WO2017000915A1 - 组播传输方法、信息提取方法及相应的终端和设备 - Google Patents
组播传输方法、信息提取方法及相应的终端和设备 Download PDFInfo
- Publication number
- WO2017000915A1 WO2017000915A1 PCT/CN2016/088199 CN2016088199W WO2017000915A1 WO 2017000915 A1 WO2017000915 A1 WO 2017000915A1 CN 2016088199 W CN2016088199 W CN 2016088199W WO 2017000915 A1 WO2017000915 A1 WO 2017000915A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- frame
- information
- length
- string
- coding unit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/06—Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/02—Details
- H04L12/16—Arrangements for providing special services to substations
- H04L12/18—Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
- H04L12/189—Arrangements for providing special services to substations for broadcast or conference, e.g. multicast in combination with wireless systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/10—Small scale networks; Flat hierarchical networks
- H04W84/12—WLAN [Wireless Local Area Networks]
Definitions
- the invention relates to an information coding technology, in particular to an intelligent control terminal and a multicast transmission method thereof to be transmitted, and to an intelligent device and a multicast data frame information extraction method thereof.
- WiFi direct connection technology enables any device that has passed WiFi direct authentication to work in both AP (Access Point) mode and STA (Station) mode. Interconnection between two or more WiFi devices, one and only one WiFi device is used as a management center to centrally manage the connection of the remaining workstations in the group.
- WiFi direct connection technology is also compatible with various encryption methods in the WiFi protocol, so it is more secure, and because of its functions such as service discovery and infrastructure discovery, it is convenient to use, reliable to access, and more popular than other technologies. It is being widely used. With these technologies, you can interconnect multiple devices without relying on intermediate devices such as routers.
- a relatively basic and classic application scenario for promoting the development of the Internet of Things technology is to use WiFi Direct technology for intelligent intelligence from a smart control terminal that has access to the Internet or a local area network, such as a mobile phone, to another device that has a common protocol with the device.
- the device transmits the login configuration information of the target network that is currently accessed by the device, and then the smart device that receives the configuration information logs in to the target network according to the configuration information to implement its own network access. Since the devices related to the Internet of Things are characterized by light and mobile, no efficient human-computer interaction, and the like, the WiFi access method is adopted. Therefore, the target network referred to herein generally refers to a WiFi access point, that is, a WiFi AP.
- the so-called configuration information is generally also the identity identification and authentication information of the login related AP, including but not limited to the Service Set Identifier (SSID), password, and the like of the AP.
- SSID Service Set Identifier
- the smart device After the smart device receives the configuration information based on the WiFi Direct technology to implement its own access target network, it can work normally.
- the current WiFi Direct technology can only transmit the configuration information from the intelligent control terminal to the smart device after the direct connection between the intelligent control terminal and the smart device, so the direct connection based on this technology is implemented.
- the solution is limited by the speed of completing the direct connection. If an accident occurs due to packet loss during the direct connection process, the connection cannot be established effectively, and the configuration information cannot be transmitted from the intelligent control terminal to the smart. The purpose of the device.
- a first object of the present invention is to solve at least the above problems, and to provide an intelligent control terminal and a multicast transmission method thereof to be transmitted, so as to realize connection-free transmission data by means of a multicast data frame.
- a second object of the present invention is to solve the above at least one problem, and to provide a smart device and a multicast data frame information extraction method thereof, so as to obtain the information to be transmitted in response to the previous object.
- the present invention adopts the following technical solutions:
- the method for transmitting multicast information to be transmitted according to the present invention includes the following steps:
- the invention provides an intelligent control terminal, which comprises:
- a code splitting module configured to separate a code sequence of information to be transmitted into a plurality of code strings, and define a corresponding index string of each code string and a characterizing index sequence assigned thereto as a coding unit;
- a reference frame construction module configured to construct a reference frame based on a multicast data frame format
- An information frame construction module is configured to construct an information frame based on a multicast data frame format, such that a destination address field includes a content of the first part of the coding unit, and a difference between a frame length and a frame length of the reference frame includes Said the rest of the coding unit;
- a signal transmission module configured to transmit the reference frame and the information frame.
- the method for extracting multicast data frame information provided by the present invention comprises the following steps:
- the code sequence is restored to information.
- the invention provides a smart device, which comprises:
- a receiving module configured to receive a reference frame and an information frame implemented according to a multicast data frame format
- An extracting module configured to extract, from the information frame, a first portion of content of a coding unit expressed by a destination address field thereof, Determining a content of the remaining portion of the coding unit by a frame length difference between the information frame and the reference frame to obtain a complete coding unit;
- a constructing module configured to splicing the code strings included in each coding unit in an order represented by the index strings of the respective coding units to form a coding sequence
- a restore module for restoring the code sequence to information.
- a computer program comprising computer readable code, when said computer readable code is run on a computing device, causing said computing device to perform said multicast information to be propagated Transmission method or the method for extracting multicast data frame information.
- a computer readable medium wherein the computer program is stored.
- the present invention uses a multicast data frame as a basic material, and uses a difference between a destination address field and a frame length difference between different frames as a carrier, and processes a coding sequence corresponding to the information to be transmitted into a plurality of coding units having an index order.
- each coding unit is loaded into a destination address field of multiple information frames implemented by using the multicast data frame and a frame length difference between each information frame and the reference frame, so that the information to be transmitted is loaded by using the multicast data frame and
- the technical conditions for multicasting because the transmission of multicast data frames does not have to rely on the establishment of a direct connection between the intelligent control terminal (transmission end) and the intelligent device (receiving end), and does not need to access the same routing device, so the transmission end
- the wireless data signal can be radiated into the air using the multicast data frame as a carrier to transmit data to the receiving end.
- each information frame may extract one coding unit, assemble a plurality of coding units according to an index sequence thereof, restore the coding sequence, and then code the sequence
- the receiving end can complete the receiving of the information to be transmitted.
- the intelligent control terminal can perform local area control on the destination address field of the multicast data frame, and can also extend the length of the frame body domain.
- the present invention skillfully utilizes the multicast data frame structure. This feature, when using multicast data frames for data transmission, not only utilizes its destination address field, but also utilizes the difference between the length of its frame body field and the length of the frame body field of the reference frame, which extends The length of the content that can be expressed by each multicast data frame, so the information expression capability of the multicast data frame is greatly enhanced.
- FIG. 1 is a schematic structural diagram of a multicast address used in the present invention.
- FIG. 2 is a schematic diagram of mapping relationship between a multicast address and an IP address used in the present invention
- FIG. 3 is a schematic diagram of a principle of a method for transmitting multicast information to be transmitted according to the present invention
- FIG. 4 is a schematic diagram of a principle of a method for extracting multicast data frame information according to the present invention.
- FIG. 5 is a schematic structural diagram of an intelligent control terminal according to the present invention.
- FIG. 6 is a schematic structural diagram of a smart device according to the present invention.
- Figure 7 shows schematically a block diagram of a computing device for performing the method according to the invention
- Fig. 8 schematically shows a storage unit for holding or carrying program code implementing the method according to the invention.
- terminal includes both wireless signal receiver devices and only wireless signal receiving without transmitting capability.
- the device of the device includes a device for receiving and transmitting hardware having a device capable of performing reception and transmission hardware of two-way communication over a two-way communication link.
- Such devices may include cellular or other communication devices having a single line display or a multi-line display or a cellular or other communication device without a multi-line display; PCS (Personal Communications Service), which may combine voice, data Processing, fax, and/or data communication capabilities; PDA (Personal Digital Assistant), which can include radio frequency receivers, pagers, Internet/Intranet access, web browsers, notepads, calendars, and/or GPS (Global Positioning System (Global Positioning System) receiver; conventional laptop and/or palmtop computer or other device having a conventional laptop and/or palmtop computer or other device that includes and/or includes a radio frequency receiver.
- PCS Personal Communications Service
- PDA Personal Digital Assistant
- the various "terminals” used herein may be portable, transportable, installed in a vehicle (aviation, sea and/or land), or adapted and/or configured to operate locally, and/or in a distributed form. , running in any other location on the earth and / or space.
- the various "terminals” used herein may also be communication terminals, Internet terminals, music/video playback terminals, such as PDAs, MIDs (Mobile Internet Devices), and/or mobiles with music/video playback functions.
- the telephone can also be a smart TV, a set top box, a smart camera, a smart remote controller, a smart socket, and the like.
- the carrier is implemented by using the multicast data frame as a technology, and the techniques of both encoding and decoding are disclosed in detail, so that those skilled in the art can realize the creative thinking according to the present specification.
- Two corresponding methods are provided, one of which is a multicast transmission method for information to be transmitted, in which the loading and transmitting of the information to be transmitted is implemented by encoding, and the decoding is performed by a method for extracting the information of the multicast data frame. Extract the information that was transmitted. With such a system, the entire process of information from encoding to transmission to reception and decoding reduction is implemented.
- Table 1 802.11 protocol family MAC frame structure (the first line is Bytes bytes):
- Duration/ID duration/identity, indicating how long the frame and its acknowledgment frame will occupy the channel; for a frame whose control field subtype is: Power Save-Poll, this field indicates the connection identity of the STA (AID) , Association Indentification)
- Address Fields is the address field, including 4 addresses (source address, destination address, sender address, and receiver address), depending on the To DS and From DS bits in the Frame Control field.
- Sequence Control - is a sequence control field used to filter repeated frames.
- Frame Body A frame body field, or data field, used to represent information sent or received.
- Checksum field including 32-bit cyclic redundancy check (CRC).
- Protocol Version - indicates the version of the IEEE 802.11 standard.
- Type- indicates the frame type: including management, control, and data.
- Subtype- indicates a subtype of a frame, such as an Authentication Frame, a Deauthenation Frame, an Association Request Frame, an Association Response Frame, and a Reassociation Request. Frame), Reassociation Response Frame, Disassociation Frame, Beacon Frame, Probe Frame, Probe Request Frame, or Probe Response Frame (Probe Response) Frame).
- This value is set to 1 when the frame is sent to the Distribution System (DS).
- This value is set to 1 when the frame is received from the Distribution System (DS).
- MF-More Fragment indicates that the value is set to 1 when more segments belong to the same frame.
- Retry- indicates that the segment is a retransmission frame of the previously transmitted segment.
- Pwr-Power Management which indicates the power management mode used by the station after the frame is transmitted.
- More-More Data indicating that there are a lot of frame buffers in the station.
- W-WEP means that the frame body is encrypted according to the WEP (Wired Equivalent Privacy) algorithm.
- O-Order 1 indicates that the recipient should process the frame in strict order.
- the location of the destination address field of the multicast data frame can be determined by the From DS and To DS fields. See Table 3:
- IP address space is divided into three categories: A, B, and C.
- the fourth type, class D address is reserved for use as a multicast address.
- IPv4 In the fourth edition of the IP protocol (IPv4), all IP addresses from 224.0.0.0 to 239.255.255.255 belong to the class D address.
- the most important of the multicast addresses is the four bits between the 24th and 27th bits, corresponding to 224 to 239 in decimal, and the other 28 bits are reserved for multicast group identification, as shown in Figure 1.
- the IPv4 multicast address is translated to the network physical address at the network layer.
- the physical address corresponding to the IP address can be obtained through the ARP protocol.
- the ARP protocol cannot perform similar functions, and other methods must be used to obtain physical addresses. The method to complete this conversion process is presented in the RFC document listed below:
- RFC 1112 Multicast IPv4to Ethernet physical address correspondence
- RFC 1469 Correspondence to Token-Ring networks
- the conversion process is such that the first 24 bits of the Ethernet address are fixed to 01:00:5E, which are important flags. The next bit is fixed to 0, and the other 23 bits are filled with the lower 23 bits of the IPv4 multicast address.
- the conversion process is shown in Figure 2.
- the multicast address is 224.0.0.5 and its Ethernet physical address is 01:00:5E:00:00:05. It can be seen that the lower 23 bits (or less) of the destination address field here can be used as an editable bit field for loading information.
- the frame body domain that is, the Frame Body
- the Frame Body has a variable length, and its specifically stored content is determined by a frame type and a sub type.
- the WiFi chip can detect the radio frequency signal in the space and identify the MAC frame.
- the device cannot be further parsed because the device does not have a key after being authenticated by the access point.
- the data of the frame body domain in the frame structure but since the frame length of the frame body domain is known, the frame length of the entire multicast data frame is also known, therefore, this The feature does not affect the utilization of the frame length of the multicast data frame. Therefore, the present invention can utilize the fields to enable the smart device to receive information transmitted by the intelligent control terminal in a multicast manner even if the smart device is not connected to the network.
- the length of the entire frame is uniquely associated and determined by the length of the frame body domain therein.
- the destination address field and its frame body length change in the frame structure can be used to load the information to be transmitted.
- the above disclosed knowledge is the basis for understanding the implementation of the present invention, and the disclosure of the method of the present invention will be developed based on the above knowledge.
- the method for transmitting multicast information to be transmitted by the present invention is generally described as an active initiator or as a central controller.
- the method can be implemented as a computer program installed on a similar mobile phone or tablet. Or running in an intelligent intelligent control terminal, for example, installing an application (application) implemented by the transmission method on a mobile phone running Android, IOS, Windows Phone system or in a tablet computer, and executing the transmission method by the application program .
- an application application
- the method specifically includes the following steps:
- Step S11 Separating the code sequence of the information to be transmitted into a plurality of code strings, and defining a corresponding index string of each code string and a characterizing index sequence assigned thereto as a coding unit.
- the information to be transmitted may be information including a service set identifier (SSID) for providing a WiFi access point and a password thereof, or other information such as verification information, which is not large in an application scenario. .
- SSID service set identifier
- the information to be transmitted is parsed into a code sequence consisting of machine binary code before encoding.
- the transmission information is first encrypted, and then formed into a ciphertext and then converted into the coding sequence.
- the encryption method can be either public key encryption or symmetric key encryption, as long as the receiving end can decrypt using the corresponding key (such as the private key in public key encryption or the same key in symmetric encryption). Whether the information to be transmitted is parsed into a binary code, whether it is encrypted or public, it can be encoded to be suitable for allocation to each multicast data frame.
- the code sequence of the information to be transmitted is separated into a number of code strings, each of which constitutes a relatively independent and non-informative part, expressed in the same length, for example occupying 20 bits.
- each code string is assigned an index string, which is also expressed in binary, occupying, for example, 6 bits, 6 bits format, and can be used to express 26 groups of code strings.
- the inherent sequence of the code string can be expressed, that is, the code string separated by the code sequence is connected in series
- the index string of the corresponding size is matched in order, so that the index string can be used to express the index order of the code string corresponding thereto.
- each index string and a code string combined therewith are defined as one coding unit, and the information to be transmitted is separated into a plurality of coding units, and each coding unit is relatively independent, but there is a mutual Preface.
- the coding unit itself is a combination concept, not a fixed order concept.
- the total length of the coding unit is determined to be a total of 26 bits
- the index string occupies a total length of 6 bits therein
- the remaining second length 20 bits is the corresponding code. Occupied by the string, the total length of the coding unit is exactly the sum of the first length and the second length. Obviously, all coding units have the same total length.
- subsequent coding may be performed based on the multicast data frame.
- Step S12 Construct a reference frame based on the multicast data frame format.
- the configuration of the reference frame is flexible, and the editable bit area in the destination address field, that is, the lower 23 bits thereof, may be all based on the multicast data frame and according to the foregoing disclosure about the structure of the multicast data frame. Set to 0 or 1, or other specific bit sequences are also possible, and determine the length of its frame body as the reference length.
- the reference frame can be identified according to the coding principle of the reference frame here, and the length of the frame body domain can be determined, and the length is determined as the basic length. .
- the total length of the reference frame can also be directly used as the reference length.
- the reference length is less than the frame length of the subsequent information frame in order to determine the information encoding by means of the difference between such frame lengths.
- the frame length of the reference frame can also be made larger than the frame length of the subsequent information frame.
- Step S13 Construct an information frame based on the multicast data frame format, such that the destination address field includes the first part of the coding unit, and the difference between the frame length and the frame length of the reference frame includes the rest of the coding unit. Part.
- the variation range of the difference can be normalized so that the variation range is specified such that the frame length difference between the information frame and the reference frame is maintained at Within a certain range, the maximum value of 8 is taken as an example.
- the 3-bit binary 000-111 can be used to represent various difference values. When combined with the lower 23 bits of the aforementioned destination address field, it can constitute 26-bit expression capability, and 6-bit index string can express With 64 sets of data, the remaining 20 bits in each frame can express 2.5 Bytes of data, and the encoding can satisfy the expression of 160 Bytes of information.
- the information frame is also constructed based on a multicast data frame.
- the process of constructing the information frame is a process of respectively encoding each coding unit to an information frame.
- Several ways of coding the relationship between each coding unit and the information frame structure are outlined below.
- the first encoding method is the first encoding method:
- the second subcode string may determine the frame length of the information frame by a length greater than the length of the frame body field of the information frame (other embodiments may also be smaller than) the frame of the reference frame. Encoded expression is achieved by length (reference length) of 2 Bytes. After the subsequent receiver subtracts the account length of the reference frame by using the frame length of the information frame, the second subcode string of 010 can be obtained.
- the encoding method differs from the previous encoding method only in that the object to be split is the index string in the coding unit rather than its code string. Since the code string is 20 bits long in the data of the example provided above, It can be fully expressed in the editable bit field of the multicast data frame. Therefore, in this case, the editable bit field can only be used to express 3 bits in the index string, that is, the first sub index string, and the remaining of the index string The 3-bit second sub-index string can only be expressed in the frame length difference between the information frame and the reference frame described by the first coding mode.
- the length of the 6-bit index string and the 20-bit code string are lower than the destination address field by 23 bits and the frame length difference
- This collocation relationship between the three bits is a preferred solution, which can not only enhance the ability of the multicast data frame to express information, but also reduce the risk of unsuccessful information transmission caused by UDP packet loss during transmission. .
- the code string in the coding unit is simply expressed in the destination address field of the information frame to which it belongs, for example, occupying the lower 20 bits of the destination address field, and the index string is expressed in the information frame to which it belongs.
- the frame length difference of the reference frame If the length of the index string is maintained as 6 bits of the previous example, the difference between the frame length of the information frame and the reference frame should be maintained within the range of the maximum value that the corresponding 6-bit binary code can express. If the number of bits of the index string is reduced to 3 bits, even if the length of the code string is extended to 23 bits to occupy the entire editable area of the destination address field, since the index string can only express 8 sets of data, its information expression ability is weaker than The previous example.
- the index string in the coding unit can be simply expressed in the destination address field of the information frame to which it belongs, for example, occupying the lower 23 bits of the destination address field, and all the code strings are expressed in the belonging information frame.
- the frame length value of the reference frame if the length of the code string is maintained as 20 bits of the previous example, the difference between the frame length of the same information frame and the reference frame should be maintained as the corresponding 20-bit binary code can be expressed. The range of maximum values. If the number of bits of the code string is reduced to 3 bits as described in the previous example, the amount of information expressed by a single code string is limited, and the index string is 23 bits, so that multiple multicast data frames need to be constructed to transmit the same information. It can be seen that the foregoing first and second encoding methods are superior to the third and fourth encoding modes.
- the finally constructed information frame its destination address field, specifically refers to the editable bit field in the domain, which will contain the first coding unit.
- a part of the content may be all of the code string or a part of the subcode string, or may be all of the index string or a part of the sub index string.
- the frame length of the information frame is adjusted by the length of the frame body field to have a difference within a specific range of the frame length of the reference frame, and the binary format of the difference includes the coding unit.
- the remaining part of the content in the destination address field is not encoded, and the type of the content and the number of the content and the number of the destination address field are different, and may be the subcode string of the remaining part of the code string. It can be all code strings, and can be all of the index strings or the rest of them.
- the code string and the index string included in the same coding unit may be separately expressed in the destination address field editable bit region of the same information frame and the frame length difference between the information frame and the reference frame, as needed. , complete the construction of the information frame.
- Step S14 transmitting the reference frame and the information frame.
- the reference frame and the information frame After the construction of the reference frame and the information frame is completed, the entire encoding operation of the information to be transmitted is completed, thereby calling the corresponding interface, and using the WiFi communication component based on the 802.11 protocol, the reference frame and the reference frame can be The information frame is radiated into the air in a wireless manner and transmitted to the receiving end. It should be noted that, since the upper layer protocol works in UDP, the reference frame and the information frame are sent in UDP data packets.
- the method transmits the reference frame and In the case of an information frame, for example, 10 cycles are set, and in each cycle, the reference frame and the information frame are sequentially transmitted according to the index order represented by the index string (the reference frame is regarded as the coded as 0 sorted first), so as to ensure the receiving end. Successfully receive all multicast data frames. Nevertheless, the order of transmission of the reference frame and the information frame in the same cycle may also be out of order, and does not affect the implementation effect of the present invention. It should be noted that the number of cyclic transmissions during transmission should not be limited to a specific number, and may be, for example, multiple transmissions of other data such as 5 times, 20 times, and the like.
- the information multicast transmission method to be transmitted according to the foregoing process has a simple coding process and strong information expression capability, and can realize information transmission without relying on establishing a stable connection between the smart devices.
- a controlled smart device such as a smart camera, a driving recorder, a smart watch, etc.
- such devices generally need to rely on the aforementioned information to be transmitted to complete itself. Configured to access external networks.
- a controlled smart device such as a smart camera, a driving recorder, a smart watch, etc.
- Configured to access external networks In order to receive the aforementioned information, it is necessary to have such a device have the basis for decoding the multicast data frame constructed by the aforementioned encoding process to achieve the next operation.
- the present invention further discloses a method for extracting multicast data frame information for a smart device side, the method comprising the following steps:
- Step S21 Receive a reference frame and an information frame implemented based on a multicast data frame format.
- the smart device receives the UDP data packet in the air through the 802.11-compliant WiFi communication module, obtains the corresponding multicast data frame, and then decodes the information to obtain the information loaded in the multicast data frame.
- the method refers to the foregoing method, and obtains the reference frame and the information frame according to the following specific steps:
- Receive a multicast data frame obtain a UDP data packet of airborne wireless radiation through a WiFi communication module, thereby obtaining a multicast data frame therein, and identifying a type of the multicast data frame.
- S212. Determine whether the multicast data frame is the reference frame.
- the editable bit area of the destination address field of the multicast data frame conforms to the specification of the protocol. For example, the 23 bits defined in the previous method are all 0s or all 1s.
- the frame length of the multicast data frame can be checked. Since the frame length of the multicast data frame is uniquely determined by the length of the frame body domain, the length of the frame body domain can also be checked to determine whether the data specified by the protocol is met. If one or all of these conditions meet the specifications of the custom protocol, the multicast data frame is determined to be a reference frame; otherwise, the packet may be temporarily dropped.
- the current sub-step determines that the multicast data frame is a reference frame
- the remaining part of the series of received multicast data frames is included in the information frame, so that the remaining multicast data frames can be started to be received, that is, Is the information frame described.
- the sender sends the reference frame and the information frame in multiple rounds
- this sub-step after the reference frame is determined, all the other multicast data frames can be received, and the repeated packet loss processing can be performed, and finally the reference frame is obtained. And its non-repeating information frame can be.
- the index string since the index string has 6 bits, the sum of the reference frame and the information frame should be 64, depending on the number of bits of the index string.
- the frame length of the information frame is obviously larger or smaller than the frame length of the reference frame (as specified by a custom protocol), that is, the frame length of the reference frame is smaller or larger than the frame length
- the frame length of the reference frame is smaller or larger than the frame length
- this feature can also be used to verify whether the multicast data frame is an information frame that conforms to the custom protocol specification.
- Step S22 extracting, from the information frame, the first part of the coding unit that is represented by the destination address field, determining the content of the remaining part of the coding unit by using the difference between the frame length of the information frame and the reference frame, and obtaining a complete The coding unit.
- the essence of this step is the process of performing partial decoding, the purpose of which is to acquire relatively independent coding units in each information frame.
- the received information frame will be decoded as follows:
- the binary difference (3 bits) between the information frame and the frame length of the reference frame (or the length of the respective frame body field), that is, the second subcode string, the first subcode string and the second subcode string are serialized
- the code strings are constructed, and the index strings are used in the order in which they are characterized to determine the order in which the code strings are assembled.
- the obtained code string and index string constitute the coding unit loaded into the information frame.
- the entire code string (lower 20 bits) and the first sub-index string of the index string (the first three bits of the editable bit area) are extracted from the editable bit area of the destination address field of the information frame, that is, the lower 23 bits thereof. Determining a second sub-index string of the index string by using a binary difference (3 bits) between the information frame and the frame length of the reference frame (or the length of the respective frame body domain), and the first sub-index string and the second The sub-index string is spliced to obtain the entire index string, and the index string and the code string constitute the coding unit expressed by the information frame.
- the editable bit area of the destination address field in the information frame is directly extracted, that is, the index string is obtained, and the information frame and the frame length of the reference frame are obtained.
- the binary difference (3 bits or more) between the respective frame body domain lengths is directly determined as a code string, and the index string and the code string constitute corresponding coding units.
- the protocol mechanism corresponding to the encoding process is not taken off.
- the principle of execution is to extract the first part of the coding unit expressed by the destination address field from the information frame, and determine the coding by the frame length difference (binary format of the limited length) of the information frame and the reference frame. The rest of the unit is content to obtain the complete coding unit.
- Step S23 splicing the code strings included in each coding unit in the order represented by the index strings of the respective coding units to form a coding sequence.
- each coding unit Since each coding unit has its own index sequence of the characterizing order, the index string indicates that each coding unit has The sort position where some code strings are located when the code sequence is split. Thus, by sequentially assembling the corresponding code strings in the order in which the respective coding units are represented by the index strings they have, a corresponding code sequence can be restored, which can be used to restore the transmitted information.
- Step S24 Restore the code sequence to information.
- the code sequence is a sequence obtained by converting the ciphertext formed by encrypting the information
- the code sequence needs to be first restored to the ciphertext, and the ciphertext is decrypted by using the pre-stored key.
- the transmitted information As for the type of the key, depending on whether the encryption technology is public key encryption or symmetric encryption, for the former, the pre-stored private key corresponding to the public key at the time of encoding is used for decryption, and for the latter, the key at the time of encoding is used. The same pre-stored key is decrypted. Of course, if the encoded sequence is converted from non-encrypted information, then this process does not have to be performed.
- the information is generally combined in a certain format and converted into a code sequence when encoding, for example, the content formed after the ASCII code conversion is assumed to be as follows:
- the SSID and PSW characters are the type identifiers of the information elements
- MYWiFi and PLZLOGIN are the specific contents of the information elements
- the attribute separator is the colon ":" for separating the type identifier and the specific content, the element separator "
- steps S21 and S22 are not limited to performing all the tasks in sequence, and the two steps may be performed before and after the unit for each received information frame. Therefore, two The execution of the steps may be performed in a certain parallel relationship, that is, steps S21 and S22 are performed for each information frame, and step S22 is performed for all information frames instead of performing step S21 for all information frames. Those skilled in the art will be aware of this mechanism.
- the method for extracting multicast data frame information of the present invention corresponds to the previous method, and the information loaded by the multicast data frame can be extracted by simple steps, and does not depend on the receiver and the receiver.
- the establishment of a stable connection corresponds to the previous method, and the information loaded by the multicast data frame can be extracted by simple steps, and does not depend on the receiver and the receiver. The establishment of a stable connection.
- the present invention provides the foregoing intelligent control terminal.
- the intelligent control terminal is implemented by using a mobile phone with the aforementioned APP installed.
- the intelligent control terminal provided by the present invention includes an encoding splitting module 11, a reference frame constructing module 12, an information frame constructing module 13, and a signal transmitting module 14.
- the functions implemented by each module are detailed below.
- the code splitting module 11 is configured to separate a code sequence of information to be transmitted into a plurality of code strings, and define a corresponding index string of each code string and a characterizing index sequence assigned thereto as a coding unit.
- the information to be transmitted may be information including a service set identifier (SSID) for providing a WiFi access point and a password thereof, or other information such as verification information, which is not large in an application scenario. .
- SSID service set identifier
- the information to be transmitted is parsed into a code sequence consisting of machine binary code before encoding.
- the transmission information is first encrypted, and then formed into a ciphertext and then converted into the coding sequence.
- the encryption method can be either public key encryption or symmetric key encryption, as long as the receiving end can decrypt using the corresponding key (such as the private key in public key encryption or the same key in symmetric encryption). Whether it is encrypted or public, the information to be transmitted is parsed into a binary code. It can be encoded to be suitable for distribution into individual multicast data frames.
- the code sequence of the information to be transmitted is separated into a number of code strings, each of which constitutes a relatively independent and non-informative part, expressed in the same length, for example occupying 20 bits.
- each code string is assigned an index string, which is also expressed in binary, occupying, for example, 6 bits, 6 bits format, and can be used to express 26 groups of code strings.
- the inherent sequence of the code string can be expressed, that is, the code string separated by the code sequence is connected in series
- the index string of the corresponding size is matched in order, so that the index string can be used to express the index order of the code string corresponding thereto.
- each index string and a code string combined therewith are defined as one coding unit, and the information to be transmitted is separated into a plurality of coding units, and each coding unit is relatively independent, but there is a mutual Preface.
- the coding unit itself is a combination concept, not a fixed order concept.
- the total length of the coding unit is determined to be a total of 26 bits
- the index string occupies a total length of 6 bits therein
- the remaining second length 20 bits is the corresponding code. Occupied by the string, the total length of the coding unit is exactly the sum of the first length and the second length. Obviously, all coding units have the same total length.
- the subsequent coding can be performed based on the multicast data frame.
- the reference frame construction module 12 is configured to construct a reference frame based on a multicast data frame format.
- the configuration of the reference frame is flexible, and the editable bit area in the destination address field, that is, the lower 23 bits thereof, may be all based on the multicast data frame and according to the foregoing disclosure about the structure of the multicast data frame. Set to 0 or 1, or other specific bit sequences are also possible, and determine the length of its frame body as the reference length.
- the reference frame can be identified according to the coding principle of the reference frame here, and the length of the frame body domain can be determined, and the length is determined as the basic length. .
- the total length of the reference frame can also be directly used as the reference length.
- the reference length is less than the frame length of the subsequent information frame in order to determine the information encoding by means of the difference between such frame lengths.
- the frame length of the reference frame can also be made larger than the frame length of the subsequent information frame.
- the information frame construction module 13 is configured to construct an information frame based on a multicast data frame format, such that the destination address field includes the first part of the coding unit, and the frame length thereof and the frame length of the reference frame The difference value contains the rest of the content of the coding unit.
- the variation range of the difference can be normalized so that the variation range is specified such that the frame length difference between the information frame and the reference frame is maintained at Within a certain range, the maximum value of 8 is taken as an example.
- the 3-bit binary 000-111 can be used to represent various difference values. When combined with the lower 23 bits of the aforementioned destination address field, it can constitute 26-bit expression capability, and 6-bit index string can express With 64 sets of data, the remaining 20 bits in each frame can express 2.5 Bytes of data, and the encoding can satisfy the expression of 160 Bytes of information.
- the information frame is also constructed based on a multicast data frame.
- the process of constructing the information frame is a process of respectively encoding each coding unit to an information frame.
- Several ways of coding the relationship between each coding unit and the information frame structure are outlined below.
- the first encoding method is the first encoding method:
- the second subcode string may determine the frame length of the information frame by a length greater than the length of the frame body field of the information frame (other embodiments may also be smaller than) the frame of the reference frame. Encoded expression is achieved by length (reference length) of 2 Bytes. After the subsequent receiver subtracts the account length of the reference frame by using the frame length of the information frame, the second subcode string of 010 can be obtained.
- the encoding method differs from the previous encoding method only in that the object to be split is the index string in the coding unit rather than its code string. Since the code string is 20 bits long in the data of the example provided above, It can be fully expressed in the editable bit field of the multicast data frame. Therefore, in this case, the editable bit field can only be used to express 3 bits in the index string, that is, the first sub index string, and the remaining of the index string The 3-bit second sub-index string can only be expressed in the frame length difference between the information frame and the reference frame described by the first coding mode.
- the collocation relationship between the length of the 6-bit index string and the 20-bit code string and the lower 23 bits of the destination address field and the difference of 3 bits of the frame length is a preferred solution.
- the ability to enhance the presentation of multicast data frames can reduce the risk of unsuccessful information transmission due to packet loss of UDP packets during transmission.
- the code string in the coding unit is simply expressed in the destination address field of the information frame to which it belongs, for example, occupying the lower 20 bits of the destination address field, and the index string is expressed in the information frame to which it belongs.
- the frame length difference of the reference frame If the length of the index string is maintained as 6 bits of the previous example, the difference between the frame length of the information frame and the reference frame should be maintained within the range of the maximum value that the corresponding 6-bit binary code can express. If the number of bits of the index string is reduced to 3 bits, even if the length of the code string is extended to 23 bits to occupy the entire editable area of the destination address field, since the index string can only express 8 sets of data, its information expression ability is weaker than The previous example.
- the index string in the coding unit can be simply expressed in the destination address field of the information frame to which it belongs, for example, occupying the lower 23 bits of the destination address field, and all the code strings are expressed in the belonging information frame.
- the frame length value of the reference frame if the length of the code string is maintained as 20 bits of the previous example, the difference between the frame length of the same information frame and the reference frame should be maintained as the corresponding 20-bit binary code can be expressed. The range of maximum values. If the number of bits of the code string is reduced to 3 bits as described in the previous example, the amount of information expressed by a single code string is limited, and the index string is 23 bits, so that multiple multicast data frames need to be constructed to transmit the same information. It can be seen that the foregoing first and second encoding methods are superior to the third and fourth encoding modes.
- the information frame finally constructed by the information frame construction module 13 has a destination address field, specifically an editable bit field in the domain, and will include one of the above.
- the first part of the coding unit which may be all or part of the code string of the code string, or all or part of the index string of the index string.
- the frame length of the information frame is adjusted to the frame length of the reference frame by adjusting the length of the frame body field. a difference within a specific range, the binary format of the difference includes the remaining portion of the coding unit that is not encoded into the destination address field, and the type of the content and the polyvis-view destination address field are expressed.
- either the subcode string of the remainder of the code string or the entire code string may be the index string or all of the remaining index strings.
- the code string and the index string included in the same coding unit may be separately expressed in the destination address field editable bit region of the same information frame and the frame length difference between the information frame and the reference frame, as needed. , complete the construction of the information frame.
- the signal transmission module 14 is configured to transmit the reference frame and the information frame.
- the entire encoding operation of the information to be transmitted is completed, thereby calling the corresponding interface through the signal transmission module 14 and using the WiFi communication component based on the 802.11 protocol.
- the reference frame and the information frame are radiated to the air in a wireless manner and transmitted to the receiving end. It should be noted that since the upper layer protocol works in UDP, the reference frame and the information frame are sent in UDP data packets. Since the UDP protocol is an unreliable protocol, the signal transmission module 14 transmits the reference.
- the reference frame and the information frame are sequentially transmitted according to an index sequence characterized by an index string (the reference frame is regarded as coded as 0 first) to ensure The receiving end successfully receives all multicast data frames.
- the order of transmission of the reference frame and the information frame in the same cycle may also be out of order, and does not affect the implementation effect of the present invention.
- the number of cyclic transmissions during transmission should not be limited to a specific number, and may be, for example, multiple transmissions of other data such as 5 times, 20 times, and the like.
- the intelligent control terminal completed according to the foregoing process has a simple coding process and strong information expression capability, and can realize information transmission without relying on establishing a stable connection between the smart devices.
- the present invention provides a controlled smart device, such as a smart camera, a driving recorder, a smart watch, etc., such devices generally need to rely on the aforementioned information to be transmitted. Complete your own configuration to access the external network. In order to receive the aforementioned information, it is necessary to have such a device have the basis for decoding the multicast data frame constructed by the aforementioned encoding process to achieve the next operation.
- a controlled smart device such as a smart camera, a driving recorder, a smart watch, etc.
- the smart device further provided by the present invention includes a receiving module 21, an extracting module 22, a constructing module 23, and a restoring module 24.
- the functions implemented by each module are detailed below.
- the receiving module 21 is configured to receive a reference frame and an information frame implemented according to a multicast data frame format.
- the smart device receives the UDP data packet in the air through the 802.11-compliant WiFi communication module, obtains the corresponding multicast data frame through the receiving module 21, and then decodes the data packet to obtain the multicast data frame. information.
- the receiving module 21 of the smart device refers to the foregoing decoding process, and performs the corresponding function according to the following specific steps to obtain the reference frame and the information frame:
- Receive a multicast data frame obtain a UDP data packet of airborne wireless radiation through a WiFi communication module, thereby obtaining a multicast data frame therein, and identifying a type of the multicast data frame.
- S212. Determine whether the multicast data frame is the reference frame.
- the editable bit area of the destination address field of the multicast data frame conforms to the specification of the protocol. For example, in the previous method The 23 bits defined are all 0s or all ones.
- the frame length of the multicast data frame can be checked. Since the frame length of the multicast data frame is uniquely determined by the length of the frame body domain, the length of the frame body domain can also be checked to determine whether the data specified by the protocol is met. If one or all of these conditions meet the specifications of the custom protocol, the multicast data frame is determined to be a reference frame; otherwise, the packet may be temporarily dropped.
- the current sub-step determines that the multicast data frame is a reference frame
- the remaining part of the series of received multicast data frames is included in the information frame, so that the remaining multicast data frames can be started to be received, that is, Is the information frame described.
- the sender sends the reference frame and the information frame in multiple rounds
- this sub-step after the reference frame is determined, all the other multicast data frames can be received, and the repeated packet loss processing can be performed, and finally the reference frame is obtained. And its non-repeating information frame can be.
- the index string since the index string has 6 bits, the sum of the reference frame and the information frame should be 64, depending on the number of bits of the index string.
- the frame length of the information frame is obviously larger or smaller than the frame length of the reference frame (as specified by a custom protocol), that is, the frame length of the reference frame is smaller or larger than the frame length
- the frame length of the reference frame is smaller or larger than the frame length
- this feature can also be used to verify whether the multicast data frame is an information frame that conforms to the custom protocol specification.
- the extracting module 22 is configured to extract, from the information frame, a first part of the content of the coding unit expressed by the destination address field, and determine a rest of the coding unit by using a frame length difference between the information frame and the reference frame Part of the content, the complete coding unit is obtained.
- the essential function of the extraction module 22 is to perform partial decoding, the purpose of which is to acquire relatively independent coding units in each information frame.
- the extracting module 22 performs decoding as follows:
- the binary difference (3 bits) between the information frame and the frame length of the reference frame (or the length of the respective frame body field), that is, the second subcode string, the first subcode string and the second subcode string are serialized
- the code strings are constructed, and the index strings are used in the order in which they are characterized to determine the order in which the code strings are assembled.
- the obtained code string and index string constitute the coding unit loaded into the information frame.
- the entire code string (lower 20 bits) and the first sub-index string of the index string (the first three bits of the editable bit area) are extracted from the editable bit area of the destination address field of the information frame, that is, the lower 23 bits thereof. Determining a second sub-index string of the index string by using a binary difference (3 bits) between the information frame and the frame length of the reference frame (or the length of the respective frame body domain), and the first sub-index string and the second The sub-index string is spliced to obtain the entire index string, and the index string and the code string constitute the coding unit expressed by the information frame.
- the editable bit area of the destination address field in the information frame is directly extracted, that is, the index string is obtained, and the information frame and the frame length of the reference frame are obtained.
- the binary difference (3 bits or more) between the respective frame body domain lengths is directly determined as a code string, and the index string and the code string constitute corresponding coding units.
- the protocol mechanism corresponding to the encoding process is not taken off.
- the principle of execution is to extract the first part of the coding unit expressed by the destination address field from the information frame, and determine the coding by the frame length difference (binary format of the limited length) of the information frame and the reference frame. The rest of the unit is content to obtain the complete coding unit.
- the constructing module 23 is configured to splicing the code strings included in each coding unit in the order represented by the index strings that each of the obtained coding units to form a coding sequence.
- this index string indicates the sorting position of the code string possessed by each coding unit when the coded sequence is split.
- the restoration module 24 is configured to restore the coding sequence to information.
- the code sequence is a sequence obtained by converting the ciphertext formed by encrypting the information
- the code sequence needs to be first restored to the ciphertext, and the ciphertext is decrypted by using the pre-stored key.
- the transmitted information As for the type of the key, depending on whether the encryption technology is public key encryption or symmetric encryption, for the former, the pre-stored private key corresponding to the public key at the time of encoding is used for decryption, and for the latter, the key at the time of encoding is used. The same pre-stored key is decrypted. Of course, if the encoded sequence is converted from non-encrypted information, then this process does not have to be performed.
- the information is generally combined in a certain format and converted into a code sequence when encoding, for example, the content formed after the ASCII code conversion is assumed to be as follows:
- the SSID and PSW characters are the type identifiers of the information elements
- MYWiFi and PLZLOGIN are the specific contents of the information elements
- the attribute separator is the colon ":" for separating the type identifier and the specific content, the element separator "
- the implementation of the foregoing receiving module 21 and the extracting module 22 is not limited to completing all tasks in the order. Only after the execution, the two modules can be executed before and after the unit for each received information frame. Therefore, the execution of the two modules can have a certain parallel relationship, that is, for each information frame, it is assigned to the receiving module.
- the extraction module 22 performs the extraction module 22 for all information frames after the execution of the receiving module 21 for all of the information frames.
- the smart device of the present invention corresponding to the intelligent control terminal, can realize the extraction of the information loaded by the multicast data frame by a simple process, and does not have to rely on the establishment of a stable connection between the receiver and the receiver. .
- an intelligent control terminal that implements the method for transmitting multicast information to be transmitted according to the present invention, and an intelligent device that provides a method for extracting multicast data frame information of the present invention are provided, and an intelligent control terminal is provided.
- the smart device does not access a specific WiFi access point and does not establish a stable direct connection with AD-Hoc or WiFi Direct
- the user can select or input to allow the smart device to access by operating the intelligent control terminal.
- Information such as the SSID of the WiFi access point and its password, determine the transmission, and then the intelligent control terminal uses the scheme implemented by the present invention to encode the information into the multicast data frame, and utilizes the WiFi communication mode of the intelligent control terminal.
- the group transmits the corresponding wireless signal to the air; on the smart device side, the smart device receives the wireless signal by using the WiFi communication module, and uses the scheme of the invention to identify the multicast data frame from the wireless signal, determine the reference frame and the information frame, and utilize The reference frame and the information frame decode the transmitted information, and finally obtain the corresponding SSID and password from the information.
- Location information use this information to configure its network configuration setting, the access start working specified SSID WiFi access points, and finally to their access to the WiFi access point.
- the present invention utilizes a multicast data frame for information transmission, and does not need to rely on the two sides of the transmission to establish a connection first, simplifying the communication process, and making the communication effect between devices fast and efficient.
- the various component embodiments of the present invention may be implemented in hardware, or in a software module running on one or more processors, or in a combination thereof. It should be understood by those skilled in the art that a microprocessor or digital signal processor (DSP) can be used in practice to implement a method and apparatus for transmitting information to be propagated or a method for extracting multicast data frame information according to an embodiment of the present invention. Some or all of the functionality of some or all of the components.
- the invention can also be implemented as a device or device program (e.g., a computer program and a computer program product) for performing some or all of the methods described herein. Such a program implementing the invention may be stored on a computer readable medium or may be in the form of one or more signals. Such signals may be downloaded from an Internet website, provided on a carrier signal, or provided in any other form.
- FIG. 7 shows a computing device that can implement the information to be propagated information multicast transmission method or the multicast data frame information extraction method according to the present invention.
- the computing device conventionally includes a processor 710 and a computer program product or computer readable medium in the form of a memory 720.
- Memory 720 can be an electronic memory such as a flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM.
- Memory 720 has a memory space 730 for program code 731 for performing any of the method steps described above.
- storage space 730 for program code may include various program code 731 for implementing various steps in the above methods, respectively.
- the program code can be read from or written to one or more computer program products.
- These computer program products include such as hard disk, compact disk A program code carrier such as a (CD), a memory card, or a floppy disk.
- a computer program product is typically a portable or fixed storage unit as described with reference to FIG.
- the storage unit may have storage segments, storage spaces, and the like that are similarly arranged to memory 720 in the computing device of FIG.
- the program code can be compressed, for example, in an appropriate form.
- the storage unit includes computer readable code 731', ie, code readable by a processor, such as 710, that when executed by a computing device causes the computing device to perform each of the methods described above step.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
一种待传输信息组播传输方法,其包括如下步骤:将待传输信息的编码序列分离成多个码串,定义每个码串与为其分配的表征索引顺序的相应索引串为编码单元;基于组播数据帧格式构造参考帧;基于组播数据帧格式构造信息帧,使其目的地址域包含所述编码单元的第一部分内容,使其帧长度与所述参考帧的帧长度的差值包含所述编码单元的其余部分内容;传输所述参考帧及信息帧。本发明还依照与该方法相逆原理公开一种组播数据帧信息提取方法。此外,还对应上述两组方法公开了相应的智能控制终端及智能设备的实现方案。本发明利用组播数据帧进行信息传输,无需依赖传输双方先行建立连接,简化通信过程,使设备间通信效果快捷而高效。
Description
本申请要求在2015年07月01日提交中国专利局、申请号为201510378923.5、发明名称为“组播传输方法、信息提取方法及相应的终端和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及信息编码技术,具体涉及一种智能控制终端及其所采用的待传输信息组播传输方法,还涉及一种智能设备及其所采用的组播数据帧信息提取方法。
物联网的发展,使得各种通信接入技术出现了越来越多的交叉。早期基于WiFi而实现的Ad-Hoc(点对点)技术,实现了WiFi(WIreless FIdelity,无线连接)设备之间的点对点的连接,但由于这一技术只能实现单点对单点的通信,而且不具有安全防范技术等,因此虽然便于连接但却很快被WiFi Direct(直连)技术所弱化甚至代替。WiFi直连技术,可以使得任意一台经过WiFi直连认证的设备,既可工作于AP(AccessPoint,接入点)模式,又可工作于STA(Station,工作站)模式,其以小组为单元实现两台或多台WiFi设备之间的互连互通,其中有且只有一部WiFi设备用作管理中心,对小组内其余的工作站的连接进行集中管理。WiFi直连技术还可以兼容WiFi协议中的各种加密方式,因此更为安全,而且由于其具有服务发现和基础设备发现等功能,使用便利,接入可靠,相对于其它技术更受欢迎,目前正广泛应用中。借助这些技术,可实现多台设备之间的互联,而无需依赖于路由器之类的中间设备。
促进物联网技术发展的较为基础和经典的一个应用场景是,利用WiFi Direct技术用于从一台已经接入互联网或者局域网的智能控制终端例如手机,向另一台与本设备具有共通协议的智能设备传输当前自身已接入的目标网络的登录配置信息,然后,接收该配置信息的智能设备便根据该配置信息而登录目标网络,实现自身的联网接入。由于与物联网相关的设备多具有轻便可移动无高效人机交互功能等特点,多采用WiFi接入方式,因此这里所称的目标网络,一般指WiFi接入点,也即WiFi AP所构建的局域网(当然也包括以此为基础扩展的更复杂的WiFi网络)。因此,所谓的配置信息,一般也是登录相关AP的身份识别和验证信息,包括但不限于AP的服务集标识(Service Set Identifier,SSID)、密码等。智能设备基于WiFi Direct技术接收配置信息实现自身的接入目标网络之后,便可正常工作。
但是,目前的WiFi Direct技术,只能在智能控制终端与智能设备之间建立了直连之后,才能将所述的配置信息从智能控制终端传输到智能设备,所以基于这一技术实现的直连方案,受限于完成直连的速度,如果直连过程中由于丢包之类的意外发生,往往会导致无法建立有效的连接,从而不能达到将所述的配置信息从智能控制终端传输给智能设备的目的。
有鉴于上述的技术沿革过程,有必要对智能设备的数据传输技术进一步开发,通过技术积累
来推动物联网的进一步发展。
发明内容
本发明的第一目的旨在解决上述至少一个问题,提供一种智能控制终端及其所采用的待传输信息组播传输方法,以便借助组播数据帧实现免连接传输数据。
本发明的第二目的在于解决上述至少一个问题,提供一种智能设备及其所采用的组播数据帧信息提取方法,以便呼应前一目的获得所述的待传输信息。
为了实现本发明的第一目的,本发明采取如下技术方案:
本发明提供的一种待传输信息组播传输方法,包括如下步骤:
将待传输信息的编码序列分离成多个码串,定义每个码串与为其分配的表征索引顺序的相应索引串为编码单元;
基于组播数据帧格式构造参考帧;
基于组播数据帧格式构造信息帧,使其目的地址域包含所述编码单元的第一部分内容,使其帧长度与所述参考帧的帧长度的差值包含所述编码单元的其余部分内容;
传输所述参考帧及信息帧。
本发明提供的一种智能控制终端,其包括:
编码拆分模块,用于将待传输信息的编码序列分离成多个码串,定义每个码串与为其分配的表征索引顺序的相应索引串为编码单元;
参考帧构造模块,被配置为基于组播数据帧格式构造参考帧;
信息帧构造模块,被配置为基于组播数据帧格式构造信息帧,使其目的地址域包含所述编码单元的第一部分内容,使其帧长度与所述参考帧的帧长度的差值包含所述编码单元的其余部分内容;
信号传输模块,用于传输所述参考帧及信息帧。
为适应本发明的第二目的,本发明采取如下技术方案:
本发明提供的一种组播数据帧信息提取方法,包括如下步骤:
接收基于组播数据帧格式实现的参考帧与信息帧;
从所述信息帧中提取其目的地址域所表达的编码单元的第一部分内容,以信息帧与所述参考帧的帧长度差值确定该编码单元的其余部分内容,获得完整的所述编码单元;
将获得的所有编码单元按其各自所具有的索引串所表征的顺序拼接各编码单元所含码串以构成编码序列;
将该编码序列还原为信息。
本发明提供的一种智能设备,其包括:
接收模块,用于接收基于组播数据帧格式实现的参考帧与信息帧;
提取模块,被配置为从所述信息帧中提取其目的地址域所表达的编码单元的第一部分内容,
以信息帧与所述参考帧的帧长度差值确定该编码单元的其余部分内容,获得完整的所述编码单元;
构造模块,用于将获得的所有编码单元按其各自所具有的索引串所表征的顺序拼接各编码单元所含码串以构成编码序列;
还原模块,用于将该编码序列还原为信息。
根据本发明的又一个方面,提供了一种计算机程序,其包括计算机可读代码,当所述计算机可读代码在计算设备上运行时,导致所述计算设备执行所述的待传播信息组播传输方法或所述的组播数据帧信息提取方法。
根据本发明的再一个方面,提供了一种计算机可读介质,其中存储了所述的计算机程序。
与现有技术相比较,本发明的方案具有以下优点:
1、本发明以组播数据帧为基本素材,利用其中的目的地址域和不同帧之间的帧长度差值为载体,将待传输信息对应的编码序列加工成含有索引顺序的多个编码单元后,将各个编码单元加载到利用组播数据帧实现的多个信息帧的目的地址域及每个信息帧与参考帧的帧长度差值中,实现了利用组播数据帧加载待传输信息并进行组播的技术条件,由于组播数据帧的传输不必依赖于智能控制终端(传输端)和智能设备(接收端)之间建立直连,也无需接入同一路由设备,所以,传输端便可以以组播数据帧为载体向空中辐射无线信号,以向接收端传输数据。对应的,在接收端收到相应的参考帧与信息帧之后,利用逆向原理,以参考帧为参照,从多个相关信息帧的目的地址域及该些信息帧与参考帧之间的帧长度差值中提取待传输信息的多个编码单元,每个信息帧可以提取出一个编码单元,将多个编码单元按照其所含索引顺序进行组装,还原成所述的编码序列,再将编码序列还原成相应的所述的待传输信息,即可完成接收端对所述待传输信息的接收。
2、基于组播数据帧的特性,智能控制终端可以对组播数据帧的目的地址域进行局域控制,还可以对帧本体域的长度进行扩展,本发明巧妙地利用了组播数据帧结构的这种特性,在利用组播数据帧进行数据传输时,不仅利用了其目的地址域,而且利用了其帧本体域长度与参考帧的帧本体域之间的长度之间差值,扩展了每个组播数据帧所能表达的内容的长度,因此组播数据帧的信息表达能力便被大大增强。
本发明附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本发明的实践了解到。
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本发明所采用的组播地址的结构示意图;
图2为本发明所采用的组播地址与IP地址之间映射关系示意图;
图3为本发明的待传输信息组播传输方法的原理示意图;
图4为本发明的组播数据帧信息提取方法的原理示意图;
图5为本发明的智能控制终端的结构示意图;
图6为本发明的智能设备的结构示意图;
图7示意性地示出了用于执行根据本发明的方法的计算设备的框图;以及
图8示意性地示出了用于保持或者携带实现根据本发明的方法的程序代码的存储单元。
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本发明的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。应该理解,当我们称元件被“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或无线耦接。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的全部或任一单元和全部组合。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样被特定定义,否则不会用理想化或过于正式的含义来解释。
本技术领域技术人员可以理解,这里所使用的“终端”、“终端设备”、“智能设备”、“智能控制终端”既包括无线信号接收器的设备,其仅具备无发射能力的无线信号接收器的设备,又包括接收和发射硬件的设备,其具有能够在双向通信链路上,执行双向通信的接收和发射硬件的设备。这种设备可以包括:蜂窝或其他通信设备,其具有单线路显示器或多线路显示器或没有多线路显示器的蜂窝或其他通信设备;PCS(Personal Communications Service,个人通信系统),其可以组合语音、数据处理、传真和/或数据通信能力;PDA(Personal Digital Assistant,个人数字助理),其可以包括射频接收器、寻呼机、互联网/内联网访问、网络浏览器、记事本、日历和/或GPS(Global Positioning System,全球定位系统)接收器;常规膝上型和/或掌上型计算机或其他设备,其具有和/或包括射频接收器的常规膝上型和/或掌上型计算机或其他设备。这里所使用的各种“终端”可以是便携式、可运输、安装在交通工具(航空、海运和/或陆地)中的,或者适合于和/或配置为在本地运行,和/或以分布形式,运行在地球和/或空间的任何其他位置运行。这里所使用的各种“终端”还可以是通信终端、上网终端、音乐/视频播放终端,例如可以是PDA、MID(Mobile Intemet Device,移动互联网设备)和/或具有音乐/视频播放功能的移动电话,也可以是智能电视、机顶盒、智能摄像头、智能遥控器、智能插座等设备。
本发明中,以组播数据帧为技术实现载体,对编码和解码两方面的技术进行详细揭示,使本领域技术人员依照本说明书即可免经创造性思维实现之。为便于本领域技术人员的理解,本发明
提供两种相对应的方法,其一是一种待传输信息组播传输方法,在该方法中通过编码实现对待传输信息的加载和发送,而通过一种组播数据帧信息提取方法进行解码以提取被传输过来的信息。以这样的系统实现信息从编码到发送到接收以至于解码还原的全过程。
由于本发明的方法涉及对组播数据帧的利用,接受802.11协议的规范,因此,有必要先行了解802.11协议所规范的物理帧(MAC帧)的基础知识。
表1:802.11协议族MAC帧结构(首行单位为Bytes字节):
以下针对表1涉及的各个域做相应的说明:
Frame Control,帧控制域;
Duration/ID,持续时间/标识,表明该帧和它的确认帧将会占用信道多长时间;对于帧控制域子类型为:Power Save-Poll的帧,该域表示了STA的连接身份(AID,Association Indentification)
Address Fields(1-4):为地址域,包括4个地址(源地址、目的地址、发送方地址和接收方地址),取决于帧控制字段中的To DS和From DS位。
Seq Ctrl,即Sequence Control-为序列控制域,用于过滤重复帧。
Frame Body:帧本体域,或称数据域,用于表示发送或接收的信息。
Check Sum:校验域,包括32位的循环冗余校验(CRC)。
表2:帧控制(Frame Control)结构(首行单位为比特(位)):
2 | 2 | 4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Version | Type | Subtype | To DS | From DS | MF | Retry | Pwr | More | W | O |
以下针对表2涉及的各个字段做相应的说明:
Protocol Version-表示IEEE 802.11标准的版本。
Type-表示帧类型:包括管理、控制和数据等类。
Subtype-表示帧的子类型,如:认证帧(Authentication Frame)、解除认证帧(Deauthentication Frame)、连接请求帧(Association Request Frame),连接响应帧(Association Response Frame)、重新连接请求帧(Reassociation Request Frame)、重新连接响应帧(Reassociation Response Frame)解除连接帧(Disassociation Frame)、信标帧(Beacon Frame)、Probe帧(Probe Frame)、Probe请求帧(Probe Request Frame)或Probe响应帧(Probe Response Frame)。
To DS-当帧发送给Distribution System(DS)时,该值设置为1。
From DS-当帧从Distribution System(DS)处接收到时,该值设置为1。
MF-More Fragment表示当有更多分段属于相同帧时该值设置为1。
Retry-表示该分段是先前传输分段的重发帧。
Pwr-Power Management,表示传输帧以后,站所采用的电源管理模式。
More-More Data,表示有很多帧缓存到站中。
W-WEP,表示根据WEP(Wired Equivalent Privacy)算法对帧主体进行加密。
O-Order 1表示接受者应该严格按照顺序处理该帧。
根据表2的说明可知,通过From DS与To DS字段可以确定组播数据帧的目的地址域所在位置。参阅表3:
表3:地址字段在数据帧中的用法:
功能 | To DS | From DS | Address1(接收端) | Address2(发送端) | Address3 | Address4 |
IBSS | 0 | 0 | DA | SA | BSSID | 未使用 |
To AP(基础结构型) | 1 | 0 | BSSID | SA | DA | 未使用 |
From AP(基础结构型) | 0 | 1 | DA | BSSID | SA | 未使用 |
WDS(无线分布式系统) | 1 | 1 | RA | TA | DA | SA |
本领域技术人员应当知晓,IP地址空间被划分为A、B、C三类。第四类即D类地址被保留用做组播地址。在第四版的IP协议(IPv4)中,从224.0.0.0到239.255.255.255间的所有IP地址都属于D类地址。
组播地址中最重要的是第24位到27位间的这四位,对应到十进制是224到239,其它28位保留用做组播的组标识,如图1所示。
IPv4的组播地址在网络层要转换成网络物理地址。对一个单播的网络地址,通过ARP协议可以获取与IP地址对应的物理地址。但在组播方式下ARP协议无法完成类似功能,必须得用其它的方法获取物理地址。在下面列出的RFC文档中提出了完成这个转换过程的方法:
RFC 1112:Multicast IPv4to Ethernet physical address correspondence
RFC 1390:Correspondence to FDDI
RFC 1469:Correspondence to Token-Ring networks
在最大的以太网地址范围内,转换过程是这样的:将以太网地址的前24位最固定为01:00:5E,这几位是重要的标志位。紧接着的一位固定为0,其它23位用IPv4组播地址中的低23位来填充。该转换过程如图2所示。例如,组播地址为224.0.0.5其以太网物理地址为01:00:5E:00:00:05。可以看出,这里的目的地址域的低23位(也可更少)便可以作为可编辑比特区,供加载信息。
此外,帧本体域,即Frame Body,这部分内容的长度可变,其具体存储的内容由帧类型(type)和子类型(sub type)决定。
在终端设备未连接WiFi接入点的时候,WiFi芯片是可以侦测到空间中的射频信号并识别MAC帧的,但是此时设备因为经过接入点的认证未有密钥,所以无法进一步解析帧结构中帧本体域的数据,但由于帧本体域的帧长度可知,从而整个组播数据帧的帧长度也可知,因此,这一
特性并不影响对组播数据帧的帧长度的利用。故而,本发明通过利用这些字段,使得在智能设备即使不联网的情况下也能接收到智能控制终端以组播方式发送的信息。实际上,根据802.11协议的规范也可知,对于一个组播数据帧而言,其整个帧的长度唯一性地关联并决定于其中的帧本体域的长度。
根据上述揭示的知识可以看出,对于组播数据帧而言,其帧结构中的目的地址域及其帧本体长度变化均可用于加载待传输信息。上述揭示的知识是了解本发明的实现的基础,以下将以上述知识为基础,展开对本发明的方法的揭示。
本发明提供的一种待传输信息组播传输方法,通常是作为主动发起方,或者作为中央控制方的视角来加以描述的,可以通过编程将本方法实现为计算机程序安装在类似手机、平板电脑或者具有智能化的智能控制终端中运行,例如,在运行Android、IOS、Windows Phone系统的手机或与平板电脑中安装利用该传输方法实现的APP(应用程序),由该应用程序执行该传输方法。
请参阅图3,本发明的待传输信息组播传输方法的一个典型实施例中,该方法具体包括如下步骤:
步骤S11、将待传输信息的编码序列分离成多个码串,定义每个码串与为其分配的表征索引顺序的相应索引串为编码单元。
所述的待传输信息,在一个应用场景中,可以是包含用于提供WiFi接入点的服务集标识(SSID)及其密码的信息,或者其他诸如验证信息之类的数据量不大的信息。
待传输信息在编码前,被解析为机器二进制码构成的编码序列。为了使待传输信息更加安全,先对待传输信息进行加密,形成密文之后再转换为所述的编码序列。加密的方式既可以是公钥加密,也可以是对称密钥加密,只要接收端利用相对应的密钥(如公钥加密中的私钥或对称加密中的同一密钥)能够解密即可。无论是加密或是公开的状态,待传输信息被解析为二进制码后,便可对其进行编码,使其适于分配到各个组播数据帧中。
首先,将待传输信息的编码序列分离成若干个码串,每个码串构成相对独立而无信息意义的一部分,以同一长度加以表达,例如占据20个比特。然后,为每一个码串分配一个索引串,这个码串同理也用二进制表达,占据例如6个比特,6个比特的格式下,便可用于表达26组码串。继而,为每个所述的码串组合一个所述的索引串,按照索引串的数值大小,可以对所述的码串的固有顺序进行表达,即编码序列分离出的码串按其串接顺序而匹配相应大小的索引串,使该索引串可以用于表达与其相对应的码串的索引顺序即可。由此而完成整个编码序列的分拆和排序。其中,为说明的便利,将每个索引串及与其组合的码串定义为一个编码单元,则待传输信息便被分离为多个编码单元,每个编码单元相对独立,但相互之间是有序的。需要注意的是,编码单元本身是一个组合概念,而非一个顺序固定的概念。为了实现对组播数据帧的利用,编码单元的总长度是确定的共26比特,所述索引串占据其中的第一长度共6个比特,而剩余的第二长度20比特则为相应的码串所占据,编码单元的总长度恰好为第一长度与第二长度之和。显然,所有的编码单元都具有相同的总长度。
所述待传输信息被分离成多个编码单元之后,便可基于组播数据帧进行后续编码。
步骤S12、基于组播数据帧格式构造参考帧。
所述参考帧的构造较为灵活,可以在组播数据帧的基础上,依照前述有关组播数据帧的结构的揭示,将其目的地址域中的可编辑比特区,即其低23位比特全部置为0或者1,或者其它特定的比特序列也可,并且确定其帧本体的长度为基准长度。在这个基础上,只要参考帧接收方能够遵守本发明的规范,便可依据此处对参考帧的编码原理识别该参考帧,并且能够确定该帧本体域的长度,将该长度确定为基本长度。作为等同替换手段,由于帧本体域的长度决定了整个参考帧的长度,因此,也可直接以参考帧的总长度为基准长度。该基准长度小于后续信息帧的帧长度,以便借助这种帧长度之间的差值来确定信息编码。同理,作为等同替换手段,也可使参考帧的帧长度大于后续信息帧的帧长度。
步骤S13、基于组播数据帧格式构造信息帧,使其目的地址域包含所述编码单元的第一部分内容,使其帧长度与所述参考帧的帧长度的差值包含所述编码单元的其余部分内容。
由于本发明涉及到对信息帧与参考帧的帧长度差值的利用,因此,可以规范该差值的变化范围,使该变化范围特定,使信息帧与参考帧之间帧长度差值维持在一个特定范围之内,暂以最大值8为实施例。在计算机中,可以用3位二进制000-111来表示各种不同差值,当其与前述目的地址域的低23位结合时,便能构成26位的表达能力,其中6位索引串能表达64组数据,每帧中的其余20位则可表达2.5Bytes的数据量,一次编码便可满足160Bytes信息量的表述能力。
同理,所述信息帧也是以组播数据帧为基础进行构造的。构造所述的信息帧的过程,便是将每个编码单元分别对应编码到一个信息帧的过程。以下概述每个编码单元与信息帧结构之间编码关系的几种方式。
第一种编码方式:
将编码单元所包括的码串分拆为两部分,即第一子码串和第二子码串,设第一子码串为17位,第二子码串刚好占据所述差值的全3位。而每个码串的第一子码串前面串接该编码单元中的索引串,因此,索引串与所述第一子码串的拼接体便为23个字节,刚好等于组播数据帧提供的23位的可编辑比特区,表达在其中。而第二子码串,假设为010,代表十进制数值2,则可以通过确定信息帧的帧本体域的长度,使信息帧的帧长度大于(其他实施例中也可以是小于)参考帧的帧长度(基准长度)2Bytes而实现编码表达。后续接收方利用信息帧的帧长度减去参考帧的帐长度之后,便可获得010这一第二子码串。
第二种编码方式:
本编码方式与前一种编码方式的不同之处仅在于,被分拆的对象是编码单元中的索引串而非其码串,由于在上述提供的实例的数据中,码串总长20位,可以将其完全表达于组播数据帧的可编辑比特区中,因此,这种情况下可编辑比特区只能供表达索引串中的3位,即第一子索引串,而索引串的剩余3位即第二子索引串只能被参照前述第一种编码方式表达于其所述的信息帧与所述的参考帧的帧长度差值中。
前述两种方式的示例中,6位索引串与20位码串的长度与目的地址域低23位及帧长度差值
3位之间的这种搭配关系是优选的方案,既能够尽可能地加强组播数据帧表达信息的能力,又能够降低因传输过程中UDP数据包丢包而导致的信息传输不成功的风险。
第三种编码方式:
这种编码方式,简单将编码单元中的码串直接表达于其所属信息帧的目的地址域中,例如占据目的地址域的低20位,而将索引串表达于其所属信息帧与所述的参考帧的帧长度差值中。如果索引串的长度维持为前例的6位,则信息帧与参考帧的帧长度的差值范围应维持为相应6位二进制码所能表达的最大值的范围。如果降低索引串的位数至3位,即使延长码串长度至23位使其占据目的地址域的整个可编辑区,由于索引串的只能表达8组数据,因此其信息表达能力也是弱于前例的。
第四种编码方式:
与第三种编码方式同理,可以简单将编码单元中的索引串表达于其所属信息帧的目的地址域中,例如占据目的地址域的低23位,而将码串全部表达于所属信息帧与所述的参考帧的帧长度值中,如果码串的长度维持为前例的20位,则同理信息帧与参考帧的帧长度的差值范围应维持为相应20位二进制码所能表达的最大值的范围。如果降低码串的位数至如前例所述的3位,则单个码串表达的信息量较为有限,而索引串为23位,这样就需要构造多个组播数据帧来传输同一个信息,由此可见,前述第一和第二种编码方式优于第三和第四种编码方式。
通过以上四种编码方式的揭示,可以知晓,无论如何,最终构造而成的信息帧,其目的地址域,具体是指该域中的可编辑比特区,将包含一个所述的编码单元的第一部分内容,这部分内容可以是码串的全部或其一部分子码串,也可以是索引串的全部或其一部分子索引串。而该信息帧的帧长度,通过对其帧本体域长度的调整,使其与所述参考帧的帧长度存在一个特定范围内的差值,这个差值的二进制格式便包含了所述编码单元中未被编码到所述目的地址域中的剩余部分内容,这部分内容的种类和多寡视目的地址域所表达的种类和多寡而定,既可以是码串的剩余部分的子码串,也可以是全部码串,可以是索引串的全部或其剩余部分索引串。总之,同一编码单元所包含的码串与索引串可以视具体需要而被分离地表达于同一信息帧的目的地址域可编辑比特区及该信息帧与所述参考帧的帧长度差值之中,完成该信息帧的构造。
步骤S14、传输所述参考帧及信息帧。
完成了所述参考帧及信息帧的构造,便完成了所述待传输信息的全部编码工作,由此,调用相应接口,利用基于802.11协议的WiFi通信组件,便可将所述的参考帧及信息帧以无线的方式向空中辐射,传输给接收端。需要指出的是,由于上层协议是以UDP工作的,所以,所述参考帧及信息帧是以UDP数据包发送的,由于UDP协议是不可靠协议,因而,本方法在传输所述参考帧及信息帧时,设定例如10次循环,每个循环中,将所述参考帧及信息帧依照索引串表征的索引顺序依次发送(参考帧视为编码为0排序第一),以便确保接收端顺利接收全部组播数据帧。尽管如此,参考帧与信息帧在同一次循环的发送顺序也可以是乱序的,并不影响本发明的实施效果。应当注意,传输时循环发送的次数也不应局限于特定数字,可以是例如5次、20次等其他数据的多轮发送。
可以看出,按照前述过程完成的待传输信息组播传输方法,其编码过程简单,信息表达能力强,无需依赖于智能设备之间建立稳定连接而可实现信息的传输。
对应的,在与前述智能控制终端对应的另一端,通常是受控的智能设备,例如智能摄像头、行车记录仪、智能手表等等,这类设备一般需要依赖于前述的待传输信息完成自身的配置以便接入外部网络。为了接收前述的信息,便需要使此类设备具备解码前述编码过程构造出的组播数据帧来达成下一步的操作的基础。
为此,请参阅图4,本发明进一步为智能设备一侧公开一种组播数据帧信息提取方法,该方法包括如下步骤:
步骤S21、接收基于组播数据帧格式实现的参考帧与信息帧。
智能设备通过其由802.11规范的WiFi通信模组接收所述空中的UDP数据包,获得相应的组播数据帧,然后对其进行解码,便可获得组播数据帧中加载的信息。
由于参考帧与信息帧是以一定的编码原理实现的,因此,解码时,自然也要遵守与编码时相对应的原理,因此而言,本发明的解码方与编码方,均需遵守由本发明规范的同一套自定协议。有鉴于此,本方法参照前述的方法,按照如下具体步骤获得所述的参考帧和信息帧:
S211、接收组播数据帧:通过WiFi通信模组获得空中无线辐射的UDP数据包,便可获得其中的组播数据帧,并可对组播数据帧的类型进行识别。
S212、判断该组播数据帧是否为所述的参考帧。判断时,主要依据本方法所遵守的自定协议,查看所述组播数据帧的目的地址域的可编辑比特区中,是否符合该协议的规范。例如前一方法中所定义的23个比特位为全0或全1。进一步还可以检查该组播数据帧的帧长度,由于组播数据帧的帧长度唯一性地决定于其帧本体域的长度,所以也可以检查其帧本体域的长度,是否满足协议规定的数据,如果这些条件之一或全部满足自定协议的规范,则该组播数据帧便被判定为参考帧,否则,则可暂时丢包。
S213、当前一子步骤判定该组播数据帧为参考帧时,表征当前接收的系列组播数据帧的其余部分包含了信息帧,由此,便可开始接收其余的组播数据帧,也即是所述的信息帧。由于发送方是多轮发送所述的参考帧和信息帧的,因而,本子步骤中,当确定参考帧之后,其余组播数据帧可以全部接收,而重复的可以丢包处理,最终获得参考帧及其不重复的信息帧即可。理论上,以前述一个实施例来论,由于索引串有6位,参考帧与信息帧的总和应为64个,具体视索引串的位数而定。作为进一步的检验条件,可以按所述照索引串所表达的数据组数及其表征顺序,来校验是否已经接收了所有不重复的信息帧和参考帧,余者皆丢包处理。进一步,还可以通过检验信息帧的帧长度与所述的参考帧的帧长度的差值是否超出一个预协议的特定范围,而确定该信息帧是否为加载了本发明所限定的待传输信息的信息帧,由此在本子步骤实施一个实质上的帧校验过程。此外,对应于前一方法提供的若干变化实例,由于信息帧的帧长度显然大于或小于所述参考帧的帧长度(由自定协议所规范),即参考帧的帧长度小于或大于所述参考帧的帧长度,因此也可以这一特性来检验组播数据帧是否为符合自定协议规范的信息帧。
由此可见,通过上述子步骤,便可接收由发送方传输的全部参考帧和信息帧。
步骤S22、从所述信息帧中提取其目的地址域所表达的编码单元的第一部分内容,以信息帧与所述参考帧的帧长度差值确定该编码单元的其余部分内容,获得完整的所述编码单元。
本步骤的实质在于执行部分解码的过程,其目的在于获取每个信息帧中的相对独立的所述编码单元。
作为接收方,需要遵守发送方的编码原理,因此,对应前一方法所列的四种编码方式为例,对于所接收的所述信息帧,将按照如下的方式进行解码:
对应的第一种解码方式:
从信息帧的目的地址域的可编辑比特区,即其低23位,从中提取出索引串(前6位)和码串的第一子码串(后17位),然后,再求取该信息帧与所述参考帧的帧长度(或各自帧本体域长度)之间的二进制差值(3位),即第二子码串,将第一子码串与第二子码串相串接,即构成码串,而索引串将以其所表征的顺序后续用于确定码串的组装顺序。获得的码串与索引串,便构成了加载到该信息帧中的编码单元。
对应的第二种解码方式:
同理,从信息帧的目的地址域的可编辑比特区即其低23位中提取出整个码串(低20位)及索引串的第一子索引串(可编辑比特区前3位),再以该信息帧与所述参考帧的帧长度(或各自帧本体域长度)之间的二进制差值(3位)确定索引串的第二子索引串,将第一子索引串与第二子索引串拼接即得整个索引串,索引串与该码串便构成该信息帧所表达的编码单元。
对应的第三种解码方式:
此处较为简单,直接将信息帧中的目的地址域的可编辑比特区共23位提取出,即获得所述的码串,将该信息帧与所述参考帧的帧长度(或各自帧本体域长度)之间的二进制差值(3位或更多)直接确定为索引串,索引串与码串便构成了相应的编码单元。
对应的第四种解码方式:
与第三种解码方式同理,直接将信息帧中的目的地址域的可编辑比特区共23位提取出,即获得所述的索引串,将该信息帧与所述参考帧的帧长度(或各自帧本体域长度)之间的二进制差值(3位或更多)直接确定为码串,索引串与码串便构成了相应的编码单元。
可见,本步骤中,无论其细节如何,均不脱与编码过程相对应的协议机理。其执行的原理,是从信息帧中提取其目的地址域所表达的编码单元的第一部分内容,且以该信息帧与所述参考帧的帧长度差值(限定长度的二进制格式)确定该编码单元的其余部分内容,从而获得完整的所述编码单元。
当所有的信息帧均被解码出所述的编码单元,便完成了整个信息的初步解码,后续只需完成拼接和还原过程便可获得相应的信息。
步骤S23、将获得的所有编码单元按其各自所具有的索引串所表征的顺序拼接各编码单元所含码串以构成编码序列。
由于每个编码单元均具有自身的表征顺序的索引串,这个索引串便是指明各个编码单元所具
有的码串在分拆编码序列时所处的排序位置。因而,将各个编码单元按照其具有的索引串所表征的顺序对相应的码串进行按序组装,便可还原出一个相应的编码序列,便可用于还原被传输的信息。
步骤S24、将该编码序列还原为信息。
如前所述,如果所述的编码序列是将信息加密后形成的密文转换而得的序列,则,需要将该编码序列先还原为密文,再利用预存密钥将该密文解密出所述被传输的信息。至于所述密钥的类型,则视加密技术是公钥加密还是对称加密而定,对于前者,采用与编码时的公钥对应的预存私钥解密,对于后者,采用与编码时的密钥相同的预存密钥解密。当然,如果所述的编码序列是非加密信息转换而得,则不必经过这一处理。
进一步,所述的信息一般在编码时即是将多个信息元素按一定格式组合并转换为一个编码序列的,例如,假定还原出来的信息进行ASCII码转换之后形成的内容如下:
SSID:MYWiFi|PSW:PLZLOGIN。
可以看出,其中的SSID与PSW字样,为信息元素的类型标识,MYWiFi与PLZLOGIN为信息元素的具体内容,属性分隔符即冒号“:”用于分隔类型标识和具体内容,元素分隔符“|”用于分隔不同的信息元素。智能控制终端及智能设备依据自定协议的规范,按照上述原理,便可以实现对信息的转换和解读,最终使智能设备能够据此配置自身网络设置并接入网络。
需要注意的是,上述步骤S21与步骤S22的实现,并不局限于按其顺序完成全部任务才相继执行,两个步骤之间可以针对每个接收的信息帧为单位前后执行,因此,两个步骤的执行可以是具有一定的并行关系的,也即针对每个信息帧均执行步骤S21和步骤S22,而非针对全部信息帧执行完步骤S21后再针对全部信息帧执行步骤S22。本领域技术人员应当知晓此一机理。
可见,本发明的组播数据帧信息提取方法,与前一方法相对应,通过简易的步骤实现,即可实现对组播数据帧所加载的信息的提取,并且不必依赖于接收方与接收方的稳定连接的建立。
进一步,基于模块化思维,本发明提供一种前述的智能控制终端,较佳的,该智能控制终端以安装了前述相应的APP的手机来实现。
请参阅图5,本发明提供的智能控制终端,包括编码拆分模块11,参考帧构造模块12、信息帧构造模块13以及信号传输模块14,以下详述各模块实现的功能。
所述的编码拆分模块11,用于将待传输信息的编码序列分离成多个码串,定义每个码串与为其分配的表征索引顺序的相应索引串为编码单元。
所述的待传输信息,在一个应用场景中,可以是包含用于提供WiFi接入点的服务集标识(SSID)及其密码的信息,或者其他诸如验证信息之类的数据量不大的信息。
待传输信息在编码前,被解析为机器二进制码构成的编码序列。为了使待传输信息更加安全,先对待传输信息进行加密,形成密文之后再转换为所述的编码序列。加密的方式既可以是公钥加密,也可以是对称密钥加密,只要接收端利用相对应的密钥(如公钥加密中的私钥或对称加密中的同一密钥)能够解密即可。无论是加密或是公开的状态,待传输信息被解析为二进制码后,便
可对其进行编码,使其适于分配到各个组播数据帧中。
首先,将待传输信息的编码序列分离成若干个码串,每个码串构成相对独立而无信息意义的一部分,以同一长度加以表达,例如占据20个比特。然后,为每一个码串分配一个索引串,这个码串同理也用二进制表达,占据例如6个比特,6个比特的格式下,便可用于表达26组码串。继而,为每个所述的码串组合一个所述的索引串,按照索引串的数值大小,可以对所述的码串的固有顺序进行表达,即编码序列分离出的码串按其串接顺序而匹配相应大小的索引串,使该索引串可以用于表达与其相对应的码串的索引顺序即可。由此而完成整个编码序列的分拆和排序。其中,为说明的便利,将每个索引串及与其组合的码串定义为一个编码单元,则待传输信息便被分离为多个编码单元,每个编码单元相对独立,但相互之间是有序的。需要注意的是,编码单元本身是一个组合概念,而非一个顺序固定的概念。为了实现对组播数据帧的利用,编码单元的总长度是确定的共26比特,所述索引串占据其中的第一长度共6个比特,而剩余的第二长度20比特则为相应的码串所占据,编码单元的总长度恰好为第一长度与第二长度之和。显然,所有的编码单元都具有相同的总长度。
所述待传输信息被编码拆分模块11分离成多个编码单元之后,便可基于组播数据帧进行后续编码。
所述的参考帧构造模块12,被配置为基于组播数据帧格式构造参考帧。
所述参考帧的构造较为灵活,可以在组播数据帧的基础上,依照前述有关组播数据帧的结构的揭示,将其目的地址域中的可编辑比特区,即其低23位比特全部置为0或者1,或者其它特定的比特序列也可,并且确定其帧本体的长度为基准长度。在这个基础上,只要参考帧接收方能够遵守本发明的规范,便可依据此处对参考帧的编码原理识别该参考帧,并且能够确定该帧本体域的长度,将该长度确定为基本长度。作为等同替换手段,由于帧本体域的长度决定了整个参考帧的长度,因此,也可直接以参考帧的总长度为基准长度。该基准长度小于后续信息帧的帧长度,以便借助这种帧长度之间的差值来确定信息编码。同理,作为等同替换手段,也可使参考帧的帧长度大于后续信息帧的帧长度。
所述的信息帧构造模块13,被配置为基于组播数据帧格式构造信息帧,使其目的地址域包含所述编码单元的第一部分内容,使其帧长度与所述参考帧的帧长度的差值包含所述编码单元的其余部分内容。
由于本发明涉及到对信息帧与参考帧的帧长度差值的利用,因此,可以规范该差值的变化范围,使该变化范围特定,使信息帧与参考帧之间帧长度差值维持在一个特定范围之内,暂以最大值8为实施例。在计算机中,可以用3位二进制000-111来表示各种不同差值,当其与前述目的地址域的低23位结合时,便能构成26位的表达能力,其中6位索引串能表达64组数据,每帧中的其余20位则可表达2.5Bytes的数据量,一次编码便可满足160Bytes信息量的表述能力。
同理,所述信息帧也是以组播数据帧为基础进行构造的。构造所述的信息帧的过程,便是将每个编码单元分别对应编码到一个信息帧的过程。以下概述每个编码单元与信息帧结构之间编码关系的几种方式。
第一种编码方式:
将编码单元所包括的码串分拆为两部分,即第一子码串和第二子码串,设第一子码串为17位,第二子码串刚好占据所述差值的全3位。而每个码串的第一子码串前面串接该编码单元中的索引串,因此,索引串与所述第一子码串的拼接体便为23个字节,刚好等于组播数据帧提供的23位的可编辑比特区,表达在其中。而第二子码串,假设为010,代表十进制数值2,则可以通过确定信息帧的帧本体域的长度,使信息帧的帧长度大于(其他实施例中也可以是小于)参考帧的帧长度(基准长度)2Bytes而实现编码表达。后续接收方利用信息帧的帧长度减去参考帧的帐长度之后,便可获得010这一第二子码串。
第二种编码方式:
本编码方式与前一种编码方式的不同之处仅在于,被分拆的对象是编码单元中的索引串而非其码串,由于在上述提供的实例的数据中,码串总长20位,可以将其完全表达于组播数据帧的可编辑比特区中,因此,这种情况下可编辑比特区只能供表达索引串中的3位,即第一子索引串,而索引串的剩余3位即第二子索引串只能被参照前述第一种编码方式表达于其所述的信息帧与所述的参考帧的帧长度差值中。
前述两种方式的示例中,6位索引串与20位码串的长度与目的地址域低23位及帧长度差值3位之间的这种搭配关系是优选的方案,既能够尽可能地加强组播数据帧表达信息的能力,又能够降低因传输过程中UDP数据包丢包而导致的信息传输不成功的风险。
第三种编码方式:
这种编码方式,简单将编码单元中的码串直接表达于其所属信息帧的目的地址域中,例如占据目的地址域的低20位,而将索引串表达于其所属信息帧与所述的参考帧的帧长度差值中。如果索引串的长度维持为前例的6位,则信息帧与参考帧的帧长度的差值范围应维持为相应6位二进制码所能表达的最大值的范围。如果降低索引串的位数至3位,即使延长码串长度至23位使其占据目的地址域的整个可编辑区,由于索引串的只能表达8组数据,因此其信息表达能力也是弱于前例的。
第四种编码方式:
与第三种编码方式同理,可以简单将编码单元中的索引串表达于其所属信息帧的目的地址域中,例如占据目的地址域的低23位,而将码串全部表达于所属信息帧与所述的参考帧的帧长度值中,如果码串的长度维持为前例的20位,则同理信息帧与参考帧的帧长度的差值范围应维持为相应20位二进制码所能表达的最大值的范围。如果降低码串的位数至如前例所述的3位,则单个码串表达的信息量较为有限,而索引串为23位,这样就需要构造多个组播数据帧来传输同一个信息,由此可见,前述第一和第二种编码方式优于第三和第四种编码方式。
通过以上四种编码方式的揭示,可以知晓,无论如何,信息帧构造模块13最终构造而成的信息帧,其目的地址域,具体是指该域中的可编辑比特区,将包含一个所述的编码单元的第一部分内容,这部分内容可以是码串的全部或其一部分子码串,也可以是索引串的全部或其一部分子索引串。而该信息帧的帧长度,通过对其帧本体域长度的调整,使其与所述参考帧的帧长度存在
一个特定范围内的差值,这个差值的二进制格式便包含了所述编码单元中未被编码到所述目的地址域中的剩余部分内容,这部分内容的种类和多寡视目的地址域所表达的种类和多寡而定,既可以是码串的剩余部分的子码串,也可以是全部码串,可以是索引串的全部或其剩余部分索引串。总之,同一编码单元所包含的码串与索引串可以视具体需要而被分离地表达于同一信息帧的目的地址域可编辑比特区及该信息帧与所述参考帧的帧长度差值之中,完成该信息帧的构造。
所述的信号传输模块14,用于传输所述参考帧及信息帧。
完成了所述参考帧及信息帧的构造,便完成了所述待传输信息的全部编码工作,由此,通过信号传输模块14调用相应接口,利用基于802.11协议的WiFi通信组件,便可将所述的参考帧及信息帧以无线的方式向空中辐射,传输给接收端。需要指出的是,由于上层协议是以UDP工作的,所以,所述参考帧及信息帧是以UDP数据包发送的,由于UDP协议是不可靠协议,因而,信号传输模块14在传输所述参考帧及信息帧时,设定例如10次循环,每个循环中,将所述参考帧及信息帧依照索引串表征的索引顺序依次发送(参考帧视为编码为0排序第一),以便确保接收端顺利接收全部组播数据帧。尽管如此,参考帧与信息帧在同一次循环的发送顺序也可以是乱序的,并不影响本发明的实施效果。应当注意,传输时循环发送的次数也不应局限于特定数字,可以是例如5次、20次等其他数据的多轮发送。
可以看出,按照前述过程完成的智能控制终端,其编码过程简单,信息表达能力强,无需依赖于智能设备之间建立稳定连接而可实现信息的传输。
对应的,在与前述智能控制终端对应的另一端,本发明提供一种受控的智能设备,例如智能摄像头、行车记录仪、智能手表等等,这类设备一般需要依赖于前述的待传输信息完成自身的配置以便接入外部网络。为了接收前述的信息,便需要使此类设备具备解码前述编码过程构造出的组播数据帧来达成下一步的操作的基础。
请参阅图6,具体而言,本发明进一步提供的智能设备包括接收模块21、提取模块22、构造模块23以及还原模块24,以下详述各模块所实现的功能。
所述的接收模块21,用于接收基于组播数据帧格式实现的参考帧与信息帧。
智能设备通过其由802.11规范的WiFi通信模组接收所述空中的UDP数据包,通过该接收模块21获得相应的组播数据帧,然后对其进行解码,便可获得组播数据帧中加载的信息。
由于参考帧与信息帧是以一定的编码原理实现的,因此,解码时,自然也要遵守与编码时相对应的原理,因此而言,本发明的解码方与编码方,均需遵守由本发明规范的同一套自定协议。有鉴于此,智能设备的接收模块21参照前述解码过程,按照如下具体步骤执行相应的功能获得所述的参考帧和信息帧:
S211、接收组播数据帧:通过WiFi通信模组获得空中无线辐射的UDP数据包,便可获得其中的组播数据帧,并可对组播数据帧的类型进行识别。
S212、判断该组播数据帧是否为所述的参考帧。判断时,主要依据本发明所遵守的自定协议,查看所述组播数据帧的目的地址域的可编辑比特区中,是否符合该协议的规范。例如前一方法中
所定义的23个比特位为全0或全1。进一步还可以检查该组播数据帧的帧长度,由于组播数据帧的帧长度唯一性地决定于其帧本体域的长度,所以也可以检查其帧本体域的长度,是否满足协议规定的数据,如果这些条件之一或全部满足自定协议的规范,则该组播数据帧便被判定为参考帧,否则,则可暂时丢包。
S213、当前一子步骤判定该组播数据帧为参考帧时,表征当前接收的系列组播数据帧的其余部分包含了信息帧,由此,便可开始接收其余的组播数据帧,也即是所述的信息帧。由于发送方是多轮发送所述的参考帧和信息帧的,因而,本子步骤中,当确定参考帧之后,其余组播数据帧可以全部接收,而重复的可以丢包处理,最终获得参考帧及其不重复的信息帧即可。理论上,以前述一个实施例来论,由于索引串有6位,参考帧与信息帧的总和应为64个,具体视索引串的位数而定。作为进一步的检验条件,可以按所述照索引串所表达的数据组数及其表征顺序,来校验是否已经接收了所有不重复的信息帧和参考帧,余者皆丢包处理。进一步,还可以通过检验信息帧的帧长度与所述的参考帧的帧长度的差值是否超出一个预协议的特定范围,而确定该信息帧是否为加载了本发明所限定的待传输信息的信息帧,由此在本子步骤实施一个实质上的帧校验过程。此外,对应于智能控制终端提供的若干变化实例,由于信息帧的帧长度显然大于或小于所述参考帧的帧长度(由自定协议所规范),即参考帧的帧长度小于或大于所述参考帧的帧长度,因此也可以这一特性来检验组播数据帧是否为符合自定协议规范的信息帧。
由此可见,通过上述接收模块21执行的各步骤的功能,便可接收由发送方传输的全部参考帧和信息帧。
所述的提取模块22,被配置为从所述信息帧中提取其目的地址域所表达的编码单元的第一部分内容,以信息帧与所述参考帧的帧长度差值确定该编码单元的其余部分内容,获得完整的所述编码单元。
提取模块22的实质功能在于执行部分解码,其目的在于获取每个信息帧中的相对独立的所述编码单元。
作为接收方,智能设备需要遵守发送方的编码原理,因此,对应智能控制终端所列的四种编码方式为例,对于所接收的所述信息帧,提取模块22将按照如下的方式进行解码:
对应的第一种解码方式:
从信息帧的目的地址域的可编辑比特区,即其低23位,从中提取出索引串(前6位)和码串的第一子码串(后17位),然后,再求取该信息帧与所述参考帧的帧长度(或各自帧本体域长度)之间的二进制差值(3位),即第二子码串,将第一子码串与第二子码串相串接,即构成码串,而索引串将以其所表征的顺序后续用于确定码串的组装顺序。获得的码串与索引串,便构成了加载到该信息帧中的编码单元。
对应的第二种解码方式:
同理,从信息帧的目的地址域的可编辑比特区即其低23位中提取出整个码串(低20位)及索引串的第一子索引串(可编辑比特区前3位),再以该信息帧与所述参考帧的帧长度(或各自帧本体域长度)之间的二进制差值(3位)确定索引串的第二子索引串,将第一子索引串与第二
子索引串拼接即得整个索引串,索引串与该码串便构成该信息帧所表达的编码单元。
对应的第三种解码方式:
此处较为简单,直接将信息帧中的目的地址域的可编辑比特区共23位提取出,即获得所述的码串,将该信息帧与所述参考帧的帧长度(或各自帧本体域长度)之间的二进制差值(3位或更多)直接确定为索引串,索引串与码串便构成了相应的编码单元。
对应的第四种解码方式:
与第三种解码方式同理,直接将信息帧中的目的地址域的可编辑比特区共23位提取出,即获得所述的索引串,将该信息帧与所述参考帧的帧长度(或各自帧本体域长度)之间的二进制差值(3位或更多)直接确定为码串,索引串与码串便构成了相应的编码单元。
可见,无论提取模块22执行的功能细节如何,均不脱与编码过程相对应的协议机理。其执行的原理,是从信息帧中提取其目的地址域所表达的编码单元的第一部分内容,且以该信息帧与所述参考帧的帧长度差值(限定长度的二进制格式)确定该编码单元的其余部分内容,从而获得完整的所述编码单元。
当所有的信息帧均被解码出所述的编码单元,便完成了整个信息的初步解码,后续只需完成拼接和还原过程便可获得相应的信息。
所述的构造模块23,用于将获得的所有编码单元按其各自所具有的索引串所表征的顺序拼接各编码单元所含码串以构成编码序列。
由于每个编码单元均具有自身的表征顺序的索引串,这个索引串便是指明各个编码单元所具有的码串在分拆编码序列时所处的排序位置。因而,将各个编码单元按照其具有的索引串所表征的顺序对相应的码串进行按序组装,便可还原出一个相应的编码序列,便可用于还原被传输的信息。
所述的还原模块24,用于将该编码序列还原为信息。
如前所述,如果所述的编码序列是将信息加密后形成的密文转换而得的序列,则,需要将该编码序列先还原为密文,再利用预存密钥将该密文解密出所述被传输的信息。至于所述密钥的类型,则视加密技术是公钥加密还是对称加密而定,对于前者,采用与编码时的公钥对应的预存私钥解密,对于后者,采用与编码时的密钥相同的预存密钥解密。当然,如果所述的编码序列是非加密信息转换而得,则不必经过这一处理。
进一步,所述的信息一般在编码时即是将多个信息元素按一定格式组合并转换为一个编码序列的,例如,假定还原出来的信息进行ASCII码转换之后形成的内容如下:
SSID:MYWiFi|PSW:PLZLOGIN。
可以看出,其中的SSID与PSW字样,为信息元素的类型标识,MYWiFi与PLZLOGIN为信息元素的具体内容,属性分隔符即冒号“:”用于分隔类型标识和具体内容,元素分隔符“|”用于分隔不同的信息元素。智能控制终端及智能设备依据自定协议的规范,按照上述原理,便可以实现对信息的转换和解读,最终使智能设备能够据此配置自身网络设置并接入网络。
需要注意的是,上述接收模块21与提取模块22的实现,并不局限于按其顺序完成全部任务
才相继执行,两个模块之间可以针对每个接收的信息帧为单位前后执行,因此,两个模块的执行可以是具有一定的并行关系的,也即针对每个信息帧均交由接收模块21和提取模块22执行,而非针对全部信息帧执行完接收模块21后再针对全部信息帧执行提取模块22。本领域技术人员应当知晓此一机理。
可见,本发明的智能设备,与智能控制终端相对应,通过简易的过程实现,即可实现对组播数据帧所加载的信息的提取,并且不必依赖于接收方与接收方的稳定连接的建立。
在一个仅供参考的应用场景中,提供有实现了本发明的待传输信息组播传输方法的智能控制终端,以及提供实现了本发明的组播数据帧信息提取方法的智能设备,智能控制终端与智能设备在未接入特定WiFi接入点,并且未相互以AD-Hoc或WiFi Direct建立稳定的直接连接的情况下,用户可以通过操作该智能控制终端,选定或输入允许智能设备接入的WiFi接入点的SSID及其密码等信息,确定发送,然后由该智能控制终端利用本发明实现的方案,将该信息编码到组播数据帧中,利用智能控制终端所具有的WiFi通信模组向空中传播相应的无线信号;在智能设备侧,智能设备利用其WiFi通信模组接收该无线信号,利用本发明的方案从无线信号中识别组播数据帧,确定参考帧及信息帧,利用参考帧和信息帧解码出被传输过来的信息,最终从该信息中获得相应的SSID和密码等配置信息,利用这些配置信息配置自身的网络设置,启动接入SSID指定的WiFi接入点的工作,最终使自身接入所述的WiFi接入点。
综上所述,本发明利用组播数据帧进行信息传输,无需依赖于传输双方先行建立连接,简化通信过程,使设备间通信效果快捷而高效。
本发明的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本发明实施例的待传播信息组播传输方法和装置或组播数据帧信息提取方法和装置中的一些或者全部部件的一些或者全部功能。本发明还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本发明的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
例如,图7示出了可以实现根据本发明的待传播信息组播传输方法或组播数据帧信息提取方法的计算设备。该计算设备传统上包括处理器710和以存储器720形式的计算机程序产品或者计算机可读介质。存储器720可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。存储器720具有用于执行上述方法中的任何方法步骤的程序代码731的存储空间730。例如,用于程序代码的存储空间730可以包括分别用于实现上面的方法中的各种步骤的各个程序代码731。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。这些计算机程序产品包括诸如硬盘,紧致盘
(CD)、存储卡或者软盘之类的程序代码载体。这样的计算机程序产品通常为如参考图8所述的便携式或者固定存储单元。该存储单元可以具有与图7的计算设备中的存储器720类似布置的存储段、存储空间等。程序代码可以例如以适当形式进行压缩。通常,存储单元包括计算机可读代码731’,即可以由例如诸如710之类的处理器读取的代码,这些代码当由计算设备运行时,导致该计算设备执行上面所描述的方法中的各个步骤。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本发明的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
此外,还应当注意,本说明书中使用的语言主要是为了可读性和教导的目的而选择的,而不是为了解释或者限定本发明的主题而选择的。因此,在不偏离所附权利要求书的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。对于本发明的范围,对本发明所做的公开是说明性的,而非限制性的,本发明的范围由所附权利要求书限定。
Claims (55)
- 一种待传输信息组播传输方法,其特征在于,包括如下步骤:将待传输信息的编码序列分离成多个码串,定义每个码串与为其分配的表征索引顺序的相应索引串为编码单元;基于组播数据帧格式构造参考帧;基于组播数据帧格式构造信息帧,使其目的地址域包含所述编码单元的第一部分内容,使其帧长度与所述参考帧的帧长度的差值包含所述编码单元的其余部分内容;传输所述参考帧及信息帧。
- 根据权利要求1所述的方法,其特征在于,所述编码单元的长度定义为总长度,所述索引串占据第一长度,所述码串占据第二长度,总长度为第一长度与第二长度之和。
- 根据权利要求2所述的方法,其特征在于,各编码单元的总长度一致。
- 根据权利要求2所述的方法,其特征在于,所述码串包括被与索引串串接表达于所属信息帧的目的地址域中的第一子码串,和被表达于所属信息帧与该参考帧的帧长度差值中的第二子码串。
- 根据权利要求2所述的方法,其特征在于,所述索引串包括被与码串串接表达于所属信息帧的目的地址域中的第一子索引串,和被表达于所属信息帧与该参考帧的帧长度差值中的第二子索引串。
- 根据权利要求2所述的方法,其特征在于,所述码串被表达于所属信息帧的目的地址域中,所述索引串被表达于其所属信息帧与该参考帧的帧长度差值中。
- 根据权利要求2所述的方法,其特征在于,所述索引串被表达于所属信息帧的目的地址域中,所述码串被表达于其所属信息帧与该参考帧的帧长度差值中。
- 根据权利要求1至7中任意一项所述的方法,其特征在于,所述信息帧所具有的目的地址域提供可编码比特区用于表达所述编码单元,该可编码比特区靠近目的地址域的实际字节长度的低位设置。
- 根据权利要求8所述的方法,其特征在于,所述目的地址域的可编码比特区长度为不超过23位。
- 根据权利要求1至7中任意一项所述的方法,其特征在于,所述参考帧的目的地址域提供可编码比特区,该可编码比特区中各个比特均被置为0或1,且该参考帧的帧长度被配置为小于所述信息帧的帧长度。
- 根据权利要求1至7中任意一项所述的方法,其特征在于,所述信息帧的帧长度被配置为其与所述参考帧的帧长度的差值居于特定范围之内。
- 根据权利要求1至7中任意一项所述的方法,其特征在于,不同信息帧间的帧长度变化均唯一性关联于该信息帧中的帧本体域的长度。
- 根据权利要求1所述的方法,其特征在于,传输所述参考帧及信息帧的步骤中,同一所述参考帧及信息帧被多次传输。
- 根据权利要求1所述的方法,其特征在于,所述组播数据帧为IEEE 802.11协议所规范。
- 根据权利要求1所述的方法,其特征在于,所述待传输信息的编码序列,为依据所述待传输信息被加密形成的密文进行编码获得的编码序列。
- 一种智能控制终端,其特征在于,其包括:编码拆分模块,用于将待传输信息的编码序列分离成多个码串,定义每个码串与为其分配的表征索引顺序的相应索引串为编码单元;参考帧构造模块,被配置为基于组播数据帧格式构造参考帧;信息帧构造模块,被配置为基于组播数据帧格式构造信息帧,使其目的地址域包含所述编码单元的第一部分内容,使其帧长度与所述参考帧的帧长度的差值包含所述编码单元的其余部分内容;信号传输模块,用于传输所述参考帧及信息帧。
- 根据权利要求16所述的智能控制终端,其特征在于,所述编码单元的长度被定义为总长度,所述索引串占据第一长度,所述码串占据第二长度,总长度为第一长度与第二长度之和。
- 根据权利要求16所述的智能控制终端,其特征在于,各编码单元均被配置为具有一致的总长度。
- 根据权利要求17所述的智能控制终端,其特征在于,所述码串包括被与索引串串接表达于所属信息帧的目的地址域中的第一子码串,和被表达于所属信息帧与该参考帧的帧长度差值中的第二子码串。
- 根据权利要求17所述的智能控制终端,其特征在于,所述索引串包括被与码串串接表达于所属信息帧的目的地址域中的第一子索引串,和被表达于所属信息帧与该参考帧的帧长度差值中的第二子索引串。
- 根据权利要求17所述的智能控制终端,其特征在于,所述码串被表达于所属信息帧的目的地址域中,所述索引串被表达于其所属信息帧与该参考帧的帧长度差值中。
- 根据权利要求17所述的智能控制终端,其特征在于,所述索引串被表达于所属信息帧的目的地址域中,所述码串被表达于其所属信息帧与该参考帧的帧长度差值中。
- 根据权利要求16至22中任意一项所述的智能控制终端,其特征在于,所述信息帧所具有的目的地址域具有可编码比特区用于表达所述编码单元,该可编码比特区靠近目的地址域的实际字节长度的低位设置。
- 根据权利要求23所述的智能控制终端,其特征在于,所述目的地址域的可编码比特区长度为不超过23位。
- 根据权利要求16至22中任意一项所述的智能控制终端,其特征在于,所述参考帧的目的地址域具有可编码比特区,该可编码比特区中各个比特均被置为0或1,且该参考帧的帧长度被配置为小于所述信息帧的帧长度。
- 根据权利要求16至22中任意一项所述的智能控制终端,其特征在于,所述信息帧的帧 长度被配置为其与所述参考帧的帧长度的差值居于特定范围之内。
- 根据权利要求16至22中任意一项所述的智能控制终端,其特征在于,不同信息帧间的帧长度变化均唯一性关联于该信息帧中的帧本体域的长度。
- 根据权利要求16所述的智能控制终端,其特征在于,所述信号传输模块,被配置为将同一所述参考帧及信息帧多次传输。
- 根据权利要求16所述的智能控制终端,其特征在于,所述组播数据帧为IEEE 802.11协议所规范。
- 根据权利要求16所述的智能控制终端,其特征在于,所述待传输信息的编码序列,为依据所述待传输信息被加密形成的密文进行编码获得的编码序列。
- 一种组播数据帧信息提取方法,其特征在于,包括如下步骤:接收基于组播数据帧格式实现的参考帧与信息帧;从所述信息帧中提取其目的地址域所表达的编码单元的第一部分内容,以信息帧与所述参考帧的帧长度差值确定该编码单元的其余部分内容,获得完整的所述编码单元;将获得的所有编码单元按其各自所具有的索引串所表征的顺序拼接各编码单元所含码串以构成编码序列;将该编码序列还原为信息。
- 根据权利要求31所述的方法,其特征在于,接收基于组播数据帧格式实现的参考帧与信息帧步骤包括如下具体步骤:接收组播数据帧;判断该组播数据帧是否为所述参考帧;当判断其为参考帧时,开始接收所述的信息帧。
- 根据权利要求31所述的方法,其特征在于,所接收的参考帧的帧长度小于所接收的信息帧的帧长度。
- 根据权利要求31所述的方法,其特征在于,从所述信息帧的目的地址域的可编辑比特区中提取所述的编码单元的第一部分内容。
- 根据权利要求34所述的方法,其特征在于,所述可编辑比特区占据该目的地址域的低23位。
- 根据权利要求31所述的方法,其特征在于,所述参考帧的目的地址域的低23位的值为全0或全1。
- 根据权利要求31所述的方法,其特征在于,所接收的不同信息帧间的帧长度变化唯一性关联于信息帧内的帧本体域长度。
- 根据权利要求31所述的方法,其特征在于,通过比较信息帧与帧本体域的长度与所述参考帧的帧本体域的长度确定所述信息帧与所述参考帧的帧长度差值。
- 根据权利要求31所述的方法,其特征在于,每个编码单元所包含的索引串被表达于其 所在信息帧的目的地址域或所述信息帧与参考帧的长度差值中。
- 根据权利要求31所述的方法,其特征在于,每个信息帧所对应的编码单元的码串由第一子码串和第二子码串构成,该信息帧的目的地址域用于表达所述第一子码串,该信息帧的帧长度与所述参考帧的帧长度之间的差值用于表达所述第二子码串。
- 根据权利要求31所述的方法,其特征在于,将编码序列还原为信息的步骤包括如下具体步骤:将所述编码序列对应解析为密文;以预存密钥解密该密文,获得所述的信息。
- 根据权利要求31所述的方法,其特征在于,所述组播数据帧符合IEEE 802.11协议的规范。
- 一种智能设备,其特征在于,其包括:接收模块,用于接收基于组播数据帧格式实现的参考帧与信息帧;提取模块,被配置为从所述信息帧中提取其目的地址域所表达的编码单元的第一部分内容,以信息帧与所述参考帧的帧长度差值确定该编码单元的其余部分内容,获得完整的所述编码单元;构造模块,用于将获得的所有编码单元按其各自所具有的索引串所表征的顺序拼接各编码单元所含码串以构成编码序列;还原模块,用于将该编码序列还原为信息。
- 根据权利要求43所述的智能设备,其特征在于,所述接收模块被配置为接收组播数据帧后,判断该组播数据帧是否为所述参考帧,当其为参考帧时,开始接收所述的信息帧。
- 根据权利要求43所述的智能设备,其特征在于,所述接收模块所接收的参考帧的帧长度小于其所接收的信息帧的帧长度。
- 根据权利要求43所述的智能设备,其特征在于,所述提取模块被配置为从所述信息帧的目的地址域的可编辑比特区中提取所述的编码单元的第一部分内容。
- 根据权利要求46所述的智能设备,其特征在于,所述可编辑比特区占据该目的地址域的低23位。
- 根据权利要求43所述的智能设备,其特征在于,所述参考帧的目的地址域的低23位的值为全0或全1。
- 根据权利要求43所述的智能设备,其特征在于,所接收的不同信息帧间的帧长度变化唯一性关联于信息帧内的帧本体域长度。
- 根据权利要求43所述的智能设备,其特征在于,所述提取模块被配置为通过比较信息帧与帧本体域的长度与所述参考帧的帧本体域的长度确定所述信息帧与所述参考帧的帧长度差值。
- 根据权利要求43所述的智能设备,其特征在于,每个编码单元所包含的索引串被表达 于其所在信息帧的目的地址域或所述信息帧与参考帧的长度差值中。
- 根据权利要求43所述的智能设备,其特征在于,每个信息帧所对应的编码单元的码串由第一子码串和第二子码串构成,该信息帧的目的地址域用于表达所述第一子码串,该信息帧的帧长度与所述参考帧的帧长度之间的差值用于表达所述第二子码串。
- 根据权利要求43所述的智能设备,其特征在于,所述还原模块被配置为先将所述编码序列对应解析为密文,然后以预存密钥解密该密文,获得所述的信息。
- 根据权利要求43所述的智能设备,其特征在于,所述组播数据帧符合IEEE 802.11协议的规范。
- 一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算设备上运行时,导致所述计算设备执行根据权利要求1-15中的任一个所述的待传信息组播传输方法或权利要求31-42中的任一个所述的组播数据帧信息提取方法。一种计算机可读介质,其中存储了如权利要求55所述的计算机程序。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/740,574 US10701524B2 (en) | 2015-07-01 | 2016-07-01 | Multicast transmission method, information extraction method and corresponding terminal and device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510378923.5 | 2015-07-01 | ||
CN201510378923.5A CN105101102B (zh) | 2015-07-01 | 2015-07-01 | 组播传输方法、信息提取方法及相应的终端和设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017000915A1 true WO2017000915A1 (zh) | 2017-01-05 |
Family
ID=54580456
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/088199 WO2017000915A1 (zh) | 2015-07-01 | 2016-07-01 | 组播传输方法、信息提取方法及相应的终端和设备 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10701524B2 (zh) |
CN (1) | CN105101102B (zh) |
WO (1) | WO2017000915A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108430091A (zh) * | 2017-12-27 | 2018-08-21 | 苏宁云商集团股份有限公司 | 一种高效的智能家居wifi配网方法及设备 |
CN113596742A (zh) * | 2021-09-27 | 2021-11-02 | 北京高德品创科技有限公司 | 一种数据传输方法及装置 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105101102B (zh) * | 2015-07-01 | 2019-01-25 | 北京奇虎科技有限公司 | 组播传输方法、信息提取方法及相应的终端和设备 |
WO2018106726A1 (en) * | 2016-12-06 | 2018-06-14 | Pentair Flow Technologies, Llc | Connected pump system controller and method of use |
CN109218997B (zh) * | 2017-07-04 | 2021-08-24 | 中兴通讯股份有限公司 | 一种集群呼叫处理的方法及装置 |
CN107222848B (zh) * | 2017-07-10 | 2019-12-17 | 普联技术有限公司 | WiFi帧的编码方法、发送端、存储介质和一种无线接入设备 |
CN110120987B (zh) * | 2018-02-06 | 2021-03-26 | 杭州海康威视数字技术股份有限公司 | 一种WiFi连接方法及装置 |
CN110213017B (zh) * | 2019-04-30 | 2021-11-12 | 普联技术有限公司 | 一种数据传输方法、装置、系统、存储介质及终端设备 |
CN113094346A (zh) * | 2021-03-10 | 2021-07-09 | 北京四达时代软件技术股份有限公司 | 基于时间序列的大数据编解码方法及装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080273700A1 (en) * | 2007-05-04 | 2008-11-06 | Conexant Systems, Inc. | Systems and Methods For Multicast Retransmission over a Secure Wireless LAN |
CN104735747A (zh) * | 2013-12-20 | 2015-06-24 | 联发科技(新加坡)私人有限公司 | 信息传递方法、接收方法及物联网设备 |
CN105072665A (zh) * | 2015-07-01 | 2015-11-18 | 北京奇虎科技有限公司 | 联网控制、接入方法及相应的终端与设备 |
CN105101102A (zh) * | 2015-07-01 | 2015-11-25 | 北京奇虎科技有限公司 | 组播传输方法、信息提取方法及相应的终端和设备 |
CN105120012A (zh) * | 2015-07-10 | 2015-12-02 | 北京奇虎科技有限公司 | 智能设备及其联网接入方法、信息接收方法与装置 |
CN105120454A (zh) * | 2015-07-17 | 2015-12-02 | 北京奇虎科技有限公司 | 信息传输方法、联网接入方法及相应的终端 |
CN105119900A (zh) * | 2015-07-17 | 2015-12-02 | 北京奇虎科技有限公司 | 信息安全传输方法、联网接入方法及相应的终端 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7408929B2 (en) * | 2001-09-28 | 2008-08-05 | Kabushiki Kaisha Toshiba | Radio communication system, terminal and packet |
US8483105B2 (en) * | 2003-10-15 | 2013-07-09 | Qualcomm Incorporated | High speed media access control |
US7379435B1 (en) * | 2005-04-28 | 2008-05-27 | Cisco Technology, Inc. | Determining broadcast message transmit times for a wireless device having a plurality of WLAN MAC addresses |
KR101597472B1 (ko) * | 2011-12-09 | 2016-02-24 | 엘지전자 주식회사 | 무선랜 시스템에서 프레임 송신 및 수신 방법과 이를 지원하는 장치 |
US9386423B2 (en) * | 2012-03-02 | 2016-07-05 | Qualcomm Incorporated | Apparatus and methods for access identifier based multicast communication |
GB2507056A (en) * | 2012-10-17 | 2014-04-23 | Ibm | A protected wireless network access point allowing limited access to an affiliated group of mobile stations |
US20150334015A1 (en) * | 2012-12-20 | 2015-11-19 | Nokia Technologies Oy | Method and apparatus for handling messages |
JP2014207629A (ja) * | 2013-04-16 | 2014-10-30 | 株式会社東芝 | 通信装置、通信制御方法およびプログラム |
CN103458399B (zh) * | 2013-07-12 | 2017-02-22 | 深圳市瑞科慧联科技有限公司 | 智能wifi模块及将支持wifi连接的设备配置进wifi网络的方法 |
CN103888908B (zh) * | 2014-02-26 | 2017-02-22 | 北京信惠宝科技有限公司 | 向未登录wi‑fi接入点的接收终端传送数据的方法和系统 |
US9510201B1 (en) * | 2014-05-16 | 2016-11-29 | Amazon Technologies, Inc. | Connecting a device to a wireless network |
CN104486755B (zh) * | 2014-12-03 | 2019-01-25 | 北京京东尚科信息技术有限公司 | 基于ibeacon实现智能设备的WIFI配置的系统和方法 |
CN104486449A (zh) * | 2014-12-31 | 2015-04-01 | 北京奇虎科技有限公司 | 一种计算设备控制方法及设备 |
CN104660726B (zh) * | 2015-02-03 | 2018-11-27 | 普联技术有限公司 | 智能设备的网络配置方法、装置及系统 |
US10313226B2 (en) * | 2015-09-03 | 2019-06-04 | Apple Inc. | Multicast in multi-user transmissions |
US11051246B2 (en) * | 2018-02-26 | 2021-06-29 | Qualcomm Incorporated | Addressing for wake-up radio (WUR) frames in WUR device communications |
-
2015
- 2015-07-01 CN CN201510378923.5A patent/CN105101102B/zh active Active
-
2016
- 2016-07-01 US US15/740,574 patent/US10701524B2/en active Active
- 2016-07-01 WO PCT/CN2016/088199 patent/WO2017000915A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080273700A1 (en) * | 2007-05-04 | 2008-11-06 | Conexant Systems, Inc. | Systems and Methods For Multicast Retransmission over a Secure Wireless LAN |
CN104735747A (zh) * | 2013-12-20 | 2015-06-24 | 联发科技(新加坡)私人有限公司 | 信息传递方法、接收方法及物联网设备 |
CN105072665A (zh) * | 2015-07-01 | 2015-11-18 | 北京奇虎科技有限公司 | 联网控制、接入方法及相应的终端与设备 |
CN105101102A (zh) * | 2015-07-01 | 2015-11-25 | 北京奇虎科技有限公司 | 组播传输方法、信息提取方法及相应的终端和设备 |
CN105120012A (zh) * | 2015-07-10 | 2015-12-02 | 北京奇虎科技有限公司 | 智能设备及其联网接入方法、信息接收方法与装置 |
CN105120454A (zh) * | 2015-07-17 | 2015-12-02 | 北京奇虎科技有限公司 | 信息传输方法、联网接入方法及相应的终端 |
CN105119900A (zh) * | 2015-07-17 | 2015-12-02 | 北京奇虎科技有限公司 | 信息安全传输方法、联网接入方法及相应的终端 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108430091A (zh) * | 2017-12-27 | 2018-08-21 | 苏宁云商集团股份有限公司 | 一种高效的智能家居wifi配网方法及设备 |
CN113596742A (zh) * | 2021-09-27 | 2021-11-02 | 北京高德品创科技有限公司 | 一种数据传输方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN105101102B (zh) | 2019-01-25 |
CN105101102A (zh) | 2015-11-25 |
US10701524B2 (en) | 2020-06-30 |
US20180302755A1 (en) | 2018-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017000915A1 (zh) | 组播传输方法、信息提取方法及相应的终端和设备 | |
CN105072665B (zh) | 联网控制、接入方法及相应的终端与设备 | |
RU2579622C2 (ru) | Устройство и способы сжатия заголовка управления доступом к среде | |
US9906491B2 (en) | Improving transmission efficiency of data frames by using shorter addresses in the frame header | |
US9002352B2 (en) | System and method of service discovery | |
CN104703176B (zh) | 无线网络的配置方法、智能终端和无线网络设备 | |
CN105119900B (zh) | 信息安全传输方法、联网接入方法及相应的终端 | |
WO2018099221A1 (zh) | 传输数据包的方法和设备 | |
TWI667899B (zh) | 電子設備及用於通訊的方法 | |
US11889589B2 (en) | Communications network | |
EP2894824A1 (en) | Method and device for wireless information transmission | |
CN105120454B (zh) | 信息传输方法、联网接入方法及相应的终端 | |
CN105120012B (zh) | 智能设备及其联网接入方法、信息接收方法与装置 | |
CN207652705U (zh) | 一种控制终端及基于wifi Beacon帧的设备接入网络的系统 | |
KR101743779B1 (ko) | 매체 접근 제어 프로토콜 데이터 유닛에 제어정보를 인코딩 및 디코딩하는 장치 및 방법 | |
WO2018129938A1 (zh) | 一种数据传输方法和装置 | |
WO2016074168A1 (zh) | 资源指示的处理方法、计算机可读介质、接入点和站点 | |
WO2016119624A1 (zh) | 一种数据传输方法及其装置 | |
US7688718B2 (en) | Variable-sized packet support for enhanced synchronous connection oriented links over a USB interface | |
CN103945379B (zh) | 一种在接入网中实现接入认证和数据通信的方法 | |
WO2019153869A1 (zh) | 一种WiFi连接方法及装置 | |
Kozłowski et al. | Analysing efficiency of IPv6 packet transmission over 6LoWPAN network | |
WO2019047829A1 (zh) | 数据传输方法、终端、网络设备和通信系统 | |
CN115296996B (zh) | 数据传输方法、空中升级方法、网络设备、网络系统 | |
CN114666745B (zh) | 数据传输方法、节点控制方法、网络设备、网络系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16817279 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15740574 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16817279 Country of ref document: EP Kind code of ref document: A1 |