WO2017002376A1 - Rod-like body and cutting tool - Google Patents

Rod-like body and cutting tool Download PDF

Info

Publication number
WO2017002376A1
WO2017002376A1 PCT/JP2016/052324 JP2016052324W WO2017002376A1 WO 2017002376 A1 WO2017002376 A1 WO 2017002376A1 JP 2016052324 W JP2016052324 W JP 2016052324W WO 2017002376 A1 WO2017002376 A1 WO 2017002376A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
rod
blank
mass
region
Prior art date
Application number
PCT/JP2016/052324
Other languages
French (fr)
Japanese (ja)
Inventor
啓佑 藤本
松下 滋
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2017526189A priority Critical patent/JP6491333B2/en
Priority to US15/740,381 priority patent/US10537946B2/en
Priority to CN201680038396.6A priority patent/CN107683342B/en
Publication of WO2017002376A1 publication Critical patent/WO2017002376A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/001Cutting tools, earth boring or grinding tool other than table ware
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2222/00Materials of tools or workpieces composed of metals, alloys or metal matrices
    • B23B2222/28Details of hard metal, i.e. cemented carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2222/00Materials of tools or workpieces composed of metals, alloys or metal matrices
    • B23B2222/92Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2224/00Materials of tools or workpieces composed of a compound including a metal
    • B23B2224/12Chromium carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2222/00Materials of tools or workpieces composed of metals, alloys or metal matrices
    • B23C2222/28Details of hard metal, i.e. cemented carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/28Making specific metal objects by operations not covered by a single other subclass or a group in this subclass cutting tools
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12458All metal or with adjacent metals having composition, density, or hardness gradient

Definitions

  • This disclosure relates to a rod-shaped body and a long cutting tool such as a drill or an end mill.
  • the long rod-shaped body is used as a structural member.
  • a cutting tool such as a drill or an end mill that performs blade processing on a blank made of a cylindrical long rod-like body is known.
  • a drill used for drilling a solid drill in which a flute groove is formed from a cutting edge at the tip is known. For example, it is used for drilling a substrate on which an electronic component is mounted.
  • Patent Document 1 discloses a drill blank having a different composition in the radial direction or the longitudinal direction.
  • the rod-shaped body of the present disclosure is made of a cemented carbide containing WC and Co, is long, and in the longitudinal direction, the Co content Co AC at the first end is the Co content Co BC at the second end . with less than the second region of the inclined S 2 to the second end portion side due to variation of the Co content, the gradient S 1 due to the variation of the Co content in said first end portion And the slope S 1 is larger than the slope S 2 .
  • the cutting tool of the present disclosure includes a cemented carbide portion containing WC and Co,
  • the cemented carbide portion is elongated and has a cutting edge at least on the first end side in the longitudinal direction, and a shank portion on the second end side,
  • the Co content Co AC at the first end portion is smaller than the Co content Co BC at the second end portion, and the second region of the slope S 2 accompanying the amount of change of the Co content on the second end portion side , and a first region of the inclined S 1 to the first end portion side due to variation of the Co content, the inclined S 1 is greater than the slope S 2.
  • FIG. 1A is a side view of an example of a cutting tool blank which is a preferred example of the rod-shaped body of the present disclosure
  • FIG. 1B is a diagram showing a distribution of Co content in the cutting tool blank of FIG. 1A
  • FIG. 2A is a side view of another example of a cutting tool blank which is a preferred example of the rod-shaped body of the present disclosure
  • FIG. 2B is a diagram illustrating a distribution of Co content in the cutting tool blank of FIG. 2A. is there.
  • FIGS. 1 and 2 are diagrams showing a distribution of Co content in the cutting tool blank.
  • FIG. 1 it processed using the blank for cutting tools, and while having a cutting blade in a 1st edge part (henceforth A part), it is a 2nd edge part (henceforth B part).
  • An example of a drill in which is a shank is indicated by a dotted line.
  • a cutting tool blank (hereinafter simply referred to as a blank) 2 used in the drill 1 of the present embodiment has a cemented carbide portion.
  • the cemented carbide part contains WC and Co.
  • the blank 2 consists of a cemented carbide part. Note that the blank 2 in FIG. 1 has a main body 10 and a protrusion 15. Moreover, the blank 2 may have a coating layer (not shown) on the surface of the blank 2.
  • the blank 2 has a long cylindrical shape, and includes a portion A on the side where the cutting edge is formed and a portion B on the side joined to the shank 3 in the longitudinal direction.
  • the blank 2 may contain carbides of periodic tables 4, 5, and 6 metals other than W.
  • the carbides of Group 4, 5, and 6 metal may be Cr 3 C 2 , VC, TiC, TaC, NbC, and ZrC.
  • the cemented carbide part contains Cr 3 C 2
  • the blank 2 has high corrosion resistance.
  • the cemented carbide part contains Cr 3 C 2 and VC, abnormal grain growth of WC particles can be suppressed, and a cemented carbide with a uniform grain size can be stably produced.
  • the average particle size of the cemented carbide portion is less than 1.0 ⁇ m, the hardness and toughness of the blank 2 are high.
  • the Co content Co AC in the A part of the blank 2 is less than the Co content Co BC in the B part.
  • the wear resistance in the A portion having the cutting edge can be increased, and the break resistance on the B portion side that is easily broken in a cutting tool such as a drill or an end mill can be enhanced.
  • the second region 12 of the inclined S 2 due to a change amount of the Co content in the B side, the first region of the inclined S 1 due to the variation of the Co content in the A side and a 11, the inclination S 1 is greater than the slope S 2.
  • the toughness in a wide range on the B portion side can be increased while maintaining the high wear resistance in the A portion, and the breakage resistance of the blank 2 can be increased.
  • a part and B part point out the edge part of the blank 2, it is specifically set as the position which can analyze the composition of the blank 2 by EPMA analysis. That is, as shown in FIG. 1B and FIG. 2B, in the EPMA analysis at the end of the blank 2, due to the spot size, at the position where a part of the measurement region protrudes from the blank 2, the accurate composition measurement cannot be performed. Because there is, it will be a position that can be measured.
  • Co AC When Co AC is 0 to 10.0 mass% and Co BC is 2.0 to 16.0 mass%, the wear resistance and fracture resistance of the blank 2 can be maintained high. More desirable ranges of Co AC and Co BC vary depending on processing conditions, but Co AC is 0.2 mass% to 7 mass% and Co BC is 2 mass% to 12 mass%. For example, when used as a drill for printed circuit board processing, Co AC may be 1.0 to 4.9% by mass and Co BC may be 5.0 to 10.0% by mass. In the conventional uniform composition, it is difficult to densify the cemented carbide having a Co content of less than 5% by mass.
  • the Co agglomerated portion is formed in the blank 2 after firing depending on the particle size and the degree of aggregation of the Co raw material powder, the Co distribution is uneven.
  • Co diffuses due to the Co capillary phenomenon, so that Co agglomerates are difficult to form, and a uniform distribution state can be achieved.
  • a dense cemented carbide is obtained.
  • the ratio of Co AC to Co BC (Co AC / Co BC ) is 0.2 to 0.7, the hardness in the A part can be improved and the breakage resistance of the blank 2 can be increased.
  • the method of measuring the Co AC / Co BC is a cross section in the halves of the blank 2 in the longitudinal direction, it can be confirmed by measuring the composition in each region by EPMA analysis. The composition analysis of A part and B part is measured on the central axis of the cross section.
  • the inclinations S 1 and S 2 indicate the rate of change of the Co content in the longitudinal direction.
  • the distribution of the Co content in the longitudinal direction of the blank 2 is measured by EPMA analysis, the presence of the first region 11 and the second region 12 is confirmed, and the slope S 1 and slope S 2 is calculated from the slope of time that approximates the distribution in each region by the least squares method.
  • the direction where inclination becomes low toward the B part from the A part is positive, and the direction where the inclination becomes high from the A part toward the B part is negative.
  • a slope S 1 is 0.2-1.0 mass% / mm, when the inclination S 2 is from 0 to 0.2 mass% / mm, as well as can improve the hardness in the A section, the blank 2 resistant Breakability can be improved.
  • the inclination S 1 in the first region 11 may not be constant in the region. In particular, in the first region 11, when the inclination on the A portion side becomes large, the wear resistance in the A portion is high and the breakage resistance of the blank 2 is higher.
  • the surface of the first region 11 has a low Co content that hinders the growth of diamond crystals.
  • the crystallinity of the diamond coating layer is increased, and the hardness and adhesion of the diamond coating layer are improved.
  • the slope of the first region 11 and the second region 12 is increased. It is easy to control S 1 and S 2, and it is possible to further improve the breakage resistance on the B portion side where breakage is likely to occur. If slope S 3 is 2 to 50 mass% / mm, it is possible to increase both the breakage of the wear resistance and B side of the A side.
  • the fourth region 14 having an inclination S 4 having a smaller inclination than the inclination S 1 may be provided on the A portion side of the first area 11.
  • the range with high wear resistance on the part A side may be widened.
  • the slope S 4 is 0 to 0.5 mass% / mm and the Co content in the fourth region 14 is 0 to 0.6 mass%
  • a diamond coating layer is formed on the surface of the blank 2.
  • the crystallinity of the diamond coating layer is further increased on the surface of the fourth region 14, and the hardness and adhesion of the diamond coating layer are improved.
  • the longitudinal length of the first region 11 is L 1
  • the longitudinal length of the second region 12 is L 2
  • the longitudinal length of the third region 13 is L 3
  • L 1 / L 2 0.2 to 5.0
  • Co AC 0.3 to 8.0 mass%
  • Co BC 2.5 It may be up to 15.0% by weight.
  • L 3 / L 2 0.01 to 0.1
  • the Co content in the second region 12 and the first region 11 can be easily adjusted.
  • L 4 / L 2 is 0 to 0.05
  • the densification of the cemented carbide portion in the portion A can be promoted more stably.
  • L 4 / L 2 is larger than 0.05 and there is a non-densified portion in the fourth region 14, at least a part of the fourth region 14 is polished when the drill 1 is manufactured. It may be removed.
  • the Co content in the outer peripheral portion of the A portion was Co AO, Co AO 0.1 to 6.5 wt%, the ratio of Co AO for Co AC (Co AO / Co AC ) from 0.1 to zero. In the case of 9, it is possible to improve the wear resistance of the cutting edge in the cutting tool and to suppress the chipping at the center of the tip of the cutting tool.
  • the diameter d A of the A portion of the blank 2 is at both 2mm or less diameter d B of the B portion, when the longitudinal length is L, the ratio of length L to d A (L / d A) It is difficult to produce a shape in which is 3 or more by extrusion molding. That is, it is difficult to change the Co content in the A part and the B part, and it is also difficult to form the protrusion 15.
  • the blank 2 having this shape can be produced by press molding. And by adjusting manufacturing conditions, such as a shape of a metal mold
  • the ratio (L / d A ) when the ratio (L / d A ) is 3 or more, in the blank 2 after firing, Co AC and Co BC can be easily adjusted to a predetermined relationship. That is, when the ratio (L / d A ) is small, there is no difference between Co AC and Co BC in the blank 2 due to diffusion of Co during firing.
  • a desirable range of the ratio (L / d A ) is 4-10.
  • the blank 2 When the blank 2 has d A and d B of 0.2 to 2 mm and a length L of 3 to 20 mm, it is suitable for a drill for processing a printed circuit board.
  • d A / d B may be 1.02 to 1.20.
  • the distinction between the A part and the B part can be easily made by the dimensional difference between the A part and the B part having different Co contents, and the cutting blade of the cutting tool can be reliably formed in the A part.
  • d A / d B is 1.20 or less, the polishing allowance when manufacturing the cutting tool can be reduced, and the processing cost can be saved.
  • a more desirable range of d A / d B is 1.03 to 1.10.
  • the ratio L A / (L A + L B ) is 0.3 to 0.6, where L A is the length in the longitudinal direction of the region a and L B is the length in the longitudinal direction of the region b. . If it is this range, the abrasion resistance of the cutting edge of the reground drill 1 is also high, and the fracture resistance of a flute part can be improved.
  • a desirable range of the ratio L A / (L A + L B ) is 0.3 to 0.5.
  • the diameter is the direction from the portion A d A at the other end part B d B is continuously reduced.
  • the phrase “continuously small” means that there is no step where the diameter changes discontinuously, and thereby breakage of the blank 2 can be suppressed.
  • the blank 2 may be in a state where it is fired and not polished, but in the process of bonding the blank 2 to the shank 3, in order to increase the positional accuracy of the blank 2 when gripping the blank 2,
  • the outer peripheral surface of the blank 2 may be centerless processed.
  • a protrusion 15 is provided on the outer side in the longitudinal direction of the blank 2 following the A portion.
  • the protrusion 15 has a shape with a diameter smaller than that of the blank 2.
  • the protrusion 15 protrudes from the first end face 18, and the first end face 18 of the main body 10 includes a protrusion area 16 where the protrusion 15 is located and an outer peripheral area located on the outer periphery of the protrusion area 16. 17.
  • the diameter d c of the portion in contact with part A of the protrusion 15 is small.
  • the protrusion 15 can more easily discriminate between the A part and the B part of the blank 2.
  • Projection 15 is, as shown in FIG. 3, is provided at a height L C.
  • L C may be 5 to 20% in a ratio to the total length L of the blank 2.
  • the protrusion 15 can be easily formed. If the tip part of the drill 1 that has been bladed is formed by the protrusions 15, the machining cost is less wasted.
  • the protrusion 15 has a tapered shape.
  • the shape of the tip of the protrusion 15 is preferably a curved surface, and the protrusion 15 is hemispherical in FIGS. Accordingly, even when the blanks 2 collide with each other when the blanks 2 are randomly inserted into the bonding apparatus, it is possible to suppress the protrusions 15 from being lost and to prevent other protrusions 2 from being damaged by the protrusions 15. .
  • the base part side which the projection part 15 contacts with A part is connected by the R surface in the cross sectional view.
  • FIG. 4 shows a schematic diagram for explaining the configuration of the mold for an example of a method for forming the cutting tool blank of the present embodiment.
  • the root side in contact with the A portion of the protrusion 15 is shown in a sectional view.
  • the R surface By being connected by the R surface, it is possible to suppress the load from being concentrated on the end portion of the lower punch 23 when the formed body 35 is formed, and the lower punch from being chipped.
  • the Co content Co CC in the protrusion 15 is less than the Co content Co AC in the A portion.
  • the wear resistance of the cutting edge is high.
  • B part has much Co content, toughness is high, and if the flute part of drill 1 is formed in B part side, the fracture resistance of a flute part will be high.
  • the cutting tool of this embodiment manufactured with this blank 2 has high wear resistance of the cutting edge and high breakage resistance.
  • the wear resistance of the cutting blade 5 is high.
  • tip of the cutting blade 5 is formed with the projection part 15, the straightness at the time of the drilling process of the drill 1 is high, and a drilling process precision improves.
  • the Co content at the center of the A portion is Co AC
  • the Co content at the center of the B portion is Co BC
  • the Co content at the tip of the protrusion 15 is when the Co CC, Co AC 0.2 mass% to 7 mass%
  • Co BC is 2 mass% to 12 mass%
  • Co CC is 0.1 wt% to 6 wt%
  • Co AC for Co BC the ratio (Co AC / Co BC) is 0.1-0.6
  • drills 1 has high breakage resistance and high wear resistance of the cutting edge.
  • the drilling accuracy of the cutting blade 5 can be increased.
  • the protruding portion 15 has a Co content Co CC in the protruding portion 15 larger than the Co content Co AC in the A portion.
  • the protrusion 15 since the protrusion 15 has a high Co content and low hardness, it is easy to grind and remove the protrusion 15 when producing a drill from the blank 2.
  • the Co content in the central part of the A part is larger than the Co content in the outer peripheral part of the A part.
  • the blank 2 is used as a rotary tool such as an end mill (not shown)
  • the hardness of the cemented carbide at the tip of the cutting tool and the central portion in the vicinity thereof is lowered.
  • the cutting speed is close to zero at and around the rotation center of the cutting tool, and the cutting tool and the work material rub against each other. Even if it becomes a state, the defect
  • Co AC is 0.2 mass% to 7 mass%
  • Co BC is 3 mass% to 12 mass%
  • Co CC is 2 mass% to 12 mass%
  • Co Co the ratio of Co AC for BC (Co AC / Co BC) is 0.1-0.6
  • the ratio of Co CC for Co AC (Co CC / Co AC ) is 1.2-3.
  • the end mill has high breakage resistance and the cutting edge has high wear resistance. Further, the protrusion 15 is easily removed by grinding at the time of processing the end mill.
  • the measurement method of Co AC , Co AO , Co BC and Co CC was confirmed by measuring the composition in each region by electron beam microanalyzer (EPMA) analysis with the blank 2 halved in the longitudinal direction. it can. Moreover, in order to confirm the composition change of the longitudinal direction of the blank 2, it can confirm by observing the side of the blank 2 while shifting a measurement position with an electron microscope, and measuring the composition in each area
  • EPMA electron beam microanalyzer
  • this embodiment is a drill used for drilling a printed circuit board as a cutting tool
  • the present disclosure is not limited to this, and any drill may be used as long as it has a long main body.
  • the present invention can be applied as a cutting tool for turning such as a drill for metal processing, a medical drill, an end mill, and a throw-away tip for inner diameter processing.
  • the rod-like body such as the blank 2 can be used as an anti-wear material and a sliding member other than the cutting tool, and can be used as a punch, for example.
  • the rod-like body is suitably used for an application in which the region including the A part is used in contact with the mating member in a state where the B part is fixed and the B part is fixed.
  • the WC powder is included, the first raw material powder for producing the protrusion, the second raw material powder for producing the A part side, the WC powder and the Co powder, and the B part side
  • a third raw material powder for preparation is prepared.
  • the second raw material powder may contain Co powder in addition to the WC powder, but the content of Co powder in the second raw material powder is less than the content of Co powder in the third raw material powder.
  • the content of Co powder in the second raw material powder is 0 to 0.5, particularly 0 to 0.3, as a mass ratio to the content of Co powder in the third raw material powder.
  • the first raw material powder is not necessary. Also, in the case where a protrusion having a Co content Co CC in the protrusion is smaller than the Co content Co AC in the A part, the first raw material powder can be substituted by the second raw material powder.
  • the first raw material powder contains Co powder in addition to the WC powder, and the Co in the first raw material powder The content of the powder is larger than the content of the Co powder in the second raw material powder.
  • the blending amount of the WC powder in the first raw material powder is 65 to 95% by mass, and Co
  • the amount of the powder is 3 to 30% by mass, and the total amount of the additive is 0 to 5% by mass.
  • the amount of WC powder in the second raw material powder is 90 to 100% by mass, the amount of Co powder is 0 to 8% by mass, and the total amount of additives is 0 to 5% by mass.
  • the amount of WC powder in the third raw material powder is 65 to 95% by mass, the amount of Co powder is 4 to 30% by mass, and the amount of additives is 0 to 10% by mass in total.
  • a binder and a solvent are added to this to produce a slurry.
  • This slurry is granulated into granules and formed into molding powder.
  • the following molding process will be described for the sake of convenience in the case where a protrusion having a Co content Co CC in the protrusion is larger than the Co content Co AC in the A part.
  • a press molding die (hereinafter simply referred to as “die”) 20 is prepared, and the granules are put into the cavity 22 of the die 21 of the die 20. Then, the upper punch 24 is lowered from above the granules put into the cavity 22 of the die 21 and pressed to produce a molded body.
  • a gap 25 for forming the protrusion 15 is provided on the upper surface serving as the press surface of the lower punch 23 that is the bottom of the cavity 22.
  • the diameter of the opening of the raw projections 32, the diameter D C at a position in contact with the green body bottom 31 of the raw projections 32 of the molded body 35 has a ratio to the diameter D A of the upper surface of the lower punch (D C / D A ) is set to 0.5 to 0.9. Thereby, the stress concentration at the time of pressurization can be suppressed and the lower punch 23 can be prevented from being lost.
  • the step of introducing the first raw material powder 30 into the space 25 in the cavity 22, the step of introducing the second raw material powder 33 into the cavity 22, and the third raw material powder 37 into the cavity 22 A step of lowering the upper punch 24 from above and pressurizing the first raw material powder 30, the second raw material powder 33 and the third raw material powder 37 which are put into the cavity 22 of the die 21, and a laminate. And a step of taking out the molded body 35 made of the above from the mold 20.
  • the formed body 35 has a long cylindrical shape, and the Co content in the A part is less than the Co content in the B part.
  • the blank 2 has a predetermined Co content distribution.
  • the Co content in the central part and the outer peripheral part of the A part of the blank 2 after firing is within a predetermined range.
  • the first raw material powder 30 and the second raw material powder 33 are filled and then pressurized, and then the third raw material powder 37 is filled into the upper surface of the compact and repressurized.
  • the second raw material powder 33 is charged, and the third raw material powder 37 is charged.
  • a method may be used in which the first raw material powder 30, the second raw material powder 33, and the third raw material powder 37 that are put into the cavity 22 of the die 21 are pressed simultaneously by lowering the punch 24.
  • the bottom surface of the void portion 25 is a curved surface, in the molded body 35, it is possible to suppress chipping of the raw protrusion 32, and to suppress variation in the Co content in the protrusion 15 in the blank 2 after firing,
  • the position of the upper punch 24 from the holding position of the upper punch 24 at the time of pressurization is reduced to 0. 0.
  • An additional load is applied to the upper punch 24 and the load on the lower punch 23 is reduced so as to descend downward by a length of 1 mm to 2 mm, 0.1% to 20% of the length of the molded body.
  • the pressure unevenness of the molded body 35 can be improved, the lower punch 23 can be prevented from being damaged when the molded body 35 is pulled out, and the shape of the blank 2 after firing the molded body 35 is set to a predetermined value. It can be a shape.
  • the compact 35 for obtaining a sintered body having a diameter larger than 2 mm is produced by press molding, the granules are uniformly introduced when the powder is introduced into the mold 20. If a molded body 35 for obtaining a sintered body having a thickness of 2 mm or less is produced by press molding, in the conventional method, when the powder is charged into the mold, the granules are not uniformly charged. In the present embodiment, by controlling the molding conditions, the molded body 35 can be produced and the blank 2 having a predetermined shape can be obtained.
  • a desirable range of the ratio D A / D B in the present embodiment is 0.80 to 0.99.
  • the d A / d B ratio can be controlled within a desired range. That is, the d A / d B ratio can be controlled within a desired range by the difference in firing shrinkage between the A part and the B part during firing.
  • a fourth content having a Co powder content between the second raw material powder 33 and the third raw material powder 37 between the second raw material powder 33 and the third raw material powder 37 may be present.
  • the mold is provided with a plurality of sets of upper punch, gap, and lower punch to form a plurality of molded bodies at a time. can do.
  • the number of sets of the upper punch, the gap, and the lower punch is, for example, 4 to 144.
  • the side shape of the mold may be a straight shape having the same diameter from the upper punch to the lower punch.
  • d A / d B is the size ratio between the amount by adding the calcined after the punch-side and the lower punch side As shown in FIG.
  • the powder filling portion (gap portion) 22 of the die 21 is filled with granules within the range in which the ratio is within a predetermined range, and the granules are formed between the upper punch 24 and the lower punch 23.
  • the in pressurized mold 20 for press molding it may have been smaller than the diameter D B of the upper punch 24 side diameter D a of the lower punch 23 side. Accordingly, it is possible to suppress the load from being concentrated on the outer peripheral side of the lower punch 23 and the lower punch 23 from being lost.
  • a molded object is taken out from a metal mold
  • the rate of temperature increase in the firing is 4 ° C./minute to 20 ° C./minute
  • the firing temperature is 1350 ° C. to 1580 ° C.
  • the firing time is 15 minutes to 45 minutes. This makes it possible to easily adjust the Co content in the A part and the B part, and the second raw material powder 33 and the third raw material powder 37 have different sinterability.
  • the contraction rate of the part is different and the molded body is deformed, and the contraction rate of the B part is larger than the contraction rate of the A part.
  • the shape of the sintered body can be controlled to a desired shape. Further, since the protruding portion 15 is located at a position where Co is less likely to diffuse than the A portion, the Co content Co C of the protruding portion 15 is smaller than Co A.
  • the shrinkage rate of the A part and the B part is different during firing, and the compact is deformed, and the shrinkage rate of the B part is A. It becomes larger than the shrinkage rate of the part. That is, a part of Co in the B part diffuses toward the A part by firing, so the B part shrinks more than the A part. As a result, the shape of the sintered body tends to have the diameter of the B part smaller than the diameter of the A part.
  • the blank 2 is formed by press molding, the number of molding steps is small and the manufacture is easy. Moreover, since the dimensional change of the blank 2 after baking the molded object of the blank 2 is small, the dimensional accuracy of the blank 2 is high. Therefore, the blank 2 can be made into a shape with less cutting allowance with respect to the shape of the drill 1. Furthermore, since the blank 2 formed by press molding can reduce the amount of binder added during molding compared to extrusion molding, defects such as voids and residual carbon in the sintered body (blank 2) This makes it a highly reliable material that is unlikely to exist. Further, in the blank 2 molding step, density unevenness in the molded body can be adjusted, so that stable molding in which chipping or the like hardly occurs is possible.
  • the molding process in the present disclosure is not limited to the press molding shown in the above embodiment, but can be molded by cold isostatic pressing, dry bagging, injection molding, or the like.
  • Blanks 2 are randomly inserted into the bonding apparatus in units of tens or hundreds.
  • the blank 2 is aligned longitudinally in the joining device.
  • the projection 15 is provided, the projection 11 is confirmed by image data or the like, and the A portion and B portion of the blank 2 are specified. Based on this specification, the A part and the B part can be automatically arranged in a certain direction.
  • the arranged blanks are automatically brought into contact with a predetermined position of the neck 7 following the shank 3 separately prepared, and then joined by a laser or the like. Thereafter, the joined blank 2 is subjected to blade processing.
  • the configuration of the drill 1 is such that the A portion is on the cutting blade 5 side of the drill 1 and the B portion is on the shank 3 side of the drill 1.
  • a cutting tool such as a drill 1 is produced by cutting the blank 2.
  • the shape of the drill 1 in FIG. 5 includes a cutting edge 5 at part A, and a flute 6 and a neck 7 that form a body 8.
  • the cutting edge 5 and the flute portion 6 are processed portions. And it has the shank 3 following the body 8.
  • the cutting edge 5 is a portion that first contacts the work material while rotating around the central axis, and requires high chipping resistance and wear resistance.
  • the flute portion 6 has a function of discharging chips generated by machining backward
  • the neck portion 7 is a connection for adjusting the machining diameter of the drill 1 (diameter of the flute portion 6) and the diameter of the shank 3.
  • the shank 3 is a part for fixing the drill 1 to the processing machine.
  • the drill 1 obtained by the above method is provided with a processed part composed of a cutting edge 5 made of cemented carbide and a flute part 6.
  • the maximum diameter of the processed portion is 2 mm or less.
  • a coating layer (not shown) can be formed on the surface of the drill 1 as desired.
  • the covering layer is preferably made of TiN, TiCN, TiAlN, diamond, diamond-like carbon formed by PVD, diamond formed by CVD, or the like.
  • the neck 7 and the shank 3 can be formed of an inexpensive material such as steel, alloy steel, or stainless steel, and the blank 2 can be joined to the tip of the neck 7.
  • the drill 1 may have a shape in which the neck portion 7 is omitted.
  • the average particle diameter of WC particles in part A and part B, in part A or part B, is within a visual field in which 10 or more WC particles are observed. Measure. Further, the average particle diameter of the WC particles is calculated as an average value of the diameters of the WC particles existing in the field of view by obtaining a diameter when the area of each observed WC particle is converted into a circle.
  • the neck 7 and the shank 3 may be formed of an inexpensive material such as steel, alloy steel, or stainless steel, and the blank 2 may be joined to the tip of the neck 7.
  • the blank 2 may be formed from the cutting edge 5 to the shank 3 of the drill 1.
  • the drill 1 may have a shape in which the neck portion 7 is omitted.
  • the cutting tool is not limited to the drill 1 and can be applied to a tool having a rotating shaft such as an end mill or a reamer.
  • Two kinds of mixed powders of the first raw material powder and the second raw material powder shown in Table 1 were prepared at a ratio. To each mixed powder, a binder and a solvent were added and mixed to prepare a slurry, and granules having an average particle diameter of 70 ⁇ m were prepared with a spray dryer.
  • a mold shown in FIG. 3 having a die having 144 voids is prepared, the first raw material powder shown in Table 1 is charged, and then the second raw material powder shown in Table 1 is filled and press-molded.
  • a molded body in which the first raw material powder and the second raw material powder were laminated was molded and removed from the mold. At this time, the shape of the molded body was set to the lower punch side diameter D A , the upper punch side diameter D B , the lower part length H A , and the upper part length H B shown in Table 1.
  • this molded body was heated from 1000 ° C. at a temperature rising rate shown in Table 2, fired for 1 hour in the atmosphere and firing temperature shown in Table 2, and then sintered HIP shown in Table 2 (described as HIP in the table).
  • the sinter HIP process was performed for 30 minutes at a pressure of 5 MPa, changing to the temperature.
  • a drill was prepared by aligning, joining the second end of the blank against the shank, and applying a blade to the portion including the first end of the blank.
  • Co AC is the same sample No. as Co BC .
  • No. I-12 the flank wear width was large.
  • I-13 the first hole was deficient due to insufficient sintering.
  • sample No. without the first region and the second region In I-14, I-16, and I-18, the flank wear width was large.
  • the same or smaller specimen rotation S 1 is an inclined S 2 No. In I-15, I-17, and I-19, the breakage resistance was low, and the number of processed parts was small.
  • the sample No. No. 2 is smaller in Co AC than Co BC , and the slope S 1 in the first region is larger than the slope S 2 in the second region.
  • the flank wear width was small and the number of workpieces increased.
  • the number of processed parts increased.
  • the number of processed parts increased.
  • the sample No. No. 1 is smaller in Co AC than Co BC , and the slope S 1 in the first region is larger than the slope S 2 in the second region.
  • the flank wear width was small and the number of workpieces increased.
  • sample No. 1 having a third region having a slope S 3 larger than S 1 between the second region and the first region.
  • the flank wear width was small and the number of workpieces increased.
  • sample No. slope S 3 is 2 to 50 mass% / mm
  • the flank wear width was small and the number of workpieces was particularly large.
  • the sample No. No. 1 was smaller in Co AC than Co BC , and the slope S 1 in the first region was larger than the slope S 2 in the second region.
  • the flank wear width was small and the number of workpieces increased.
  • the molded body was heated at the rate of temperature increase shown in Table 10 and baked at the temperature shown in Table 10 for 30 minutes in the same manner as in Example 1, and then 30 times higher than the temperature shown in Table 10.
  • Sinter HIP firing was performed at a low temperature.
  • the outer peripheral portion of the obtained sintered body was centerless processed to obtain a blank.
  • Example 1 this blank is thrown in in a joining apparatus at random, the direction of the projection part of a blank is recognized in a joining apparatus, and the A part and B part of a main-body part are aligned in the same direction.
  • a drill was produced. It was easy to discriminate between the A part and the B part by the protrusions, and it was possible to easily produce a drill with less Co on the cutting edge side.
  • Sample No. in which the protruding portion has a curved surface shape.
  • IV-1 to IV-5 and IV-7 to IV-13 the blank was not damaged by the collision of the blanks when they were put into the joining apparatus.
  • sample No. 5 in which d C / d A of the blank after firing is smaller than 0.5.
  • sample IV-5 sample no. Compared to 5, the protrusions were all polished and removed by the cutting operation of the drill, and the wear resistance of the cutting blade was lowered and the number of drills processed was small.
  • Sample No. 4 in Example 4 Sample No. 1 of Example 1 was used except that the average particle diameter of the WC powder was 0.8 ⁇ m with respect to the first raw material powder and the second raw material powder used in IV-1.
  • the obtained sintered body could be drilled with a drill.
  • Example 13 a blank was produced using the first raw material powder, the second raw material powder, and the third raw material powder shown in Table 13.
  • the sample blank d C / d A after firing is greater than 0.9 No. Regarding No. 5, damage to the lower punch was confirmed when 100 molded bodies were produced.
  • Sample No. d c / d A is less than 0.5.
  • the vicinity of the protrusions of the molded body was sometimes damaged in the molding process, and the molding yield was poor.
  • Example 4 after heating this molded object at the temperature increase rate shown in Table 14 and baking for 30 minutes at the temperature shown in Table 14, it is sintered at a temperature 30 degreeC lower than the temperature shown in Table 14. HIP fired. The outer peripheral portion of the obtained sintered body was centerless processed to obtain a blank.
  • Example 4 this blank is thrown in in a joining apparatus at random, the direction of the projection part of a blank is recognized in a joining apparatus, and the A part and B part of a main-body part are aligned in the same direction. Then, an end mill was produced by the same process as in Example 4. It was easy to distinguish between the A part and the B part by the protrusion, and an end mill with less Co on the cutting edge side could be easily produced. The results are shown in Tables 14 and 15.
  • the sample No. No. 1 is smaller in Co AC than Co BC and in which the slope S 1 of the first region is larger than the slope S 2 of the second region.
  • the flank wear width was small and the machining distance was long.
  • Co AC has the same sample No. as Co BC .
  • Sample No. VI-12 Co CC is the same as Co AC .
  • Sample No. VI-9, Co CC smaller than Co AC . VI-11, Co AC and Co BC , and Co CC and Co AC have the same sample numbers.
  • VI-8 and VI-10 the processing distance of the end mill was short.
  • Co CC is greater than Co AC Sample No.
  • VI-1 to VI-7 the processing distance of the end mill was long.
  • Co AC is 0.2 mass% to 7 mass%
  • Co BC is 3 mass% to 12 mass%
  • the ratio Co AC / Co BC is 0.1 to 0.6
  • the obtained sintered body was subjected to blade processing to produce a 4MFK type end mill made by Kyocera.
  • two types of shapes with different blade lengths were produced.
  • work material SUS304, processing diameter: ⁇ 8mm, cutting form: shoulder processing, processing speed: 85m / min, rotation speed: 3300 times / min, feed: 0.035mm / blade, cutting depth: 5mm, cutting
  • the end mill was cut by a width: 3 mm, wet cutting
  • sample No. In VII-13 the cutting length was 40 m, and the state of the cutting edge of the end mill was also constantly worn.
  • sample no. In VII-14 the cutting length was 24 m, and defects were observed near the rotation axis of the end mill.
  • Drill cutting tool
  • Blank blade for cutting tool
  • region 15 Protrusion part d A 1st edge part raw diameter d B the second end portion having a diameter d C protrusion first diameter D a molded body diameter D C compact of upper punch side of the lower punch side of the diameter D B molded body at a position in contact with the end a of Diameter at the position where the protrusion touches the bottom of the molded body

Abstract

Provided is a rod-like body provided with an ultrahard alloy part containing WC and Co. The ultrahard alloy part is elongated and has a first end part and a second end part in the longitudinal direction, and the Co content CoAC in the first end part is lower than the Co content CoBC in the second end part. The ultrahard alloy part has a first region, in which the degree of change in Co content per 1 mm has a gradient S1, at the first end part side and a second region, in which the degree of change in Co content per 1 mm has a gradient S2, at the second end part side, and the gradient S1 is greater than the gradient S2.

Description

棒状体および切削工具Rod and cutting tool
 本開示は棒状体、およびドリルやエンドミル等の長尺状の切削工具に関する。 This disclosure relates to a rod-shaped body and a long cutting tool such as a drill or an end mill.
 長尺状の棒状体は、構造部材として用いられている。棒状体を用いる例として、例えば、円柱長尺状の棒状体からなるブランクに刃付け加工するドリルやエンドミル等の切削工具が知られている。孔開け加工に使用するドリルは、先端の切刃からフルート溝を形成したソリッドドリルが知られており、例えば電子部品を搭載する基板の孔開け加工用として用いられている。 The long rod-shaped body is used as a structural member. As an example of using a rod-like body, for example, a cutting tool such as a drill or an end mill that performs blade processing on a blank made of a cylindrical long rod-like body is known. As a drill used for drilling, a solid drill in which a flute groove is formed from a cutting edge at the tip is known. For example, it is used for drilling a substrate on which an electronic component is mounted.
 例えば、特許文献1には、径方向または長手方向に組成が異なるドリルブランクが開示されている。 For example, Patent Document 1 discloses a drill blank having a different composition in the radial direction or the longitudinal direction.
特開2012-526664号公報JP 2012-526664 A
 本開示の棒状体は、WCとCoとを含有する超硬合金からなり、長尺状で、長手方向において、第1端部におけるCo含有量CoACが第2端部におけるCo含有量CoBCよりも少ないとともに、前記第2端部側に前記Co含有量の変化量に伴う傾斜Sの第2領域と、前記第1端部側に前記Co含有量の変化量に伴う傾斜Sの第1領域とを有し、前記傾斜Sが前記傾斜Sよりも大きい。 The rod-shaped body of the present disclosure is made of a cemented carbide containing WC and Co, is long, and in the longitudinal direction, the Co content Co AC at the first end is the Co content Co BC at the second end . with less than the second region of the inclined S 2 to the second end portion side due to variation of the Co content, the gradient S 1 due to the variation of the Co content in said first end portion And the slope S 1 is larger than the slope S 2 .
 また、本開示の切削工具は、WCとCoとを含有する超硬合金部を備え、
該超硬合金部は、長尺状で、長手方向において、少なくとも第1端部側に切刃を備えるとともに、第2端部側にシャンク部を備え、
第1端部におけるCo含有量CoACが第2端部におけるCo含有量CoBCよりも少ないとともに、前記第2端部側に前記Co含有量の変化量に伴う傾斜Sの第2領域と、前記第1端部側に前記Co含有量の変化量に伴う傾斜Sの第1領域とを有し、前記傾斜Sが前記傾斜Sよりも大きい。
Moreover, the cutting tool of the present disclosure includes a cemented carbide portion containing WC and Co,
The cemented carbide portion is elongated and has a cutting edge at least on the first end side in the longitudinal direction, and a shank portion on the second end side,
The Co content Co AC at the first end portion is smaller than the Co content Co BC at the second end portion, and the second region of the slope S 2 accompanying the amount of change of the Co content on the second end portion side , and a first region of the inclined S 1 to the first end portion side due to variation of the Co content, the inclined S 1 is greater than the slope S 2.
図1Aは、本開示の棒状体の好適例である切削工具用ブランクの一例についての側面図であり、図1Bは図1Aの切削工具用ブランク中のCo含有量の分布を示す図である。FIG. 1A is a side view of an example of a cutting tool blank which is a preferred example of the rod-shaped body of the present disclosure, and FIG. 1B is a diagram showing a distribution of Co content in the cutting tool blank of FIG. 1A. 図2Aは、本開示の棒状体の好適例である切削工具用ブランクの他の一例についての側面図であり、図2Bは図2Aの切削工具用ブランク中のCo含有量の分布を示す図である。FIG. 2A is a side view of another example of a cutting tool blank which is a preferred example of the rod-shaped body of the present disclosure, and FIG. 2B is a diagram illustrating a distribution of Co content in the cutting tool blank of FIG. 2A. is there. 本開示の他の棒状体の好適例である切削工具用ブランクの他の一例についての側面図である。It is a side view about another example of the blank for cutting tools which is a suitable example of the other rod-shaped body of this indication. 図1に示した切削工具用ブランクを成形する方法の一例について、金型の構成を説明するための模式図である。It is a schematic diagram for demonstrating the structure of a metal mold | die about an example of the method of shape | molding the blank for cutting tools shown in FIG. 図1に示した切削工具用ブランクをシャンクに接合して刃付け加工したドリルの一例についての側面図である。It is a side view about an example of the drill which joined the cutting tool blank shown in FIG.
 本開示の棒状体の好適例である切削工具用ブランクの一例についての側面図、および切削工具用ブランク中のCo含有量の分布を示す図である図1、図2に基づいて説明する。なお、図1には、切削工具用ブランクを用いて加工し、第1端部(以下、A部と称す。)に切刃を有するとともに、第2端部(以下、B部と称す。)がシャンクであるドリルの一例について点線で示している。 Description will be made based on a side view of an example of a cutting tool blank which is a preferable example of the rod-shaped body of the present disclosure, and FIGS. 1 and 2 which are diagrams showing a distribution of Co content in the cutting tool blank. In addition, in FIG. 1, it processed using the blank for cutting tools, and while having a cutting blade in a 1st edge part (henceforth A part), it is a 2nd edge part (henceforth B part). An example of a drill in which is a shank is indicated by a dotted line.
 本実施形態のドリル1に用いられる切削工具用ブランク(以下、単にブランクと略す。)2は、超硬合金部を有する。また、超硬合金部は、WCとCoとを含有する。図1においては、ブランク2が超硬合金部からなる。なお、図1のブランク2は、本体部10と突起部15とを有する。また、ブランク2は、ブランク2の表面に被覆層(図示せず)を有していてもよい。 A cutting tool blank (hereinafter simply referred to as a blank) 2 used in the drill 1 of the present embodiment has a cemented carbide portion. The cemented carbide part contains WC and Co. In FIG. 1, the blank 2 consists of a cemented carbide part. Note that the blank 2 in FIG. 1 has a main body 10 and a protrusion 15. Moreover, the blank 2 may have a coating layer (not shown) on the surface of the blank 2.
 ブランク2は、円柱長尺状で、長手方向において、切刃が形成される側のA部と、シャンク3に接合される側のB部を備える。ブランク2は、WCとCo以外に、Wを除く周期表4、5、6族金属の炭化物を含有してもよい。周期表4、5、6族金属の炭化物は、Cr、VC、TiC、TaC、NbC、ZrCであってもよい。特に、超硬合金部がCrを含有する場合にはブランク2の耐食性が高い。また、超硬合金部がCrおよびVCを含有する場合には、WC粒子の異常粒成長を抑制して、粒径の揃った超硬合金を安定して作製することができる。超硬合金部の平均粒径が1.0μm未満である場合には、ブランク2の硬度および靭性が高い。 The blank 2 has a long cylindrical shape, and includes a portion A on the side where the cutting edge is formed and a portion B on the side joined to the shank 3 in the longitudinal direction. In addition to WC and Co, the blank 2 may contain carbides of periodic tables 4, 5, and 6 metals other than W. The carbides of Group 4, 5, and 6 metal may be Cr 3 C 2 , VC, TiC, TaC, NbC, and ZrC. In particular, when the cemented carbide part contains Cr 3 C 2 , the blank 2 has high corrosion resistance. Moreover, when the cemented carbide part contains Cr 3 C 2 and VC, abnormal grain growth of WC particles can be suppressed, and a cemented carbide with a uniform grain size can be stably produced. When the average particle size of the cemented carbide portion is less than 1.0 μm, the hardness and toughness of the blank 2 are high.
 本実施形態によれば、ブランク2のA部におけるCo含有量CoACがB部におけるCo含有量CoBCよりも少ない。これによって、切刃を有するA部における耐摩耗性を高くすることができるとともに、ドリルやエンドミル等の切削工具において折損しやすいB部側における耐折損性を高めることができる。そして、本実施形態によれば、B部側にCo含有量の変化量に伴う傾斜Sの第2領域12と、A部側にCo含有量の変化量に伴う傾斜Sの第1領域11とを有し、傾斜Sが傾斜Sよりも大きい。これによって、A部における耐摩耗性を高く維持したまま、B部側の広範囲における靭性を高めることができてブランク2の耐折損性を高めることができる。 According to the present embodiment, the Co content Co AC in the A part of the blank 2 is less than the Co content Co BC in the B part. As a result, the wear resistance in the A portion having the cutting edge can be increased, and the break resistance on the B portion side that is easily broken in a cutting tool such as a drill or an end mill can be enhanced. Then, according to this embodiment, the second region 12 of the inclined S 2 due to a change amount of the Co content in the B side, the first region of the inclined S 1 due to the variation of the Co content in the A side and a 11, the inclination S 1 is greater than the slope S 2. Thereby, the toughness in a wide range on the B portion side can be increased while maintaining the high wear resistance in the A portion, and the breakage resistance of the blank 2 can be increased.
 なお、本実施形態において、A部およびB部とは、ブランク2の端部を指すが、具体的には、EPMA分析によってブランク2の組成が分析できる位置とする。つまり、図1B、図2Bに示すように、ブランク2の端部におけるEPMA分析において、スポットサイズの関係で、測定領域の一部がブランク2からはみ出す位置においては、正確な組成の測定ができない場合があるため、測定できる位置とする。 In addition, in this embodiment, although A part and B part point out the edge part of the blank 2, it is specifically set as the position which can analyze the composition of the blank 2 by EPMA analysis. That is, as shown in FIG. 1B and FIG. 2B, in the EPMA analysis at the end of the blank 2, due to the spot size, at the position where a part of the measurement region protrudes from the blank 2, the accurate composition measurement cannot be performed. Because there is, it will be a position that can be measured.
 CoACが0~10.0質量%であり、CoBCが2.0~16.0質量%である場合には、ブランク2の耐摩耗性および耐欠損性を高く維持できる。CoACおよびCoBCのより望ましい範囲は、加工条件によって変わるが、CoACが0.2質量%~7質量%、CoBCが2質量%~12質量%である。例えば、プリント基板加工用のドリルとして用いる場合には、CoACが1.0~4.9質量%で、CoBCが5.0~10.0質量%であってもよい。従来の均一な組成においては、Co含有量が5質量%未満の超硬合金を緻密化させることが難しい。より具体的には、Co原料粉末の粒径や凝集具合によって、焼成後のブランク2中にCoの凝集部ができるために、Coの分布にムラができる。しかしながら、本実施形態においては、Coの毛細管現象によってCoが拡散するために、Coの凝集部ができにくく、均一な分布状態とすることができる。その結果、A部側においてはCo含有量が少なくても、緻密な超硬合金となる。 When Co AC is 0 to 10.0 mass% and Co BC is 2.0 to 16.0 mass%, the wear resistance and fracture resistance of the blank 2 can be maintained high. More desirable ranges of Co AC and Co BC vary depending on processing conditions, but Co AC is 0.2 mass% to 7 mass% and Co BC is 2 mass% to 12 mass%. For example, when used as a drill for printed circuit board processing, Co AC may be 1.0 to 4.9% by mass and Co BC may be 5.0 to 10.0% by mass. In the conventional uniform composition, it is difficult to densify the cemented carbide having a Co content of less than 5% by mass. More specifically, since the Co agglomerated portion is formed in the blank 2 after firing depending on the particle size and the degree of aggregation of the Co raw material powder, the Co distribution is uneven. However, in this embodiment, Co diffuses due to the Co capillary phenomenon, so that Co agglomerates are difficult to form, and a uniform distribution state can be achieved. As a result, even if the Co content is small on the A part side, a dense cemented carbide is obtained.
 CoACとCoBCとの比(CoAC/CoBC)が0.2~0.7である場合には、A部における硬度を向上できるとともに、ブランク2の耐折損性を高めることができる。なお、CoAC/CoBCの測定方法は、ブランク2を長手方向に半割にした断面で、EPMA分析によって各領域における組成を測定することによって確認できる。A部およびB部の組成分析は、断面の中心軸上において測定する。 When the ratio of Co AC to Co BC (Co AC / Co BC ) is 0.2 to 0.7, the hardness in the A part can be improved and the breakage resistance of the blank 2 can be increased. The method of measuring the Co AC / Co BC is a cross section in the halves of the blank 2 in the longitudinal direction, it can be confirmed by measuring the composition in each region by EPMA analysis. The composition analysis of A part and B part is measured on the central axis of the cross section.
 ここで、傾斜S、Sとは、長手方向のCo含有量の変化率を示す。ブランク2の長手方向の組成変化を確認するには、ブランク2の長手方向のCo含有量の分布をEPMA分析によって測定し、第1領域11と第2領域12の存在を確認し、傾斜Sおよび傾斜Sは各領域における分布を最小二乗法で近似した際の傾きから算出される。なお、傾きは、A部からB部に向かって低くなる向きをプラスとし、A部からB部に向かって高くなる向きをマイナスとする。 Here, the inclinations S 1 and S 2 indicate the rate of change of the Co content in the longitudinal direction. In order to confirm the composition change in the longitudinal direction of the blank 2, the distribution of the Co content in the longitudinal direction of the blank 2 is measured by EPMA analysis, the presence of the first region 11 and the second region 12 is confirmed, and the slope S 1 and slope S 2 is calculated from the slope of time that approximates the distribution in each region by the least squares method. In addition, the direction where inclination becomes low toward the B part from the A part is positive, and the direction where the inclination becomes high from the A part toward the B part is negative.
 傾斜Sが0.2~1.0質量%/mmであり、傾斜Sが0~0.2質量%/mmである場合には、A部における硬度を向上できるとともに、ブランク2の耐折損性を高めることができる。なお、第1領域11における傾斜Sは領域内で一定でなくてもよい。特に、第1領域11の中でも、A部側における傾斜が大きくなる場合には、A部における耐摩耗性が高く、かつブランク2の耐折損性がより高くなる。 A slope S 1 is 0.2-1.0 mass% / mm, when the inclination S 2 is from 0 to 0.2 mass% / mm, as well as can improve the hardness in the A section, the blank 2 resistant Breakability can be improved. The inclination S 1 in the first region 11 may not be constant in the region. In particular, in the first region 11, when the inclination on the A portion side becomes large, the wear resistance in the A portion is high and the breakage resistance of the blank 2 is higher.
 なお、ブランク2は、ブランク2の表面にダイヤモンド被覆層(図示せず)を被覆する際には、第1領域11の表面において、ダイヤモンド結晶の成長を妨げるCo含有量が少ないために、第1領域11においてはダイヤモンド被覆層の結晶化度が高くなって、ダイヤモンド被覆層の硬度および密着性が向上する。 Note that when the blank 2 is coated with a diamond coating layer (not shown) on the surface of the blank 2, the surface of the first region 11 has a low Co content that hinders the growth of diamond crystals. In the region 11, the crystallinity of the diamond coating layer is increased, and the hardness and adhesion of the diamond coating layer are improved.
 また、第2領域12と第1領域11との間に、第1領域11よりも傾斜が大きい傾斜Sの第3領域13を有する場合には、第1領域11と第2領域12の傾斜S、Sを制御することが容易であり、折損が発生しやすいB部側における耐折損性をさらに高めることができる。傾斜Sが2~50質量%/mmであれば、A部側の耐摩耗性とB部側の耐折損性をともに高めることができる。 In addition, when the third region 13 having the slope S 3 having a larger slope than the first region 11 is provided between the second region 12 and the first region 11, the slope of the first region 11 and the second region 12 is increased. It is easy to control S 1 and S 2, and it is possible to further improve the breakage resistance on the B portion side where breakage is likely to occur. If slope S 3 is 2 to 50 mass% / mm, it is possible to increase both the breakage of the wear resistance and B side of the A side.
 さらに、図2に示すように、第1領域11よりもA部側に、傾斜Sよりも傾斜が小さい傾斜Sの第4領域14を有するものであってもよい。この場合、A部側における耐摩耗性の高い範囲を広くすることができることもある。また、傾斜Sが0~0.5質量%/mmであるとともに、第4領域14におけるCo含有量が0~0.6質量%である場合には、ブランク2の表面にダイヤモンド被覆層をコーティングする際に、第4領域14の表面においてダイヤモンド被覆層の結晶化度がさらに高くなって、ダイヤモンド被覆層の硬度および密着性が向上する。第1領域11と第4領域14との境界には、Co含有量の分布における屈曲点が存在する。 Furthermore, as shown in FIG. 2, the fourth region 14 having an inclination S 4 having a smaller inclination than the inclination S 1 may be provided on the A portion side of the first area 11. In this case, the range with high wear resistance on the part A side may be widened. When the slope S 4 is 0 to 0.5 mass% / mm and the Co content in the fourth region 14 is 0 to 0.6 mass%, a diamond coating layer is formed on the surface of the blank 2. When coating, the crystallinity of the diamond coating layer is further increased on the surface of the fourth region 14, and the hardness and adhesion of the diamond coating layer are improved. At the boundary between the first region 11 and the fourth region 14, there is an inflection point in the Co content distribution.
 第1領域11の長手方向の長さをL、第2領域12の長手方向の長さをL、第3領域13の長手方向の長さをL、第4領域14の長手方向の長さをLとしたとき、L1/L=0.2~5.0である場合には、A部における硬度を向上できるとともに、ブランク2の耐折損性を高めることができる。ドリル1をプリント基板加工用のマイクロドリルとして用いる場合、L1/L=0.2~5.0で、かつCoAC=0.3~8.0質量%で、CoBC=2.5~15.0質量%であってもよい。 The longitudinal length of the first region 11 is L 1 , the longitudinal length of the second region 12 is L 2 , the longitudinal length of the third region 13 is L 3 , and the longitudinal length of the fourth region 14 is When the length is L 4 and L 1 / L 2 = 0.2 to 5.0, the hardness in the A part can be improved and the breakage resistance of the blank 2 can be improved. When the drill 1 is used as a micro drill for processing a printed circuit board, L 1 / L 2 = 0.2 to 5.0, Co AC = 0.3 to 8.0 mass%, and Co BC = 2.5 It may be up to 15.0% by weight.
 また、L/L=0.01~0.1である場合には、第2領域12と第1領域11のCo含有量の調整が容易である。L/L=が0~0.05である場合には、A部における超硬合金部の緻密化をより安定して促進できる。L/L=が0.05より大きく、かつ第4領域14に緻密化されていない部分が存在する場合には、ドリル1を作製する際に、第4領域14の少なくとも一部を研磨除去してもよい。 Further, when L 3 / L 2 = 0.01 to 0.1, the Co content in the second region 12 and the first region 11 can be easily adjusted. When L 4 / L 2 = is 0 to 0.05, the densification of the cemented carbide portion in the portion A can be promoted more stably. When L 4 / L 2 = is larger than 0.05 and there is a non-densified portion in the fourth region 14, at least a part of the fourth region 14 is polished when the drill 1 is manufactured. It may be removed.
 ブランク2を長手方向に半割した断面のA部側の角部である、A部の外周部におけるCo含有量CoAOが、A部の中心におけるCo含有量CoACよりも少ない場合、ドリルやエンドミル等の回転工具において、切刃のうちで最も摩耗しやすい外周部における耐摩耗性を高めることができる。 When the Co content Co AO in the outer peripheral portion of the A portion, which is a corner portion on the A portion side of the cross section obtained by dividing the blank 2 in the longitudinal direction, is smaller than the Co content Co AC in the center of the A portion, In a rotary tool such as an end mill, it is possible to improve the wear resistance at the outer peripheral portion that is most likely to be worn out of the cutting blades.
 A部の外周部におけるCo含有量をCoAOとしたとき、CoAOが0.1~6.5質量%、CoACに対するCoAOの比(CoAO/CoAC)が0.1~0.9である場合には、切削工具における切刃の耐摩耗性を向上できるとともに、切削工具の先端の中心部における欠損を抑制することができる。 When the Co content in the outer peripheral portion of the A portion was Co AO, Co AO 0.1 to 6.5 wt%, the ratio of Co AO for Co AC (Co AO / Co AC ) from 0.1 to zero. In the case of 9, it is possible to improve the wear resistance of the cutting edge in the cutting tool and to suppress the chipping at the center of the tip of the cutting tool.
 ここで、ブランク2のA部の直径d、B部の直径dがともに2mm以下で、長手方向の長さをLとしたとき、dに対する長さLの比(L/d)が3以上である形状は、押出成形によって作製することは難しい。すなわち、A部とB部のCo含有量を変えることが難しく、かつ突起部15を形成することも難しい。これに対して、この形状からなるブランク2は、プレス成形によって作製することができる。そして、金型の形状や焼成条件等の製造条件を調整することによって、金型の欠損や成形体の欠損を抑制するとともに、焼成後のブランクの組成および形状を所定の範囲内に制御する。 Here, the diameter d A of the A portion of the blank 2, is at both 2mm or less diameter d B of the B portion, when the longitudinal length is L, the ratio of length L to d A (L / d A) It is difficult to produce a shape in which is 3 or more by extrusion molding. That is, it is difficult to change the Co content in the A part and the B part, and it is also difficult to form the protrusion 15. On the other hand, the blank 2 having this shape can be produced by press molding. And by adjusting manufacturing conditions, such as a shape of a metal mold | die and baking conditions, while suppressing the defect | deletion of a metal mold | die and a molded object, the composition and shape of the blank after baking are controlled in a predetermined range.
 また、比(L/d)が3以上であることによって、焼成後のブランク2において、CoACとCoBCとを所定の関係に容易に調整することができる。すなわち、比(L/d)が小さいと、焼成中のCoの拡散によって、ブランク2中のCoACとCoBCの差がなくなる。比(L/d)の望ましい範囲は4~10である。 In addition, when the ratio (L / d A ) is 3 or more, in the blank 2 after firing, Co AC and Co BC can be easily adjusted to a predetermined relationship. That is, when the ratio (L / d A ) is small, there is no difference between Co AC and Co BC in the blank 2 due to diffusion of Co during firing. A desirable range of the ratio (L / d A ) is 4-10.
 なお、ブランク2が、d、dが0.2~2mm、長さLが3~20mmである場合には、プリント基板加工用のドリル用として好適である。dの特に望ましい範囲は0.3~1.7mmである。他の用途においては、dは2mmを越える場合もあり、このような場合におけるdの望ましい範囲は、0.2~20mmであり、L=3~50mmである。 When the blank 2 has d A and d B of 0.2 to 2 mm and a length L of 3 to 20 mm, it is suitable for a drill for processing a printed circuit board. A particularly desirable range for d A is 0.3 to 1.7 mm. In other applications, d A may exceed 2 mm, in which case the preferred range for d A is 0.2-20 mm and L = 3-50 mm.
 本実施形態では、図3に示すように、d/dが1.02~1.20であってもよい。これによって、Co含有量の異なるA部とB部との寸法差によって、A部とB部との判別が容易にでき、A部に確実に切削工具の切刃を形成することができる。d/dが1.20以下であることによって、切削工具を製造する際の研磨代が少なくて済み、加工コストが節約できる。d/dのより望ましい範囲は、1.03~1.10である。 In the present embodiment, as shown in FIG. 3, d A / d B may be 1.02 to 1.20. Thereby, the distinction between the A part and the B part can be easily made by the dimensional difference between the A part and the B part having different Co contents, and the cutting blade of the cutting tool can be reliably formed in the A part. When d A / d B is 1.20 or less, the polishing allowance when manufacturing the cutting tool can be reduced, and the processing cost can be saved. A more desirable range of d A / d B is 1.03 to 1.10.
 また、図3においては、A部を含んで、直径が、A部の直径に対する比率で0.95以上の領域aと、B部を含んで、直径が、A部の直径に対する比率で0.95未満の領域bとを有する。このとき、領域aの長手方向の長さをL、領域bの長手方向の長さをLとしたとき、比L/(L+L)が0.3~0.6である。この範囲であれば、再研磨したドリル1の切刃の耐摩耗性も高く、かつフルート部の耐折損性を高めることができる。比L/(L+L)の望ましい範囲は、0.3~0.5である。 Further, in FIG. 3, a region a including the A portion and having a diameter of 0.95 or more in a ratio to the diameter of the A portion and a B portion including a diameter of 0. And a region b of less than 95. At this time, the ratio L A / (L A + L B ) is 0.3 to 0.6, where L A is the length in the longitudinal direction of the region a and L B is the length in the longitudinal direction of the region b. . If it is this range, the abrasion resistance of the cutting edge of the reground drill 1 is also high, and the fracture resistance of a flute part can be improved. A desirable range of the ratio L A / (L A + L B ) is 0.3 to 0.5.
 このとき、領域aにおいて、直径は、A部dから他端B部dに向かって連続的に小さくなっている。連続的に小さくなっているとは、直径が不連続に変化する段差がないことを意味し、これによって、ブランク2の折損を抑制できる。 At this time, in the region a, the diameter is the direction from the portion A d A at the other end part B d B is continuously reduced. The phrase “continuously small” means that there is no step where the diameter changes discontinuously, and thereby breakage of the blank 2 can be suppressed.
 ここで、ブランク2は焼成して研磨しない状態であってもよいが、ブランク2をシャンク3に接合する工程において、ブランク2を把持する際にブランク2の位置精度を高めるために、焼成後のブランク2の外周面をセンタレス加工するものであってもよい。 Here, the blank 2 may be in a state where it is fired and not polished, but in the process of bonding the blank 2 to the shank 3, in order to increase the positional accuracy of the blank 2 when gripping the blank 2, The outer peripheral surface of the blank 2 may be centerless processed.
 図1、2においては、A部に続くブランク2の長手方向の外側に、突起部15が設けられている。突起部15は、ブランク2よりも直径が小さい形状である。突起部15は、第1端面18から突出しているものであり、本体部10の第1端面18は、突起部15が位置する突起部領域16と、突起部領域16の外周に位置する外周領域17とを備える。換言すると、A部の直径dに対して、突起部15のA部に接触する部分の直径dが小さい。突起部15によって、ブランク2のA部とB部をより容易に判別することができる。 1 and 2, a protrusion 15 is provided on the outer side in the longitudinal direction of the blank 2 following the A portion. The protrusion 15 has a shape with a diameter smaller than that of the blank 2. The protrusion 15 protrudes from the first end face 18, and the first end face 18 of the main body 10 includes a protrusion area 16 where the protrusion 15 is located and an outer peripheral area located on the outer periphery of the protrusion area 16. 17. In other words, with respect to the diameter d A of the A section, the diameter d c of the portion in contact with part A of the protrusion 15 is small. The protrusion 15 can more easily discriminate between the A part and the B part of the blank 2.
 また、dとdとの比(d/d)が0.5~0.9であれば、ブランク2を製造する工程で、ブランク2の成形体が破損することを抑制できる。突起部15は図3に示すように、高さLで設けられる。Lは、ブランク2の全長Lに対する比率で5~20%であってもよい。 Further, if the ratio of d C to d A (d C / d A ) is 0.5 to 0.9, it is possible to suppress the blank 2 from being damaged in the process of manufacturing the blank 2. Projection 15 is, as shown in FIG. 3, is provided at a height L C. L C may be 5 to 20% in a ratio to the total length L of the blank 2.
 突起部15は容易に形成できる。刃付け加工したドリル1の先端部を突起部15にて形成すれば、加工代の無駄が少ない。 The protrusion 15 can be easily formed. If the tip part of the drill 1 that has been bladed is formed by the protrusions 15, the machining cost is less wasted.
 突起部15は先細り形状である。特に、突起部15における先端の形状は曲面状であるのがよく、図1-3では突起部15が半球状である。これによって、ブランク2をランダムに接合装置内に投入する際にブランク2同士が衝突しても、突起部15が欠けることを抑制できるとともに、突起部15によって他のブランク2を傷つけることも抑制できる。また、本実施形態では、突起部15はA部と接触する根元側が、断面視においてR面でつながっている。図4に、本実施形態の切削工具用ブランクを成形する方法の一例について、金型の構成を説明するための模式図を示すが、突起部15におけるA部と接触する根元側が、断面視においてR面でつながっていることにより、成形体35の成形時に下パンチ23の端部に荷重が集中して、下パンチが欠けてしまうことを抑制できる。 The protrusion 15 has a tapered shape. In particular, the shape of the tip of the protrusion 15 is preferably a curved surface, and the protrusion 15 is hemispherical in FIGS. Accordingly, even when the blanks 2 collide with each other when the blanks 2 are randomly inserted into the bonding apparatus, it is possible to suppress the protrusions 15 from being lost and to prevent other protrusions 2 from being damaged by the protrusions 15. . Moreover, in this embodiment, the base part side which the projection part 15 contacts with A part is connected by the R surface in the cross sectional view. FIG. 4 shows a schematic diagram for explaining the configuration of the mold for an example of a method for forming the cutting tool blank of the present embodiment. The root side in contact with the A portion of the protrusion 15 is shown in a sectional view. By being connected by the R surface, it is possible to suppress the load from being concentrated on the end portion of the lower punch 23 when the formed body 35 is formed, and the lower punch from being chipped.
 突起部15の第1の実施形態においては、突起部15おけるCo含有量CoCCはA部におけるCo含有量CoACよりも少ない。この場合には、突起部15およびA部でドリル1の切刃を形成すると、切刃の耐摩耗性が高い。また、B部はCo含有量が多いので靭性が高く、B部側でドリル1のフルート部を形成すると、フルート部の耐折損性が高い。その結果、このブランク2で作製された本実施形態の切削工具は、切刃の耐摩耗性が高く、かつ耐折損性も高い。上記構成において、切刃5が突起部15のみまたはA部のみで形成される場合であっても、切刃5の耐摩耗性は高い。また、切刃5の先端が突起部15で形成されると、ドリル1の孔開け加工時の直進性が高く、孔開け加工精度が向上する。 In the first embodiment of the protrusion 15, the Co content Co CC in the protrusion 15 is less than the Co content Co AC in the A portion. In this case, if the cutting edge of the drill 1 is formed by the protrusion 15 and the A part, the wear resistance of the cutting edge is high. Moreover, since B part has much Co content, toughness is high, and if the flute part of drill 1 is formed in B part side, the fracture resistance of a flute part will be high. As a result, the cutting tool of this embodiment manufactured with this blank 2 has high wear resistance of the cutting edge and high breakage resistance. In the above configuration, even when the cutting blade 5 is formed by only the protrusion 15 or only the A portion, the wear resistance of the cutting blade 5 is high. Moreover, when the front-end | tip of the cutting blade 5 is formed with the projection part 15, the straightness at the time of the drilling process of the drill 1 is high, and a drilling process precision improves.
 突起部15の第1の実施形態においては、A部の中心部におけるCo含有量をCoACとし、B部の中心部におけるCo含有量をCoBCとし、突起部15の先端におけるCo含有量をCoCCとしたとき、CoACが0.2質量%~7質量%、CoBCが2質量%~12質量%、CoCCが0.1質量%~6質量%であり、CoBCに対するCoACの比(CoAC/CoBC)が0.1~0.6、CoACに対するCoCCの比(CoCC/CoAC)が0.1~0.8であるこの範囲内であれば、ドリル1の耐折損性が高く、切刃の耐摩耗性が高い。また、切刃5の少なくとも先端を突起部15で形成した際に、切刃5の孔開け加工精度を高めることができる。 In the first embodiment of the protrusion 15, the Co content at the center of the A portion is Co AC , the Co content at the center of the B portion is Co BC, and the Co content at the tip of the protrusion 15 is when the Co CC, Co AC 0.2 mass% to 7 mass%, Co BC is 2 mass% to 12 mass%, Co CC is 0.1 wt% to 6 wt%, Co AC for Co BC the ratio (Co AC / Co BC) is 0.1-0.6, if the ratio of Co CC for Co AC (Co CC / Co AC ) is within this range is 0.1-0.8, drills 1 has high breakage resistance and high wear resistance of the cutting edge. In addition, when at least the tip of the cutting blade 5 is formed by the protrusion 15, the drilling accuracy of the cutting blade 5 can be increased.
 突起部15の第2の実施形態においては、突起部15は、突起部15おけるCo含有量CoCCはA部におけるCo含有量CoACよりも多い。この場合には、突起部15はCo含有量が多くて硬度が低いので、ブランク2からドリルを作製する際に突起部15を研削除去しやすい。 In the second embodiment of the protruding portion 15, the protruding portion 15 has a Co content Co CC in the protruding portion 15 larger than the Co content Co AC in the A portion. In this case, since the protrusion 15 has a high Co content and low hardness, it is easy to grind and remove the protrusion 15 when producing a drill from the blank 2.
 また、本実施形態においては、A部の中心部におけるCo含有量が、A部の外周部におけるCo含有量よりも多い。これによって、ブランク2をエンドミル(図示せず)等の回転工具として用いる場合、切削工具の先端において、回転中心およびその近傍である中心部における超硬合金の硬度が低くなる。このように、切削工具の先端の中心部が硬度の低い材質からなる場合には、切削工具の回転中心およびその付近で、切削速度がゼロに近くなり、切削工具と被削材が擦れ合った状態となっても、エンドミルの先端の中心部における欠損を抑制することができる。 In the present embodiment, the Co content in the central part of the A part is larger than the Co content in the outer peripheral part of the A part. As a result, when the blank 2 is used as a rotary tool such as an end mill (not shown), the hardness of the cemented carbide at the tip of the cutting tool and the central portion in the vicinity thereof is lowered. In this way, when the center of the tip of the cutting tool is made of a material with low hardness, the cutting speed is close to zero at and around the rotation center of the cutting tool, and the cutting tool and the work material rub against each other. Even if it becomes a state, the defect | deletion in the center part of the front-end | tip of an end mill can be suppressed.
 突起部15の第2の実施形態においては、CoACが0.2質量%~7質量%、CoBCが3質量%~12質量%、CoCCが2質量%~12質量%であり、CoBCに対するCoACの比(CoAC/CoBC)が0.1~0.6、CoACに対するCoCCの比(CoCC/CoAC)が1.2~3である。この範囲であれば、エンドミルの耐折損性が高く、切刃の耐摩耗性が高い。また、エンドミルの加工時に、突起部15を研削除去しやすい。 In the second embodiment of the protrusion 15, Co AC is 0.2 mass% to 7 mass%, Co BC is 3 mass% to 12 mass%, Co CC is 2 mass% to 12 mass%, Co Co the ratio of Co AC for BC (Co AC / Co BC) is 0.1-0.6, the ratio of Co CC for Co AC (Co CC / Co AC ) is 1.2-3. Within this range, the end mill has high breakage resistance and the cutting edge has high wear resistance. Further, the protrusion 15 is easily removed by grinding at the time of processing the end mill.
 なお、CoAC、CoAO、CoBCおよびCoCCの測定方法は、ブランク2を長手方向に半割にした状態で、電子線マイクロアナライザー(EPMA)分析によって各領域における組成を測定することによって確認できる。また、ブランク2の長手方向の組成変化を確認するには、ブランク2の側面について電子顕微鏡で測定位置をずらしながら観察し、EPMA分析によって各領域における組成を測定することによって確認できる。 The measurement method of Co AC , Co AO , Co BC and Co CC was confirmed by measuring the composition in each region by electron beam microanalyzer (EPMA) analysis with the blank 2 halved in the longitudinal direction. it can. Moreover, in order to confirm the composition change of the longitudinal direction of the blank 2, it can confirm by observing the side of the blank 2 while shifting a measurement position with an electron microscope, and measuring the composition in each area | region by EPMA analysis.
 さらに、本実施形態は、切削工具としてプリント基板の孔開け加工に用いられるドリルであるが、本開示はこれに限定されるものではなく、長尺状の本体部を有するものであればよい。例えば、金属加工用ドリルや医療用ドリル、エンドミル、内径加工用のスローアウェイチップ等の旋削加工用の切削工具として適用可能である。また、ブランク2等の棒状体は、切削工具以外でも、耐摩材、摺動部材として用いることができ、例えば、打ち抜きパンチとしても使用可能である。棒状体は、切削工具以外として用いる場合でも、所定形状に加工され、B部が固定された状態で、A部を含む領域が相手材と接触して使用される用途に好適に用いられる。 Furthermore, although this embodiment is a drill used for drilling a printed circuit board as a cutting tool, the present disclosure is not limited to this, and any drill may be used as long as it has a long main body. For example, the present invention can be applied as a cutting tool for turning such as a drill for metal processing, a medical drill, an end mill, and a throw-away tip for inner diameter processing. Further, the rod-like body such as the blank 2 can be used as an anti-wear material and a sliding member other than the cutting tool, and can be used as a punch, for example. Even when the rod-like body is used as a tool other than a cutting tool, the rod-like body is suitably used for an application in which the region including the A part is used in contact with the mating member in a state where the B part is fixed and the B part is fixed.
 (ブランクの製造方法)
 上記切削工具用ブランクを作製する方法の一例について説明する。まず、ブランクおよび切削工具をなす超硬合金を作製するためのWC粉末等の原料粉末を調合する。本実施形態においては、3種類の原料粉末を調合する。
(Blank manufacturing method)
An example of a method for producing the cutting tool blank will be described. First, raw material powder such as WC powder for preparing a cemented carbide forming a blank and a cutting tool is prepared. In this embodiment, three types of raw material powders are prepared.
 すなわち、原料粉末として、WC粉末を含み、突起部を作製するための第1原料粉末と、A部側を作製するための第2原料粉末と、WC粉末とCo粉末とを含みB部側を作製するための第3原料粉末を調合する。第2原料粉末にはWC粉末以外にCo粉末を含有していてもよいが、第2原料粉末中のCo粉末の含有量は、第3原料粉末中のCo粉末の含有量よりも少ない。第2原料粉末中のCo粉末の含有量は、第3原料粉末中のCo粉末の含有量に対する質量比率で、0~0.5、特に0~0.3である。第1原料粉末、第2原料粉末および第3原料粉末中には、WC粉末とCo粉末以外に、WC以外の周期表第4、5および6族金属の炭化物、窒化物および炭窒化物粉末のいずれかの添加物を添加してもよい。 That is, as the raw material powder, the WC powder is included, the first raw material powder for producing the protrusion, the second raw material powder for producing the A part side, the WC powder and the Co powder, and the B part side A third raw material powder for preparation is prepared. The second raw material powder may contain Co powder in addition to the WC powder, but the content of Co powder in the second raw material powder is less than the content of Co powder in the third raw material powder. The content of Co powder in the second raw material powder is 0 to 0.5, particularly 0 to 0.3, as a mass ratio to the content of Co powder in the third raw material powder. In the first raw material powder, the second raw material powder, and the third raw material powder, in addition to the WC powder and the Co powder, the carbides, nitrides, and carbonitride powders of the periodic tables 4, 5, and 6 metals other than the WC Any additive may be added.
 突起部を作製しない場合は、第1原料粉末は不要である。また、突起部おけるCo含有量CoCCがA部におけるCo含有量CoACよりも少ない突起部を作製する場合にも、第1原料粉末は第2原料粉末で代用することができる。 In the case where no protrusion is produced, the first raw material powder is not necessary. Also, in the case where a protrusion having a Co content Co CC in the protrusion is smaller than the Co content Co AC in the A part, the first raw material powder can be substituted by the second raw material powder.
 突起部おけるCo含有量CoCCがA部におけるCo含有量CoACよりも多い突起部を作製する場合、第1原料粉末にはWC粉末以外にCo粉末を含有し、第1原料粉末中のCo粉末の含有量は、第2原料粉末中のCo粉末の含有量よりも多い。 In the case where a protrusion having a Co content Co CC in the protrusion is larger than the Co content Co AC in the part A, the first raw material powder contains Co powder in addition to the WC powder, and the Co in the first raw material powder The content of the powder is larger than the content of the Co powder in the second raw material powder.
 突起部おけるCo含有量CoCCがA部におけるCo含有量CoACよりも多い突起部を作製する場合、例えば、第1原料粉末中のWC粉末の調合量は65~95質量%であり、Co粉末の調合量は3~30質量%、添加物の調合量は総量で0~5質量%である。第2原料粉末中のWC粉末の調合量は90~100質量%であり、Co粉末の調合量は0~8質量%、添加物の調合量は総量で0~5質量%である。第3原料粉末中のWC粉末の調合量は65~95質量%であり、Co粉末の調合量は4~30質量%、添加物の調合量は総量で0~10質量%である。 When producing a protrusion having a Co content Co CC in the protrusion larger than the Co content Co AC in Part A, for example, the blending amount of the WC powder in the first raw material powder is 65 to 95% by mass, and Co The amount of the powder is 3 to 30% by mass, and the total amount of the additive is 0 to 5% by mass. The amount of WC powder in the second raw material powder is 90 to 100% by mass, the amount of Co powder is 0 to 8% by mass, and the total amount of additives is 0 to 5% by mass. The amount of WC powder in the third raw material powder is 65 to 95% by mass, the amount of Co powder is 4 to 30% by mass, and the amount of additives is 0 to 10% by mass in total.
 これにバインダや溶媒を添加してスラリーを作製する。このスラリーを造粒して顆粒とし、成形用粉末とする。以下の成形工程については、便宜上、突起部おけるCo含有量CoCCがA部におけるCo含有量CoACよりも多い突起部を作製する場合について説明する。 A binder and a solvent are added to this to produce a slurry. This slurry is granulated into granules and formed into molding powder. The following molding process will be described for the sake of convenience in the case where a protrusion having a Co content Co CC in the protrusion is larger than the Co content Co AC in the A part.
 成形工程においては、図4に示すように、プレス成形金型(以下、単に金型と略す。)20を準備し、金型20のダイス21のキャビティ22内に上記顆粒を投入する。そして、ダイス21のキャビティ22内に投入された顆粒の上方から上パンチ24を下降させて加圧することにより成形体を作製する。本実施形態においては、キャビティ22の底部である下パンチ23のプレス面となる上面に、突起部15を形成するための空隙部25を有する。生突起部32の開口部の直径である、成形体35の生突起部32の成形体下部31と接する位置での直径Dは、下パンチの上面の直径Dに対する比(D/D)で0.5~0.9とする。これによって、加圧時の応力集中を抑制して、下パンチ23が欠損することを抑制できる。 In the molding step, as shown in FIG. 4, a press molding die (hereinafter simply referred to as “die”) 20 is prepared, and the granules are put into the cavity 22 of the die 21 of the die 20. Then, the upper punch 24 is lowered from above the granules put into the cavity 22 of the die 21 and pressed to produce a molded body. In the present embodiment, a gap 25 for forming the protrusion 15 is provided on the upper surface serving as the press surface of the lower punch 23 that is the bottom of the cavity 22. The diameter of the opening of the raw projections 32, the diameter D C at a position in contact with the green body bottom 31 of the raw projections 32 of the molded body 35 has a ratio to the diameter D A of the upper surface of the lower punch (D C / D A ) is set to 0.5 to 0.9. Thereby, the stress concentration at the time of pressurization can be suppressed and the lower punch 23 can be prevented from being lost.
 ここで成形方法としては、キャビティ22内の空隙部25の領域に第1原料粉末30を投入する工程と、キャビティ22に第2原料粉末33を投入する工程と、キャビティ22に第3原料粉末37を投入する工程と、上方から上パンチ24を下降させてダイス21のキャビティ22内に投入された第1原料粉末30、第2原料粉末33および第3原料粉末37を加圧する工程と、積層体からなる成形体35を金型20から取り出す工程とを具備する。 Here, as a molding method, the step of introducing the first raw material powder 30 into the space 25 in the cavity 22, the step of introducing the second raw material powder 33 into the cavity 22, and the third raw material powder 37 into the cavity 22. A step of lowering the upper punch 24 from above and pressurizing the first raw material powder 30, the second raw material powder 33 and the third raw material powder 37 which are put into the cavity 22 of the die 21, and a laminate. And a step of taking out the molded body 35 made of the above from the mold 20.
 成形体35は、円柱長尺形状であり、A部におけるCo含有量がB部におけるCo含有量よりも少ない。その結果、ブランク2において所定のCo含有量の分布となる。また、C部におけるCo含有量を調整することによって、焼成後のブランク2のA部の中心部と外周部におけるCo含有量が所定の範囲内となる。 The formed body 35 has a long cylindrical shape, and the Co content in the A part is less than the Co content in the B part. As a result, the blank 2 has a predetermined Co content distribution. Moreover, by adjusting the Co content in the C part, the Co content in the central part and the outer peripheral part of the A part of the blank 2 after firing is within a predetermined range.
 なお、成形に際しては、第1原料粉末30および第2原料粉末33を充填した後、一旦加圧し、続いて、第3原料粉末37を成形体の上面に充填して再加圧する方法であってもよく、または、上記工程のうち、キャビティ22内の空隙部25に第1原料粉末30を投入し、第2原料粉末33を投入し、第3原料粉末37を投入した後で、上方から上パンチ24を下降させてダイス21のキャビティ22内に投入された第1原料粉末30、第2原料粉末33および第3原料粉末37を同時に加圧する方法であってもよい。 In the molding, the first raw material powder 30 and the second raw material powder 33 are filled and then pressurized, and then the third raw material powder 37 is filled into the upper surface of the compact and repressurized. Alternatively, in the above process, after the first raw material powder 30 is charged into the gap 25 in the cavity 22, the second raw material powder 33 is charged, and the third raw material powder 37 is charged, A method may be used in which the first raw material powder 30, the second raw material powder 33, and the third raw material powder 37 that are put into the cavity 22 of the die 21 are pressed simultaneously by lowering the punch 24.
 また、空隙部25の底面が曲面であると、成形体35において、生突起部32の欠けを抑制できるとともに、焼成後のブランク2における突起部15内のCo含有量のバラツキを抑制して、局所的に焼結不良となることを抑制する
 本実施形態では、直径が2mm以下の焼結体を得る場合には、加圧時の上パンチ24の保持位置から上パンチ24の位置が0.1mm~2mm、成形体の長さに対して0.1%~20%の長さ分だけ下方に下降するように上パンチ24に追加荷重を加えるとともに下パンチ23の荷重を小さくする。この成形条件によって、成形体35の圧力ムラを改善できて、下パンチ23が成形体35を抜き出す際に破損することを抑制できるとともに、成形体35を焼成した後のブランク2の形状を所定の形状とすることができる。
Further, if the bottom surface of the void portion 25 is a curved surface, in the molded body 35, it is possible to suppress chipping of the raw protrusion 32, and to suppress variation in the Co content in the protrusion 15 in the blank 2 after firing, In this embodiment, when a sintered body having a diameter of 2 mm or less is obtained, the position of the upper punch 24 from the holding position of the upper punch 24 at the time of pressurization is reduced to 0. 0. An additional load is applied to the upper punch 24 and the load on the lower punch 23 is reduced so as to descend downward by a length of 1 mm to 2 mm, 0.1% to 20% of the length of the molded body. With this molding condition, the pressure unevenness of the molded body 35 can be improved, the lower punch 23 can be prevented from being damaged when the molded body 35 is pulled out, and the shape of the blank 2 after firing the molded body 35 is set to a predetermined value. It can be a shape.
 すなわち、直径が2mmより大きい形状の焼結体を得るための成形体35をプレス成形で作製する際には、金型20への粉末を投入する際に顆粒が均一に投入されるが、直径が2mm以下の焼結体を得るための成形体35をプレス成形で作製すると、従来の方法では、金型への粉末を投入する際に顆粒の投入が不均一となってしまう。本実施形態では、上記成形条件を制御することによって、成形体35を作製することができ、かつ所定形状のブランク2を得ることができる。 That is, when the compact 35 for obtaining a sintered body having a diameter larger than 2 mm is produced by press molding, the granules are uniformly introduced when the powder is introduced into the mold 20. If a molded body 35 for obtaining a sintered body having a thickness of 2 mm or less is produced by press molding, in the conventional method, when the powder is charged into the mold, the granules are not uniformly charged. In the present embodiment, by controlling the molding conditions, the molded body 35 can be produced and the blank 2 having a predetermined shape can be obtained.
 このとき、図4に示すように、成形体35の下パンチ23側の直径Dを上パンチ24側の直径Dよりも小さくしておいてもよい。上記成形によって得られる成形体において、本実施形態における比D/Dの望ましい範囲は、0.80~0.99である。これによって、d/d比を所望の範囲内に制御することができる。すなわち、焼成中のA部とB部との焼成収縮の差によって、d/d比を所望の範囲内に制御することができる。成形体35中の第2原料粉末33の高さをH、第3原料粉末37の高さをHとしたとき、比H/(H+H)が0.2~0.7である。また、成形体中には、例えば、第2原料粉末33と第3原料粉末37との間に、第2原料粉末33と第3原料粉末37との間のCo粉末の含有量を有する第4原料粉末等、他の原料粉末が存在していてもよい。 At this time, as shown in FIG. 4, it may have been smaller than the diameter D B of the upper punch 24 side diameter D A of the lower punch 23 side of the molded body 35. In the molded body obtained by the above molding, a desirable range of the ratio D A / D B in the present embodiment is 0.80 to 0.99. Thereby, the d A / d B ratio can be controlled within a desired range. That is, the d A / d B ratio can be controlled within a desired range by the difference in firing shrinkage between the A part and the B part during firing. When the height of the second raw material powder 33 in the compact 35 H A, the height of the third raw material powder 37 was H B, the ratio H A / (H A + H B) is 0.2 to 0.7 It is. Further, in the molded body, for example, a fourth content having a Co powder content between the second raw material powder 33 and the third raw material powder 37 between the second raw material powder 33 and the third raw material powder 37. Other raw material powders such as raw material powders may be present.
 なお、製造効率を高めるとともに、上パンチが傾いて下降しないようにするために、金型には上パンチ-空隙部-下パンチのセットが複数設けられて、一度に複数本の成形体を成形することができる。上パンチ-空隙部-下パンチのセット数は、例えば、4~144本である。また、金型の側面形状は、上パンチから下パンチまで同じ直径のストレート形状であってもよい。または、上パンチ側よりもより圧力のかかりやすい下パンチ側において焼成時の収縮が少ないので、その分を加味して焼成後上パンチ側と下パンチ側との寸法比であるd/d比が所定の範囲となるようにする範囲内で、図4に示すように、ダイス21の粉末充填部(空隙部)22に顆粒を充填して上パンチ24と下パンチ23との間で顆粒を加圧してプレス成形する金型20において、下パンチ23側の直径Dを上パンチ24側の直径Dよりも小さくしておいてもよい。これによって、下パンチ23の外周側に荷重が集中して下パンチ23が欠損することを抑制できる。 In order to increase manufacturing efficiency and prevent the upper punch from tilting and falling, the mold is provided with a plurality of sets of upper punch, gap, and lower punch to form a plurality of molded bodies at a time. can do. The number of sets of the upper punch, the gap, and the lower punch is, for example, 4 to 144. Further, the side shape of the mold may be a straight shape having the same diameter from the upper punch to the lower punch. Alternatively, since less upon firing shrinkage in a more susceptible lower punch side of the pressure than the upper punch side, d A / d B is the size ratio between the amount by adding the calcined after the punch-side and the lower punch side As shown in FIG. 4, the powder filling portion (gap portion) 22 of the die 21 is filled with granules within the range in which the ratio is within a predetermined range, and the granules are formed between the upper punch 24 and the lower punch 23. the in pressurized mold 20 for press molding, it may have been smaller than the diameter D B of the upper punch 24 side diameter D a of the lower punch 23 side. Accordingly, it is possible to suppress the load from being concentrated on the outer peripheral side of the lower punch 23 and the lower punch 23 from being lost.
 そして、成形体は金型から取り出され、シンターHIP焼成されることによってブランク2となる。このとき、本実施形態では、前記焼成における昇温速度が4℃/分~20℃/分であるとともに、焼成温度が1350℃~1580℃、焼成時間は15分~45分である。これによって、A部とB部のCo含有量を容易に調整することができるとともに、第2原料粉末33と第3原料粉末37との焼結性が異なるために、焼成中、A部とB部の収縮率が異なって成形体が変形し、B部の収縮率がA部の収縮率よりも大きくなる。すなわち、焼成によって、B部のCoの一部が、A部に向かって拡散するために、B部はA部よりも収縮する。これによって、焼結体の形状を所望の形状に制御することができる。また、突起部15は、A部よりもCoが拡散しにくい位置にあるため、突起部15のCo含有量CoはCoよりも少なくなる。 And a molded object is taken out from a metal mold | die, and it becomes the blank 2 by sintering HIP baking. At this time, in this embodiment, the rate of temperature increase in the firing is 4 ° C./minute to 20 ° C./minute, the firing temperature is 1350 ° C. to 1580 ° C., and the firing time is 15 minutes to 45 minutes. This makes it possible to easily adjust the Co content in the A part and the B part, and the second raw material powder 33 and the third raw material powder 37 have different sinterability. The contraction rate of the part is different and the molded body is deformed, and the contraction rate of the B part is larger than the contraction rate of the A part. That is, a part of Co in the B part diffuses toward the A part by firing, so the B part shrinks more than the A part. Thereby, the shape of the sintered body can be controlled to a desired shape. Further, since the protruding portion 15 is located at a position where Co is less likely to diffuse than the A portion, the Co content Co C of the protruding portion 15 is smaller than Co A.
 また、第2原料粉末33と第3原料粉末37との焼結性が異なるために、焼成中、A部とB部の収縮率が異なって成形体が変形し、B部の収縮率がA部の収縮率よりも大きくなる。すなわち、焼成によって、B部のCoの一部が、A部に向かって拡散するために、B部はA部よりも収縮する。これによって、焼結体の形状はB部の直径がA部の直径よりも小さくなる傾向にある。 Further, since the second raw material powder 33 and the third raw material powder 37 have different sinterability, the shrinkage rate of the A part and the B part is different during firing, and the compact is deformed, and the shrinkage rate of the B part is A. It becomes larger than the shrinkage rate of the part. That is, a part of Co in the B part diffuses toward the A part by firing, so the B part shrinks more than the A part. As a result, the shape of the sintered body tends to have the diameter of the B part smaller than the diameter of the A part.
 ここで、昇温速度が4℃/分より遅いと、焼成中にCoの拡散が進行しすぎて、焼結後のブランク2中のCo濃度の差が小さくなる傾向にあり、第1領域11の傾斜Sが第2領域12の傾斜S以下になるか、またはCoACおよびCoBCが同じになる。昇温速度が20℃/分より速いと、第1領域11の傾斜Sが第2領域12の傾斜S以下になり、場合によっては、A部における緻密化が不十分となる。また、焼成温度における減圧圧力が50Pa未満では、焼成中にCoの拡散が進行しすぎて、焼結体中のCo濃度が均一になり、第1領域11の傾斜Sが第2領域12の傾斜S以下になるか、またはCoACおよびCoBCが同じになる。減圧圧力が200Paより高いと、第1領域11の傾斜Sが第2領域12の傾斜S以下になるとともに、A部における緻密化が不十分となる場合がある。さらに、シンターHIPの処理温度と焼結温度との差が5℃以下であると、第1領域11の傾斜Sが第2領域12の傾斜S以下になるか、またはCoACおよびCoBCが同じになる。 Here, if the rate of temperature rise is slower than 4 ° C./min, the diffusion of Co proceeds too much during firing, and the difference in the Co concentration in the blank 2 after sintering tends to be small. or slope S 1 is equal to or less than the slope S 2 of the second region 12, or Co AC and Co BC are the same of. When the temperature rising rate is higher than 20 ° C. / min, gradient S 1 of the first region 11 becomes less inclined S 2 of the second region 12, in some cases, densification in the A section becomes insufficient. In addition, when the reduced pressure at the firing temperature is less than 50 Pa, Co diffusion proceeds excessively during firing, the Co concentration in the sintered body becomes uniform, and the slope S 1 of the first region 11 is in the second region 12. become inclination S 2 or less, or Co AC and Co BC are the same. When vacuum pressure is higher than 200 Pa, with slope S 1 of the first region 11 is equal to or less than the inclination S 2 of the second region 12, there are cases where densification in the A section becomes insufficient. Furthermore, if the difference between the processing temperature of the sintering HIP and the sintering temperature is 5 ° C. or less, the slope S 1 of the first region 11 becomes less than the slope S 2 of the second region 12 or Co AC and Co BC Are the same.
 上述した本実施態様のブランク2の製造方法によれば、ブランク2がプレス成形にて成形されているので、成形工程が少なくて製造が容易である。また、ブランク2の成形体を焼成した後のブランク2の寸法変化が小さいので、ブランク2の寸法精度が高い。そのために、ブランク2をドリル1の形状に対して削り代の少ない形状とできる。さらに、ブランク2がプレス成形にて形成されたものは、押出成形に比べて、成形時に添加するバインダの添加量を少なくできるので、焼結体(ブランク2)中のボイドや残留炭素等の欠陥が存在しにくい信頼性の高い材料となる。また、このブランク2の成形工程においては、成形体中の密度ムラを調整できるので、欠け等が発生しにくい安定した成形が可能である。 According to the method for manufacturing the blank 2 of the present embodiment described above, since the blank 2 is formed by press molding, the number of molding steps is small and the manufacture is easy. Moreover, since the dimensional change of the blank 2 after baking the molded object of the blank 2 is small, the dimensional accuracy of the blank 2 is high. Therefore, the blank 2 can be made into a shape with less cutting allowance with respect to the shape of the drill 1. Furthermore, since the blank 2 formed by press molding can reduce the amount of binder added during molding compared to extrusion molding, defects such as voids and residual carbon in the sintered body (blank 2) This makes it a highly reliable material that is unlikely to exist. Further, in the blank 2 molding step, density unevenness in the molded body can be adjusted, so that stable molding in which chipping or the like hardly occurs is possible.
 また、ブランク2のdが2mm以下の場合には、プレス成形によって成形体を作製することによって成形体の密度差が生じる。そのため、ブランク2の端部(A部、B部)のほうが中央部Cよりも超硬合金の焼結が進む傾向がある。中でも、成形体の形状がD>Dである場合には、A部のほうがB部よりも焼結が進む。本実施態様では、成形時に使用する顆粒の状態を調整するとともに、上下パンチで加圧した後、上パンチ24のみで追加荷重を加えることによって、金型が破損することを抑制できるとともに、ブランク2の両端の成形体密度を調整できる。その結果、焼成されたブランク2のA部とB部との寸法差を小さくすることができ、削り代が少なくてすむように調整できる。 Also, when d A blank 2 is 2mm or less, the density difference of the molded body is caused by a molded body by press molding. Therefore, the end portion (A portion, B portion) of the blank 2 tends to proceed with sintering of the cemented carbide rather than the central portion C. In particular, when the shape of the molded body is D B > D A , the A part is more sintered than the B part. In this embodiment, while adjusting the state of the granules used at the time of molding and pressurizing with the upper and lower punches, by applying an additional load only with the upper punch 24, it is possible to prevent the mold from being damaged and the blank 2 The density of the molded body at both ends can be adjusted. As a result, the dimensional difference between the A part and the B part of the baked blank 2 can be reduced and the cutting allowance can be reduced.
 なお、本開示における成形工程は上記実施形態に示したプレス成形に限定されるものではなく、冷間静水圧プレス、ドライバッグ成形、射出成形等によって成形することもできる。 It should be noted that the molding process in the present disclosure is not limited to the press molding shown in the above embodiment, but can be molded by cold isostatic pressing, dry bagging, injection molding, or the like.
 (切削工具の製造方法)
 上記工程によって得られたブランク2を用いて、プリント基板加工用のドリルを作製する方法の一例について説明する。ブランク2を数十本または数百本の単位でランダムに接合装置内に投入される。ブランク2は、接合装置内で長手方向に整列される。突起部15を有する場合には、突起11を画像データ等にて確認し、ブランク2のA部とB部とを特定する。この特定に基づいて、自動的に、A部とB部とを一定の方向に並べることができる。
(Manufacturing method of cutting tool)
An example of a method for producing a drill for processing a printed board using the blank 2 obtained by the above process will be described. Blanks 2 are randomly inserted into the bonding apparatus in units of tens or hundreds. The blank 2 is aligned longitudinally in the joining device. When the projection 15 is provided, the projection 11 is confirmed by image data or the like, and the A portion and B portion of the blank 2 are specified. Based on this specification, the A part and the B part can be automatically arranged in a certain direction.
 そして、並べられたブランクは、自動的に、別途準備されたシャンク3に続く首部7の所定の位置に当接された後、レーザ等で接合される。その後、接合されたブランク2に刃付け加工を施す。このとき、ドリル1の構成は、図5に示すように、A部がドリル1の切刃5側で、B部がドリル1のシャンク3側となる。 Then, the arranged blanks are automatically brought into contact with a predetermined position of the neck 7 following the shank 3 separately prepared, and then joined by a laser or the like. Thereafter, the joined blank 2 is subjected to blade processing. At this time, as shown in FIG. 5, the configuration of the drill 1 is such that the A portion is on the cutting blade 5 side of the drill 1 and the B portion is on the shank 3 side of the drill 1.
 (切削工具)
 上記ブランク2の刃付け加工によって、ドリル1等の切削工具が作製される。図5のドリル1の形状は、A部に切刃5を備え、それに続くフルート部6と、首部7とでボディ8を構成している。切刃5とフルート部6が加工部となっている。そして、ボディ8に続いてシャンク3を有している。ここで、切刃5は中心軸を有して回転しながら被削材に最初に接触する部分であり、高い耐チッピング性と耐摩耗性が要求される。フルート部6は加工によって発生する切屑を後方へ排出する機能を持ち、首部7はドリル1の加工径(フルート部6の直径)とシャンク3の直径とを調整するつなぎである。シャンク3はドリル1を加工機に固定する部分である。
(Cutting tools)
A cutting tool such as a drill 1 is produced by cutting the blank 2. The shape of the drill 1 in FIG. 5 includes a cutting edge 5 at part A, and a flute 6 and a neck 7 that form a body 8. The cutting edge 5 and the flute portion 6 are processed portions. And it has the shank 3 following the body 8. FIG. Here, the cutting edge 5 is a portion that first contacts the work material while rotating around the central axis, and requires high chipping resistance and wear resistance. The flute portion 6 has a function of discharging chips generated by machining backward, and the neck portion 7 is a connection for adjusting the machining diameter of the drill 1 (diameter of the flute portion 6) and the diameter of the shank 3. The shank 3 is a part for fixing the drill 1 to the processing machine.
 上記方法で得られたドリル1は、超硬合金からなる切刃5とフルート部6とからなる加工部を備える。本実施形態の望ましい形態は、該加工部の最大直径が2mm以下である。 The drill 1 obtained by the above method is provided with a processed part composed of a cutting edge 5 made of cemented carbide and a flute part 6. In a desirable form of this embodiment, the maximum diameter of the processed portion is 2 mm or less.
 さらに、所望により、ドリル1の表面には被覆層(図示せず)を成膜することもできる。被覆層は、PVD法で成膜されたTiN、TiCN、TiAlN、ダイヤモンド、ダイヤモンドライクカーボンや、CVD法で成膜されたダイヤモンド等が好適である。 Furthermore, a coating layer (not shown) can be formed on the surface of the drill 1 as desired. The covering layer is preferably made of TiN, TiCN, TiAlN, diamond, diamond-like carbon formed by PVD, diamond formed by CVD, or the like.
 また、首部7とシャンク3とを鋼、合金鋼またはステンレス鋼等の安価な材質で形成し、ブランク2を首部7の先端に接合した構成とすることもできる。なお、ドリル1の切刃5からシャンク3までをブランクで形成するものであってもよい。また、ドリル1は、首部7を省略した形状であってもよい。 Alternatively, the neck 7 and the shank 3 can be formed of an inexpensive material such as steel, alloy steel, or stainless steel, and the blank 2 can be joined to the tip of the neck 7. In addition, you may form from the cutting blade 5 of the drill 1 to the shank 3 with a blank. Further, the drill 1 may have a shape in which the neck portion 7 is omitted.
 なお、本実施形態において、A部およびB部におけるWC粒子の平均粒径を測定するには、A部またはB部において、WC粒子が10個以上観察される視野内でWC粒子の平均粒径を測定する。また、WC粒子の平均粒径は、観察される各WC粒子の面積を円に換算したときの直径を求め、視野内に存在するWC粒子の直径の平均値として算出する。 In addition, in this embodiment, in order to measure the average particle diameter of WC particles in part A and part B, in part A or part B, the average particle diameter of WC particles is within a visual field in which 10 or more WC particles are observed. Measure. Further, the average particle diameter of the WC particles is calculated as an average value of the diameters of the WC particles existing in the field of view by obtaining a diameter when the area of each observed WC particle is converted into a circle.
 さらに、首部7とシャンク3とを鋼、合金鋼またはステンレス鋼等の安価な材質で形成し、ブランク2を首部7の先端に接合した構成とすることもできる。なお、ドリル1の切刃5からシャンク3までをブランク2で形成するものであってもよい。また、ドリル1は、首部7を省略した形状であってもよい。さらに、切削工具としてはドリル1に限定されるものではなく、例えば、エンドミルやリーマ等の回転軸を有するものにも適用可能である。 Further, the neck 7 and the shank 3 may be formed of an inexpensive material such as steel, alloy steel, or stainless steel, and the blank 2 may be joined to the tip of the neck 7. Note that the blank 2 may be formed from the cutting edge 5 to the shank 3 of the drill 1. Further, the drill 1 may have a shape in which the neck portion 7 is omitted. Further, the cutting tool is not limited to the drill 1 and can be applied to a tool having a rotating shaft such as an end mill or a reamer.
 表1に示す添加量の金属コバルト(Co)粉末と、炭化クロム(Cr)粉末と、炭化バナジウム(VC)粉末と、残部が平均粒径0.3μmの炭化タングステン(WC)粉末の割合で、表1に示す第1原料粉末と第2原料粉末との2種類の混合粉末を調合した。各混合粉末に対して、バインダや溶媒を添加、混合して、スラリーを作製し、スプレードライヤにて平均粒径70μmの顆粒を作製した。 The amount of metallic cobalt (Co) powder, chromium carbide (Cr 3 C 2 ) powder, vanadium carbide (VC) powder, and the balance of tungsten carbide (WC) powder having an average particle size of 0.3 μm as shown in Table 1 Two kinds of mixed powders of the first raw material powder and the second raw material powder shown in Table 1 were prepared at a ratio. To each mixed powder, a binder and a solvent were added and mixed to prepare a slurry, and granules having an average particle diameter of 70 μm were prepared with a spray dryer.
 空隙部を144個有するダイスを備えた図3に示す金型を準備し、表1の第1原料粉末を投入し、続いて、表1の第2原料粉末を充填してプレス成形し、第1原料粉末と第2原料粉末とが積層された成形体を成形し、金型から取り出した。このとき、成形体の形状は、表1に記載の下パンチ側の直径D、上パンチ側の直径D、成形体下部の長さH、成形体上部の長さHとした。 A mold shown in FIG. 3 having a die having 144 voids is prepared, the first raw material powder shown in Table 1 is charged, and then the second raw material powder shown in Table 1 is filled and press-molded. A molded body in which the first raw material powder and the second raw material powder were laminated was molded and removed from the mold. At this time, the shape of the molded body was set to the lower punch side diameter D A , the upper punch side diameter D B , the lower part length H A , and the upper part length H B shown in Table 1.
 そして、この成形体を、1000℃から表2に示す昇温速度で昇温し、表2に示す雰囲気および焼成温度で1時間焼成した後、表2に示すシンターHIP(表中HIPと記載)温度に変えて、5MPaの圧力で30分間シンターHIP処理をした。 Then, this molded body was heated from 1000 ° C. at a temperature rising rate shown in Table 2, fired for 1 hour in the atmosphere and firing temperature shown in Table 2, and then sintered HIP shown in Table 2 (described as HIP in the table). The sinter HIP process was performed for 30 minutes at a pressure of 5 MPa, changing to the temperature.
 得られたブランクの長手方向について、A部、B部の直径を測定し表2に記載した(d、d)。また、ブランクを長手方向に半割にして、A部からB部までのCo含有量の変化をEPMA分析にて測定し、第2領域から第4領域の有無、傾斜、長さを確認した。さらに、ブランクのA部については、外周部におけるCo含有量を測定した。結果は表2、3に示した。 The longitudinal direction of the resulting blanks, A part, describing the diameter of the part B to the measured Table 2 (d A, d B) . Further, the blank was halved in the longitudinal direction, and the change in the Co content from the A part to the B part was measured by EPMA analysis, and the presence, inclination, and length of the second to fourth areas were confirmed. Furthermore, about the A part of the blank, Co content in an outer peripheral part was measured. The results are shown in Tables 2 and 3.
 そして、このブランクの外周部をセンタレス加工した後、ランダムに接合装置内に投入し、接合装置内にてブランクの突起部の向きを認識して、本体部のA部とB部を同じ向きに整列させ、ブランクの第2端部をシャンクに当接させて接合し、ブランクの第1端部を含む部位に刃付け加工を施すことによって、ドリルを作製した。 And after centerless processing the outer peripheral part of this blank, it throws in in a joining apparatus at random, recognizes the direction of the projection part of a blank in a joining apparatus, and makes the A part and B part of a main-body part the same direction. A drill was prepared by aligning, joining the second end of the blank against the shank, and applying a blade to the portion including the first end of the blank.
 得られたドリルについて、下記条件でドリル加工テストを行った。結果は表3に示した。
(ドリル加工テスト条件)
被削材 :FR4材、厚み0.8mm、3枚重ね
ドリル形状:φ0.25mm
回転数:160krpm
送り速度:3.2m/分
評価項目:孔開け加工ができた製品の個数(個)と試験後のドリルの逃げ面摩耗幅(μm)
About the obtained drill, the drilling test was done on the following conditions. The results are shown in Table 3.
(Drilling test conditions)
Work material: FR4 material, thickness 0.8mm, 3-layer drill shape: φ0.25mm
Rotation speed: 160krpm
Feed rate: 3.2 m / min Evaluation item: Number of drilled products (pieces) and drill flank wear width after testing (μm)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1~3より、CoACがCoBCと同じ試料No.I-12では逃げ面摩耗幅が大きく、試料No.I-13では焼結不足で1孔目で欠損した。また、第1領域と第2領域がない試料No.I-14、I-16、I-18では逃げ面摩耗幅が大きかった。さらに、傾斜Sが傾斜Sと同じかまたは小さい試料No.I-15、I-17、I-19では、耐折損性が低く、加工個数が少なくなった。 From Tables 1 to 3, Co AC is the same sample No. as Co BC . In No. I-12, the flank wear width was large. In I-13, the first hole was deficient due to insufficient sintering. In addition, sample No. without the first region and the second region. In I-14, I-16, and I-18, the flank wear width was large. Furthermore, the same or smaller specimen rotation S 1 is an inclined S 2 No. In I-15, I-17, and I-19, the breakage resistance was low, and the number of processed parts was small.
 これに対して、CoACがCoBCよりも少ないとともに、第1領域の傾斜Sが第2領域の傾斜Sよりも大きい試料No.I-1~I-11では、逃げ面摩耗幅が小さく、かつ加工個数が多くなった。 On the other hand, the sample No. No. 2 is smaller in Co AC than Co BC , and the slope S 1 in the first region is larger than the slope S 2 in the second region. In I-1 to I-11, the flank wear width was small and the number of workpieces increased.
 特に、比(CoAC/CoBC)が0.2~0.7である試料No.I-1、I-2、I-6、I-8~I-11では、加工個数が多くなった。また、傾斜Sが0.2~1.0質量%/mmであり、傾斜Sが0~0.20質量%/mmである試料No.I-1、I-2、I-6~I-11では、加工個数が多くなった。 In particular, Sample No. with a ratio (Co AC / Co BC ) of 0.2 to 0.7. In I-1, I-2, I-6, and I-8 to I-11, the number of processed parts increased. In addition, Sample No. No. 2 in which the slope S 1 is 0.2 to 1.0 mass% / mm and the slope S 2 is 0 to 0.20 mass% / mm. In I-1, I-2, and I-6 to I-11, the number of processed parts increased.
 実施例1で用いた原料粉末を用いて表4の成形体を作製し、表5の条件で焼成した。そして、このブランクを用いてドリルを作製した。得られたドリルについて、下記条件でドリル加工テストを行った。結果は表5、6に示した。
(ドリル加工テスト条件)
被削材 :FR4材、24層板、厚み3.2mm、1枚
ドリル形状:φ0.25mm
回転数:160krpm
送り速度:3.2m/分
評価項目:孔開け加工ができた製品の個数(個)と試験後のドリルの逃げ面摩耗幅(μm)
Using the raw material powder used in Example 1, the compacts shown in Table 4 were produced and fired under the conditions shown in Table 5. And the drill was produced using this blank. About the obtained drill, the drilling test was done on the following conditions. The results are shown in Tables 5 and 6.
(Drilling test conditions)
Work material: FR4 material, 24-layer plate, thickness 3.2 mm, single drill shape: φ0.25 mm
Rotation speed: 160krpm
Feed rate: 3.2 m / min Evaluation item: Number of drilled products (pieces) and drill flank wear width after testing (μm)
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表4~6より、CoACがCoBCよりも少ないとともに、第1領域の傾斜Sが第2領域の傾斜Sよりも大きい試料No.II-1~II-4では、逃げ面摩耗幅が小さく、かつ加工個数が多くなった。 According to Tables 4 to 6, the sample No. No. 1 is smaller in Co AC than Co BC , and the slope S 1 in the first region is larger than the slope S 2 in the second region. In II-1 to II-4, the flank wear width was small and the number of workpieces increased.
 特に、第2領域と第1領域との間に、Sよりも大きい傾斜Sの第3領域を有する試料No.II-1、II-2では、逃げ面摩耗幅が小さく、かつ加工個数が多くなった。中でも、傾斜Sが2~50質量%/mmである試料No.II-1では、逃げ面摩耗幅が小さく、かつ加工個数が特に多くなった。 In particular, sample No. 1 having a third region having a slope S 3 larger than S 1 between the second region and the first region. In II-1 and II-2, the flank wear width was small and the number of workpieces increased. Among them, sample No. slope S 3 is 2 to 50 mass% / mm In II-1, the flank wear width was small and the number of workpieces was particularly large.
 実施例1で用いた原料粉末を用いて表7の成形体を作製し、表8の条件で焼成した。そして、このブランクを用いてドリルを作製した。得られたドリルについて、下記条件でドリル加工テストを行った。結果は表8、9に示した。
(ドリル加工テスト条件)
被削材 :FP4材、厚み0.06mm、10枚重ね
ドリル形状:φ0.105mm
回転数:300krpm
送り速度:1.8m/分
評価項目:孔開け加工ができた製品の個数(個)と試験後のドリルの逃げ面摩耗幅(μm)
Using the raw material powder used in Example 1, the compacts shown in Table 7 were produced and fired under the conditions shown in Table 8. And the drill was produced using this blank. About the obtained drill, the drilling test was done on the following conditions. The results are shown in Tables 8 and 9.
(Drilling test conditions)
Work material: FP4 material, thickness 0.06mm, 10-ply drill shape: φ0.105mm
Rotation speed: 300krpm
Feeding speed: 1.8 m / min Evaluation item: Number of products that have been drilled (pieces) and flank wear width of the drill after the test (μm)
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表7~9より、CoACがCoBCよりも少ないとともに、第1領域の傾斜Sが第2領域の傾斜Sよりも大きい試料No.III-1~III-3では、逃げ面摩耗幅が小さく、かつ加工個数が多くなった。 According to Tables 7 to 9, the sample No. No. 1 was smaller in Co AC than Co BC , and the slope S 1 in the first region was larger than the slope S 2 in the second region. In III-1 to III-3, the flank wear width was small and the number of workpieces increased.
 実施例1と同様に、表10に示す第1原料粉末と第2原料粉末を用いて成形した。このとき、焼成後のブランクのd/dが0.9を超える試料No.IV-5については、成形体を100個作成した時点で、下パンチの破損が確認された。 In the same manner as in Example 1, molding was performed using the first raw material powder and the second raw material powder shown in Table 10. At this time, the sample No. 5 in which d C / d A of the blank after firing exceeds 0.9 was obtained. For IV-5, the bottom punch was confirmed to be broken when 100 molded bodies were prepared.
 そして、この成形体を実施例1と同様にして、この成形体を、表10に示す昇温速度で昇温し、表10に示す温度で30分間焼成した後、表10に示す温度より30℃低い温度でシンターHIP焼成した。得られた焼結体に対して、外周部をセンタレス加工してブランクとした。 Then, the molded body was heated at the rate of temperature increase shown in Table 10 and baked at the temperature shown in Table 10 for 30 minutes in the same manner as in Example 1, and then 30 times higher than the temperature shown in Table 10. Sinter HIP firing was performed at a low temperature. The outer peripheral portion of the obtained sintered body was centerless processed to obtain a blank.
 得られたブランクの長手方向について、実施例1と同様に、A部、B部、突起部の直径(d、d、d)、A部から突起部までのCo含有量の変化をEPMA分析にて測定し、第2領域から第4領域の有無、傾斜、長さを確認した。CoAOも測定した。さらに、ブランクの両端をSEM観察し、ルーゼックス解析法によってA部およびB部におけるWC粒子の平均粒径を算出した。結果は表11、12に示した。 The longitudinal direction of the resulting blanks, in the same manner as in Example 1, A unit, B unit, the diameter of the protrusion (d A, d B, d C), the change in the Co content of the A portion to the projecting portion It was measured by EPMA analysis, and the presence, inclination, and length of the second region to the fourth region were confirmed. Co AO was also measured. Further, both ends of the blank were observed with an SEM, and the average particle diameters of WC particles in part A and part B were calculated by the Luzex analysis method. The results are shown in Tables 11 and 12.
 そして、実施例1と同様に、このブランクをランダムに接合装置内に投入し、接合装置内にてブランクの突起部の向きを認識して、本体部のA部とB部を同じ向きに整列させ、実施例1と同様にドリルを作製した。突起部によってA部およびB部の判別が容易であり、切刃側でCoが少ないドリルを容易に作製することができた。また、突起部が曲面形状である試料No.IV-1~IV-5、IV-7~IV-13では、ブランクを接合装置内に投入した際のブランク同士の衝突によって、ブランクに傷がつくことがなかった。 And like Example 1, this blank is thrown in in a joining apparatus at random, the direction of the projection part of a blank is recognized in a joining apparatus, and the A part and B part of a main-body part are aligned in the same direction. In the same manner as in Example 1, a drill was produced. It was easy to discriminate between the A part and the B part by the protrusions, and it was possible to easily produce a drill with less Co on the cutting edge side. In addition, Sample No. in which the protruding portion has a curved surface shape. In IV-1 to IV-5 and IV-7 to IV-13, the blank was not damaged by the collision of the blanks when they were put into the joining apparatus.
 得られたドリルについて、下記条件でドリル加工テストを行った。結果は表12に示した。
(ドリル加工テスト条件)
被削材 :BT材10層、厚み2.5mm、1枚
ドリル形状:φ0.3mmアンダーカットタイプ
回転数:100krpm
送り速度:1.5m/分
評価項目:孔開け加工ができた製品の個数(個)
About the obtained drill, the drilling test was done on the following conditions. The results are shown in Table 12.
(Drilling test conditions)
Work material: BT material 10 layers, thickness 2.5mm, 1 drill shape: φ0.3mm undercut type Rotation speed: 100krpm
Feed rate: 1.5 m / min Evaluation item: Number of products that have been drilled (pieces)
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表10~12より、CoACがCoBCよりも少ないとともに、第1領域の傾斜Sが第2領域の傾斜Sよりも大きい試料No.IV-1~IV-8では、逃げ面摩耗幅が小さくなって加工個数が多くなった。また、CoACがCoBCと同じ試料No.IV-10~IV-13、およびSとSが同じ試料No.IV-9では、ドリルの加工個数が少なかった。 According to Tables 10 to 12, the sample Nos. 1 and 2 in which the Co AC is smaller than the Co BC and the slope S 1 of the first region is larger than the slope S 2 of the second region. In IV-1 to IV-8, the flank wear width was reduced and the number of workpieces increased. In addition, Co AC has the same sample No. as Co BC . IV-10 to IV-13, and S 1 and S 2 have the same sample number. In IV-9, the number of drills was small.
 また、試料No.IV-1~IV-8では、CoCCがCoACよりも少なく、ドリルの加工個数が多かった。試料No.IV-1~IV-8の中でも、CoACが0.2質量%~7質量%、CoBCが2質量%~12質量%、比(CoAC/CoBC)が0.1~0.6であるとともに、CoCCが0.1質量%~6質量%、比(CoCC/CoAC)が0.1~0.8である試料No.IV-1~IV-3では、ドリルの加工個数が多かった。 Sample No. In IV-1 to IV-8, Co CC was smaller than Co AC , and the number of drills was large. Sample No. Among IV-1 to IV-8, Co AC is 0.2% by mass to 7% by mass, Co BC is 2% by mass to 12% by mass, and the ratio (Co AC / Co BC ) is 0.1 to 0.6%. Sample No. 1 having a Co CC of 0.1 mass% to 6 mass% and a ratio (Co CC / Co AC ) of 0.1 to 0.8. In IV-1 to IV-3, the number of drills was large.
 なお、焼成後のブランクのd/dが0.5より小さい試料No.IV-5については、試料No.5に比べて、ドリルの刃付け加工によって突起部がすべて研磨除去されてしまい、切刃の耐摩耗性が低下してドリルの加工個数が少なかった。 In addition, sample No. 5 in which d C / d A of the blank after firing is smaller than 0.5. For sample IV-5, sample no. Compared to 5, the protrusions were all polished and removed by the cutting operation of the drill, and the wear resistance of the cutting blade was lowered and the number of drills processed was small.
 実施例4の試料No.IV-1で用いた第1原料粉末および第2原料粉末に対して、WC粉末の平均粒径を0.8μmとする以外は実施例1の試料No.1と同じ仕様の原料粉末を用いて、試料No.1と同様にして、冷間静水圧プレス成形によって、D=D=6mm、L=30mm、D=3mm、L=3mmの円柱長尺状成形体を作製した。H=10mm、H=20mmとした。試料No.IV-1と同じ昇温速度、焼成温度で焼成し、焼結体を得た。d=5.1mm、d=4.8mm、L=15mm、L=9.3mm、(L+L)/d=4.8、CoAC=2.7質量%、CoBC=7.1質量%、CoCC=2.5質量%、A部におけるWC粒子の平均粒径が0.85μm、B部におけるWC粒子の平均粒径が0.80μmであった。得られた焼結体に対してドリルの刃付け加工が可能であった。 Sample No. 4 in Example 4 Sample No. 1 of Example 1 was used except that the average particle diameter of the WC powder was 0.8 μm with respect to the first raw material powder and the second raw material powder used in IV-1. Using the raw material powder having the same specifications as in Sample No. 1, In the same manner as in No. 1, a long cylindrical molded body of D A = D B = 6 mm, L = 30 mm, D C = 3 mm, L C = 3 mm was produced by cold isostatic pressing. H A = 10 mm and H B = 20 mm. Sample No. The sintered body was obtained by firing at the same temperature elevation rate and firing temperature as IV-1. d A = 5.1mm, d B = 4.8mm, L A = 15mm, L B = 9.3mm, (L A + L B) / d A = 4.8, Co AC = 2.7 wt%, Co BC = 7.1 mass%, Co CC = 2.5 mass%, the average particle diameter of WC particles in part A was 0.85 μm, and the average particle diameter of WC particles in part B was 0.80 μm. The obtained sintered body could be drilled with a drill.
 実施例4と同様にして、表13に示す第1原料粉末、第2原料粉末、第3原料粉末を用いてブランクを作製した。なお、焼成後のブランクのd/dが0.9を超える試料No.5については、成形体を100個作成した時点で、下パンチの破損が確認された。また、d/dが0.5より小さい試料No.6については、成形工程で、成形体の突起部付近が破損する場合もあり、成形の歩留りが悪かった。 In the same manner as in Example 4, a blank was produced using the first raw material powder, the second raw material powder, and the third raw material powder shown in Table 13. Incidentally, the sample blank d C / d A after firing is greater than 0.9 No. Regarding No. 5, damage to the lower punch was confirmed when 100 molded bodies were produced. Sample No. d c / d A is less than 0.5. For No. 6, the vicinity of the protrusions of the molded body was sometimes damaged in the molding process, and the molding yield was poor.
 そして、実施例4と同様に、この成形体を、表14に示す昇温速度で昇温し、表14に示す温度で30分間焼成した後、表14に示す温度より30℃低い温度でシンターHIP焼成した。得られた焼結体に対して、外周部をセンタレス加工してブランクとした。 And like Example 4, after heating this molded object at the temperature increase rate shown in Table 14 and baking for 30 minutes at the temperature shown in Table 14, it is sintered at a temperature 30 degreeC lower than the temperature shown in Table 14. HIP fired. The outer peripheral portion of the obtained sintered body was centerless processed to obtain a blank.
 得られたブランクの長手方向について、実施例4と同様に、A部から突起部までのCo含有量の変化をEPMA分析にて測定し、第2領域から第4領域の有無、傾斜、長さを確認した。CoAOも測定した。さらに、ブランクの両端をSEM観察し、ルーゼックス解析法によってA部およびB部におけるWC粒子の平均粒径を算出した。結果は表14、15に示した。 About the longitudinal direction of the obtained blank, the change of Co content from A part to a projection part was measured by EPMA analysis similarly to Example 4, and the presence or absence, inclination, and length of the 4th field from the 2nd field. It was confirmed. Co AO was also measured. Further, both ends of the blank were observed with an SEM, and the average particle diameters of WC particles in part A and part B were calculated by the Luzex analysis method. The results are shown in Tables 14 and 15.
 そして、実施例4と同様に、このブランクをランダムに接合装置内に投入し、接合装置内にてブランクの突起部の向きを認識して、本体部のA部とB部を同じ向きに整列させ、実施例4と同様の工程によってエンドミルを作製した。突起部によってA部およびB部の判別が容易であり、切刃側でCoが少ないエンドミルを容易に作製することができた。結果は表14、15に示した。 And like Example 4, this blank is thrown in in a joining apparatus at random, the direction of the projection part of a blank is recognized in a joining apparatus, and the A part and B part of a main-body part are aligned in the same direction. Then, an end mill was produced by the same process as in Example 4. It was easy to distinguish between the A part and the B part by the protrusion, and an end mill with less Co on the cutting edge side could be easily produced. The results are shown in Tables 14 and 15.
 また、突起部が曲面形状である試料No.VI-1~VI-3、 VI-5~VI-12では、ブランクを接合装置内に投入した際のブランク同士の衝突によって、ブランクに傷がつくことがなかった。 Specimen No. in which the protrusion is curved. In VI-1 to VI-3 and VI-5 to VI-12, the blanks were not damaged by the collision of the blanks when they were put into the joining apparatus.
 得られたエンドミルについて、下記条件で加工テストを行った。結果は表15に示した。
(エンドミル加工テスト条件)
被削材 :S45Cブロック材
エンドミル形状:φ1mm 2枚刃
回転数:25krpm
送り速度:220mm/分
切込み(深さap):1.5mm
切込み(幅ae):0.05mm
評価項目:側面切削において加工できた距離
About the obtained end mill, the processing test was done on the following conditions. The results are shown in Table 15.
(End mill processing test conditions)
Work Material: S45C Block Material End Mill Shape: φ1mm 2 Flute Speed: 25krpm
Feeding speed: 220 mm / minute cutting (depth ap): 1.5 mm
Cutting depth (width ae): 0.05 mm
Evaluation item: Distance that can be processed by side cutting
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 表13~15より、CoACがCoBCよりも少ないとともに、第1領域の傾斜Sが第2領域の傾斜Sよりも大きい試料No.VI-1~VI-7では、逃げ面摩耗幅が小さく、かつ加工距離が長くなった。また、CoACがCoBCと同じ試料No.VI-12、CoCCがCoACと同じ試料No.VI-9、CoCCがCoACより小さい試料No.VI-11、CoACとCoBC、およびCoCCとCoACが同じ試料No.VI-8、 VI-10では、エンドミルの加工距離が短かった。これに対して、CoACがCoBCよりも少ないとともに、CoCCがCoACよりも多い試料No.VI-1~VI-7では、エンドミルの加工距離が長かった。 According to Tables 13 to 15, the sample No. No. 1 is smaller in Co AC than Co BC and in which the slope S 1 of the first region is larger than the slope S 2 of the second region. In VI-1 to VI-7, the flank wear width was small and the machining distance was long. In addition, Co AC has the same sample No. as Co BC . Sample No. VI-12, Co CC is the same as Co AC . Sample No. VI-9, Co CC smaller than Co AC . VI-11, Co AC and Co BC , and Co CC and Co AC have the same sample numbers. In VI-8 and VI-10, the processing distance of the end mill was short. In contrast, with Co AC is less than Co BC, Co CC is greater than Co AC Sample No. In VI-1 to VI-7, the processing distance of the end mill was long.
 試料No.VI-1~VI-7の中でも、CoACが0.2質量%~7質量%、CoBCが3質量%~12質量%、比CoAC/CoBCが0.1~0.6、CoCCが3質量%~14質量%、比CoCC/CoACが1.2~3である試料No.VI-1~VI-4では、ドリルの加工距離が長かった。 Sample No. Among VI-1 to VI-7, Co AC is 0.2 mass% to 7 mass%, Co BC is 3 mass% to 12 mass%, the ratio Co AC / Co BC is 0.1 to 0.6, Co Sample Nos. Having a CC of 3 mass% to 14 mass% and a ratio Co CC / Co AC of 1.2 to 3 In VI-1 to VI-4, the drilling distance was long.
 また、試料No.VI-1~VI-4では、第1端面の中心部におけるCo含有量が、第1端面の外周部におけるCo含有量よりも多く、CoAOが0.1質量%~6.5質量%、比CoAO/CoACが0.1~0.9であった。 Sample No. In VI-1 to VI-4, the Co content in the central portion of the first end face is larger than the Co content in the outer peripheral portion of the first end face, and Co AO is 0.1 mass% to 6.5 mass%, The ratio Co AO / Co AC was 0.1 to 0.9.
 実施例6の試料No.VI-6およびNo.VI-10で用いた第1原料粉末、第2原料粉末および第3原料粉末に対して、WC粉末の平均粒径を0.8μmとする以外は実施例1の試料No.VI-6、 VI-10と同じ調合組成の原料粉末を用いて、試料No.VI-6、 VI-10と同様にして、冷間静水圧プレス成形によって、D=D=6mm、L=30mm、D=3mm、L=3mmの円柱長尺状成形体を作製した。H=10mm、H=20mmとした。試料No.VI-1と同じ昇温速度、焼成温度で焼成し、試料No.VII-13、 VII-14の焼結体を得た。 Sample No. 6 in Example 6 VI-6 and no. Sample No. 1 of Example 1 was used except that the average particle diameter of the WC powder was 0.8 μm with respect to the first raw material powder, the second raw material powder, and the third raw material powder used in VI-10. Using raw material powder having the same composition as VI-6 and VI-10, sample No. In the same manner as VI-6 and VI-10, a columnar long shaped body of D A = D B = 6 mm, L = 30 mm, D C = 3 mm, L C = 3 mm is produced by cold isostatic pressing. did. H A = 10 mm and H B = 20 mm. Sample No. Bake at the same heating rate and firing temperature as VI-1, and sample no. Sintered bodies of VII-13 and VII-14 were obtained.
 試料No.VII-13については、d=5.1mm、d=4.8mm、L=15mm、L=9.3mm、(L+L)/d=4.8、CoAC=5.6質量%、CoAO=5.0質量%、CoBC=7.2質量%、CoCC=6.2質量%、A部におけるWC粒子の平均粒径が0.85μm、B部におけるWC粒子の平均粒径が0.80μmであった。 Sample No. For VII-13, d A = 5.1 mm, d B = 4.8 mm, L A = 15 mm, L B = 9.3 mm, (L A + L B ) / d A = 4.8, Co AC = 5 .6 mass%, Co AO = 5.0 mass%, Co BC = 7.2 mass%, Co CC = 6.2 mass%, the average particle diameter of WC particles in part A is 0.85 μm, and WC in part B The average particle size of the particles was 0.80 μm.
 試料No.VII-14については、d=5.0mm、d=5.0mm、L=25.0mm、CoAC=CoAO=CoBC=CoCC=5.0質量%、A部におけるWC粒子の平均粒径が0.80μm、B部におけるWC粒子の平均粒径が0.80μmであった。 Sample No. For VII-14, d A = 5.0 mm, d B = 5.0 mm, L = 25.0 mm, Co AC = Co AO = Co BC = Co CC = 5.0% by mass, WC particles in part A The average particle size was 0.80 μm, and the average particle size of WC particles in part B was 0.80 μm.
 得られた焼結体に対して刃付け加工を施して、京セラ製4MFK型エンドミルを作製した。このとき刃長を変えた2種類の形状を作製した。そして、被削材:SUS304、加工径:φ8mm、切削形態:肩加工、加工速度:85m/分、回転数:3300回/分、送り:0.035mm/刃、切込深さ:5mm、切込み幅:3mm、湿式切削にて、エンドミルの切削を行ったところ、試料No.VII-13では、切削長40mであり、エンドミルの切刃状態も定常摩耗していた。これに対し、試料No.VII-14では、切削長24mであり、エンドミルの回転軸付近に欠損がみられた。 The obtained sintered body was subjected to blade processing to produce a 4MFK type end mill made by Kyocera. At this time, two types of shapes with different blade lengths were produced. And work material: SUS304, processing diameter: φ8mm, cutting form: shoulder processing, processing speed: 85m / min, rotation speed: 3300 times / min, feed: 0.035mm / blade, cutting depth: 5mm, cutting When the end mill was cut by a width: 3 mm, wet cutting, sample No. In VII-13, the cutting length was 40 m, and the state of the cutting edge of the end mill was also constantly worn. In contrast, sample no. In VII-14, the cutting length was 24 m, and defects were observed near the rotation axis of the end mill.
1  ドリル(切削工具)
2  ブランク(切削工具用ブランク)
 A部  第1端部
 B部  第2端部
3  シャンク
5  切刃
6  フルート部
7  首部
8  ボディ
11 第1領域
12 第2領域
13 第3領域
14 第4領域
15 突起部
 第1端部の直径
 第2端部の直径
 突起部の第1端Aと接する位置での直径
 成形体の下パンチ側の直径
 成形体の上パンチ側の直径
 成形体の生突起部の成形体下部と接する位置での直径
1 Drill (cutting tool)
2 Blank (blank for cutting tool)
A part 1st end part B part 2nd end part 3 shank 5 cutting edge 6 flute part 7 neck part 8 body 11 1st area | region 12 2nd area | region 13 3rd area | region 14 4th area | region 15 Protrusion part d A 1st edge part raw diameter d B the second end portion having a diameter d C protrusion first diameter D a molded body diameter D C compact of upper punch side of the lower punch side of the diameter D B molded body at a position in contact with the end a of Diameter at the position where the protrusion touches the bottom of the molded body

Claims (20)

  1.  WCとCoとを含有する超硬合金部を備え、
    該超硬合金部は、長尺状で、長手方向において、第1端部および第2端部を有し、
    前記第1端部におけるCo含有量CoACが前記第2端部におけるCo含有量CoBCよりも少ないとともに、
    前記第1端部側に1mm当たりのCo含有量の変化量が傾斜Sの第1領域と、
    前記第2端部側に1mm当たりのCo含有量の変化量が傾斜Sの第2領域とを有し、
    前記傾斜Sが前記傾斜Sよりも大きい棒状体。
    It has a cemented carbide part containing WC and Co,
    The cemented carbide portion is elongated and has a first end and a second end in the longitudinal direction;
    The Co content Co AC at the first end is less than the Co content Co BC at the second end,
    A first region where the amount of change in Co content per mm is inclined S 1 on the first end side;
    The amount of change in the Co content per 1mm on the second end side and a second region of the inclined S 2,
    Like body the inclined S 1 is greater than the slope S 2.
  2.  前記CoACが0.2質量%~7質量%、前記CoBCが2質量%~12質量%である請求項1記載の棒状体。 The rod-shaped body according to claim 1, wherein the Co AC is 0.2% by mass to 7% by mass and the Co BC is 2% by mass to 12% by mass.
  3.  前記CoACと前記CoBCとの比(CoAC/CoBC)が0.2~0.7である請求項1または2記載の棒状体。 The Co AC and the Co BC and the ratio (Co AC / Co BC) is rod-like body according to claim 1 or 2, wherein from 0.2 to 0.7.
  4.  前記第1端部における長手方向に垂直な方向の中心部のCo含有量が、前記第1端部における長手方向に垂直な方向の外周部のCo含有量よりも多い請求項1乃至3のいずれか記載の棒状体。 4. The Co content in the central portion in the direction perpendicular to the longitudinal direction at the first end portion is larger than the Co content in the outer peripheral portion in the direction perpendicular to the longitudinal direction at the first end portion. Or a rod-shaped body as described.
  5.  前記第1端部における長手方向に垂直な方向の外周部のCo含有量をCoAOとしたとき、前記CoAOが0.1質量%~6.5質量%であり、前記CoACに対する前記CoAOの比(CoAO/CoAC)が0.1~0.9である請求項4記載の棒状体。 When the Co content in the outer peripheral portion in the direction perpendicular to the longitudinal direction at the first end portion is Co AO , the Co AO is 0.1 mass% to 6.5 mass%, and the Co to the Co AC The rod-shaped body according to claim 4, wherein the ratio of AO (Co AO / Co AC ) is 0.1 to 0.9.
  6.  前記傾斜Sが0.2~1.0質量%/mmであり、前記傾斜Sが0~0.2質量%/mmである請求項1乃至5のいずれか記載の棒状体。 The inclined S 1 is 0.2 to 1.0 mass% / mm, the rod-like body according to any one of claims 1 to 5 wherein the inclination S 2 is from 0 to 0.2 mass% / mm.
  7.  前記第2領域と前記第1領域との間に、前記第1領域よりも傾斜が大きい傾斜Sの第3領域を有する請求項1乃至6のいずれか記載の棒状体。 Wherein between the second region and the first region, the rod-like body according to any one of claims 1 to 6 having a third region of the slope is greater slope S 3 than the first region.
  8.  前記傾斜Sが2~50質量%/mmである請求項7記載の棒状体。  Rod-like body according to claim 7, wherein the inclined S 3 is 2 to 50 mass% / mm.
  9.  前記第1領域の長手方向の長さLと第2領域の長手方向の長さLとの比(L/L)が、0.2~2である請求項1乃至6のいずれか記載の棒状体。 Any said longitudinal length of the first region L 1 and the ratio of the longitudinal length L 2 of the second region (L 1 / L 2) is, of claims 1 to 6 is 0.2 to 2 Or a rod-shaped body as described.
  10.  前記第1端部の直径をd、前記第2端部の直径をdとしたとき、前記d、前記dがともに2mm以下であるとともに、長手方向の長さをLとしたとき、前記dに対する長さLの比(L/d)が3以上である請求項1乃至9のいずれか記載の棒状体。 Diameter d A of the first end portion, when the diameter of the second end and the d B, the d A, wherein with d B is both 2mm or less, when the longitudinal length is L , the rod-like body according to any one of the d ratio of the length L to a claims 1 to 9 (L / d a) is 3 or more.
  11.  前記dと前記dとの比d/dが1.02~1.20である請求項1乃至10のいずれか記載の棒状体。 Rod-like body according to any one of claims 1 to 10 ratio d A / d B between the d A and the d B is from 1.02 to 1.20.
  12.  前記第1端部の端面である第1端面に突起部を有する請求項1乃至11のいずれか記載の棒状体。 The rod-shaped body according to any one of claims 1 to 11, further comprising a protrusion on a first end surface which is an end surface of the first end portion.
  13.  前記突起部におけるCo含有量は、前記第1端部におけるCo含有量よりも少ない請求項12記載の棒状体。 The rod-shaped body according to claim 12, wherein the Co content in the protrusion is less than the Co content in the first end.
  14.  前記第1端部における長手方向に垂直な方向の中心部のCo含有量をCoACとし、前記突起部の先端におけるCo含有量をCoCCとしたとき、前記CoCCが0.1質量%~6質量%であり、前記CoACに対する前記CoCCの比(CoCC/CoAC)が0.1~0.8である請求項13記載の棒状体。 When the Co content at the center of the first end portion in the direction perpendicular to the longitudinal direction is Co AC, and the Co content at the tip of the protrusion is Co CC , the Co CC is 0.1 mass% to 6 is the mass%, the rod-shaped body of claim 13 wherein the ratio of the Co CC for Co AC (Co CC / Co AC ) is 0.1 to 0.8.
  15.  前記突起部におけるCo含有量は、前記第1端部におけるCo含有量よりも多い請求項14記載の棒状体。 The rod-shaped body according to claim 14, wherein the Co content in the protrusion is greater than the Co content in the first end.
  16.  前記第1端部における長手方向に垂直な方向の中心部のCo含有量をCoACとし、前記突起部の先端におけるCo含有量をCoCCとしたとき、前記CoCCが3質量%~14質量%であり、前記CoACに対する前記CoCCの比(CoCC/CoAC)が1.2~3である請求項15記載の棒状体。 When the Co content at the center of the first end portion in the direction perpendicular to the longitudinal direction is Co AC and the Co content at the tip of the protrusion is Co CC , the Co CC is 3 mass% to 14 mass%. %, as described above, and said rod-shaped body of claim 15 wherein the ratio of the Co CC for Co AC (Co CC / Co AC ) is 1.2-3.
  17.  前記第1端部における直径をd、前記突起の前記第1端部と接する位置での直径をdとしたとき、前記dと前記dとの比(d/d)が0.5~0.9である請求項12乃至16のいずれか記載の棒状体。 Diameter d A at the first end, when the diameter at a position in contact with the first end of the projection and the d C, the ratio of the d C and the d A (d C / d A) is The rod-shaped body according to any one of claims 12 to 16, which is 0.5 to 0.9.
  18.  WCとCoとを含有する超硬合金部を備え、
    該超硬合金部は、長尺状で、長手方向において、少なくとも第1端部側に切刃を備えるとともに、第2端部側にシャンク部を備え、
    該超硬合金部は、長尺状で、長手方向において、第1端部および第2端部を有し、
    前記第1端部におけるCo含有量CoACが前記第2端部におけるCo含有量CoBCよりも少ないとともに、
    前記第1端部側に1mm当たりのCo含有量の変化量が傾斜Sの第1領域と、
    前記第2端部側に1mm当たりのCo含有量の変化量が傾斜Sの第2領域とを有し、
    前記傾斜Sが前記傾斜Sよりも大きい切削工具。 
    It has a cemented carbide part containing WC and Co,
    The cemented carbide portion is elongated and has a cutting edge at least on the first end side in the longitudinal direction, and a shank portion on the second end side,
    The cemented carbide portion is elongated and has a first end and a second end in the longitudinal direction;
    The Co content Co AC at the first end is less than the Co content Co BC at the second end,
    A first region where the amount of change in Co content per mm is inclined S 1 on the first end side;
    The amount of change in the Co content per 1mm on the second end side and a second region of the inclined S 2,
    The cutting tool greater than the slope S 1 is the slope S 2.
  19.  請求項1乃至17のいずれか記載の棒状体をランダムに接合装置内に投入する工程と、前記接合装置内にて前記棒状体の第1端部と第2端部を判別して、所定の方向に整列させる工程と、前記棒状体の前記第2端部をシャンクに当接させて接合する工程と、前記棒状体の前記第1端部を含む部位に刃付け加工を施す工程とを具備する切削工具の製造方法。 A step of randomly inserting the rod-shaped body according to any one of claims 1 to 17 into a joining apparatus, and determining a first end and a second end of the rod-shaped body within the joining apparatus, A step of aligning in a direction, a step of bringing the second end portion of the rod-shaped body into contact with a shank and joining, and a step of applying a blade process to a portion including the first end portion of the rod-shaped body. A method for manufacturing a cutting tool.
  20.  請求項14乃至17のいずれか記載の棒状体をランダムに接合装置内に投入する工程と、前記接合装置内にて前記突起部の有無の認識により前記棒状体を所定方向に整列させる工程と、前記棒状体の前記第2端部にシャンクを接合する工程と、前記棒状体の前記第1端部を含む部位に刃付け加工を施す工程とを具備する切削工具の製造方法。 A step of randomly inserting the rod-shaped body according to any one of claims 14 to 17 into a joining device, a step of aligning the rod-shaped body in a predetermined direction by recognizing the presence or absence of the protrusion in the joining device, A method for manufacturing a cutting tool, comprising: joining a shank to the second end portion of the rod-like body; and applying a blade process to a portion including the first end portion of the rod-like body.
PCT/JP2016/052324 2015-06-29 2016-01-27 Rod-like body and cutting tool WO2017002376A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017526189A JP6491333B2 (en) 2015-06-29 2016-01-27 Rod and cutting tool
US15/740,381 US10537946B2 (en) 2015-06-29 2016-01-27 Rod and cutting tool
CN201680038396.6A CN107683342B (en) 2015-06-29 2016-01-27 Clava and cutting element

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015-130004 2015-06-29
JP2015130004 2015-06-29
JP2015189048 2015-09-26
JP2015-189048 2015-09-26
JP2015229785 2015-11-25
JP2015-229785 2015-11-25

Publications (1)

Publication Number Publication Date
WO2017002376A1 true WO2017002376A1 (en) 2017-01-05

Family

ID=57608422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052324 WO2017002376A1 (en) 2015-06-29 2016-01-27 Rod-like body and cutting tool

Country Status (5)

Country Link
US (1) US10537946B2 (en)
JP (1) JP6491333B2 (en)
CN (1) CN107683342B (en)
TW (1) TWI621487B (en)
WO (1) WO2017002376A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022266417A1 (en) * 2021-06-18 2022-12-22 Apex Brands, Inc. Boring tool
TWI800394B (en) * 2021-12-23 2023-04-21 承昌鎢鋼製品有限公司 Composite metal punch

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004114202A (en) * 2002-09-25 2004-04-15 Sumitomo Electric Ind Ltd Fine machining tool

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101678475B (en) * 2007-06-22 2012-12-12 日立工具股份有限公司 Small-diameter deep hole drill and fine deep hole processing method
US8163232B2 (en) * 2008-10-28 2012-04-24 University Of Utah Research Foundation Method for making functionally graded cemented tungsten carbide with engineered hard surface
US8272816B2 (en) 2009-05-12 2012-09-25 TDY Industries, LLC Composite cemented carbide rotary cutting tools and rotary cutting tool blanks
JP5140142B2 (en) * 2010-11-22 2013-02-06 ユニオンツール株式会社 Drilling tool
CN104136165B (en) * 2012-02-28 2017-03-08 京瓷株式会社 Drill bit blank, the manufacture method of the manufacture method of drill bit blank, drill bit and drill bit
KR20160042049A (en) * 2013-09-30 2016-04-18 쿄세라 코포레이션 Cutting tool and method for manufacturing cut product using same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004114202A (en) * 2002-09-25 2004-04-15 Sumitomo Electric Ind Ltd Fine machining tool

Also Published As

Publication number Publication date
JP6491333B2 (en) 2019-03-27
US20180193927A1 (en) 2018-07-12
JPWO2017002376A1 (en) 2018-04-12
TWI621487B (en) 2018-04-21
CN107683342A (en) 2018-02-09
CN107683342B (en) 2019-07-02
US10537946B2 (en) 2020-01-21
TW201700200A (en) 2017-01-01

Similar Documents

Publication Publication Date Title
JP6608945B2 (en) Rod and cutting tool
US10625349B2 (en) Cubic boron nitride cutting tool
KR101733964B1 (en) Drill blank, manufacturing method for drill blank, drill, and manufacturing method for drill
US20120093597A1 (en) Cemented Carbide Tools
JP6491333B2 (en) Rod and cutting tool
US20090321145A1 (en) Threaded nozzle for a cutter bit
US9296073B2 (en) Method of making a bit for a rotary drill
JP6437828B2 (en) CUTTING TOOL BLANK, CUTTING TOOL BLANK MANUFACTURING METHOD, CUTTING TOOL, AND CUTTING TOOL MANUFACTURING METHOD
JP6608941B2 (en) Rod and cutting tool
JP2008238354A (en) Drill and cutting method
JP6339436B2 (en) Drill blank, drill blank manufacturing method, and drill
JP5312095B2 (en) Cutting tools
EP3378587B1 (en) Tool
JP5734108B2 (en) Drill blanks and drills
CN108883474B (en) Cutting insert and cutting tool
JP4794163B2 (en) Method for manufacturing throw-away tip
JP7327864B1 (en) Precision nozzle and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817486

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017526189

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16817486

Country of ref document: EP

Kind code of ref document: A1