WO2017001567A1 - Method and system for water injection into an oil and/or gas containing subterranean formation - Google Patents
Method and system for water injection into an oil and/or gas containing subterranean formation Download PDFInfo
- Publication number
- WO2017001567A1 WO2017001567A1 PCT/EP2016/065316 EP2016065316W WO2017001567A1 WO 2017001567 A1 WO2017001567 A1 WO 2017001567A1 EP 2016065316 W EP2016065316 W EP 2016065316W WO 2017001567 A1 WO2017001567 A1 WO 2017001567A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- injection
- radiation source
- filtration
- submerged
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 116
- 238000002347 injection Methods 0.000 title claims abstract description 68
- 239000007924 injection Substances 0.000 title claims abstract description 68
- 238000000034 method Methods 0.000 title claims abstract description 27
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 14
- 230000005855 radiation Effects 0.000 claims abstract description 50
- 238000001914 filtration Methods 0.000 claims abstract description 36
- 239000013535 sea water Substances 0.000 claims abstract description 23
- 239000012528 membrane Substances 0.000 claims abstract description 14
- 230000035515 penetration Effects 0.000 claims abstract description 8
- 238000004659 sterilization and disinfection Methods 0.000 claims description 9
- 239000011368 organic material Substances 0.000 claims description 8
- 229910010272 inorganic material Inorganic materials 0.000 claims description 6
- 239000011147 inorganic material Substances 0.000 claims description 6
- 238000001728 nano-filtration Methods 0.000 claims description 6
- 238000000108 ultra-filtration Methods 0.000 claims description 6
- 230000002285 radioactive effect Effects 0.000 claims description 5
- 238000001223 reverse osmosis Methods 0.000 claims description 5
- 238000010612 desalination reaction Methods 0.000 claims description 4
- 239000011148 porous material Substances 0.000 claims description 4
- 238000001471 micro-filtration Methods 0.000 claims description 3
- 239000002775 capsule Substances 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 11
- 238000005755 formation reaction Methods 0.000 description 10
- 244000005700 microbiome Species 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- GUTLYIVDDKVIGB-OUBTZVSYSA-N Cobalt-60 Chemical compound [60Co] GUTLYIVDDKVIGB-OUBTZVSYSA-N 0.000 description 6
- 238000013461 design Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005251 gamma ray Effects 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 230000001954 sterilising effect Effects 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- 206010073306 Exposure to radiation Diseases 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- 239000003139 biocide Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000005865 ionizing radiation Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000003608 radiolysis reaction Methods 0.000 description 2
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000002289 effect on microbe Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 230000002070 germicidal effect Effects 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000005789 organism growth Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 150000002927 oxygen compounds Chemical class 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/027—Nanofiltration
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F9/00—Multistage treatment of water, waste water or sewage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/04—Feed pretreatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/58—Multistep processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
- C02F1/307—Treatment of water, waste water, or sewage by irradiation with X-rays or gamma radiation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/441—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/444—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/20—Displacing by water
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2311/00—Details relating to membrane separation process operations and control
- B01D2311/04—Specific process operations in the feed stream; Feed pretreatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2311/00—Details relating to membrane separation process operations and control
- B01D2311/26—Further operations combined with membrane separation processes
- B01D2311/2611—Irradiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2311/00—Details relating to membrane separation process operations and control
- B01D2311/26—Further operations combined with membrane separation processes
- B01D2311/2649—Filtration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/14—Ultrafiltration; Microfiltration
- B01D61/145—Ultrafiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/14—Ultrafiltration; Microfiltration
- B01D61/147—Microfiltration
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
- C02F1/32—Treatment of water, waste water, or sewage by irradiation with ultraviolet light
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/442—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/08—Seawater, e.g. for desalination
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/32—Details relating to UV-irradiation devices
- C02F2201/322—Lamp arrangement
- C02F2201/3227—Units with two or more lamps
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/04—Disinfection
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2307/00—Location of water treatment or water treatment device
- C02F2307/14—Treatment of water in water supply networks, e.g. to prevent bacterial growth
Definitions
- the present invention relates to a method and system for water injection into an oil and/or gas containing subterranean formation, preferably in conjunction with enhanced oil or gas recovery.
- hydrocarbon production injection of water in oil or gas containing formations is a widely used method to assist in the recovery of hydrocarbon products by raising the pressure in the formation and in this way prolonging the productive life of an oil or gas production field.
- Water injection is practised in onshore as well as in subsea gas and oil recovery processes, and available sources of injection water are, e.g., freshwater, salt water and produced water that is generated through separation of a multiphase fluid at the production site.
- seawater is typically used for injection. Due to its content of organic and inorganic material seawater is however less suitable for injection and requires processing before injection.
- Processing seawater into water suitable for injection purposes can include different stages of filtration, ionic content removal and disinfection aiming to remove organic and inorganic material which might otherwise lead to problems such as bacteria reproduction and reservoir souring, corrosion and scaling on downstream equipment, etc.
- the organic material concerned comprises, among others, microorganisms such as bacteria, plankton and viruses.
- a method of producing injection water from seawater is previously known from US 7600567 B2.
- the method disclosed in US 7600567 B2 includes separation and desalination in combination with the dosing of chemical concentrates.
- Another example of subsea chemical treatment of injection water is known from US 316,918 Bl according to which the water is brought in contact with a solid-state chemical such as chlorine or a biocide.
- a solid-state chemical such as chlorine or a biocide.
- disinfection of injection water by the use of chemicals such as chlorine, copper or biocide compounds will result in chemicals which remain in the water subsequently being injected into the reservoir.
- Use of chemicals for disinfection of injection water can thus deteriorate downstream system components, be environmentally hazardous and is undesired.
- US 7,802,623 Bl discloses a method and device for destruction of organic material in injection water for an injection well that avoids the addition of a chemical.
- An electrochemical cell is connected to an injection well, and injection water is conducted through the cell for in situ generation of a reactive oxygen compound by radio lysis, using injection water as source material for the radio lysis.
- UV sterilization is a non- ionizing sterilization method widely used in the treatment of wastewater. UV light inactivates microorganisms by causing photochemical damage to nucleic acids in the DNA of the microorganisms. UV light however cannot penetrate particles by transmission through solid material and suspended particles in the water may therefor increase microbial survival by shielding microorganisms from the UV radiation. Fouling on the outside of UV tube walls reduces the effectiveness of UV irradiation and is another problem which makes UV irradiation less useful in the subsea environment.
- Another sterilization method is ionizing irradiation using high energy electrons or gamma radiation.
- Ionizing radiation can be seen to cause an indirect effect on microorganisms.
- Applied to aqueous material irradiation by gamma radiation produces highly reactive and unstable components such as hydroxyl radicals and hydrated electrons which cause chemical changes within the microorganisms.
- Ionizing irradiation of seawater is previously disclosed for cooling purposes in DE 24 05 295 wherein a gamma ray source is installed in a tube that feeds water to a heat exchanger in a turbine power plant. The inlet water passes a rotating filter before entering the tube with the radioactive radiation source.
- the object of the present invention is to provide an alternative method for injection of water into an oil and/or gas containing subterranean formation comprising inactivation of microorganisms in seawater without the use of chemicals.
- the objects are achieved by a method for water injection into an oil and/or gas containing subterranean formation, the method comprising:
- the step of ionizing irradiation is preferably followed by fine filtration to remove inactivated organic material from the injection water.
- the step of ionizing irradiation is preceded by coarse filtration to remove inorganic material from the injection water before irradiation. In one embodiment the step of ionizing irradiation is followed by filtration through a semipermeable membrane of micro filtration, ultrafiltration or nano filtration pore size.
- the step of ionizing irradiation is followed by desalination through reverse osmosis.
- the water is subjected to ionizing irradiation from a radioactive radiation source emitting gamma radiation.
- a system for water injection into an oil and/or gas containing subterranean formation comprising:
- an ionizing irradiation stage installed at a location between the seawater inlet and the water injection pump, whereby at said location the water is guided past a submerged radiation source which is distributed for penetration of the body of injection water.
- the radiation source comprises one or multiple radiation elements arranged about the exterior of a pipe section of the submerged water filtration station.
- the radiation source comprises one or multiple radiation elements arranged in the interior of a pipe section of the submerged water filtration station.
- the radiation source comprises multiple radiation elements distributed along the exteriors or along the interiors of a multiplicity of parallel pipe sections in array configuration.
- the radiation source comprises multiple radiation elements distributed over the sectional area of a widened pipe section or tank wherein water flow velocity is reduced.
- the radiation source includes a shielding capsule functioning as pipe or tank wall.
- a shielding capsule functioning as pipe or tank wall.
- One or multiple radiation sources may alternatively or additionally be placed in a coarse filter, a membrane filter, a pump or any other component in the system to improve disinfection.
- FIG. 1 shows the layout of a water injection system configured for practising the water injection method of the present invention
- Fig. 2 shows an alternative configuration of the water injection system
- Figs. 3-5 show alternative designs for the distribution of radioactive elements in a radiation source for the water injection system
- Fig. 6 shows another alternative design for the distribution of radioactive elements
- Figs. 7a-7c show yet other alternative designs of the radiation source.
- a water injection system 1 briefly comprises a submerged water filtration station 2, a pump 3 feeding seawater through the filtration station from a seawater inlet 4 to a water injection pump 5 by which treated water is injected into an injection well 6 in an oil and/or gas containing subterranean formation 7.
- the water injection system 1 can be controlled from a topside control station 8 via an umbilical 9.
- a subsea control station 10 may be included in the control of the water injection system 1.
- the submerged water filtration station 2 comprises filter stages of successively finer grades as seen in the feed direction of water through the system 1.
- the filter stages include at least a coarse filtration stage 11 , and preferably also a fine filtration stage 12.
- separation of particulate matter and microorganisms from the seawater typically involves filtration in several stages using different types of filters.
- the type of filters applied in seawater treatment processes covers subsea coarse filters and multiple media filters, and membranes used in microfiltration units, ultrafiltration, nano filtration and reverse osmosis units.
- the stages of filtration are not principally different from each other except in terms of the size of the pores and the size of molecules they retain.
- the pore size or particle size removal capacity of ultrafiltration membranes range from 0.005 to 0.1 micron
- the nano filtration membranes range from 0.001 to 0.01 micron
- the reverse osmosis membranes are capable of excluding particle sizes ranging down to 0.0001 micron.
- the filter membranes and filter units applied in the present invention are not limited to the exact figures and ranges mentioned here, but are merely introduced as a general illustration of the different stages of filtration which can be applied in the seawater injection system 1.
- the coarse filtration stage 11 may be realized as a strainer or as a multiple media filter
- the fine filtration stage 12 may be composed of a number of ultrafiltration units 13-13" disposed in a parallel arrangement as indicated in Fig. 1.
- the fine filtration stage may be supplemented by nano filtration and/or desalination provided from a nanofiltration unit 14 and/or a reverse osmosis unit 15, if appropriate.
- a stage of ionizing irradiation 16 is installed in the feed of water from the seawater inlet 4 to the water injection pump 5.
- the ionizing irradiation stage may for example be inserted upstream of any filter unit such as upstream of a coarse filter unit or an ultrafiltration unit, possibly in or near the seawater inlet.
- the stage of ionizing irradiation may be inserted at any location in the water feed line. It may however be preferred to arrange at least one fine filtration stage in the flow downstream of the ionizing irradiation stage 16, in order to remove inactivated organic matter from the injection water. It may additionally be preferred to arrange at least one coarse filtration unit in the flow upstream of the ionizing irradiation stage 16 in order to remove solid inorganic material which may otherwise shield organic material and microorganisms from the energy of radiation.
- the embodiment of Fig. 1 may foresee that the ionizing irradiation stage 16 is located between the coarse filtration stage 11 and the fine filtration stage 12.
- the ionizing irradiation stage 16 comprises at least one, and preferably a set of, radiation sources 17 arranged in the feed of water through the water injection system 1.
- the radiation sources 17 are distributed to ensure penetration of the complete body of water.
- the inlet water flow 4 may be split into multiple flows through parallel pipe sections 18 each one associated with one or more radiation sources 17 as shown in the embodiment of Fig. 1.
- the pipe can also be arranged with multiple passages around a radiation source.
- An alternative embodiment of the water injection system 1 is shown in Fig. 2, wherein the same elements that constitute the embodiment of Fig. 1 are given the same reference numbers. In the embodiment of Fig.
- the ionizing irradiation stage 16 is however differently structured in that the inlet water 4 is introduced in a tank 19 containing a number of radiation sources 17.
- the tank is dimensioned to permit the water a dwelling time in the tank sufficient to ensure complete penetration of the whole body of water that rises through the tank to an overflow outlet 20.
- FIG. 3 shows a sectional view of a water pipe 21 surrounded by a number of radiation sources 17 distributed about the exterior of the water pipe 21.
- Fig. 4 shows a corresponding sectional view of a water pipe 21 wherein a number of radiation sources 17 are distributed inside the interior of the water pipe.
- Fig. 5 shows a sectional view of an arrangement wherein water pipes 21 and radiation sources 17 are arranged in an array configuration.
- Fig. 6 shows a set of radiation sources 17 are installed in a widened pipe section 22 of a water pipe 21.
- the radiation sources 17 are supported inside a shield 23 which encloses the energy emitted from the radiation sources 17 inside the widened pipe section.
- the shield 23 may be arranged so as to constitute a portion of the pipe wall.
- FIGs. 7a-7c Other alternative designs of the ionizing irradiation stage 16 are shown in Figs. 7a-7c, all of which refer to embodiments of the tank 19.
- injection water is fed through the tank 19 as indicated by arrows F, from a tank inlet 24 to an outlet 25.
- a set of irradiation cartridges 26 are installed from outside the tank, each irradiation cartridge 26 carrying a number of radiation sources 17.
- the cartridges may be arranged with an ROV interface 27 for installation by a remotely operated subsea vehicle.
- Fig. 7a shows the front and side views of an embodiment wherein the irradiation cartridges 26 are oriented horizontally in the tank 19.
- Fig. 7b shows in a corresponding side view an embodiment wherein the cartridges are vertically oriented.
- Fig. 7c shows an embodiment wherein the cartridges 26 are installed in passages defined by partition walls 28 in a tank which is formed as a labyrinth.
- the embodiments of Figs. 7a-7c all provide an extended dwelling time in the tanks and thus a prolonged exposure to radiation.
- the embodiment of Fig. 7c ensures maximum exposure to radiation for the complete body of water which is guided along the irradiations cartridges 26 from the inlet 24 to the outlet 25.
- the preferred source of radiation 17 to be used in the present method and system is a Cobalt-60 isotope that is available in rods which can be assembled and encapsulated to form a rod or pencil.
- the half- life of Cobalt-60 is about 5.5 years which corresponds approximately to a decay of 13 % per year, making the Cobalt-60 element a suitable energy source for underwater applications since supplementing or substitution of elements may be required on a frequent basis of every three to five years.
- Gamma rays penetrate well in water and Cobalt-60 elements can be combined in sufficient numbers to provide the required dosage.
- the direct and indirect effects of gamma ray irradiation on water and microorganisms in water is known and well documented in the literature and need not be further discussed in this context.
- Alternative ionizing radiation sources beside the gamma ray emitting Cobalt-60 are electron beam and X-ray generators. Accelerated electrons and X-rays may for some applications be less preferred than gamma rays which provide greater penetration depth in water than said alternatives.
- a non- ionizing irradiation stage may be included in the water injection system as supplement to the ionizing irradiation stage 16.
- the non- ionizing irradiation stage may be based on an UV-light source (such as a 254 nm germicidal lamp) which is then installed in the injection water flow. If appropriate the UV-light source may be installed in the water flow upstream of the ionizing irradiation stage 16.
- the listed radiation schemes can all be seen as different electromagnetic representatives for a Disintegrating High Frequency Oscillation (DHFO) treatment of injection water. Under this title there is room for also other than electromagnetic solutions, such as purely mechanical disinfection schemes.
- DHFO Disintegrating High Frequency Oscillation
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Water Supply & Treatment (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Hydrology & Water Resources (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Physical Water Treatments (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR112017027949-5A BR112017027949B1 (en) | 2015-07-02 | 2016-06-30 | METHOD FOR INJECTION OF WATER INTO AN UNDERGROUND FORMATION CONTAINING OIL AND/OR GAS AND SYSTEM FOR INJECTION OF WATER INTO AN UNDERGROUND FORMATION |
US15/741,315 US11912601B2 (en) | 2015-07-02 | 2016-06-30 | Method and system for water injection into an oil and/or gas containing subterranean formation |
AU2016286361A AU2016286361B2 (en) | 2015-07-02 | 2016-06-30 | Method and system for water injection into an oil and/or gas containing subterranean formation |
GB1720661.6A GB2557026B (en) | 2015-07-02 | 2016-06-30 | Method and system for water injection into an oil and/or gas containing subterranean formation |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO20150890A NO344853B1 (en) | 2015-07-02 | 2015-07-02 | Method and system for water injection into an oil and/or gas containing subterranean formation |
NO20150890 | 2015-07-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017001567A1 true WO2017001567A1 (en) | 2017-01-05 |
Family
ID=56418495
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2016/065316 WO2017001567A1 (en) | 2015-07-02 | 2016-06-30 | Method and system for water injection into an oil and/or gas containing subterranean formation |
Country Status (6)
Country | Link |
---|---|
US (1) | US11912601B2 (en) |
AU (1) | AU2016286361B2 (en) |
BR (1) | BR112017027949B1 (en) |
GB (1) | GB2557026B (en) |
NO (1) | NO344853B1 (en) |
WO (1) | WO2017001567A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180156224A1 (en) * | 2016-12-01 | 2018-06-07 | Mohan G. Kulkarni | Subsea Produced Non-Sales Fluid Handling System and Method |
WO2019042863A1 (en) * | 2017-08-29 | 2019-03-07 | Vetco Gray Scandinavia As | Subsea biofouling preventer device |
GB2575086A (en) * | 2018-06-28 | 2020-01-01 | Subsea 7 Us Llc | Sanitising seawater at subsea locations |
US11577180B2 (en) | 2017-04-18 | 2023-02-14 | Subsea 7 Norway As | Subsea processing of crude oil |
US11598193B2 (en) | 2017-04-18 | 2023-03-07 | Subsea 7 Norway As | Subsea processing of crude oil |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210009444A1 (en) * | 2019-07-10 | 2021-01-14 | Saudi Arabian Oil Company | Use of Tertiary Treated Sewage Effluent Sterilized With Ionizing Radiation in Upstream Well Applications |
BR112023014220A2 (en) * | 2021-01-15 | 2023-10-03 | Onesubsea Ip Uk Ltd | UNDERWATER FLUID INJECTION SYSTEM |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US316918A (en) | 1885-04-28 | Centering-gage | ||
DE2405295A1 (en) | 1974-02-04 | 1975-08-07 | Rasch | Marine growth prevention in power station cooling water intake - by gamma radiation source inside duct |
US3904882A (en) * | 1967-12-14 | 1975-09-09 | Energy Systems Inc | Radiation treatment method and apparatus for decontamination of polluted fluid |
WO1995015294A1 (en) * | 1993-12-03 | 1995-06-08 | Louis Szabo | Uv water sterilizer with turbulence generator |
WO2004090284A1 (en) * | 2003-04-08 | 2004-10-21 | Sørco AS | A method and apparatus for treatment of water for an injection well |
US7600567B2 (en) | 2004-05-28 | 2009-10-13 | Bp Exploration Operating Company Limited | Desalination method |
US7802623B2 (en) | 2005-12-23 | 2010-09-28 | Well Processing As | Method and a device for destruction of organic material in injection water |
US20130236353A1 (en) * | 2011-09-08 | 2013-09-12 | Jörg Blechschmidt | Device for disinfecting gases and/or liquids |
AU2013320028A1 (en) * | 2012-09-20 | 2015-04-09 | Saipem S.A. | Underwater water treatment unit and method for cleaning said unit |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3846296A (en) * | 1971-12-09 | 1974-11-05 | W Hay | Waste water purification system |
US4238335A (en) * | 1979-03-12 | 1980-12-09 | Conoco, Inc. | Undersea sand filter for cleaning injection water |
US4958683A (en) * | 1989-04-11 | 1990-09-25 | Alford George W | Method and apparatus for treating wells |
US7442312B2 (en) * | 2001-08-17 | 2008-10-28 | Trojan Technologies Inc. | Energy-based process for fluid treatment and system thereof |
NZ518658A (en) * | 2002-04-30 | 2004-10-29 | Lionel Evans | Method of water treatment |
GB0312394D0 (en) * | 2003-05-30 | 2003-07-02 | Weir Westgarth Ltd | Filtration apparatus and method |
CA2606190A1 (en) * | 2005-04-27 | 2006-11-02 | Hw Process Technologies, Inc. | Treating produced waters |
US7332094B2 (en) * | 2005-12-06 | 2008-02-19 | Halliburton Energy Services, Inc. | Irradiation system and methods of treating fluids in hydrocarbon industry applications |
KR20120008993A (en) * | 2010-07-21 | 2012-02-01 | 대우조선해양 주식회사 | Water treatment apparatus and method for enhancing oil recovery |
US20130023448A1 (en) * | 2011-07-18 | 2013-01-24 | A3Environ Technologies Llc | Methods for Treating Hydrocarbon-Servicing Fluids and Wastewater and Fluids Produced Using the Same |
US20140311980A1 (en) * | 2011-07-20 | 2014-10-23 | Robert Charles William Weston | System to Provide a Supply of Controlled Salinity Water for Enhanced Oil Recovery |
US9416029B2 (en) * | 2013-05-14 | 2016-08-16 | Gamma Research Technologies, LLC | Compact biocidal water purification system |
-
2015
- 2015-07-02 NO NO20150890A patent/NO344853B1/en unknown
-
2016
- 2016-06-30 US US15/741,315 patent/US11912601B2/en active Active
- 2016-06-30 AU AU2016286361A patent/AU2016286361B2/en active Active
- 2016-06-30 BR BR112017027949-5A patent/BR112017027949B1/en active IP Right Grant
- 2016-06-30 GB GB1720661.6A patent/GB2557026B/en active Active
- 2016-06-30 WO PCT/EP2016/065316 patent/WO2017001567A1/en active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US316918A (en) | 1885-04-28 | Centering-gage | ||
US3904882A (en) * | 1967-12-14 | 1975-09-09 | Energy Systems Inc | Radiation treatment method and apparatus for decontamination of polluted fluid |
DE2405295A1 (en) | 1974-02-04 | 1975-08-07 | Rasch | Marine growth prevention in power station cooling water intake - by gamma radiation source inside duct |
WO1995015294A1 (en) * | 1993-12-03 | 1995-06-08 | Louis Szabo | Uv water sterilizer with turbulence generator |
WO2004090284A1 (en) * | 2003-04-08 | 2004-10-21 | Sørco AS | A method and apparatus for treatment of water for an injection well |
US7600567B2 (en) | 2004-05-28 | 2009-10-13 | Bp Exploration Operating Company Limited | Desalination method |
US7802623B2 (en) | 2005-12-23 | 2010-09-28 | Well Processing As | Method and a device for destruction of organic material in injection water |
US20130236353A1 (en) * | 2011-09-08 | 2013-09-12 | Jörg Blechschmidt | Device for disinfecting gases and/or liquids |
AU2013320028A1 (en) * | 2012-09-20 | 2015-04-09 | Saipem S.A. | Underwater water treatment unit and method for cleaning said unit |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180156224A1 (en) * | 2016-12-01 | 2018-06-07 | Mohan G. Kulkarni | Subsea Produced Non-Sales Fluid Handling System and Method |
US10539141B2 (en) * | 2016-12-01 | 2020-01-21 | Exxonmobil Upstream Research Company | Subsea produced non-sales fluid handling system and method |
US11577180B2 (en) | 2017-04-18 | 2023-02-14 | Subsea 7 Norway As | Subsea processing of crude oil |
US11598193B2 (en) | 2017-04-18 | 2023-03-07 | Subsea 7 Norway As | Subsea processing of crude oil |
WO2019042863A1 (en) * | 2017-08-29 | 2019-03-07 | Vetco Gray Scandinavia As | Subsea biofouling preventer device |
GB2575086A (en) * | 2018-06-28 | 2020-01-01 | Subsea 7 Us Llc | Sanitising seawater at subsea locations |
GB2575086B (en) * | 2018-06-28 | 2021-11-03 | Subsea 7 Us Llc | Sanitising seawater at subsea locations |
US11440816B2 (en) | 2018-06-28 | 2022-09-13 | Subsea 7 Norway As | Sanitising seawater at subsea locations |
Also Published As
Publication number | Publication date |
---|---|
US11912601B2 (en) | 2024-02-27 |
NO20150890A1 (en) | 2017-01-03 |
GB2557026B (en) | 2021-07-28 |
GB201720661D0 (en) | 2018-01-24 |
AU2016286361A1 (en) | 2018-01-04 |
GB2557026A (en) | 2018-06-13 |
AU2016286361B2 (en) | 2020-09-10 |
BR112017027949B1 (en) | 2022-07-05 |
BR112017027949A2 (en) | 2018-08-28 |
US20180194658A1 (en) | 2018-07-12 |
NO344853B1 (en) | 2020-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2016286361B2 (en) | Method and system for water injection into an oil and/or gas containing subterranean formation | |
US9034180B2 (en) | Reactor tank | |
US7906023B2 (en) | Wastewater treatment method and apparatus | |
US8012355B2 (en) | Molecular separator | |
ES2551508T3 (en) | Apparatus and method for ballast water treatment | |
AU2022200173B2 (en) | Subsea biofouling preventer device | |
KR20120027275A (en) | Purifying device and method for elimination of xenobiotics in water | |
SG183405A1 (en) | Ballast water treatment system using a highly efficient electrolysis device | |
JP5818598B2 (en) | Water treatment system using reverse osmosis membrane | |
JP2018089598A (en) | Water treating device | |
CN100383064C (en) | High salinity waste water treatment method | |
KR20160146236A (en) | Pond water treatment Plasma system | |
US20040159615A1 (en) | Method and system for desalinating water | |
CN103073137B (en) | Swirl partition type ballast water treatment device for ship | |
JP2005138029A (en) | Algicidal/growth-suppressing method of water bloom occurring/living in closed water area such as lakes and marshes or the like and algicidal/growth-suppressing apparatus therefor | |
JP4025783B2 (en) | Seawater desalination equipment | |
EP3015435A1 (en) | Device for reducing microbial contamination of waste water without reagents | |
WO2016051823A1 (en) | Ultrasonic anti-corrosion system | |
KR20230170610A (en) | Apparatus and Method for Preventing Biofilm Formation of Membrane Filter Surface Using Effluent Water | |
CN104445682A (en) | Waste heat power generation boiler water replenishing deionized water device | |
Majid et al. | Practical Analysis of Tap Water Dissolved Solids Efficient Reduction | |
JP6250295B2 (en) | UV sterilization system | |
CN104496051A (en) | Waste heat power generation boiler make-up water deionization equipment with flushing function | |
Brown et al. | Emerging disinfection technologies | |
JPWO2012165026A1 (en) | Method for decontaminating drinking water contaminated with radioactive substances, device for purifying drinking water, and body purified drinking water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16739428 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 201720661 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20160630 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2016286361 Country of ref document: AU Date of ref document: 20160630 Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112017027949 Country of ref document: BR |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16739428 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 112017027949 Country of ref document: BR Kind code of ref document: A2 Effective date: 20171222 |