WO2017002269A1 - Base station, relay device, mobile-object communication system, and delay correction method - Google Patents

Base station, relay device, mobile-object communication system, and delay correction method Download PDF

Info

Publication number
WO2017002269A1
WO2017002269A1 PCT/JP2015/069199 JP2015069199W WO2017002269A1 WO 2017002269 A1 WO2017002269 A1 WO 2017002269A1 JP 2015069199 W JP2015069199 W JP 2015069199W WO 2017002269 A1 WO2017002269 A1 WO 2017002269A1
Authority
WO
WIPO (PCT)
Prior art keywords
delay
unit
downlink
transmission
uplink
Prior art date
Application number
PCT/JP2015/069199
Other languages
French (fr)
Japanese (ja)
Inventor
平野 幸男
隆志 西谷
健一 名倉
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017525781A priority Critical patent/JP6362779B2/en
Priority to PCT/JP2015/069199 priority patent/WO2017002269A1/en
Publication of WO2017002269A1 publication Critical patent/WO2017002269A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present invention relates to a base station, a repeater, a mobile communication system, and a delay correction method that perform wireless communication with a moving terminal.
  • Patent Document 1 As a countermeasure, in Patent Document 1, one base station transmits the same signal to a plurality of slave stations installed along a moving path of a mobile body via an optical fiber, and the plurality of slave stations transmit the same radio signal. Is disclosed that operates so that a plurality of communication areas formed by a plurality of slave stations become one communication area formed along a movement path. Thereby, the communication area which one base station can cover can be expanded. When a mobile unit transmits a signal in a place where the communication areas of each slave station overlap, the base station will have different propagation delay times for signals from each slave station if there is a difference in the optical fiber length connecting the slave station and the base station. Each other's signals interfere. As a countermeasure, Patent Document 1 includes a delay corrector that adjusts the optical fiber length to make the propagation delay time from each slave station to the base station uniform, and reduces the difference in propagation delay time.
  • the propagation delay is made uniform by adjusting the optical fiber length.
  • the propagation delay time of the optical fiber is about 5 ns / m, communication with a data width of one symbol of 10 ns,
  • the optical fiber length is adjusted with an accuracy of ⁇ 2 m. Since the base station is not necessarily placed in the vicinity of the communication area, it is possible to use an optical fiber exceeding 10 km. Therefore, there has been a problem that adjustment with a high accuracy of 0.02% with respect to the entire length of the optical fiber is required.
  • the propagation delay of the optical signal is made uniform by the optical fiber, but the propagation delay of the radio signal in the radio communication section between the slave station and the mobile body is not taken into consideration. Therefore, there is a problem that the influence of the interference wave cannot be avoided.
  • the present invention has been made in view of the above, and when connecting with a plurality of repeaters via an optical fiber, the length of the optical fiber between each repeater is not aligned with high accuracy, It is an object of the present invention to obtain a base station that makes the propagation delay uniform in communication with a terminal via each repeater and can avoid the influence of interference waves.
  • the base station of the present invention is connected to a plurality of relay devices that are arranged along the movement path of the terminal and performs wireless communication with the terminal, and A base station that performs communication.
  • the base station includes the same number of transmission / reception units that communicate with each other by connecting to one repeater.
  • Each transmission / reception unit includes a frame generation unit that generates a downlink transmission frame to be transmitted to the repeater.
  • Each transmission / reception unit includes a frame termination unit that detects an uplink transmission frame transmitted from the repeater.
  • Each transmitting / receiving unit measures delay generated in communication between the own transmitting / receiving unit and the relay connected to the own transmitting / receiving unit, and information on delay generated in communication between the relay connected to the own transmitting / receiving unit and the terminal. And a delay measurement unit that acquires information on a delay time allowed in communication between the base station and the terminal and holds the acquired information.
  • Each transmission / reception unit calculates a downlink delay correction time using the delay information held by the delay measurement unit, and uses a downlink delay correction unit that delays wireless data stored in the downlink transmission frame using the downlink delay correction time.
  • Each transmission / reception unit calculates an uplink delay correction time using the delay information held by the delay measurement unit, and uses the uplink delay correction time to delay the radio data stored in the uplink transmission frame. It is characterized by providing.
  • the base station according to the present invention When the base station according to the present invention is connected to a plurality of repeaters via optical fibers, the length of the optical fiber between each repeater is not adjusted with high accuracy, and the terminal passes through each repeater. In the communication with this, it is possible to make the propagation delay uniform and to avoid the influence of the interference wave.
  • Block diagram showing configuration example of base station Block diagram showing a configuration example of a repeater Flow chart showing delay correction processing of base station
  • the figure which shows the method in which a base station calculates the round-trip delay time between repeaters A flowchart showing the operation of the frame generation unit of the transmission / reception unit Flow chart showing the operation of the frame end of the repeater Flow chart showing the operation of the frame generator of the repeater
  • a flowchart showing the operation of the frame termination unit of the transmission / reception unit Flowchart showing the operation of the delay measurement unit calculating the downlink one-way delay time and the uplink one-way delay time
  • Flowchart showing the operation of the delay measurement unit calculating the radio propagation delay time difference Flowchart showing an operation in which the delay measurement unit acquires information on the designated downlink delay time and the designated uplink delay time
  • Timing chart of radio data until the uplink delay correction processing of the base station transceiver unit and the base station selection unit receive the radio data The flowchart which shows the operation
  • FIG. 1 is a diagram showing a configuration example of a mobile communication system 7 according to an embodiment of the present invention.
  • the mobile communication system 7 includes a base station 1 that is a master station and repeaters 2a, 2b, 2c, and 2d that are slave stations.
  • the base station 1 is connected to the repeaters 2a, 2b, 2c, 2d via optical fibers 3a, 3b, 3c, 3d.
  • the base station 1 communicates with a terminal 4 that is a moving body via optical fibers 3a to 3d and repeaters 2a to 2d.
  • Relay units 2 a to 2 d arranged along the movement path of terminal 4 relay communication between base station 1 and terminal 4.
  • the repeaters 2a to 2d perform optical communication with the base station 1 through the optical fibers 3a to 3d, and perform wireless communication with the terminal 4.
  • the terminal 4 moves on a known moving route in advance, such as a train moving on a track or an automobile moving on a road.
  • the relay machine 2a communicates with the terminal 4 within the communication area 5a.
  • the repeater 2b communicates with the terminal 4 within the communication area 5b.
  • the repeater 2c communicates with the terminal 4 within the communication area 5c.
  • the repeater 2d communicates with the terminal 4 within the communication area 5d.
  • the interference area 6ab is an area where the communication area 5a and the communication area 5b overlap with each other, and the repeaters 2a and 2b can communicate with the terminal 4.
  • the interference area 6bc is an area where the communication area 5b and the communication area 5c overlap with each other, and the repeaters 2b and 2c can communicate with the terminal 4.
  • the interference area 6cd is an area in which the communication area 5c and the communication area 5d overlap with each other, and is an area where the repeaters 2c and 2d can communicate with the terminal 4.
  • the mobile communication system 7 can provide a wide linear communication area to the terminal 4 by using a plurality of relay units 2a to 2d.
  • the repeaters 2a to 2d include an antenna 25.
  • the relay devices 2a to 2d when the relay devices 2a to 2d are not distinguished, they are referred to as the relay device 2, when the optical fibers 3a to 3d are not distinguished, they are referred to as the optical fiber 3, and when the communication areas 5a to 5d are not distinguished, the communication area 5 is referred to.
  • the interference areas 6ab, 6bc, and 6cd are not distinguished, they are referred to as the interference area 6.
  • FIG. 2 is a block diagram showing a configuration example of the base station 1 according to the present embodiment.
  • the base station 1 includes transmission / reception units 11a, 11b, 11c, and 11d, a modulation unit 12, a demodulation unit 13, and a selection unit 14.
  • the transmission / reception units 11a to 11d respectively include a downlink delay correction unit 111, a frame generation unit 112, a delay measurement unit 113, an E / O (Electrical to Optical) unit 114, and an O / E (Optical to Electrical).
  • Unit 115, frame termination unit 116, and uplink delay correction unit 117 Although omitted in FIG.
  • the base station 1 includes the same number of transmission / reception units 11a to 11d as the repeaters 2a to 2d.
  • the transmission / reception units 11a to 11d are each connected to one repeater 2. Specifically, the transmitter / receiver 11a is connected to the repeater 2a via the optical fiber 3a, the transmitter / receiver 11b is connected to the repeater 2b via the optical fiber 3b, and the transmitter / receiver 11c is connected to the repeater via the optical fiber 3c.
  • the transmitter / receiver 11d is connected to the repeater 2d via the optical fiber 3d.
  • the transmission / reception units 11a to 11d are not distinguished, they are referred to as the transmission / reception unit 11.
  • Each transmitting / receiving unit 11 and each repeater 2 are connected in a one-to-one correspondence.
  • the modulation unit 12 generates digitized wireless data and outputs it to the transmission / reception units 11a to 11d.
  • the demodulator 13 demodulates the radio data input from the selector 14.
  • the modulation unit 12 and the demodulation unit 13 are configured by a modem, for example.
  • the selection unit 14 outputs the wireless data input from the transmission / reception units 11a to 11d to the demodulation unit 13.
  • the selection unit 14 may select and output one wireless data, or may combine and output a plurality of wireless data. May be.
  • the selection unit 14 is configured by, for example, a switch circuit or a synthesis circuit.
  • the transmission / reception units 11a to 11d perform a downlink delay correction process on the radio data input from the modulation unit 12, convert a transmission frame including the radio data from an electric signal to an optical signal, and repeaters via the optical fibers 3a to 3d Send to 2a-2d. Further, the transmission / reception units 11a to 11d convert optical signals received from the repeaters 2a to 2d through the optical fibers 3a to 3d into electric signals, and perform uplink delay correction processing on the wireless data extracted from the detected transmission frames. To the selection unit 14.
  • the downlink delay correction unit 111 performs downlink delay correction processing on the wireless data input from the modulation unit 12 and outputs the result to the frame generation unit 112.
  • the downlink delay correction unit 111 calculates the downlink delay correction time using the delay information held by the delay measurement unit 113, and uses the downlink delay correction time to convert the radio data stored in the downlink RoF (Radio on Fiber) frame. Delay.
  • the downlink RoF frame is a downlink transmission frame used in wireless communication using an optical fiber as a part of a communication path. Detailed operation will be described later.
  • the frame generation unit 112 generates a downlink RoF frame to be transmitted to the relay device 2 and outputs it to the E / O unit 114.
  • the downlink RoF frame is composed of a synchronization pattern, a header, and a payload.
  • the frame generation unit 112 stores the wireless data in the payload of the downlink RoF frame.
  • the delay measuring unit 113 measures a round trip time RTT (Round Trip Time) from the transmission of the downlink RoF frame from the transmission / reception unit 11 to the reception of the uplink RoF frame from the repeater 2.
  • the uplink RoF frame is an uplink transmission frame used in wireless communication using an optical fiber as a part of the communication path.
  • the delay measurement unit 113 measures the delay generated in communication between the transmission / reception unit 11 and the relay 2 connected to the transmission / reception unit 11, thereby generating the communication between the transmission / reception unit 11 and the relay 2 connected to the transmission / reception unit 11.
  • Information on the delay to be transmitted information on the delay generated in the communication between the repeater 2 connected to the transmitter / receiver 11 and the terminal 4, and information on the delay time allowed in the communication between the base station 1 and the terminal 4 And retain the acquired information. Detailed operation will be described later.
  • the E / O unit 114 converts the downlink RoF frame of the electrical signal input from the frame generation unit 112 into an optical signal and transmits the optical signal to the repeater 2.
  • the E / O unit 114 is configured by, for example, an electro-optical conversion circuit.
  • the O / E unit 115 converts the optical signal received from the repeater 2 into an electrical signal and outputs the electrical signal to the frame termination unit 116.
  • the O / E unit 115 is configured by, for example, a photoelectric conversion circuit.
  • the frame termination unit 116 detects an uplink RoF frame by detecting a synchronization pattern from the electrical signal. In addition, the frame termination unit 116 confirms the header of the uplink RoF frame, extracts radio data when the radio data is stored in the payload of the uplink RoF frame, and outputs the radio data to the uplink delay correction unit 117.
  • the uplink delay correction unit 117 performs an uplink delay correction process on the radio data input from the frame termination unit 116 and outputs the result to the selection unit 14.
  • the uplink delay correction unit 117 calculates the uplink delay correction time using the delay information held by the delay measurement unit 113, and delays the radio data stored in the uplink RoF frame using the uplink delay correction time. Detailed operation will be described later.
  • FIG. 3 is a block diagram showing a configuration example of the repeater 2a according to the present embodiment. Since the repeaters 2a to 2d have the same configuration, the repeater 2a will be described as an example.
  • the repeater 2a includes an O / E unit 21, a frame termination unit 22, a D / A (Digital to Analog) unit 23, an RF (Radio Frequency) transmission front end 24, an antenna 25, and an RF reception front end 26. And an A / D (Analog to Digital) unit 27, a frame generation unit 28, and an E / O unit 29.
  • the O / E unit 21 converts the optical signal received from the base station 1 into an electrical signal and outputs the electrical signal to the frame termination unit 22.
  • the O / E unit 21 is configured by, for example, a photoelectric conversion circuit.
  • the frame termination unit 22 detects the downlink RoF frame by detecting the synchronization pattern from the electric signal. Also, the frame termination unit 22 confirms the header of the downlink RoF frame, and if the wireless data is included in the payload of the downlink RoF frame, extracts the radio data and outputs it to the D / A unit 23. Further, the frame termination unit 22 notifies the frame generation unit 28 of the timing at which the synchronization pattern of the downlink RoF frame transmitted from the base station 1 is detected.
  • the D / A unit 23 converts the digital signal wireless data into analog signal wireless data.
  • the D / A unit 23 is configured by, for example, a digital / analog conversion circuit.
  • the RF transmission front end 24 performs processing such as encoding and modulation on the wireless data of the analog signal, generates a wireless signal that is a signal in the wireless communication section of the wireless data, and wirelessly transmits to the communication area via the antenna 25. Radiates a signal.
  • the RF transmission front end 24 is constituted by an interface card for wireless signal transmission, for example.
  • the antenna 25 transmits and receives radio signals to and from the terminal 4.
  • the antenna 25 is configured by a directional antenna element, for example.
  • the RF reception front end 26 outputs to the A / D unit 27 wireless data obtained by performing processing such as demodulation and decoding on the wireless signal received via the antenna 25.
  • the RF reception front end 26 is configured by, for example, an interface card for wireless signal reception.
  • the A / D unit 27 converts the wireless data of the analog signal into the wireless data of the digital signal.
  • the A / D unit 27 is configured by an analog-digital conversion circuit, for example.
  • the frame generation unit 28 generates an uplink RoF frame composed of a synchronization pattern, a header, and a payload, and outputs it to the E / O unit 29.
  • the frame generation unit 28 stores the wireless data in the payload of the uplink RoF frame. Further, the frame generation unit 28 generates an uplink RoF frame at the timing notified from the frame termination unit 22.
  • the E / O unit 29 converts the uplink RoF frame of the electrical signal input from the frame generation unit 28 into an optical signal and transmits it to the base station 1.
  • the E / O unit 29 is configured by, for example, an electro-optical conversion circuit.
  • FIG. 4 is a flowchart showing the delay correction process of the base station 1 according to this embodiment.
  • each of the delay measurement units 113 of the transmission / reception units 11a to 11d of the base station 1 performs downlink delay correction times DTa to DTd for radio data transmitted to the repeaters 2a to 2d in the downlink delay correction processing and the uplink delay correction processing, and Delay information necessary to calculate the uplink delay correction times UTa to UTd for the radio data received from the repeaters 2a to 2d is acquired (step S1).
  • the delay information necessary for calculating the downlink delay correction times DTa to DTd and the uplink delay correction times UTa to UTd includes the downlink one-way delay times DLa to DLd, the uplink one-way delay times ULa to ULd, the radio propagation delay time difference, and the designated downlink Delay time Ddn and designated upstream delay time Dup.
  • the downlink one-way delay times DLa to DLd are delay times generated in downlink communication from the transmission / reception units 11a to 11d to the repeaters 2a to 2d.
  • Upward one-way delay times ULa to ULd are delay times generated in upstream communication from the repeaters 2a to 2d to the transmission / reception units 11a to 11d.
  • the difference in radio propagation delay time is the difference between the radio propagation delay time when a radio signal is transmitted from a certain relay station 2 to the terminal 4 and the radio propagation delay time when a radio signal is transmitted from the reference relay station 2 to the terminal 4 It is.
  • the designated downlink delay time Ddn is a time allowed for downlink communication from the base station 1 to the terminal 4.
  • the designated uplink delay time Dup is a time allowed for uplink communication from the terminal 4 to the base station 1.
  • the delay measurement unit 113 of the transmission / reception units 11a to 11d of the base station 1 calculates the downlink one-way delay times DLa to DLd and the uplink one-way delay times ULa to ULd.
  • An operation for measuring the round-trip delay times RTTa to RTTd between the repeaters 2a to 2d necessary for the above will be described.
  • the delay measurement unit 113 of the transmission / reception unit 11a of the base station 1 measures the round-trip delay time RTTa between the transmission / reception unit 11a and the repeater 2a connected to the transmission / reception unit 11a.
  • FIG. 5 is a diagram illustrating a method in which the base station 1 according to the present embodiment calculates the round-trip delay time RTTa with the repeater 2a.
  • the frame generation unit 112 In the transmission / reception unit 11a of the base station 1, the frame generation unit 112 generates a downlink RoF frame. As shown in FIG. 5, the frame generation unit 112 generates a downlink RoF frame composed of a synchronization pattern of a known bit arrangement located at the head, a header that stores a control signal, and a payload that stores wireless data. Generate. Here, the frame generation unit 112 does not include valid wireless data in the payload.
  • FIG. 6 is a flowchart showing the operation of the frame generation unit 112 of the transmission / reception unit 11a according to this embodiment.
  • the frame generation unit 112 When generating the downlink RoF frame (step S11), the frame generation unit 112 notifies the delay measurement unit 113 of the start timing of the synchronization pattern of the generated downlink RoF frame (step S12).
  • the delay measurement unit 113 stores the timing notified from the frame generation unit 112.
  • the frame generation unit 112 outputs the generated downlink RoF frame to the E / O unit 114.
  • the E / O unit 114 converts the downlink RoF frame generated by the frame generation unit 112 into an optical signal and transmits the optical signal to the repeater 2a via the optical fiber 3a.
  • the repeater 2a receives the downstream RoF frame of the optical signal delayed from the transmission delay by the optical fiber 3a after being transmitted from the base station 1.
  • the O / E unit 21 converts the optical signal received from the base station 1 through the optical fiber 3a into an electrical signal and outputs the electrical signal to the frame termination unit 22.
  • FIG. 7 is a flowchart showing the operation of the frame termination unit 22 of the repeater 2a according to this embodiment.
  • the frame termination unit 22 detects a downlink RoF frame starting from the synchronization pattern by detecting a synchronization pattern having a known bit arrangement from the electrical signal (step S21).
  • the frame end unit 22 notifies the frame generation unit 28 of the timing at which the synchronization pattern of the downlink RoF frame is detected (step S22).
  • FIG. 8 is a flowchart showing the operation of the frame generation unit 28 of the repeater 2a according to the present embodiment.
  • the frame generation unit 28 receives a notification of the detection timing of the synchronization pattern of the downlink RoF frame from the frame end unit 22 (step S31).
  • the frame generation unit 28 in synchronization with the detection timing of the synchronization pattern of the downlink RoF frame, starts with the notified detection timing, a synchronization pattern of a known bit arrangement located at the head, a header storing a control signal, a wireless An uplink RoF frame composed of a payload for storing data is generated (step S 32) and output to the E / O unit 29.
  • the E / O unit 29 converts the uplink RoF frame generated by the frame generation unit 28 into an optical signal and transmits the optical signal to the base station 1 via the optical fiber 3a.
  • the base station 1 receives the upstream RoF frame of the optical signal after being transmitted from the repeater 2a and delayed by the propagation delay by the optical fiber 3a.
  • the O / E unit 115 converts the optical signal received from the repeater 2 a through the optical fiber 3 a into an electrical signal and outputs the electrical signal to the frame termination unit 116.
  • FIG. 9 is a flowchart showing the operation of the frame termination unit 116 of the transmission / reception unit 11a according to the present embodiment.
  • the frame termination unit 116 detects an uplink RoF frame starting from the synchronization pattern by detecting a synchronization pattern having a known bit arrangement from the electrical signal (step S41).
  • the frame termination unit 116 notifies the delay measurement unit 113 of the timing at which the synchronization pattern of the uplink RoF frame is detected (step S42).
  • FIG. 10 is a flowchart showing an operation in which the delay measurement unit 113 according to the present embodiment calculates the downlink one-way delay time DL and the uplink one-way delay time UL.
  • the delay measurement unit 113 receives a notification of the start timing of the synchronization pattern of the downlink RoF frame from the frame generation unit 112 (step S51), and receives a notification of the detection timing of the synchronization pattern of the uplink RoF frame from the frame termination unit 116 (step S52). ).
  • the delay measurement unit 113 determines the round-trip delay time between the transmission / reception unit 11a and the repeater 2a connected to the transmission / reception unit 11a from the difference between the detection timing of the synchronization pattern of the uplink RoF frame and the start timing of the synchronization pattern of the downlink RoF frame.
  • RTTa is calculated (step S53).
  • the delay measuring unit 113 calculates a downlink one-way delay time DLa, which is a delay time of radio data transmitted from the base station 1 to the repeater 2a, from the calculated round-trip delay time RTTa (step S54), and repeater 2a.
  • the delay measuring unit 113 is configured so that the downlink one-way delay time DLa and the uplink one-way delay time ULa are round-trip delays. It can be calculated as 1/2 of the time RTTa.
  • the delay measurement unit 113 includes, for example, an optical fiber 3a formed of a single core, and uses a WDM (Wavelength Division Multiplex) coupler to make the transmission wavelength of the base station 1 different from the transmission wavelength of the repeater 2a.
  • WDM Widelength Division Multiplex
  • ITU International Telecommunication Union
  • FIG. 1 it is possible to calculate the downlink one-way delay time DLa and the uplink one-way delay time ULa by multiplying the round-trip delay time RTTa by a value including propagation delays that differ depending on the uplink and downlink wavelengths.
  • the value that takes into account propagation delays that differ depending on the upstream and downstream wavelengths is a value close to 1 ⁇ 2.
  • the delay measurement unit 113 of the transmission / reception unit 11b calculates the round trip delay time RTTb between the transmission / reception unit 11b and the repeater 2b, and the downlink one-way delay time DLb and the uplink one-way delay time ULb. Is calculated.
  • the delay measurement unit 113 of the transmission / reception unit 11c calculates the round trip delay time RTTc between the transmission / reception unit 11c and the repeater 2c, and calculates the downlink one-way delay time DLc and the uplink one-way delay time ULc.
  • the delay measurement unit 113 of the transmission / reception unit 11d calculates a round trip delay time RTTd between the transmission / reception unit 11d and the repeater 2d, and calculates a downlink one-way delay time DLd and an uplink one-way delay time ULd.
  • FIG. 11 is a flowchart showing an operation in which the delay measurement unit 113 according to the present embodiment calculates the radio propagation delay time difference.
  • the operation in which the delay measurement unit 113 of the transmission / reception unit 11b calculates the radio propagation delay time difference Dba of the repeater 2b with reference to the repeater 2a in FIG. 1 will be described.
  • the radio propagation delay time difference Dba is the difference between the radio propagation delay time of the radio signal from the repeater 2b to the terminal 4 connected to the transceiver 11b and the radio propagation delay time of the radio signal from the reference repeater 2a to the terminal 4. It is a difference.
  • the delay measurement unit 113 of the transmission / reception unit 11b receives input of information from an operator of the mobile communication system 7 and acquires the positional information of the relay device 2a and the relay device 2b (step S61).
  • the delay measurement unit 113 of the transmission / reception unit 11b assumes, for example, that the terminal 4 is at the center of the interference area 6ab of the communication area 5a of the relay 2a and the communication area 5b of the relay 2b, and the center of the interference area 6ab. Get location information.
  • the delay measurement unit 113 of the transmission / reception unit 11b may acquire the position information of the center of the interference area 6ab by receiving input of information from an operator of the mobile communication system 7 or the like, or the relay units 2a and 2b. You may calculate based on the positional information and the information on the movement route of the terminal 4.
  • the delay measuring unit 113 of the transmission / reception unit 11b uses the position information of the relays 2a and 2b and the information on the center position of the interference area 6ab to determine the distance Laba between the relay 2a and the center position of the interference area 6ab and the relay 2b. A distance Labb from the center position of the interference area 6ab is calculated (step S62).
  • a radio propagation delay time difference Dba which is a difference from the propagation time until the terminal 4 is reached, can be expressed by Expression (1).
  • c is the speed of light in the air.
  • the radio propagation delay time Dba can take either positive or negative sign.
  • the delay measurement unit 113 of the transmission / reception unit 11b calculates the radio propagation delay time difference Dba from the equation (1) (step S63).
  • the delay measurement unit 113 of the transmission / reception unit 11c of the base station 1 acquires the position information of the repeaters 2b and 2c
  • the delay measurement unit 113 of the communication area 5b of the repeater 2b and the interference area 6bc of the communication area 5c of the repeater 2c acquires the position information of the repeaters 2b and 2c
  • the delay measurement unit 113 of the communication area 5b of the repeater 2b and the interference area 6bc of the communication area 5c of the repeater 2c are calculated.
  • the radio propagation delay time difference Dcb of the repeater 2c with respect to the repeater 2b is calculated.
  • the delay measuring unit 113 of the transmission / reception unit 11d of the base station 1 acquires the position information of the repeaters 2c and 2d
  • the center of the interference area 6cd of the communication area 5c of the repeater 2c and the communication area 5d of the repeater 2d acquires the position information of the repeaters 2c and 2d
  • the distances Lcdc and Lcdd between the terminal 4 and the relays 2c and 2d are calculated, and the radio propagation delay time difference Ddc of the relay 2d with respect to the relay 2c is calculated.
  • the interference area 6 is not affected by the influence of the non-adjacent repeater 2, that is, interference, the radio propagation delay times Dba, Dcb, and Ddc have no correlation.
  • the repeaters 2a to 2d communicate with the terminal 4 using the antenna 25 having high directivity.
  • the terminal 4 is used using the antenna 25 having high directivity in the left direction.
  • the radio propagation delay time difference can be obtained from the distance information between the repeaters 2 along the communication area 5.
  • the delay measurement unit 113 of the transmission / reception units 11a to 11d uses the position information of the relay 2 connected to each transmission / reception unit 11 and the reference relay 2 to connect the relay 2 connected to each transmission / reception unit 11.
  • a radio propagation delay time difference that is a difference between the radio propagation delay time of the radio signal from the terminal 4 to the terminal 4 and the radio propagation delay time of the radio signal from the reference relay 2 to the terminal 4 can be calculated.
  • the delay measuring unit 113 of the transmission / reception unit 11d uses the position information of the relay 2d connected to the transmission / reception unit 11d and the reference relay 2a to the terminal 4 from the relay 2d connected to the transmission / reception unit 11d.
  • the radio propagation delay time difference Dda which is the difference between the radio propagation delay time of the radio signal and the radio propagation delay time of the radio signal from the reference relay 2a to the terminal 4, can be calculated.
  • the base station 1 does not calculate the information on each radio propagation delay time difference, and the operator of the mobile communication system 7 calculates each radio propagation delay time difference when installing the repeaters 2a to 2d.
  • Information on each radio propagation delay time difference may be set in the delay correction unit 113 of each of the transmission / reception units 11a to 11d. Even when the operator of the mobile communication system 7 calculates each radio propagation delay time difference, the above equation (1) is used for the calculation.
  • each delay measurement unit 113 of the transmission / reception units 11a to 11d of the base station 1 acquires information on the designated downlink delay time Ddn and the designated uplink delay time Dup.
  • FIG. 12 is a flowchart showing an operation in which the delay measurement unit 113 according to the present embodiment acquires information on the designated downlink delay time Ddn and the designated uplink delay time Dup.
  • Each of the delay measurement units 113 of the transmission / reception units 11a to 11d of the base station 1 has a specified downlink delay time Ddn allowed in the downlink communication of the mobile communication system 7 according to the setting of the operator of the mobile communication system 7 or the like.
  • the designated downlink delay time Ddn can be, for example, the maximum downlink delay time allowed in the mobile communication system 7, but is not limited thereto.
  • the designated uplink delay time Dup can be, for example, the maximum delay time in the uplink direction allowed in the mobile communication system 7, but is not limited thereto.
  • the delay measurement unit 113 of the transmission / reception units 11a to 11d of the base station 1 completes the process of step S1 shown in FIG.
  • the base station 1 performs delay correction processing by calculating the delay correction time used in downlink and uplink communication using the delay information acquired in the process of step S1. First, downlink delay correction processing in downlink communication will be described.
  • the base station 1 calculates downlink delay correction times DTa to DTd in the downlink direction when wireless data is transmitted to the terminal 4 via the repeaters 2a to 2d (step S2).
  • the base station 1 uses the designated downlink delay time Ddn, radio propagation delay time differences Ddc, Dcb, Dba, and downlink one-way delay times DLa to DLd acquired in the process of step S1, to calculate the downlink delay correction times DTa to DTd. calculate.
  • the downlink delay correction unit 111 of the transmission / reception unit 11a of the base station 1 stores the delay information acquired in the process of step S1 held in the delay measurement unit 113, that is, the specified downlink delay time Ddn, and the downlink piece.
  • the downlink delay correction time DTa for the radio data to be transmitted to the repeater 2a is calculated from Equation (2).
  • the downlink delay correction unit 111 of the transmission / reception unit 11b of the base station 1 stores the delay information acquired in the processing of step S1 held in the delay measurement unit 113, that is, the specified downlink delay time Ddn and the radio propagation delay time difference Dba.
  • the downlink one-way delay time DLb, the downlink delay correction time DTb for the radio data transmitted to the repeater 2b is calculated from Equation (3).
  • the downlink delay correction unit 111 of the transmission / reception unit 11c of the base station 1 stores the delay information acquired in the processing of the above-described step S1 held in the delay measurement unit 113, that is, the designated downlink delay time Ddn and the radio propagation delay time Dcb. , Dba and the downlink one-way delay time DLc, the downlink delay correction time DTc for the radio data transmitted to the repeater 2c is calculated from the equation (4).
  • Expression (4) can be expressed as Expression (4 ′).
  • the downlink delay correction unit 111 of the transmission / reception unit 11d of the base station 1 stores the delay information acquired in the processing of step S1 held in the delay measurement unit 113, that is, the specified downlink delay time Ddn and the radio propagation delay time difference Ddc. , Dcb, Dba and the downlink one-way delay time DLd, the downlink delay correction time DTd for the radio data transmitted to the repeater 2d is calculated from the equation (5).
  • Expression (5) can be expressed as Expression (5 ′).
  • FIG. 13 is a diagram illustrating a downlink delay correction process of the transmission / reception units 11a and 11b of the base station 1 according to the present embodiment and a timing chart of radio data until the terminal 4 receives a radio signal.
  • the operations of the transceiver units 11a and 11b, the repeaters 2a and 2b, and the terminal 4 of the base station 1 will be mainly described.
  • the modulation unit 12 of the base station 1 generates radio data digitized for the terminal 4 and distributes the same radio data to the transmission / reception units 11a to 11d.
  • the downlink delay correction unit 111 performs a downlink delay correction process in which the delay of the downlink delay correction time DTa calculated from the equation (2) is added to the wireless data received from the modulation unit 12 (step S3).
  • the downlink delay correction unit 111 delays the radio data by the downlink delay correction time DTa and outputs the delayed data to the frame generation unit 112.
  • the frame generation unit 112 stores the wireless data subjected to the downlink delay correction processing by the downlink delay correction unit 111 in the payload of the downlink RoF frame, stores a control signal including information on the storage position of the payload in the header, and outputs it.
  • the E / O unit 113 converts the downlink RoF frame into an optical signal and transmits the optical signal to the repeater 2a through the optical fiber 3a.
  • the downlink delay correction unit 111 performs a downlink delay correction process in which the delay of the downlink delay correction time DTb calculated by the equation (3) is added to the wireless data received from the modulation unit 12 (step) S3).
  • the downlink delay correction unit 111 delays the wireless data by the downlink delay correction time DTb and outputs the data to the frame generation unit 112.
  • the frame generation unit 112 stores the wireless data subjected to the downlink delay correction processing by the delay correction unit 111 in the payload of the downlink RoF frame, stores a control signal including information on the storage position of the payload in the header, and outputs it.
  • the E / O unit 113 converts the downstream RoF frame into an optical signal and transmits the optical signal to the repeater 2b via the optical fiber 3b.
  • the base station 1 transmits wireless data having different delay correction times from the transmission / reception units 11a and 11b via the optical fibers 3a and 3b having different lengths.
  • the repeater 2a transmits the downlink RoF frame delayed by the downlink one-way delay time DLa from the transmission timing of the transmission / reception unit 11a, that is, the downlink one-way delay time DLa subjected to the downlink delay correction processing by the downlink delay correction unit 111 of the transmission / reception unit 11a.
  • the downlink RoF frame in which the delay is canceled is received.
  • the O / E unit 21 of the repeater 2a converts the received optical signal into an electrical signal.
  • the frame termination unit 22 detects a downlink RoF frame by detecting a synchronization pattern from the electrical signal, and extracts wireless data based on control information stored in the header.
  • the D / A unit 23 converts the wireless data of the digital signal into the wireless data of the analog signal.
  • the RF transmission front end 24 performs processing such as encoding and modulation on the wireless data of the analog signal to generate a wireless signal, and radiates the wireless signal from the antenna 25.
  • the repeater 2b receives the downlink RoF frame delayed by the downlink one-way delay time DLb from the transmission timing of the transmission / reception unit 11b, that is, the downlink one-way delay subjected to the downlink delay correction processing by the downlink delay correction unit 111 of the transmission / reception unit 11b.
  • a downlink RoF frame in which the delay of time DLb is canceled is received.
  • the O / E unit 21 of the repeater 2b converts the received optical signal into an electrical signal.
  • the frame termination unit 22 detects a downlink RoF frame by detecting a synchronization pattern from the electrical signal, and extracts wireless data based on control information stored in the header.
  • the D / A unit 23 converts the wireless data of the digital signal into the wireless data of the analog signal.
  • the RF transmission front end 24 performs processing such as encoding and modulation on the wireless data of the analog signal to generate a wireless signal, and radiates the wireless signal from the antenna 25.
  • the timing at which the repeater 2a and the repeater 2b radiate radio signals is earlier in the repeater 2b than in the repeater 2a by the radio propagation delay time Dba, which is a positive value.
  • the terminal 4 when the terminal 4 is in the center of the interference area 6ab between the repeater 2a and the repeater 2b, the transmission distance from the terminal 4 to the antenna 25 of the repeater 2a and the propagation from the terminal 4 to the antenna 25 of the repeater 2b. There is a difference in distance.
  • the repeater 2b radiates the radio signal with the timing advanced by the radio propagation delay time Dba calculated in consideration of the difference between the distances of the repeaters 2a and 2b to the terminal 4. Therefore, the timing at which the radio signal radiated from the repeater 2b arrives at the terminal 4 via the radio communication section (2b ⁇ 4) is the timing at which the radio signal radiated from the repeater 2a passes through the radio communication section (2a ⁇ 4).
  • the wireless communication section (2b ⁇ 4) indicates the wireless communication section from the relay station 2b to the terminal 4, and the wireless communication section (2a ⁇ 4) indicates the wireless communication section from the relay station 2a to the terminal 4. .
  • the antenna 25 of the repeater 2a and the repeater 2b is a highly directional antenna, the difference in the propagation distance of the wireless communication section does not change in the terminal 4 even if it is off the center of the interference area 6ab.
  • the timings at which radio signals arrive from 2a and repeater 2b are equal.
  • the downlink delay correction unit 111 of the transmission / reception unit 11b adds the downlink delay correction time DTb to perform the downlink delay correction process
  • the downlink delay correction unit 111 of the transmission / reception unit 11c adds the downlink delay correction time DTc.
  • the downlink delay correction process is performed, and the downlink delay correction unit 111 of the transmission / reception unit 11d adds the downlink delay correction time DTd to perform the downlink delay correction process.
  • the arrival timing of the radio signal from the adjacent repeater 2 becomes equal.
  • the delay is aligned from the adjacent repeater 2 after the “designated downlink delay time Ddn + propagation time of the radio communication section (2b ⁇ 4)” has elapsed since the modulation unit 12 of the base station 1 delivered to the terminal 4 Radio signal arrives in the state.
  • the distance between the antenna 25 of the repeaters 2a to 2d and the terminal 4 is not 0 even at the shortest distance. Therefore, when calculating the radio propagation delay time, it is necessary to consider the shortest distance between the terminal 4 and the antenna 25 of the repeater 2. In this case, for example, it is possible to cope by changing the value of the specified downlink delay time Ddn.
  • FIG. 14 is a flowchart showing the operation of the downlink delay correction processing by the downlink delay correction unit 111 of the transmission / reception unit 11 of the base station 1 according to the present embodiment.
  • the downlink delay correction unit 111 acquires the delay information held by the delay measurement unit 113 (step S81)
  • the downlink delay correction unit 111 calculates the downlink delay correction time using the acquired delay information (step S82), and converts the wireless data into the downlink delay correction time.
  • Downward delay correction processing is performed to delay by only (step S83).
  • the base station 1 calculates uplink delay correction times UTa to UTd in the uplink direction when wireless data is received from the terminal 4 via the repeaters 2a to 2d (step S4).
  • the base station 1 uses the designated uplink delay time Dup, the radio propagation delay time differences Ddc, Dcb, Dba, and the uplink one-way delay times ULa to ULd acquired in the process of step S1, to calculate the uplink delay correction times UTa to UTd. calculate.
  • the uplink delay correction unit 117 of the transmission / reception unit 11a of the base station 1 stores the delay information acquired in the process of step S1 held in the delay measurement unit 113, that is, the designated uplink delay time Dup and the uplink piece.
  • an uplink delay correction time UTa for the radio data output to the selection unit 14 is calculated from Equation (6).
  • the uplink delay correction unit 117 of the transmission / reception unit 11b of the base station 1 stores the delay information acquired in the process of step S1 held in the delay measurement unit 113, that is, the designated uplink delay time Dup and the radio propagation delay time difference Dba.
  • the upstream one-way delay time ULb, the upstream delay correction time UTb for the wireless data output to the selection unit 14 is calculated from Equation (7).
  • the uplink delay correction unit 117 of the transmission / reception unit 11c of the base station 1 also stores the delay information acquired in the above-described step S1 held in the delay measurement unit 113, that is, the designated uplink delay time Dup and the radio propagation delay time Dcb. , Dba, and upstream one-way delay time ULc, the upstream delay correction time UTc for the wireless data output to the selection unit 14 is calculated from equation (8).
  • Expression (8) can be expressed as Expression (8 ′).
  • the uplink delay correction unit 117 of the transmission / reception unit 11d of the base station 1 stores the delay information acquired in the process of step S1 held in the delay measurement unit 113, that is, the designated uplink delay time Dup and the radio propagation delay time difference Ddc. , Dcb, Dba, and upstream one-way delay time ULd, the upstream delay correction time UTd for the wireless data output to the selection unit 14 is calculated from Equation (9). Note that Expression (9) can be expressed as Expression (9 ′).
  • UTd Dup-ULd-Ddc-Dcb-Dba (9)
  • UTd Dup-ULd-Dda (9 ')
  • FIG. 15 is a diagram illustrating a timing chart of radio data until the uplink delay correction processing of the transmission / reception units 11a and 11b of the base station 1 according to the present embodiment and the selection unit 14 of the base station 1 receive the radio data.
  • the operation of the transmission / reception units 11a and 11b of the base station 1, the repeaters 2a and 2b, and the terminal 4 when the terminal 4 transmits a radio signal to the repeaters 2a and 2b will be mainly described.
  • the terminal 4 transmits a radio signal addressed to the base station 1 to the repeaters 2a and 2b. Both repeater 2a and repeater 2b receive radio signals with a delay from the transmission timing of terminal 4.
  • the timing at which the radio signal transmitted from the terminal 4 arrives at the repeater 2a via the radio communication section (4 ⁇ 2a) is the same as the timing when the radio signal transmitted from the terminal 4 passes through the radio communication section (4 ⁇ 2b). It is earlier than the timing of arrival at the relay station 2b via the radio propagation delay time Dba, which is a positive value calculated in consideration of the difference between the distances of the relay stations 2a and 2b to the terminal 4.
  • the wireless communication section (4 ⁇ 2a) indicates the wireless communication section from the terminal 4 to the relay 2a
  • the wireless communication section (4 ⁇ 2b) indicates the wireless communication section from the terminal 4 to the relay 2b. .
  • the RF reception front end 26 performs processing such as demodulation and decoding on the radio signal received by the antenna 25 to obtain radio data.
  • the A / D unit 27 converts the wireless data of the analog signal into the wireless data of the digital signal.
  • the frame generation unit 28 stores the radio data of the digital signal in the payload of the uplink RoF frame, stores a control signal including information on the storage position of the payload in the header, and outputs the control signal.
  • the E / O unit 29 converts the upstream RoF frame into an optical signal and transmits it to the base station 1 via the optical fiber 3a.
  • the RF reception front end 26 performs processing such as demodulation and decoding on the radio signal received by the antenna 25 to obtain radio data.
  • the A / D unit 27 converts the wireless data of the analog signal into the wireless data of the digital signal.
  • the frame generation unit 28 stores the radio data of the digital signal in the payload of the uplink RoF frame, stores a control signal including information on the storage position of the payload in the header, and outputs the control signal.
  • the E / O unit 29 converts the upstream RoF frame into an optical signal and transmits it to the base station 1 via the optical fiber 3b.
  • the transmitting / receiving unit 11a of the base station 1 receives the uplink RoF frame delayed by the uplink one-way delay time ULa from the transmission timing of the repeater 2a.
  • the O / E unit 115 converts the optical signal received from the optical fiber 3a into an electrical signal.
  • the frame termination unit 116 detects an uplink RoF frame by detecting a synchronization pattern from the electrical signal, and extracts wireless data based on control information stored in the header.
  • the uplink delay correction unit 117 performs an uplink delay correction process for adding the delay of the uplink delay correction time UTa calculated from Expression (6) to the extracted wireless data (step S5). That is, the uplink delay correction unit 117 delays the radio data by the uplink delay correction time UTa and outputs it to the selection unit 14.
  • the transmission / reception unit 11b of the base station 1 receives the uplink RoF frame delayed by the uplink one-way delay time ULb from the transmission timing of the repeater 2b.
  • the O / E unit 115 converts the optical signal received from the optical fiber 3a into an electrical signal.
  • the frame termination unit 116 detects an uplink RoF frame by detecting a synchronization pattern from the electrical signal, and extracts wireless data based on control information stored in the header.
  • the uplink delay correction unit 117 performs an uplink delay correction process for adding the delay of the uplink delay correction time UTb calculated from the equation (7) to the extracted wireless data (step S5). That is, the uplink delay correction unit 117 delays the radio data by the uplink delay correction time UTb and outputs the delayed radio data to the selection unit 14.
  • the transmission / reception unit 11a transmits the radio data with a delay of the uplink delay correction time UTa
  • the transmission / reception unit 11b transmits the radio data with a delay of the uplink delay correction time UTb.
  • the timing at which wireless data arrives from the transmission / reception unit 11a is equal to the timing at which wireless data arrives from the transmission / reception unit 11b.
  • the selection unit 14 is in a state where delays are aligned from the transmission / reception units 11a and 11b after the “transmission time of the wireless communication section (4 ⁇ 2a) + designated uplink delay time Dup” after the terminal 4 transmits. Wireless data arrives.
  • the selecting unit 14 may select one wireless data and output it to the demodulating unit 13.
  • the selection unit 14 calculates the reception power of the wireless data input from the transmission / reception units 11a to 11d, and selects the wireless data with strong reception power.
  • the selection unit 14 may add four pieces of wireless data input from the transmission / reception units 11a to 11d, or may add using only wireless data whose received power intensity exceeds a prescribed threshold value. Good. Normally, valid radio data from one terminal 4 in a linear communication area is received by at most two repeaters 2.
  • the delay of the wireless data from the two repeaters 2 can be made uniform by the above-described method, so that the selection unit 14 performs comparison or addition of the reception power of the wireless data with the same signal source. Can do.
  • the base station 1 when wireless data is input to the selection unit 14, there is no interference due to multipath via the two repeaters 2 because the delay of the wireless data is uniform. .
  • the base station 1 is capable of transmitting uplink radio data or downlink radio data even during transmission.
  • the delay measuring units 113 of the transmission / reception units 11a to 11d can always measure the round-trip delay times RTTa to RTTd. Therefore, even when a propagation delay fluctuates due to a temperature change of the optical fibers 3a to 3d, the base station 1 always measures and updates the round trip delay times RTTa to RTTd to absorb the fluctuations and to reduce the delay amount. Can be kept constant.
  • the distance between the antenna 25 of the repeaters 2a to 2d and the terminal 4 is not 0 even if it is the shortest. Therefore, when calculating the radio propagation delay time, it is necessary to consider the shortest distance between the terminal 4 and the antenna 25 of the repeater 2. In this case, for example, it is possible to cope with the problem by changing the value of the designated upstream delay time Dup.
  • FIG. 16 is a flowchart showing the operation of the uplink delay correction process by the uplink delay correction unit 117 of the transmission / reception unit 11 of the base station 1 according to the present embodiment.
  • the uplink delay correction unit 117 acquires the delay information held by the delay measurement unit 113 (step S91)
  • the uplink delay correction unit 117 calculates the uplink delay correction time using the acquired delay information (step S92), and converts the radio data into the uplink delay correction time.
  • an uplink delay correction process is performed to delay only by (step S93).
  • the modulation unit 12 and the demodulation unit 13 are modems
  • the selection unit 14 is a switch circuit or a synthesis circuit
  • the E / O unit 114 of the transmission / reception unit 11 is an electro-optical conversion circuit
  • the O / E unit 115 is an opto-electric conversion circuit.
  • FIG. 17 is a processing circuit that implements the downlink delay correction unit 111, the frame generation unit 112, the delay measurement unit 113, the frame termination unit 116, and the uplink delay correction unit 117 of the transmission / reception unit 11 of the base station 1 according to the present embodiment. It is a figure which shows the example of a structure of 90.
  • the processing circuit 90 includes a processor 91 that executes a program stored in the memory 92, a memory 92 that stores information such as a program executed by the processor 91, and an input interface circuit 93 to which data and the like are input from other configurations.
  • An output interface circuit 94 for outputting data and the like to other components is provided, and a processor 91, a memory 92, an input interface circuit 93, and an output interface circuit 94 are connected by a system bus 95.
  • the processing circuit 90 may be dedicated hardware.
  • the processing circuit 90 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field Programmable Gate). Array) or a combination thereof.
  • the functions of the respective units may be realized by the processing circuit 90, or the functions of the respective units may be collectively realized by the processing circuit 90.
  • the functions of the downlink delay correction unit 111, the frame generation unit 112, the delay measurement unit 113, the frame termination unit 116, and the uplink delay correction unit 117 of the transmission / reception unit 11 of the base station 1 are realized by the processing circuit 90. That is, the base station 1 acquires delay information necessary for calculating the downlink delay correction time and the uplink delay correction time, calculates the downlink delay correction time and the uplink delay correction time, and performs the downlink delay correction process and the uplink delay correction.
  • a processing circuit 90 for performing processing is provided.
  • a program stored in the memory 92 is executed by a CPU (Central Processing Unit), a central processing unit, a processing unit, a processing unit, a microprocessor, a microcomputer, a DSP (Digital Signal Processor), and the like. May be.
  • a CPU Central Processing Unit
  • a central processing unit a central processing unit
  • a processing unit a processing unit
  • a microprocessor a microcomputer
  • DSP Digital Signal Processor
  • the functions of the downlink delay correction unit 111, the frame generation unit 112, the delay measurement unit 113, the frame termination unit 116, and the uplink delay correction unit 117 of the transmission / reception unit 11 of the base station 1 are software, firmware, or a combination of software and firmware. It is realized by.
  • Software or firmware is described as a program and stored in the memory 92.
  • the processor 91 reads out and executes the program stored in the memory 92, so that the downlink delay correction unit 111, the frame generation unit 112, the delay measurement unit 113, the frame termination unit of the transmission / reception unit 11 of the base station 1 are executed. 116 and the function of the uplink delay correction unit 117 are realized.
  • the base station 1 when executed by the processing circuit 90, the base station 1 obtains the delay information necessary for calculating the downlink delay correction time and the uplink delay correction time, the downlink delay correction time, and the uplink delay correction time.
  • a memory 92 is provided for storing a program in which the step of calculating, the step of performing the downlink delay correction process, and the step of performing the uplink delay correction process are executed as a result.
  • these programs execute the procedure or method of the downlink delay correction unit 111, the frame generation unit 112, the delay measurement unit 113, the frame termination unit 116, and the uplink delay correction unit 117 of the transmission / reception unit 11 of the base station 1 on a computer.
  • the memory 92 is, for example, a RAM, a flash memory, an EPROM (Erasable Programmable ROM), an EEPROM (Electrically Erasable Programmable ROM), or a nonvolatile or volatile semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact This includes discs, minidiscs, and DVDs (Digital Versatile Discs).
  • the functions of the downlink delay correction unit 111, the frame generation unit 112, the delay measurement unit 113, the frame termination unit 116, and the uplink delay correction unit 117 are realized by dedicated hardware, and part of the functions are software or It may be realized by firmware.
  • the functions of the frame generation unit 112 and the frame termination unit 116 are realized by a processing circuit 90 as dedicated hardware, and the processing circuit 90 is provided for the downlink delay correction unit 111, the delay measurement unit 113, and the uplink delay correction unit 117.
  • the function can be realized by reading and executing the program stored in the memory.
  • the processing circuit 90 can realize the above-described functions by hardware, software, firmware, or a combination thereof.
  • the frame generation unit 112 the delay measurement unit 113, the frame termination unit 116, and the uplink delay correction unit 117 of the transmission / reception unit 11 of the base station 1 have been described, the frame generation of the repeaters 2a to 2d
  • the unit 22 and the frame end unit 28 are also realized by the processing circuit 90 shown in FIG.
  • delay correction section 113 of each transmission / reception section 11 is necessary for calculating downlink delay correction times DTa to DTd and uplink delay correction times UTa to UTd.
  • the delay information is acquired, the downlink delay correction unit 111 calculates the downlink delay correction times DTa to DTd using the delay information acquired by the delay correction unit 113, performs the downlink delay correction processing, and the uplink delay correction unit 117
  • the uplink delay correction processing is performed by calculating the uplink delay correction times UTa to UTd using the delay information acquired by the delay correction unit 113.
  • the base station 1 for the downlink radio data transmitted from the base station 1 to the terminal 4, when the plurality of relays 2 transmit wireless signals as wireless data to the terminal 4, The timing at which the transmitted radio signal arrives at the terminal 4 can be made uniform. Also, with respect to the uplink radio signal transmitted from the terminal 4 to the base station 1, a plurality of repeaters 2 are radio signals that are radio signals from the terminal 4. When data is received, the timing at which the radio data transmitted from each repeater 2 arrives at the selection unit 14 of the base station 1 can be made uniform. As described above, in the mobile communication system 7, when the base station 1 is connected to the repeaters 2a to 2d via the optical fibers 3a to 3d, the lengths of the optical fibers 3a to 3d are not aligned with high accuracy.
  • the propagation delay can be made uniform in communication with the terminal 4 via the repeaters 2a to 2d.
  • the base station 1 since the base station 1 performs delay correction in consideration of the propagation time of the wireless communication section between the terminal 4 and each repeater 2, the influence of interference waves can be avoided.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A base station 1 connected to a plurality of relay devices is provided with as many transmission-reception units 11a to 11d as the plurality of relay devices, each transmission-reception unit being connected to and communicating with one of the relay devices. The transmission-reception units 11a to 11d are each provided with: a frame generation unit 112 that generates a downlink transmission frame; a frame end unit 116 that detects an uplink transmission frame; a delay measurement unit 113 that measures a delay occurring in a communication between the transmission-reception unit and the relay device to which the transmission-reception unit is connected, acquires information regarding a delay occurring in a communication between the relay device to which the transmission-reception unit is connected and a terminal, and information regarding a delay time allowable in a communication between the base station and the terminal, and holds the information; a downlink delay correction unit 111 that calculates a downlink delay correction time using the delay information held by the delay measurement unit 113, and delays wireless data stored in the downlink transmission frame; and an uplink delay correction unit 117 that calculates an uplink delay correction time using the delay information held by the delay measurement unit 113, and delays wireless data stored in the uplink transmission frame.

Description

基地局、中継機、移動体通信システムおよび遅延補正方法Base station, repeater, mobile communication system, and delay correction method
 本発明は、移動する端末と無線通信を行う基地局、中継機、移動体通信システムおよび遅延補正方法に関する。 The present invention relates to a base station, a repeater, a mobile communication system, and a delay correction method that perform wireless communication with a moving terminal.
 従来、線路上を移動する列車または道路上を移動する自動車などの移動体と地上設備との間でデータ通信を行うシステムでは、移動体が高速で移動している場合、安定した通信ができないという問題があった。1つの無線基地局の通信エリアが小さいため、移動体では、高速で移動すると1つの通信エリアの滞在時間が短くなってハンドオーバーが頻繁に発生し、実質的な通信時間が減少するためである。 Conventionally, in a system that performs data communication between a moving body such as a train moving on a railroad or an automobile moving on a road and ground equipment, stable communication cannot be performed when the moving body is moving at high speed. There was a problem. This is because, since the communication area of one radio base station is small, if the mobile unit moves at a high speed, the stay time of one communication area is shortened, and handovers frequently occur, thereby reducing the substantial communication time. .
 この対策として、特許文献1では、1台の基地局が光ファイバを介して移動体の移動経路に沿って設置された複数の子局へ同じ信号を送信し、複数の子局が同じ無線信号を放射することにより、複数の子局によって形成される複数の通信エリアが移動経路に沿って形成される1つの通信エリアとなるよう動作する技術が開示されている。これにより、1台の基地局がカバーできる通信エリアを拡大することができる。各子局の通信エリアの重なる場所で移動体が信号を送信した場合、基地局では、子局と基地局を結ぶ光ファイバ長に差異があると各子局からの信号の伝搬遅延時間が異なって互いの信号が干渉する。この対策として、特許文献1では、各子局から基地局までの伝搬遅延時間を均一にするために光ファイバ長を調整し、伝搬遅延時間差を減少させる遅延補正器を設けている。 As a countermeasure, in Patent Document 1, one base station transmits the same signal to a plurality of slave stations installed along a moving path of a mobile body via an optical fiber, and the plurality of slave stations transmit the same radio signal. Is disclosed that operates so that a plurality of communication areas formed by a plurality of slave stations become one communication area formed along a movement path. Thereby, the communication area which one base station can cover can be expanded. When a mobile unit transmits a signal in a place where the communication areas of each slave station overlap, the base station will have different propagation delay times for signals from each slave station if there is a difference in the optical fiber length connecting the slave station and the base station. Each other's signals interfere. As a countermeasure, Patent Document 1 includes a delay corrector that adjusts the optical fiber length to make the propagation delay time from each slave station to the base station uniform, and reduces the difference in propagation delay time.
特開2005-191905号公報JP 2005-191905 A
 しかしながら、上記従来の技術によれば、光ファイバ長の調整により伝搬遅延を均一にしているが、光ファイバの伝達遅延時間が約5ns/mであるため、1シンボルのデータ幅が10nsの通信、例えば、2値変調のケースでは100Mbpsに相当する通信の場合、±2mの精度で光ファイバ長を調整する必要がある。基地局は必ずしも通信エリアの近傍に置かれるとは限らないため、10kmを超える光ファイバを使用することも考えられる。そのため、光ファイバの全長に対して0.02%の高い精度の調整が必要になる、という問題があった。また、上記従来の技術によれば、光ファイバによって光信号の伝搬遅延を均一にしているが、子局と移動体との間の無線通信区間での無線信号の伝搬遅延を考慮していない。そのため、干渉波の影響を回避できない、という問題があった。 However, according to the above conventional technique, the propagation delay is made uniform by adjusting the optical fiber length. However, since the propagation delay time of the optical fiber is about 5 ns / m, communication with a data width of one symbol of 10 ns, For example, in the case of binary modulation, in the case of communication corresponding to 100 Mbps, it is necessary to adjust the optical fiber length with an accuracy of ± 2 m. Since the base station is not necessarily placed in the vicinity of the communication area, it is possible to use an optical fiber exceeding 10 km. Therefore, there has been a problem that adjustment with a high accuracy of 0.02% with respect to the entire length of the optical fiber is required. Further, according to the conventional technique, the propagation delay of the optical signal is made uniform by the optical fiber, but the propagation delay of the radio signal in the radio communication section between the slave station and the mobile body is not taken into consideration. Therefore, there is a problem that the influence of the interference wave cannot be avoided.
 本発明は、上記に鑑みてなされたものであって、複数の中継機と光ファイバを介して接続する場合に、各中継機との間の光ファイバの長さを高精度で揃えることなく、各中継機を経由した端末との通信において伝搬遅延を均一にし、かつ、干渉波の影響を回避可能な基地局を得ることを目的とする。 The present invention has been made in view of the above, and when connecting with a plurality of repeaters via an optical fiber, the length of the optical fiber between each repeater is not aligned with high accuracy, It is an object of the present invention to obtain a base station that makes the propagation delay uniform in communication with a terminal via each repeater and can avoid the influence of interference waves.
 上述した課題を解決し、目的を達成するために、本発明の基地局は、端末の移動経路に沿って配置され端末と無線通信を行う複数の中継機と接続し、中継機経由で端末と通信を行う基地局である。基地局は、各々が1つの中継機と接続して通信を行う送受信部を複数の中継機と同数備える。各送受信部は、中継機へ送信する下り伝送フレームを生成するフレーム生成部を備える。また、各送受信部は、中継機から送信された上り伝送フレームを検出するフレーム終端部を備える。また、各送受信部は、自送受信部と自送受信部が接続する中継機との通信で発生する遅延を測定し、自送受信部が接続する中継機と前記端末との通信で発生する遅延の情報、および基地局と端末との通信で許容される遅延時間の情報を取得し、取得した情報を保持する遅延測定部を備える。また、各送受信部は、遅延測定部が保持する遅延情報を用いて下り遅延補正時間を算出し、下り遅延補正時間を用いて下り伝送フレームに格納される無線データを遅延させる下り遅延補正部を備える。また、各送受信部は、遅延測定部が保持する遅延情報を用いて上り遅延補正時間を算出し、上り遅延補正時間を用いて上り伝送フレームに格納されていた無線データを遅延させる上り遅延補正部を備えることを特徴とする。 In order to solve the above-described problems and achieve the object, the base station of the present invention is connected to a plurality of relay devices that are arranged along the movement path of the terminal and performs wireless communication with the terminal, and A base station that performs communication. The base station includes the same number of transmission / reception units that communicate with each other by connecting to one repeater. Each transmission / reception unit includes a frame generation unit that generates a downlink transmission frame to be transmitted to the repeater. Each transmission / reception unit includes a frame termination unit that detects an uplink transmission frame transmitted from the repeater. Each transmitting / receiving unit measures delay generated in communication between the own transmitting / receiving unit and the relay connected to the own transmitting / receiving unit, and information on delay generated in communication between the relay connected to the own transmitting / receiving unit and the terminal. And a delay measurement unit that acquires information on a delay time allowed in communication between the base station and the terminal and holds the acquired information. Each transmission / reception unit calculates a downlink delay correction time using the delay information held by the delay measurement unit, and uses a downlink delay correction unit that delays wireless data stored in the downlink transmission frame using the downlink delay correction time. Prepare. Each transmission / reception unit calculates an uplink delay correction time using the delay information held by the delay measurement unit, and uses the uplink delay correction time to delay the radio data stored in the uplink transmission frame. It is characterized by providing.
 本発明にかかる基地局は、複数の中継機と光ファイバを介して接続する場合に、各中継機との間の光ファイバの長さを高精度で揃えることなく、各中継機を経由した端末との通信において伝搬遅延を均一にし、かつ、干渉波の影響を回避できるという効果を奏する。 When the base station according to the present invention is connected to a plurality of repeaters via optical fibers, the length of the optical fiber between each repeater is not adjusted with high accuracy, and the terminal passes through each repeater. In the communication with this, it is possible to make the propagation delay uniform and to avoid the influence of the interference wave.
移動体通信システムの構成例を示す図The figure which shows the structural example of a mobile communication system. 基地局の構成例を示すブロック図Block diagram showing configuration example of base station 中継機の構成例を示すブロック図Block diagram showing a configuration example of a repeater 基地局の遅延補正処理を示すフローチャートFlow chart showing delay correction processing of base station 基地局が中継機との間の往復遅延時間を算出する方法を示す図The figure which shows the method in which a base station calculates the round-trip delay time between repeaters 送受信部のフレーム生成部の動作を示すフローチャートA flowchart showing the operation of the frame generation unit of the transmission / reception unit 中継機のフレーム終端部の動作を示すフローチャートFlow chart showing the operation of the frame end of the repeater 中継機のフレーム生成部の動作を示すフローチャートFlow chart showing the operation of the frame generator of the repeater 送受信部のフレーム終端部の動作を示すフローチャートA flowchart showing the operation of the frame termination unit of the transmission / reception unit 遅延測定部が下り片方向遅延時間および上り片方向遅延時間を算出する動作を示すフローチャートFlowchart showing the operation of the delay measurement unit calculating the downlink one-way delay time and the uplink one-way delay time 遅延測定部が無線伝搬遅延時間差を算出する動作を示すフローチャートFlowchart showing the operation of the delay measurement unit calculating the radio propagation delay time difference 遅延測定部が指定下り遅延時間および指定上り遅延時間の情報を取得する動作を示すフローチャートFlowchart showing an operation in which the delay measurement unit acquires information on the designated downlink delay time and the designated uplink delay time 基地局の送受信部の下り遅延補正処理および端末が無線信号を受信するまでの無線データ信号のタイミングチャートを示す図The figure which shows the timing chart of the radio | wireless data signal until the downlink delay correction process of the transmission / reception part of a base station and a terminal receives a radio signal 基地局の送受信部の下り遅延補正部による下り遅延補正処理の動作を示すフローチャートThe flowchart which shows operation | movement of the downlink delay correction process by the downlink delay correction | amendment part of the transmission / reception part of a base station. 基地局の送受信部の上り遅延補正処理および基地局の選択部が無線データを受信するまでの無線データのタイミングチャートTiming chart of radio data until the uplink delay correction processing of the base station transceiver unit and the base station selection unit receive the radio data 基地局の送受信部の上り遅延補正部による上り遅延補正処理の動作を示すフローチャートThe flowchart which shows the operation | movement of the uplink delay correction process by the uplink delay correction | amendment part of the transmission / reception part of a base station. 基地局の送受信部の下り遅延補正部、フレーム生成部、遅延測定部、フレーム終端部、および上り遅延補正部を実現する処理回路の構成例を示す図The figure which shows the structural example of the processing circuit which implement | achieves the downlink delay correction | amendment part of the transmission / reception part of a base station, a frame production | generation part, a delay measurement part, a frame termination | terminus part, and an uplink delay correction | amendment part
 以下に、本発明の実施の形態にかかる基地局、中継機、移動体通信システムおよび遅延補正方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a base station, a repeater, a mobile communication system, and a delay correction method according to an embodiment of the present invention will be described in detail based on the drawings. Note that the present invention is not limited to the embodiments.
実施の形態.
 図1は、本発明の実施の形態にかかる移動体通信システム7の構成例を示す図である。移動体通信システム7は、親局である基地局1と、子局である中継機2a,2b,2c,2dと、を備える。基地局1は、光ファイバ3a,3b,3c,3dを介して、中継機2a,2b,2c,2dと接続している。基地局1は、光ファイバ3a~3dおよび中継機2a~2dを介して移動体である端末4と通信を行う。端末4の移動経路に沿って配置された中継機2a~2dは、基地局1と端末4との間の通信を中継する。中継機2a~2dは、基地局1とは光ファイバ3a~3dを介して光通信を行い、端末4とは無線通信を行う。移動体通信システム7において、端末4は、線路上を移動する列車または道路上を移動する自動車など、予め既知の移動経路上を移動する。
Embodiment.
FIG. 1 is a diagram showing a configuration example of a mobile communication system 7 according to an embodiment of the present invention. The mobile communication system 7 includes a base station 1 that is a master station and repeaters 2a, 2b, 2c, and 2d that are slave stations. The base station 1 is connected to the repeaters 2a, 2b, 2c, 2d via optical fibers 3a, 3b, 3c, 3d. The base station 1 communicates with a terminal 4 that is a moving body via optical fibers 3a to 3d and repeaters 2a to 2d. Relay units 2 a to 2 d arranged along the movement path of terminal 4 relay communication between base station 1 and terminal 4. The repeaters 2a to 2d perform optical communication with the base station 1 through the optical fibers 3a to 3d, and perform wireless communication with the terminal 4. In the mobile communication system 7, the terminal 4 moves on a known moving route in advance, such as a train moving on a track or an automobile moving on a road.
 中継機2aは、通信エリア5aの範囲で端末4と通信を行う。中継機2bは、通信エリア5bの範囲で端末4と通信を行う。中継機2cは、通信エリア5cの範囲で端末4と通信を行う。中継機2dは、通信エリア5dの範囲で端末4と通信を行う。干渉エリア6abは、通信エリア5aおよび通信エリア5bが重なる範囲であり、中継機2a,2bが端末4と通信を行うことができるエリアである。干渉エリア6bcは、通信エリア5bおよび通信エリア5cが重なる範囲であり、中継機2b,2cが端末4と通信を行うことができるエリアである。干渉エリア6cdは、通信エリア5cおよび通信エリア5dが重なる範囲であり、中継機2c,2dが端末4と通信を行うことができるエリアである。移動体通信システム7は、複数の中継機2a~2dを用いることで、端末4に対して線形の広い通信エリアを提供することができる。 The relay machine 2a communicates with the terminal 4 within the communication area 5a. The repeater 2b communicates with the terminal 4 within the communication area 5b. The repeater 2c communicates with the terminal 4 within the communication area 5c. The repeater 2d communicates with the terminal 4 within the communication area 5d. The interference area 6ab is an area where the communication area 5a and the communication area 5b overlap with each other, and the repeaters 2a and 2b can communicate with the terminal 4. The interference area 6bc is an area where the communication area 5b and the communication area 5c overlap with each other, and the repeaters 2b and 2c can communicate with the terminal 4. The interference area 6cd is an area in which the communication area 5c and the communication area 5d overlap with each other, and is an area where the repeaters 2c and 2d can communicate with the terminal 4. The mobile communication system 7 can provide a wide linear communication area to the terminal 4 by using a plurality of relay units 2a to 2d.
 図1において、中継機2a~2dはアンテナ25を含む。以降の説明において、中継機2a~2dを区別しないときは中継機2と称し、光ファイバ3a~3dを区別しないときは光ファイバ3と称し、通信エリア5a~5dを区別しないときは通信エリア5と称し、干渉エリア6ab,6bc,6cdを区別しないときは、干渉エリア6と称する。 In FIG. 1, the repeaters 2a to 2d include an antenna 25. In the following description, when the relay devices 2a to 2d are not distinguished, they are referred to as the relay device 2, when the optical fibers 3a to 3d are not distinguished, they are referred to as the optical fiber 3, and when the communication areas 5a to 5d are not distinguished, the communication area 5 is referred to. When the interference areas 6ab, 6bc, and 6cd are not distinguished, they are referred to as the interference area 6.
 図2は、本実施の形態にかかる基地局1の構成例を示すブロック図である。基地局1は、送受信部11a,11b,11c,11dと、変調部12と、復調部13と、選択部14と、を備える。また、送受信部11a~11dは、各々、下り遅延補正部111と、フレーム生成部112と、遅延測定部113と、E/O(Electrical to Optical)部114と、O/E(Optical to Electrical)部115と、フレーム終端部116と、上り遅延補正部117と、を備える。図2では省略しているが、送受信部11b~11dは、送受信部11aと同様の構成を備えているものとする。基地局1は、中継機2a~2dと同数の送受信部11a~11dを備える。送受信部11a~11dは、各々1つの中継機2と接続している。具体的に、送受信部11aは光ファイバ3aを介して中継機2aと接続し、送受信部11bは光ファイバ3bを介して中継機2bと接続し、送受信部11cは光ファイバ3cを介して中継機2cと接続し、送受信部11dは光ファイバ3dを介して中継機2dと接続する。以降の説明において、送受信部11a~11dを区別しないときは送受信部11と称する。各送受信部11および各中継機2は、1対1で対応して接続している。 FIG. 2 is a block diagram showing a configuration example of the base station 1 according to the present embodiment. The base station 1 includes transmission / reception units 11a, 11b, 11c, and 11d, a modulation unit 12, a demodulation unit 13, and a selection unit 14. In addition, the transmission / reception units 11a to 11d respectively include a downlink delay correction unit 111, a frame generation unit 112, a delay measurement unit 113, an E / O (Electrical to Optical) unit 114, and an O / E (Optical to Electrical). Unit 115, frame termination unit 116, and uplink delay correction unit 117. Although omitted in FIG. 2, it is assumed that the transmission / reception units 11b to 11d have the same configuration as the transmission / reception unit 11a. The base station 1 includes the same number of transmission / reception units 11a to 11d as the repeaters 2a to 2d. The transmission / reception units 11a to 11d are each connected to one repeater 2. Specifically, the transmitter / receiver 11a is connected to the repeater 2a via the optical fiber 3a, the transmitter / receiver 11b is connected to the repeater 2b via the optical fiber 3b, and the transmitter / receiver 11c is connected to the repeater via the optical fiber 3c. The transmitter / receiver 11d is connected to the repeater 2d via the optical fiber 3d. In the following description, when the transmission / reception units 11a to 11d are not distinguished, they are referred to as the transmission / reception unit 11. Each transmitting / receiving unit 11 and each repeater 2 are connected in a one-to-one correspondence.
 変調部12は、デジタル化された無線データを生成して送受信部11a~11dへ出力する。復調部13は、選択部14から入力された無線データを復調する。変調部12および復調部13は、例えば、モデムによって構成される。 The modulation unit 12 generates digitized wireless data and outputs it to the transmission / reception units 11a to 11d. The demodulator 13 demodulates the radio data input from the selector 14. The modulation unit 12 and the demodulation unit 13 are configured by a modem, for example.
 選択部14は、送受信部11a~11dから入力された無線データを復調部13へ出力する。選択部14は、送受信部11a~11dのうち複数の送受信部11から無線データが入力された場合、1つの無線データを選択して出力してもよいし、複数の無線データを合成して出力してもよい。選択部14は、例えば、スイッチ回路または合成回路などによって構成される。 The selection unit 14 outputs the wireless data input from the transmission / reception units 11a to 11d to the demodulation unit 13. When wireless data is input from a plurality of transmission / reception units 11 among the transmission / reception units 11a to 11d, the selection unit 14 may select and output one wireless data, or may combine and output a plurality of wireless data. May be. The selection unit 14 is configured by, for example, a switch circuit or a synthesis circuit.
 送受信部11a~11dは、変調部12から入力された無線データに下り遅延補正処理を行い、無線データを含む伝送フレームを電気信号から光信号に変換し、光ファイバ3a~3dを介して中継機2a~2dへ送信する。また、送受信部11a~11dは、光ファイバ3a~3dを介して中継機2a~2dから受信した光信号を電気信号に変換し、検出した伝送フレームから抽出した無線データに上り遅延補正処理を行って選択部14へ出力する。 The transmission / reception units 11a to 11d perform a downlink delay correction process on the radio data input from the modulation unit 12, convert a transmission frame including the radio data from an electric signal to an optical signal, and repeaters via the optical fibers 3a to 3d Send to 2a-2d. Further, the transmission / reception units 11a to 11d convert optical signals received from the repeaters 2a to 2d through the optical fibers 3a to 3d into electric signals, and perform uplink delay correction processing on the wireless data extracted from the detected transmission frames. To the selection unit 14.
 下り遅延補正部111は、変調部12から入力された無線データに下り遅延補正処理を行ってフレーム生成部112へ出力する。下り遅延補正部111は、遅延測定部113が保持する遅延情報を用いて下り遅延補正時間を算出し、下り遅延補正時間を用いて、下りRoF(Radio on Fiber)フレームに格納される無線データを遅延させる。下りRoFフレームは、通信経路の一部に光ファイバを用いた無線通信で使用される下り伝送フレームである。詳細な動作については後述する。 The downlink delay correction unit 111 performs downlink delay correction processing on the wireless data input from the modulation unit 12 and outputs the result to the frame generation unit 112. The downlink delay correction unit 111 calculates the downlink delay correction time using the delay information held by the delay measurement unit 113, and uses the downlink delay correction time to convert the radio data stored in the downlink RoF (Radio on Fiber) frame. Delay. The downlink RoF frame is a downlink transmission frame used in wireless communication using an optical fiber as a part of a communication path. Detailed operation will be described later.
 フレーム生成部112は、中継機2へ送信する下りRoFフレームを生成し、E/O部114へ出力する。下りRoFフレームは、同期パターン、ヘッダ、およびペイロードから構成される。フレーム生成部112は、下り遅延補正部111から無線データが入力されていた場合、下りRoFフレームのペイロードに無線データを格納する。 The frame generation unit 112 generates a downlink RoF frame to be transmitted to the relay device 2 and outputs it to the E / O unit 114. The downlink RoF frame is composed of a synchronization pattern, a header, and a payload. When the wireless data is input from the downlink delay correction unit 111, the frame generation unit 112 stores the wireless data in the payload of the downlink RoF frame.
 遅延測定部113は、送受信部11から下りRoFフレームを送信してから、中継機2から上りRoFフレームを受信するまでの往復遅延時間RTT(Round Trip Time)を測定する。上りRoFフレームは、通信経路の一部に光ファイバを用いた無線通信で使用される上り伝送フレームである。遅延測定部113は、送受信部11と送受信部11が接続する中継機2との通信で発生する遅延を測定することで、送受信部11と送受信部11が接続する中継機2との通信で発生する遅延の情報を取得し、また、送受信部11が接続する中継機2と端末4との通信で発生する遅延の情報、および基地局1と端末4との通信で許容される遅延時間の情報を取得し、取得した情報を保持する。詳細な動作については後述する。 The delay measuring unit 113 measures a round trip time RTT (Round Trip Time) from the transmission of the downlink RoF frame from the transmission / reception unit 11 to the reception of the uplink RoF frame from the repeater 2. The uplink RoF frame is an uplink transmission frame used in wireless communication using an optical fiber as a part of the communication path. The delay measurement unit 113 measures the delay generated in communication between the transmission / reception unit 11 and the relay 2 connected to the transmission / reception unit 11, thereby generating the communication between the transmission / reception unit 11 and the relay 2 connected to the transmission / reception unit 11. Information on the delay to be transmitted, information on the delay generated in the communication between the repeater 2 connected to the transmitter / receiver 11 and the terminal 4, and information on the delay time allowed in the communication between the base station 1 and the terminal 4 And retain the acquired information. Detailed operation will be described later.
 E/O部114は、フレーム生成部112から入力された電気信号の下りRoFフレームを光信号に変換し、中継機2へ送信する。E/O部114は、例えば、電気光変換回路によって構成される。 The E / O unit 114 converts the downlink RoF frame of the electrical signal input from the frame generation unit 112 into an optical signal and transmits the optical signal to the repeater 2. The E / O unit 114 is configured by, for example, an electro-optical conversion circuit.
 O/E部115は、中継機2から受信した光信号を電気信号に変換し、フレーム終端部116へ出力する。O/E部115は、例えば、光電気変換回路によって構成される。 The O / E unit 115 converts the optical signal received from the repeater 2 into an electrical signal and outputs the electrical signal to the frame termination unit 116. The O / E unit 115 is configured by, for example, a photoelectric conversion circuit.
 フレーム終端部116は、電気信号から同期パターンを検出することによって上りRoFフレームを検出する。また、フレーム終端部116は、上りRoFフレームのヘッダを確認し、上りRoFフレームのペイロードに無線データが格納されていた場合は無線データを抽出し、上り遅延補正部117へ出力する。 The frame termination unit 116 detects an uplink RoF frame by detecting a synchronization pattern from the electrical signal. In addition, the frame termination unit 116 confirms the header of the uplink RoF frame, extracts radio data when the radio data is stored in the payload of the uplink RoF frame, and outputs the radio data to the uplink delay correction unit 117.
 上り遅延補正部117は、フレーム終端部116から入力された無線データに上り遅延補正処理を行って選択部14へ出力する。上り遅延補正部117は、遅延測定部113が保持する遅延情報を用いて上り遅延補正時間を算出し、上り遅延補正時間を用いて上りRoFフレームに格納されていた無線データを遅延させる。詳細な動作については後述する。 The uplink delay correction unit 117 performs an uplink delay correction process on the radio data input from the frame termination unit 116 and outputs the result to the selection unit 14. The uplink delay correction unit 117 calculates the uplink delay correction time using the delay information held by the delay measurement unit 113, and delays the radio data stored in the uplink RoF frame using the uplink delay correction time. Detailed operation will be described later.
 図3は、本実施の形態にかかる中継機2aの構成例を示すブロック図である。中継機2a~2dは同様の構成のため、中継機2aを例にして説明する。中継機2aは、O/E部21と、フレーム終端部22と、D/A(Digital to Analog)部23と、RF(Radio Frequency)送信フロントエンド24と、アンテナ25と、RF受信フロントエンド26と、A/D(Analog to Digital)部27と、フレーム生成部28と、E/O部29と、を備える。 FIG. 3 is a block diagram showing a configuration example of the repeater 2a according to the present embodiment. Since the repeaters 2a to 2d have the same configuration, the repeater 2a will be described as an example. The repeater 2a includes an O / E unit 21, a frame termination unit 22, a D / A (Digital to Analog) unit 23, an RF (Radio Frequency) transmission front end 24, an antenna 25, and an RF reception front end 26. And an A / D (Analog to Digital) unit 27, a frame generation unit 28, and an E / O unit 29.
 O/E部21は、基地局1から受信した光信号を電気信号に変換し、フレーム終端部22へ出力する。O/E部21は、例えば、光電気変換回路によって構成される。 The O / E unit 21 converts the optical signal received from the base station 1 into an electrical signal and outputs the electrical signal to the frame termination unit 22. The O / E unit 21 is configured by, for example, a photoelectric conversion circuit.
 フレーム終端部22は、電気信号から同期パターンを検出することによって下りRoFフレームを検出する。また、フレーム終端部22は、下りRoFフレームのヘッダを確認し、下りRoFフレームのペイロードに無線データが含まれていた場合は無線データを抽出してD/A部23へ出力する。また、フレーム終端部22は、基地局1から送信された下りRoFフレームの同期パターンを検出したタイミングをフレーム生成部28へ通知する。 The frame termination unit 22 detects the downlink RoF frame by detecting the synchronization pattern from the electric signal. Also, the frame termination unit 22 confirms the header of the downlink RoF frame, and if the wireless data is included in the payload of the downlink RoF frame, extracts the radio data and outputs it to the D / A unit 23. Further, the frame termination unit 22 notifies the frame generation unit 28 of the timing at which the synchronization pattern of the downlink RoF frame transmitted from the base station 1 is detected.
 D/A部23は、デジタル信号の無線データをアナログ信号の無線データに変換する。D/A部23は、例えば、デジタルアナログ変換回路によって構成される。 The D / A unit 23 converts the digital signal wireless data into analog signal wireless data. The D / A unit 23 is configured by, for example, a digital / analog conversion circuit.
 RF送信フロントエンド24は、アナログ信号の無線データに対して符号化および変調などの処理を行って、無線データの無線通信区間における信号である無線信号を生成し、アンテナ25経由で通信エリアへ無線信号を放射する。RF送信フロントエンド24は、例えば、無線信号送信用のインタフェースカードによって構成される。 The RF transmission front end 24 performs processing such as encoding and modulation on the wireless data of the analog signal, generates a wireless signal that is a signal in the wireless communication section of the wireless data, and wirelessly transmits to the communication area via the antenna 25. Radiates a signal. The RF transmission front end 24 is constituted by an interface card for wireless signal transmission, for example.
 アンテナ25は、端末4との間で無線信号を送受信する。アンテナ25は、例えば、指向性を有するアンテナ素子によって構成される。 The antenna 25 transmits and receives radio signals to and from the terminal 4. The antenna 25 is configured by a directional antenna element, for example.
 RF受信フロントエンド26は、アンテナ25経由で受信した無線信号に対して復調および復号などの処理を行って得られた無線データを、A/D部27へ出力する。RF受信フロントエンド26は、例えば、無線信号受信用のインタフェースカードによって構成される。 The RF reception front end 26 outputs to the A / D unit 27 wireless data obtained by performing processing such as demodulation and decoding on the wireless signal received via the antenna 25. The RF reception front end 26 is configured by, for example, an interface card for wireless signal reception.
 A/D部27は、アナログ信号の無線データをデジタル信号の無線データに変換する。A/D部27は、例えば、アナログデジタル変換回路によって構成される。 The A / D unit 27 converts the wireless data of the analog signal into the wireless data of the digital signal. The A / D unit 27 is configured by an analog-digital conversion circuit, for example.
 フレーム生成部28は、同期パターン、ヘッダ、およびペイロードから構成される上りRoFフレームを生成し、E/O部29へ出力する。フレーム生成部28は、A/D部27から無線データが入力されていた場合、上りRoFフレームのペイロードに無線データを格納する。また、フレーム生成部28は、フレーム終端部22から通知されたタイミングで上りRoFフレームを生成する。 The frame generation unit 28 generates an uplink RoF frame composed of a synchronization pattern, a header, and a payload, and outputs it to the E / O unit 29. When the wireless data is input from the A / D unit 27, the frame generation unit 28 stores the wireless data in the payload of the uplink RoF frame. Further, the frame generation unit 28 generates an uplink RoF frame at the timing notified from the frame termination unit 22.
 E/O部29は、フレーム生成部28から入力された電気信号の上りRoFフレームを光信号に変換し、基地局1へ送信する。E/O部29は、例えば、電気光変換回路によって構成される。 The E / O unit 29 converts the uplink RoF frame of the electrical signal input from the frame generation unit 28 into an optical signal and transmits it to the base station 1. The E / O unit 29 is configured by, for example, an electro-optical conversion circuit.
 つづいて、基地局1における、中継機2a~2dへ無線データを送信する際の下り遅延補正処理、および中継機2a~2dから無線データを受信した際の上り遅延補正処理について説明する。図4は、本実施の形態にかかる基地局1の遅延補正処理を示すフローチャートである。まず、基地局1の送受信部11a~11dの各遅延測定部113が、下り遅延補正処理および上り遅延補正処理において、中継機2a~2dへ送信する無線データに対する下り遅延補正時間DTa~DTd、および中継機2a~2dから受信した無線データに対する上り遅延補正時間UTa~UTdを算出するために必要な遅延情報を取得する(ステップS1)。 Next, a description will be given of a downlink delay correction process when the base station 1 transmits wireless data to the repeaters 2a to 2d and an uplink delay correction process when wireless data is received from the repeaters 2a to 2d. FIG. 4 is a flowchart showing the delay correction process of the base station 1 according to this embodiment. First, each of the delay measurement units 113 of the transmission / reception units 11a to 11d of the base station 1 performs downlink delay correction times DTa to DTd for radio data transmitted to the repeaters 2a to 2d in the downlink delay correction processing and the uplink delay correction processing, and Delay information necessary to calculate the uplink delay correction times UTa to UTd for the radio data received from the repeaters 2a to 2d is acquired (step S1).
 下り遅延補正時間DTa~DTdおよび上り遅延補正時間UTa~UTdの算出に必要な遅延情報とは、下り片方向遅延時間DLa~DLd、上り片方向遅延時間ULa~ULd、無線伝搬遅延時間差、指定下り遅延時間Ddn、および指定上り遅延時間Dupである。下り片方向遅延時間DLa~DLdは、送受信部11a~11dから中継機2a~2dへの下り方向の通信で発生する遅延時間である。上り片方向遅延時間ULa~ULdは、中継機2a~2dから送受信部11a~11dへの上り方向の通信で発生する遅延時間である。無線伝搬遅延時間差は、ある中継機2から端末4へ無線信号を送信したときの無線伝搬遅延時間と基準となる中継機2から端末4へ無線信号を送信したときの無線伝搬遅延時間との差分である。指定下り遅延時間Ddnは、基地局1から端末4への下り方向の通信で許容される時間である。指定上り遅延時間Dupは、端末4から基地局1への上り方向の通信で許容される時間である。 The delay information necessary for calculating the downlink delay correction times DTa to DTd and the uplink delay correction times UTa to UTd includes the downlink one-way delay times DLa to DLd, the uplink one-way delay times ULa to ULd, the radio propagation delay time difference, and the designated downlink Delay time Ddn and designated upstream delay time Dup. The downlink one-way delay times DLa to DLd are delay times generated in downlink communication from the transmission / reception units 11a to 11d to the repeaters 2a to 2d. Upward one-way delay times ULa to ULd are delay times generated in upstream communication from the repeaters 2a to 2d to the transmission / reception units 11a to 11d. The difference in radio propagation delay time is the difference between the radio propagation delay time when a radio signal is transmitted from a certain relay station 2 to the terminal 4 and the radio propagation delay time when a radio signal is transmitted from the reference relay station 2 to the terminal 4 It is. The designated downlink delay time Ddn is a time allowed for downlink communication from the base station 1 to the terminal 4. The designated uplink delay time Dup is a time allowed for uplink communication from the terminal 4 to the base station 1.
 まず、図4のフローチャートに示すステップS1の処理において、基地局1の送受信部11a~11dの遅延測定部113が、下り片方向遅延時間DLa~DLdおよび上り片方向遅延時間ULa~ULdを算出するために必要な、中継機2a~2dとの間の往復遅延時間RTTa~RTTdを測定する動作について説明する。一例として、基地局1の送受信部11aの遅延測定部113が、送受信部11aと送受信部11aに接続する中継機2aとの間の往復遅延時間RTTaを測定する場合について説明する。なお、送受信部11b~11dの遅延測定部113は、同様の方法で中継機2b~2dとの間の往復遅延時間RTTb~RTTdを測定することとする。図5は、本実施の形態にかかる基地局1が中継機2aとの間の往復遅延時間RTTaを算出する方法を示す図である。 First, in the processing of step S1 shown in the flowchart of FIG. 4, the delay measurement unit 113 of the transmission / reception units 11a to 11d of the base station 1 calculates the downlink one-way delay times DLa to DLd and the uplink one-way delay times ULa to ULd. An operation for measuring the round-trip delay times RTTa to RTTd between the repeaters 2a to 2d necessary for the above will be described. As an example, a case will be described in which the delay measurement unit 113 of the transmission / reception unit 11a of the base station 1 measures the round-trip delay time RTTa between the transmission / reception unit 11a and the repeater 2a connected to the transmission / reception unit 11a. Note that the delay measurement unit 113 of the transmission / reception units 11b to 11d measures the round trip delay times RTTb to RTTd with the repeaters 2b to 2d by the same method. FIG. 5 is a diagram illustrating a method in which the base station 1 according to the present embodiment calculates the round-trip delay time RTTa with the repeater 2a.
 基地局1の送受信部11aにおいて、フレーム生成部112は、下りRoFフレームを生成する。フレーム生成部112は、図5に示すように、先頭に位置する既知のビット配列の同期パターンと、制御信号を格納するヘッダと、無線データを格納するペイロードと、から構成される下りRoFフレームを生成する。フレーム生成部112は、ここではペイロードには有効な無線データを含めない。図6は、本実施の形態にかかる送受信部11aのフレーム生成部112の動作を示すフローチャートである。フレーム生成部112は、下りRoFフレームを生成すると(ステップS11)、生成した下りRoFフレームの同期パターンの先頭のタイミングを遅延測定部113へ通知する(ステップS12)。遅延測定部113は、フレーム生成部112から通知されたタイミングを記憶する。フレーム生成部112は、生成した下りRoFフレームをE/O部114へ出力する。E/O部114は、フレーム生成部112で生成された下りRoFフレームを光信号に変換して光ファイバ3aを介して中継機2aへ送信する。 In the transmission / reception unit 11a of the base station 1, the frame generation unit 112 generates a downlink RoF frame. As shown in FIG. 5, the frame generation unit 112 generates a downlink RoF frame composed of a synchronization pattern of a known bit arrangement located at the head, a header that stores a control signal, and a payload that stores wireless data. Generate. Here, the frame generation unit 112 does not include valid wireless data in the payload. FIG. 6 is a flowchart showing the operation of the frame generation unit 112 of the transmission / reception unit 11a according to this embodiment. When generating the downlink RoF frame (step S11), the frame generation unit 112 notifies the delay measurement unit 113 of the start timing of the synchronization pattern of the generated downlink RoF frame (step S12). The delay measurement unit 113 stores the timing notified from the frame generation unit 112. The frame generation unit 112 outputs the generated downlink RoF frame to the E / O unit 114. The E / O unit 114 converts the downlink RoF frame generated by the frame generation unit 112 into an optical signal and transmits the optical signal to the repeater 2a via the optical fiber 3a.
 中継機2aでは、図5に示すように、基地局1より送信されてから光ファイバ3aによる伝搬遅延分遅れて、光信号の下りRoFフレームを受信する。中継機2aにおいて、O/E部21は、光ファイバ3aを介して基地局1から受信した光信号を電気信号に変換し、フレーム終端部22へ出力する。図7は、本実施の形態にかかる中継機2aのフレーム終端部22の動作を示すフローチャートである。フレーム終端部22は、電気信号から既知のビット配列の同期パターンを検出することによって、同期パターンを先頭とする下りRoFフレームを検出する(ステップS21)。フレーム終端部22は、下りRoFフレームの同期パターンを検出したタイミングをフレーム生成部28へ通知する(ステップS22)。図8は、本実施の形態にかかる中継機2aのフレーム生成部28の動作を示すフローチャートである。フレーム生成部28は、フレーム終端部22から下りRoFフレームの同期パターンの検出タイミングの通知を受ける(ステップS31)。フレーム生成部28は、下りRoFフレームの同期パターンの検出タイミングに合わせて、通知された検出タイミングを先頭とし、先頭に位置する既知のビット配列の同期パターンと、制御信号を格納するヘッダと、無線データを格納するペイロードと、から構成される上りRoFフレームを生成し(ステップS32)、E/O部29へ出力する。E/O部29は、フレーム生成部28で生成された上りRoFフレームを光信号に変換して光ファイバ3aを介して基地局1へ送信する。 As shown in FIG. 5, the repeater 2a receives the downstream RoF frame of the optical signal delayed from the transmission delay by the optical fiber 3a after being transmitted from the base station 1. In the repeater 2a, the O / E unit 21 converts the optical signal received from the base station 1 through the optical fiber 3a into an electrical signal and outputs the electrical signal to the frame termination unit 22. FIG. 7 is a flowchart showing the operation of the frame termination unit 22 of the repeater 2a according to this embodiment. The frame termination unit 22 detects a downlink RoF frame starting from the synchronization pattern by detecting a synchronization pattern having a known bit arrangement from the electrical signal (step S21). The frame end unit 22 notifies the frame generation unit 28 of the timing at which the synchronization pattern of the downlink RoF frame is detected (step S22). FIG. 8 is a flowchart showing the operation of the frame generation unit 28 of the repeater 2a according to the present embodiment. The frame generation unit 28 receives a notification of the detection timing of the synchronization pattern of the downlink RoF frame from the frame end unit 22 (step S31). The frame generation unit 28, in synchronization with the detection timing of the synchronization pattern of the downlink RoF frame, starts with the notified detection timing, a synchronization pattern of a known bit arrangement located at the head, a header storing a control signal, a wireless An uplink RoF frame composed of a payload for storing data is generated (step S 32) and output to the E / O unit 29. The E / O unit 29 converts the uplink RoF frame generated by the frame generation unit 28 into an optical signal and transmits the optical signal to the base station 1 via the optical fiber 3a.
 基地局1では、図5に示すように、中継機2aより送信されてから光ファイバ3aによる伝搬遅延分遅れて、光信号の上りRoFフレームを受信する。基地局1の送受信部11aにおいて、O/E部115は、光ファイバ3aを介して中継機2aから受信した光信号を電気信号に変換し、フレーム終端部116へ出力する。図9は、本実施の形態にかかる送受信部11aのフレーム終端部116の動作を示すフローチャートである。フレーム終端部116は、電気信号から既知のビット配列の同期パターンを検出することによって、同期パターンを先頭とする上りRoFフレームを検出する(ステップS41)。フレーム終端部116は、上りRoFフレームの同期パターンを検出したタイミングを遅延測定部113へ通知する(ステップS42)。 As shown in FIG. 5, the base station 1 receives the upstream RoF frame of the optical signal after being transmitted from the repeater 2a and delayed by the propagation delay by the optical fiber 3a. In the transmission / reception unit 11 a of the base station 1, the O / E unit 115 converts the optical signal received from the repeater 2 a through the optical fiber 3 a into an electrical signal and outputs the electrical signal to the frame termination unit 116. FIG. 9 is a flowchart showing the operation of the frame termination unit 116 of the transmission / reception unit 11a according to the present embodiment. The frame termination unit 116 detects an uplink RoF frame starting from the synchronization pattern by detecting a synchronization pattern having a known bit arrangement from the electrical signal (step S41). The frame termination unit 116 notifies the delay measurement unit 113 of the timing at which the synchronization pattern of the uplink RoF frame is detected (step S42).
 図10は、本実施の形態にかかる遅延測定部113が下り片方向遅延時間DLおよび上り片方向遅延時間ULを算出する動作を示すフローチャートである。遅延測定部113は、フレーム生成部112から下りRoFフレームの同期パターンの先頭タイミングの通知を受け(ステップS51)、フレーム終端部116から上りRoFフレームの同期パターンの検出タイミングの通知を受ける(ステップS52)。遅延測定部113は、上りRoFフレームの同期パターンの検出タイミングと下りRoFフレームの同期パターンの先頭タイミングとの差分から、送受信部11aと送受信部11aに接続する中継機2aとの間の往復遅延時間RTTaを算出する(ステップS53)。また、遅延測定部113は、求めた往復遅延時間RTTaから、基地局1から中継機2aへ送信する無線データの遅延時間である下り片方向遅延時間DLaを算出し(ステップS54)、中継機2aから基地局1へ送信する無線データの遅延時間である上り片方向遅延時間ULaを算出する(ステップS55)。なお、「往復遅延時間RTTa=下り片方向遅延時間DLa+上り片方向遅延時間ULa」となる。 FIG. 10 is a flowchart showing an operation in which the delay measurement unit 113 according to the present embodiment calculates the downlink one-way delay time DL and the uplink one-way delay time UL. The delay measurement unit 113 receives a notification of the start timing of the synchronization pattern of the downlink RoF frame from the frame generation unit 112 (step S51), and receives a notification of the detection timing of the synchronization pattern of the uplink RoF frame from the frame termination unit 116 (step S52). ). The delay measurement unit 113 determines the round-trip delay time between the transmission / reception unit 11a and the repeater 2a connected to the transmission / reception unit 11a from the difference between the detection timing of the synchronization pattern of the uplink RoF frame and the start timing of the synchronization pattern of the downlink RoF frame. RTTa is calculated (step S53). Also, the delay measuring unit 113 calculates a downlink one-way delay time DLa, which is a delay time of radio data transmitted from the base station 1 to the repeater 2a, from the calculated round-trip delay time RTTa (step S54), and repeater 2a. The uplink one-way delay time ULa, which is the delay time of the wireless data transmitted from to the base station 1, is calculated (step S55). Note that “round trip delay time RTTa = downward one-way delay time DLa + upward one-way delay time ULa”.
 遅延測定部113は、例えば、光ファイバ3aが2つの芯線で構成され、基地局1と中継機2aが用いる光波長が等しい場合、下り片方向遅延時間DLaおよび上り片方向遅延時間ULaは往復遅延時間RTTaの1/2として算出することができる。 For example, when the optical fiber 3a is composed of two core wires and the optical wavelengths used by the base station 1 and the repeater 2a are the same, the delay measuring unit 113 is configured so that the downlink one-way delay time DLa and the uplink one-way delay time ULa are round-trip delays. It can be calculated as 1/2 of the time RTTa.
 また、遅延測定部113は、例えば、光ファイバ3aが1つの芯線で構成され、基地局1の送信波長と中継機2aの送信波長を異ならせてWDM(Wavelength Division Multiplex)カプラを用いて波長多重して伝送する場合、ITU(International Telecommunication Union)-T G.984.3のFigure VII.1に示すように、上りおよび下りの波長によって異なる伝搬遅延を加味した値を往復遅延時間RTTaに乗算して、下り片方向遅延時間DLaおよび上り片方向遅延時間ULaを算出することができる。上りおよび下りの波長によって異なる伝搬遅延を加味した値とは、1/2に近い値である。 In addition, the delay measurement unit 113 includes, for example, an optical fiber 3a formed of a single core, and uses a WDM (Wavelength Division Multiplex) coupler to make the transmission wavelength of the base station 1 different from the transmission wavelength of the repeater 2a. ITU (International Telecommunication Union) -T G. 984.3 Figure VII. As shown in FIG. 1, it is possible to calculate the downlink one-way delay time DLa and the uplink one-way delay time ULa by multiplying the round-trip delay time RTTa by a value including propagation delays that differ depending on the uplink and downlink wavelengths. The value that takes into account propagation delays that differ depending on the upstream and downstream wavelengths is a value close to ½.
 同様に、基地局1では、送受信部11bの遅延測定部113が、送受信部11bと中継機2bとの間の往復遅延時間RTTbを算出し、下り片方向遅延時間DLbおよび上り片方向遅延時間ULbを算出する。また、送受信部11cの遅延測定部113が、送受信部11cと中継機2cとの間の往復遅延時間RTTcを算出し、下り片方向遅延時間DLcおよび上り片方向遅延時間ULcを算出する。また、送受信部11dの遅延測定部113が、送受信部11dと中継機2dとの間の往復遅延時間RTTdを算出し、下り片方向遅延時間DLdおよび上り片方向遅延時間ULdを算出する。 Similarly, in the base station 1, the delay measurement unit 113 of the transmission / reception unit 11b calculates the round trip delay time RTTb between the transmission / reception unit 11b and the repeater 2b, and the downlink one-way delay time DLb and the uplink one-way delay time ULb. Is calculated. In addition, the delay measurement unit 113 of the transmission / reception unit 11c calculates the round trip delay time RTTc between the transmission / reception unit 11c and the repeater 2c, and calculates the downlink one-way delay time DLc and the uplink one-way delay time ULc. In addition, the delay measurement unit 113 of the transmission / reception unit 11d calculates a round trip delay time RTTd between the transmission / reception unit 11d and the repeater 2d, and calculates a downlink one-way delay time DLd and an uplink one-way delay time ULd.
 つぎに、図4のフローチャートに示すステップS1の処理において、基地局1の送受信部11a~11dの各遅延測定部113が、無線伝搬遅延時間差を算出する動作について説明する。図11は、本実施の形態にかかる遅延測定部113が無線伝搬遅延時間差を算出する動作を示すフローチャートである。ここでは、送受信部11bの遅延測定部113が、図1において、中継機2aを基準とした中継機2bの無線伝搬遅延時間差Dbaを算出する動作について説明する。無線伝搬遅延時間差Dbaは、送受信部11bが接続する中継機2bから端末4への無線信号の無線伝搬遅延時間と、基準となる中継機2aから端末4への無線信号の無線伝搬遅延時間との差分である。送受信部11bの遅延測定部113は、移動体通信システム7の運用者などからの情報の入力を受け付けて中継機2aおよび中継機2bの位置情報を取得する(ステップS61)。 Next, an operation in which the delay measurement units 113 of the transmission / reception units 11a to 11d of the base station 1 calculate the radio propagation delay time difference in the process of step S1 shown in the flowchart of FIG. 4 will be described. FIG. 11 is a flowchart showing an operation in which the delay measurement unit 113 according to the present embodiment calculates the radio propagation delay time difference. Here, the operation in which the delay measurement unit 113 of the transmission / reception unit 11b calculates the radio propagation delay time difference Dba of the repeater 2b with reference to the repeater 2a in FIG. 1 will be described. The radio propagation delay time difference Dba is the difference between the radio propagation delay time of the radio signal from the repeater 2b to the terminal 4 connected to the transceiver 11b and the radio propagation delay time of the radio signal from the reference repeater 2a to the terminal 4. It is a difference. The delay measurement unit 113 of the transmission / reception unit 11b receives input of information from an operator of the mobile communication system 7 and acquires the positional information of the relay device 2a and the relay device 2b (step S61).
 また、送受信部11bの遅延測定部113は、例えば、端末4が中継機2aの通信エリア5aと中継機2bの通信エリア5bの干渉エリア6abの中心にいる場合を想定し、干渉エリア6abの中心の位置情報を取得する。送受信部11bの遅延測定部113は、干渉エリア6abの中心の位置情報について、移動体通信システム7の運用者などからの情報の入力を受け付けて取得してもよいし、中継機2a,2bの位置情報および端末4の移動経路の情報に基づいて算出してもよい。送受信部11bの遅延測定部113は、中継機2a,2bの位置情報および干渉エリア6abの中心位置の情報を用いて、中継機2aと干渉エリア6abの中心位置との距離Labaおよび中継機2bと干渉エリア6abの中心位置との距離Labbを算出する(ステップS62)。 The delay measurement unit 113 of the transmission / reception unit 11b assumes, for example, that the terminal 4 is at the center of the interference area 6ab of the communication area 5a of the relay 2a and the communication area 5b of the relay 2b, and the center of the interference area 6ab. Get location information. The delay measurement unit 113 of the transmission / reception unit 11b may acquire the position information of the center of the interference area 6ab by receiving input of information from an operator of the mobile communication system 7 or the like, or the relay units 2a and 2b. You may calculate based on the positional information and the information on the movement route of the terminal 4. The delay measuring unit 113 of the transmission / reception unit 11b uses the position information of the relays 2a and 2b and the information on the center position of the interference area 6ab to determine the distance Laba between the relay 2a and the center position of the interference area 6ab and the relay 2b. A distance Labb from the center position of the interference area 6ab is calculated (step S62).
 端末4が干渉エリア6abの中心にいる場合、中継機2aを基準とすると、中継機2aから送信された無線信号が端末4に到達するまで伝搬時間と、中継機2bから送信された無線信号が端末4に到達するまで伝搬時間との差分である無線伝搬遅延時間差Dbaは、式(1)によって表すことができる。ただし、cは空気中での光の速度である。なお、無線伝搬遅延時間Dbaは正負いずれの符号も取り得る。送受信部11bの遅延測定部113は、式(1)より無線伝搬遅延時間差Dbaを算出する(ステップS63)。 When the terminal 4 is in the center of the interference area 6ab, when the relay 2a is used as a reference, the propagation time until the wireless signal transmitted from the relay 2a reaches the terminal 4 and the wireless signal transmitted from the relay 2b are A radio propagation delay time difference Dba, which is a difference from the propagation time until the terminal 4 is reached, can be expressed by Expression (1). Where c is the speed of light in the air. The radio propagation delay time Dba can take either positive or negative sign. The delay measurement unit 113 of the transmission / reception unit 11b calculates the radio propagation delay time difference Dba from the equation (1) (step S63).
 Dba=(Labb-Laba)/c …(1) Dba = (Labb-Laba) / c (1)
 同様に、基地局1の送受信部11cの遅延測定部113は、中継機2b,2cなどの位置情報を取得すると、中継機2bの通信エリア5bと中継機2cの通信エリア5cの干渉エリア6bcの中心の端末4に対する中継機2b,2cとの距離Lbcb,Lbccを算出し、中継機2bを基準とした中継機2cの無線伝搬遅延時間差Dcbを算出する。また、基地局1の送受信部11dの遅延測定部113は、中継機2c,2dなどの位置情報を取得すると、中継機2cの通信エリア5cと中継機2dの通信エリア5dの干渉エリア6cdの中心の端末4に対する中継機2c,2dとの距離Lcdc,Lcddを算出し、中継機2cを基準とした中継機2dの無線伝搬遅延時間差Ddcを算出する。なお、干渉エリア6は隣接しない中継機2の影響すなわち干渉を受けないため、無線伝搬遅延時間Dba,Dcb,Ddcに相関関係は無い。 Similarly, when the delay measurement unit 113 of the transmission / reception unit 11c of the base station 1 acquires the position information of the repeaters 2b and 2c, the delay measurement unit 113 of the communication area 5b of the repeater 2b and the interference area 6bc of the communication area 5c of the repeater 2c. The distances Lbcb and Lbcc with respect to the repeaters 2b and 2c with respect to the central terminal 4 are calculated, and the radio propagation delay time difference Dcb of the repeater 2c with respect to the repeater 2b is calculated. In addition, when the delay measuring unit 113 of the transmission / reception unit 11d of the base station 1 acquires the position information of the repeaters 2c and 2d, the center of the interference area 6cd of the communication area 5c of the repeater 2c and the communication area 5d of the repeater 2d. The distances Lcdc and Lcdd between the terminal 4 and the relays 2c and 2d are calculated, and the radio propagation delay time difference Ddc of the relay 2d with respect to the relay 2c is calculated. In addition, since the interference area 6 is not affected by the influence of the non-adjacent repeater 2, that is, interference, the radio propagation delay times Dba, Dcb, and Ddc have no correlation.
 ここで、中継機2a~2dが、指向性の高いンテナ25を用いて端末4と通信を行う、具体的に図1の例では、左方向に高い指向性を有するアンテナ25を用いて端末4と通信を行う場合、無線伝搬遅延時間差は、通信エリア5に沿った中継機2同士の距離情報から求めることも可能である。この場合、中継機2aを基準として、前述の式(1)を用いて無線伝搬遅延時間差Dba,Dca,Ddaを算出することができる。「Dca=Dcb+Dba」となり、「Dda=Ddc+Dcb+Dba」となる。すなわち、送受信部11a~11dの遅延測定部113は、各々の送受信部11が接続する中継機2および基準となる中継機2の位置情報を用いて、各々の送受信部11が接続する中継機2から端末4への無線信号の無線伝搬遅延時間と、基準となる中継機2から端末4への無線信号の無線伝搬遅延時間との差分である無線伝搬遅延時間差を算出することができる。具体的に、送受信部11dの遅延測定部113は、送受信部11dが接続する中継機2dおよび基準となる中継機2aの位置情報を用いて、送受信部11dが接続する中継機2dから端末4への無線信号の無線伝搬遅延時間と、基準となる中継機2aから端末4への無線信号の無線伝搬遅延時間との差分である無線伝搬遅延時間差Ddaを算出することができる。 Here, the repeaters 2a to 2d communicate with the terminal 4 using the antenna 25 having high directivity. Specifically, in the example of FIG. 1, the terminal 4 is used using the antenna 25 having high directivity in the left direction. When the communication is performed, the radio propagation delay time difference can be obtained from the distance information between the repeaters 2 along the communication area 5. In this case, the radio propagation delay time differences Dba, Dca, Dda can be calculated using the above-described equation (1) with the repeater 2a as a reference. “Dca = Dcb + Dba” and “Dda = Ddc + Dcb + Dba”. That is, the delay measurement unit 113 of the transmission / reception units 11a to 11d uses the position information of the relay 2 connected to each transmission / reception unit 11 and the reference relay 2 to connect the relay 2 connected to each transmission / reception unit 11. A radio propagation delay time difference that is a difference between the radio propagation delay time of the radio signal from the terminal 4 to the terminal 4 and the radio propagation delay time of the radio signal from the reference relay 2 to the terminal 4 can be calculated. Specifically, the delay measuring unit 113 of the transmission / reception unit 11d uses the position information of the relay 2d connected to the transmission / reception unit 11d and the reference relay 2a to the terminal 4 from the relay 2d connected to the transmission / reception unit 11d. The radio propagation delay time difference Dda, which is the difference between the radio propagation delay time of the radio signal and the radio propagation delay time of the radio signal from the reference relay 2a to the terminal 4, can be calculated.
 なお、移動体通信システム7では、中継機2a~2dが設置されると各中継機2の位置関係および距離は変化しない。そのため、各無線伝搬遅延時間差の情報については、基地局1で算出せず、移動体通信システム7の運用者が中継機2a~2dを設置した段階で各無線伝搬遅延時間差を算出し、算出した各無線伝搬遅延時間差の情報を各送受信部11a~11dの遅延補正部113に設定してもよい。移動体通信システム7の運用者が各無線伝搬遅延時間差を算出する場合でも、算出には前述の式(1)を用いる。 In the mobile communication system 7, when the repeaters 2a to 2d are installed, the positional relationship and distance of each repeater 2 do not change. For this reason, the base station 1 does not calculate the information on each radio propagation delay time difference, and the operator of the mobile communication system 7 calculates each radio propagation delay time difference when installing the repeaters 2a to 2d. Information on each radio propagation delay time difference may be set in the delay correction unit 113 of each of the transmission / reception units 11a to 11d. Even when the operator of the mobile communication system 7 calculates each radio propagation delay time difference, the above equation (1) is used for the calculation.
 つぎに、図4のフローチャートに示すステップS1の処理において、基地局1の送受信部11a~11dの各遅延測定部113が、指定下り遅延時間Ddnおよび指定上り遅延時間Dupの情報を取得する。図12は、本実施の形態にかかる遅延測定部113が指定下り遅延時間Ddnおよび指定上り遅延時間Dupの情報を取得する動作を示すフローチャートである。基地局1の送受信部11a~11dの各遅延測定部113は、移動体通信システム7の運用者などの設定により、移動体通信システム7の下り方向の通信において許容される指定下り遅延時間Ddnの情報を取得し(ステップS71)、移動体通信システム7の上り方向の通信において許容される指定上り遅延時間Dupの情報を取得する(ステップS72)。指定下り遅延時間Ddnは、例えば、移動体通信システム7において許容される下り方向の最大遅延時間とすることができるが、これに限定されるものではない。また、指定上り遅延時間Dupは、例えば、移動体通信システム7において許容される上り方向の最大遅延時間とすることができるが、これに限定されるものではない。 Next, in the process of step S1 shown in the flowchart of FIG. 4, each delay measurement unit 113 of the transmission / reception units 11a to 11d of the base station 1 acquires information on the designated downlink delay time Ddn and the designated uplink delay time Dup. FIG. 12 is a flowchart showing an operation in which the delay measurement unit 113 according to the present embodiment acquires information on the designated downlink delay time Ddn and the designated uplink delay time Dup. Each of the delay measurement units 113 of the transmission / reception units 11a to 11d of the base station 1 has a specified downlink delay time Ddn allowed in the downlink communication of the mobile communication system 7 according to the setting of the operator of the mobile communication system 7 or the like. Information is acquired (step S71), and information on the designated uplink delay time Dup allowed in the uplink communication of the mobile communication system 7 is acquired (step S72). The designated downlink delay time Ddn can be, for example, the maximum downlink delay time allowed in the mobile communication system 7, but is not limited thereto. The designated uplink delay time Dup can be, for example, the maximum delay time in the uplink direction allowed in the mobile communication system 7, but is not limited thereto.
 以上の説明により基地局1の送受信部11a~11dの各遅延測定部113では、図4に示すステップS1の処理が完了する。 As described above, the delay measurement unit 113 of the transmission / reception units 11a to 11d of the base station 1 completes the process of step S1 shown in FIG.
 図4のフローチャートの説明に戻る。基地局1は、ステップS1の処理で取得された遅延情報を用いて、下り方向および上り方向の通信で使用する遅延補正時間を算出して遅延補正処理を行う。まず、下り方向の通信における下り遅延補正処理について説明する。 Returning to the flowchart of FIG. The base station 1 performs delay correction processing by calculating the delay correction time used in downlink and uplink communication using the delay information acquired in the process of step S1. First, downlink delay correction processing in downlink communication will be described.
 基地局1は、端末4へ中継機2a~2d経由で無線データを送信する際の下り方向における下り遅延補正時間DTa~DTdを算出する(ステップS2)。 The base station 1 calculates downlink delay correction times DTa to DTd in the downlink direction when wireless data is transmitted to the terminal 4 via the repeaters 2a to 2d (step S2).
 基地局1では、ステップS1の処理で取得された指定下り遅延時間Ddn、無線伝搬遅延時間差Ddc,Dcb,Dba、および下り片方向遅延時間DLa~DLdを用いて、下り遅延補正時間DTa~DTdを算出する。 The base station 1 uses the designated downlink delay time Ddn, radio propagation delay time differences Ddc, Dcb, Dba, and downlink one-way delay times DLa to DLd acquired in the process of step S1, to calculate the downlink delay correction times DTa to DTd. calculate.
 具体的に、基地局1の送受信部11aの下り遅延補正部111は、遅延測定部113において保持する前述のステップS1の処理で取得された遅延情報、すなわち、指定下り遅延時間Ddn、および下り片方向遅延時間DLaを用いて、式(2)より中継機2aへ送信する無線データに対する下り遅延補正時間DTaを算出する。 Specifically, the downlink delay correction unit 111 of the transmission / reception unit 11a of the base station 1 stores the delay information acquired in the process of step S1 held in the delay measurement unit 113, that is, the specified downlink delay time Ddn, and the downlink piece. Using the direction delay time DLa, the downlink delay correction time DTa for the radio data to be transmitted to the repeater 2a is calculated from Equation (2).
 DTa=Ddn-DLa …(2) DTa = Ddn-DLa (2)
 また、基地局1の送受信部11bの下り遅延補正部111は、遅延測定部113において保持する前述のステップS1の処理で取得された遅延情報、すなわち、指定下り遅延時間Ddn、無線伝搬遅延時間差Dba、および下り片方向遅延時間DLbを用いて、式(3)より中継機2bへ送信する無線データに対する下り遅延補正時間DTbを算出する。 Further, the downlink delay correction unit 111 of the transmission / reception unit 11b of the base station 1 stores the delay information acquired in the processing of step S1 held in the delay measurement unit 113, that is, the specified downlink delay time Ddn and the radio propagation delay time difference Dba. , And the downlink one-way delay time DLb, the downlink delay correction time DTb for the radio data transmitted to the repeater 2b is calculated from Equation (3).
 DTb=Ddn-DLb-Dba …(3) DTb = Ddn-DLb-Dba (3)
 また、基地局1の送受信部11cの下り遅延補正部111は、遅延測定部113において保持する前述のステップS1の処理で取得された遅延情報、すなわち、指定下り遅延時間Ddn、無線伝搬遅延時間Dcb,Dba、および下り片方向遅延時間DLcを用いて、式(4)より中継機2cへ送信する無線データに対する下り遅延補正時間DTcを算出する。なお、式(4)については式(4´)のように表すことができる。 Further, the downlink delay correction unit 111 of the transmission / reception unit 11c of the base station 1 stores the delay information acquired in the processing of the above-described step S1 held in the delay measurement unit 113, that is, the designated downlink delay time Ddn and the radio propagation delay time Dcb. , Dba and the downlink one-way delay time DLc, the downlink delay correction time DTc for the radio data transmitted to the repeater 2c is calculated from the equation (4). Note that Expression (4) can be expressed as Expression (4 ′).
 DTc=Ddn-DLc-Dcb-Dba …(4)
 DTc=Ddn-DLc-Dca …(4´)
DTc = Ddn-DLc-Dcb-Dba (4)
DTc = Ddn−DLc−Dca (4 ′)
 また、基地局1の送受信部11dの下り遅延補正部111は、遅延測定部113において保持する前述のステップS1の処理で取得された遅延情報、すなわち、指定下り遅延時間Ddn、無線伝搬遅延時間差Ddc,Dcb,Dba、および下り片方向遅延時間DLdを用いて、式(5)より中継機2dへ送信する無線データに対する下り遅延補正時間DTdを算出する。なお、式(5)については式(5´)のように表すことができる。 Further, the downlink delay correction unit 111 of the transmission / reception unit 11d of the base station 1 stores the delay information acquired in the processing of step S1 held in the delay measurement unit 113, that is, the specified downlink delay time Ddn and the radio propagation delay time difference Ddc. , Dcb, Dba and the downlink one-way delay time DLd, the downlink delay correction time DTd for the radio data transmitted to the repeater 2d is calculated from the equation (5). Note that Expression (5) can be expressed as Expression (5 ′).
 DTd=Ddn-DLd-Ddc-Dcb-Dba …(5)
 DTd=Ddn-DLd-Dda …(5´)
DTd = Ddn-DLd-Ddc-Dcb-Dba (5)
DTd = Ddn−DLd−Dda (5 ′)
 具体的に、基地局1が端末4へ無線データを送信する場合の送受信部11における下り遅延補正処理について説明する。図13は、本実施の形態にかかる基地局1の送受信部11a,11bの下り遅延補正処理および端末4が無線信号を受信するまでの無線データのタイミングチャートを示す図である。ここでは、基地局1の送受信部11a,11b、中継機2a,2b、および端末4の動作を中心に説明する。 Specifically, the downlink delay correction processing in the transmission / reception unit 11 when the base station 1 transmits wireless data to the terminal 4 will be described. FIG. 13 is a diagram illustrating a downlink delay correction process of the transmission / reception units 11a and 11b of the base station 1 according to the present embodiment and a timing chart of radio data until the terminal 4 receives a radio signal. Here, the operations of the transceiver units 11a and 11b, the repeaters 2a and 2b, and the terminal 4 of the base station 1 will be mainly described.
 まず、基地局1の変調部12が、端末4宛てにデジタル化された無線データを生成し、送受信部11a~11dに同じ無線データを配信する。 First, the modulation unit 12 of the base station 1 generates radio data digitized for the terminal 4 and distributes the same radio data to the transmission / reception units 11a to 11d.
 送受信部11aにおいて、下り遅延補正部111は、変調部12から受信した無線データに、式(2)より算出した下り遅延補正時間DTaの遅延を加算する下り遅延補正処理を行う(ステップS3)。下り遅延補正部111は、無線データを、下り遅延補正時間DTaだけ遅延させてフレーム生成部112へ出力する。フレーム生成部112は、下り遅延補正部111で下り遅延補正処理された無線データを下りRoFフレームのペイロードに格納し、ペイロードの格納位置の情報を含む制御信号をヘッダに格納して出力する。E/O部113は、下りRoFフレームを光信号に変換して光ファイバ3aを介して中継機2aへ送信する。 In the transmission / reception unit 11a, the downlink delay correction unit 111 performs a downlink delay correction process in which the delay of the downlink delay correction time DTa calculated from the equation (2) is added to the wireless data received from the modulation unit 12 (step S3). The downlink delay correction unit 111 delays the radio data by the downlink delay correction time DTa and outputs the delayed data to the frame generation unit 112. The frame generation unit 112 stores the wireless data subjected to the downlink delay correction processing by the downlink delay correction unit 111 in the payload of the downlink RoF frame, stores a control signal including information on the storage position of the payload in the header, and outputs it. The E / O unit 113 converts the downlink RoF frame into an optical signal and transmits the optical signal to the repeater 2a through the optical fiber 3a.
 同様に、送受信部11bにおいて、下り遅延補正部111は、変調部12から受信した無線データに、式(3)より算出した下り遅延補正時間DTbの遅延を加算する下り遅延補正処理を行う(ステップS3)。下り遅延補正部111は、無線データを、下り遅延補正時間DTbだけ遅延させてフレーム生成部112へ出力する。フレーム生成部112は、遅延補正部111で下り遅延補正処理された無線データを下りRoFフレームのペイロードに格納し、ペイロードの格納位置の情報を含む制御信号をヘッダに格納して出力する。E/O部113は、下りRoFフレームを光信号に変換して光ファイバ3bを介して中継機2bへ送信する。 Similarly, in the transmission / reception unit 11b, the downlink delay correction unit 111 performs a downlink delay correction process in which the delay of the downlink delay correction time DTb calculated by the equation (3) is added to the wireless data received from the modulation unit 12 (step) S3). The downlink delay correction unit 111 delays the wireless data by the downlink delay correction time DTb and outputs the data to the frame generation unit 112. The frame generation unit 112 stores the wireless data subjected to the downlink delay correction processing by the delay correction unit 111 in the payload of the downlink RoF frame, stores a control signal including information on the storage position of the payload in the header, and outputs it. The E / O unit 113 converts the downstream RoF frame into an optical signal and transmits the optical signal to the repeater 2b via the optical fiber 3b.
 基地局1は、送受信部11a,11bから、遅延補正時間が異なる無線データを長さの異なる光ファイバ3a,3bを介して送信する。 The base station 1 transmits wireless data having different delay correction times from the transmission / reception units 11a and 11b via the optical fibers 3a and 3b having different lengths.
 中継機2aは、送受信部11aの送信タイミングから下り片方向遅延時間DLaだけ遅延された下りRoFフレーム、すなわち、送受信部11aの下り遅延補正部111で下り遅延補正処理された下り片方向遅延時間DLaの遅延が相殺された下りRoFフレームを受信する。中継機2aのO/E部21は、受信した光信号を電気信号に変換する。フレーム終端部22は、電気信号から同期パターンを検出することによって下りRoFフレームを検出し、ヘッダに格納された制御情報に基づいて無線データを抽出する。D/A部23は、デジタル信号の無線データをアナログ信号の無線データに変換する。RF送信フロントエンド24は、アナログ信号の無線データに符号化および変調などの処理を行って無線信号を生成し、アンテナ25から無線信号を放射する。 The repeater 2a transmits the downlink RoF frame delayed by the downlink one-way delay time DLa from the transmission timing of the transmission / reception unit 11a, that is, the downlink one-way delay time DLa subjected to the downlink delay correction processing by the downlink delay correction unit 111 of the transmission / reception unit 11a. The downlink RoF frame in which the delay is canceled is received. The O / E unit 21 of the repeater 2a converts the received optical signal into an electrical signal. The frame termination unit 22 detects a downlink RoF frame by detecting a synchronization pattern from the electrical signal, and extracts wireless data based on control information stored in the header. The D / A unit 23 converts the wireless data of the digital signal into the wireless data of the analog signal. The RF transmission front end 24 performs processing such as encoding and modulation on the wireless data of the analog signal to generate a wireless signal, and radiates the wireless signal from the antenna 25.
 また、中継機2bは、送受信部11bの送信タイミングから下り片方向遅延時間DLbだけ遅延された下りRoFフレーム、すなわち、送受信部11bの下り遅延補正部111で下り遅延補正処理された下り片方向遅延時間DLbの遅延が相殺された下りRoFフレームを受信する。中継機2bのO/E部21は、受信した光信号を電気信号に変換する。フレーム終端部22は、電気信号から同期パターンを検出することによって下りRoFフレームを検出し、ヘッダに格納された制御情報に基づいて無線データを抽出する。D/A部23は、デジタル信号の無線データをアナログ信号の無線データに変換する。RF送信フロントエンド24は、アナログ信号の無線データに符号化および変調などの処理を行って無線信号を生成し、アンテナ25から無線信号を放射する。 Further, the repeater 2b receives the downlink RoF frame delayed by the downlink one-way delay time DLb from the transmission timing of the transmission / reception unit 11b, that is, the downlink one-way delay subjected to the downlink delay correction processing by the downlink delay correction unit 111 of the transmission / reception unit 11b. A downlink RoF frame in which the delay of time DLb is canceled is received. The O / E unit 21 of the repeater 2b converts the received optical signal into an electrical signal. The frame termination unit 22 detects a downlink RoF frame by detecting a synchronization pattern from the electrical signal, and extracts wireless data based on control information stored in the header. The D / A unit 23 converts the wireless data of the digital signal into the wireless data of the analog signal. The RF transmission front end 24 performs processing such as encoding and modulation on the wireless data of the analog signal to generate a wireless signal, and radiates the wireless signal from the antenna 25.
 中継機2aおよび中継機2bが無線信号を放射するタイミングは、図13では、正の値である無線伝搬遅延時間Dbaの分だけ中継機2aよりも中継機2bの方が早くなっている。 In FIG. 13, the timing at which the repeater 2a and the repeater 2b radiate radio signals is earlier in the repeater 2b than in the repeater 2a by the radio propagation delay time Dba, which is a positive value.
 ここで、端末4が中継機2aと中継機2bとの干渉エリア6abの中心にいる場合、端末4から中継機2aのアンテナ25との伝送距離および端末4から中継機2bのアンテナ25との伝搬距離に差がある。しかしながら、中継機2bが、端末4への中継機2a,2bの距離の差を考慮して算出された無線伝搬遅延時間Dbaだけタイミングを早めて無線信号を放射している。そのため、中継機2bが放射した無線信号が無線通信区間(2b→4)を経由して端末4に到着するタイミングは、中継機2aが放射した無線信号が無線通信区間(2a→4)を経由して端末4に到着するタイミングと等しくなる。なお、無線通信区間(2b→4)は中継機2bから端末4までの無線通信区間を示し、無線通信区間(2a→4)は中継機2aから端末4までの無線通信区間を示すものとする。また、中継機2aおよび中継機2bのアンテナ25が指向性の高いアンテナの場合、端末4では、干渉エリア6abの中心から外れていても無線通信区間の伝搬距離の差は変わらないため、中継機2aおよび中継機2bから無線信号が到着するタイミングは等しくなる。 Here, when the terminal 4 is in the center of the interference area 6ab between the repeater 2a and the repeater 2b, the transmission distance from the terminal 4 to the antenna 25 of the repeater 2a and the propagation from the terminal 4 to the antenna 25 of the repeater 2b. There is a difference in distance. However, the repeater 2b radiates the radio signal with the timing advanced by the radio propagation delay time Dba calculated in consideration of the difference between the distances of the repeaters 2a and 2b to the terminal 4. Therefore, the timing at which the radio signal radiated from the repeater 2b arrives at the terminal 4 via the radio communication section (2b → 4) is the timing at which the radio signal radiated from the repeater 2a passes through the radio communication section (2a → 4). Thus, it becomes equal to the timing of arrival at the terminal 4. The wireless communication section (2b → 4) indicates the wireless communication section from the relay station 2b to the terminal 4, and the wireless communication section (2a → 4) indicates the wireless communication section from the relay station 2a to the terminal 4. . Further, when the antenna 25 of the repeater 2a and the repeater 2b is a highly directional antenna, the difference in the propagation distance of the wireless communication section does not change in the terminal 4 even if it is off the center of the interference area 6ab. The timings at which radio signals arrive from 2a and repeater 2b are equal.
 端末4が中継機2bと中継機2cとの干渉エリア6bc、または中継機2cと中継機2dとの干渉エリア6cdにいる場合も同様である。基地局1において、送受信部11bの下り遅延補正部111が下り遅延補正時間DTbを加算して下り遅延補正処理を行い、送受信部11cの下り遅延補正部111が下り遅延補正時間DTcを加算して下り遅延補正処理を行い、送受信部11dの下り遅延補正部111が下り遅延補正時間DTdを加算して下り遅延補正処理する。その結果、端末4では、隣接中継機2からの無線信号の到着タイミングは等しくなる。具体的に、端末4には、基地局1の変調部12が配信してから「指定下り遅延時間Ddn+無線通信区間(2b→4)の伝搬時間」経過後に隣接中継機2から遅延が揃った状態で無線信号が到着する。 The same applies when the terminal 4 is in the interference area 6bc between the repeater 2b and the repeater 2c or in the interference area 6cd between the repeater 2c and the repeater 2d. In the base station 1, the downlink delay correction unit 111 of the transmission / reception unit 11b adds the downlink delay correction time DTb to perform the downlink delay correction process, and the downlink delay correction unit 111 of the transmission / reception unit 11c adds the downlink delay correction time DTc. The downlink delay correction process is performed, and the downlink delay correction unit 111 of the transmission / reception unit 11d adds the downlink delay correction time DTd to perform the downlink delay correction process. As a result, in the terminal 4, the arrival timing of the radio signal from the adjacent repeater 2 becomes equal. Specifically, the delay is aligned from the adjacent repeater 2 after the “designated downlink delay time Ddn + propagation time of the radio communication section (2b → 4)” has elapsed since the modulation unit 12 of the base station 1 delivered to the terminal 4 Radio signal arrives in the state.
 なお、実際には、中継機2a~2dのアンテナ25と端末4との距離は最も近くても0にはならない。そのため、無線伝搬遅延時間を算出する際には、端末4と中継機2のアンテナ25の最短距離も考慮する必要がある。この場合、例えば、前述の指定下り遅延時間Ddnの値を変更するなどによって対応することが可能である。 Actually, the distance between the antenna 25 of the repeaters 2a to 2d and the terminal 4 is not 0 even at the shortest distance. Therefore, when calculating the radio propagation delay time, it is necessary to consider the shortest distance between the terminal 4 and the antenna 25 of the repeater 2. In this case, for example, it is possible to cope by changing the value of the specified downlink delay time Ddn.
 図14は、本実施の形態の基地局1の送受信部11の下り遅延補正部111による下り遅延補正処理の動作を示すフローチャートである。下り遅延補正部111は、遅延測定部113が保持する遅延情報を取得すると(ステップS81)、取得した遅延情報を用いて下り遅延補正時間を算出し(ステップS82)、無線データを下り遅延補正時間だけ遅延させる下り遅延補正処理を行う(ステップS83)。 FIG. 14 is a flowchart showing the operation of the downlink delay correction processing by the downlink delay correction unit 111 of the transmission / reception unit 11 of the base station 1 according to the present embodiment. When the downlink delay correction unit 111 acquires the delay information held by the delay measurement unit 113 (step S81), the downlink delay correction unit 111 calculates the downlink delay correction time using the acquired delay information (step S82), and converts the wireless data into the downlink delay correction time. Downward delay correction processing is performed to delay by only (step S83).
 図4のフローチャートの説明に戻る。つぎに、上り方向の通信における上り遅延補正処理について説明する。 Returning to the flowchart of FIG. Next, an uplink delay correction process in uplink communication will be described.
 基地局1は、端末4から中継機2a~2d経由で無線データを受信した際の上り方向における上り遅延補正時間UTa~UTdを算出する(ステップS4)。 The base station 1 calculates uplink delay correction times UTa to UTd in the uplink direction when wireless data is received from the terminal 4 via the repeaters 2a to 2d (step S4).
 基地局1では、ステップS1の処理で取得された指定上り遅延時間Dup、無線伝搬遅延時間差Ddc,Dcb,Dba、および上り片方向遅延時間ULa~ULdを用いて、上り遅延補正時間UTa~UTdを算出する。 The base station 1 uses the designated uplink delay time Dup, the radio propagation delay time differences Ddc, Dcb, Dba, and the uplink one-way delay times ULa to ULd acquired in the process of step S1, to calculate the uplink delay correction times UTa to UTd. calculate.
 具体的に、基地局1の送受信部11aの上り遅延補正部117は、遅延測定部113において保持する前述のステップS1の処理で取得された遅延情報、すなわち、指定上り遅延時間Dup、および上り片方向遅延時間ULaを用いて、式(6)より選択部14へ出力する無線データに対する上り遅延補正時間UTaを算出する。 Specifically, the uplink delay correction unit 117 of the transmission / reception unit 11a of the base station 1 stores the delay information acquired in the process of step S1 held in the delay measurement unit 113, that is, the designated uplink delay time Dup and the uplink piece. Using the direction delay time ULa, an uplink delay correction time UTa for the radio data output to the selection unit 14 is calculated from Equation (6).
 UTa=Dup-ULa …(6) UTa = Dup-ULa (6)
 また、基地局1の送受信部11bの上り遅延補正部117は、遅延測定部113において保持する前述のステップS1の処理で取得された遅延情報、すなわち、指定上り遅延時間Dup、無線伝搬遅延時間差Dba、および上り片方向遅延時間ULbを用いて、式(7)より選択部14へ出力する無線データに対する上り遅延補正時間UTbを算出する。 Further, the uplink delay correction unit 117 of the transmission / reception unit 11b of the base station 1 stores the delay information acquired in the process of step S1 held in the delay measurement unit 113, that is, the designated uplink delay time Dup and the radio propagation delay time difference Dba. , And the upstream one-way delay time ULb, the upstream delay correction time UTb for the wireless data output to the selection unit 14 is calculated from Equation (7).
 UTb=Dup-ULb-Dba …(7) UTb = Dup-ULb-Dba (7)
 また、基地局1の送受信部11cの上り遅延補正部117は、遅延測定部113において保持する前述のステップS1の処理で取得された遅延情報、すなわち、指定上り遅延時間Dup、無線伝搬遅延時間Dcb,Dba、および上り片方向遅延時間ULcを用いて、式(8)より選択部14へ出力する無線データに対する上り遅延補正時間UTcを算出する。なお、式(8)については式(8´)のように表すことができる。 The uplink delay correction unit 117 of the transmission / reception unit 11c of the base station 1 also stores the delay information acquired in the above-described step S1 held in the delay measurement unit 113, that is, the designated uplink delay time Dup and the radio propagation delay time Dcb. , Dba, and upstream one-way delay time ULc, the upstream delay correction time UTc for the wireless data output to the selection unit 14 is calculated from equation (8). Note that Expression (8) can be expressed as Expression (8 ′).
 UTc=Dup-ULc-Dcb-Dba …(8)
 UTc=Dup-ULc-Dca …(8´)
UTc = Dup-ULc-Dcb-Dba (8)
UTc = Dup-ULc-Dca (8 ')
 また、基地局1の送受信部11dの上り遅延補正部117は、遅延測定部113において保持する前述のステップS1の処理で取得された遅延情報、すなわち、指定上り遅延時間Dup、無線伝搬遅延時間差Ddc,Dcb,Dba、および上り片方向遅延時間ULdを用いて、式(9)より選択部14へ出力する無線データに対する上り遅延補正時間UTdを算出する。なお、式(9)については式(9´)のように表すことができる。 Further, the uplink delay correction unit 117 of the transmission / reception unit 11d of the base station 1 stores the delay information acquired in the process of step S1 held in the delay measurement unit 113, that is, the designated uplink delay time Dup and the radio propagation delay time difference Ddc. , Dcb, Dba, and upstream one-way delay time ULd, the upstream delay correction time UTd for the wireless data output to the selection unit 14 is calculated from Equation (9). Note that Expression (9) can be expressed as Expression (9 ′).
 UTd=Dup-ULd-Ddc-Dcb-Dba …(9)
 UTd=Dup-ULd-Dda …(9´)
UTd = Dup-ULd-Ddc-Dcb-Dba (9)
UTd = Dup-ULd-Dda (9 ')
 具体的に、基地局1が端末4から無線データを受信する場合の送受信部11における上り遅延補正処理について説明する。図15は、本実施の形態にかかる基地局1の送受信部11a,11bの上り遅延補正処理および基地局1の選択部14が無線データを受信するまでの無線データのタイミングチャートを示す図である。ここでは、端末4が中継機2a,2bへ無線信号を送信したときの基地局1の送受信部11a,11b、中継機2a,2b、および端末4の動作を中心に説明する。 Specifically, an uplink delay correction process in the transmission / reception unit 11 when the base station 1 receives wireless data from the terminal 4 will be described. FIG. 15 is a diagram illustrating a timing chart of radio data until the uplink delay correction processing of the transmission / reception units 11a and 11b of the base station 1 according to the present embodiment and the selection unit 14 of the base station 1 receive the radio data. . Here, the operation of the transmission / reception units 11a and 11b of the base station 1, the repeaters 2a and 2b, and the terminal 4 when the terminal 4 transmits a radio signal to the repeaters 2a and 2b will be mainly described.
 まず、端末4が、基地局1宛ての無線信号を中継機2a,2bへ送信する。中継機2aおよび中継機2bは、ともに端末4の送信タイミングから遅延して無線信号を受信する。図15では、端末4が送信した無線信号が無線通信区間(4→2a)を経由して中継機2aに到着するタイミングは、端末4が送信した無線信号が無線通信区間(4→2b)を経由して中継機2bに到着するタイミングよりも、端末4への中継機2a,2bの距離の差を考慮して算出された正の値である無線伝搬遅延時間Dbaの分だけ早い。なお、無線通信区間(4→2a)は端末4から中継機2aまでの無線通信区間を示し、無線通信区間(4→2b)は端末4から中継機2bまでの無線通信区間を示すものとする。 First, the terminal 4 transmits a radio signal addressed to the base station 1 to the repeaters 2a and 2b. Both repeater 2a and repeater 2b receive radio signals with a delay from the transmission timing of terminal 4. In FIG. 15, the timing at which the radio signal transmitted from the terminal 4 arrives at the repeater 2a via the radio communication section (4 → 2a) is the same as the timing when the radio signal transmitted from the terminal 4 passes through the radio communication section (4 → 2b). It is earlier than the timing of arrival at the relay station 2b via the radio propagation delay time Dba, which is a positive value calculated in consideration of the difference between the distances of the relay stations 2a and 2b to the terminal 4. The wireless communication section (4 → 2a) indicates the wireless communication section from the terminal 4 to the relay 2a, and the wireless communication section (4 → 2b) indicates the wireless communication section from the terminal 4 to the relay 2b. .
 中継機2aにおいて、RF受信フロントエンド26は、アンテナ25で受信した無線信号に復調および復号などの処理を行って無線データを得る。A/D部27は、アナログ信号の無線データをデジタル信号の無線データに変換する。フレーム生成部28は、デジタル信号の無線データを上りRoFフレームのペイロードに格納し、ペイロードの格納位置の情報を含む制御信号をヘッダに格納して出力する。E/O部29は、上りRoFフレームを光信号に変換して光ファイバ3aを介して基地局1へ送信する。 In the repeater 2a, the RF reception front end 26 performs processing such as demodulation and decoding on the radio signal received by the antenna 25 to obtain radio data. The A / D unit 27 converts the wireless data of the analog signal into the wireless data of the digital signal. The frame generation unit 28 stores the radio data of the digital signal in the payload of the uplink RoF frame, stores a control signal including information on the storage position of the payload in the header, and outputs the control signal. The E / O unit 29 converts the upstream RoF frame into an optical signal and transmits it to the base station 1 via the optical fiber 3a.
 同様に、中継機2bにおいて、RF受信フロントエンド26は、アンテナ25で受信した無線信号に復調および復号などの処理を行って無線データを得る。A/D部27は、アナログ信号の無線データをデジタル信号の無線データに変換する。フレーム生成部28は、デジタル信号の無線データを上りRoFフレームのペイロードに格納し、ペイロードの格納位置の情報を含む制御信号をヘッダに格納して出力する。E/O部29は、上りRoFフレームを光信号に変換して光ファイバ3bを介して基地局1へ送信する。 Similarly, in the repeater 2b, the RF reception front end 26 performs processing such as demodulation and decoding on the radio signal received by the antenna 25 to obtain radio data. The A / D unit 27 converts the wireless data of the analog signal into the wireless data of the digital signal. The frame generation unit 28 stores the radio data of the digital signal in the payload of the uplink RoF frame, stores a control signal including information on the storage position of the payload in the header, and outputs the control signal. The E / O unit 29 converts the upstream RoF frame into an optical signal and transmits it to the base station 1 via the optical fiber 3b.
 基地局1の送受信部11aは、中継機2aの送信タイミングから上り片方向遅延時間ULaだけ遅延された上りRoFフレームを受信する。基地局1の送受信部11aでは、O/E部115が、光ファイバ3aから受信した光信号を電気信号に変換する。フレーム終端部116が、電気信号から同期パターンを検出することによって上りRoFフレームを検出し、ヘッダに格納された制御情報に基づいて無線データを抽出する。そして、上り遅延補正部117は、抽出された無線データに式(6)より算出した上り遅延補正時間UTaの遅延を加算する上り遅延補正処理を行う(ステップS5)。すなわち、上り遅延補正部117は、無線データを、上り遅延補正時間UTaだけ遅延させて選択部14へ出力する。 The transmitting / receiving unit 11a of the base station 1 receives the uplink RoF frame delayed by the uplink one-way delay time ULa from the transmission timing of the repeater 2a. In the transmission / reception unit 11a of the base station 1, the O / E unit 115 converts the optical signal received from the optical fiber 3a into an electrical signal. The frame termination unit 116 detects an uplink RoF frame by detecting a synchronization pattern from the electrical signal, and extracts wireless data based on control information stored in the header. Then, the uplink delay correction unit 117 performs an uplink delay correction process for adding the delay of the uplink delay correction time UTa calculated from Expression (6) to the extracted wireless data (step S5). That is, the uplink delay correction unit 117 delays the radio data by the uplink delay correction time UTa and outputs it to the selection unit 14.
 同様に、基地局1の送受信部11bは、中継機2bの送信タイミングから上り片方向遅延時間ULbだけ遅延された上りRoFフレームを受信する。基地局1の送受信部11bでは、O/E部115が、光ファイバ3aから受信した光信号を電気信号に変換する。フレーム終端部116が、電気信号から同期パターンを検出することによって上りRoFフレームを検出し、ヘッダに格納された制御情報に基づいて無線データを抽出する。そして、上り遅延補正部117は、抽出された無線データに式(7)より算出した上り遅延補正時間UTbの遅延を加算する上り遅延補正処理を行う(ステップS5)。すなわち、上り遅延補正部117は、無線データを、上り遅延補正時間UTbだけ遅延させて選択部14へ出力する。 Similarly, the transmission / reception unit 11b of the base station 1 receives the uplink RoF frame delayed by the uplink one-way delay time ULb from the transmission timing of the repeater 2b. In the transmission / reception unit 11b of the base station 1, the O / E unit 115 converts the optical signal received from the optical fiber 3a into an electrical signal. The frame termination unit 116 detects an uplink RoF frame by detecting a synchronization pattern from the electrical signal, and extracts wireless data based on control information stored in the header. Then, the uplink delay correction unit 117 performs an uplink delay correction process for adding the delay of the uplink delay correction time UTb calculated from the equation (7) to the extracted wireless data (step S5). That is, the uplink delay correction unit 117 delays the radio data by the uplink delay correction time UTb and outputs the delayed radio data to the selection unit 14.
 このように、送受信部11aが無線データを上り遅延補正時間UTaだけ遅延させて送信し、送受信部11bが無線データを上り遅延補正時間UTbだけ遅延させて送信する。その結果、選択部14では、送受信部11aから無線データが到着するタイミングおよび送受信部11bから無線データが到着するタイミングは等しくなる。具体的に、選択部14には、端末4が送信してから「無線通信区間(4→2a)の伝搬時間+指定上り遅延時間Dup」経過後に送受信部11a,11bから遅延が揃った状態で無線データが到着する。 In this way, the transmission / reception unit 11a transmits the radio data with a delay of the uplink delay correction time UTa, and the transmission / reception unit 11b transmits the radio data with a delay of the uplink delay correction time UTb. As a result, in the selection unit 14, the timing at which wireless data arrives from the transmission / reception unit 11a is equal to the timing at which wireless data arrives from the transmission / reception unit 11b. Specifically, the selection unit 14 is in a state where delays are aligned from the transmission / reception units 11a and 11b after the “transmission time of the wireless communication section (4 → 2a) + designated uplink delay time Dup” after the terminal 4 transmits. Wireless data arrives.
 選択部14は、例えば、4つの送受信部11a~11dから無線データの入力を受けた場合、1つの無線データを選択して復調部13へ出力してもよい。選択部14は、出力する無線データを選択する方法として、例えば、送受信部11a~11dから入力された無線データの受信電力を算出し、受信電力の強度が強い無線データを選択する。また、選択部14は、送受信部11a~11dから入力された4つの無線データを加算してもよいし、受信電力の強度が規定された閾値を超える無線データだけを使用して加算してもよい。通常、線形の通信エリアにおいて1つの端末4からの有効な無線データは、多くても2つの中継機2のみで受信される。基地局1では、前述の方法によって2つの中継機2からの無線データの遅延を揃えることができることから、選択部14は、信号源が同じ無線データの受信電力の比較、または加算などを行うことができる。いずれの方法でも、基地局1では、選択部14に無線データが入力された段階では、無線データの遅延が揃っていることから、2つの中継機2経由のマルチパスに起因する干渉は生じない。 For example, when receiving the input of wireless data from the four transmitting / receiving units 11a to 11d, the selecting unit 14 may select one wireless data and output it to the demodulating unit 13. As a method for selecting the wireless data to be output, for example, the selection unit 14 calculates the reception power of the wireless data input from the transmission / reception units 11a to 11d, and selects the wireless data with strong reception power. The selection unit 14 may add four pieces of wireless data input from the transmission / reception units 11a to 11d, or may add using only wireless data whose received power intensity exceeds a prescribed threshold value. Good. Normally, valid radio data from one terminal 4 in a linear communication area is received by at most two repeaters 2. In the base station 1, the delay of the wireless data from the two repeaters 2 can be made uniform by the above-described method, so that the selection unit 14 performs comparison or addition of the reception power of the wireless data with the same signal source. Can do. In any method, in the base station 1, when wireless data is input to the selection unit 14, there is no interference due to multipath via the two repeaters 2 because the delay of the wireless data is uniform. .
 なお、下り遅延補正処理および上り遅延補正処理の前に往復遅延時間RTTa~RTTdを測定する方法について説明したが、上りの無線データまたは下りの無線データの伝送中であっても、基地局1の送受信部11a~11dの各遅延測定部113では、往復遅延時間RTTa~RTTdを常時測定できる。そのため、光ファイバ3a~3dの温度変化に伴い伝搬遅延の変動が発生した場合でも、基地局1では、往復遅延時間RTTa~RTTdを常時測定して更新することで、変動を吸収して遅延量を一定に保つことが可能である。 Although the method of measuring the round trip delay times RTTa to RTTd before the downlink delay correction process and the uplink delay correction process has been described, the base station 1 is capable of transmitting uplink radio data or downlink radio data even during transmission. The delay measuring units 113 of the transmission / reception units 11a to 11d can always measure the round-trip delay times RTTa to RTTd. Therefore, even when a propagation delay fluctuates due to a temperature change of the optical fibers 3a to 3d, the base station 1 always measures and updates the round trip delay times RTTa to RTTd to absorb the fluctuations and to reduce the delay amount. Can be kept constant.
 下り遅延補正処理の場合と同様、実際には、中継機2a~2dのアンテナ25と端末4との距離は最も近くても0にはならない。そのため、無線伝搬遅延時間を算出する際には、端末4と中継機2のアンテナ25との最短距離も考慮する必要がある。この場合、例えば、前述の指定上り遅延時間Dupの値を変更するなどによって対応することが可能である。 As in the case of the downlink delay correction process, in practice, the distance between the antenna 25 of the repeaters 2a to 2d and the terminal 4 is not 0 even if it is the shortest. Therefore, when calculating the radio propagation delay time, it is necessary to consider the shortest distance between the terminal 4 and the antenna 25 of the repeater 2. In this case, for example, it is possible to cope with the problem by changing the value of the designated upstream delay time Dup.
 図16は、本実施の形態にかかる基地局1の送受信部11の上り遅延補正部117による上り遅延補正処理の動作を示すフローチャートである。上り遅延補正部117は、遅延測定部113が保持する遅延情報を取得すると(ステップS91)、取得した遅延情報を用いて上り遅延補正時間を算出し(ステップS92)、無線データを上り遅延補正時間だけ遅延させる上り遅延補正処理を行う(ステップS93)。 FIG. 16 is a flowchart showing the operation of the uplink delay correction process by the uplink delay correction unit 117 of the transmission / reception unit 11 of the base station 1 according to the present embodiment. When the uplink delay correction unit 117 acquires the delay information held by the delay measurement unit 113 (step S91), the uplink delay correction unit 117 calculates the uplink delay correction time using the acquired delay information (step S92), and converts the radio data into the uplink delay correction time. Then, an uplink delay correction process is performed to delay only by (step S93).
 つづいて、基地局1のハードウェア構成について説明する。前述のように、変調部12および復調部13はモデム、選択部14はスイッチ回路または合成回路、送受信部11のE/O部114は電気光変換回路、O/E部115は光電気変換回路によって構成することができる。図17は、本実施の形態にかかる基地局1の送受信部11の下り遅延補正部111、フレーム生成部112、遅延測定部113、フレーム終端部116、および上り遅延補正部117を実現する処理回路90の構成例を示す図である。処理回路90は、メモリ92に格納されたプログラムを実行するプロセッサ91と、プロセッサ91が実行するプログラムなどの情報を記憶するメモリ92と、他の構成からデータなどが入力される入力インタフェース回路93と、他の構成へデータなどを出力する出力インタフェース回路94を備え、プロセッサ91、メモリ92、入力インタフェース回路93、出力インタフェース回路94がシステムバス95で接続されている。 Next, the hardware configuration of the base station 1 will be described. As described above, the modulation unit 12 and the demodulation unit 13 are modems, the selection unit 14 is a switch circuit or a synthesis circuit, the E / O unit 114 of the transmission / reception unit 11 is an electro-optical conversion circuit, and the O / E unit 115 is an opto-electric conversion circuit. Can be configured. FIG. 17 is a processing circuit that implements the downlink delay correction unit 111, the frame generation unit 112, the delay measurement unit 113, the frame termination unit 116, and the uplink delay correction unit 117 of the transmission / reception unit 11 of the base station 1 according to the present embodiment. It is a figure which shows the example of a structure of 90. FIG. The processing circuit 90 includes a processor 91 that executes a program stored in the memory 92, a memory 92 that stores information such as a program executed by the processor 91, and an input interface circuit 93 to which data and the like are input from other configurations. An output interface circuit 94 for outputting data and the like to other components is provided, and a processor 91, a memory 92, an input interface circuit 93, and an output interface circuit 94 are connected by a system bus 95.
 処理回路90は、専用のハードウェアであってもよい。処理回路90が専用のハードウェアである場合、処理回路90は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものが該当する。各部の機能それぞれを処理回路90で実現してもよいし、各部の機能をまとめて処理回路90で実現してもよい。 The processing circuit 90 may be dedicated hardware. When the processing circuit 90 is dedicated hardware, the processing circuit 90 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field Programmable Gate). Array) or a combination thereof. The functions of the respective units may be realized by the processing circuit 90, or the functions of the respective units may be collectively realized by the processing circuit 90.
 基地局1の送受信部11の下り遅延補正部111、フレーム生成部112、遅延測定部113、フレーム終端部116、および上り遅延補正部117の機能は、処理回路90により実現される。すなわち、基地局1は、下り遅延補正時間および上り遅延補正時間を算出するために必要な遅延情報を取得し、下り遅延補正時間および上り遅延補正時間を算出し、下り遅延補正処理および上り遅延補正処理を行うための処理回路90を備える。処理回路90において、メモリ92に格納されるプログラムを実行するのはCPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、およびDSP(Digital Signal Processor)などであってもよい。 The functions of the downlink delay correction unit 111, the frame generation unit 112, the delay measurement unit 113, the frame termination unit 116, and the uplink delay correction unit 117 of the transmission / reception unit 11 of the base station 1 are realized by the processing circuit 90. That is, the base station 1 acquires delay information necessary for calculating the downlink delay correction time and the uplink delay correction time, calculates the downlink delay correction time and the uplink delay correction time, and performs the downlink delay correction process and the uplink delay correction. A processing circuit 90 for performing processing is provided. In the processing circuit 90, a program stored in the memory 92 is executed by a CPU (Central Processing Unit), a central processing unit, a processing unit, a processing unit, a microprocessor, a microcomputer, a DSP (Digital Signal Processor), and the like. May be.
 基地局1の送受信部11の下り遅延補正部111、フレーム生成部112、遅延測定部113、フレーム終端部116、および上り遅延補正部117の機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアまたはファームウェアはプログラムとして記述され、メモリ92に格納される。処理回路90では、プロセッサ91がメモリ92に記憶されたプログラムを読み出して実行することにより、基地局1の送受信部11の下り遅延補正部111、フレーム生成部112、遅延測定部113、フレーム終端部116、および上り遅延補正部117の機能を実現する。すなわち、基地局1は、処理回路90により実行されるときに、下り遅延補正時間および上り遅延補正時間を算出するために必要な遅延情報を取得するステップ、下り遅延補正時間および上り遅延補正時間を算出するステップ、下り遅延補正処理および上り遅延補正処理を行うステップが結果的に実行されることになるプログラムを格納するためのメモリ92を備える。また、これらのプログラムは、基地局1の送受信部11の下り遅延補正部111、フレーム生成部112、遅延測定部113、フレーム終端部116、および上り遅延補正部117の手順または方法をコンピュータに実行させるものであるともいえる。ここで、メモリ92とは、例えば、RAM、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)などの、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、およびDVD(Digital Versatile Disc)などが該当する。 The functions of the downlink delay correction unit 111, the frame generation unit 112, the delay measurement unit 113, the frame termination unit 116, and the uplink delay correction unit 117 of the transmission / reception unit 11 of the base station 1 are software, firmware, or a combination of software and firmware. It is realized by. Software or firmware is described as a program and stored in the memory 92. In the processing circuit 90, the processor 91 reads out and executes the program stored in the memory 92, so that the downlink delay correction unit 111, the frame generation unit 112, the delay measurement unit 113, the frame termination unit of the transmission / reception unit 11 of the base station 1 are executed. 116 and the function of the uplink delay correction unit 117 are realized. That is, when executed by the processing circuit 90, the base station 1 obtains the delay information necessary for calculating the downlink delay correction time and the uplink delay correction time, the downlink delay correction time, and the uplink delay correction time. A memory 92 is provided for storing a program in which the step of calculating, the step of performing the downlink delay correction process, and the step of performing the uplink delay correction process are executed as a result. In addition, these programs execute the procedure or method of the downlink delay correction unit 111, the frame generation unit 112, the delay measurement unit 113, the frame termination unit 116, and the uplink delay correction unit 117 of the transmission / reception unit 11 of the base station 1 on a computer. It can be said that Here, the memory 92 is, for example, a RAM, a flash memory, an EPROM (Erasable Programmable ROM), an EEPROM (Electrically Erasable Programmable ROM), or a nonvolatile or volatile semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact This includes discs, minidiscs, and DVDs (Digital Versatile Discs).
 なお、下り遅延補正部111、フレーム生成部112、遅延測定部113、フレーム終端部116、および上り遅延補正部117の各機能について、一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。例えば、フレーム生成部112およびフレーム終端部116ついては専用のハードウェアとしての処理回路90でその機能を実現し、下り遅延補正部111、遅延測定部113、および上り遅延補正部117については処理回路90がメモリに格納されたプログラムを読み出して実行することによってその機能を実現することが可能である。 Note that some of the functions of the downlink delay correction unit 111, the frame generation unit 112, the delay measurement unit 113, the frame termination unit 116, and the uplink delay correction unit 117 are realized by dedicated hardware, and part of the functions are software or It may be realized by firmware. For example, the functions of the frame generation unit 112 and the frame termination unit 116 are realized by a processing circuit 90 as dedicated hardware, and the processing circuit 90 is provided for the downlink delay correction unit 111, the delay measurement unit 113, and the uplink delay correction unit 117. The function can be realized by reading and executing the program stored in the memory.
 このように、処理回路90は、ハードウェア、ソフトウェア、ファームウェア、またはこれらの組み合わせによって、上述の各機能を実現することができる。 As described above, the processing circuit 90 can realize the above-described functions by hardware, software, firmware, or a combination thereof.
 基地局1の送受信部11の下り遅延補正部111、フレーム生成部112、遅延測定部113、フレーム終端部116、および上り遅延補正部117の構成について説明したが、中継機2a~2dのフレーム生成部22およびフレーム終端部28についても、図17に示す処理回路90により実現される。 Although the configurations of the downlink delay correction unit 111, the frame generation unit 112, the delay measurement unit 113, the frame termination unit 116, and the uplink delay correction unit 117 of the transmission / reception unit 11 of the base station 1 have been described, the frame generation of the repeaters 2a to 2d The unit 22 and the frame end unit 28 are also realized by the processing circuit 90 shown in FIG.
 以上説明したように、本実施の形態によれば、基地局1において、各送受信部11の遅延補正部113は、下り遅延補正時間DTa~DTdおよび上り遅延補正時間UTa~UTdの算出に必要な遅延情報を取得し、下り遅延補正部111は、遅延補正部113で取得された遅延情報を用いて下り遅延補正時間DTa~DTdを算出して下り遅延補正処理を行い、上り遅延補正部117は、遅延補正部113で取得された遅延情報を用いて上り遅延補正時間UTa~UTdを算出して上り遅延補正処理を行うこととした。これにより、基地局1では、基地局1から端末4へ送信する下り方向の無線データについて、複数の中継機2が端末4へ無線データである無線信号を送信する場合に、各中継機2から送信された無線信号が端末4に到着するタイミングを揃えることができ、また、端末4から基地局1へ送信する上り方向の無線信号について、複数の中継機2が端末4から無線信号である無線データを受信した場合に、各中継機2から送信された無線データが基地局1の選択部14に到着するタイミングを揃えることができる。このように、移動体通信システム7において、基地局1は、中継機2a~2dと光ファイバ3a~3dを介して接続する場合に、光ファイバ3a~3dの長さを高精度で揃えることなく、中継機2a~2dを経由した端末4との通信において伝搬遅延を均一にすることができる。また、基地局1は、端末4と各中継機2との間の無線通信区間の伝搬時間を考慮して遅延補正を行うことから、干渉波の影響を回避することができる。 As described above, according to the present embodiment, in base station 1, delay correction section 113 of each transmission / reception section 11 is necessary for calculating downlink delay correction times DTa to DTd and uplink delay correction times UTa to UTd. The delay information is acquired, the downlink delay correction unit 111 calculates the downlink delay correction times DTa to DTd using the delay information acquired by the delay correction unit 113, performs the downlink delay correction processing, and the uplink delay correction unit 117 Thus, the uplink delay correction processing is performed by calculating the uplink delay correction times UTa to UTd using the delay information acquired by the delay correction unit 113. Thereby, in the base station 1, for the downlink radio data transmitted from the base station 1 to the terminal 4, when the plurality of relays 2 transmit wireless signals as wireless data to the terminal 4, The timing at which the transmitted radio signal arrives at the terminal 4 can be made uniform. Also, with respect to the uplink radio signal transmitted from the terminal 4 to the base station 1, a plurality of repeaters 2 are radio signals that are radio signals from the terminal 4. When data is received, the timing at which the radio data transmitted from each repeater 2 arrives at the selection unit 14 of the base station 1 can be made uniform. As described above, in the mobile communication system 7, when the base station 1 is connected to the repeaters 2a to 2d via the optical fibers 3a to 3d, the lengths of the optical fibers 3a to 3d are not aligned with high accuracy. The propagation delay can be made uniform in communication with the terminal 4 via the repeaters 2a to 2d. In addition, since the base station 1 performs delay correction in consideration of the propagation time of the wireless communication section between the terminal 4 and each repeater 2, the influence of interference waves can be avoided.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 基地局、2a,2b,2c,2d 中継機、3a,3b,3c,3d 光ファイバ、4 端末、5a,5b,5c,5d 通信エリア、6ab,6bc,6cd 干渉エリア、7 移動体通信システム、11a,11b,11c,11d 送受信部、12 変調部、13 復調部、14 選択部、21,115 O/E部、22,116 フレーム終端部、23 D/A部、24 RF送信フロントエンド、25 アンテナ、26 RF受信フロントエンド、27 A/D部、28,112 フレーム生成部、29,114 E/O部、111 下り遅延補正部、113 遅延測定部、117 上り遅延補正部。 1 base station, 2a, 2b, 2c, 2d repeater, 3a, 3b, 3c, 3d optical fiber, 4 terminal, 5a, 5b, 5c, 5d communication area, 6ab, 6bc, 6cd interference area, 7 mobile communication system 11a, 11b, 11c, 11d, transceiver unit, 12 modulation unit, 13 demodulation unit, 14 selection unit, 21, 115 O / E unit, 22, 116 frame termination unit, 23 D / A unit, 24 RF transmission front end, 25 antenna, 26 RF reception front end, 27 A / D section, 28, 112 frame generation section, 29, 114 E / O section, 111 downlink delay correction section, 113 delay measurement section, 117 upstream delay correction section.

Claims (8)

  1.  端末の移動経路に沿って配置され前記端末と無線通信を行う複数の中継機と接続し、前記中継機経由で端末と通信を行う基地局であって、
     各々が1つの前記中継機と接続して通信を行う送受信部を前記複数の中継機と同数備え、各送受信部は、
     前記中継機へ送信する下り伝送フレームを生成するフレーム生成部と、
     前記中継機から送信された上り伝送フレームを検出するフレーム終端部と、
     自送受信部と前記自送受信部が接続する中継機との通信で発生する遅延を測定して遅延の情報を取得し、また、前記自送受信部が接続する中継機と前記端末との通信で発生する遅延の情報、および前記基地局と前記端末との通信で許容される遅延時間の情報を取得し、取得した情報を保持する遅延測定部と、
     前記遅延測定部が保持する情報を用いて下り遅延補正時間を算出し、前記下り遅延補正時間を用いて前記下り伝送フレームに格納される無線データを遅延させる下り遅延補正部と、
     前記遅延測定部が保持する情報を用いて上り遅延補正時間を算出し、前記上り遅延補正時間を用いて前記上り伝送フレームに格納されていた無線データを遅延させる上り遅延補正部と、
     を備えることを特徴とする基地局。
    A base station that is arranged along a moving path of a terminal and is connected to a plurality of relay devices that perform wireless communication with the terminal, and that communicates with the terminal via the relay device,
    Each transmitter / receiver includes the same number of transmitters / receivers that communicate with each other by connecting to the relay device,
    A frame generation unit for generating a downlink transmission frame to be transmitted to the repeater;
    A frame termination unit for detecting an upstream transmission frame transmitted from the relay unit;
    Measures the delay generated in communication between the own transmitting / receiving unit and the repeater connected to the own transmitting / receiving unit to obtain delay information, and also occurs in communication between the repeater connected to the own transmitting / receiving unit and the terminal. A delay measuring unit that acquires information on a delay to be performed and information on a delay time allowed in communication between the base station and the terminal, and holds the acquired information;
    A downlink delay correction unit that calculates downlink delay correction time using information held by the delay measurement unit, and delays radio data stored in the downlink transmission frame using the downlink delay correction time;
    An uplink delay correction unit that calculates an uplink delay correction time using the information held by the delay measurement unit, and delays the radio data stored in the uplink transmission frame using the uplink delay correction time;
    A base station comprising:
  2.  前記遅延測定部は、前記自送受信部と前記自送受信部に接続する中継機との間の往復遅延時間を測定し、前記往復遅延時間を用いて下り片方向遅延時間を算出し、また、前記自送受信部が接続する中継機から前記端末への前記無線データの無線通信区間における信号である無線信号の無線伝搬遅延時間と、基準となる中継機から前記端末への無線信号の無線伝搬遅延時間との差分である無線伝搬遅延時間差を算出し、また、前記基地局から前記端末への下り通信で許容される指定下り遅延時間の情報を取得し、
     前記下り遅延補正部は、前記指定下り遅延時間、前記無線伝搬遅延時間差、および前記下り片方向遅延時間を用いて下り遅延補正時間を算出する、
     ことを特徴とする請求項1に記載の基地局。
    The delay measurement unit measures a round trip delay time between the own transmission / reception unit and a repeater connected to the own transmission / reception unit, calculates a downlink one-way delay time using the round trip delay time, and The radio propagation delay time of a radio signal that is a signal in the radio communication section of the radio data from the repeater to which the own transmitting / receiving unit is connected to the terminal, and the radio propagation delay time of the radio signal from the reference repeater to the terminal A radio propagation delay time difference that is a difference between the base station and the terminal to obtain information on a specified downlink delay time allowed in downlink communication from the base station to the terminal,
    The downlink delay correction unit calculates a downlink delay correction time using the specified downlink delay time, the radio propagation delay time difference, and the downlink one-way delay time,
    The base station according to claim 1.
  3.  前記遅延測定部は、前記自送受信部と前記自送受信部が接続する中継機との間の往復遅延時間を算出し、前記往復遅延時間を用いて上り片方向遅延時間を算出し、また、前記自送受信部が接続する中継機から前記端末への前記無線データの無線通信区間における信号である無線信号の無線伝搬遅延時間と、基準となる中継機から前記端末への無線信号の無線伝搬遅延時間との差分である無線伝搬遅延時間差を算出し、また、前記端末から前記基地局への上り通信で許容される指定上り遅延時間の情報を取得し、
     前記上り遅延補正部は、前記指定上り遅延時間、前記無線伝搬遅延時間差、および前記上り片方向遅延時間を用いて上り遅延補正時間を算出する、
     ことを特徴とする請求項1に記載の基地局。
    The delay measurement unit calculates a round-trip delay time between the own transmission / reception unit and a repeater connected to the own transmission / reception unit, calculates an upstream one-way delay time using the round-trip delay time, and The radio propagation delay time of a radio signal that is a signal in the radio communication section of the radio data from the repeater to which the own transmitting / receiving unit is connected to the terminal, and the radio propagation delay time of the radio signal from the reference repeater to the terminal A radio propagation delay time difference that is a difference between the terminal and the terminal to obtain information on a designated uplink delay time allowed in uplink communication from the terminal to the base station,
    The uplink delay correction unit calculates an uplink delay correction time using the specified uplink delay time, the radio propagation delay time difference, and the uplink one-way delay time,
    The base station according to claim 1.
  4.  前記フレーム生成部は、前記下り伝送フレームの同期パターンの先頭のタイミングを前記遅延測定部へ通知し、
     前記フレーム終端部は、前記上り伝送フレームの同期パターンを検出したタイミングを前記遅延測定部へ通知し、
     前記遅延測定部は、前記フレーム生成部および前記フレーム終端部から通知されたタイミングの情報を用いて前記自送受信部と前記自送受信部に接続する中継機との間の往復遅延時間を算出する、
     ことを特徴とする請求項2または3に記載の基地局。
    The frame generation unit notifies the delay measurement unit of the start timing of the synchronization pattern of the downlink transmission frame;
    The frame termination unit notifies the delay measurement unit of the timing at which the synchronization pattern of the uplink transmission frame is detected,
    The delay measurement unit calculates a round-trip delay time between the own transmission / reception unit and a repeater connected to the own transmission / reception unit, using timing information notified from the frame generation unit and the frame termination unit.
    The base station according to claim 2 or 3, wherein
  5.  前記複数の中継機が各々指向性を有するアンテナを用いて前記端末と通信を行う場合、
     前記遅延測定部は、前記自送受信部が接続する中継機および基準となる中継機の位置情報を用いて、前記自送受信部が接続する中継機から前記端末への無線信号の無線伝搬遅延時間と、前記基準となる中継機から前記端末への無線信号の無線伝搬遅延時間との差分である無線伝搬遅延時間差を算出する、
     ことを特徴とする請求項2,3または4に記載の基地局。
    When the plurality of repeaters communicate with the terminal using antennas each having directivity,
    The delay measuring unit uses radio relay delay time of a radio signal from the repeater connected to the own transmission / reception unit to the terminal using position information of the repeater connected to the own transmission / reception unit and a reference relay. Calculating a radio propagation delay time difference that is a difference from a radio propagation delay time of a radio signal from the reference repeater to the terminal;
    The base station according to claim 2, 3, or 4.
  6.  請求項1から5のいずれか1項に記載の基地局と接続する中継機であって、
     前記基地局から送信された下り伝送フレームの同期パターンを検出したタイミングを通知するフレーム終端部と、
     前記フレーム終端部から通知されたタイミングで、上り伝送フレームを生成するフレーム生成部と、
     を備えることを特徴とする中継機。
    A repeater connected to the base station according to any one of claims 1 to 5,
    A frame termination unit for notifying a timing at which a synchronization pattern of a downlink transmission frame transmitted from the base station is detected;
    A frame generation unit that generates an uplink transmission frame at a timing notified from the frame termination unit;
    A relay device comprising:
  7.  請求項1から5のいずれか1項に記載の基地局と、
     請求項6に記載の複数の中継機と、
     を備えることを特徴とする移動体通信システム。
    A base station according to any one of claims 1 to 5,
    A plurality of repeaters according to claim 6;
    A mobile communication system comprising:
  8.  端末の移動経路に沿って配置され前記端末と無線通信を行う複数の中継機と接続し、前記中継機経由で端末と通信を行う基地局の遅延補正方法であって、
     前記中継機へ送信する無線信号への下り遅延補正時間、および前記中継機から受信した無線信号への上り遅延補正時間を算出するために必要な情報を取得する取得ステップと、
     前記取得ステップで取得された情報を用いて、前記下り遅延補正時間および前記上り遅延補正時間を算出する算出ステップと、
     前記算出ステップで算出された前記下り遅延補正時間および前記上り遅延補正時間を用いて、無線データを遅延させる下り遅延補正処理および上り遅延補正処理を行う遅延補正ステップと、
     を含むことを特徴とする遅延補正方法。
    A delay correction method for a base station that is arranged along a movement path of a terminal and is connected to a plurality of relay devices that perform wireless communication with the terminal, and communicates with the terminal via the relay device,
    An acquisition step of acquiring information necessary for calculating a downlink delay correction time to a radio signal transmitted to the relay device and an uplink delay correction time to a radio signal received from the relay device;
    A calculation step of calculating the downlink delay correction time and the uplink delay correction time using the information acquired in the acquisition step;
    A delay correction step for performing a downlink delay correction process and an uplink delay correction process for delaying radio data using the downlink delay correction time and the uplink delay correction time calculated in the calculation step;
    A delay correction method comprising:
PCT/JP2015/069199 2015-07-02 2015-07-02 Base station, relay device, mobile-object communication system, and delay correction method WO2017002269A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017525781A JP6362779B2 (en) 2015-07-02 2015-07-02 Base station, mobile communication system, and delay correction method
PCT/JP2015/069199 WO2017002269A1 (en) 2015-07-02 2015-07-02 Base station, relay device, mobile-object communication system, and delay correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/069199 WO2017002269A1 (en) 2015-07-02 2015-07-02 Base station, relay device, mobile-object communication system, and delay correction method

Publications (1)

Publication Number Publication Date
WO2017002269A1 true WO2017002269A1 (en) 2017-01-05

Family

ID=57608109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069199 WO2017002269A1 (en) 2015-07-02 2015-07-02 Base station, relay device, mobile-object communication system, and delay correction method

Country Status (2)

Country Link
JP (1) JP6362779B2 (en)
WO (1) WO2017002269A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018191077A (en) * 2017-04-28 2018-11-29 Kddi株式会社 Radio network system and communication method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009225137A (en) * 2008-03-17 2009-10-01 Hitachi Ltd Wireless communication system, base station and transmission timing control method
JP2010268224A (en) * 2009-05-14 2010-11-25 Nippon Telegr & Teleph Corp <Ntt> Diversity communication equipment
JP2011199386A (en) * 2010-03-17 2011-10-06 Fujitsu Ltd Unit and method of controlling radio device, and base station device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04111627A (en) * 1990-08-31 1992-04-13 Nec Corp Track mobile body radio communication system
EP2515590A1 (en) * 2009-12-18 2012-10-24 NTT DoCoMo, Inc. Wireless base station, and relay device
TW201230707A (en) * 2010-08-31 2012-07-16 Corning Inc Broadband wireless mobile communications system with distributed antenna system using interleaving intra-cell handovers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009225137A (en) * 2008-03-17 2009-10-01 Hitachi Ltd Wireless communication system, base station and transmission timing control method
JP2010268224A (en) * 2009-05-14 2010-11-25 Nippon Telegr & Teleph Corp <Ntt> Diversity communication equipment
JP2011199386A (en) * 2010-03-17 2011-10-06 Fujitsu Ltd Unit and method of controlling radio device, and base station device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018191077A (en) * 2017-04-28 2018-11-29 Kddi株式会社 Radio network system and communication method

Also Published As

Publication number Publication date
JPWO2017002269A1 (en) 2017-09-07
JP6362779B2 (en) 2018-07-25

Similar Documents

Publication Publication Date Title
US8965433B2 (en) Method and arrangement in a communication system
US10405360B2 (en) Method and equipment for establishing millimetre connection
JP2023145604A5 (en) User equipment, base stations and communication systems
US7606531B2 (en) Repeating station, a communication apparatus, and a directivity control method
US20150087329A1 (en) Systems and methods for location determination
CN102104417B (en) Control apparatus, relay apparatus and control method of these apparatuses
WO2002032000A8 (en) Method and apparatus employing a remote wireless repeater for calibrating a wireless base station having an adaptive antenna array
WO2011102631A3 (en) Relay node apparatus for transmitting and receiving signal according to link operation mode in wireless communication system and method thereof
JP2001510649A (en) Directional wireless communication method and apparatus
JP6362779B2 (en) Base station, mobile communication system, and delay correction method
CN103475395A (en) Antenna correction method, device and system
CN104104461A (en) Time synchronization system and time synchronization method
US10320497B2 (en) Control of directive antennas for wireless links
JP2011107102A (en) Autonomous movement support system and control method therefor
JPH10505213A (en) Mobile radio fixed station with variable characteristic antenna
US20120224619A1 (en) Wireless receiver device and directivity control method
JP2013250731A (en) Automatic meter-reading system, portable terminal and radio communication method for portable terminal
JP6881667B2 (en) Wireless communication systems, wireless communication devices, wireless communication methods, and programs
US9838988B2 (en) Device and method for time delay fine-tuning UTP femto distribution and relay
KR20060029001A (en) Method for constituting wireless link using a lot of directional antenna in mobile relay system
JP4426830B2 (en) Wireless communication system, base station apparatus, and information exchange method
KR20160114978A (en) Apparatus and System for beam forming of array antenna
US20240159854A1 (en) Positioning reference signal based positioning
JP2005318393A (en) System, apparatus, and terminal for direction estimation
JP6866920B2 (en) Wireless communication device, wireless communication system, and transmission timing adjustment method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15897196

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017525781

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15897196

Country of ref document: EP

Kind code of ref document: A1