WO2017000553A1 - 太阳能电池感应器 - Google Patents

太阳能电池感应器 Download PDF

Info

Publication number
WO2017000553A1
WO2017000553A1 PCT/CN2016/072797 CN2016072797W WO2017000553A1 WO 2017000553 A1 WO2017000553 A1 WO 2017000553A1 CN 2016072797 W CN2016072797 W CN 2016072797W WO 2017000553 A1 WO2017000553 A1 WO 2017000553A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
module
humidity
soil
plant
Prior art date
Application number
PCT/CN2016/072797
Other languages
English (en)
French (fr)
Inventor
高翔
谢灿豪
Original Assignee
高翔
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高翔 filed Critical 高翔
Publication of WO2017000553A1 publication Critical patent/WO2017000553A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G27/00Self-acting watering devices, e.g. for flower-pots
    • A01G27/003Controls for self-acting watering devices
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G27/00Self-acting watering devices, e.g. for flower-pots
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G27/00Self-acting watering devices, e.g. for flower-pots
    • A01G27/008Component parts, e.g. dispensing fittings, level indicators

Definitions

  • Embodiments of the present invention relate to the field of communications technologies, and in particular, to a solar battery sensor.
  • the prior art collects information on flower growth environment parameters such as indoor temperature, indoor humidity, soil moisture, soil pH and the like through various sensors, and sends the collected information to the background server, and the background server according to the flower variety and the flower cultivation experience value. Determine whether the flower growth environment parameter is within the range of the flower cultivation experience value. If it is out of range, the background server sends an alarm message to the user to monitor the flower.
  • flower growth environment parameters such as indoor temperature, indoor humidity, soil moisture, soil pH and the like through various sensors, and sends the collected information to the background server, and the background server according to the flower variety and the flower cultivation experience value. Determine whether the flower growth environment parameter is within the range of the flower cultivation experience value. If it is out of range, the background server sends an alarm message to the user to monitor the flower.
  • Embodiments of the present invention provide a solar cell sensor to prevent periodic charging of the sensor and monitor the growth of the flower.
  • An aspect of an embodiment of the present invention provides a solar cell sensor, including: a solar panel and a stem; wherein
  • the rod portion is fixedly connected to the solar panel, the rod portion is inserted in the soil, and the first humidity sensor is respectively installed at different depth positions of the rod portion, and the first humidity sensor is used for collecting different depths. Soil moisture
  • the solar panel includes a power supply module, an infrared sensor, and a transceiver module connected in series, the power supply module is connected to the first humidity sensor, and the power supply module is configured to absorb solar energy and convert the solar energy into electrical energy.
  • a humidity sensor and the infrared sensor Continuously supplying power, the infrared sensor is configured to collect a plant height, and the transceiver module is configured to send the plant height and the soil moisture to the terminal device, so that the terminal device monitors the plant according to the change of the plant height
  • the growth rate is determined according to the soil moisture to determine whether the plant needs to be watered, and the water seepage speed of the soil is monitored according to the change of the soil moisture.
  • the solar cell sensor converts solar energy into electric energy through the power supply module of the solar panel, and continuously supplies power to various sensors, thereby avoiding the cumbersome process of periodically charging various sensors; in addition, passing multiple humidity
  • the sensor collects soil moisture at different depths to monitor the water seepage speed of the soil
  • the infrared sensor collects the plant height, monitors the growth rate of the plant through the change of plant height, and can also count the water seepage speed of the soil as the plant height changes, that is, the plant grows. The change in water demand.
  • FIG. 1 is a structural diagram of a solar cell sensor according to an embodiment of the present invention.
  • FIG. 2 is a structural diagram of a solar cell sensor according to another embodiment of the present invention.
  • FIG. 3 is a structural diagram of a solar cell sensor according to another embodiment of the present invention.
  • FIG. 4 is a structural diagram of a solar cell sensor according to another embodiment of the present invention.
  • FIG. 5 is a structural diagram of a solar cell sensor according to another embodiment of the present invention.
  • FIG. 1 is a structural diagram of a solar cell sensor according to an embodiment of the present invention.
  • the embodiments of the present invention provide a solar cell sensor for the various sensors in the prior art that need to be periodically charged, and only monitor the growth environment parameters of the flower.
  • the solar cell sensor 10 includes a solar panel. 11 and the rod portion 12, the rod portion 12 is fixedly connected with the solar panel 11, the rod portion 12 is inserted into the soil, and the first humidity sensor 121 is respectively installed at different depth positions of the rod portion 12, and the first humidity sensor 121 is used for collecting different depths.
  • the solar panel 11 includes a power supply module 111, an infrared sensor 112, and a transceiver module 113 connected in series.
  • the power supply module 111 is connected to the first humidity sensor 121, and the power supply module 111 is configured to absorb solar energy and convert the solar energy into electrical energy.
  • the first humidity sensor 121 and the infrared sensor 112 are continuously powered, the infrared sensor 112 is used to collect the plant height, and the transceiver module 113 is configured to send the plant height and the soil moisture to the terminal device, so that the terminal device according to the Plant height change monitors the growth rate of the plant, and determines whether the plant is based on the soil moisture Watering, and based on monitoring of the change in soil moisture in the soil water seepage rate.
  • the solar cell sensor includes a solar panel and a rod portion connected to each other, and the rod portion is inserted in the soil, and preferably the first humidity sensor is respectively installed at the top, the middle portion and the bottom portion of the rod portion, that is, through the first
  • the humidity sensor collects the moisture of the soil surface layer, the middle part of the soil, and the bottom layer of the soil.
  • the solar panel includes a power supply module, an infrared sensor and a transceiver module.
  • the infrared sensor determines the height of the plant according to the infrared radiation characteristics of the top of the plant, and the power supply module can convert the solar energy irradiated to the solar panel into electrical energy, and is the first humidity sensor and the infrared sensor.
  • the transceiver module transmits the plant height and soil moisture to the terminal device, and the terminal device is specifically a mobile terminal.
  • the mobile terminal monitors the growth speed of the plant according to the change of the plant height, and determines whether the plant needs watering according to the soil moisture, because multiple
  • the first humidity sensor collects the moisture of the soil surface layer, the middle part of the soil, and the bottom layer of the soil.
  • the mobile terminal monitors the water seepage speed of the soil through the moisture of the soil surface layer, the middle part of the soil, and the bottom layer of the soil, and also balances the surface layer of the soil, the middle part of the soil, and the soil.
  • the humidity of the bottom layer determines whether the plant needs to be watered.
  • the water seepage speed of the soil can be counted as the plant height changes, that is, the water requirement of the plant during the growth process.
  • Embodiments of the present invention convert solar energy into electrical energy through a power supply module of a solar panel, and continuously supply power to various sensors, thereby avoiding a cumbersome process of periodically charging various sensors;
  • the soil moisture of different depths is collected by multiple humidity sensors to monitor the water seepage speed of the soil, the infrared sensor collects the height of the plant, the growth rate of the plant is monitored by the change of the height of the plant, and the water seepage speed of the soil changes with the height of the plant, that is, The amount of water required for a plant to grow.
  • FIG. 2 is a structural diagram of a solar cell sensor according to another embodiment of the present invention
  • FIG. 3 is a structural diagram of a solar cell sensor according to another embodiment of the present invention
  • FIG. 4 is a solar energy according to another embodiment of the present invention
  • FIG. 5 is a structural diagram of a solar cell sensor according to another embodiment of the present invention.
  • the solar panel 11 further includes an illumination sensor 114, a first temperature sensor 115, and a second humidity sensor 116, and the illumination sensor, the first temperature sensor, and the second humidity sensor respectively Connected to the power supply module, the illumination sensor is used to collect the illumination intensity, the first temperature sensor is used to collect the indoor temperature, and the second humidity sensor is used to collect the indoor humidity.
  • the rod portion 12 further includes a second temperature sensor 122 and a PH sensor 123, the second temperature sensor and the PH sensor are respectively connected to the power supply module, and the second temperature sensor is used for collecting soil temperature, the PH sensor Used to collect soil pH.
  • the solar panel 11 further includes a storage module 117, the storage module and the first humidity sensor, the infrared sensor, the illumination sensor, the first temperature sensor, the second humidity sensor, and the a second temperature sensor, the PH sensor and the transceiver module are connected, and the storage module 117 is configured to store the first humidity sensor, the infrared sensor, the illumination sensor, the first temperature sensor, and the second Humidity sensor, the second temperature sensor, and data collected by the PH sensor.
  • the transceiver module 113 sends the data stored in the storage module 117 to the terminal device according to a preset period.
  • the terminal device stores a database of plant growth parameters in advance, and the plant growth parameter database includes a theoretical threshold of plant varieties and growth parameters.
  • the threshold value of the growth parameter is a threshold value of the environmental factor of the plant during normal growth, so that the terminal device determines whether the environmental factor corresponding to the plant exceeds a corresponding theoretical threshold of the growth parameter, and if it exceeds, the terminal device
  • the alarm information is displayed; wherein the environmental factors include the light intensity, the indoor temperature, the indoor humidity, the soil temperature, the soil moisture, and the soil pH.
  • the solar cell sensor 10 passes the first humidity sensor, the infrared sensor, the illumination sensor, the first temperature sensor, and the The data collected by the second humidity sensor, the second temperature sensor and the PH sensor are periodically sent to the terminal device, and the terminal device pre-stores a database of plant growth parameters, which includes plant species counted by botanists. And a threshold value of environmental factors for normal growth of the plant variety, the terminal device determining whether the light intensity sent by the transceiver module, the indoor temperature, the indoor humidity, the soil temperature, the soil moisture, and the soil pH value are The theoretical threshold of the corresponding growth parameter is exceeded, and if it is exceeded, the terminal device displays the alarm information.
  • the transceiver module 113 receives a control command sent by the terminal device, where the control command includes an acquisition period and a data transmission period.
  • the solar panel 11 further includes a control module 118.
  • the control module 118 is connected to the transceiver module 113.
  • the control module 118 is configured to control the first humidity sensor, the infrared sensor, the illumination sensor, the first temperature sensor, the second humidity sensor, the second temperature sensor, and a period in which the PH sensor collects data; and controls a period in which the transceiver module sends the collected data according to the data transmission period.
  • the transceiver module 113 is further configured to receive a growth parameter experience threshold sent by the terminal device, where the growth parameter experience threshold is a threshold value of an environment factor when the plant growth rate is the fastest; the control module 118 is further configured to determine the corresponding Whether the illumination intensity, the indoor temperature, the indoor humidity, the soil temperature, the soil moisture, and the soil pH exceed a corresponding growth parameter empirical threshold, and if exceeded, the control module controls the The first humidity sensor, the infrared sensor, the illumination sensor, the first temperature sensor, the second humidity sensor, the second temperature sensor, and the PH sensor emit alarm information.
  • the user terminal receives the environmental factors of the plants it supports, and determines the growth speed of the plants by the manner of the above embodiment, if each user terminal will The growth rate of plants is shared into an application platform that can determine the plant grower with the fastest growth rate.
  • the value of the environmental factors of the plant grower can be shared as an empirical threshold for growth parameters.
  • the user, the terminal of the other user sends the growth parameter experience threshold to the transceiver module 113, and the control module 118 determines the light intensity corresponding to the plant, the indoor temperature, the indoor humidity, the soil temperature, and the soil.
  • the control module controls the first humidity sensor, the infrared sensor, the light The sensor, the first temperature sensor, the second humidity sensor, the second temperature sensor, and the PH sensor emit alarm information.
  • the transceiver module 113 is specifically an NFC switching function module, that is, the solar cell sensor 10 and the terminal device such as the mobile phone APP exchange information through the NFC protocol, for example, the solar cell sensor 10 sends the environmental factors of plant growth to the mobile phone APP through the NFC protocol.
  • the mobile phone APP transmits mobile phone parameters such as a mobile phone number, user information, and the like to the solar battery sensor 10 through the NFC protocol.
  • the solar panel 11 further includes a PM2.5 sensor 119, which is respectively connected to the storage module, the control module and the power supply module, and the PM2.5 sensor is used for Detect the PM2.5 content in the air.
  • the solar panel 11 further includes a formaldehyde sensor 130, which is respectively connected to the storage module, the control module and the power supply module, and the formaldehyde sensor is used for detecting the formaldehyde content in the air.
  • the solar panel 11 further includes a GPS positioning module, and the GPS positioning module is connected to the transceiver module.
  • the solar panel 11 further includes a rain sensor 131 connected to the storage module, the control module and the power supply module, respectively, and the rain sensor is configured to detect the rainfall of the location of the plant.
  • the control module 118 is further configured to control the first humidity sensor, the infrared sensor, the illumination sensor, the first temperature sensor, the second humidity sensor, the second temperature sensor, the PH sensor, The PM2.5 sensor, the formaldehyde sensor, and the rain sensor are turned on or off.
  • the vertical direction of the solar panel 11 is expandable and contractible.
  • the transceiver module 113 is further configured to receive a watering instruction sent by the terminal device or stop a watering instruction, where the watering instruction is that the terminal device determines that the soil moisture is lower than a preset humidity.
  • the sent instruction, the stop watering command is an instruction sent by the terminal device when determining that the soil moisture is higher than a preset humidity;
  • the solar battery sensor 10 further includes a water supplier 13 connected to the control module 118
  • the water supplier is configured to turn on the watering switch according to the watering instruction, or turn off the watering switch according to the stop watering instruction.
  • the monitoring of the plant environmental factors is increased by increasing the type of the sensor; the theoretical threshold of the growth parameter pre-stored by the terminal device can be corrected by the empirical parameter of the growth parameter Value; the watering operation of the plant can be automatically controlled by the water supply.
  • the embodiment of the present invention converts solar energy into electrical energy through a power supply module of a solar panel, and continuously supplies power to various sensors, thereby avoiding the cumbersome process of periodically charging various sensors; in addition, collecting by multiple humidity sensors
  • the soil moisture of different depths monitors the water seepage speed of the soil
  • the infrared sensor collects the plant height, monitors the growth rate of the plant by the change of plant height, and can also count the water seepage speed of the soil as the plant height changes, that is, the plant needs to grow during the growth process.
  • the change of water quantity by increasing the type of sensor, the monitoring of plant environmental factors is increased; the threshold of growth parameters pre-stored by the terminal equipment can be corrected by the empirical parameter of the growth parameter; the watering operation of the plant can be automatically controlled by the water supplier.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform the methods of the various embodiments of the present invention. Part of the steps.
  • the foregoing storage medium includes: a USB flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), and a magnetic disk. Or a variety of media such as optical discs that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Cultivation Of Plants (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

一种太阳能电池感应器(10)。该太阳能电池感应器(10)包括:太阳能电池板(11)和杆部(12);杆部(12)与太阳能电池板(11)固定连接,杆部(12)插在土壤中,杆部(12)不同深度位置分别安装有第一湿度传感器(121),第一湿度传感器(121)用于采集不同深度的土壤湿度;太阳能电池板(11)包括供电模块(111)、红外传感器(112)和收发模块(113),供电模块(111)用于吸收太阳能并将太阳能转换成电能,红外传感器(112)用于采集植物高度,收发模块(113)用于将植物高度与土壤湿度发送给终端设备。通过太阳能电池板(11)的供电模块(111)将太阳能转换成电能,并为各种传感器持续供电,避免了定期给各种传感器充电的繁琐过程;另外,通过渗水速度、植物高度的变化可判断出植物的生长状况如生长速度、土壤的渗水速度随着植物高度的变化。

Description

太阳能电池感应器 技术领域
本发明实施例涉及通信技术领域,尤其涉及一种太阳能电池感应器。
背景技术
室内花卉养植作为生活的一部分,给养植者带来了观赏性娱乐,但是不同品种的花卉生长需要不同的生长条件,如果生长条件不合适将导致花卉养植的成功率大大减低,特别是对于名贵的花种,将给养植者带来经济损失。
现有技术通过各种传感器采集花卉的生长环境参数如室内温度、室内湿度、土壤湿度、土壤酸碱度等信息,并将采集到的信息发送到后台服务器,后台服务器根据花卉品种,以及花卉培育经验值,判断花卉的生长环境参数是否在花卉培育经验值的范围内,如果超出范围,则后台服务器向用户发出告警信息,从而达到监测花卉的作用。
现有技术中的各种传感器需要定期充电,导致各种传感器无法长久工作;另外,只对花卉的生长环境参数进行监测,无法监测花卉的生长状况。
发明内容
本发明实施例提供一种太阳能电池感应器,以避免传感器定期充电,监测花卉的生长状况。
本发明实施例的一个方面是提供一种太阳能电池感应器,包括:太阳能电池板和杆部;其中,
所述杆部与所述太阳能电池板固定连接,所述杆部插在土壤中,所述杆部不同深度位置分别安装有所述第一湿度传感器,所述第一湿度传感器用于采集不同深度的土壤湿度;
所述太阳能电池板包括依次相连的供电模块、红外传感器和收发模块,所述供电模块与所述第一湿度传感器相连,所述供电模块用于吸收太阳能并将太阳能转换成电能,为所述第一湿度传感器和所述红外传感器持 续供电,所述红外传感器用于采集植物高度,所述收发模块用于将所述植物高度与所述土壤湿度发送给终端设备,以使所述终端设备依据所述植物高度的变化监测植物的生长速度,依据所述土壤湿度判断植物是否需要浇水,以及依据所述土壤湿度的变化监测土壤的渗水速度。
本发明实施例提供的太阳能电池感应器,通过太阳能电池板的供电模块将太阳能转换成电能,并为各种传感器持续供电,避免了定期给各种传感器充电的繁琐过程;另外,通过多个湿度传感器采集不同深度的土壤湿度监测土壤的渗水速度,红外传感器采集植物高度,通过植物高度的变化监测植物的生长速度,还可统计出土壤的渗水速度随着植物高度的变化,即植物在生长过程中需水量的变化。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的太阳能电池感应器的结构图;
图2为本发明另一实施例提供的太阳能电池感应器的结构图;
图3为本发明另一实施例提供的太阳能电池感应器的结构图;
图4为本发明另一实施例提供的太阳能电池感应器的结构图;
图5为本发明另一实施例提供的太阳能电池感应器的结构图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。应理解,术语“包括”和/或“包含”指定存在特征、动作、整数、步骤、操作、元件和/或 组件,但不排除存在或增加一个或多个其它特征、动作、整数、步骤、操作、元件、组件和/或其组合。
图1为本发明实施例提供的太阳能电池感应器的结构图。本发明实施例针对现有技术中的各种传感器需要定期充电,以及只对花卉的生长环境参数进行监测,提供了太阳能电池感应器,如图1所示,太阳能电池感应器10包括太阳能电池板11和杆部12,杆部12与太阳能电池板11固定连接,杆部12插在土壤中,杆部12不同深度位置分别安装有第一湿度传感器121,第一湿度传感器121用于采集不同深度的土壤湿度;太阳能电池板11包括依次相连的供电模块111、红外传感器112和收发模块113,供电模块111与第一湿度传感器121相连,供电模块111用于吸收太阳能并将太阳能转换成电能,为第一湿度传感器121和红外传感器112持续供电,红外传感器112用于采集植物高度,收发模块113用于将所述植物高度与所述土壤湿度发送给终端设备,以使所述终端设备依据所述植物高度的变化监测植物的生长速度,依据所述土壤湿度判断植物是否需要浇水,以及依据所述土壤湿度的变化监测土壤的渗水速度。
在本发明实施例中,太阳能电池感应器包括相互连接的太阳能电池板和杆部,杆部插在土壤中,优选杆部的顶端、中部、底部分别安装有第一湿度传感器,即通过第一湿度传感器分别采集土壤表层、土壤中部、土壤底层的湿度。太阳能电池板包括供电模块、红外传感器和收发模块,红外传感器根据植物顶部的红外辐射特性确定植物高度,供电模块能够将照射到太阳能电池板的太阳能转换成电能,并为第一湿度传感器和红外传感器持续供电,收发模块将植物高度和土壤湿度发送给终端设备,终端设备具体为移动终端,移动终端依据植物高度的变化监测植物的生长速度,依据土壤湿度判断植物是否需要浇水,由于通过多个第一湿度传感器采集到土壤表层、土壤中部、土壤底层的湿度,则移动终端通过土壤表层、土壤中部、土壤底层的湿度监测出土壤的渗水速度,同时还可通过权衡土壤表层、土壤中部、土壤底层的湿度确定植物是否需要浇水,另外,还可统计出土壤的渗水速度随着植物高度的变化,即植物在生长过程中需水量的变化。
本发明实施例通过太阳能电池板的供电模块将太阳能转换成电能,并为各种传感器持续供电,避免了定期给各种传感器充电的繁琐过程;另外, 通过多个湿度传感器采集不同深度的土壤湿度监测土壤的渗水速度,红外传感器采集植物高度,通过植物高度的变化监测植物的生长速度,还可统计出土壤的渗水速度随着植物高度的变化,即植物在生长过程中需水量的变化。
图2为本发明另一实施例提供的太阳能电池感应器的结构图;图3为本发明另一实施例提供的太阳能电池感应器的结构图;图4为本发明另一实施例提供的太阳能电池感应器的结构图;图5为本发明另一实施例提供的太阳能电池感应器的结构图。在上述实施例的基础上,太阳能电池板11中还包括光照传感器114、第一温度传感器115和第二湿度传感器116,所述光照传感器、所述第一温度传感器和所述第二湿度传感器分别与所述供电模块相连,所述光照传感器用于采集光照强度,所述第一温度传感器用于采集室内温度,所述第二湿度传感器用于采集室内湿度。
杆部12还包括第二温度传感器122和PH传感器123,所述第二温度传感器和所述PH传感器分别与所述供电模块相连,所述第二温度传感器用于采集土壤温度,所述PH传感器用于采集土壤PH值。
太阳能电池板11中还包括存储模块117,所述存储模块分别与所述第一湿度传感器、所述红外传感器、所述光照传感器、所述第一温度传感器、所述第二湿度传感器、所述第二温度传感器、所述PH传感器和所述收发模块相连,存储模块117用于存储所述第一湿度传感器、所述红外传感器、所述光照传感器、所述第一温度传感器、所述第二湿度传感器、所述第二温度传感器和所述PH传感器采集的数据。
收发模块113按预设周期将存储模块117中存储的数据发送给所述终端设备,所述终端设备预先存储有植物生长参数数据库,所述植物生长参数数据库包括植物品种与生长参数理论阈值,所述生长参数理论阈值是所述植物正常生长时环境因素的阈值,以使所述终端设备判断所述植物对应的所述环境因素是否超出相应的生长参数理论阈值,若超出,则所述终端设备显示告警信息;其中,所述环境因素包括所述光照强度、所述室内温度、所述室内湿度、所述土壤温度、所述土壤湿度和所述土壤PH值。
如图2所示,太阳能电池感应器10通过收发模块113将所述第一湿度传感器、所述红外传感器、所述光照传感器、所述第一温度传感器、所 述第二湿度传感器、所述第二温度传感器和所述PH传感器采集的数据周期性发送给终端设备,终端设备预先存储有植物生长参数数据库,该植物生长参数数据库包括植物学家统计的植物品种以及该植物品种正常生长的环境因素的阈值,终端设备判断收发模块发送的所述光照强度、所述室内温度、所述室内湿度、所述土壤温度、所述土壤湿度和所述土壤PH值是否超出相应的生长参数理论阈值,若超出,则所述终端设备显示告警信息。
如图3所示,收发模块113接收所述终端设备发送的控制指令,所述控制指令包括采集周期和数据发送周期;太阳能电池板11中还包括控制模块118,控制模块118与收发模块113连接,控制模块118用于依据所述采集周期控制所述第一湿度传感器、所述红外传感器、所述光照传感器、所述第一温度传感器、所述第二湿度传感器、所述第二温度传感器和所述PH传感器采集数据的周期;依据所述数据发送周期控制所述收发模块发送所述采集数据的周期。
收发模块113还用于接收所述终端设备发送的生长参数经验阈值,所述生长参数经验阈值是同种植物生长速度最快时环境因素的阈值;控制模块118还用于判断所述植物对应的所述光照强度、所述室内温度、所述室内湿度、所述土壤温度、所述土壤湿度和所述土壤PH值是否超出相应的生长参数经验阈值,若超出,则所述控制模块控制所述第一湿度传感器、所述红外传感器、所述光照传感器、所述第一温度传感器、所述第二湿度传感器、所述第二温度传感器和所述PH传感器发出告警信息。
在本发明实施例中合理假设多个用户分别养植同一品种植物,该用户终端接收到其所养植物的环境因素,采用上述实施例的方式判断出植物的生长速度,若每个用户终端将植物的生长速度分享到一个应用平台,该应用平台可判断出生长速度最快的植物养植者,则该植物养植者养植植物的环境因素的值可作为生长参数经验阈值分享给其他的用户,其他用户的终端分别将生长参数经验阈值发送给收发模块113,控制模块118判断所述植物对应的所述光照强度、所述室内温度、所述室内湿度、所述土壤温度、所述土壤湿度和所述土壤PH值是否超出相应的生长参数经验阈值,若超出,则所述控制模块控制所述第一湿度传感器、所述红外传感器、所述光 照传感器、所述第一温度传感器、所述第二湿度传感器、所述第二温度传感器和所述PH传感器发出告警信息。收发模块113具体为NFC交换功能模块,即太阳能电池感应器10与终端设备如手机APP通过NFC协议进行信息交互,具体如太阳能电池感应器10通过NFC协议将植物生长的环境因素发送到手机APP,手机APP通过NFC协议将手机参数如手机号码、用户信息等发送给太阳能电池感应器10。
如图4所示,太阳能电池板11还包括PM2.5传感器119,所述PM2.5传感器分别与所述存储模块、所述控制模块和所述供电模块相连,所述PM2.5传感器用于检测空气中的PM2.5含量。
太阳能电池板11中还包括甲醛传感器130,所述甲醛传感器分别与所述存储模块、所述控制模块和所述供电模块相连,所述甲醛传感器用于检测空气中的甲醛含量。
太阳能电池板11中还包括GPS定位模块,所述GPS定位模块与所述收发模块相连。
太阳能电池板11中还包括雨量传感器131,所述雨量传感器分别与所述存储模块、所述控制模块和所述供电模块相连,所述雨量传感器用于检测所述植物所处位置的降雨量。
控制模块118还用于控制所述第一湿度传感器、所述红外传感器、所述光照传感器、所述第一温度传感器、所述第二湿度传感器、所述第二温度传感器、所述PH传感器、所述PM2.5传感器、所述甲醛传感器和所述雨量传感器开启或关闭。
太阳能电池板11的垂直方向可伸缩。
如图5所示,收发模块113还用于接收所述终端设备发送的浇水指令或停止浇水指令,所述浇水指令是所述终端设备判断出所述土壤湿度低于预设湿度时发送的指令,所述停止浇水指令是所述终端设备判断出所述土壤湿度高于预设湿度时发送的指令;太阳能电池感应器10还包括供水器13,供水器13与控制模块118连接,所述供水器用于依据所述浇水指令开启浇水开关,或依据所述停止浇水指令关闭浇水开关。
本发明实施例通过增加传感器的种类,增加了对植物环境因素的监控;通过生长参数经验阈值可以校正终端设备预先存储的生长参数理论阈 值;通过供水器可自动控制植物的浇水操作。
综上所述,本发明实施例通过太阳能电池板的供电模块将太阳能转换成电能,并为各种传感器持续供电,避免了定期给各种传感器充电的繁琐过程;另外,通过多个湿度传感器采集不同深度的土壤湿度监测土壤的渗水速度,红外传感器采集植物高度,通过植物高度的变化监测植物的生长速度,还可统计出土壤的渗水速度随着植物高度的变化,即植物在生长过程中需水量的变化;通过增加传感器的种类,增加了对植物环境因素的监控;通过生长参数经验阈值可以校正终端设备预先存储的生长参数理论阈值;通过供水器可自动控制植物的浇水操作。
在本发明所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟 或者光盘等各种可以存储程序代码的介质。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (14)

  1. 一种太阳能电池感应器,其特征在于,包括:太阳能电池板和杆部;其中,
    所述杆部与所述太阳能电池板固定连接,所述杆部插在土壤中,所述杆部不同深度位置分别安装有所述第一湿度传感器,所述第一湿度传感器用于采集不同深度的土壤湿度;
    所述太阳能电池板包括依次相连的供电模块、红外传感器和收发模块,所述供电模块与所述第一湿度传感器相连,所述供电模块用于吸收太阳能并将太阳能转换成电能,为所述第一湿度传感器和所述红外传感器持续供电,所述红外传感器用于采集植物高度,所述收发模块用于将所述植物高度与所述土壤湿度发送给终端设备,以使所述终端设备依据所述植物高度的变化监测植物的生长速度,依据所述土壤湿度判断植物是否需要浇水,以及依据所述土壤湿度的变化监测土壤的渗水速度。
  2. 根据权利要求1所述的太阳能电池感应器,其特征在于,所述太阳能电池板中还包括光照传感器、第一温度传感器和第二湿度传感器,所述光照传感器、所述第一温度传感器和所述第二湿度传感器分别与所述供电模块相连,所述光照传感器用于采集光照强度,所述第一温度传感器用于采集室内温度,所述第二湿度传感器用于采集室内湿度。
  3. 根据权利要求2所述的太阳能电池感应器,其特征在于,所述杆部还包括第二温度传感器和PH传感器,所述第二温度传感器和所述PH传感器分别与所述供电模块相连,所述第二温度传感器用于采集土壤温度,所述PH传感器用于采集土壤PH值。
  4. 根据权利要求3所述的太阳能电池感应器,其特征在于,所述太阳能电池板中还包括存储模块,所述存储模块分别与所述第一湿度传感器、所述红外传感器、所述光照传感器、所述第一温度传感器、所述第二湿度传感器、所述第二温度传感器、所述PH传感器和所述收发模块相连,所述存储模块用于存储所述第一湿度传感器、所述红外传感器、所述光照传感器、所述第一温度传感器、所述第二湿度传感器、所述第二温度传感器和所述PH传感器采集的数据。
  5. 根据权利要求4所述的太阳能电池感应器,其特征在于,所述收 发模块按预设周期将所述存储模块中存储的数据发送给所述终端设备,所述终端设备预先存储有植物生长参数数据库,所述植物生长参数数据库包括植物品种与生长参数理论阈值,所述生长参数理论阈值是所述植物正常生长时环境因素的阈值,以使所述终端设备判断所述植物对应的所述环境因素是否超出相应的生长参数理论阈值,若超出,则所述终端设备显示告警信息;其中,所述环境因素包括所述光照强度、所述室内温度、所述室内湿度、所述土壤温度、所述土壤湿度和所述土壤PH值。
  6. 根据权利要求5所述的太阳能电池感应器,其特征在于,所述收发模块接收所述终端设备发送的控制指令,所述控制指令包括采集周期和数据发送周期;
    所述太阳能电池板中还包括控制模块,所述控制模块与所述收发模块连接,所述控制模块用于依据所述采集周期控制所述第一湿度传感器、所述红外传感器、所述光照传感器、所述第一温度传感器、所述第二湿度传感器、所述第二温度传感器和所述PH传感器采集数据的周期;依据所述数据发送周期控制所述收发模块发送所述采集数据的周期。
  7. 根据权利要求6所述的太阳能电池感应器,其特征在于,所述收发模块还用于接收所述终端设备发送的生长参数经验阈值,所述生长参数经验阈值是同种植物生长速度最快时环境因素的阈值;
    所述控制模块还用于判断所述植物对应的所述光照强度、所述室内温度、所述室内湿度、所述土壤温度、所述土壤湿度和所述土壤PH值是否超出相应的生长参数经验阈值,若超出,则所述控制模块控制所述第一湿度传感器、所述红外传感器、所述光照传感器、所述第一温度传感器、所述第二湿度传感器、所述第二温度传感器和所述PH传感器发出告警信息。
  8. 根据权利要求7所述的太阳能电池感应器,其特征在于,所述太阳能电池板中还包括PM2.5传感器,所述PM2.5传感器分别与所述存储模块、所述控制模块和所述供电模块相连,所述PM2.5传感器用于检测空气中的PM2.5含量。
  9. 根据权利要求8所述的太阳能电池感应器,其特征在于,所述太阳能电池板中还包括甲醛传感器,所述甲醛传感器分别与所述存储模块、所述控制模块和所述供电模块相连,所述甲醛传感器用于检测空气中的甲 醛含量。
  10. 根据权利要求9所述的太阳能电池感应器,其特征在于,所述太阳能电池板中还包括GPS定位模块,所述GPS定位模块与所述收发模块相连。
  11. 根据权利要求10所述的太阳能电池感应器,其特征在于,所述太阳能电池板中还包括雨量传感器,所述雨量传感器分别与所述存储模块、所述控制模块和所述供电模块相连,所述雨量传感器用于检测所述植物所处位置的降雨量。
  12. 根据权利要求11所述的太阳能电池感应器,其特征在于,所述控制模块还用于控制所述第一湿度传感器、所述红外传感器、所述光照传感器、所述第一温度传感器、所述第二湿度传感器、所述第二温度传感器、所述PH传感器、所述PM2.5传感器、所述甲醛传感器和所述雨量传感器开启或关闭。
  13. 根据权利要求1-12任一项所述的太阳能电池感应器,其特征在于,所述太阳能电池板的垂直方向可伸缩。
  14. 根据权利要求13所述的太阳能电池感应器,其特征在于,所述收发模块还用于接收所述终端设备发送的浇水指令或停止浇水指令,所述浇水指令是所述终端设备判断出所述土壤湿度低于预设湿度时发送的指令,所述停止浇水指令是所述终端设备判断出所述土壤湿度高于预设湿度时发送的指令;
    所述太阳能电池感应器还包括供水器,所述供水器与所述控制模块连接,所述供水器用于依据所述浇水指令开启浇水开关,或依据所述停止浇水指令关闭浇水开关。
PCT/CN2016/072797 2015-06-29 2016-01-29 太阳能电池感应器 WO2017000553A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510370114.XA CN104938309B (zh) 2015-06-29 2015-06-29 太阳能电池感应器
CN201510370114.X 2015-06-29

Publications (1)

Publication Number Publication Date
WO2017000553A1 true WO2017000553A1 (zh) 2017-01-05

Family

ID=54153855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/072797 WO2017000553A1 (zh) 2015-06-29 2016-01-29 太阳能电池感应器

Country Status (2)

Country Link
CN (1) CN104938309B (zh)
WO (1) WO2017000553A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109738615A (zh) * 2019-03-05 2019-05-10 青海大学 土壤信息采集装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104938309B (zh) * 2015-06-29 2018-11-20 高翔 太阳能电池感应器
CN110122284A (zh) * 2018-02-02 2019-08-16 京东方科技集团股份有限公司 智能养殖装置、方法以及系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20114550U1 (de) * 2001-09-04 2001-11-15 Plattner, Wolfgang, 85247 Schwabhausen Flüssigkeitsstandsanzeige in Pflanzenbehältern
CN101216482A (zh) * 2008-01-18 2008-07-09 中国农业大学 一种农田环境的监测装置
CN101936935A (zh) * 2010-06-29 2011-01-05 中国农业大学 土壤多参数测量装置
CN201965128U (zh) * 2011-03-09 2011-09-07 刘春华 一站式多功能土壤墒情监测装置
CN102175156A (zh) * 2011-01-18 2011-09-07 华中科技大学 作物自动测高装置
CN102498992A (zh) * 2011-10-12 2012-06-20 无锡同春新能源科技有限公司 色彩传感器在晚稻栽培三黑三黄方法中的应用装置
CN103512618A (zh) * 2013-10-12 2014-01-15 复旦大学无锡研究院 一种自供电的农业综合信息智能监测系统
CN204028065U (zh) * 2014-05-04 2014-12-17 河北省水利技术试验推广中心 一种土壤温度、湿度无线采集设备
CN104938309A (zh) * 2015-06-29 2015-09-30 高翔 太阳能电池感应器
CN204837384U (zh) * 2015-06-29 2015-12-09 高翔 太阳能电池感应器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203054554U (zh) * 2012-12-27 2013-07-10 南通纺织职业技术学院 一种温室大棚控制装置
CN203226113U (zh) * 2013-03-26 2013-10-09 东华大学 一种全自动浇花系统
CN203748365U (zh) * 2013-11-22 2014-08-06 西安科技大学 一种家庭花卉独立智能浇灌装置
CN203893883U (zh) * 2014-05-04 2014-10-22 河北省水利技术试验推广中心 农田作物灌溉预报信息的实时采集系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20114550U1 (de) * 2001-09-04 2001-11-15 Plattner, Wolfgang, 85247 Schwabhausen Flüssigkeitsstandsanzeige in Pflanzenbehältern
CN101216482A (zh) * 2008-01-18 2008-07-09 中国农业大学 一种农田环境的监测装置
CN101936935A (zh) * 2010-06-29 2011-01-05 中国农业大学 土壤多参数测量装置
CN102175156A (zh) * 2011-01-18 2011-09-07 华中科技大学 作物自动测高装置
CN201965128U (zh) * 2011-03-09 2011-09-07 刘春华 一站式多功能土壤墒情监测装置
CN102498992A (zh) * 2011-10-12 2012-06-20 无锡同春新能源科技有限公司 色彩传感器在晚稻栽培三黑三黄方法中的应用装置
CN103512618A (zh) * 2013-10-12 2014-01-15 复旦大学无锡研究院 一种自供电的农业综合信息智能监测系统
CN204028065U (zh) * 2014-05-04 2014-12-17 河北省水利技术试验推广中心 一种土壤温度、湿度无线采集设备
CN104938309A (zh) * 2015-06-29 2015-09-30 高翔 太阳能电池感应器
CN204837384U (zh) * 2015-06-29 2015-12-09 高翔 太阳能电池感应器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109738615A (zh) * 2019-03-05 2019-05-10 青海大学 土壤信息采集装置

Also Published As

Publication number Publication date
CN104938309A (zh) 2015-09-30
CN104938309B (zh) 2018-11-20

Similar Documents

Publication Publication Date Title
CN205161283U (zh) 一种智能种植机
CN205176701U (zh) 基于大数据的智能农业环境监控系统
CN105357951A (zh) 植物生长系统
CN203950191U (zh) 一种基于移动设备的植物监控装置
CN204731617U (zh) 一种基于大棚种植有机植物的生命周期特性分析系统
CN104062951A (zh) 一种基于无线物联网的智能花盆
CN101167436A (zh) 一种基于无线探测器的智能浇灌系统和方法
JP2004000146A (ja) 植物の栽培方法および植物の栽培装置
CN108011955A (zh) 一种基于云服务的智能大棚监控系统
CN105204480A (zh) 一种家居阳台绿化智能控制装置
CN204653143U (zh) 一种智能花盆
WO2017000553A1 (zh) 太阳能电池感应器
CN103621383A (zh) 装有滴灌装置和摄像头的盆栽花卉远程检测系统
CN104656710A (zh) 物联网农业大棚数字化控制系统
CN102645925A (zh) 基于物联网的植物非试管快繁智能控制系统
CN202735831U (zh) 葡萄场智能监控装置
CN204837384U (zh) 太阳能电池感应器
CN205121314U (zh) 一种家居阳台绿化智能控制装置
KR20160109581A (ko) 신재생 에너지를 이용한 식물농장 시스템
CN104808635A (zh) 一种温室大棚监控系统
CN202472406U (zh) 温室自动化控制用嵌入式系统
CN106489686A (zh) 一种园林绿化智能灌溉系统
CN106557102A (zh) 一种多功能智能花盆控制系统
CN209449334U (zh) 热带兰水肥一体化半智能培育设备
CN211044041U (zh) 一种温室的环境控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16816918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 16.04.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16816918

Country of ref document: EP

Kind code of ref document: A1