WO2017002552A1 - Glow plug control device - Google Patents

Glow plug control device Download PDF

Info

Publication number
WO2017002552A1
WO2017002552A1 PCT/JP2016/066910 JP2016066910W WO2017002552A1 WO 2017002552 A1 WO2017002552 A1 WO 2017002552A1 JP 2016066910 W JP2016066910 W JP 2016066910W WO 2017002552 A1 WO2017002552 A1 WO 2017002552A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
glow plug
voltage
control unit
electronic control
Prior art date
Application number
PCT/JP2016/066910
Other languages
French (fr)
Japanese (ja)
Inventor
文哉 森田
Original Assignee
株式会社 豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 豊田自動織機 filed Critical 株式会社 豊田自動織機
Priority to DE112016002941.1T priority Critical patent/DE112016002941B4/en
Publication of WO2017002552A1 publication Critical patent/WO2017002552A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P19/00Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
    • F02P19/02Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs

Definitions

  • the present invention relates to a glow plug control device.
  • a glow plug control device is used to improve the startability of diesel engines.
  • the glow plug 202 is connected to the battery 200 via a relay 201 for turning on / off the current.
  • a relay 201 for turning on / off the energization is driven by an engine ECU (engine electronic control unit) 203.
  • the engine ECU 203 calculates the energization time to the glow plug 202 using the input voltage from the battery 200 and executes on / off control of the relay 201.
  • the engine ECU 203 calculates the energization time using the battery voltage after the key switch of the vehicle is operated to the ignition on position, and starts energizing the glow plug 202. By heating the combustion chamber by energizing the glow plug 202, the ignitability of the diesel engine is improved.
  • the glow plug 212 is connected to a battery (for example, 24V battery) 210 other than 12V via a relay 211, and the power source to the engine ECU 214 is a DC / DC converter. 213 is stepped down to 12V and supplied. At this time, since the output voltage of the DC / DC converter 213 is set to a constant value of 12 V, the power supply voltage supplied to the glow plug 212 and the power supply voltage supplied to the engine ECU 214 are different. For this reason, the engine ECU 214 does not know the battery voltage, so that it is impossible to perform energization control of the glow plug suitable for the battery voltage value.
  • An object of the present invention is to provide a glow plug control device that can appropriately control energization of a glow plug when the glow plug power supply voltage and the engine electronic control unit power supply voltage are different.
  • a glow plug control device includes a battery, a glow plug that can be energized by the battery, a converter configured to step down or step up and output the voltage of the battery, and step down or step up by the converter. And an engine electronic control unit configured to perform energization control to the glow plug.
  • the voltage of the battery is sent to the engine electronic control unit through an in-vehicle network communication line connected to a second electronic control unit configured to be driven by the battery.
  • the engine electronic control unit controls energization time of the glow plug according to the voltage of the battery sent from the second electronic control unit through the in-vehicle network communication line.
  • the block diagram of the glow plug control apparatus in one Embodiment The flowchart for demonstrating the effect
  • the glow plug control device 30 includes an engine electronic control unit (hereinafter referred to as an engine ECU) 31, a glow plug 32, a relay 33, a battery 34, and a DC / DC converter 35. .
  • an engine ECU engine electronic control unit
  • glow plug 32 a glow plug 32
  • a relay 33 a battery 34
  • DC / DC converter 35 a DC / DC converter 35
  • the output voltage (standard output voltage) of the battery 34 is 24V.
  • the relay 33 has a relay coil 33a and a relay contact 33b.
  • the glow plug 32 is connected to the battery 34 via a relay contact 33b.
  • relay contact 33b is closed by excitation of relay coil 33a.
  • the glow plug 32 is energized by the battery 34.
  • the glow plug 32 can be energized by the battery 34.
  • the same voltage as the output voltage of the battery 34 is supplied to the glow plug 32.
  • the DC / DC converter 35 steps down the voltage of 24V of the battery 34 to 12V and outputs it.
  • the engine ECU 31 is supplied with 12V, which is a voltage stepped down by the DC / DC converter 35. That is, a voltage lower than the output voltage of the battery 34 is supplied to the engine ECU 31.
  • the engine ECU 31 is connected to a key switch 36 of the vehicle, and the engine ECU 31 detects an operation position (for example, an off position or an ignition on position) of the key switch 36.
  • the battery 34 is connected to another electronic control unit (hereinafter referred to as second ECU) 37.
  • the second ECU 37 is configured to be driven by the battery 34.
  • the second ECU 37 is configured to detect the voltage of the battery 34.
  • the second electronic control unit is connected to the battery 24 without passing through the DC / DC converter 35.
  • An in-vehicle network communication line 38 is connected to the second ECU 37.
  • CAN Controller Area Network
  • the second ECU 37 is configured to transmit the detected voltage of the battery 34 to the in-vehicle network communication line 38.
  • the in-vehicle network communication line 38 is connected to the engine ECU 31. Then, the voltage of the battery 34 is sent from the second ECU 37 to the engine ECU 31 through the in-vehicle network communication line 38 connected to the second ECU 37.
  • the engine ECU 31 is connected to the second ECU 37 through the in-vehicle network communication line 38 without passing through the DC / DC converter 35. That is, the engine ECU 31 is configured to receive the voltage of the battery 24 from the second ECU 37 through a path that bypasses the DC / DC converter.
  • the engine ECU 31 outputs a glow plug energization signal to the relay 33 to control energization to the glow plug 32. Specifically, energization is controlled by energizing or demagnetizing the relay coil 33a and closing or opening the relay contact 33b. At this time, the engine ECU 31 controls the energization time of the glow plug 32 by performing on / off control of the relay 33 according to the voltage of the battery 34.
  • FIG. 3 shows the operation position of the key switch 36, the state of the relay 33, and the state of the energization counter.
  • the engine ECU 31 sets an initial value in step 101 in FIG. 2 to calculate the energization time Tset1 of the glow plug 32, and in step 104 in FIG.
  • the energization to 32 is started. Therefore, energization to the glow plug 32 can be started at the same timing as the control shown in FIG.
  • the engine ECU 31 calculates the energization time Tset2 using the battery voltage value at step 108 in FIG. 2, and energizes from the difference from the already energized time as shown at time t2 in FIG. Change the time and continue energization.
  • the engine ECU 31 starts the processing in FIG. 2 and determines whether or not it is after acquiring the voltage of the battery 34 by CAN communication in step 100. To do. That is, the engine ECU 31 determines in step 100 whether or not the voltage of the battery 34 has been acquired from the second ECU 37 through CAN communication. If the engine ECU 31 has not acquired the voltage of the battery 34 by CAN communication and is not able to acquire the voltage of the battery 34, the process proceeds to step 101.
  • the engine ECU 31 calculates the energization time Tset1 of the glow plug 32 using a predetermined initial value (default value) as the voltage of the battery 34.
  • the initial value of the voltage of the battery 34 is a provisional fixed value before the battery voltage is detected, and in the present embodiment, is a standard battery voltage of 24V.
  • the reason why the initial value of the voltage of the battery 34 is set to the standard battery voltage 24V is as follows. If the initial value is set to a small value, the glow plug energization time may be lengthened, and the reliability of the glow plug may be impaired. is there.
  • step 102 determines whether or not the glow plug 32 is not energized. If the glow plug 32 is not energized, the engine ECU 31 sets the glow plug energization time Tset1 as the remaining energization time Tn in step 103, and energizes the relay coil 33a in step 104 to close the relay contact 33b and The energization to 32 is started.
  • the engine ECU 31 determines in step 105 whether or not it is after acquiring the voltage of the battery 34 from the CAN communication. That is, the engine ECU 31 determines in step 105 whether or not the voltage of the battery 34 has been acquired from the second ECU 37 through CAN communication. If the engine ECU 31 determines that the voltage of the battery 34 has not been acquired by CAN communication, the process returns to step 100. If the engine ECU 31 determines in step 100 that the voltage of the battery 34 has not yet been acquired by CAN communication, the engine ECU 31 proceeds to step 106 after step 101 and after the glow plug 32 is energized in step 102.
  • step 106 the engine ECU 31 subtracts the energized time Ts from the glow plug energization time Tset1 to set the remaining energization time Tn.
  • step 107 the engine ECU 31 continues to energize the glow plug 32 in the remaining energization time Tn by closing the relay contact 33b by energizing the relay coil 33a.
  • the engine ECU 31 basically repeats steps 100 ⁇ 101 ⁇ 102 ⁇ 106 ⁇ 107 ⁇ 105 ⁇ 100... (Period t1 to t2 in FIG. 3). In this period, the energized time Ts increases and the remaining energized time Tn decreases. It should be noted that energization is performed with the initial value not when the battery voltage by CAN communication is acquired but also when the in-vehicle network communication line 38 is disconnected. Further, when the energization is continued at the initial value and the remaining energization time Tn becomes 0 or less, such as when the voltage of the battery 34 is not acquired by CAN communication, the engine ECU 31 performs the process from step 106 ⁇ 110 ⁇ 111. Transition to end the energization.
  • step 100 when the engine ECU 31 acquires the voltage of the battery 34 by CAN communication (time t2 in FIG. 3), the process proceeds to step 108.
  • step 108 the engine ECU 31 calculates a glow plug energization time Tset2 according to the voltage of the battery 34 acquired by CAN communication. At this time, the glow plug energization time Tset2 is set longer as the voltage of the battery 34 is lower. Data for calculating the glow plug energization time corresponding to the battery voltage is prepared in advance by a map, for example.
  • the glow plug energization time Tset2 may be calculated in consideration of the engine water temperature in addition to the voltage of the battery 34 at that time. In the present embodiment, the voltage of the battery 34 is lower than the standard battery voltage 24V.
  • step 106 the engine ECU 31 proceeds from step 102 to step 106 and subtracts the energized time Ts from the newly calculated glow plug energization time Tset2 to obtain the remaining energization time Tn. Then, the relay contact 33b is closed and the energization to the glow plug 32 is continued for the remaining energization time Tn. That is, Tset in step 106 in FIG. 2 can take both the glow plug energization time Tset1 and the glow plug energization time Tset2. At this time, if the energized time Ts is equal to or longer than the calculated glow plug energization time Tset2, the engine ECU 31 shifts the process from step 106 ⁇ 110 ⁇ 111 and ends the energization.
  • step 109 determines the glow energization time Tg. Thereafter, the remaining time of the glow energization time Tg decreases (period t2 to t3 in FIG. 3).
  • the engine ECU 31 deenergizes the relay coil 33a to open the relay contact 33b and terminate energization to the glow plug 32. .
  • the key switch 36 is operated to the starter on position at time t4 in FIG. 3 thereafter, the starter motor is driven.
  • the glow plug 32 is energized using the initial value before the battery voltage by CAN communication is acquired or when the in-vehicle network communication line 38 is disconnected.
  • the energization time of the glow plug 32 is controlled using the initial value in this way, the startability of the glow plug 32 can be ensured, and after acquisition, the energization time is calculated by switching to the energization time calculated with the actual battery voltage. By continuing, the reliability of the glow plug 32 can be ensured.
  • energization control of the glow plug 32 by the actual voltage value is enabled. Further, the glow plug 32 heating performance and reliability equivalent to the control shown in FIG. 4 are controlled by controlling the energization time of the glow plug according to the battery voltage acquired by the CAN communication while taking measures against the transmission delay of the CAN communication. Sex can be secured.
  • the glow plug 32 and the power supply voltage of the engine ECU 31 are different from each other and the glow plug is energized and controlled with only a fixed value as an initial value, if the initial value is set to a small value, the energization takes a long time and reliability is improved. It cannot be ensured, and if the initial value is set to a large value, the heatability is inferior.
  • the heating performance of the glow plug 32 and the application of excessive voltage can be avoided to ensure the reliability of the glow plug 32.
  • the second ECU 37 measures the battery voltage value.
  • the engine ECU 31 acquires the battery voltage value (glow plug power supply voltage value) through CAN communication. That is, the engine ECU 31 controls the energization time of the glow plug according to the battery voltage sent from the second ECU 37 through the in-vehicle network communication line 38. Therefore, even if the battery voltage acquired from CAN communication is used, the startability and reliability of the glow plug 32 equivalent to the control shown in FIG. 4 can be ensured.
  • the glow plug control device 30 includes a battery 34, a glow plug 32 that can be energized by the battery 34, a DC / DC converter 35 as a converter that steps down the voltage of the battery 34, and a DC / DC converter 35. And an engine ECU 31 that is supplied with the voltage stepped down by the power supply and controls the energization of the glow plug 32.
  • the voltage of the battery 34 is sent through the in-vehicle network communication line 38 connected to the second ECU 37 configured to be driven by the battery 34.
  • the engine ECU 31 controls the energization time of the glow plug 32 according to the voltage of the battery 34 sent from the second ECU 37 through the in-vehicle network communication line 38. Therefore, when the power supply voltage of the glow plug 32 and the power supply voltage of the engine ECU 31 are different, the energization control of the glow plug can be appropriately performed.
  • the engine ECU 31 uses a predetermined initial value as the voltage of the battery 34 to use the glow plug 32. To control the energization time. Therefore, even when the voltage of the battery 34 cannot be acquired after the key switch 36 is turned on, the energization time of the glow plug 32 can be controlled using a predetermined initial value as the voltage of the battery 34.
  • the embodiment is not limited to the above, and may be embodied as follows, for example.
  • the battery 34 is a 24V battery, but may be another battery such as a 48V battery.
  • the DC / DC converter 35 outputs 24 V down to 12 V, but the high voltage input voltage value and output voltage value may be other values. Although the DC / DC converter 35 is output by stepping down, it may be output by boosting the voltage of the battery 34, and the boosted voltage is supplied to the engine electronic control unit (engine ECU). It may be configured.
  • -A vehicle is not specifically limited, For example, arbitrary vehicles, such as a passenger car, a truck, an industrial vehicle, and a construction machine, may be sufficient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

This glow plug control device is provided with: a battery; a glow plug capable of being energized by the battery; a converter; and an engine electronic control unit configured to control the energizing of the glow plug. The battery voltage is fed to the engine electronic control unit by way of an in-vehicle network communication line connected to a second electronic control unit configured to be driven by the battery. The engine electronic control unit controls the energization time of the glow plug in accordance with the battery voltage fed from the second electronic control unit by way of the in-vehicle network communication line.

Description

グロープラグ制御装置Glow plug control device
 本発明は、グロープラグ制御装置に関するものである。 The present invention relates to a glow plug control device.
 ディーゼルエンジンの始動性向上のためにグロープラグ制御装置が用いられている。例えば、特許文献1参照。具体的には例えば、図4に示すように、グロープラグ202は、通電のオン・オフをするためのリレー201を介して、バッテリ200と接続されている。通電をオン・オフするリレー201は、エンジンECU(エンジン電子制御ユニット)203より駆動されている。エンジンECU203は、バッテリ200からの入力電圧を用いて、グロープラグ202への通電時間を算出し、リレー201のオン・オフ制御を実行している。エンジンECU203は、車両のキースイッチがイグニッションオン位置に操作された後にバッテリ電圧を用いて通電時間を算出し、グロープラグ202への通電を開始する。グロープラグ202の通電により燃焼室を加熱することによって、ディーゼルエンジンの着火性が良くなる。 A glow plug control device is used to improve the startability of diesel engines. For example, see Patent Document 1. Specifically, for example, as shown in FIG. 4, the glow plug 202 is connected to the battery 200 via a relay 201 for turning on / off the current. A relay 201 for turning on / off the energization is driven by an engine ECU (engine electronic control unit) 203. The engine ECU 203 calculates the energization time to the glow plug 202 using the input voltage from the battery 200 and executes on / off control of the relay 201. The engine ECU 203 calculates the energization time using the battery voltage after the key switch of the vehicle is operated to the ignition on position, and starts energizing the glow plug 202. By heating the combustion chamber by energizing the glow plug 202, the ignitability of the diesel engine is improved.
特開昭59-108878号公報JP 59-108878 A
 ところで、グロープラグの電源電圧とエンジンECUの電源電圧が異なる場合には上述したような制御を行うことができない。具体的には例えば、図5に示すように、グロープラグ212は、リレー211を介して12V以外のバッテリ(例えば24Vバッテリ)210に接続されており、エンジンECU214への電源は、DC/DCコンバータ213にて12Vへ降圧して供給されている。このとき、DC/DCコンバータ213の出力電圧は一定値の12Vに設定されるので、グロープラグ212へ供給される電源電圧とエンジンECU214へ供給される電源電圧が異なる。そのため、エンジンECU214ではバッテリ電圧が分らないのでバッテリ電圧値に適したグロープラグの通電制御を行うことができない。 By the way, when the glow plug power supply voltage and the engine ECU power supply voltage are different, the above-described control cannot be performed. Specifically, for example, as shown in FIG. 5, the glow plug 212 is connected to a battery (for example, 24V battery) 210 other than 12V via a relay 211, and the power source to the engine ECU 214 is a DC / DC converter. 213 is stepped down to 12V and supplied. At this time, since the output voltage of the DC / DC converter 213 is set to a constant value of 12 V, the power supply voltage supplied to the glow plug 212 and the power supply voltage supplied to the engine ECU 214 are different. For this reason, the engine ECU 214 does not know the battery voltage, so that it is impossible to perform energization control of the glow plug suitable for the battery voltage value.
 本発明の目的は、グロープラグの電源電圧とエンジン電子制御ユニットの電源電圧が異なる場合において適切にグロープラグの通電制御を行うことができるグロープラグ制御装置を提供することにある。 An object of the present invention is to provide a glow plug control device that can appropriately control energization of a glow plug when the glow plug power supply voltage and the engine electronic control unit power supply voltage are different.
 一態様に係るグロープラグ制御装置は、バッテリと、前記バッテリで通電可能なグロープラグと、前記バッテリの電圧を降圧または昇圧して出力するように構成されたコンバータと、前記コンバータにより降圧または昇圧された電圧が供給され、前記グロープラグへの通電制御を行うように構成されたエンジン電子制御ユニットと、を備える。前記バッテリの電圧は、前記バッテリで駆動するように構成された第2の電子制御ユニットに接続された車両内ネットワーク通信ラインを通して前記エンジン電子制御ユニットに送られる。前記エンジン電子制御ユニットは、前記車両内ネットワーク通信ラインを通して前記第2の電子制御ユニットから送られてくる前記バッテリの電圧に応じて前記グロープラグの通電時間を制御する。 A glow plug control device according to an aspect includes a battery, a glow plug that can be energized by the battery, a converter configured to step down or step up and output the voltage of the battery, and step down or step up by the converter. And an engine electronic control unit configured to perform energization control to the glow plug. The voltage of the battery is sent to the engine electronic control unit through an in-vehicle network communication line connected to a second electronic control unit configured to be driven by the battery. The engine electronic control unit controls energization time of the glow plug according to the voltage of the battery sent from the second electronic control unit through the in-vehicle network communication line.
一実施形態におけるグロープラグ制御装置のブロック図。The block diagram of the glow plug control apparatus in one Embodiment. グロープラグ制御装置の作用を説明するためのフローチャート。The flowchart for demonstrating the effect | action of a glow plug control apparatus. グロープラグ制御装置の作用を説明するためのタイムチャート。The time chart for demonstrating the effect | action of a glow plug control apparatus. 背景技術を説明するためのグロープラグ制御装置のブロック図。The block diagram of the glow plug control apparatus for demonstrating background art. 課題を説明するためのグロープラグ制御装置のブロック図。The block diagram of the glow plug control apparatus for demonstrating a subject.
 以下、一実施形態を図面に従って説明する。
 図1に示すように、グロープラグ制御装置30は、エンジン電子制御ユニット(以下、エンジンECUという)31と、グロープラグ32と、リレー33と、バッテリ34と、DC/DCコンバータ35を備えている。
Hereinafter, an embodiment will be described with reference to the drawings.
As shown in FIG. 1, the glow plug control device 30 includes an engine electronic control unit (hereinafter referred to as an engine ECU) 31, a glow plug 32, a relay 33, a battery 34, and a DC / DC converter 35. .
 バッテリ34の出力電圧(標準出力電圧)は24Vである。リレー33は、リレーコイル33aと、リレー接点33bとを有する。グロープラグ32はリレー接点33bを介してバッテリ34と接続されている。そして、リレーコイル33aの励磁によりリレー接点33bが閉じられる。リレー接点33bが閉じるとグロープラグ32はバッテリ34で通電される。このようにグロープラグ32は、バッテリ34で通電可能である。バッテリ34の出力電圧と同じ電圧がグロープラグ32に供給される。 The output voltage (standard output voltage) of the battery 34 is 24V. The relay 33 has a relay coil 33a and a relay contact 33b. The glow plug 32 is connected to the battery 34 via a relay contact 33b. And relay contact 33b is closed by excitation of relay coil 33a. When the relay contact 33 b is closed, the glow plug 32 is energized by the battery 34. Thus, the glow plug 32 can be energized by the battery 34. The same voltage as the output voltage of the battery 34 is supplied to the glow plug 32.
 DC/DCコンバータ35は、バッテリ34の電圧である24Vを12Vに降圧して出力する。エンジンECU31には、DC/DCコンバータ35により降圧された電圧である12Vが供給される。即ち、バッテリ34の出力電圧よりも低い電圧がエンジンECU31に供給される。 The DC / DC converter 35 steps down the voltage of 24V of the battery 34 to 12V and outputs it. The engine ECU 31 is supplied with 12V, which is a voltage stepped down by the DC / DC converter 35. That is, a voltage lower than the output voltage of the battery 34 is supplied to the engine ECU 31.
 エンジンECU31には、車両のキースイッチ36が接続され、エンジンECU31は、キースイッチ36の操作位置(例えば、オフ位置、イグニッションオン位置)を検知する。 The engine ECU 31 is connected to a key switch 36 of the vehicle, and the engine ECU 31 detects an operation position (for example, an off position or an ignition on position) of the key switch 36.
 バッテリ34には別の電子制御ユニット(以下、第2のECUという)37が接続されている。第2のECU37はバッテリ34で駆動するように構成されている。第2のECU37はバッテリ34の電圧を検出するように構成されている。第2の電子制御ユニットは、DC/DCコンバータ35を介すことなくバッテリ24に接続されている。第2のECU37には車両内ネットワーク通信ライン38が接続されている。この車両内ネットワーク通信ライン38を用いてCAN(Controller Area Network)通信が行われる。第2のECU37は、検出したバッテリ34の電圧を車両内ネットワーク通信ライン38に送信するように構成されている。 The battery 34 is connected to another electronic control unit (hereinafter referred to as second ECU) 37. The second ECU 37 is configured to be driven by the battery 34. The second ECU 37 is configured to detect the voltage of the battery 34. The second electronic control unit is connected to the battery 24 without passing through the DC / DC converter 35. An in-vehicle network communication line 38 is connected to the second ECU 37. CAN (Controller Area Network) communication is performed using the in-vehicle network communication line 38. The second ECU 37 is configured to transmit the detected voltage of the battery 34 to the in-vehicle network communication line 38.
 車両内ネットワーク通信ライン38はエンジンECU31に接続されている。そして、エンジンECU31には、第2のECU37に接続された車両内ネットワーク通信ライン38を通してバッテリ34の電圧が第2のECU37から送られる。エンジンECU31は、DC/DCコンバータ35を介すことなく車両内ネットワーク通信ライン38を通して第2のECU37に接続されている。即ち、エンジンECU31は、DC/DCコンバータを迂回する経路で第2のECU37からバッテリ24の電圧を受け取るように構成されている。 The in-vehicle network communication line 38 is connected to the engine ECU 31. Then, the voltage of the battery 34 is sent from the second ECU 37 to the engine ECU 31 through the in-vehicle network communication line 38 connected to the second ECU 37. The engine ECU 31 is connected to the second ECU 37 through the in-vehicle network communication line 38 without passing through the DC / DC converter 35. That is, the engine ECU 31 is configured to receive the voltage of the battery 24 from the second ECU 37 through a path that bypasses the DC / DC converter.
 エンジンECU31は、リレー33に対しグロープラグ通電信号を出力してグロープラグ32への通電制御を行う。具体的には、リレーコイル33aを励磁または消磁してリレー接点33bを閉じるまたは開くことにより通電を制御する。このとき、エンジンECU31は、バッテリ34の電圧に応じてリレー33をオンオフ制御することによりグロープラグ32の通電時間を制御する。 The engine ECU 31 outputs a glow plug energization signal to the relay 33 to control energization to the glow plug 32. Specifically, energization is controlled by energizing or demagnetizing the relay coil 33a and closing or opening the relay contact 33b. At this time, the engine ECU 31 controls the energization time of the glow plug 32 by performing on / off control of the relay 33 according to the voltage of the battery 34.
 次に、グロープラグ制御装置30の作用について図2のフローチャートおよび図3のタイムチャートを用いて説明する。図3においては、キースイッチ36の操作位置、リレー33の状態、通電カウンタの状況を示す。 Next, the operation of the glow plug control device 30 will be described using the flowchart of FIG. 2 and the time chart of FIG. FIG. 3 shows the operation position of the key switch 36, the state of the relay 33, and the state of the energization counter.
 CAN通信では、キースイッチ36のイグニッションオン位置への操作直後よりバッテリ電圧を取得できない。そのため、図3の期間t1~t2におけるバッテリ電圧の取得前、エンジンECU31は、図2のステップ101において初期値を設定しグロープラグ32の通電時間Tset1を算出し、図2のステップ104においてグロープラグ32への通電を開始する。よって、図4で示した制御と同様なタイミングでグロープラグ32へ通電が開始できる。CAN通信でバッテリ電圧を取得後、エンジンECU31は、図2のステップ108においてバッテリ電圧値を用いて通電時間Tset2を算出し、図3の時点t2で示すごとく既に通電済の時間との差分より通電時間を変更して通電を継続する。 In CAN communication, the battery voltage cannot be acquired immediately after the key switch 36 is operated to the ignition-on position. Therefore, before obtaining the battery voltage in the period t1 to t2 in FIG. 3, the engine ECU 31 sets an initial value in step 101 in FIG. 2 to calculate the energization time Tset1 of the glow plug 32, and in step 104 in FIG. The energization to 32 is started. Therefore, energization to the glow plug 32 can be started at the same timing as the control shown in FIG. After acquiring the battery voltage by CAN communication, the engine ECU 31 calculates the energization time Tset2 using the battery voltage value at step 108 in FIG. 2, and energizes from the difference from the already energized time as shown at time t2 in FIG. Change the time and continue energization.
 以下、詳しく説明する。
 エンジンECU31は、キースイッチ36がイグニッションオン位置に操作されると(図3の時点t1)、図2の処理を開始し、ステップ100でCAN通信によりバッテリ34の電圧を取得した後か否か判定する。即ち、エンジンECU31は、ステップ100でCAN通信を通じてバッテリ34の電圧を第2のECU37から取得済みであるか否か判定する。エンジンECU31は、CAN通信によりバッテリ34の電圧を取得する前であり、バッテリ34の電圧が取得できない時である場合、ステップ101に移行する。
This will be described in detail below.
When the key switch 36 is operated to the ignition-on position (time t1 in FIG. 3), the engine ECU 31 starts the processing in FIG. 2 and determines whether or not it is after acquiring the voltage of the battery 34 by CAN communication in step 100. To do. That is, the engine ECU 31 determines in step 100 whether or not the voltage of the battery 34 has been acquired from the second ECU 37 through CAN communication. If the engine ECU 31 has not acquired the voltage of the battery 34 by CAN communication and is not able to acquire the voltage of the battery 34, the process proceeds to step 101.
 エンジンECU31はステップ101において、バッテリ34の電圧として予め定めた初期値(デフォルト値)を用いてグロープラグ32の通電時間Tset1を算出する。バッテリ34の電圧の初期値は、バッテリ電圧を検出する前の暫定的な固定値であり、本実施形態では、標準バッテリ電圧の24Vである。バッテリ34の電圧の初期値を標準バッテリ電圧の24Vとしたのは、次の理由による。初期値を小さな値にするとグロープラグ通電時間が長くなりグロープラグの信頼性が損なわれるおそれがあり、初期値を大きな値にするとグロープラグ通電時間が短くなり加熱性が損なわれるおそれがあるためである。 In step 101, the engine ECU 31 calculates the energization time Tset1 of the glow plug 32 using a predetermined initial value (default value) as the voltage of the battery 34. The initial value of the voltage of the battery 34 is a provisional fixed value before the battery voltage is detected, and in the present embodiment, is a standard battery voltage of 24V. The reason why the initial value of the voltage of the battery 34 is set to the standard battery voltage 24V is as follows. If the initial value is set to a small value, the glow plug energization time may be lengthened, and the reliability of the glow plug may be impaired. is there.
 そして、エンジンECU31はステップ102に移行してグロープラグ32への通電前か否か判定する。エンジンECU31は、グロープラグ32の通電前であると、ステップ103でグロープラグ通電時間Tset1を残り通電時間Tnとして設定するとともに、ステップ104でリレーコイル33aを励磁してリレー接点33bを閉じてグロープラグ32への通電を開始させる。 Then, the engine ECU 31 proceeds to step 102 and determines whether or not the glow plug 32 is not energized. If the glow plug 32 is not energized, the engine ECU 31 sets the glow plug energization time Tset1 as the remaining energization time Tn in step 103, and energizes the relay coil 33a in step 104 to close the relay contact 33b and The energization to 32 is started.
 その後、エンジンECU31はステップ105でCAN通信からバッテリ34の電圧を取得した後か否か判定する。即ち、エンジンECU31は、ステップ105でCAN通信を通じてバッテリ34の電圧を第2のECU37から取得済みであるか否か判定する。エンジンECU31は、CAN通信によりバッテリ34の電圧を取得した後でないと判断した場合、ステップ100に戻る。そして、エンジンECU31は、ステップ100でCAN通信によりバッテリ34の電圧を取得する前であると判断した場合、ステップ101を経てステップ102においてグロープラグ32の通電後であるので、ステップ106に移行する。 Thereafter, the engine ECU 31 determines in step 105 whether or not it is after acquiring the voltage of the battery 34 from the CAN communication. That is, the engine ECU 31 determines in step 105 whether or not the voltage of the battery 34 has been acquired from the second ECU 37 through CAN communication. If the engine ECU 31 determines that the voltage of the battery 34 has not been acquired by CAN communication, the process returns to step 100. If the engine ECU 31 determines in step 100 that the voltage of the battery 34 has not yet been acquired by CAN communication, the engine ECU 31 proceeds to step 106 after step 101 and after the glow plug 32 is energized in step 102.
 エンジンECU31は、ステップ106においてグロープラグ通電時間Tset1から通電済み時間Tsを減算して残り通電時間Tnを設定する。エンジンECU31は、ステップ107で引き続きリレーコイル33aを励磁状態にしてリレー接点33bを閉じて残り通電時間Tnでのグロープラグ32への通電を継続させる。 In step 106, the engine ECU 31 subtracts the energized time Ts from the glow plug energization time Tset1 to set the remaining energization time Tn. In step 107, the engine ECU 31 continues to energize the glow plug 32 in the remaining energization time Tn by closing the relay contact 33b by energizing the relay coil 33a.
 以後、エンジンECU31は、基本的にはステップ100→101→102→106→107→105→100・・・を繰り返す(図3の期間t1~t2)。この期間においては、通電済み時間Tsが増大していくとともに残り通電時間Tnが減少していく。なお、CAN通信によるバッテリ電圧が取得される前ではなく、車両内ネットワーク通信ライン38が断線した時にも初期値で通電が行われる。また、CAN通信によるバッテリ34の電圧が取得されないなど、初期値で通電が行われ続け、残り通電時間Tnが0以下となった場合には、エンジンECU31は、ステップ106→110→111に処理を移行し、通電を終了させる。 Thereafter, the engine ECU 31 basically repeats steps 100 → 101 → 102 → 106 → 107 → 105 → 100... (Period t1 to t2 in FIG. 3). In this period, the energized time Ts increases and the remaining energized time Tn decreases. It should be noted that energization is performed with the initial value not when the battery voltage by CAN communication is acquired but also when the in-vehicle network communication line 38 is disconnected. Further, when the energization is continued at the initial value and the remaining energization time Tn becomes 0 or less, such as when the voltage of the battery 34 is not acquired by CAN communication, the engine ECU 31 performs the process from step 106 → 110 → 111. Transition to end the energization.
 そして、ステップ100でエンジンECU31はCAN通信によりバッテリ34の電圧を取得すると(図3の時点t2)、ステップ108に移行する。
 エンジンECU31はステップ108において、CAN通信により取得したバッテリ34の電圧に応じたグロープラグ通電時間Tset2を算出する。このとき、バッテリ34の電圧が低いほどグロープラグ通電時間Tset2が長く設定される。このバッテリ電圧に応じたグロープラグ通電時間を算出するためのデータは予め例えばマップにより用意されている。なお、グロープラグ通電時間を算出する際に、その時のバッテリ34の電圧に加えてエンジン水温をも考慮してグロープラグ通電時間Tset2を算出してもよい。なお本実施形態では、バッテリ34の電圧が標準バッテリ電圧の24Vより低い場合を表している。
In step 100, when the engine ECU 31 acquires the voltage of the battery 34 by CAN communication (time t2 in FIG. 3), the process proceeds to step 108.
In step 108, the engine ECU 31 calculates a glow plug energization time Tset2 according to the voltage of the battery 34 acquired by CAN communication. At this time, the glow plug energization time Tset2 is set longer as the voltage of the battery 34 is lower. Data for calculating the glow plug energization time corresponding to the battery voltage is prepared in advance by a map, for example. When calculating the glow plug energization time, the glow plug energization time Tset2 may be calculated in consideration of the engine water temperature in addition to the voltage of the battery 34 at that time. In the present embodiment, the voltage of the battery 34 is lower than the standard battery voltage 24V.
 そして、エンジンECU31は、ステップ102からステップ106に移行して新たに算出したグロープラグ通電時間Tset2から通電済み時間Tsを減算して残り通電時間Tnするとともにステップ107で引き続きリレーコイル33aを励磁状態にしてリレー接点33bを閉じて残り通電時間Tnでのグロープラグ32への通電を継続させる。すなわち、図2におけるステップ106のTsetは、グロープラグ通電時間Tset1とグロープラグ通電時間Tset2との両方をとりうる。また、このときに、通電済み時間Tsが算出されたグロープラグ通電時間Tset2以上であった場合には、エンジンECU31は、ステップ106→110→111に処理を移行し、通電を終了させる。 Then, the engine ECU 31 proceeds from step 102 to step 106 and subtracts the energized time Ts from the newly calculated glow plug energization time Tset2 to obtain the remaining energization time Tn. Then, the relay contact 33b is closed and the energization to the glow plug 32 is continued for the remaining energization time Tn. That is, Tset in step 106 in FIG. 2 can take both the glow plug energization time Tset1 and the glow plug energization time Tset2. At this time, if the energized time Ts is equal to or longer than the calculated glow plug energization time Tset2, the engine ECU 31 shifts the process from step 106 → 110 → 111 and ends the energization.
 その後、エンジンECU31は、ステップ105でCAN通信によりバッテリ34の電圧を取得した後なので、ステップ109に移行してグロー通電時間Tgを確定させる。以後、グロー通電時間Tgの残り時間が減少していく(図3のt2~t3の期間)。 After that, since the engine ECU 31 has acquired the voltage of the battery 34 by CAN communication in step 105, the process proceeds to step 109 to determine the glow energization time Tg. Thereafter, the remaining time of the glow energization time Tg decreases (period t2 to t3 in FIG. 3).
 そして、図3において時点t3でグロープラグ32への通電のための残り時間がゼロとなると、エンジンECU31はリレーコイル33aを消磁状態にしてリレー接点33bを開いてグロープラグ32への通電を終了させる。その後の図3の時点t4でキースイッチ36がスタータオン位置に操作されるとスタータモータが駆動される。 When the remaining time for energizing the glow plug 32 becomes zero at time t3 in FIG. 3, the engine ECU 31 deenergizes the relay coil 33a to open the relay contact 33b and terminate energization to the glow plug 32. . When the key switch 36 is operated to the starter on position at time t4 in FIG. 3 thereafter, the starter motor is driven.
 図2の処理において、CAN通信によるバッテリ電圧が取得される前や車両内ネットワーク通信ライン38が断線した時に、初期値を用いてグロープラグ32への通電を実施する。このように初期値を用いてグロープラグ32の通電時間を制御することで、グロープラグ32の始動性を確保することができ、取得後に実際のバッテリ電圧で算出した通電時間へ切替えて、通電を継続することで、グロープラグ32の信頼性も確保することができる。 In the process of FIG. 2, the glow plug 32 is energized using the initial value before the battery voltage by CAN communication is acquired or when the in-vehicle network communication line 38 is disconnected. By controlling the energization time of the glow plug 32 using the initial value in this way, the startability of the glow plug 32 can be ensured, and after acquisition, the energization time is calculated by switching to the energization time calculated with the actual battery voltage. By continuing, the reliability of the glow plug 32 can be ensured.
 以下、より詳しく説明する。
 CAN通信にて取得したバッテリ電圧値を用いることで実際の電圧値によるグロープラグ32の通電制御を可能にする。また、CAN通信の送信遅延への対策を講じつつCAN通信で取得したバッテリ電圧に応じてグロープラグの通電時間を制御することで図4で示した制御と同等のグロープラグ32の加熱性能と信頼性を確保することができる。
This will be described in more detail below.
By using the battery voltage value acquired by CAN communication, energization control of the glow plug 32 by the actual voltage value is enabled. Further, the glow plug 32 heating performance and reliability equivalent to the control shown in FIG. 4 are controlled by controlling the energization time of the glow plug according to the battery voltage acquired by the CAN communication while taking measures against the transmission delay of the CAN communication. Sex can be secured.
 つまり、グロープラグ32の電源電圧とエンジンECU31の電源電圧が異なる場合において、固定値のみを初期値としてグロープラグを通電制御する場合に、初期値を小さな値にすると長時間の通電となり信頼性が確保できず、また、初期値を大きな値にすると加熱性が劣ることになる。本実施形態ではCAN通信を用いることによりグロープラグ32の加熱性能と、過剰電圧の印加を回避してグロープラグ32の信頼性を確保できる。 That is, when the power supply voltage of the glow plug 32 and the power supply voltage of the engine ECU 31 are different from each other and the glow plug is energized and controlled with only a fixed value as an initial value, if the initial value is set to a small value, the energization takes a long time and reliability is improved. It cannot be ensured, and if the initial value is set to a large value, the heatability is inferior. In the present embodiment, by using CAN communication, the heating performance of the glow plug 32 and the application of excessive voltage can be avoided to ensure the reliability of the glow plug 32.
 また、バッテリ電圧値を第2のECU37が測定する。エンジンECU31はCAN通信によりバッテリ電圧値(グロープラグの電源電圧値)を取得する。即ち、エンジンECU31は、車両内ネットワーク通信ライン38を通して第2のECU37から送られてくるバッテリの電圧に応じてグロープラグの通電時間を制御する。よって、CAN通信より取得したバッテリ電圧を用いても、図4で示した制御と同等のグロープラグ32の始動性と信頼性を確保することができる。 Also, the second ECU 37 measures the battery voltage value. The engine ECU 31 acquires the battery voltage value (glow plug power supply voltage value) through CAN communication. That is, the engine ECU 31 controls the energization time of the glow plug according to the battery voltage sent from the second ECU 37 through the in-vehicle network communication line 38. Therefore, even if the battery voltage acquired from CAN communication is used, the startability and reliability of the glow plug 32 equivalent to the control shown in FIG. 4 can be ensured.
 このように、図4で示した制御と同様に、バッテリ電圧が高い場合、通電時間が短く、バッテリ電圧が低い場合、通電時間が長くなるようにグロープラグ32へ通電することで、グロープラグ32の信頼性と始動性を確保することができる。 As described above, similarly to the control shown in FIG. 4, when the battery voltage is high, the energization time is short, and when the battery voltage is low, the glow plug 32 is energized so that the energization time is long. Reliability and startability can be ensured.
 上記実施形態によれば、以下のような効果を得ることができる。
 (1)グロープラグ制御装置30は、バッテリ34と、バッテリ34で通電可能なグロープラグ32と、バッテリ34の電圧を降圧して出力するコンバータとしてのDC/DCコンバータ35と、DC/DCコンバータ35により降圧された電圧が供給され、グロープラグ32への通電制御を行うエンジンECU31と、を備える。バッテリ34の電圧は、バッテリ34で駆動するように構成された第2のECU37に接続された車両内ネットワーク通信ライン38を通して送られてくる。エンジンECU31は、車両内ネットワーク通信ライン38を通して第2のECU37から送られてくるバッテリ34の電圧に応じてグロープラグ32の通電時間を制御する。よって、グロープラグ32の電源電圧とエンジンECU31の電源電圧が異なる場合において適切にグロープラグの通電制御を行うことができる。
According to the above embodiment, the following effects can be obtained.
(1) The glow plug control device 30 includes a battery 34, a glow plug 32 that can be energized by the battery 34, a DC / DC converter 35 as a converter that steps down the voltage of the battery 34, and a DC / DC converter 35. And an engine ECU 31 that is supplied with the voltage stepped down by the power supply and controls the energization of the glow plug 32. The voltage of the battery 34 is sent through the in-vehicle network communication line 38 connected to the second ECU 37 configured to be driven by the battery 34. The engine ECU 31 controls the energization time of the glow plug 32 according to the voltage of the battery 34 sent from the second ECU 37 through the in-vehicle network communication line 38. Therefore, when the power supply voltage of the glow plug 32 and the power supply voltage of the engine ECU 31 are different, the energization control of the glow plug can be appropriately performed.
 (2)エンジンECU31は、キースイッチ36がオン操作された後、即ちイグニッションオン操作された後においてバッテリ34の電圧が取得できない時には、バッテリ34の電圧として予め定めた初期値を用いてグロープラグ32の通電時間を制御する。よって、キースイッチ36がオン操作された後におけるバッテリ34の電圧が取得できない時においても、バッテリ34の電圧として予め定めた初期値を用いてグロープラグ32の通電時間を制御することができる。 (2) When the voltage of the battery 34 cannot be acquired after the key switch 36 is turned on, that is, after the ignition is turned on, the engine ECU 31 uses a predetermined initial value as the voltage of the battery 34 to use the glow plug 32. To control the energization time. Therefore, even when the voltage of the battery 34 cannot be acquired after the key switch 36 is turned on, the energization time of the glow plug 32 can be controlled using a predetermined initial value as the voltage of the battery 34.
 実施形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
 ・バッテリ34は24Vバッテリであったが、48Vバッテリ等の他のバッテリでもよい。
The embodiment is not limited to the above, and may be embodied as follows, for example.
The battery 34 is a 24V battery, but may be another battery such as a 48V battery.
 ・DC/DCコンバータ35は、24Vを12Vに降圧して出力するものであったが、高圧の入力電圧値および出力電圧値は他の値であってもよい。
 ・DC/DCコンバータ35は降圧して出力するものであったが、バッテリ34の電圧を昇圧して出力するものであってもよく、昇圧された電圧がエンジン電子制御ユニット(エンジンECU)に供給される構成であってもよい。
The DC / DC converter 35 outputs 24 V down to 12 V, but the high voltage input voltage value and output voltage value may be other values.
Although the DC / DC converter 35 is output by stepping down, it may be output by boosting the voltage of the battery 34, and the boosted voltage is supplied to the engine electronic control unit (engine ECU). It may be configured.
 ・車両内ネットワーク通信ライン38としてCAN通信を行うラインを用いたが、他の車両内ネットワーク通信ラインを用いてもよい。
 ・車両は特に限定されず、例えば、乗用車、トラック、産業車両、建機等任意の車両であってもよい。
-Although the line which performs CAN communication was used as the in-vehicle network communication line 38, you may use another in-vehicle network communication line.
-A vehicle is not specifically limited, For example, arbitrary vehicles, such as a passenger car, a truck, an industrial vehicle, and a construction machine, may be sufficient.

Claims (5)

  1.  バッテリと、
     前記バッテリで通電可能なグロープラグと、
     前記バッテリの電圧を降圧または昇圧して出力するように構成されたコンバータと、
     前記コンバータにより降圧または昇圧された電圧が供給され、前記グロープラグへの通電制御を行うように構成されたエンジン電子制御ユニットと、
    を備えたグロープラグ制御装置であって、
     前記バッテリの電圧は、前記バッテリで駆動するように構成された第2の電子制御ユニットに接続された車両内ネットワーク通信ラインを通して前記エンジン電子制御ユニットに送られ、
     前記エンジン電子制御ユニットは、前記車両内ネットワーク通信ラインを通して前記第2の電子制御ユニットから送られてくる前記バッテリの電圧に応じて前記グロープラグの通電時間を制御するグロープラグ制御装置。
    Battery,
    A glow plug that can be energized by the battery;
    A converter configured to step down or step up the voltage of the battery and output the voltage;
    An engine electronic control unit configured to be supplied with a voltage stepped down or boosted by the converter and to control energization to the glow plug;
    A glow plug control device comprising:
    The battery voltage is sent to the engine electronic control unit through an in-vehicle network communication line connected to a second electronic control unit configured to be driven by the battery,
    The glow plug control device, wherein the engine electronic control unit controls an energization time of the glow plug in accordance with a voltage of the battery sent from the second electronic control unit through the in-vehicle network communication line.
  2.  前記エンジン電子制御ユニットは、車両のキースイッチがオン操作された後において前記バッテリの電圧を取得できない時、前記バッテリの電圧として予め定めた初期値を用いて前記グロープラグの通電時間を制御する請求項1に記載のグロープラグ制御装置。 The engine electronic control unit controls the energization time of the glow plug using a predetermined initial value as the battery voltage when the voltage of the battery cannot be acquired after the key switch of the vehicle is turned on. Item 2. The glow plug control device according to Item 1.
  3.  前記エンジン電子制御ユニットは、前記コンバータを介すことなく前記車両内ネットワーク通信ラインを通して前記第2の電子制御ユニットに接続されており、
     前記第2の電子制御ユニットは、前記コンバータを介すことなく前記バッテリに接続されている請求項1又は2に記載のグロープラグ制御装置。
    The engine electronic control unit is connected to the second electronic control unit through the in-vehicle network communication line without going through the converter,
    The glow plug control device according to claim 1, wherein the second electronic control unit is connected to the battery without passing through the converter.
  4.  前記エンジン電子制御ユニットは、前記コンバータを迂回する経路で前記第2の電子制御ユニットから前記バッテリの電圧を受け取るように構成されている請求項1~3の何れか一項に記載のグロープラグ制御装置。 The glow plug control according to any one of claims 1 to 3, wherein the engine electronic control unit is configured to receive the voltage of the battery from the second electronic control unit through a path that bypasses the converter. apparatus.
  5.  前記第2の電子制御ユニットは、前記バッテリの電圧を検出して、検出した電圧を前記車両内ネットワーク通信ラインに送信するように構成されている請求項1~4の何れか一項に記載のグロープラグ制御装置。 5. The second electronic control unit according to claim 1, wherein the second electronic control unit is configured to detect a voltage of the battery and transmit the detected voltage to the in-vehicle network communication line. Glow plug control device.
PCT/JP2016/066910 2015-06-29 2016-06-07 Glow plug control device WO2017002552A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112016002941.1T DE112016002941B4 (en) 2015-06-29 2016-06-07 Glow plug control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-129993 2015-06-29
JP2015129993A JP6060999B1 (en) 2015-06-29 2015-06-29 Glow plug control device

Publications (1)

Publication Number Publication Date
WO2017002552A1 true WO2017002552A1 (en) 2017-01-05

Family

ID=57609446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066910 WO2017002552A1 (en) 2015-06-29 2016-06-07 Glow plug control device

Country Status (3)

Country Link
JP (1) JP6060999B1 (en)
DE (1) DE112016002941B4 (en)
WO (1) WO2017002552A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04252873A (en) * 1991-01-28 1992-09-08 Jidosha Kiki Co Ltd Current-energizing controller of glow plug
JP2010090800A (en) * 2008-10-08 2010-04-22 Denso Corp Glow plug control device
JP2013123981A (en) * 2011-12-14 2013-06-24 Denso Corp Vehicle power supply system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59108878A (en) 1982-12-15 1984-06-23 Toyota Motor Corp Glow plug control device for diesel engine
US5090374A (en) 1991-06-12 1992-02-25 Ngk Spark Plug Co., Ltd. Auxiliary starter apparatus for multi-cylinder diesel engine by using 24-volt battery cell
US6218643B1 (en) 1991-07-18 2001-04-17 Mitsubishi Denki Kabushiki Kaisha Power supplying apparatus for automotive part
JP2014105667A (en) 2012-11-29 2014-06-09 Bosch Corp Glow plug drive control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04252873A (en) * 1991-01-28 1992-09-08 Jidosha Kiki Co Ltd Current-energizing controller of glow plug
JP2010090800A (en) * 2008-10-08 2010-04-22 Denso Corp Glow plug control device
JP2013123981A (en) * 2011-12-14 2013-06-24 Denso Corp Vehicle power supply system

Also Published As

Publication number Publication date
DE112016002941T5 (en) 2018-03-15
DE112016002941B4 (en) 2021-12-23
JP6060999B1 (en) 2017-01-18
JP2017014935A (en) 2017-01-19

Similar Documents

Publication Publication Date Title
JP2008510099A5 (en)
RU2016116004A (en) START-UP MANAGEMENT DEVICE AND START-UP MANAGEMENT METHOD FOR HYBRID VEHICLE
CA2662638A1 (en) Power supply control apparatus and method for hybrid vehicle
US20180259584A1 (en) Lithium ion battery residual capacity estimation device
US8583344B2 (en) Method for controlling glow plugs in a diesel engine, particularly for motor-vehicles
US9450485B2 (en) Power supply control apparatus
WO2017002552A1 (en) Glow plug control device
JP6609111B2 (en) Ignition device
JP2015174552A (en) Monitoring device for residual capacity of battery
CN104976009A (en) Internal combustion engine having change of mind (COM) starter system and COM starter system
JP6045967B2 (en) Vehicle control system
EP1270936A3 (en) Glow plug energization controlling device
JP4874872B2 (en) Glow plug control device
KR20030011610A (en) Method and device for controlling the heating of the glow plugs in a diesel engine
GB2466275A (en) Controlling Diesel engine glow plugs
JP6264166B2 (en) Ignition device failure diagnosis device and ignition device failure diagnosis method
CN112858923A (en) Method for determining the state of charge of a vehicle battery of a vehicle
US10655519B2 (en) Vehicle
JP2007224822A (en) Fuel pump control device for vehicular internal combustion engine
JP6223818B2 (en) Intake heater temperature estimation device and engine start assist system
CN104675533A (en) Engine control apparatus and engine control method
KR101879302B1 (en) Glow system and control method using the same
JP6292038B2 (en) Engine control device
JP2015113030A (en) Power supply controller for vehicle and power supply control method for vehicle
JP2019038476A (en) Relay unit and battery device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817661

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016002941

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16817661

Country of ref document: EP

Kind code of ref document: A1