WO2017000735A1 - 一种具有短路电流限制功能的可控移相器 - Google Patents
一种具有短路电流限制功能的可控移相器 Download PDFInfo
- Publication number
- WO2017000735A1 WO2017000735A1 PCT/CN2016/084271 CN2016084271W WO2017000735A1 WO 2017000735 A1 WO2017000735 A1 WO 2017000735A1 CN 2016084271 W CN2016084271 W CN 2016084271W WO 2017000735 A1 WO2017000735 A1 WO 2017000735A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- winding
- transformer
- phase
- secondary side
- side winding
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H7/00—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
- H02H7/26—Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
Definitions
- the invention relates to the field of current system power transmission control, in particular to a controllable phase shifter with short circuit current limiting function.
- Phase shift transformer also known as phase angle regulator (PAR)
- PST phase shift transformer
- PAR phase angle regulator
- TCPST thyristor contolled phase shift transformer
- Thyristor can operate continuously and frequently, and can avoid the expensive daily maintenance cost of mechanical pressure regulating equipment
- the thyristor voltage regulation speed is much faster than the mechanical voltage regulation, which can meet the requirements of rapid control of the power system.
- the present invention provides a controllable phase shifter having a short circuit current limiting function.
- controllable phase shifter comprises an excitation transformer, a booster transformer and a thyristor voltage regulating circuit;
- the low voltage end of the primary winding of the booster transformer is an input end of the controllable phase shifter, and the high voltage end is an output end of the controllable phase shifter;
- the primary side winding is composed of two windings connected in series, the two sections The connection point of the winding is provided with a middle tap, and the middle tap is connected with the high voltage end of the primary winding of the excitation transformer;
- the secondary winding of the excitation transformer is composed of three windings connected in series;
- the input end of the thyristor voltage regulating circuit is connected to the secondary side winding of the excitation transformer, and the output end is connected to the high voltage end of the primary side winding of the booster transformer.
- the primary side winding and the secondary side winding of the excitation transformer are Y 0 connection;
- the secondary side winding of the boosting transformer is a delta connection;
- the primary side winding of the excitation transformer is a delta connection
- the secondary side winding is a Y 0 connection
- the secondary side winding of the booster transformer is a Y 0 connection or a Y connection
- the primary winding of the excitation transformer comprises an A-phase winding, a B-phase winding and a C-phase winding
- the intermediate tap of the boosting transformer comprises an A-phase intermediate tap, a B-phase intermediate tap and a C-phase intermediate tap
- the high voltage end of the A-phase winding is connected to the intermediate phase of the A phase;
- the high voltage end of the B-phase winding is connected to the intermediate phase of the B-phase;
- the high voltage end of the C-phase winding is connected to the C-phase intermediate tap;
- the thyristor voltage regulating circuit comprises a first thyristor voltage regulating circuit, a second thyristor voltage regulating circuit and a third thyristor voltage regulating circuit;
- An input end of the first thyristor voltage regulating circuit is connected to an A-phase winding of a secondary winding of the excitation transformer, and an output end is connected to a C-phase winding of a secondary winding of the booster transformer;
- An input end of the second thyristor voltage regulating circuit is connected to a B-phase winding of a secondary winding of the excitation transformer, and an output end is connected to an A-phase winding of a secondary winding of the booster transformer;
- the input end of the third thyristor voltage regulating circuit is connected to the C-phase winding of the secondary winding of the excitation transformer, and the output end is connected with the B-phase winding of the secondary winding of the booster transformer;
- the first thyristor voltage regulating circuit, the second thyristor voltage regulating circuit and the third thyristor voltage regulating circuit respectively comprise a first full bridge circuit, a second full bridge circuit and a third full bridge circuit which are sequentially connected in series;
- the input end of the first full bridge circuit is connected to both ends of the first winding of the secondary side winding of the excitation transformer;
- the input end of the second full bridge circuit is connected to both ends of the second winding of the secondary side winding of the excitation transformer;
- the input end of the third full bridge circuit is connected to both ends of the third winding of the secondary side winding of the excitation transformer;
- each of the bridge arms of the first full bridge circuit is composed of a series of thyristors
- each bridge arm of the second full bridge circuit is composed of b thyristors connected in series
- the working state of the secondary winding in the excitation transformer includes 27 working states;
- the working state of the first winding includes a forward winding of the secondary winding of the booster transformer, and a reverse series of boosting and voltage transformation The secondary side winding of the device and the secondary side winding not connected to the booster transformer;
- the working state of the second winding includes a secondary winding that is forwardly connected to the booster transformer, and is reversely connected to the secondary winding of the boosting transformer and the secondary winding that is not serially connected to the boosting transformer;
- the working state of the third-stage winding includes a secondary side winding that is forwardly coupled to the booster transformer, and is reversely coupled to the secondary side winding of the booster transformer and the secondary side winding that is not serially connected to the booster transformer.
- the controllable phase shifter with short-circuit current limiting function provided by the invention can improve the operation mode of the existing AC power grid, improve the transmission capacity of the key sections of the existing grid, and alleviate the construction of the power transmission and transformation project in the load center area.
- the pressure can balance the power flow of the grid while controlling the voltage and improving the stability of the system. It can also solve the problems associated with the distribution network in the distribution network, improve the transmission capacity of the power grid, improve the controllability of the system, and improve the distribution.
- the quality of power grid supply is of great significance;
- the controllable phase shifter with short-circuit current limiting function provided by the invention can quickly change the phase angle, limit the short-circuit current, and play an important protective role for the safe operation of the power grid in the fault state;
- the controllable phase shifter with short-circuit current limiting function provided by the invention adopts a thyristor control circuit instead of an on-load tap, which constitutes a thyristor control phase shifter: on the one hand, the thyristor can continuously and frequently operate, and can Eliminating the expensive daily maintenance costs of mechanical pressure regulating equipment; on the other hand, the thyristor voltage regulation speed is much faster than mechanical voltage regulation, which can meet the rapid control requirements of power systems;
- the invention provides a controllable phase shifter with short-circuit current limiting function, which can be used to deal with transient and dynamic problems of the system, such as improving transient stability, reducing the traversing flow causing the out-of-step of the tie line, and suppressing Switch overload, damped oscillation, etc. caused by sudden increase in line power after failure.
- FIG. 1 is a schematic diagram of a controllable phase shifter connected to a power transmission system according to an embodiment of the present invention
- FIG. 2 is a schematic diagram showing a phase angle relationship of a controllable phase shifter connected to a power transmission system in an embodiment of the present invention
- FIG. 3 is a topological structural view of a controllable phase shifter having a short-circuit current limiting function in an embodiment of the present invention
- FIG. 4 is a circuit diagram of a thyristor voltage regulation circuit in an embodiment of the present invention.
- FIG. 5 is a schematic diagram showing the relationship between the voltage of the primary and secondary voltages of the excitation transformer in the embodiment of the present invention.
- Figure 6 is a diagram showing the phasor relationship between the input and output voltages of the controllable phase shifter in the embodiment of the present invention.
- the invention provides a controllable phase shifter with short-circuit current limiting function, which can adjust the active power transmitted on the transmission line, and can limit the short-circuit current of the transmission line. In the case of a short-circuit fault of the transmission system, It can quickly change the phase angle to achieve the effect of limiting the short-circuit current.
- the active power delivered by the line in the transmission system is:
- ⁇ is the phase angle difference between the transmitting terminal S and the receiving terminal L voltage shown in Fig. 1
- ⁇ is the phase angle difference between U sl and U s after phase shifting by phase shifter
- U S is the transmitting terminal voltage
- U L is The terminal voltage
- U sl is the voltage after phase shift
- X SL is the line impedance
- phase angle relationship is shown in Figure 2.
- controllable phase shifter in the present invention is as shown in FIG. 3, specifically:
- the controllable phase shifter comprises an excitation transformer (ET), a booster transformer (BT) and a thyristor voltage regulating circuit. among them,
- the low voltage end of the primary side winding is an input end of the controllable phase shifter, and the high voltage end is an output end of the controllable phase shifter;
- the primary winding is composed of two windings connected in series, the connection point of the two windings is provided with a middle tap, and the intermediate tap is connected with the high voltage end of the primary winding of the excitation transformer; the intermediate tap includes the A phase intermediate tap, the B phase intermediate tap and the C The center is tapped.
- the A-phase winding of the primary side winding includes a winding B1a and a winding B2a connected in series, and the A-phase intermediate tap provided at the connection end of the two ends is connected to the high-voltage end of the primary side winding E1a of the excitation transformer, and the other end of the winding B1a is connected.
- the input end SA of the controllable phase shifter, the other end of the winding B2a is the output terminal LA of the controllable phase shifter;
- the B-phase winding of the primary winding includes a winding B1b and a winding B2b connected in series, and the B-phase intermediate tap provided at the connection end is connected to the high-voltage end of the primary winding E1b of the excitation transformer, and the other end of the winding B1b is a controllable phase shifter.
- Input SB, the other end of the winding B2b is the output end LB of the controllable phase shifter;
- the C-phase winding of the primary winding includes a winding B1c and a winding B2c connected in series, and the C-phase intermediate tap provided at the connection end is connected to the high-voltage end of the primary winding E1c of the excitation transformer, and the other end of the winding B1c is a controllable phase shifter.
- the input terminal SC and the other end of the winding B2c are the output terminals LC of the controllable phase shifter.
- the winding ratio n B of the booster transformer is:
- N B1 is the number of turns of the primary winding of the booster transformer
- N B2 is the number of turns of the other winding of the primary side of the booster transformer
- N B3 is the number of turns of the secondary winding of the booster transformer.
- N E1 is the number of turns of the primary winding of the excitation transformer
- N T is the number of windings corresponding to the unit step voltage of the secondary side of the excitation transformer
- U E1 is the excitation The voltage of the primary winding is changed
- U T is the equivalent output voltage of the secondary side of the excitation.
- the three-phase voltage phasor is shown in Figure 4, where To oscillate the voltage phasor of the primary winding, The excitation is the secondary side equivalent output voltage phasor.
- the phasor relationship between the input and output voltage of the phase shifter can be obtained as shown in Fig. 5, wherein Input phase voltage phasor for the phase shifter; The voltage phasor on the output side of the phase shifter; The voltage phasor at the junction between the center tap point of the booster transformer and the primary winding of the field transformer; It is the voltage phasor on the primary side segment winding of the booster transformer; ⁇ is the phase shifter phase shift angle.
- phase shift angle ⁇ can satisfy the following relationship:
- the "T"-shaped equivalent circuit with an ideal transformer is used for analysis, and the voltage relationship between the phase S of the phase shifter and the receiving end L is as follows:
- Z E1 is the primary side equivalent impedance of the excitation transformer
- Z T is the secondary side equivalent impedance of the excitation transformer
- Z B1 is the equivalent impedance of the primary winding of the booster transformer
- Z B3 is the secondary side equivalent impedance of the booster transformer .
- the phase shifter When considering the leakage resistance of each winding of the phase shifter, the phase shifter can be equivalent to an ideal phase shifter in series with an impedance, as shown in Figure 1, where X SL is the line impedance. It is the voltage phasor on the output side of the controllable phase shifter. Therefore, in the case of a short circuit in the line, the thyristor can act quickly, change the phase angle, and effectively limit the short-circuit current by using Z eq and X SL .
- phase shift angle of the phase shifter will have an inefficient leakage and loss voltage drop, and the output voltage is only compared with the input voltage. The phase angle changes and the amplitude does not change.
- the secondary winding includes a winding B3a, a winding B3b, and a winding B3c.
- the primary side winding includes an A phase winding, a B phase winding, and a C phase winding.
- the high-voltage end of the A-phase winding is connected to the A-phase intermediate tap; the high-voltage end of the B-phase winding is connected to the B-phase intermediate tap; the high-voltage end of the C-phase winding is connected to the C-phase intermediate tap.
- the A-phase winding is the winding E1a
- the B-phase winding is the winding E1b
- the C-phase winding is the winding E1c.
- the secondary winding is composed of three windings connected in series.
- the A-phase winding of the secondary winding is composed of a first-stage winding E2a, a second-stage winding E3a, and a third-stage winding E4a in series
- the B-phase winding of the secondary winding is composed of the first-stage winding E2b.
- the second winding E3b and the third winding E4b are sequentially connected in series
- the C-phase winding of the secondary winding is sequentially connected in series by the first winding E2c, the second winding E3c and the third winding E4c.
- the input end of the circuit is connected to the secondary side winding of the excitation transformer, and the output end is connected to the high voltage end of the primary side winding of the booster transformer.
- the thyristor voltage regulating circuit comprises a first thyristor voltage regulating circuit, a second thyristor voltage regulating circuit and a third thyristor voltage regulating circuit, wherein:
- the input end of the first thyristor voltage regulating circuit is connected with the A-phase winding of the secondary winding of the excitation transformer, and the output end is connected with the C-phase winding of the secondary winding of the booster transformer. As shown in FIG. 3, the input ends are respectively connected to the first segment winding E2a, the second segment winding E3a and the third segment winding E4a, and the output terminal is connected to the winding B3c.
- the input end of the second thyristor voltage regulating circuit is connected with the B-phase winding of the secondary side winding of the excitation transformer, and the output end is connected with the A-phase winding of the secondary side winding of the booster transformer. As shown in FIG. 3, the input ends are respectively connected to the first segment winding E2b, the second segment winding E3b and the third segment winding E4b, and the output terminal is connected to the winding B3a.
- the input end of the third thyristor voltage regulating circuit is connected with the C-phase winding of the secondary side winding of the excitation transformer, and the output end is connected with the B-phase winding of the secondary side winding of the booster transformer. As shown in FIG. 3, the input ends are respectively connected to the first segment winding E2c, the second segment winding E3c and the third segment winding E4c, and the output terminal is connected to the winding B3b.
- the first thyristor voltage regulating circuit, the second thyristor voltage regulating circuit and the third thyristor voltage regulating circuit respectively comprise a first full bridge circuit, a second full bridge circuit and a third full bridge circuit which are sequentially connected in series, wherein:
- the input end of the first full bridge circuit is connected to both ends of the first stage winding of the secondary side winding of the excitation transformer, and each bridge arm of the first full bridge circuit is composed of a series of thyristors connected in series.
- the first full bridge circuit includes a bridge arm 1, a bridge arm 2, a bridge arm 3, and a bridge arm 4.
- the input end of the second full bridge circuit is connected to both ends of the second winding of the secondary side winding of the excitation transformer, and each bridge arm of the second full bridge circuit is composed of b thyristors connected in series.
- the second full bridge circuit includes a bridge arm 5, a bridge arm 6, a bridge arm 7, and a bridge arm 8.
- the input end of the third full bridge circuit is connected to the two ends of the third winding of the secondary side winding of the excitation transformer, and each bridge arm of the third full bridge circuit is composed of c thyristors connected in series.
- the third full bridge circuit includes a bridge arm 9, a bridge arm 10, a bridge arm 11, and a bridge arm 12.
- a:b:c 1:3:9
- the working state of the secondary winding in the field transformer includes 27 working states, wherein the working states of the windings of each segment are:
- the working state of the third-stage winding includes a secondary side winding that is forwardly connected to the booster transformer, and a reverse side of the secondary side winding of the booster transformer and a secondary side winding that is not serially connected to the booster transformer.
- connection mode of the excitation transformer and the booster transformer mainly includes:
- the primary winding and the secondary winding of the excitation transformer are both Y 0 connected, and the secondary winding of the booster transformer is ⁇ connected.
- the primary winding of the excitation transformer is ⁇ connection
- the secondary winding is Y 0 connection
- the secondary winding of the booster transformer is Y 0 connection.
- the primary winding of the excitation transformer is ⁇ connection
- the secondary winding is Y 0 connection
- the secondary winding of the booster transformer is Y connection.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Ac-Ac Conversion (AREA)
Abstract
一种具有短路电流限制功能的可控移相器,包括励磁变压器(ET)、增压变压器(BT)和晶闸管调压电路;增压变压器中一次侧绕组的低压端为可控移相器的输入端,高压端为可控移相器的输出端;一次侧绕组由两段绕组(B1a、B2a;B1b、B2b;B1c、B2c)串联组成;励磁变压器的二次侧绕组由三段绕组(E2a、E3a、E4a;E2b、E3b、E4b;E2c、E3c、E4c)串联组成;晶闸管调压电路的输入端与励磁变压器的二次侧绕组连接,输出端与增压变压器中一次侧绕组的高压端连接。该可控移相器可以快速改变相角,限制短路电流,对故障态下电网的安全运行起到重要保护作用。
Description
本发明涉及电流系统输电控制领域,具体涉及一种具有短路电流限制功能的可控移相器。
移相器(phase shift transformer,PST)也称相角调节器(phase angle regulator,PAR),是一种控制输电潮流的有效手段,通过在输电线路中串入横向或纵向的电压,改变装置安装点电压的相位或幅值,从而控制输电线路稳态潮流或电压,实现合理分配线路输送功率、提高关键断面输送能力、降低输电成本等作用。早期的PST均采用机械调压方式,随电力电子技术的快速发展,出现了采用晶闸管调压方式的可控移相器(thyristor contolled phase shift transformer,TCPST)。基于晶闸管调压的可控移相器具有下述优点:
①:晶闸管能够连续、频繁动作,并能免除机械调压设备昂贵的日常维护费用;
②:晶闸管调压速度比机械调压快得多,能够满足电力系统快速控制要求。
因此,需要提供一种具有短路电流限制功能的可控移相器,用来处理系统暂态和动态方面的问题,如提高暂态稳定性、减轻导致联络线失步的穿越潮流、抑制故障后线路功率突增所造成的开关过负荷、阻尼振荡等。
发明内容
为了满足现有技术的需要,本发明提供了一种具有短路电流限制功能的可控移相器。
本发明的技术方案是:
优选的,所述可控移相器包括励磁变压器、增压变压器和晶闸管调压电路;
所述增压变压器中一次侧绕组的低压端为可控移相器的输入端,高压端为可控移相器的输出端;所述一次侧绕组由两段绕组串联组成,所述两段绕组的连接点设置有中间抽头,所述中间抽头与励磁变压器中一次侧绕组的高压端连接;所述励磁变压器的二次侧绕组由三段绕组串联组成;
所述晶闸管调压电路的输入端与励磁变压器的二次侧绕组连接,输出端与增压变压器中一次侧绕组的高压端连接。
优选的,所述励磁变压器的一次侧绕组和二次侧绕组均为Y0连接;所述增压变压器的二
次侧绕组为Δ连接;
优选的,所述励磁变压器的一次侧绕组为Δ连接,二次侧绕组为Y0连接;所述增压变压器的二次侧绕组为Y0连接或者Y连接;
优选的,所述励磁变压器的一次侧绕组包括A相绕组、B相绕组和C相绕组,所述增压变压器的中间抽头包括A相中间抽头、B相中间抽头和C相中间抽头;励磁变压器中一次侧绕组与增压变压器中一次侧绕组的连接方式包括:
所述A相绕组的高压端与A相中间抽头连接;
所述B相绕组的高压端与B相中间抽头连接;
所述C相绕组的高压端与C相中间抽头连接;
优选的,所述晶闸管调压电路包括第一晶闸管调压电路、第二晶闸管调压电路和第三晶闸管调压电路;
所述第一晶闸管调压电路的输入端与所述励磁变压器中二次侧绕组的A相绕组连接,输出端与所述增压变压器中二次侧绕组的C相绕组连接;
所述第二晶闸管调压电路的输入端与所述励磁变压器中二次侧绕组的B相绕组连接,输出端与所述增压变压器中二次侧绕组的A相绕组连接;
所述第三晶闸管调压电路的输入端与所述励磁变压器中二次侧绕组的C相绕组连接,输出端与所述增压变压器中二次侧绕组的B相绕组连接;
优选的,所述第一晶闸管调压电路、第二晶闸管调压电路和第三晶闸管调压电路均包括依次串联的第一全桥电路、第二全桥电路和第三全桥电路;
所述第一全桥电路的输入端连接于所述励磁变压器中二次侧绕组的第一段绕组的两端;
所述第二全桥电路的输入端连接于所述励磁变压器中二次侧绕组的第二段绕组的两端;
所述第三全桥电路的输入端连接于所述励磁变压器中二次侧绕组的第三段绕组的两端;
优选的,所述第一全桥电路的每个桥臂由a个晶闸管串联组成,所述第二全桥电路的每个桥臂由b个晶闸管串联组成,所述第三全桥电路的每个桥臂由c个晶闸管串联组成,a:b:c=1:3:9;
所述第一段绕组的绕组匝数n1、第二段绕组的绕组匝数n2和第三段绕组的绕组匝数n3的比值为n1:n2:n3=1:3:9;
优选的,所述励磁变压器中二次侧绕组的工作状态包括27个工作状态;
所述第一段绕组的工作状态包括正向串入增压变压器的二次侧绕组,反向串入增压变压
器的二次侧绕组和不串入增压变压器的二次侧绕组;
所述第二段绕组的工作状态包括正向串入增压变压器的二次侧绕组,反向串入增压变压器的二次侧绕组和不串入增压变压器的二次侧绕组;
所述第三段绕组的工作状态包括正向串入增压变压器的二次侧绕组,反向串入增压变压器的二次侧绕组和不串入增压变压器的二次侧绕组。
与最接近的现有技术相比,本发明的优异效果是:
1、本发明提供的一种具有短路电流限制功能的可控移相器,能够改善现有交流电网的运行模式,提高现有网架关键断面的输送能力,缓解负荷中心地区输变电工程建设压力,起到均衡电网潮流的同时还能控制电压,提升系统稳定性,用于配电网中还能解决配电网存在的相关问题,对提升电网输送能力,提高系统可控性,提升配电网供电质量,有重大意义;
2、本发明提供的一种具有短路电流限制功能的可控移相器,可以快速改变相角,限制短路电流,对故障态下电网的安全运行起到重要保护作用;
3、本发明提供的一种具有短路电流限制功能的可控移相器,采用晶闸管控制电路代替有载分接头,即构成晶闸管控制移相器:一方面,晶闸管能够连续、频繁动作,并能免除机械调压设备昂贵的日常维护费用;另一方面,晶闸管调压速度比机械调压快得多,能够满足电力系统快速控制要求;
4、本发明提供的一种具有短路电流限制功能的可控移相器,可用来处理系统暂态和动态方面的问题,如提高暂态稳定性、减轻导致联络线失步的穿越潮流、抑制故障后线路功率突增所造成的开关过负荷、阻尼振荡等。
下面结合附图对本发明进一步说明。
图1:本发明实施例中可控移相器接入输电系统的示意图;
图2:本发明实施例中可控移相器接入输电系统后的相角关系示意图;
图3:本发明实施例中具有短路电流限制功能的可控移相器拓扑结构图;
图4:本发明实施例中晶闸管调压电路图;
图5:本发明实施例中励磁变压器的原副边电压相量关系示意图;
图6:本发明实施例中可控移相器的输入输出电压相量关系。
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
本发明提供的一种具有短路电流限制功能的可控移相器,既可以调节输电线路上传输的有功功率,有可以对输电线路的短路电流进行限制,在输电系统发生短路故障的情况下,能够迅速动作改变相角,达到限制短路电流的效果。
输电系统中线路输送的有功功率为:
其中,δ为图1所示送端S与受端L电压的相角差,σ为经移相器移相后Usl与Us的相角差,US为送端电压,UL为末端电压,Usl为移相后电压,XSL为线路阻抗。由式(1)可以看出σ的变化可大幅影响线路传输的有功功率。
控移相器通过控制向线路中注入电压ΔU,使移相器两侧电压相角发生改变,从而改变输电线路首末端的相角差,达到控制潮流的目的。其相角关系如图2所示。
本发明中可控移相器的实施例如图3所示,具体为:
该可控移相器包括励磁变压器(Excitation Transformer,ET)、增压变压器(Booster Transformer,BT)和晶闸管调压电路。其中,
1、增压变压器
(1)增压变压器的一次侧绕组
该一次侧绕组的低压端为可控移相器的输入端,高压端为可控移相器的输出端;
一次侧绕组由两段绕组串联组成,两段绕组的连接点设置有中间抽头,中间抽头与励磁变压器中一次侧绕组的高压端连接;该中间抽头包括A相中间抽头、B相中间抽头和C相中间抽头。
如图3所示,一次侧绕组的A相绕组包括串联的绕组B1a和绕组B2a,二者连接端设置的A相中间抽头与励磁变压器中一次侧绕组E1a的高压端连接,绕组B1a的另一端为可控移相器的输入端SA,绕组B2a的另一端为可控移相器的输出端LA;
一次侧绕组的B相绕组包括串联的绕组B1b和绕组B2b,二者连接端设置的B相中间抽头与励磁变压器中一次侧绕组E1b的高压端连接,绕组B1b的另一端为可控移相器的输入端
SB,绕组B2b的另一端为可控移相器的输出端LB;
一次侧绕组的C相绕组包括串联的绕组B1c和绕组B2c,二者连接端设置的C相中间抽头与励磁变压器中一次侧绕组E1c的高压端连接,绕组B1c的另一端为可控移相器的输入端SC,绕组B2c的另一端为可控移相器的输出端LC。
增压变压器的绕组变比nB为:
nB=NB3/NB1=NB3/NB2 (2)
其中,NB1为增压变压器一次侧一段绕组的匝数,NB2为增压变压器一次侧另一段绕组的匝数,NB3为增压变压器二次侧绕组的匝数。
励磁变压器的绕组变比nT为:
nT=(NE1/TNT)=(UE1/UT) (3)
其中,T=±1,±2,......±3,NE1为励磁变压器原边绕组匝数,NT为励磁变压器副边单位级差电压对应的绕组匝数,UE1为励磁变一次侧绕组的电压,UT为励磁变二次侧等效输出电压。
以图4中相量位参考,结合励磁变压器的变比,可得移相器输入输出电压相量关系如图5所示,其中,为移相器输入侧电压相量;为移相器输出侧电压相量;为增压变压器的中间抽头点与励磁变压器一次侧绕组连接处的电压相量;为增压变压器一次侧分段绕组上的电压相量;φ为移相器移相角度。
由此可得移相角φ满足以下关系:
采用含理想变压器的“T”形等值电路进行分析,移相器送端S与受端L的电压关系:
ZE1为励磁变压器一次侧等效阻抗,ZT为励磁变压器二次侧等效阻抗,ZB1为增压变压器一次侧一段绕组的等效阻抗,ZB3为增压变压器二次侧等效阻抗。
当计及移相器各绕组漏抗时,移相器可以等效为一个理想移相器与一个阻抗相串联,如图1所示,其中XSL为线路阻抗,为可控移相器输出侧的电压相量。因此,在线路发生短路情况下,晶闸管可以迅速动作,改变相角,利用Zeq和XSL有效地限制短路电流。
本实施例中虽然移相器本体的漏抗和损耗将对输电系统产生较大影响,但是移相器的移相角度会低效漏抗及损耗的压降,与输入电压相比输出电压仅相角改变,幅值不变。
(2)增压变压器的二次侧绕组
如图3所示,该二次侧绕组包括绕组B3a、绕组B3b和绕组B3c。
2、励磁变压器
(1)励磁变压器的一次侧绕组
该一次侧绕组包括A相绕组、B相绕组和C相绕组。
增压变压器的励磁变压器的一次侧绕组与增压变压器一次侧绕组的连接方式包括:
A相绕组的高压端与A相中间抽头连接;B相绕组的高压端与B相中间抽头连接;C相绕组的高压端与C相中间抽头连接。
如图3所示,A相绕组为绕组E1a,B相绕组为绕组E1b,C相绕组为绕组E1c。
(2)励磁变压器的二次侧绕组
该二次侧绕组由三段绕组串联组成。
如图3所示,二次侧绕组的A相绕组由第一段绕组E2a、第二段绕组E3a和第三段绕组E4a依次串联组成,二次侧绕组的B相绕组由第一段绕组E2b、第二段绕组E3b和第三段绕组E4b依次串联组成,二次侧绕组的C相绕组由第一段绕组E2c、第二段绕组E3c和第三段绕组E4c依次串联组成。
3、晶闸管调压电路
该电路的输入端与励磁变压器的二次侧绕组连接,输出端与增压变压器中一次侧绕组的高压端连接。晶闸管调压电路包括第一晶闸管调压电路、第二晶闸管调压电路和第三晶闸管调压电路,其中:
①:第一晶闸管调压电路的输入端与励磁变压器中二次侧绕组的A相绕组连接,输出端与增压变压器中二次侧绕组的C相绕组连接。如图3所示,输入端分别与第一段绕组E2a、第二段绕组E3a和第三段绕组E4a连接,输出端与绕组B3c连接。
②:第二晶闸管调压电路的输入端与励磁变压器中二次侧绕组的B相绕组连接,输出端与增压变压器中二次侧绕组的A相绕组连接。如图3所示,输入端分别与第一段绕组E2b、第二段绕组E3b和第三段绕组E4b连接,输出端与绕组B3a连接。
③:第三晶闸管调压电路的输入端与励磁变压器中二次侧绕组的C相绕组连接,输出端与增压变压器中二次侧绕组的B相绕组连接。如图3所示,输入端分别与第一段绕组E2c、第二段绕组E3c和第三段绕组E4c连接,输出端与绕组B3b连接。
上述第一晶闸管调压电路、第二晶闸管调压电路和第三晶闸管调压电路均包括依次串联的第一全桥电路、第二全桥电路和第三全桥电路,其中:
①:第一全桥电路的输入端连接于励磁变压器中二次侧绕组的第一段绕组的两端,第一全桥电路的每个桥臂由a个晶闸管串联组成。
本实施例中a=1,如图3所示第一全桥电路包括桥臂1、桥臂2、桥臂3和桥臂4。
②:第二全桥电路的输入端连接于励磁变压器中二次侧绕组的第二段绕组的两端,第二全桥电路的每个桥臂由b个晶闸管串联组成。
本实施例中a=3,如图3所示第二全桥电路包括桥臂5、桥臂6、桥臂7和桥臂8。
③:第三全桥电路的输入端连接于励磁变压器中二次侧绕组的第三段绕组的两端,第三全桥电路的每个桥臂由c个晶闸管串联组成。
本实施例中a=9,如图3所示第三全桥电路包括桥臂9、桥臂10、桥臂11和桥臂12。
本实施例中a:b:c=1:3:9,第一段绕组的绕组匝数n1、第二段绕组的绕组匝数n2和第三段绕组的绕组匝数n3的比值为n1:n2:n3=1:3:9。
本实施例中励磁变压器中二次侧绕组的工作状态包括27个工作状态,其中各段绕组的工作状态为:
①:第一段绕组的工作状态,包括正向串入增压变压器的二次侧绕组,反向串入增压变压器的二次侧绕组和不串入增压变压器的二次侧绕组。
如图3所示,当桥臂1与桥臂4导通,其他截止时,E2绕组正向串入绕组B3c中;当桥臂2与桥臂3导通,其他截止时,E2绕组反向串入绕组B3c中;当桥臂1与桥臂2导通,其他截止时,E2绕组不串入绕组B3c中;当桥臂3与桥臂4导通,其他截止时,E2绕组不串
入绕组B3c中。
②:第二段绕组的工作状态,包括正向串入增压变压器的二次侧绕组,反向串入增压变压器的二次侧绕组和不串入增压变压器的二次侧绕组。
③:第三段绕组的工作状态,包括正向串入增压变压器的二次侧绕组,反向串入增压变压器的二次侧绕组和不串入增压变压器的二次侧绕组。
本实施例中励磁变压器和增压变压器的连接方式主要包括:
①:励磁变压器的一次侧绕组和二次侧绕组均为Y0连接,以及增压变压器的二次侧绕组为Δ连接。
②:励磁变压器的一次侧绕组为Δ连接,二次侧绕组均为Y0连接,以及增压变压器的二次侧绕组为Y0连接。
③:励磁变压器的一次侧绕组为Δ连接,二次侧绕组均为Y0连接,以及增压变压器的二次侧绕组为Y连接。
最后应当说明的是:所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
Claims (8)
- 一种具有短路电流限制功能的可控移相器,其特征在于,所述可控移相器包括励磁变压器、增压变压器和晶闸管调压电路;所述增压变压器中一次侧绕组的低压端为可控移相器的输入端,高压端为可控移相器的输出端;所述一次侧绕组由两段绕组串联组成,所述两段绕组的连接点设置有中间抽头,所述中间抽头与励磁变压器中一次侧绕组的高压端连接;所述励磁变压器的二次侧绕组由三段绕组串联组成;所述晶闸管调压电路的输入端与励磁变压器的二次侧绕组连接,输出端与增压变压器中一次侧绕组的高压端连接。
- 如权利要求1所述的可控移相器,其特征在于,所述励磁变压器的一次侧绕组和二次侧绕组均为Y0连接;所述增压变压器的二次侧绕组为Δ连接。
- 如权利要求1所述的可控移相器,其特征在于,所述励磁变压器的一次侧绕组为Δ连接,二次侧绕组为Y0连接;所述增压变压器的二次侧绕组为Y0连接或者Y连接。
- 如权利要求1所述的可控移相器,其特征在于,所述励磁变压器的一次侧绕组包括A相绕组、B相绕组和C相绕组,所述增压变压器的中间抽头包括A相中间抽头、B相中间抽头和C相中间抽头;励磁变压器中一次侧绕组与增压变压器中一次侧绕组的连接方式包括:所述A相绕组的高压端与A相中间抽头连接;所述B相绕组的高压端与B相中间抽头连接;所述C相绕组的高压端与C相中间抽头连接。
- 如权利要求1所述的可控移相器,其特征在于,所述晶闸管调压电路包括第一晶闸管调压电路、第二晶闸管调压电路和第三晶闸管调压电路;所述第一晶闸管调压电路的输入端与所述励磁变压器中二次侧绕组的A相绕组连接,输出端与所述增压变压器中二次侧绕组的C相绕组连接;所述第二晶闸管调压电路的输入端与所述励磁变压器中二次侧绕组的B相绕组连接,输出端与所述增压变压器中二次侧绕组的A相绕组连接;所述第三晶闸管调压电路的输入端与所述励磁变压器中二次侧绕组的C相绕组连接,输出端与所述增压变压器中二次侧绕组的B相绕组连接。
- 如权利要求5所述的可控移相器,其特征在于,所述第一晶闸管调压电路、第二晶闸管调压电路和第三晶闸管调压电路均包括依次串联的第一全桥电路、第二全桥电路和第三全 桥电路;所述第一全桥电路的输入端连接于所述励磁变压器中二次侧绕组的第一段绕组的两端;所述第二全桥电路的输入端连接于所述励磁变压器中二次侧绕组的第二段绕组的两端;所述第三全桥电路的输入端连接于所述励磁变压器中二次侧绕组的第三段绕组的两端。
- 如权利要求6所述的可控移相器,其特征在于,所述第一全桥电路的每个桥臂由a个晶闸管串联组成,所述第二全桥电路的每个桥臂由b个晶闸管串联组成,所述第三全桥电路的每个桥臂由c个晶闸管串联组成,a:b:c=1:3:9;所述第一段绕组的绕组匝数n1、第二段绕组的绕组匝数n2和第三段绕组的绕组匝数n3的比值为n1:n2:n3=1:3:9。
- 如权利要求6所述的可控移相器,其特征在于,所述励磁变压器中二次侧绕组的工作状态包括27个工作状态;所述第一段绕组的工作状态包括正向串入增压变压器的二次侧绕组,反向串入增压变压器的二次侧绕组和不串入增压变压器的二次侧绕组;所述第二段绕组的工作状态包括正向串入增压变压器的二次侧绕组,反向串入增压变压器的二次侧绕组和不串入增压变压器的二次侧绕组;所述第三段绕组的工作状态包括正向串入增压变压器的二次侧绕组,反向串入增压变压器的二次侧绕组和不串入增压变压器的二次侧绕组。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510379446.4 | 2015-07-01 | ||
CN201510379446.4A CN104934974A (zh) | 2015-07-01 | 2015-07-01 | 一种具有短路电流限制功能的可控移相器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017000735A1 true WO2017000735A1 (zh) | 2017-01-05 |
Family
ID=54122009
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/084271 WO2017000735A1 (zh) | 2015-07-01 | 2016-06-01 | 一种具有短路电流限制功能的可控移相器 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104934974A (zh) |
WO (1) | WO2017000735A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113036771A (zh) * | 2021-02-24 | 2021-06-25 | 国网浙江省电力有限公司 | 一种基于励磁系统设计裕度的电网稳定性提升方法 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104934974A (zh) * | 2015-07-01 | 2015-09-23 | 国网智能电网研究院 | 一种具有短路电流限制功能的可控移相器 |
CN109038606B (zh) * | 2018-08-08 | 2024-04-02 | 全球能源互联网研究院有限公司 | 一种有载调压变压器及统一潮流控制系统 |
CN112242702A (zh) * | 2019-07-19 | 2021-01-19 | 国网江苏省电力有限公司 | 一种可控移相器及其控制方法 |
CN111584213A (zh) * | 2020-03-18 | 2020-08-25 | 温州图盛控股集团有限公司物资分公司 | 油浸式变压器 |
CN114121449A (zh) * | 2021-11-25 | 2022-03-01 | 云南电网有限责任公司电力科学研究院 | 一种移相变压器 |
CN115173427B (zh) * | 2022-09-08 | 2022-11-11 | 国网智能电网研究院有限公司 | 一种三相电压阻抗可调变压器及控制方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2092084A1 (en) * | 1991-08-08 | 1993-02-09 | Einar V. Larsen | Phase-shifting transformer system |
MD2824B2 (en) * | 2002-06-04 | 2005-07-30 | Institutul De Energetica Al Academiei De Stiinte A Republicii Moldova | Reversive phase-regulating device |
CN103187727A (zh) * | 2013-02-25 | 2013-07-03 | 中国电力科学研究院 | 一种用于超/特高压线路的可控移相器及其操作方法 |
CN103199522A (zh) * | 2013-02-25 | 2013-07-10 | 中国电力科学研究院 | 一种用于超/特高压线路的可控移相器及其参数设计方法 |
CN103427414A (zh) * | 2013-06-13 | 2013-12-04 | 国家电网公司 | 一种对称型可控移相器的参数设计方法 |
CN104934974A (zh) * | 2015-07-01 | 2015-09-23 | 国网智能电网研究院 | 一种具有短路电流限制功能的可控移相器 |
CN204761030U (zh) * | 2015-07-01 | 2015-11-11 | 国网智能电网研究院 | 一种可控移相器 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2065241B1 (es) * | 1992-12-09 | 1995-10-01 | Ibarguengoitia Francisco Gomez | Rele electronico para proteccion de motores y tiristores contra sobrecarga simetrica, desequilibrio de fases y cortocircuito. |
CN101692398B (zh) * | 2009-10-29 | 2012-06-27 | 保定天威集团有限公司 | 一种高电压增压变压器 |
CN104377690B (zh) * | 2014-11-13 | 2016-12-07 | 国网上海市电力公司 | 超高压电网可控移相器控制保护系统 |
-
2015
- 2015-07-01 CN CN201510379446.4A patent/CN104934974A/zh active Pending
-
2016
- 2016-06-01 WO PCT/CN2016/084271 patent/WO2017000735A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2092084A1 (en) * | 1991-08-08 | 1993-02-09 | Einar V. Larsen | Phase-shifting transformer system |
MD2824B2 (en) * | 2002-06-04 | 2005-07-30 | Institutul De Energetica Al Academiei De Stiinte A Republicii Moldova | Reversive phase-regulating device |
CN103187727A (zh) * | 2013-02-25 | 2013-07-03 | 中国电力科学研究院 | 一种用于超/特高压线路的可控移相器及其操作方法 |
CN103199522A (zh) * | 2013-02-25 | 2013-07-10 | 中国电力科学研究院 | 一种用于超/特高压线路的可控移相器及其参数设计方法 |
CN103427414A (zh) * | 2013-06-13 | 2013-12-04 | 国家电网公司 | 一种对称型可控移相器的参数设计方法 |
CN104934974A (zh) * | 2015-07-01 | 2015-09-23 | 国网智能电网研究院 | 一种具有短路电流限制功能的可控移相器 |
CN204761030U (zh) * | 2015-07-01 | 2015-11-11 | 国网智能电网研究院 | 一种可控移相器 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113036771A (zh) * | 2021-02-24 | 2021-06-25 | 国网浙江省电力有限公司 | 一种基于励磁系统设计裕度的电网稳定性提升方法 |
Also Published As
Publication number | Publication date |
---|---|
CN104934974A (zh) | 2015-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017000735A1 (zh) | 一种具有短路电流限制功能的可控移相器 | |
CN106953349B (zh) | 一种用于柔性直流输电系统孤岛启动的方法 | |
CN103178527B (zh) | 一种电压偏差调节器 | |
CN107612344A (zh) | 一种isos组合型dc/dc变换器的均压控制方法 | |
CN103762598A (zh) | 带无级调压消弧开关的大功率功率补偿稳压调容交流电源 | |
Sen et al. | Unique capabilities of Sen Transformer: A power flow regulating transformer | |
CN106816881B (zh) | 一种串联补偿装置及其容量优化方法 | |
WO2024139941A2 (zh) | 磁路自适应式电网潮流控制器 | |
CN106921155A (zh) | 直流双极供电系统电压不平衡的控制方法 | |
CN113077978A (zh) | 一种带有附加电抗器的大容量双器身高阻抗新型调压移相变压器 | |
CN105914741B (zh) | 一种upfc线路侧无功潮流优化控制方法 | |
CN204761030U (zh) | 一种可控移相器 | |
CN2625948Y (zh) | 一种无触点补偿式电力稳压器 | |
CN111338412A (zh) | 一种交流稳压器及交流稳压设备 | |
CN103280796B (zh) | 供电系统母联开关柔性倒闸技术及其实现方法 | |
CN212411085U (zh) | 一种无触点交流稳压器稳压电路 | |
CN102158104A (zh) | 一种电压与电流调节器 | |
CN109412176A (zh) | 一种用于提高电力系统稳定性的控制方法 | |
CN205753417U (zh) | 一种极性变压器串联补偿系统 | |
CN102377350B (zh) | 无谐波污染和瞬间输出电压跌落的稳压装置及稳压方法 | |
CN106159949B (zh) | 一种电能质量补偿系统 | |
CN204302843U (zh) | 一种稳压电路及稳压器 | |
CN101951171A (zh) | 变压装置 | |
Buticchi et al. | Modular DC/DC converter structure with multiple power flow paths for smart transformer applications | |
CN105703378A (zh) | 一种电抗器投切模块 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16817099 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16817099 Country of ref document: EP Kind code of ref document: A1 |