WO2017000158A1 - Method for scheduling user equipment in a heterogeneous network - Google Patents

Method for scheduling user equipment in a heterogeneous network Download PDF

Info

Publication number
WO2017000158A1
WO2017000158A1 PCT/CN2015/082754 CN2015082754W WO2017000158A1 WO 2017000158 A1 WO2017000158 A1 WO 2017000158A1 CN 2015082754 W CN2015082754 W CN 2015082754W WO 2017000158 A1 WO2017000158 A1 WO 2017000158A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
user terminal
cell
small cell
macro cell
Prior art date
Application number
PCT/CN2015/082754
Other languages
French (fr)
Inventor
Liang Liu
Zhenning Shi
Xiaojia SONG
Original Assignee
Orange
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orange filed Critical Orange
Priority to PCT/CN2015/082754 priority Critical patent/WO2017000158A1/en
Priority to PCT/IB2016/001081 priority patent/WO2017001934A1/en
Publication of WO2017000158A1 publication Critical patent/WO2017000158A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures

Definitions

  • the invention generally relates to scheduling in a cellular network, more particularly for the uplink transmission in a heterogeneous cellular network.
  • Wireless networks have witnessed the proliferation of smart communication terminals and drastic growth in the network traffic from data services.
  • heterogeneous networks have been proposed, where small cells are introduced, as a complement to macro cells.
  • small cells allow to significantly offload the traffic from macro cells, and to extend the network coverage.
  • access nodes (or hotspots) of such small cells may use the short transmission range for exchanging data with user equipment, thus increasing local capacities at hotspots.
  • HetNet heterogeneous network
  • LTE 3GPP UTRAN Long Term Evolution
  • the uplink interference may substantially jeopardize the received signal quality of small cells and, in turn, the transmission performance. If closed-loop power control is adopted in the small cell uplink, users will reactively increase the transmission power to maintain the signal-to-interference-plus-noise ratio (SINR) . Nevertheless, this may add to the co-channel interference in the uplink of macro cells and may aggravate the already weak macro cell uplink channels.
  • SINR signal-to-interference-plus-noise ratio
  • a solution could consist of allocating some sub-bands for the exclusive use of macro cells to avoid cross-tier interference. This may significantly enhance the received signal quality of both macro cells and small cells, but at the cost of limiting the spectrum access in small cells.
  • the resource allocation is performed in a cooperative fashion by a central scheduling unit for a set of cooperating BSs.
  • Multi-cell Channel State Information (CSI) of all UEs associated with the set of cooperating BSs can be periodically exchanged in order to predict the experienced inter-cell interference level if a certain UE would be scheduled on certain physical resource blocks. This information is then considered in the scheduling decisions for minimizing the inter-cell interference, leading to an interference-aware scheduling.
  • CSI Multi-cell Channel State Information
  • PCT application WO2015/081570 describes a method for scheduling user equipment in a heterogeneous network, or HetNet, comprising at least one macro cell and at least one small cell having at least partially overlapping coverage, the method being run by a scheduling unit for said at least one macro cell and comprising the steps of:
  • a coordination message comprising information on said at least one scheduled user equipment prone to cause interference on said victim small cell and on radio resources allocated to it.
  • the heterogeneous network coordinated scheduler in WO2015/081570 presents a method of utilizing macro scheduling information in small cell resource allocation to find the best user combination on resource blocks. Nevertheless, it is confined to single-point reception hence the small cell scheduler attempts to find the user that is spatially orthogonal to the aggressor macro-associated user. This imposes constraint on small cell reception as some spatial degree of freedom is used in nulling macro user interference. Moreover, macro user does not benefit from the coordinated scheduler even though it is subject to the weak communication link to the serving cell.
  • the invention aims at proposing a method for interference-aware scheduling in a heterogeneous network that can improve the existing situation.
  • the invention relates to a method for scheduling user terminals in a heterogeneous network comprising a plurality of cooperating cells constituted by at least one macro cell and at least one small cell having at least partially overlapping coverage, each cooperating cell having corresponding radio resource blocks assigned to their respective user terminals, the method being run by a centralized controller that performs radio resource block assignment for said cooperating cells, wherein radio resource block assignment comprises:
  • radio resource blocks of the small cell are allocated to user terminals that maximize a first utility metric associated with said radio resource blocks of the small cell
  • a second utility metric associated with said radio resource block of the macro cell is determined for each combination of user terminal of the macro cell and of a user terminal of the small cell assigned to the corresponding radio resource block, and the radio resource block of the macro cell is assigned to the user terminal of the macro cell that maximizes said second utility metric.
  • the invention relies on a novel and inventive approach of the scheduling in a heterogeneous network.
  • the centralized controller performs a centralized scheduling and is responsible for user-channel assignment for a cluster of macro cells and overlaid macro cells.
  • the centralized controller attempts to find the best user terminal combination for assigned radio resource blocks, managing interference and boosting performance for user terminals both in small cells and in macro cells.
  • Global visibility of user channel conditions and joint decisions for both transmit and receive ends allow the proposed centralized controller to effectively mitigate the cross-tier interference in the HetNet uplink and to optimize the user performance of both small cell user terminals and macro cell user terminals.
  • An interfering user terminal associated with a macro cell is typically on a weak link towards its serving cell, and thus the performance of said user terminal should be enhanced maybe as equally as its small cell user terminal counterpart that is subject to the uplink interference.
  • One solution is to implement successive interference cancellation (SIC) receiver at the small cell access point.
  • SIC successive interference cancellation
  • macro user signals need to be decoded by small cells.
  • the decoded information can be sent to macro cell whereby decoding switching can be performed between serving node and small cell node to enhance macro user performance.
  • SIC performance is subject to the received power of small cell signals (traditionally considered as desired signals) relative to the macro cell user signals (used to be considered as interfering signals) .
  • the method allows determining the best user combination in conjunction with SIC receivers and multi-node decoding switching.
  • each macro cell receives channel state information from each user terminal served by said macro cell, and on the basis of said channel state information, each macro cell partitions the user terminals served by said macro cell into two user sets defined by their reception mode:
  • determining among the single-node reception user set the user terminal that maximizes a combined utility metric associated with said radio resource block in combination with the user terminal of the small cell to which the corresponding radio resource is assigned;
  • determining among the coordinated multi-point reception user set the user terminal that maximizes a combined utility metric associated with said radio resource block in combination with the user terminal of the small cell to which the radio resource is assigned;
  • the central controller takes into account the multi-point reception in user terminal pairing such that the best user terminal pairs are not necessarily to be mutually orthogonal but rather maximize the utility metric with multi-point reception technologies. It is favorable to partition user terminals served by a macro cell into two user sets, i.e. a single-node reception (SNR) user set and a coordinated multi-point (CoMP) reception user set, and apply different scheduling strategies accordingly.
  • SNR single-node reception
  • CoMP coordinated multi-point
  • the method may also comprises steps in which:
  • -a small cell receives signals from user terminals of the coordinated multi-point reception user set, decode said signals, and send said decoded signals to a macro cell
  • -said macro receives signals from user terminals of the coordinated multi-point reception user set, and decode said signals
  • the combined utility metric for said user terminal of the coordinated multi-point reception user set is determined from an average throughput R i of user terminal i of the macro cell, an average throughput of user terminal j l of the small cell, an estimated data rate r i of user terminal i of the macro cell, an estimated data rate r j1 of user terminal j 1 of the small cell:
  • FIG. 1 represents an exemplary heterogeneous network N in which the method of the invention can be run;
  • FIG. 2 illustrates interactions between an exemplary configuration of two macro cells, a small cell and a centralized controller
  • FIG. 3 illustrates the partitioning of the user terminals according to their respective location with respect to a macro cell and a small cell;
  • FIG. 4 is a diagram illustrating steps of the scheduling method according to a possible embodiment.
  • small cell designate any cell, which is smaller than a conventional macro cell served by a macro base station, as described in the LTE standard: for example, such a small cell may be a pico cell for in-building coverage, or a femto cell served by an access point, which is called a Home Node B (HeNB) .
  • an heterogeneous network as described in this document usually comprises macro eNodes B (eNBs) , which are deployed for initial coverage of the network by macro cells, and pico access nodes or HeNBs, which serve small cells, and are added to the network for capacity growth and better user experience.
  • eNBs macro eNodes B
  • HeNBs pico access nodes or HeNBs
  • Figure 1 represents a network N in which the methods of the invention are run.
  • the network N is for example a heterogeneous LTE network, comprising several macro cells and several small cells showing overlapping coverage.
  • the network N on figure 1 shows only one macro cell MC, covered by an access node AN1.
  • the network N also comprises two small cells SC1 and SC2, which coverage is included in the coverage of the macro cell MC.
  • Each small cell SC1, SC2 is covered by an access node, respectively AN2, AN3.
  • Each access node AN1, AN2, AN3, comprises at least one antenna for radio signal transmission.
  • Several mobile devices such as mobile phones, laptops or tablets for example, are attached to the access nodes of network N.
  • mobiles devices SUE1 and SUE2 are respectively attached to access nodes AN2 and AN3 of small cells SC1 and SC2.
  • a transmission channel is established between the mobile device SUE1 and the access node AN2, as well as between the mobile device SUE2 and the access node AN3.
  • Small cells SC1 and SC2 thus serve respectively mobile devices SUE1 and SUE2.
  • the coverage area of the small cell SC1, SC2 is artificially enlarged, in such a way that the UE should connect to the small cell even if the macro cell downlink coverage is stronger.
  • Such an artificial enlargement is called a Range Extension Zone, shown as REZ1 for small cell SC1 and REZ2 for small cell SC2.
  • Other mobile devices MUE1 to MUE4 are also located in the coverage area of the macro cell MC.
  • RSRP Reference Signal Receive Power
  • LTE network measurement which provides cell-specific signal strength metric. This measurement can be used to rank different LTE cells according to their signal strength, and hence serves as an input for handover and cell reselection.
  • RSRP is defined for a specific cell as the linear average over the power contributions (in Watts) of the Resource Elements (REs) , which carry cell-specific reference signal within the considered measurement frequency bandwidth.
  • mobile devices MUE1 to MUE4 are all camping on the macro cell MC.
  • mobile device MUE1 is located in a so-called imbalance region IR, at the boundary between the macro cell MC and the small cell SC1. Therefore, MUE1 transmission power has to be tuned high to compensate for the weak channel link between itself and the access node AN1 of the serving macro cell MC.
  • This may create strong interference in the uplink of small cell SC1 and compromise the user performance, for example for the mobile device SUE1.
  • Such a strong interference is illustrated in figure 1 by a dashed arrow going from user equipment MUE1 to access node AN2 of small cell SC1.
  • Other mobile devices MUE2 and SUE2 may also generate some interference on small cell SC1, also illustrated by dashed arrows between mobile devices SUE2, MUE2 and access node AN2.
  • such interference is typically weaker than that generated by mobile device MUE1.
  • One possible approach to mitigate the uplink interference is to employ advanced successive interference cancellation (SIC) techniques at small cell receive ends.
  • SIC advanced successive interference cancellation
  • MUE 1 signal By decoding MUE 1 signal and then subtracting the macro-generated interference, small cell signals can be better recovered.
  • the performance of the SIC method is sensitive to the received power of small cell signals with respect to the macro user interference.
  • the benefit is manifest when the interference introduced by the macro user is significantly higher to allow successful decoding of interfering signals.
  • this macro interference can be accurately generated and then eliminated from signals at the small cell receiver.
  • the performance gains may diminish. It thus adds to the complexity of small cell access nodes AN2 and AN3, and the performance is sensitive to the interference levels of cross-tier signals.
  • WO2015/081570 An alternative method is presented in WO2015/081570 that utilizes macro-cell scheduler decision to find small cell users that best match to macro cell interferers. Those small cell users are nearly orthogonal to the macro-associated users in the spatial domain such that their signals can be separated from the interfering signals.
  • FIG. 2 shows a generic framework of an exemplary simplified embodiment of the present invention.
  • the system comprises a centralized controller CC that jointly determines user terminal reception mode and schedules user terminal data packet transmission for a number of cooperating cells.
  • the cooperating cells comprises two macro cells MC and one small cell SC. Since multi-point reception best works with tight coupling between macro cells and small cells, the cooperating cells are preferably linked by low-latency, high-bandwidth inter-BBU connections. Thus it is conveniently applied to baseband unit (BBU) centralization architectures, e.g., Cloud RAN.
  • BBU baseband unit
  • each cooperating cells MC receive channel state information (CSI) from their respective user terminals and from the user terminals prone to cause interference.
  • CSI channel state information
  • User terminal thus report to their respective serving cells the CSI of their links to the serving cells as well as those that are the most susceptible to the uplink interference caused by the user terminals.
  • each macro cell MC partitions the user terminals MUE served by said macro cell MC into:
  • SNR single-node reception
  • CoMP coordinated multi-point reception user set
  • Figure 3 illustrates the partitioning of the user terminals according to their respective location with respect to a macro cell and a small cell.
  • Multi-node decoded user terminals users are distinguished from user terminals received by one serving cell only.
  • the serving node on the left is a high power macro base station defining a macro cell and the serving node on the right is a low power access point defining a small cell.
  • the macro cell and the small cell have overlapping coverage.
  • User partitioning is typically determined by user terminal measurement of RSRP power in the downlink.
  • the resulted cell coverage, marked by the right-most vertical dashed line is quite limited for small cell for which the radio resource is under-utilized.
  • CRE cell range extension
  • UE1 and UE2 camp on the macro cell while UE3 is associated with the small cell.
  • UE3 is associated with the small cell.
  • For user terminals i ⁇ ⁇ 1, 2, 3 ⁇ is the respective transmit powers from user terminal i, is the received power at macro base station from user terminal i, and the received power at small cell from user terminal i, respectively.
  • UE1 Located at the inner region of macro cell MC, UE1 is received by the serving macro MC cell at that is significantly higher than interfering signals. Thus the desired signals can be reliably decoded.
  • UE1 signal power received by the small cell node SC i.e., is quite weak compared to that of small cell users. Therefore, attempts to decode UE1 signal at small cell node SC may lead to unreliable results and it is not recommended to apply multi-point reception to UE1.
  • UE 2 is located at the outer region of macro cell MC and it is equally distant from small cell node SC as from the macro cell base station MC or even closer to the former geographically. As a result, it is received at a high power level by small cell node SC. Multi-path diversity can be exploited to achieve significant gains in user throughput by applying multi-point reception to this user. Moreover, decoded UE2 signals can be used to re-construct the introduced interference and help decoding small cell user signals via successive interference cancellation SIC.
  • the user terminal partitioning, or user terminal classification can follow a variety of sensible rules and only some exemplary ways are given for separating CoMP user terminals from SNR user terminals are given below.
  • a first way is pathloss-determined user terminal classification.
  • macro user terminals that are closer to small cells SC are considered for CoMP decoding, i.e. as belonging to a coordinated multi-point reception user set.
  • said coordinated multi-point reception user set can be determined as
  • U m denotes user terminals camping on macro cell m
  • ⁇ i, m denotes the pathloss between user i and macro cell base station m
  • ⁇ i, s denotes the pathloss between user i and small cell node
  • denotes the system-defined parameter for user terminal portioning which can be optimized via numerical experiments.
  • FPC fractional pathloss compensation
  • S CoMP denotes the small cells participating in CoMP with user terminals in macro cell m.
  • SNR user set of cell m is given by
  • each cooperating cell MC reports to the centralized controller CC said channel state information and each macro cell MC reports user set information about the portioning of the user terminals served by said macro cell.
  • the cooperating cells report messages facilitating joint scheduling and multi-node reception over an enhanced backhaul. There are two types of messages to be sent to the central controller
  • the centralized controller CC performs radio resource block assignment for said cooperating cells.
  • the centralized controller CC performs multi-cell user terminal assignment to find the best user terminal pairs for the assigned resource blocks by taking into account inter-cell interference and user terminal reception mode.
  • Table 1 below illustrates the complexity of user terminals pairing for different cooperation cluster sizes.
  • Table 1 shows the number of user terminal pairs to be checked for CoMP clusters of different size. It can be seen that exhaustive search incurs an exponential complexity which becomes infeasible as the CoMP cluster size increases. Greedy search, an algorithm that determines the user terminals successively and maximizes the combined performance in each incremental step, can be used in practice to approach the optimal performance. The resulting complexity is linear with respect to the number of cooperating cells. Nevertheless, the cluster size should also be restricted to a small number (e.g., a handful of cooperating macro and small cells) to minimize the complexity of the proposed centralized scheduler.
  • a first way for performing such an assignment would be single cell user terminal assignment regardless of the user terminal of the CoMP user set. This is a low-complexity scheme where user assignment for each cell is determined independently without considering the interference caused to neighbour cells.
  • user signal quality is determined by the link between the terminal and the serving cell, i.e., CoMP reception is not taken into account in user assignment. Obviously this is only a baseline user assignment method.
  • a coordinated scheduler such as in WO 2015/081570 can also be used for allocating resource blocks to user terminals.
  • the interference that macro-associated user terminals introduce to the proximate small cells is taken into account in selecting small cell users to maximize the overall performance of cooperating cells. It is realized that macro users in the SNR user set would not severely interfere small cells hence the user pairing only tackles the interference caused by macro cell user terminals in the CoMP user set.
  • all macro cells assign resource blocks to users with the maximum utility metric, e.g. , proportional fair (PF) metric, without considering the interference caused to small cells.
  • PF proportional fair
  • small cell scheduler transverses S43 over all resource block 1, and
  • a macro-associated user terminal belongs to the SNR user set, i.e. said user terminal does not introduce significant interference to small cells.
  • small cell user terminal assignment is nearly decoupled from macro cell scheduling, and the resource block is allocated to the user associated with the maximum utilitv metric where U s denotes the small cell user set and PF l (j) denotes the PF metric of user j.
  • a macro-associated user terminal belongs to the CoMP user set, i.e. small cells assign the resource block to the user that are best matched with macro cell users to achieve the maximum sum performance.
  • the preferred way to assign radio resource block to user terminals associated to macro cells is CoMP-aware coordinated user assignment.
  • the CoMP-aware coordinated user assignment scheme optimizing the overall performance of cooperating cells. It determines the best user pair between macro cells and small cells following the greedy approach. On the other hand it distinguishes itself as it takes into account the multi-point reception mode and is closely coupled with the CoMP technologies applied at the receiver end.
  • Figure 4 is a diagram illustrating steps of an exemplary CoMP-aware coordinated user terminal assignment.
  • Radio resource block assignment comprises a first step S40 of small cell user terminal assignment, in which radio resource block of the small cell SC are allocated to user terminals SUE that maximize a first utility metric associated with said radio resource blocks of the small cell.
  • the centralized controller CC then performs a second step S42 of a CoMP-aware user assignment in which for assigning a radio resource block 1 of the macro cell MC, a second utility metric PF 1 (i, j 1 ) associated with said radio resource block 1 of the macro cell MC is determined for each combination (i, j 1 ) of user terminal of the macro cell MC and of a user terminal of the small cell SC assigned to the corresponding radio resource block 1, and the radio resource block 1 of the macro cell is assigned to the user terminal of the macro cell that maximizes said second utility metric PF 1 (i, j 1 ) .
  • radio resource blocks 1 of the small cell are allocated to user terminals that maximize a first utility metric PF 1 (j) associated with said radio resource blocks 1 of the small cell. All small cells assign resource blocks to the user associated with the maximum utility metric
  • the second step of the radio resource block 1 assignment comprises CoMP-aware user assignment S42 of macro cell resource block to the user terminal with the maximum sum utility metric as
  • the second step of the radio resource block assignment thus comprises:
  • the utility metric of said determined user terminal from the single-node reception user set is then compared (S46) with the utility metric of said determined user terminal from the coordinated multi-point reception user set, and the radio resource block of the macro cell is assigned on the basis of this comparison:
  • the radio resource block is assigned to the user terminal associated with the higher utility metric.
  • macro cell associated user terminal data rate is determined by the link between the user terminal and the serving macro cell.
  • Macro cell associated user terminal that is best matched with small cell user terminal j l shown in (9) can be re-written as
  • R i average throughput of user terminal i
  • the combined utility metric for a user terminal of the single-node reception user set can thus be approximated by a utility metric of said user terminal, and not by a combined utility metric of said terminal of the single-node reception user set and of the small-cell-associated user terminal j 1 .
  • -a small cell receives signals from user terminals of the coordinated multi-point reception user set, decode said signals, and send said decoded signals to a macro cell
  • -said macro receives signals from user terminals of the coordinated multi-point reception user set, and decode said signals
  • VHSO Virtual Soft Handoff
  • small cell receiver performs successive interference cancellation (SIC) to sequentially decode signals of small cell and interfering macro cells.
  • SIC successive interference cancellation
  • Small cell-decoded macro cell data is then sent to macro cells for selective combination, i.e., small-cell decoded signals is compared with those received by macro cells and the better of the two would be retained.
  • the combined utility metric for the user terminal of the coordinated multi-point reception user set is determined from an average throughput R i of user terminal i of the macro cell, an average throughput of user terminal j l of the small cell, an estimated data rate ri of user terminal i of the macro cell, an estimated data rate r j1 of user terminal j 1 of the small cell:
  • small cell decodes macro cell signals first; macro cell (such as eNB) chooses small cell-decoded data.
  • macro cell such as eNB
  • the estimated instantaneous data rates of macro and small cell user terminals can be obtained as
  • small cell decodes small cell signals first; macro cell (such as eNB) choose small cell-decoded data.
  • macro cell such as eNB
  • the corresponding user data rate and the sum PF utility metric is given by
  • both the macro cell and the small cell performs single node reception, resulting in
  • PF l (i, j l ) max (PF a (i, j l ) , PF b (i, j l ) , PF c (i, j l )) .
  • the joint scheduler transverse the set union to compute the combined utility metric for all user terminal pair and to find the user terminal pair associated with the maximum combined utility metric value according to expression (10) .
  • the method of radio resource assignment for CoMP-aware user terminals can also be extended to the macro layers for macro cells to determine the scheduled user terminals in coordination.
  • the centralized controller After the centralized controller has performed radio resource block assignment for the cooperating cells, in a fifth stage, the centralized controller adjusts modulation coding scheme (MCS) .
  • MCS modulation coding scheme
  • Centralized controller accounts for accurate user signal signal-to-interference-plus-noise ratios (SNRs) in a large CoMP cluster and adjust modulation coding scheme (MCS) to closely couple with user terminal signal quality.
  • SINRs user signal-to-interference-plus-noise ratios
  • MCS modulation coding scheme
  • user signal reception mode is also determined.
  • the third case there are more than one macro cell user terminal in CoMP reception mode with small cell user terminal j l .
  • the macro cell user terminals are jointly decoded with the small cell user terminal j l where 2 ⁇ N ⁇ M.
  • N+l cells i.e, N macro cells and small cell s, in the CoMP cluster.
  • the SIC decoding order is determined before computing the accurate user SINRs.
  • the steps of estimating user priorities (and associated SINRs) in user assignment only applies to 2-point CoMP scenario, while there is no straightforward way to extend it to a general (N+l) -point CoMP case.
  • User terminals and j l are decoded by small cell SIC in sequence, user terminal is decoded by the serving cell;
  • User terminals and j l are decoded by small cell SIC in sequence, user terminal is decoded by the serving cell;
  • the module of the centralized controller responsible for MCS mapping needs to compute the sum utility metrics corresponding to all the above-mentioned hypotheses and selects the CoMP reception mode associated with optimum sum utility.
  • the number of CoMP hypotheses for the (N+1) -point CoMP can be shown to be which increases quickly with respect to N.
  • SIC (N, ⁇ x 1 , x 2 , ... x N ⁇ ) : N-point CoMP where the small cell employs SIC to sequentially decode user terminal signals x l through x N in the increasing order of n.
  • SNR ( ⁇ y 1 , y 2 , ... y Q ⁇ ) Single-node reception where user terminal signals y 1 , y 2 , ... y Q are separately decoded by their own serving cells. It is clear that SIC(1, x l ) is equivalent toSNR (x l ) .
  • ⁇ (SIC (N, ⁇ SIC ) , SNR( ⁇ SNR ) ) sum utility metric of CoMP users in ⁇ SIC and SNR users in ⁇ SNR .
  • the utility function ⁇ would be PF metric.
  • SINR values are then be used in MCS allocation.
  • the centralized controller After this fifth stage in which the centralized controller adjusts modulation coding scheme, in a sixth stage, the centralized controller notifies all cooperating cells the results of the blocks resources assignment, and the reception mode of the user terminals.
  • each small cell decodes signals from user terminals of the coordinated multi-point reception user set and sends said decoded signals to each macro cell serving said user terminals. Successive interference cancellation can be performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The invention relates to a method for scheduling user terminals in a heterogeneous network comprising a plurality of cooperating cells constituted by at least one macro cell and at least one small cell having at least partially overlapping coverage, each cooperating cell having corresponding radio resource blocks assigned to their respective user terminals, wherein for a centralized controller to assign a radio resource block of the macro cell, a utility metric associated with said radio resource block of the macro cell is determined for each combination of user terminal of the macro cell and of a user terminal of the small cell assigned to the corresponding radio resource block, and the radio resource block of the macro cell is assigned to the user terminal of the macro cell that maximizes said second utility metric.

Description

METHOD FOR SCHEDULING USER EQUIPMENT IN A HETEROGENEOUS NETWORK
CONTEXT AND BACKGROUND OF THE INVENTION
The invention generally relates to scheduling in a cellular network, more particularly for the uplink transmission in a heterogeneous cellular network.
Wireless networks have witnessed the proliferation of smart communication terminals and drastic growth in the network traffic from data services. To effectively cope with the rapidly growing demands on network capacity, heterogeneous networks have been proposed, where small cells are introduced, as a complement to macro cells. Such small cells allow to significantly offload the traffic from macro cells, and to extend the network coverage. In addition, access nodes (or hotspots) of such small cells may use the short transmission range for exchanging data with user equipment, thus increasing local capacities at hotspots.
However, such small cells have a coverage overlapping that of the macro cells. Their presence in the heterogeneous network (HetNet) thus creates severe interference scenarios in both the uplink and the downlink to the overlaid macro cells, and vice versa. Small cells also receive significant interference from co-channel macro cells. These high interference levels may compromise the benefits obtained through the use of additive small cells in cellular networks operating with universal frequency reuse, such as the 3GPP UTRAN Long Term Evolution (LTE) .
Actually, when a macro-associated user is in the vicinity of a small cell, it is far away from the serving node of the macro cell: hence, it has to increase its emitting power to compensate for the large propagation loss. However, the short distance between this user and the small cell access node, combined with a high transmission power, may generate severe interference in the small cell uplink.
The uplink interference may substantially jeopardize the received signal quality of small cells and, in turn, the transmission performance. If closed-loop power control is adopted in the small cell uplink, users will reactively increase the transmission power to maintain the signal-to-interference-plus-noise ratio (SINR) . Nevertheless, this may add to the co-channel interference in the uplink of macro cells and may aggravate the already weak macro cell uplink channels.
A solution could consist of allocating some sub-bands for the exclusive use of macro cells to avoid cross-tier interference. This may significantly enhance the received signal quality of both macro cells and small cells, but at the cost of limiting the spectrum access in small cells.
In order to improve the performance and quality of experience of mobile users in a cellular network such as a LTE (Long Term Evolution) network defined in E-UTRAN standard, , several approaches have been proposed to control the uplink inter-cell interference. Among these, P. Frank et al. suggest, in an article called “Cooperative Interference-Aware Joint Scheduling for the 3GPP LTE Uplink” , IEEE PIMRC, 2010, to perform coordinated scheduling between different base stations (BS) : thus, different BSs cooperate with each other via a fast backhaul network, in order to jointly allocate frequency resources to the various UEs (User Equipment) , taking the inter-cell interference from and to nearby BSs into account.
According to this method, the resource allocation is performed in a cooperative fashion by a central scheduling unit for a set of cooperating BSs. Multi-cell Channel State Information (CSI) of all UEs associated with the set of cooperating BSs can be periodically exchanged in order to predict the experienced inter-cell interference level if a certain UE would be scheduled on certain physical resource blocks. This information is then considered in the scheduling decisions for minimizing the inter-cell interference, leading to an interference-aware scheduling.
Though very interesting for conventional LTE Release 8 cellular networks, such a multi-cell scheduling method was solely designed for homogeneous networks, and does not take into account the characteristics of interference scenarios encountered in the uplink of heterogeneous networks. In other words, such a method is not optimized in terms of performance or complexity for HetNet, notably as it requires the use of a central scheduler, which is needed to make scheduling decisions based on global user channel information.
PCT application WO2015/081570 describes a method for scheduling user equipment in a heterogeneous network, or HetNet, comprising at least one macro cell and at least one small cell having at least partially overlapping coverage, the method being run by a scheduling unit for said at least one macro cell and comprising the steps of:
-scheduling user equipment served by said macro cell and allocating radio resources to said scheduled user equipment,
-determining a set of at least one of said scheduled user equipment prone to cause interference in the uplink on at least one of said small cell (s) , called a victim small cell,
-sending, through a backhaul link between said scheduling unit for said macro cell and a scheduling unit for said victim small cell, a coordination message comprising information on said at least one scheduled user equipment prone to cause interference on said victim small cell and on radio resources allocated to it.
The heterogeneous network coordinated scheduler in WO2015/081570 presents a method of utilizing macro scheduling information in small cell resource allocation to find the best user combination on resource blocks. Nevertheless, it is confined to single-point reception hence the small cell scheduler attempts to find the user that is spatially orthogonal to the aggressor macro-associated user. This imposes constraint on small cell reception as some spatial degree of freedom is used in nulling macro user interference. Moreover, macro user does not benefit from the coordinated scheduler even though it is subject to the weak communication link to the serving cell.
SUMMARY OF THE INVENTION
The invention aims at proposing a method for interference-aware scheduling in a heterogeneous network that can improve the existing situation. There is proposed an innovative centralized scheduler for the HetNet system.
In this respect, the invention relates to a method for scheduling user terminals in a heterogeneous network comprising a plurality of cooperating cells constituted by at least one macro cell and at least one small cell having at least partially overlapping coverage, each cooperating cell having corresponding radio resource blocks assigned to their respective user terminals, the method being run by a centralized controller that performs radio resource block assignment for said cooperating cells, wherein radio resource block assignment comprises:
a first step in which radio resource blocks of the small cell are allocated to user terminals that maximize a first utility metric associated with said radio resource blocks of the small cell, and
a second step in which for assigning a radio resource block of the macro cell, a second utility metric associated with said radio resource block of the macro cell is determined for each combination of user terminal of the macro cell and of a user terminal of the small cell assigned to the corresponding radio resource block, and the radio resource block of the macro cell is assigned to the user terminal of the macro cell that maximizes said second utility metric.
Hence, the invention relies on a novel and inventive approach of the scheduling in a heterogeneous network. The centralized controller performs a centralized scheduling and is responsible for user-channel assignment for a cluster of macro cells and overlaid macro cells. The centralized controller attempts to find the best user terminal combination for assigned radio resource blocks, managing interference and boosting performance for user terminals both in small cells and in macro cells. Global visibility of user channel conditions and joint decisions for both transmit and receive ends allow the proposed centralized controller to effectively mitigate the cross-tier interference in the HetNet uplink and to optimize the user performance of both small cell user terminals and macro cell user terminals.
An interfering user terminal associated with a macro cell is typically on a weak link towards its serving cell, and thus the performance of said user terminal should be enhanced maybe as equally as its small cell user terminal counterpart that is subject to the uplink interference. One solution is to implement successive interference cancellation (SIC) receiver at the small cell access point. In order to cancel the interference introduced by macro-associated users, macro user signals need to be decoded by small cells. The decoded information can be sent to macro cell whereby decoding switching can be performed between serving node and small cell node to enhance macro user performance.
As illustrated above, SIC performance is subject to the received power of small cell signals (traditionally considered as desired signals) relative to the macro cell user signals (used to  be considered as interfering signals) . The method allows determining the best user combination in conjunction with SIC receivers and multi-node decoding switching.
According to an embodiment, each macro cell receives channel state information from each user terminal served by said macro cell, and on the basis of said channel state information, each macro cell partitions the user terminals served by said macro cell into two user sets defined by their reception mode:
-a single-node reception user set for the user terminals which are not prone to cause interference in the uplink on at least one small cell, and
-a coordinated multi-point reception user set for the user terminals which are prone to cause interference in the uplink on at least one small cell; 
and the second step comprises
· determining among the single-node reception user set the user terminal that maximizes a combined utility metric associated with said radio resource block in combination with the user terminal of the small cell to which the corresponding radio resource is assigned;
· determining among the coordinated multi-point reception user set the user terminal that maximizes a combined utility metric associated with said radio resource block in combination with the user terminal of the small cell to which the radio resource is assigned;
· assigning the radio resource block of the macro cell on the basis of a comparison of the combined utility metric of said determined user terminal from the single-node reception user set and of the combined utility metric of said determined user terminal from the coordinated multi-point reception user set.
As a means to enhance user signal quality, multi-point joint reception mode is considered. Therefore, the central controller takes into account the multi-point reception in user terminal pairing such that the best user terminal pairs are not necessarily to be mutually orthogonal but rather maximize the utility metric with multi-point reception technologies. It is favorable to partition user terminals served by a macro cell into two user sets, i.e. a single-node reception (SNR) user set and a coordinated multi-point (CoMP) reception user set, and apply different scheduling strategies accordingly.
For the sake of simplicity, and since the combined utility metric for a user terminal of the single-node reception user set may be approximated by a utility metric of said user terminal, without consideration for any user terminal of the small cell.
The method may also comprises steps in which:
-a small cell receives signals from user terminals of the coordinated multi-point reception user set, decode said signals, and send said decoded signals to a macro cell,
-said macro receives signals from user terminals of the coordinated multi-point reception user set, and decode said signals,
-wherein the signals decoded by the small cell and the signals decoded by the macro cell are compared to each other, and for each user terminal, a decoded signal of said user terminal is selected on the basis of this comparison, said selected decoded signal being used for determining the combined utility metric for said user terminal of the coordinated multi-point reception user set.
This allows maximizing the performance of a user terminal of the CoMP user set, by exploiting the signals received by a small cell from said user terminal of the CoMP user set, not only for successive interference cancellation, but also for maximizing the efficiency of the radio resource block assignment.
Preferably, the combined utility metric for said user terminal of the coordinated multi-point reception user set is determined from an average throughput Ri of user terminal i of the macro cell, an average throughput
Figure PCTCN2015082754-appb-000001
of user terminal jl of the small cell, an estimated data rate ri of user terminal i of the macro cell, an estimated data rate rj1 of user terminal j1 of the small cell:
Figure PCTCN2015082754-appb-000002
BRIEF DESCRIPTION OF THE DRAWINGS
Other aspects, objects and advantages of the present invention will become better apparent upon reading the following detailed description of preferred embodiments thereof,  given as non-limiting examples, and made with reference to the appended drawings wherein:
-FIG. 1 represents an exemplary heterogeneous network N in which the method of the invention can be run;
-FIG. 2 illustrates interactions between an exemplary configuration of two macro cells, a small cell and a centralized controller;
FIG. 3 illustrates the partitioning of the user terminals according to their respective location with respect to a macro cell and a small cell;
-FIG. 4 is a diagram illustrating steps of the scheduling method according to a possible embodiment.
DETAILED DESCRIPTION OF THE INVENTION
It must be noted that, throughout this document, the terms “small cell” designate any cell, which is smaller than a conventional macro cell served by a macro base station, as described in the LTE standard: for example, such a small cell may be a pico cell for in-building coverage, or a femto cell served by an access point, which is called a Home Node B (HeNB) . More precisely, an heterogeneous network as described in this document usually comprises macro eNodes B (eNBs) , which are deployed for initial coverage of the network by macro cells, and pico access nodes or HeNBs, which serve small cells, and are added to the network for capacity growth and better user experience.
Figure 1 represents a network N in which the methods of the invention are run. The network N is for example a heterogeneous LTE network, comprising several macro cells and several small cells showing overlapping coverage. For the sake of clarity, the network N on figure 1 shows only one macro cell MC, covered by an access node AN1. The network N also comprises two small cells SC1 and SC2, which coverage is included in the coverage of the macro cell MC. Each small cell SC1, SC2 is covered by an access node, respectively AN2, AN3. Each access node AN1, AN2, AN3, comprises at least one antenna for radio signal transmission. Several mobile devices, such as mobile phones, laptops or tablets for example, are attached to the access nodes of network N. As shown in figure 1, mobiles devices SUE1 and SUE2 are respectively attached to access nodes AN2 and AN3 of small cells SC1 and SC2. Hence, a transmission channel is established between the mobile device SUE1 and the access  node AN2, as well as between the mobile device SUE2 and the access node AN3. Small cells SC1 and SC2 thus serve respectively mobile devices SUE1 and SUE2.
While traffic is served by macro base stations in homogeneous networks, deploying small cells SC1, SC2 in heterogeneous network N offers capacity gains by traffic offloading, which means that UEs are preferably served by the small cells SC1, SC2, rather than the macro cell MC. Better load balancing between macro and small layer improves the network capacity and the user experience. To this end, as shown in figure 1, the coverage area of the small cell SC1, SC2 is artificially enlarged, in such a way that the UE should connect to the small cell even if the macro cell downlink coverage is stronger. Such an artificial enlargement is called a Range Extension Zone, shown as REZ1 for small cell SC1 and REZ2 for small cell SC2.
Other mobile devices MUE1 to MUE4 are also located in the coverage area of the macro cell MC.
User association is classically determined following some well-known criteria: for example, a mobile device is attached to the cell from which it receives the maximum Reference Signal Receive Power (RSRP) . Actually, RSRP is a key parameter in LTE network measurement, which provides cell-specific signal strength metric. This measurement can be used to rank different LTE cells according to their signal strength, and hence serves as an input for handover and cell reselection. RSRP is defined for a specific cell as the linear average over the power contributions (in Watts) of the Resource Elements (REs) , which carry cell-specific reference signal within the considered measurement frequency bandwidth.
According to this RSRP criterion, adjusted with RE bias, it is decided that mobile devices MUE1 to MUE4 are all camping on the macro cell MC. As can be seen on figure 1, mobile device MUE1 is located in a so-called imbalance region IR, at the boundary between the macro cell MC and the small cell SC1. Therefore, MUE1 transmission power has to be tuned high to compensate for the weak channel link between itself and the access node AN1 of the serving macro cell MC. This may create strong interference in the uplink of small cell SC1 and compromise the user performance, for example for the mobile device SUE1. Such a strong interference is illustrated in figure 1 by a dashed arrow going from user equipment MUE1 to access node AN2 of small cell SC1. Other mobile devices MUE2 and SUE2 may also generate  some interference on small cell SC1, also illustrated by dashed arrows between mobile devices SUE2, MUE2 and access node AN2. However, such interference is typically weaker than that generated by mobile device MUE1.
One possible approach to mitigate the uplink interference is to employ advanced successive interference cancellation (SIC) techniques at small cell receive ends. By decoding MUE 1 signal and then subtracting the macro-generated interference, small cell signals can be better recovered. Nevertheless, the performance of the SIC method is sensitive to the received power of small cell signals with respect to the macro user interference. The benefit is manifest when the interference introduced by the macro user is significantly higher to allow successful decoding of interfering signals. With this macro interference can be accurately generated and then eliminated from signals at the small cell receiver. In cases that the received power of desired signals and interfering signals are similar, the performance gains may diminish. It thus adds to the complexity of small cell access nodes AN2 and AN3, and the performance is sensitive to the interference levels of cross-tier signals.
An alternative method is presented in WO2015/081570 that utilizes macro-cell scheduler decision to find small cell users that best match to macro cell interferers. Those small cell users are nearly orthogonal to the macro-associated users in the spatial domain such that their signals can be separated from the interfering signals.
Figure 2 shows a generic framework of an exemplary simplified embodiment of the present invention. The system comprises a centralized controller CC that jointly determines user terminal reception mode and schedules user terminal data packet transmission for a number of cooperating cells. The cooperating cells comprises two macro cells MC and one small cell SC. Since multi-point reception best works with tight coupling between macro cells and small cells, the cooperating cells are preferably linked by low-latency, high-bandwidth inter-BBU connections. Thus it is conveniently applied to baseband unit (BBU) centralization architectures, e.g., Cloud RAN.
In a first stage S1, each cooperating cells MC, SC receive channel state information (CSI) from their respective user terminals and from the user terminals prone to cause interference. User terminal thus report to their respective serving cells the CSI of their links to the serving cells as well as those that are the most susceptible to the uplink interference caused by the user terminals.
In a second stage S2, each macro cell MC partitions the user terminals MUE served by said macro cell MC into:
-a single-node reception (SNR) user set for the user terminals MUE which are not prone to cause interference in the uplink on at least one small cell SC, and
-a coordinated multi-point reception user set (CoMP) for the user terminals MUE which are prone to cause interference in the uplink on at least one small cell SC.
Figure 3 illustrates the partitioning of the user terminals according to their respective location with respect to a macro cell and a small cell. Multi-node decoded user terminals users are distinguished from user terminals received by one serving cell only. In figure 3, there are three user terminals UE1, UE2, UE3 at different radio positions with respect to two serving nodes. The serving node on the left is a high power macro base station defining a macro cell and the serving node on the right is a low power access point defining a small cell. The macro cell and the small cell have overlapping coverage. User partitioning is typically determined by user terminal measurement of RSRP power in the downlink. The resulted cell coverage, marked by the right-most vertical dashed line, is quite limited for small cell for which the radio resource is under-utilized.
To offload more users to the small cell, cell range extension (CRE) is introduced to offset the RSRP associated with small cell whereby small cell boundary is extended (denoted by the vertical dashed line in the middle) and more users can camp on small cells. Typically the CRE boundary is not as far as the point where user pathloss to the low power node equals that to the high power base station (denoted by the left-most vertical dashed line in the figure) , otherwise the downlink coverage of small cell will becomes too weak compared to the macro interference.
According to CRE criterion, UE1 and UE2 camp on the macro cell while UE3 is associated with the small cell. For user terminals i ∈ {1, 2, 3} ,
Figure PCTCN2015082754-appb-000003
is the respective transmit powers from user terminal i,
Figure PCTCN2015082754-appb-000004
is the received power at macro base station from user terminal i, and
Figure PCTCN2015082754-appb-000005
the received power at small cell from user terminal i, respectively. Located at the inner region of macro cell MC, UE1 is received by the serving macro MC  cell at
Figure PCTCN2015082754-appb-000006
that is significantly higher than interfering signals. Thus the desired signals can be reliably decoded. On the other hand, UE1 signal power received by the small cell node SC, i.e.,
Figure PCTCN2015082754-appb-000007
is quite weak compared to that of small cell users. Therefore, attempts to decode UE1 signal at small cell node SC may lead to unreliable results and it is not recommended to apply multi-point reception to UE1.
UE 2 is located at the outer region of macro cell MC and it is equally distant from small cell node SC as from the macro cell base station MC or even closer to the former geographically. As a result, it is received at a high power level
Figure PCTCN2015082754-appb-000008
by small cell node SC. Multi-path diversity can be exploited to achieve significant gains in user throughput by applying multi-point reception to this user. Moreover, decoded UE2 signals can be used to re-construct the introduced interference and help decoding small cell user signals via successive interference cancellation SIC.
The user terminal partitioning, or user terminal classification can follow a variety of sensible rules and only some exemplary ways are given for separating CoMP user terminals from SNR user terminals are given below.
A first way is pathloss-determined user terminal classification. Under this rule, macro user terminals that are closer to small cells SC are considered for CoMP decoding, i.e. as belonging to a coordinated multi-point reception user set. Hence said coordinated multi-point reception user set can be determined as
Figure PCTCN2015082754-appb-000009
Figure PCTCN2015082754-appb-000010
where Um denotes user terminals camping on macro cell m, αi, m denotes the pathloss between user i and macro cell base station m, αi, sdenotes the pathloss between user i and small cell node and Δα denotes the system-defined parameter for user terminal portioning which can be optimized via numerical experiments.
Another way is received power-determined user terminal classification. From user terminal received power perspective, macro cell served user terminals that are received by  small cell node at strong power levels are suitable for multi-point reception. It can be formulated as
Figure PCTCN2015082754-appb-000011
where Ps, 0is the target received power of small cell and ΔP denotes the system-defined parameter for user separation which can be determined via numerical optimization. Applying fractional pathloss compensation (FPC) , such as explained in 3GPP TR36.942, “Evolved Universal Terrestrial Radio Access (E-UTRA) ; Radio Frequency (RF) Systems Scenarios” , macro user transmit power is given as
Figure PCTCN2015082754-appb-000012
where γm≤1 is the FPC power control parameter. It is then derived that the CoMP user terminals should satisfy
γm αi, mi, s≥Ps, 0-Pm, 0+ΔP.   (5)
Therefore, CoMP user sets are determined as
Figure PCTCN2015082754-appb-000013
where SCoMP denotes the small cells participating in CoMP with user terminals in macro cell m. Correspondingly, the SNR user set of cell m is given by
Figure PCTCN2015082754-appb-000014
Once the user terminals classified, in a third stage S3 each cooperating cell MC, SC reports to the centralized controller CC said channel state information and each macro cell MC reports user set information about the portioning of the user terminals served by said macro cell. The cooperating cells report messages facilitating joint scheduling and multi-node reception over an enhanced backhaul. There are two types of messages to be sent to the central controller
-Instant user CSI (for serving and interfering links) that is sent every a few milliseconds or up to every millisecond; and
-SNR and CoMP user set information from the macro cells. Since user terminal reception mode is heavily dependent on the user terminal location,  it needs not be updated frequently, because user terminal location does not change very fast.
In a fourth stage S4, the centralized controller CC performs radio resource block assignment for said cooperating cells. The centralized controller CC performs multi-cell user terminal assignment to find the best user terminal pairs for the assigned resource blocks by taking into account inter-cell interference and user terminal reception mode.
It is proposed an optimal way of determining best user combination for radio resource blocks that can maximize sum user terminal throughput. Following the arguments of user classification for macro cell, it can be realized that only user terminals in CoMP user set may generate significant interference to small cell in the uplink. In other words, user terminals of the macro cells in the single node reception user set are virtually decoupled from user terminal of small cell in user assignment. This can greatly simplify the procedures.
On the other hand, performance of user terminals of the macro cells in the CoMP user set is heavily coupled on that of co-channel small cell user terminals and it is also true vice versa. To find the user pair maximizing the overall performance, one way could be to check all possible user pairs across cooperating cells, which incurs tremendous complexity even for a moderate-sized CoMP cluster (i.e., assembly of cells that participate in joint reception and coordinated scheduling) .
Table 1 below illustrates the complexity of user terminals pairing for different cooperation cluster sizes.
Figure PCTCN2015082754-appb-000015
Figure PCTCN2015082754-appb-000016
Table 1
Table 1 shows the number of user terminal pairs to be checked for CoMP clusters of different size. It can be seen that exhaustive search incurs an exponential complexity which becomes infeasible as the CoMP cluster size increases. Greedy search, an algorithm that determines the user terminals successively and maximizes the combined performance in each incremental step, can be used in practice to approach the optimal performance. The resulting complexity is linear with respect to the number of cooperating cells. Nevertheless, the cluster size should also be restricted to a small number (e.g., a handful of cooperating macro and small cells) to minimize the complexity of the proposed centralized scheduler.
A first way for performing such an assignment would be single cell user terminal assignment regardless of the user terminal of the CoMP user set. This is a low-complexity scheme where user assignment for each cell is determined independently without considering the interference caused to neighbour cells. In computing the user scheduling priority, user signal quality is determined by the link between the terminal and the serving cell, i.e., CoMP reception is not taken into account in user assignment. Obviously this is only a baseline user assignment method.
Another way is coordinated scheduling without considering CoMP classification. A coordinated scheduler such as in WO 2015/081570 can also be used for allocating resource blocks to user terminals. The interference that macro-associated user terminals introduce to the proximate small cells is taken into account in selecting small cell users to maximize the overall performance of cooperating cells. It is realized that macro users in the SNR user set would not severely interfere small cells hence the user pairing only tackles the interference caused by macro cell user terminals in the CoMP user set.  First, all macro cells assign resource blocks to users with the maximum utility metric, e.g. , proportional fair (PF) metric, without considering the interference caused to small cells.
Then, small cell scheduler transverses S43 over all resource block 1, and
-If a macro-associated user terminal belongs to the SNR user set, i.e. 
Figure PCTCN2015082754-appb-000017
said user terminal does not introduce significant interference to small cells. As a result small cell user terminal assignment is nearly decoupled from macro cell scheduling, and the resource block is allocated to the user associated with the maximum utilitv metric
Figure PCTCN2015082754-appb-000018
where Us denotes the small cell user set and PFl (j) denotes the PF metric of user j.
-If a macro-associated user terminal belongs to the CoMP user set, i.e. 
Figure PCTCN2015082754-appb-000019
small cells assign the resource block to the user that are best matched with macro cell users to achieve the maximum sum performance.
Figure PCTCN2015082754-appb-000020
The preferred way to assign radio resource block to user terminals associated to macro cells is CoMP-aware coordinated user assignment. The CoMP-aware coordinated user assignment scheme optimizing the overall performance of cooperating cells. It determines the best user pair between macro cells and small cells following the greedy approach. On the other hand it distinguishes itself as it takes into account the multi-point reception mode and is closely coupled with the CoMP technologies applied at the receiver end.
Figure 4 is a diagram illustrating steps of an exemplary CoMP-aware coordinated user terminal assignment.
Radio resource block assignment comprises a first step S40 of small cell user terminal assignment, in which radio resource block of the small cell SC are allocated to user terminals SUE that maximize a first utility metric associated with said radio resource blocks of the small cell.
The centralized controller CC then performs a second step S42 of a CoMP-aware user assignment in which for assigning a radio resource block 1 of the macro cell MC, a second utility metric PF1 (i, j1) associated with said radio resource block 1 of the macro cell MC is determined for each combination (i, j1) of user terminal of the macro cell MC and of a user terminal of the small cell SC assigned to the corresponding radio resource block 1, and the radio resource block 1 of the macro cell is assigned to the user terminal of the macro cell that maximizes said second utility metric PF1 (i, j1) .
In a first step, radio resource blocks 1 of the small cell are allocated to user terminals that maximize a first utility metric PF1 (j) associated with said radio resource blocks 1 of the small cell. All small cells assign resource blocks to the user associated with the maximum utility metric
Figure PCTCN2015082754-appb-000021
The second step of the radio resource block 1 assignment comprises CoMP-aware user assignment S42 of macro cell resource block to the user terminal with the maximum sum utility metric as
Figure PCTCN2015082754-appb-000022
User assignment in (8) can also be re-formulated as
Figure PCTCN2015082754-appb-000023
Figure PCTCN2015082754-appb-000024
The second step of the radio resource block assignment thus comprises:
· determining (S44) among the single-node reception SNR user set the user terminal 
Figure PCTCN2015082754-appb-000025
that maximizes a combined utility metric PF1 (i, j1) associated with said radio resource block in combination with the user terminal of the small cell to which the corresponding radio resource is assigned;
· determining (S45) among the coordinated multi-point reception CoMP user set the user terminal
Figure PCTCN2015082754-appb-000026
that maximizes a combined utility metric associated with said  radio resource block in combination with the user terminal of the small cell to which the radio resource is assigned.
The utility metric
Figure PCTCN2015082754-appb-000027
of said determined user terminal
Figure PCTCN2015082754-appb-000028
from the single-node reception user set is then compared (S46) with the utility metric
Figure PCTCN2015082754-appb-000029
of said determined user terminal
Figure PCTCN2015082754-appb-000030
from the coordinated multi-point reception user set, and the radio resource block of the macro cell is assigned on the basis of this comparison:
Figure PCTCN2015082754-appb-000031
The radio resource block is assigned to the user terminal associated with the higher utility metric.
Regarding the joint user terminal assignment involving SNR user terminals S44, macro cell associated user terminal data rate is determined by the link between the user terminal and the serving macro cell. Macro cell associated user terminal that is best matched with small cell user terminal jl shown in (9) can be re-written as
Figure PCTCN2015082754-appb-000032
with:
Ri: average throughput of user terminal i
Figure PCTCN2015082754-appb-000033
average throughput of user terminal jl
Figure PCTCN2015082754-appb-000034
received power of macro cell associated user terminal i
Figure PCTCN2015082754-appb-000035
received power of small cell associated user terminal jl
Figure PCTCN2015082754-appb-000036
macro-introduced interference received with filter
Figure PCTCN2015082754-appb-000037
Figure PCTCN2015082754-appb-000038
small cell interference excluding Ii->s
Figure PCTCN2015082754-appb-000039
small cell-introduced interference received with filter wi, m
Figure PCTCN2015082754-appb-000040
small cell interference excluding
Figure PCTCN2015082754-appb-000041
Since small cell user terminals are normally closer to serving node, the assigned transmit power is much lower than that of their macro cell counterparts. As a result the interference introduced to macro cell is typically marginal, that is,
Figure PCTCN2015082754-appb-000042
It is also realized that for users in SNR user set, they are unlikely to cause significant interference to small cell user terminals either, i.e., Ii->s→0. In light of this, user terminals selected from SNR user set can be decoupled from macro-cell-associated user terminal jl and equation (12) can be simplified to
Figure PCTCN2015082754-appb-000043
The combined utility metric for a user terminal of the single-node reception user set can thus be approximated by a utility metric of said user terminal, and not by a combined utility metric of said terminal of the single-node reception user set and of the small-cell-associated user terminal j1.
Regarding joint user assignment involving CoMP user terminals, with CoMP user signal decoding can be noticeably improved resulting in enhanced user performance. This alters user priority in resource assignment and should be taken into account properly by the scheduler.
Accordingly,
-a small cell receives signals from user terminals of the coordinated multi-point reception user set, decode said signals, and send said decoded signals to a macro cell,
-said macro receives signals from user terminals of the coordinated multi-point reception user set, and decode said signals,
-wherein the signals decoded by the small cell and the signals decoded by the macro cell are compared to each other, and for each user terminal, a decoded signal of said user terminal is selected on the basis of this comparison, said selected decoded signal being used for determining the combined utility metric for said user terminal of the coordinated multi-point reception user set.
Virtual Soft Handoff (VHSO) enabled dominant interference cancellation is set as an example. In VSHO, small cell receiver performs successive interference cancellation (SIC) to sequentially decode signals of small cell and interfering macro cells. Small cell-decoded macro cell data is then sent to macro cells for selective combination, i.e., small-cell decoded signals is compared with those received by macro cells and the better of the two would be retained. The combined utility metric for the user terminal of the coordinated multi-point reception user set is determined from an average throughput Ri of user terminal i of the macro cell, an average throughput
Figure PCTCN2015082754-appb-000044
of user terminal jl of the small cell, an estimated data rate ri of user terminal i of the macro cell, an estimated data rate rj1 of user terminal j1 of the small cell:
Figure PCTCN2015082754-appb-000045
Taking the case that joint scheduling is happened within macro cell and only one small cell for example, pending on the decoding order of VSHO and the selective combination results, there can be three different scenarios corresponding to different sum utility metric for the VSHO-equipped small cell and the interfering macro cell, under the case that only one small cell users collaborate with CoMP macro user.
In the first scenario, small cell decodes macro cell signals first; macro cell (such as eNB) chooses small cell-decoded data. In this case, the estimated instantaneous data rates of macro and small cell user terminals can be obtained as
Figure PCTCN2015082754-appb-000046
Figure PCTCN2015082754-appb-000047
and the sum PF utility metric is given by
Figure PCTCN2015082754-appb-000048
In the second scenario, small cell decodes small cell signals first; macro cell (such as eNB) choose small cell-decoded data. The corresponding user data rate and the sum PF utility metric is given by
Figure PCTCN2015082754-appb-000049
Figure PCTCN2015082754-appb-000050
Figure PCTCN2015082754-appb-000051
In the third scenario, both the macro cell and the small cell performs single node reception, resulting in
Figure PCTCN2015082754-appb-000052
Figure PCTCN2015082754-appb-000053
Figure PCTCN2015082754-appb-000054
In equations (14)-(22) ,
Figure PCTCN2015082754-appb-000055
denotes the received signal power of macro cell user terminal with filter wi, sand
Figure PCTCN2015082754-appb-000056
denotes the signal power of small cell user terminal jl (posed as interference when decoding macro cell associated user terminal i) . The combined utility metric PFl (i, jl) for the user terminal pair 
Figure PCTCN2015082754-appb-000057
can then be obtained as
PFl (i, jl) =max (PFa (i, jl) , PFb (i, jl) , PFc (i, jl)) .   (23)
The joint scheduler transverse the set union
Figure PCTCN2015082754-appb-000058
to compute the combined utility metric for all user terminal pair
Figure PCTCN2015082754-appb-000059
and to find the user terminal pair associated with the maximum combined utility metric value according to expression (10) .
It should be noted that the method of radio resource assignment for CoMP-aware user terminals can also be extended to the macro layers for macro cells to determine the scheduled user terminals in coordination.
After the centralized controller has performed radio resource block assignment for the cooperating cells, in a fifth stage, the centralized controller adjusts modulation coding scheme (MCS) . Centralized controller accounts for accurate user signal signal-to-interference-plus-noise ratios (SNRs) in a large CoMP cluster and adjust modulation coding scheme (MCS) to closely couple with user terminal signal quality. Along the process of determining user terminals’ SINR and MCS, user signal reception mode is also determined.
Following user-resource assignment, the MCS employed by user terminal should be decided. Nevertheless the SINR values derived at the user assignment stage cannot be used in all scenarios. Macro cell in the CoMP cell set can be denoted as M={1, 2, …, M} , for any resource block l, the co-channel user terminals can be denoted as
Figure PCTCN2015082754-appb-000060
jl where 
Figure PCTCN2015082754-appb-000061
denotes the selected user terminal by macro cell m and jl denotes the user terminal selected by the small cell of interest. From the perspective of small cell user terminal jl, there can be three different cases regarding the co-channel macro user terminals.
In the first case, all macro-cell-assigned user terminals are either from the SNR user set or from the CoMP user set nevertheless the cooperating cell is not the small cell s of consideration. In this case, small cell should perform single-node reception on user terminal signals and the signal SINR can be estimated as
Figure PCTCN2015082754-appb-000062
where
Figure PCTCN2015082754-appb-000063
denotes the interference that macro user terminal
Figure PCTCN2015082754-appb-000064
causes to the small cell.
In the second case, there is only macro cell user terminal in CoMP reception with small cell user terminal jl, all other macro user terminals are either received with single-node reception or in CoMP reception mode with other small cells. Without losing generality we assume the macro cell user terminal
Figure PCTCN2015082754-appb-000065
in in the CoMP with small cell associated user  terminal jl. Following the derivation in the user assignment stage, the signal qualities of
Figure PCTCN2015082754-appb-000066
and jl can be obtained as:
Figure PCTCN2015082754-appb-000067
Figure PCTCN2015082754-appb-000068
In the third case, there are more than one macro cell user terminal in CoMP reception mode with small cell user terminal jl. Without losing generality, we assume the macro cell user terminals
Figure PCTCN2015082754-appb-000069
are jointly decoded with the small cell user terminal jl where 2≤N≤M. As a result, there are N+l cells, i.e, N macro cells and small cell s, in the CoMP cluster. The SIC decoding order is determined before computing the accurate user SINRs. However, the steps of estimating user priorities (and associated SINRs) in user assignment only applies to 2-point CoMP scenario, while there is no straightforward way to extend it to a general (N+l) -point CoMP case.
An example of a 3-point CoMP (N=2) is given to show the complexity of determining the SIC order of (N+l) -point CoMP where N≥2. In summary, there can be 11 different hypotheses regarding the multi-point reception of user terminals
Figure PCTCN2015082754-appb-000070
and jl, where
Figure PCTCN2015082754-appb-000071
and 
Figure PCTCN2015082754-appb-000072
denote two macro-associated user terminals and jl denote the co-channl small cell user terminal:
· User terminals
Figure PCTCN2015082754-appb-000073
and jl are decoded by small cell SIC in sequence;
· User terminals
Figure PCTCN2015082754-appb-000074
jl and
Figure PCTCN2015082754-appb-000075
are decoded by small cell SIC in sequence;
· User terminals
Figure PCTCN2015082754-appb-000076
and jl are decoded by small cell SIC in sequence;
· User terminals
Figure PCTCN2015082754-appb-000077
jl and
Figure PCTCN2015082754-appb-000078
are decoded by small cell SIC in sequence;
· User terminals jl
Figure PCTCN2015082754-appb-000079
and
Figure PCTCN2015082754-appb-000080
are decoded by small cell SIC in sequence;
· User terminals jl
Figure PCTCN2015082754-appb-000081
and
Figure PCTCN2015082754-appb-000082
are decoded by small cell SIC in sequence;
· User terminals
Figure PCTCN2015082754-appb-000083
and jl are decoded by small cell SIC in sequence, user terminal 
Figure PCTCN2015082754-appb-000084
is decoded by the serving cell;
· User terminals jl and
Figure PCTCN2015082754-appb-000085
are decoded by small cell SIC in sequence, user terminal 
Figure PCTCN2015082754-appb-000086
is decoded by the serving cell;
· User terminals
Figure PCTCN2015082754-appb-000087
and jl are decoded by small cell SIC in sequence, user terminal
Figure PCTCN2015082754-appb-000088
is decoded by the serving cell;
· User terminals jl and
Figure PCTCN2015082754-appb-000089
are decoded by small cell SIC in sequence, user terminal 
Figure PCTCN2015082754-appb-000090
is decoded by the serving cell;
· User terminals
Figure PCTCN2015082754-appb-000091
and jl are decoded by their own serving cells, respectively. The module of the centralized controller responsible for MCS mapping needs to compute the sum utility metrics corresponding to all the above-mentioned hypotheses and selects the CoMP reception mode associated with optimum sum utility. The number of CoMP hypotheses for the (N+1) -point CoMP can be shown to be
Figure PCTCN2015082754-appb-000092
which increases quickly with respect to N.
Alternatively, a reduced-complexity algorithm is proposed to determine the SIC decoding order and corresponding SINRs for user terminals participating in SIC. For illustrative purpose, we define the notations as follows:
SIC (N, {x1, x2, … xN} ) : N-point CoMP where the small cell employs SIC to sequentially decode user terminal signals xl through xN in the increasing order of n.
SNR ( {y1, y2, … yQ} ) : Single-node reception where user terminal signals y1, y2, … yQ are separately decoded by their own serving cells. It is clear that SIC(1, xl) is equivalent toSNR (xl) .
γ (SIC (N, ΦSIC) , SNR(ΦSNR) ) : sum utility metric of CoMP users in ΦSICand SNR users in ΦSNR. When proportional fair criterion is used for network utility then the utility function γ would be PF metric.
Without losing generality we assume the CoMP user set
Figure PCTCN2015082754-appb-000093
are arranged in the decreasing order of received power at small cell such that 
Figure PCTCN2015082754-appb-000094
and
Figure PCTCN2015082754-appb-000095
The single-node reception user set is initialized to be empty, that is,
Figure PCTCN2015082754-appb-000096
The proposed algorithm is given as below.
Figure PCTCN2015082754-appb-000097
Figure PCTCN2015082754-appb-000098
The user terminal signal SINR can be determined for CoMP user set ΦSIC={x1, xk, jl, … xN} and SNR user set ΦSNR= {y1, y2, … yQ} as
Figure PCTCN2015082754-appb-000099
Figure PCTCN2015082754-appb-000100
Figure PCTCN2015082754-appb-000101
These SINR values are then be used in MCS allocation.
After this fifth stage in which the centralized controller adjusts modulation coding scheme, in a sixth stage, the centralized controller notifies all cooperating cells the results of the blocks resources assignment, and the reception mode of the user terminals.
Finally, in a seventh stage, each small cell decodes signals from user terminals of the coordinated multi-point reception user set and sends said decoded signals to each macro cell serving said user terminals. Successive interference cancellation can be performed.
While the present invention has been described with respect to certain preferred embodiments, it will be apparent to those skilled in the art that various changes and modifications may be made without departing from the scope of the invention as defined in the appended claims.

Claims (8)

  1. A method for scheduling user terminals in a heterogeneous network comprising a plurality of cooperating cells constituted by at least one macro cell and at least one small cell having at least partially overlapping coverage, each cooperating cell having corresponding radio resource blocks assigned to their respective user terminals,
    wherein radio resource block assignment comprises a first step in which radio resource blocks of the small cell are allocated to user terminals that maximize a first utility metric associated with said radio resource blocks of the small cell,
    and a second step run by a centralized controller in which for assigning a radio resource block of the macro cell, a second utility metric associated with said radio resource block of the macro cell is determined for each combination of user terminal of the macro cell and of a user terminal of the small cell assigned to the corresponding radio resource block, and the radio resource block of the macro cell is assigned to the user terminal of the macro cell that maximizes said second utility metric.
  2. The method of claim 1, wherein each macro cell receive channel state information from each user terminal served by said macro cell, and on the basis of said channel state information, each macro cell partitions the user terminals served by said macro cell into two user sets defined by their reception mode:
    -a single-node reception user set for the user terminals which are not prone to cause interference in the uplink on at least one small cell, and
    -a coordinated multi-point reception user set for the user terminals which are prone to cause interference in the uplink on at least one small cell; and the second step comprises
    ·determining among the single-node reception user set the user terminal that maximizes a combined utility metric) associated with said radio resource block in combination with the user terminal of the small cell to which the corresponding radio resource is assigned;
    ·determining among the coordinated multi-point reception user set the user terminal that maximizes a combined utility metric associated with said radio resource block in combination with the user terminal of the small cell to which the radio resource is assigned;
    ·assigning the radio resource block of the macro cell on the basis of a comparison of the combined utility metric of said determined user terminal from the single-node reception user set and of the combined utility metric of said determined user terminal from the coordinated multi-point reception user set.
  3. The method of claim 2, wherein the combined utility metric for a user terminal of the single-node reception user set is approximated by a utility metric of said user terminal.
  4. The method of claim 2 or 3, wherein
    -a small cell receives signals from user terminals of the coordinated multi-point reception user set, decode said signals, and send said decoded signals to a macro cell,
    -said macro receives signals from user terminals of the coordinated multi-point reception user set, and decode said signals,
    -wherein the signals decoded by the small cell and the signals decoded by the macro cell are compared to each other, and for each user terminal, a decoded signal of said user terminal is selected on the basis of this comparison, said selected decoded signal being used for determining the combined utility metric for said user terminal of the coordinated multi-point reception user set.
  5. The method of claim 4, wherein the combined utility metric for said user terminal of the coordinated multi-point reception user set is determined from an average throughput Ri of user terminal i of the macro cell, an average throughput Rjl of user terminal jl of the small cell, an estimated data rate ri of user terminal i of the macro cell, an estimated data rate rj1 of user terminal j1 of the small cell:
    Figure PCTCN2015082754-appb-100001
  6. The method according to any one of claim 2 to 5, wherein the centralized controller notifies to the cooperating cells the reception mode of user terminals.
  7. The method according to any one of claim 2 to 6, wherein the centralized controller adjusts modulation coding scheme by discriminating user terminals served by a macro cell on the basis of their respective reception mode.
  8. The method of any one of claim 1 to 7, comprising the following step:
    (1) each cooperating cells receive channel state information from their respective user terminals and from the user terminal prone to cause interference,
    (2) each macro cell partitions the user terminals served by said macro cell into:
    -a single-node reception user set for the user terminals which are not prone to cause interference in the uplink on at least one small cell, and
    -a coordinated multi-point reception user set for the user terminals which are prone to cause interference in the uplink on at least one small cell;
    (3) each cooperating cell reports to the centralized controller said channel state information and each macro cell reports user set information about the portioning of the user terminals served by said macro cell,
    (4) the centralized controller performs radio resource block assignment for said cooperating cells,
    (5) the centralized controller adjusts modulation coding scheme,
    (6) the centralized controller notifies all cooperating cells the results of the blocks resources assignment, the reception mode of the user terminals,
    (7) each small cell decodes signals from user terminals of the coordinated multi-point reception user set and sends said decoded signals to each macro cell serving said user terminals.
PCT/CN2015/082754 2015-06-30 2015-06-30 Method for scheduling user equipment in a heterogeneous network WO2017000158A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/082754 WO2017000158A1 (en) 2015-06-30 2015-06-30 Method for scheduling user equipment in a heterogeneous network
PCT/IB2016/001081 WO2017001934A1 (en) 2015-06-30 2016-06-28 Method for scheduling user equipment in a heterogeneous network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/082754 WO2017000158A1 (en) 2015-06-30 2015-06-30 Method for scheduling user equipment in a heterogeneous network

Publications (1)

Publication Number Publication Date
WO2017000158A1 true WO2017000158A1 (en) 2017-01-05

Family

ID=56609878

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2015/082754 WO2017000158A1 (en) 2015-06-30 2015-06-30 Method for scheduling user equipment in a heterogeneous network
PCT/IB2016/001081 WO2017001934A1 (en) 2015-06-30 2016-06-28 Method for scheduling user equipment in a heterogeneous network

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/IB2016/001081 WO2017001934A1 (en) 2015-06-30 2016-06-28 Method for scheduling user equipment in a heterogeneous network

Country Status (1)

Country Link
WO (2) WO2017000158A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022206633A1 (en) * 2021-04-02 2022-10-06 华为技术有限公司 Intelligent network selection method and related apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140029522A1 (en) * 2012-07-26 2014-01-30 Futurewei Technologies, Inc. UE POWER ALLOCATION ACCORDING TO SCHEDULER UTILITY METRIC FOR DL MU-MIMO AND DL CoMP
CN104023339A (en) * 2014-05-28 2014-09-03 中国科学技术大学 Dynamic frequency multiplexing method in cloud wireless access heterogeneous network architecture
WO2015081169A1 (en) * 2013-11-27 2015-06-04 Interdigital Patent Holdings, Inc. Resource allocation in multi-provider wlan networks based on utility metric
WO2015081570A1 (en) * 2013-12-06 2015-06-11 Orange Method for scheduling user equipment in a heterogeneous network

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015030522A1 (en) * 2013-08-30 2015-03-05 Lg Electronics Inc. Signaling method for coordinated multiple point transmission and reception, and apparatus therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140029522A1 (en) * 2012-07-26 2014-01-30 Futurewei Technologies, Inc. UE POWER ALLOCATION ACCORDING TO SCHEDULER UTILITY METRIC FOR DL MU-MIMO AND DL CoMP
WO2015081169A1 (en) * 2013-11-27 2015-06-04 Interdigital Patent Holdings, Inc. Resource allocation in multi-provider wlan networks based on utility metric
WO2015081570A1 (en) * 2013-12-06 2015-06-11 Orange Method for scheduling user equipment in a heterogeneous network
CN104023339A (en) * 2014-05-28 2014-09-03 中国科学技术大学 Dynamic frequency multiplexing method in cloud wireless access heterogeneous network architecture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022206633A1 (en) * 2021-04-02 2022-10-06 华为技术有限公司 Intelligent network selection method and related apparatus

Also Published As

Publication number Publication date
WO2017001934A1 (en) 2017-01-05

Similar Documents

Publication Publication Date Title
Barbieri et al. Coordinated downlink multi-point communications in heterogeneous cellular networks
US9351340B2 (en) Apparatus and method for mode selection for device-to-device communications
US10952089B2 (en) Communication system
CN109861802B (en) System and method for adaptive transmission in wireless networks
Romanous et al. Network densification: Challenges and opportunities in enabling 5G
Wang et al. Performance analysis of enhanced inter-cell interference coordination in LTE-Advanced heterogeneous networks
KR101587144B1 (en) Methods and apparatus for interference management
Pateromichelakis et al. On the evolution of multi-cell scheduling in 3GPP LTE/LTE-A
US9231723B2 (en) Coordinated dynamic point selection (DPS) with cell range expansion in a coordinated multipoint (CoMP) system
KR102006746B1 (en) Method and apparatus for managing uplink adaptive modulation and coding in the mobile communication system
US9433013B2 (en) Centralized-scheduling method and apparatus for inter-cell interference coordination in heterogeneous network
US20130231125A1 (en) Coordinated communication method and apparatus
US9844048B2 (en) Resource allocation system and control method
US10397980B2 (en) Method and device for electing a coordination node in a coordinated multipoint set
US20110255436A1 (en) Method of Optimizing Comp Zone for Joint Processing Mode
EP3138324B1 (en) Choosing transceiver nodes in a mobile telecommunications network
WO2014178765A1 (en) Method and network node for downlink scheduling in a mobile communication network
WO2015081570A1 (en) Method for scheduling user equipment in a heterogeneous network
KR20160023796A (en) Opportunistic activation of relays in cloud radio access networks
Li et al. CoMP and interference coordination in heterogeneous network for LTE-advanced
Gerlach et al. ICIC in DL and UL with network distributed and self‐organized resource assignment algorithms in LTE
KR20150105377A (en) Wireless communication method and wireless communication device
Falconetti et al. Uplink coordinated multi-point reception in LTE heterogeneous networks
WO2017000158A1 (en) Method for scheduling user equipment in a heterogeneous network
Kollias et al. CORE: A clustering optimization algorithm for resource efficiency in LTE-A networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15896689

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15896689

Country of ref document: EP

Kind code of ref document: A1