい平均二次粒子径D2を有する第2アルミナ砥粒と
    を含む、研磨用組成物。
    A polishing composition for polishing a material having a Vickers hardness of 1500 Hv or more,
    A first alumina abrasive grain having an average secondary particle diameter D2 f ;
    A polishing composition comprising: a second alumina abrasive grain having an average secondary particle diameter D2 s smaller than the first alumina abrasive grain.
  2.  前記第1アルミナ砥粒としてα-アルミナを含み
     前記第2アルミナ砥粒としてアルミナゾルおよび中間アルミナからなる群から選択される少なくとも一種を含む、請求項1に記載の研磨用組成物。
    The polishing composition according to claim 1, wherein the first alumina abrasive grains include α-alumina, and the second alumina abrasive grains include at least one selected from the group consisting of alumina sol and intermediate alumina.
  3.  前記第1アルミナ砥粒の平均二次粒子径D2と前記第2アルミナ砥粒の平均二次粒子径D2との関係が次式:1<(D2/D2)<20;を満たす、請求項1または2に記載の研磨用組成物。 The relationship between the average secondary particle diameter D2 f of the first alumina abrasive grains and the average secondary particle diameter D2 s of the second alumina abrasive grains satisfies the following formula: 1 <(D2 f / D2 s ) <20; The polishing composition according to claim 1 or 2.
  4.  前記第1アルミナ砥粒の平均二次粒子径D2が350nm以上1000nm以下であり、
     前記第2アルミナ砥粒の平均二次粒子径D2が20nm以上300nm以下である、請求項1から3のいずれか一項に記載の研磨用組成物。
    The average secondary particle diameter D2 f of the first alumina abrasive grains is 350 nm or more and 1000 nm or less,
    The average secondary particle diameter D2 s second alumina abrasive grains is 20nm or more 300nm or less, the polishing composition according to any one of claims 1 to 3.
  5.  前記第1アルミナ砥粒および前記第2アルミナ砥粒の含有量の比(第1アルミナ砥粒:第2アルミナ砥粒)が重量基準で95:5~5:95の範囲である、請求項1から4のいずれか一項に記載の研磨用組成物。 2. The content ratio of the first alumina abrasive grains and the second alumina abrasive grains (first alumina abrasive grains: second alumina abrasive grains) is in the range of 95: 5 to 5:95 on a weight basis. To 5. The polishing composition according to any one of 4 to 4.
  6.  pHが、8~11の範囲内である、請求項1から5のいずれか一項に記載の研磨用組成物。 The polishing composition according to any one of claims 1 to 5, wherein the pH is in the range of 8 to 11.
PCT/JP2016/068701 2015-06-30 2016-06-23 Polishing composition WO2017002705A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015131086A JP6622991B2 (en) 2015-06-30 2015-06-30 Polishing composition
JP2015-131086 2015-06-30

Publications (1)

Publication Number Publication Date
WO2017002705A1 true WO2017002705A1 (en) 2017-01-05

Family

ID=57608367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068701 WO2017002705A1 (en) 2015-06-30 2016-06-23 Polishing composition

Country Status (3)

Country Link
JP (1) JP6622991B2 (en)
TW (1) TW201706392A (en)
WO (1) WO2017002705A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109233646A (en) * 2018-11-02 2019-01-18 长沙县新光特种陶瓷有限公司 A kind of buffing wax and preparation method thereof
CN114846111A (en) * 2019-12-27 2022-08-02 霓达杜邦股份有限公司 Slurry for polishing

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11117239B2 (en) * 2017-09-29 2021-09-14 Taiwan Semiconductor Manufacturing Company, Ltd. Chemical mechanical polishing composition and method
JP7084176B2 (en) * 2018-03-28 2022-06-14 株式会社フジミインコーポレーテッド Polishing composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005023266A (en) * 2003-07-01 2005-01-27 Kao Corp Polishing liquid composition
WO2008105342A1 (en) * 2007-02-27 2008-09-04 Hitachi Chemical Co., Ltd. Metal polishing liquid and polishing method
JP2009144080A (en) * 2007-12-14 2009-07-02 Kao Corp Polishing liquid composition
JP2011121151A (en) * 2009-12-11 2011-06-23 Kao Corp Polishing liquid composition for hard disk substrate
WO2012115020A1 (en) * 2011-02-21 2012-08-30 株式会社 フジミインコーポレーテッド Polishing composition
WO2013133198A1 (en) * 2012-03-05 2013-09-12 株式会社 フジミインコーポレーテッド Polishing composition and method using said polishing composition to manufacture compound semiconductor substrate
WO2014061417A1 (en) * 2012-10-16 2014-04-24 日立化成株式会社 Polishing solution for cmp, stock solution, and polishing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005023266A (en) * 2003-07-01 2005-01-27 Kao Corp Polishing liquid composition
WO2008105342A1 (en) * 2007-02-27 2008-09-04 Hitachi Chemical Co., Ltd. Metal polishing liquid and polishing method
JP2009144080A (en) * 2007-12-14 2009-07-02 Kao Corp Polishing liquid composition
JP2011121151A (en) * 2009-12-11 2011-06-23 Kao Corp Polishing liquid composition for hard disk substrate
WO2012115020A1 (en) * 2011-02-21 2012-08-30 株式会社 フジミインコーポレーテッド Polishing composition
WO2013133198A1 (en) * 2012-03-05 2013-09-12 株式会社 フジミインコーポレーテッド Polishing composition and method using said polishing composition to manufacture compound semiconductor substrate
WO2014061417A1 (en) * 2012-10-16 2014-04-24 日立化成株式会社 Polishing solution for cmp, stock solution, and polishing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109233646A (en) * 2018-11-02 2019-01-18 长沙县新光特种陶瓷有限公司 A kind of buffing wax and preparation method thereof
CN114846111A (en) * 2019-12-27 2022-08-02 霓达杜邦股份有限公司 Slurry for polishing

Also Published As

Publication number Publication date
TW201706392A (en) 2017-02-16
JP2017014362A (en) 2017-01-19
JP6622991B2 (en) 2019-12-18

Similar Documents

Publication Publication Date Title
JP6611485B2 (en) Polishing method and polishing composition
JP7373403B2 (en) polishing composition
JP6788988B2 (en) Polishing composition
JP6622991B2 (en) Polishing composition
WO2018174008A1 (en) Polishing composition
TW201942320A (en) Polishing composition
JP6694745B2 (en) Polishing composition
CN107109191B (en) Polishing composition
WO2023054385A1 (en) Polishing composition
WO2023189512A1 (en) Polishing composition
WO2022168858A1 (en) Polishing composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817813

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16817813

Country of ref document: EP

Kind code of ref document: A1