WO2017000569A1 - 一种等效变桨微分控制方法及装置 - Google Patents

一种等效变桨微分控制方法及装置 Download PDF

Info

Publication number
WO2017000569A1
WO2017000569A1 PCT/CN2016/074563 CN2016074563W WO2017000569A1 WO 2017000569 A1 WO2017000569 A1 WO 2017000569A1 CN 2016074563 W CN2016074563 W CN 2016074563W WO 2017000569 A1 WO2017000569 A1 WO 2017000569A1
Authority
WO
WIPO (PCT)
Prior art keywords
control parameter
wind turbine
wind
pitch
energy deviation
Prior art date
Application number
PCT/CN2016/074563
Other languages
English (en)
French (fr)
Inventor
杨微
陶友传
陶芬
刘杰
Original Assignee
中船重工(重庆)海装风电设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中船重工(重庆)海装风电设备有限公司 filed Critical 中船重工(重庆)海装风电设备有限公司
Priority to EP16816934.0A priority Critical patent/EP3228863B1/en
Priority to ES16816934T priority patent/ES2834496T3/es
Priority to US15/542,414 priority patent/US10240585B2/en
Priority to DK16816934.0T priority patent/DK3228863T3/da
Publication of WO2017000569A1 publication Critical patent/WO2017000569A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/043Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
    • F03D7/044Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic with PID control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
    • G05B11/42Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P. I., P. I. D.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/328Blade pitch angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/70Type of control algorithm
    • F05B2270/706Type of control algorithm proportional-integral-differential
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to the field of wind turbine control technology, and more particularly to an equivalent pitch differential control method and apparatus.
  • the existing pitch control mostly uses the generator speed as the input quantity, and the output pitch angle is controlled by the PI (proportional integral controller), and the rotation speed is controlled by the pitch actuator.
  • PI proportional integral controller
  • the traditional PI control structure is simple, and the control parameters are usually obtained by modeling and adjusting the simulation software such as MATLAB. Since the accuracy of the wind turbine model has a great influence on the setting result of the control parameters, but for the large wind turbine Large-scale structures with high linearity have great difficulty in establishing accurate models. Therefore, the control parameters obtained by modeling and adjusting the simulation software such as MATLAB are often far from the actual operating parameters of the unit. And the commonly used PI control lacks dynamic deviation control, and the running stability of the unit is reduced under drastic changes in wind conditions.
  • the present invention provides the following technical solutions:
  • the present invention provides an equivalent pitch differential control method, comprising:
  • the first control parameter and the second control parameter are respectively obtained by using a PI control method of static energy deviation
  • the proportional-integral-equivalent differential PID controller controls the wind power generator according to the first control parameter, the second control parameter and the third control parameter Aggressing the measured speed of the wind wheel to the reference speed of the wind wheel;
  • the first control parameter is obtained according to the following formula:
  • G gearbox is the gearbox ratio
  • ⁇ ref is the reference speed of the wind turbine
  • is the frequency
  • is the damping
  • I drivetrain is the moment of inertia of the wind turbine drive chain
  • P is the absorption power of the wind wheel
  • is the change Paddle angle
  • the second control parameter is obtained according to the following formula:
  • G gearbox is the gearbox ratio
  • ⁇ ref is the reference speed of the wind turbine
  • is the frequency
  • is the damping
  • I drivetrain is the moment of inertia of the wind turbine drive chain
  • P is the absorption power of the wind wheel
  • is the change Paddle angle
  • G gearbox is the gearbox transmission ratio
  • is the wind turbine measuring speed
  • ⁇ ref is the wind turbine reference speed
  • is the frequency
  • is the damping.
  • the acquiring the first control parameter and the second control parameter separately includes:
  • is the variation of the pitch angle near the set point
  • K P is the first control parameter
  • K I is the second control parameter
  • is the change of the rotor speed
  • G gearbox is the gearbox ratio
  • t is the time variable.
  • I drivetrain is the moment of inertia of the wind turbine drive chain
  • P is the wind turbine absorption power
  • is the pitch angle
  • For the amount of change in the rotational speed of the rotor, ⁇ is the rotational speed of the rotor.
  • the performing Taylor expansion on the second relationship comprises:
  • the acquiring the third control parameter includes:
  • the pitch angle of obtaining the pitch absorption energy by using the total energy deviation and the static energy deviation comprises:
  • the static energy deviation is eliminated, the residual dynamic energy deviation is obtained, and the pitch angle of the pitch absorption energy is obtained according to the residual dynamic energy deviation.
  • the present invention provides an equivalent pitch differential control device comprising:
  • a first acquiring unit configured to respectively acquire a first control parameter and a second control parameter by using a PI control method of static energy deviation
  • a second acquiring unit configured to acquire a third control parameter of the equivalent differential by using dynamic energy deviation
  • control unit configured to input the wind wheel measurement speed and the wind wheel reference speed, and the proportional-integral-equivalent differential PID controller according to the first control parameter, the second control parameter, and the third control parameter
  • the genset is controlled to realize the following of the reference rotation speed of the wind wheel
  • the first control parameter is obtained according to the following formula:
  • G gearbox is the gearbox ratio
  • ⁇ ref is the reference speed of the wind turbine
  • is the frequency
  • is the damping
  • I drivetrain is the moment of inertia of the wind turbine drive chain
  • P is the absorption power of the wind wheel
  • is the change Paddle angle
  • the second control parameter is obtained according to the following formula:
  • G gearbox is the gearbox ratio
  • ⁇ ref is the reference speed of the wind turbine
  • is the frequency
  • is the damping
  • I drivetrain is the moment of inertia of the wind turbine drive chain
  • P is the absorption power of the wind wheel
  • is the change Paddle angle
  • G gearbox is the gearbox transmission ratio
  • is the wind turbine measuring speed
  • ⁇ ref is the wind turbine reference speed
  • is the frequency
  • is the damping.
  • the first obtaining unit comprises:
  • a third obtaining unit configured to obtain the wind wheel aerodynamic torque and mechanical work respectively in the pitch range a first relationship between the rate and the reference speed of the wind wheel and a second relationship between the wind wheel aerodynamic torque and the pitch angle, the mechanical power, and the reference speed of the wind wheel;
  • a first calculating unit configured to perform Taylor expansion on the first relationship and the second relationship, respectively, and obtain the pitch angle according to the following formula:
  • is the variation of the pitch angle near the set point
  • K P is the first control parameter
  • K I is the second control parameter
  • is the change of the rotor speed
  • G gearbox is the gearbox ratio
  • t is the time variable.
  • a second calculating unit configured to acquire a second-order differential relation of the reference speed of the wind turbine according to the following formula, based on the formula of the pitch angle: using an aerodynamic torque relationship and a control theory:
  • I drivetrain is the moment of inertia of the wind turbine drive chain
  • P is the wind turbine absorption power
  • is the pitch angle
  • For the amount of change in the rotational speed of the rotor, ⁇ is the rotational speed of the rotor.
  • a fourth acquiring unit configured to acquire a steady state of a second-order differential relationship of the reference speed of the wind turbine, and obtain the first control parameter and the second control parameter in the stable state.
  • the first calculating unit comprises:
  • a fifth acquisition unit for acquiring a pitch wind turbine blade by a blade design In relation to the pitch angle ⁇ , Taylor expansion is performed on the second relation according to the acquired relationship.
  • the second obtaining unit comprises:
  • a sixth obtaining unit configured to acquire a total energy deviation of the wind wheel rotation and a static energy deviation by using an aerodynamic torque relationship
  • a seventh acquiring unit configured to obtain a pitch angle of the pitch absorption energy by using the total energy deviation and the static energy deviation
  • an eighth acquiring unit configured to acquire the third control parameter according to the obtained pitch angle.
  • the seventh obtaining unit comprises:
  • a ninth acquiring unit configured to eliminate the static energy deviation, obtain a residual dynamic energy deviation, and obtain a pitch angle of the pitch absorption energy according to the residual dynamic energy deviation.
  • the invention provides an equivalent pitch differential control method and device, which obtains a first control parameter, a second control parameter and a third control for obtaining an equivalent differential by dynamic energy deviation by a PI control method using static energy deviation
  • the parameters are combined, and the wind turbine generator is controlled in real time as a parameter value to the PID controller.
  • the equivalent pitch differential control method provided by the present invention is the control parameter accuracy of the PID controller acquired by the system. It is higher, and when the wind turbine is controlled by the equivalent differential parameter obtained by dynamic energy deviation, the dynamic response capability of the large wind turbine in the variable wind speed is improved more effectively, avoiding The unit overspeed, the tip clearance is too small, and extreme load is generated.
  • FIG. 1 is a flowchart of an equivalent pitch differential control method according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a pitch wind turbine blade in an equivalent pitch differential control method according to an embodiment of the present invention. Schematic diagram of the relationship with the pitch angle ⁇ ;
  • FIG. 4 is a schematic structural diagram of an equivalent pitch differential control device according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a sub-structure of an equivalent pitch differential control method according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of another seed of an equivalent pitch differential control method according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a wind condition according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of comparing control rotational speeds of an equivalent pitch differential control method and a conventional control method according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of comparison between an equivalent pitch differential control method and a conventional control method for controlling tip clearance according to an embodiment of the present invention.
  • FIG. 1 illustrates an equivalent pitch differential control method provided by an embodiment of the present invention, which may include the following steps:
  • Step 101 Acquire a first control parameter and a second control parameter respectively by using a PI control method of static energy deviation.
  • Step 102 Acquire a third control parameter of the equivalent differential by using dynamic energy deviation.
  • Step 103 Taking the wind wheel measurement speed and the wind wheel reference speed as input, the proportional-integral-equivalent differential PID controller controls the wind turbine according to the first control parameter, the second control parameter and the third control parameter to realize the wind wheel The speed is measured to follow the reference speed of the rotor.
  • the first control parameter is obtained according to the following formula:
  • G gearbox is the gearbox ratio
  • ⁇ ref is the reference speed of the wind turbine
  • is the frequency
  • is the damping
  • I drivetrain is the moment of inertia of the wind turbine drive chain
  • P is the absorption power of the wind wheel
  • is the change Paddle angle
  • G gearbox is the gearbox ratio
  • ⁇ ref is the reference speed of the wind turbine
  • is the frequency
  • is the damping
  • I drivetrain is the moment of inertia of the wind turbine drive chain
  • P is the absorption power of the wind wheel
  • is the change Paddle angle
  • G gearbox is the gearbox transmission ratio
  • is the wind turbine measuring speed
  • ⁇ ref is the wind turbine reference speed
  • is the frequency
  • is the damping.
  • the process of deriving the PI control and the dynamic energy deviation is combined with the PID (Proportion Integration Differentiation) control, and the first control parameter, the second control parameter, and the third control parameter are sequentially acquired, and then adopted.
  • the obtained three control parameters control the PID controller so that the wind turbine speed of the wind turbine is continuously equal to the reference speed of the wind turbine, that is, the three control parameters are adjusted in real time according to the actual rotational speed deviation ⁇ - ⁇ ref to improve the wind turbine generation. Control of the speed under turbulent wind conditions.
  • the invention provides an equivalent pitch differential control method, which uses a first control parameter obtained by a PI control method using static energy deviation, a second control parameter, and a third control parameter phase obtained by dynamic energy deviation to obtain an equivalent differential
  • the wind turbine generator is controlled in real time as a parameter value to the PID controller.
  • the equivalent pitch differential control method provided by the invention has higher precision of the control parameters of the PID controller acquired by the system.
  • FIG. 2 illustrates another flowchart of an equivalent pitch differential control method according to an embodiment of the present invention, which may include the following steps:
  • Step 201 Acquire a first relationship between the wind turbine torque, the mechanical power and the rotational speed, and a second relationship between the pneumatic torque, the pitch angle, the mechanical power, and the reference speed of the wind turbine in the pitch range.
  • Step 202 Obtaining the blade of the pitch wind turbine by the blade design The relationship between the pitch angle ⁇ , the Taylor expansion of the second relation according to the acquired relationship, and the Taylor expansion of the first relation.
  • Step 203 Obtain the pitch angle according to the following formula:
  • is the variation of the pitch angle near the set point
  • K P is the first control parameter
  • K I is the second control parameter
  • is the change of the rotor speed
  • G gearbox is the gearbox ratio
  • t is the time variable.
  • Step 204 On the basis of the pitch angle formula, using the aerodynamic torque relationship and the control theory, obtain the second-order differential relationship of the reference speed of the wind turbine according to the following formula:
  • I drivetrain is the moment of inertia of the wind turbine drive chain, P wind wheel absorbs power, and ⁇ is the pitch angle;
  • is the rotational speed of the rotor.
  • Step 205 Acquire a steady state of a second-order differential relationship of the rotational speed of the wind wheel. In the steady state, obtain the first control parameter and the second control parameter.
  • Step 206 Acquire a total energy deviation of the rotor rotation and a static energy deviation by using an aerodynamic torque relationship.
  • Step 207 Eliminate the static energy deviation, obtain the residual dynamic energy deviation, and obtain the pitch angle of the pitch absorption energy according to the residual dynamic energy deviation.
  • Step 208 Acquire a third control parameter according to the obtained pitch angle.
  • Step 209 The acquired third control parameter is controlled in real time according to the wind turbine measurement speed of the wind turbine.
  • Pitch wind turbines limit wind by adjusting the pitch angle of wind turbine blades in high wind speed environment Can be absorbed to maintain the wind turbine operating in the rated power setting area. Due to the aerodynamic performance of the rotor blades, the blade pitch angle adjustment has a nonlinear relationship with the wind speed. Therefore, in order to obtain better pitch control effects, the pitch controller parameter values need to be adjusted according to the aerodynamic characteristics of the rotor blades. In order to reduce the influence of software modeling inaccuracy such as MATLAB on the control parameter values, the embodiment of the present invention proposes an equivalent pitch differential control method, that is, directly adjusting the PI control parameters through the dynamic relationship.
  • T gen is the generator torque
  • G gearbox is the gearbox transmission ratio
  • ⁇ ref is the wind turbine reference rotation speed.
  • is the amount of change in pitch angle near the set point.
  • the PI controller can obtain the pitch angle adjustment expression as:
  • T aero is the low-speed shaft aerodynamic torque
  • I rotor I gen is the rotor moment of inertia and the generator moment of inertia
  • is the amount of change of the rotor speed. Rotate the acceleration for the rotor.
  • equation (7) can be rewritten as:
  • the pitch PI parameter value can be obtained. The relationship is as follows:
  • pitch wind turbine blade shown in Figure 3 The relationship between the pitch angle ⁇ and the pitch angle ⁇ can be approximated as a first-order linear relationship, which can be easily obtained by the blade design. It should be noted that almost all pitch wind turbines are The relationship between the pitch angle ⁇ and the pitch angle ⁇ can be approximated as a first-order linear relationship.
  • the total energy deviation and static energy deviation of the rotor rotation can be obtained as follows:
  • the residual dynamic energy deviation can be expressed as:
  • the dynamic deviation adjustment is regarded as the differential term (Part D) of the PID controller.
  • the control parameter K d obtained by the formula (20) is adjusted in real time according to the actual rotational speed deviation ⁇ - ⁇ ref , and is used as a supplement to the PI control to effectively improve the control effect of the wind turbine on the rotational speed of the wind turbine under turbulent wind conditions.
  • An equivalent pitch differential control method provided by an embodiment of the present invention combines a first control parameter obtained by PI control, a second control parameter, and a third control parameter obtained by dynamic energy deviation as a PID controller
  • the parameter values are used to control the wind turbine in real time.
  • the first control parameter, the second control parameter and the third control parameter obtained in the equivalent pitch differential control method provided by the present application are relatively accurate.
  • the three control parameters can be directly applied to the PID control, without the need to debug one by one in the modeling process as in the prior art, thereby reducing the debugging time in the process of obtaining accurate parameters and avoiding unnecessary use risks.
  • FIG. 4 is a schematic structural diagram of an equivalent pitch differential control device according to an embodiment of the present invention, including: a first acquiring unit 11, a second acquiring unit 12, and a control Unit 13, wherein:
  • the first obtaining unit 11 is configured to separately acquire the first control parameter and the second control parameter by using a PI control method of static energy deviation.
  • a schematic diagram of a sub-structure of an equivalent pitch differential control device includes: a third acquiring unit 21, a first calculating unit 22, and a second calculating unit. 23 and a fourth obtaining unit 24, wherein:
  • the third obtaining unit 21 is configured to obtain, in the pitch range, a first relationship between the wind wheel torque, the mechanical power and the rotational speed, and a pneumatic torque, a pitch angle, a mechanical power, and a reference speed of the wind wheel. The second relationship.
  • the first calculating unit 22 is configured to perform Taylor expansion on the first relation and the second relation, respectively, and obtain a pitch angle according to the following formula:
  • is the variation of the pitch angle near the set point
  • K P is the first control parameter
  • K I is the second control parameter
  • is the change of the rotor speed
  • G gearbox is the gearbox ratio
  • t is the time variable.
  • the first calculating unit 22 may further include: a fifth obtaining unit 221, where:
  • a fifth obtaining unit 221 configured to acquire a pitch wind turbine blade by a blade design In relation to the pitch angle ⁇ , Taylor expansion is performed on the second relation according to the acquired relationship.
  • the fifth obtaining unit 221 is configured to obtain the second control parameter expression. The value is obtained during the blade design process.
  • the second calculating unit 23 is configured to obtain a second-order differential relation of the reference speed of the wind turbine according to the following formula based on the formula of the pitch angle and the aerodynamic torque relationship and the control theory:
  • I drivetrain is the moment of inertia of the wind turbine drive chain
  • P is the absorbed power of the wind wheel
  • is the pitch angle
  • For the amount of change in the rotational speed of the rotor, ⁇ is the rotational speed of the rotor.
  • the fourth obtaining unit 24 is configured to obtain a steady state of the second-order differential relation of the rotational speed of the wind wheel. In the steady state, the first control parameter and the second control parameter are acquired.
  • the second obtaining unit 12 is configured to obtain a third control parameter K D of the equivalent differential by using dynamic energy deviation.
  • FIG. 6 is a schematic diagram of another seed structure of an equivalent pitch differential control device according to an embodiment of the present invention.
  • the second obtaining unit 12 may include: a sixth obtaining unit 31, and a seventh acquiring.
  • Unit 32 and eighth obtaining unit 33 wherein:
  • the sixth obtaining unit 31 is configured to acquire the total energy deviation of the wind wheel rotation and the static energy deviation by using an aerodynamic torque relationship.
  • the seventh obtaining unit 32 is configured to obtain a pitch angle of the pitch absorption energy by using the total energy deviation and the static energy deviation.
  • the seventh obtaining unit 32 may further include: a ninth obtaining unit 321, where:
  • the ninth obtaining unit 321 is configured to eliminate the static energy deviation, obtain the residual dynamic energy deviation, and obtain the pitch angle of the pitch absorption energy according to the residual dynamic energy deviation.
  • the eighth obtaining unit 33 is configured to acquire the third control parameter according to the obtained pitch angle.
  • the control unit 13 is configured to input the wind turbine measurement speed and the wind turbine reference speed, and the proportional-integral-equivalent differential PID controller controls the wind turbine according to the first control parameter, the second control parameter and the third control parameter.
  • the wind wheel is measured to follow the reference speed of the wind wheel.
  • the 2MW wind turbine is controlled under the wind condition as shown in FIG. 7, wherein FIG. 8 and FIG. 9 show the conventional control method and adopting The comparison result of the control method provided by the embodiment of the present invention, it should be noted that the dark thick line is the control result obtained by the control method provided by the embodiment of the present invention, and the light colored thin line is the control result obtained by the traditional PI control method. . Comparing the two figures, it can be seen that, under the equivalent pitch differential control method provided by the embodiment of the present invention, the obtained wind turbine measurement speed fluctuation of the wind turbine generator is smaller than that of the conventional PI control method. The sharp gap is larger.
  • An equivalent pitch differential control device provided by the present invention will adopt a static energy deviation
  • the first control parameter obtained by the PI control method, the second control parameter and the third control parameter obtained by the dynamic energy deviation to obtain the equivalent differential are combined, and the wind turbine generator set is controlled in real time as a parameter value to the PID controller.
  • the equivalent pitch differential control method provided by the invention has high precision of control parameters of the PID controller acquired by the system, and controls the wind power generation set by using equivalent differential parameters obtained by dynamic energy deviation.
  • the dynamic response capability of the large-scale wind turbine to the pitching action under the wind conditions with rapid wind speed is more effectively improved, and the situation that the unit overspeed, the tip clearance is too small, and the extreme load is generated is avoided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Wind Motors (AREA)

Abstract

一种等效变桨微分控制方法及装置,所述方法包括:采用静态能量偏差的PI控制方法分别获取第一控制参数、第二控制参数;采用动态能量偏差获取等效微分的第三控制参数;将风轮测量转速与风轮参考转速作为输入,比例-积分-等效微分PID控制器依据第一控制参数、第二控制参数和第三控制参数对风力发电机组进行控制,实现风轮转速对风轮参考转速的跟随。将通过采用静态能量偏差的PI控制方法获取的第一控制参数、第二控制参数和通过动态能量偏差获取等效微分的第三控制参数相结合,作为PID控制器的参数值对风力发电机组进行实时控制,有效的提高了大型风力发电机组在风速快速变化的风况下变桨动作的动态响应能力。

Description

一种等效变桨微分控制方法及装置
本申请要求于2015年6月30日提交中国专利局、申请号为201510375082.2、发明名称为“一种等效变桨微分控制方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及风力发电机组控制技术领域,更具体地说,涉及一种等效变桨微分控制方法及装置。
背景技术
现有变桨控制多以发电机转速为输入量,通过PI控制器(proportional integral controller)控制输出变桨角度,经过变桨执行装置实现对转速的控制。
传统的PI控制结构简单,通常通过MATLAB等仿真软件建模调整的方式获取控制参数,由于风力发电机组模型的准确度对控制参数的整定结果有较大影响,但对于大型风力发电机组这种非线性程度较高的大型结构,建立准确的模型有较大难度,因此通过MATLAB等仿真软件建模调整的方式获取的控制参数往往与实际机组运行参数相差甚远。且通常采用的PI控制缺少对动态偏差控制,在急剧变化的风况下机组运行稳定性降低。
综上可知,如何获取精确的控制参数以及提高变桨系统的动态响应能力是目前本领域技术人员亟待解决的问题。
发明内容
有鉴于此,本发明的目的是提供一种等效变桨微分控制方法及装置,用以获取精确的控制参数以及提高变桨系统的动态响应能力。
为了实现上述目的,本发明提供如下技术方案:
一方面,本发明提供了一种等效变桨微分控制方法,包括:
采用静态能量偏差的PI控制方法分别获取第一控制参数、第二控制参数;
采用动态能量偏差获取等效微分的第三控制参数;
将风轮测量转速与风轮参考转速作为输入,比例-积分-等效微分PID控制器依据所述第一控制参数、所述第二控制参数和所述第三控制参数对风力发电机组进行控制,实现所述风轮测量转速对所述风轮参考转速的跟随;
其中,按照下述公式获取所述第一控制参数:
Figure PCTCN2016074563-appb-000001
在上式中,Ggearbox为齿轮箱传动比,Ωref为风轮参考转速,ω为频率,ζ为阻尼,Idrivetrain为风力发电机组传动链转动惯量,P为风轮吸收功率,θ为变桨角度;
按照下述公式获取所述第二控制参数:
Figure PCTCN2016074563-appb-000002
在上式中,Ggearbox为齿轮箱传动比,Ωref为风轮参考转速,ω为频率,ζ为阻尼,Idrivetrain为风力发电机组传动链转动惯量,P为风轮吸收功率,θ为变桨角度;
按照下述公式获取所述第三控制参数:
Figure PCTCN2016074563-appb-000003
在上式中,Ggearbox为齿轮箱传动比,Ω为风轮测量转速,Ωref为风轮参考转速,ω为频率,ζ为阻尼。
优选的,所述分别获取第一控制参数、第二控制参数包括:
在变桨范围内,分别获取风轮气动转矩、机械功率及所述风轮参考转速的第一关系式和所述风轮气动转矩、所述变桨角度、所述机械功率及所述风轮参考转速间的第二关系式;
分别对所述第一关系式和所述第二关系式进行泰勒展开,并按照下述公式获取所述变桨角度:
Figure PCTCN2016074563-appb-000004
其中,Δθ为设定点附近的变桨角变化量,KP为第一控制参数、KI为第二控制参数,ΔΩ为风轮转速变化量,Ggearbox为齿轮箱传动比,t为时间变量。
在所述变桨角度公式的基础上,采用空气动力学转矩关系式及控制理论,按照下式获取所述风轮参考转速的二阶微分关系式:
Figure PCTCN2016074563-appb-000005
其中,Idrivetrain为风力发电机组传动链转动惯量,P为风轮吸收功率,θ为变桨角度;
Figure PCTCN2016074563-appb-000006
为风轮旋转加速度,
Figure PCTCN2016074563-appb-000007
为风轮旋转速度变化量,φ为风轮旋转速度。
获取所述风轮参考转速的二阶微分关系式的稳定状态,在所述稳定状态下,获取所述第一控制参数和所述第二控制参数。
优选的,所述对第二关系式进行泰勒展开包括:
通过叶片设计获取变桨风力发电机组叶片的
Figure PCTCN2016074563-appb-000008
与所述变桨角度θ之间关系,根据获取的所述关系对所述第二关系式进行泰勒展开。
优选的,所述获取所述第三控制参数包括:
采用空气动力学转矩关系获取风轮旋转总能量偏差与静态能量偏差;
采用所述总能量偏差和所述静态能量偏差获取变桨吸收能量的变桨角度;
依据获取的所述变桨角度获取所述第三控制参数。
优选的,所述采用所述总能量偏差和所述静态能量偏差获取变桨吸收能量的变桨角度包括:
消除所述静态能量偏差,获取剩余动态能量偏差,依据所述剩余动态能量偏差获取变桨吸收能量的所述变桨角度。
另一方面,本发明提供了一种等效变桨微分控制装置,包括:
第一获取单元,用于采用静态能量偏差的PI控制方法分别获取第一控制参数、第二控制参数;
第二获取单元,用于采用动态能量偏差获取等效微分的第三控制参数;
控制单元,用于将风轮测量转速和风轮参考转速作为输入,比例-积分-等效微分PID控制器依据所述第一控制参数、所述第二控制参数和所述第三控制参数对风力发电机组进行控制,实现所述风轮测量转速对所述风轮参考转速的跟随;
其中,按照下述公式获取所述第一控制参数:
Figure PCTCN2016074563-appb-000009
在上式中,Ggearbox为齿轮箱传动比,Ωref为风轮参考转速,ω为频率,ζ为阻尼,Idrivetrain为风力发电机组传动链转动惯量,P为风轮吸收功率,θ为变桨角度;
按照下述公式获取所述第二控制参数:
Figure PCTCN2016074563-appb-000010
在上式中,Ggearbox为齿轮箱传动比,Ωref为风轮参考转速,ω为频率,ζ为阻尼,Idrivetrain为风力发电机组传动链转动惯量,P为风轮吸收功率,θ为变桨角度;
按照下述公式获取所述第三控制参数:
Figure PCTCN2016074563-appb-000011
在上式中,Ggearbox为齿轮箱传动比,Ω为风轮测量转速,Ωref为风轮参考转速,ω为频率,ζ为阻尼。
优选的,所述第一获取单元包括:
第三获取单元,用于在变桨范围内,分别获取风轮气动转矩、机械功 率及所述风轮参考转速的第一关系式和所述风轮气动转矩与变桨角度、所述机械功率及所述风轮参考转速间的第二关系式;
第一计算单元,用于分别对所述第一关系式和所述第二关系式进行泰勒展开,并按照下述公式获取所述变桨角度:
Figure PCTCN2016074563-appb-000012
其中,Δθ为设定点附近的变桨角变化量,KP为第一控制参数、KI为第二控制参数,ΔΩ为风轮转速变化量,Ggearbox为齿轮箱传动比,t为时间变量。
第二计算单元,用于在所述变桨角度公式的基础上,采用空气动力学转矩关系式及控制理论,按照下式获取所述风轮参考转速的二阶微分关系式:
Figure PCTCN2016074563-appb-000013
其中,Idrivetrain为风力发电机组传动链转动惯量,P为风轮吸收功率,θ为变桨角度;
Figure PCTCN2016074563-appb-000014
为风轮旋转加速度,
Figure PCTCN2016074563-appb-000015
为风轮旋转速度变化量,φ为风轮旋转速度。
第四获取单元,用于获取所述风轮参考转速的二阶微分关系式的稳定状态,在所述稳定状态下,获取所述第一控制参数和所述第二控制参数。
优选的,所述第一计算单元包括:
第五获取单元,用于通过叶片设计获取变桨风力发电机组叶片的
Figure PCTCN2016074563-appb-000016
与所述变桨角度θ之间的关系,根据获取的所述关系对所述第二关系式进行泰勒展开。
优选的,所述第二获取单元包括:
第六获取单元,用于采用空气动力学转矩关系获取风轮旋转总能量偏差与静态能量偏差;
第七获取单元,用于采用所述总能量偏差和所述静态能量偏差获取变桨吸收能量的变桨角度;
第八获取单元,用于依据获取的所述变桨角度获取所述第三控制参数。
优选的,所述第七获取单元包括:
第九获取单元,用于消除所述静态能量偏差,获取剩余动态能量偏差,依据所述剩余动态能量偏差获取变桨吸收能量的变桨角度。
与现有技术相比,本发明的优点如下:
本发明提供的一种等效变桨微分控制方法及装置,将通过采用静态能量偏差的PI控制方法获取的第一控制参数、第二控制参数和通过动态能量偏差获取等效微分的第三控制参数相结合,作为到PID控制器的参数值对风力发电机组进行实时控制,与现有技术相比,本发明提供的等效变桨微分控制方法即系统获取的PID控制器的控制参数精确度较高,且在采用通过动态能量偏差获取的等效微分参数对风力发电机组进行控制时,更有效的提高了大型风力发电机组在风速快速变化的风况下变桨动作的动态响应能力,避免了机组超速、叶尖间隙过小以及产生极端载荷等情况的发生。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明实施例提供的一种等效变桨微分控制方法的一种流程图;
图2为本发明实施例提供的一种等效变桨微分控制方法的另一种流程图;
图3为本发明实施例提供的一种等效变桨微分控制方法中的变桨风力发电机组叶片的
Figure PCTCN2016074563-appb-000017
与变桨角度θ之间关系示意图;
图4为本发明实施例提供的一种等效变桨微分控制装置的一种结构示意图;
图5为本发明实施例提供的一种等效变桨微分控制方法的一种子结构示意图;
图6为本发明实施例提供的一种等效变桨微分控制方法的另一种子结构示意图;
图7为本发明实施例提供的一种风况的示意图;
图8为本发明实施例提供的等效变桨微分控制方法与传统控制方法控制转速对比示意图;
图9为本发明实施例提供的等效变桨微分控制方法与传统控制方法控制叶尖间隙对比示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参考图1,其示出了本发明实施例提供的一种等效变桨微分控制方法,可以包括以下步骤:
步骤101:采用静态能量偏差的PI控制方法分别获取第一控制参数、第二控制参数。
步骤102:采用动态能量偏差获取等效微分的第三控制参数。
步骤103:将风轮测量转速和风轮参考转速作为输入,比例-积分-等效微分PID控制器依据第一控制参数、第二控制参数和第三控制参数对风力发电机组进行控制,实现风轮测量转速对风轮参考转速的跟随。
其中,按照下述公式获取第一控制参数:
Figure PCTCN2016074563-appb-000018
在上式中,Ggearbox为齿轮箱传动比,Ωref为风轮参考转速,ω为频率,ζ为阻尼,Idrivetrain为风力发电机组传动链转动惯量,P为风轮吸收功率,θ为变桨角度;
按照下述公式获取第二控制参数:
Figure PCTCN2016074563-appb-000019
在上式中,Ggearbox为齿轮箱传动比,Ωref为风轮参考转速,ω为频率,ζ为阻尼,Idrivetrain为风力发电机组传动链转动惯量,P为风轮吸收功率,θ为变桨角度;
按照下述公式获取第三控制参数:
Figure PCTCN2016074563-appb-000020
在上式中,Ggearbox为齿轮箱传动比,Ω为风轮测量转速,Ωref为风轮参考转速,ω为频率,ζ为阻尼。
需要说明的是,本发明实施例是将PI控制与动态能量偏差推导的过程与PID(Proportion Integration Differentiation)控制相结合,依次获取第一控制参数、第二控制参数和第三控制参数后,采用获取的三个控制参数控制PID控制器,使风力发电机组的风轮转速不断与风轮参考转速相等,即通过三个控制参数根据实际转速偏差Ω-Ωref实时调整,以提高风力发电机组在湍流风况下对转速的控制。
本发明提供的一种等效变桨微分控制方法,将通过采用静态能量偏差的PI控制方法获取的第一控制参数、第二控制参数和通过动态能量偏差获取等效微分的第三控制参数相结合,作为到PID控制器的参数值对风力发电机组进行实时控制,与现有技术相比,本发明提供的等效变桨微分控制方法即系统获取的PID控制器的控制参数精确度较高,且在采用通过动态能量偏差获取的等效微分参数对风力发电机组进行控制时,更有效的提高了大型风力发电机组在风速快速变化的风况下变桨动作的动态响应能力,避免了机组超速、叶尖间隙过小以及产生极端载荷等情况的发生。
请参考图2,其示出了本发明实施例提供的一种等效变桨微分控制方法的另一种流程图,可以包括以下步骤:
步骤201:在变桨范围内,分别获取风轮气动转矩、机械功率及转速的第一关系式和气动转矩、变桨角度、机械功率及风轮参考转速间的第二关系式。
步骤202:通过叶片设计获取变桨风力发电机组叶片的
Figure PCTCN2016074563-appb-000021
与变桨角度θ之间的关系,根据获取的关系对第二关系式进行泰勒展开,及对第一关系式进行泰勒展开。
步骤203:按照下述公式获取变桨角度:
Figure PCTCN2016074563-appb-000022
其中,Δθ为设定点附近的变桨角变化量,KP为第一控制参数、KI为第二控制参数,ΔΩ为风轮转速变化量,Ggearbox为齿轮箱传动比,t为时间变量。
步骤204:在变桨角度公式的基础上,采用空气动力学转矩关系式及控制理论,按照下式获取风轮参考转速的二阶微分关系式:
Figure PCTCN2016074563-appb-000023
其中,Idrivetrain为风力发电机组传动链转动惯量,P风轮吸收功率,θ为变桨角度;
Figure PCTCN2016074563-appb-000024
为风轮旋转加速度,
Figure PCTCN2016074563-appb-000025
为风轮旋转速度变化量,φ为风轮旋转速度。
步骤205:获取风轮转速的二阶微分关系式的稳定状态,在稳定状态下,获取第一控制参数和第二控制参数。
步骤206:采用空气动力学转矩关系获取风轮旋转总能量偏差与静态能量偏差。
步骤207:消除静态能量偏差,获取剩余动态能量偏差,依据剩余动态能量偏差获取变桨吸收能量的变桨角度。
步骤208:依据获取的变桨角度获取第三控制参数。
步骤209:将获取的第三控制参数根据风力发电机组的风轮测量转速进行实时控制。
变桨风力发电机在高风速环境下,通过调节风轮叶片变桨角度限制风 能吸收,从而维持风力发电机工作在额定功率设定区域。由于受到风轮叶片气动性能的影响,叶片变桨角度调整随风速变化呈非线性关系。因此,为获得更佳的变桨控制效果,变桨控制器参数值需要根据风轮叶片气动特性进行整定。为减少MATLAB等软件建模不准确对控制参数值的影响,本发明实施例提出了一种等效变桨微分控制方法,即直接通过动力学关系对PI控制参数进行整定。
首先,获取变桨范围内风轮气动转矩与机械功率及转速的关系:
Figure PCTCN2016074563-appb-000026
其中,Tgen为发电机转矩,Ggearbox为齿轮箱传动比,Ωref为风轮参考转速。
类似的,获取气动转矩与变桨角度、机械功率及风轮参考转速之间关系:
Figure PCTCN2016074563-appb-000027
将上式(1)(2)进行一阶泰勒展开,得到下式:
Figure PCTCN2016074563-appb-000028
Figure PCTCN2016074563-appb-000029
其中,Δθ为设定点附近的变桨角变化量。
其中,采用PI控制器可以获取到变桨角度调整表达式为:
Figure PCTCN2016074563-appb-000030
再由空气动力学转矩关系式:
Figure PCTCN2016074563-appb-000031
其中,Taero为低速轴气动转矩,Irotor,Igen分别为风轮惯性矩和发电机惯性矩,ΔΩ为风轮转速变化量,
Figure PCTCN2016074563-appb-000032
为风轮旋转加速度。
根据经典PI控制理论,典型风轮转速二阶微分关系可表达为:
Figure PCTCN2016074563-appb-000033
Figure PCTCN2016074563-appb-000034
结合式(3)~(6),式(7)可改写为:
Figure PCTCN2016074563-appb-000035
在二阶微分表达式中,频率ω及阻尼ζ分别为:
Figure PCTCN2016074563-appb-000036
根据经典控制理论,装置频率在ω=0.6及阻尼ζ=0.6~0.7时二阶装置可以达到较为满意的稳定状态。为此可得到变桨PI参数值与
Figure PCTCN2016074563-appb-000037
之间关系式如下:
Figure PCTCN2016074563-appb-000038
Figure PCTCN2016074563-appb-000039
其中,图3所示的变桨风力发电机组叶片的
Figure PCTCN2016074563-appb-000040
与变桨角度θ之间关系均可近似为一阶线性关系,其可容易通过叶片设计方获得,需要说明的是,几乎所有的变桨风力发电机组的
Figure PCTCN2016074563-appb-000041
与变桨角度θ之间关系均可近似为一阶线性关系。
根据空气动力学转矩关系式(6)可以得到风轮旋转总能量偏差与静态能量偏差为:
Figure PCTCN2016074563-appb-000042
即总能量偏差为:
Figure PCTCN2016074563-appb-000043
Figure PCTCN2016074563-appb-000044
即静态能量偏差为:
Figure PCTCN2016074563-appb-000045
由于静态能量偏差已经通过PI控制消除,因此剩余动态能量偏差可表示为:
Figure PCTCN2016074563-appb-000046
将式(16)与变桨角度相关联,可得到下式:
Figure PCTCN2016074563-appb-000047
结合图3所示变桨角度与
Figure PCTCN2016074563-appb-000048
间的关系,动态能量偏差所需通过变桨吸收能量的角度为:
Figure PCTCN2016074563-appb-000049
结合PID控制原理,将动态偏差调整视为PID控制器的微分项(D部分)即有:
Figure PCTCN2016074563-appb-000050
Figure PCTCN2016074563-appb-000051
通过式(20)得到的控制参数Kd根据实际转速偏差Ω-Ωref实时调整,是作为PI控制的补充可有效提高风力发电机组在湍流风况下对风轮测量转速的控制效果。
其中,PID控制计算如下式所示:
Figure PCTCN2016074563-appb-000052
本发明实施例提供的一种等效变桨微分控制方法,将通过PI控制获取的第一控制参数、第二控制参数和通过动态能量偏差获取的第三控制参数相结合,作为到PID控制器的参数值对风力发电机组进行实时控制,与现有技术相比,本申请提供的等效变桨微分控制方法中获取的第一控制参数、第二控制参数和第三控制参数相对比较准确,且三个控制参数可以直接应用到PID控制中,而不需要像现有技术在建模过程中需要逐一调试,进而减少了获取准确参数过程中的调试时间,避免带来不必要的使用风险。
与上述方法的实施例相对应,本发明实施例还提供了一种等效变桨微 分控制装置,请参考图4,其示出了本发明实施例提供的一种的等效变桨微分控制装置的一种结构示意图,包括:第一获取单元11、第二获取单元12和控制单元13,其中:
第一获取单元11,用于采用静态能量偏差的PI控制方法分别获取第一控制参数、第二控制参数。
其中,请参考图5,其示出了本发明实施例提供的一种等效变桨微分控制装置的一种子结构示意图,包括:第三获取单元21、第一计算单元22、第二计算单元23和第四获取单元24,其中:
第三获取单元21,用于在变桨范围内,分别获取风轮气动转矩、机械功率及转速的第一关系式和风轮气动转矩、变桨角度、机械功率及风轮参考转速间的第二关系式。
第一计算单元22,用于分别对第一关系式和第二关系式进行泰勒展开,并按照下述公式获取变桨角度:
Figure PCTCN2016074563-appb-000053
其中,Δθ为设定点附近的变桨角变化量,KP为第一控制参数、KI为第二控制参数,ΔΩ为风轮转速变化量,Ggearbox为齿轮箱传动比,t为时间变量。
第一计算单元22还可以包括:第五获取单元221,其中:
第五获取单元221,用于通过叶片设计获取变桨风力发电机组叶片的
Figure PCTCN2016074563-appb-000054
与变桨角度θ之间的关系,根据获取的关系对所述第二关系式进行泰勒展开。
需要说明的是,第五获取单元221用于获取第二控制参数表达式中
Figure PCTCN2016074563-appb-000055
的值,且其是在叶片设计过程中获取的。
第二计算单元23,用于在变桨角度公式的基础上,采用空气动力学转矩关系式及控制理论,按照下式获取风轮参考转速的二阶微分关系式:
Figure PCTCN2016074563-appb-000056
其中,Idrivetrain为风力发电机组传动链转动惯量,P为风轮吸收功率,θ 为变桨角度;
Figure PCTCN2016074563-appb-000057
为风轮旋转加速度,
Figure PCTCN2016074563-appb-000058
为风轮旋转速度变化量,φ为风轮旋转速度。
第四获取单元24,用于获取风轮转速的二阶微分关系式的稳定状态,在稳定状态下,获取第一控制参数和第二控制参数。
第二获取单元12,用于采用动态能量偏差获取等效微分的第三控制参数KD
其中,请参考图6,其示出了本发明实施例提供的一种等效变桨微分控制装置的另一种子结构示意图,第二获取单元12可以包括:第六获取单元31、第七获取单元32和第八获取单元33,其中:
第六获取单元31,用于采用空气动力学转矩关系获取风轮旋转总能量偏差与静态能量偏差。
第七获取单元32,用于采用总能量偏差和静态能量偏差获取变桨吸收能量的变桨角度。
其中,第七获取单元32还可以包括:第九获取单元321,其中:
第九获取单元321,用于消除静态能量偏差,获取剩余动态能量偏差,依据剩余动态能量偏差获取变桨吸收能量的变桨角度。
第八获取单元33,用于依据获取的变桨角度获取第三控制参数。
控制单元13,用于将风轮测量转速与风轮参考转速作为输入,比例-积分-等效微分PID控制器依据第一控制参数、第二控制参数和第三控制参数对风力发电机组进行控制,实现风轮测量转速对风轮参考转速的跟随。
在本发明实施例提供的等效变桨微分控制装置中,对2MW风力发电机组在如图7所示的风况下进行了控制,其中图8和图9示出了采用传统控制方法和采用本发明实施例提供的控制方法的效果对比图,需要说明的是,深色粗线为采用本发明实施例提供的控制方法获取的控制结果,浅色细线为传统PI控制方法获取的控制结果。对比两幅图可知,在本发明实施例提供的等效变桨微分控制方法下,获取的风力发电机组的风轮测量转速波动相对传统PI控制方法获取的风轮测量转速波动更小,且叶尖间隙更大。
本发明提供的一种等效变桨微分控制装置,将通过采用静态能量偏差 的PI控制方法获取的第一控制参数、第二控制参数和通过动态能量偏差获取等效微分的第三控制参数相结合,作为到PID控制器的参数值对风力发电机组进行实时控制,与现有技术相比,本发明提供的等效变桨微分控制方法即系统获取的PID控制器的控制参数精确度较高,且在采用通过动态能量偏差获取的等效微分参数对风力发电机组进行控制时,更有效的提高了大型风力发电机组在风速快速变化的风况下变桨动作的动态响应能力,避免了机组超速、叶尖间隙过小以及产生极端载荷等情况的发生。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种等效变桨微分控制方法,其特征在于,包括:
    采用静态能量偏差的PI控制方法分别获取第一控制参数、第二控制参数;
    采用动态能量偏差获取等效微分的第三控制参数;
    将风轮测量转速与风轮参考转速作为输入,比例-积分-等效微分PID控制器依据所述第一控制参数、所述第二控制参数和所述第三控制参数对风力发电机组进行控制,实现所述风轮测量转速对所述风轮参考转速的跟随;
    其中,按照下述公式获取所述第一控制参数:
    Figure PCTCN2016074563-appb-100001
    在上式中,Ggearbox为齿轮箱传动比,Ωref为风轮参考转速,ω为频率,ζ为阻尼,Idrivetrain为风力发电机组传动链转动惯量,P为风轮吸收功率,θ为变桨角度;
    按照下述公式获取所述第二控制参数:
    Figure PCTCN2016074563-appb-100002
    在上式中,Ggearbox为齿轮箱传动比,Ωref为风轮参考转速,ω为频率,ζ为阻尼,Idrivetrain为风力发电机组传动链转动惯量,P为风轮吸收功率,θ为变桨角度;
    按照下述公式获取所述第三控制参数:
    Figure PCTCN2016074563-appb-100003
    在上式中,Ggearbox为齿轮箱传动比,Ω为风轮测量转速,Ωref为风轮参考转速,ω为频率,ζ为阻尼。
  2. 根据权利要求1所述的方法,其特征在于,所述分别获取第一控制参数、第二控制参数包括:
    在变桨范围内,分别获取风轮气动转矩、机械功率及所述风轮参考转速的第一关系式和所述风轮气动转矩、所述变桨角度、所述机械功率及所述风轮参考转速间的第二关系式;
    分别对所述第一关系式和所述第二关系式进行泰勒展开,并按照下述公式获取所述变桨角度:
    Figure PCTCN2016074563-appb-100004
    其中,Δθ为设定点附近的变桨角变化量,KP为第一控制参数、KI为第二控制参数,ΔΩ为风轮转速变化量,Ggearbox为齿轮箱传动比,t为时间变量。
    在所述变桨角度的公式基础上,采用空气动力学转矩关系式及控制理论,按照下式获取所述风轮参考转速的二阶微分关系式:
    Figure PCTCN2016074563-appb-100005
    其中,Idrivetrain为风力发电机组传动链转动惯量,P为风轮吸收功率,θ为变桨角度;
    Figure PCTCN2016074563-appb-100006
    为风轮旋转加速度,
    Figure PCTCN2016074563-appb-100007
    为风轮旋转速度变化量,φ为风轮旋转速度。
    获取所述风轮参考转速的二阶微分关系式的稳定状态,在所述稳定状态下,获取所述第一控制参数和所述第二控制参数。
  3. 根据权利要求2所述的方法,其特征在于,所述对第二关系式进行泰勒展开包括:
    通过叶片设计获取变桨风力发电机组叶片的
    Figure PCTCN2016074563-appb-100008
    与所述变桨角度θ之间的关系,根据获取的所述关系对所述第二关系式进行泰勒展开。
  4. 根据权利要求1所述的方法,其特征在于,所述获取所述第三控制参数包括:
    采用空气动力学转矩关系获取风轮旋转总能量偏差与静态能量偏差;
    采用所述总能量偏差和所述静态能量偏差获取变桨吸收能量的变桨角 度;
    依据获取的所述变桨角度获取所述第三控制参数。
  5. 根据权利要求4所述的方法,其特征在于,所述采用所述总能量偏差和所述静态能量偏差获取变桨吸收能量的变桨角度包括:
    消除所述静态能量偏差,获取剩余动态能量偏差,依据所述剩余动态能量偏差获取变桨吸收能量的所述变桨角度。
  6. 一种等效变桨微分控制装置,其特征在于,包括:
    第一获取单元,用于采用静态能量偏差的PI控制方法分别获取第一控制参数、第二控制参数;
    第二获取单元,用于采用动态能量偏差获取等效微分的第三控制参数;
    控制单元,用于将风轮测量转速与风轮参考转速作为输入,比例-积分-等效微分PID控制器依据所述第一控制参数、所述第二控制参数和所述第三控制参数对风力发电机组进行控制,实现所述风轮测量转速对所述风轮参考转速的跟随;
    其中,按照下述公式获取所述第一控制参数:
    Figure PCTCN2016074563-appb-100009
    在上式中,Ggearbox为齿轮箱传动比,Ωref为风轮参考转速,ω为频率,ζ为阻尼,Idrivetrain为风力发电机组传动链转动惯量,P为风轮吸收功率,θ为变桨角度;
    按照下述公式获取所述第二控制参数:
    Figure PCTCN2016074563-appb-100010
    在上式中,Ggearbox为齿轮箱传动比,Ωref为风轮参考转速,ω为频率,ζ为阻尼,Idrivetrain为风力发电机组传动链转动惯量,P为风轮吸收功率,θ为变桨角度;
    按照下述公式获取所述第三控制参数:
    Figure PCTCN2016074563-appb-100011
    在上式中,Ggearbox为齿轮箱传动比,Ω为风轮测量转速,Ωref为风轮参考转速,ω为频率,ζ为阻尼。
  7. 根据权利要求6所述的方法,其特征在于,所述第一获取单元包括:
    第三获取单元,用于在变桨范围内,分别获取风轮气动转矩、机械功率及所述风轮参考转速的第一关系式和所述风轮气动转矩、变桨角度、所述机械功率及所述风轮参考转速间的第二关系式;
    第一计算单元,用于分别对所述第一关系式和所述第二关系式进行泰勒展开,并按照下述公式获取所述变桨角度:
    Figure PCTCN2016074563-appb-100012
    其中,Δθ为设定点附近的变桨角变化量,KP为第一控制参数、KI为第二控制参数,ΔΩ为风轮转速变化量,Ggearbox为齿轮箱传动比,t为时间变量。
    第二计算单元,用于在所述变桨角度公式的基础上,采用空气动力学转矩关系式及控制理论,按照下式获取所述风轮参考转速的二阶微分关系式:
    Figure PCTCN2016074563-appb-100013
    其中,Idrivetrain为风力发电机组传动链转动惯量,P为风轮吸收功率,θ为变桨角度;
    Figure PCTCN2016074563-appb-100014
    为风轮旋转加速度,
    Figure PCTCN2016074563-appb-100015
    为风轮旋转速度变化量,φ为风轮旋转速度。
    第四获取单元,用于获取所述风轮参考转速的二阶微分关系式的稳定状态,在所述稳定状态下,获取所述第一控制参数和所述第二控制参数。
  8. 根据权利要求7所述的方法,其特征在于,所述第一计算单元包括:
    第五获取单元,用于通过叶片设计获取变桨风力发电机组叶片的
    Figure PCTCN2016074563-appb-100016
    与所述变桨角度θ之间的关系,根据获取的所述关系对所述第二关系式进 行泰勒展开。
  9. 根据权利要求6所述的方法,其特征在于,所述第二获取单元包括:
    第六获取单元,用于采用空气动力学转矩关系获取风轮旋转总能量偏差与静态能量偏差;
    第七获取单元,用于采用所述总能量偏差和所述静态能量偏差获取变桨吸收能量的变桨角度;
    第八获取单元,用于依据获取的所述变桨角度获取所述第三控制参数。
  10. 根据权利要求9所述的方法,其特征在于,所述第七获取单元包括:
    第九获取单元,用于消除所述静态能量偏差,获取剩余动态能量偏差,依据所述剩余动态能量偏差获取变桨吸收能量的变桨角度。
PCT/CN2016/074563 2015-06-30 2016-02-25 一种等效变桨微分控制方法及装置 WO2017000569A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16816934.0A EP3228863B1 (en) 2015-06-30 2016-02-25 Equivalent variable pitch differential control method and apparatus
ES16816934T ES2834496T3 (es) 2015-06-30 2016-02-25 Método y aparato para el control diferencial de paso variable equivalente
US15/542,414 US10240585B2 (en) 2015-06-30 2016-02-25 Equivalent variable pitch differential control method and apparatus
DK16816934.0T DK3228863T3 (da) 2015-06-30 2016-02-25 Styringsfremgangsmåde og indretning til ækvivalent variabelt pitch-differentiale

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510375082.2A CN106321352B (zh) 2015-06-30 2015-06-30 一种等效变桨微分控制方法及装置
CN201510375082.2 2015-06-30

Publications (1)

Publication Number Publication Date
WO2017000569A1 true WO2017000569A1 (zh) 2017-01-05

Family

ID=57609445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/074563 WO2017000569A1 (zh) 2015-06-30 2016-02-25 一种等效变桨微分控制方法及装置

Country Status (6)

Country Link
US (1) US10240585B2 (zh)
EP (1) EP3228863B1 (zh)
CN (1) CN106321352B (zh)
DK (1) DK3228863T3 (zh)
ES (1) ES2834496T3 (zh)
WO (1) WO2017000569A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117332602A (zh) * 2023-10-18 2024-01-02 华北电力大学 一种风力发电机一次调频模拟方法及装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108223300A (zh) * 2017-11-13 2018-06-29 国网浙江省电力公司绍兴供电公司 一种应用于风力发电系统的在线风速估计方法
CN108708826B (zh) * 2018-05-16 2019-07-05 新疆金风科技股份有限公司 变桨电机运行控制方法和装置、风力发电机组及存储介质
CN112412697B (zh) * 2019-08-23 2023-04-07 新疆金风科技股份有限公司 变桨需求速率修正方法、装置及风力发电机组
CN110529335B (zh) * 2019-09-29 2020-10-13 三一重能有限公司 用于抑制风机超速的控制方法和风力发电机组
CN111425349B (zh) * 2020-03-11 2021-06-15 许昌许继风电科技有限公司 一种风电机组位置控制、同步调试的方法及应用
CN115680999B (zh) * 2021-07-30 2023-09-08 金风科技股份有限公司 变桨控制方法、变桨控制器及风力发电机组

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3415428C2 (zh) * 1984-04-25 1992-02-20 Liebherr-Aero-Technik Gmbh, 8998 Lindenberg, De
EP2447527A1 (en) * 2009-06-22 2012-05-02 Zhejiang Windey Co., Ltd. Individual pitch control method for large wind generating set
CN102865192A (zh) * 2012-10-24 2013-01-09 南车株洲电力机车研究所有限公司 一种削减风电机组尖峰载荷的变桨控制方法
EP2778395A2 (en) * 2013-03-14 2014-09-17 General Electric Company System and method for reducing loads acting on a wind turbine in response to transient wind conditions by means of pitch control
CN104612898A (zh) * 2014-11-27 2015-05-13 江苏科技大学 一种风电变桨距多变量模糊神经网络pid控制方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7679208B1 (en) * 2008-09-18 2010-03-16 Samsung Heavy Ind. Co., Ltd. Apparatus and system for pitch angle control of wind turbine
GB2466649B (en) * 2008-12-30 2014-01-29 Hywind As Blade pitch control in a wind turbine installation
CN103362738B (zh) * 2012-04-11 2016-03-30 北京能高自动化技术股份有限公司 变速变桨风力发电机组基于前馈解耦控制的最大功率追踪控制方法
KR101413565B1 (ko) * 2012-12-03 2014-07-04 한국전기연구원 풍력터빈 피치제어기의 성능 평가장치 및 그 방법
EP2784303B1 (en) 2013-03-27 2016-11-02 Alstom Renovables España, S.L. Method of operating a wind turbine
US9347430B2 (en) * 2013-04-12 2016-05-24 King Fahd University Of Petroleum And Minerals Adaptive pitch control system for wind generators
CN103925156B (zh) * 2014-05-04 2016-08-17 中船重工(重庆)海装风电设备有限公司 一种风力发电机组变桨控制方法和系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3415428C2 (zh) * 1984-04-25 1992-02-20 Liebherr-Aero-Technik Gmbh, 8998 Lindenberg, De
EP2447527A1 (en) * 2009-06-22 2012-05-02 Zhejiang Windey Co., Ltd. Individual pitch control method for large wind generating set
CN102865192A (zh) * 2012-10-24 2013-01-09 南车株洲电力机车研究所有限公司 一种削减风电机组尖峰载荷的变桨控制方法
EP2778395A2 (en) * 2013-03-14 2014-09-17 General Electric Company System and method for reducing loads acting on a wind turbine in response to transient wind conditions by means of pitch control
CN104612898A (zh) * 2014-11-27 2015-05-13 江苏科技大学 一种风电变桨距多变量模糊神经网络pid控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117332602A (zh) * 2023-10-18 2024-01-02 华北电力大学 一种风力发电机一次调频模拟方法及装置
CN117332602B (zh) * 2023-10-18 2024-04-19 华北电力大学 一种风力发电机一次调频模拟方法及装置

Also Published As

Publication number Publication date
EP3228863A4 (en) 2018-08-08
EP3228863B1 (en) 2020-09-02
DK3228863T3 (da) 2020-09-28
US20180003155A1 (en) 2018-01-04
CN106321352A (zh) 2017-01-11
ES2834496T3 (es) 2021-06-17
EP3228863A1 (en) 2017-10-11
CN106321352B (zh) 2018-11-27
US10240585B2 (en) 2019-03-26

Similar Documents

Publication Publication Date Title
WO2017000569A1 (zh) 一种等效变桨微分控制方法及装置
CA2919849C (en) System and method for operating a wind turbine based on rotor blade margin
Yang et al. Investigation on aerodynamics and active flow control of a vertical axis wind turbine with flapped airfoil
CN104214044A (zh) 双馈式变速变桨风力发电机组的独立变桨距控制方法
CN102741546B (zh) 风力涡轮发电机及其控制方法
CN108488035B (zh) 永磁直驱风力发电机组失速和变桨混合控制方法
CN108843489B (zh) 基于限转速平滑功率控制的风机变桨优化方法
CN104214045A (zh) 双馈式变速变桨风力发电机组的独立变桨距控制方法
CN105508135A (zh) 一种基于模糊前馈与模糊pid控制结合的变桨控制方法
CN105649875A (zh) 风力发电机组的变桨控制方法及装置
Hauptmann et al. Comparison of the lifting-line free vortex wake method and the blade-element-momentum theory regarding the simulated loads of multi-MW wind turbines
CN108825434B (zh) 基于风轮动能平滑功率控制的风机变桨优化方法
Chaudhary et al. Modeling and optimal design of small HAWT blades for analyzing the starting torque behavior
CN108843494B (zh) 基于斜线平滑功率控制的风机变桨优化方法
CN110067697A (zh) 在风轮机控制中使用的空气动力学性能图的扭转校正因子
CN111502914A (zh) 基于线性变参数系统的风机变桨控制器设计方法
Li et al. A novel dynamic stall model based on Theodorsen theory and its application
El Aimani Comparison of control structures for variable speed wind turbine
Brunner et al. Unsteady effects on a pitching airfoil at conditions relevant for large vertical axis wind turbines
Jian-jun et al. Study of variable-pitch wind turbine based on fuzzy control
KR20130057230A (ko) 로터속도의 비선형성 파라미터를 이용한 풍력터빈의 토크제어장치 및 방법
Asper et al. Time and Frequency Analysis of a Speed-Controlled Rotor in Hover
Hauptmann et al. Impact of the lifting-line free vortex wake method on the simulated loads of multi-MW wind turbines
Zhou et al. Analysis of extreme operating gust influence on aerodynamic performance of wind turbine
Sayed et al. 3-D time-accurate CFD simulations of a multi-megawatt slender bladed HAWT under yawed inflow conditions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16816934

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016816934

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15542414

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE