WO2017000108A1 - Interchangeable module for thermal control in detector systems - Google Patents

Interchangeable module for thermal control in detector systems Download PDF

Info

Publication number
WO2017000108A1
WO2017000108A1 PCT/CN2015/082625 CN2015082625W WO2017000108A1 WO 2017000108 A1 WO2017000108 A1 WO 2017000108A1 CN 2015082625 W CN2015082625 W CN 2015082625W WO 2017000108 A1 WO2017000108 A1 WO 2017000108A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal
base module
interchangeable
detector
tec
Prior art date
Application number
PCT/CN2015/082625
Other languages
French (fr)
Inventor
Joseph James Lacey
Xinfeng Li
Original Assignee
General Electric Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Company filed Critical General Electric Company
Priority to PCT/CN2015/082625 priority Critical patent/WO2017000108A1/en
Publication of WO2017000108A1 publication Critical patent/WO2017000108A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • A61B6/035Mechanical aspects of CT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4488Means for cooling

Definitions

  • the subject matter disclosed herein relates to diagnostic imaging and, more particularly, to systems and methods for utilizing interchangeable modules in detector systems for thermal control.
  • an X-ray source emits radiation (e.g., X-rays) towards an object or subject (e.g., a patient, a manufactured part, a package, or a piece of baggage) to be imaged.
  • radiation e.g., X-rays
  • object e.g., a patient, a manufactured part, a package, or a piece of baggage
  • the emitted X-rays after being attenuated by the subject or object, typically impinge upon an array of detector elements of an electronic detector. The intensity of the radiation reaching the detector is typically dependent on the attenuation and absorption of X-rays through the scanned subject or object.
  • a collimator may collimate the the X-rays, and a scintillator may convert some of the X-ray radiation to lower energy optical photons that strike the detector element configured to detect the optical photons.
  • Each of the detector elements may include photodiodes that produce a separate electrical signal indicative of the amount of optical light detected, which generally corresponds to the incident X-ray radiation at the particular location of the detector element. The electrical signals are collected, digitized and transmitted to a data processing system for analysis and further processing to reconstruct an image.
  • the electronic detectors may be utilized for examination in a variety of thermal environments.
  • the detectors may be disposed in an imaging system designed for use in rural environments having unreliable power or air conditioning.
  • detectors may be disposed in an imaging system designed for use in relatively urban environments that have rare occurrences ofunreliable power or air conditioning.
  • the electronic detector may be sensitive to even slight changes in temperatures caused by internal components and/or environmental factors. For example, during operation of the imaging system, temperatures changes in the environment may cause components of the detector (the collimator, the scintillator, the photodiodes, etc. ) to function poorly, thereby resulting in image artifacts (e.g., image noise, image errors, etc. ) when reconstructing an image.
  • image artifacts e.g., image noise, image errors, etc.
  • a computed tomography (CT) detector module assembly having a base module.
  • the base module includes a scintillator layer configured to convert incident radiation into lower energy optical photons, and a photodetector layer configured to detect the lower energy photons generated by the scintillator.
  • the base module also includes signal electronics configured to receive signals generated by the photodetector layer.
  • the base module also includes a thermal interface material surface that is removably coupled to an interchangeable thermal component. The interchangeable thermal component regulates a temperature of the CT detector module assembly, and contacts a surface of the interchangeable thermal component. Thermal interface material is configured to increase thermal contact between the base module and the interchangeable thermal component.
  • thermoelectric cooling (TEC) system in another embodiment, is provided.
  • the TEC system can be removably coupled to a base module of a computed tomography (CT) detector module assembly.
  • CT computed tomography
  • the TEC system includes a first plate, a second plate, and a heat sink. A temperature differential generated between the first plate and the second plate transfers heat from the base module to the heat sink.
  • the base modules includes a scintillator layer configured to convert incident radiation into lower energy optical photons and a photodetector layer configured to detect the lower energy photons generated by the scintillator.
  • the base module also includes signal electronics that receives signals generated by the photodetector layer and a thermal interface material surface that interfaces with the second plate of the TEC system.
  • a computed tomography (CT) imaging system includes a radiation source that emits radiation and a CT detector assembly that detects the emitted radiation.
  • the CT detector assembly includes a plurality of base modules.
  • Each base module of the plurality of base modules includes a scintillator layer configured to convert incident radiation into lower energy optical photons and a photodetector layer configured to detect the lower energy photons generated by the scintillator.
  • Each base module also includes signal electronics configured to receive signals generated by the photodetector layer and a thermal interface material surface.
  • the thermal interface material surface removably couples to an interchangeable thermal component that regulates a temperature of the CT detector module assembly.
  • the thermal interface material surface contacts with a surface of the interchangeable thermal component and increases thermal contact between the base module and the interchangeable thermal component.
  • FIG. 1 is a combined pictorial view and block diagram of a computed tomography (CT) imaging system illustrating an embodiment of the present disclosure
  • FIG. 2 depicts a schematic side view of components of a detector assembly in accordance with an embodiment of the present disclosure
  • FIG. 3 depicts a top view of a detector assembly having a plurality of detector modules each having a thermal control system, in accordance with an embodiment of the present disclosure
  • FIG. 4 depicts a perspective view of a base module of a detector module, in accordance with an embodiment of the present disclosure
  • FIG. 5 depicts a perspective view of a thermal control system (e.g., thermoelectric cooler) , in accordance with an embodiment of the present disclosure
  • FIG. 6 depicts a perspective view of the thermoelectric cooler of FIG. 5 coupled to the base module of FIG. 4, in accordance with an embodiment of the present disclosure
  • FIG. 7 is a cross-sectional side view of the detector module having the thermoelectric cooler coupled to the base module, in accordance with an embodiment of the present disclosure
  • FIG. 8 depicts a perspective view of a thermal control system (e.g., thermal heater) , in accordance with an embodiment of the present disclosure
  • FIG. 9 depicts a perspective view of the thermal heater of FIG. 8 coupled to the base module of FIG. 4, in accordance with an embodiment of the present disclosure
  • FIG. 10 is a cross-sectional side view of the detector module having the thermal heater coupled to the base module, in accordance with an embodiment of the present disclosure.
  • Fig. 11 is a flow diagram of a method for temperature control within the detector assembly of FIG. 3, in accordance with an embodiment of the present disclosure.
  • a computed tomography (CT) imaging system 10 is shown as including a gantry 12 representative of a “third generation” CT scanner.
  • Gantry 12 has an X-ray source 14 that projects a beam of X-rays 16 toward a detector assembly 15 on the opposite side of the gantry 12.
  • the detector assembly 15 includes a collimator assembly 18, a plurality of detector modules 20, and data acquisition systems (DAS) 32.
  • the plurality of detector modules 20 detect the projected X-rays that pass through a medical patient 22, and DAS 32 converts the data to digital signals for subsequent processing.
  • each detector module 20 in a conventional system produces an analog electrical signal that represents the intensity of an impinging X-ray beam and hence the attenuated beam as it passes through the patient 22.
  • gantry 12 and the components mounted thereon rotate about a center of rotation 24.
  • each detector module 20 may include a base module 62 coupled to an interchangeable thermal control system (e.g., thermoelectric cooler system, thermal heater system, etc. ) , as further described with respect to FIGS. 3-10.
  • the thermal control system may regulate and/or control the temperature range of the components of each detector module 12, thereby reducing the effects of fluctuations within the thermal environment on the CT system 10.
  • the thermal control system may be interchangeable, such that different types or embodiments of the thermal control system may be coupled to the base module 62 of the detector module 20.
  • Control mechanism 26 includes an X-ray controller 28 that provides power and timing signals to an X-ray source 14 and a gantry motor controller 30 that controls the rotational speed and position of gantry 12.
  • An image reconstructor 34 receives sampled and digitized X-ray data from DAS 32 and performs high-speed reconstruction. The reconstructed image is applied as an input to a computer 36, which stores the image in a mass storage device 38. Computer 36 also receives commands and scanning parameters from an operator via console 40.
  • An associated display 42 allows the operator to observe the reconstructed image and other data from computer 36.
  • the operator supplied commands and parameters are used by computer 36 to provide control signals and information to DAS 32, X-ray controller 28, and gantry motor controller 30.
  • computer 36 operates a table motor controller 44, which controls a motorized table 46 to position patient 22 and gantry 12. Particularly, table 46 moves portions of patient 22 through a gantry opening 48.
  • FIG. 2 a schematic side view of a detector assembly 15 operating in accordance with certain aspects of the present disclosure is illustrated.
  • radiation 16 e.g., X-rays
  • the X-rays 16 are collimated by a collimator 18, after passing through the subject or object but prior to reaching the scintillator 50.
  • collimation may provide some degree of X-ray scatter rejection and/or correction.
  • the scintillator 50 is formed from a substance that absorbs radiation 16 (for example X-ray photons) and in response emits light of a characteristic wavelength, such as an optical wavelength, thereby releasing the absorbed energy.
  • radiation 16 for example X-ray photons
  • Various types of scintillation materials may be employed which convert the radiation incident on the detector assembly 20, such as X-rays photons, into a form of radiation detectable by the photodetector layer 52, e.g., a layer of photodiodes.
  • the photodetector layer 52 generates analog electrical signals in response to the light emitted by the scintillator 50.
  • the electrical signals generated by the photodetector layer 52 are in turn acquired by signal electronics 54.
  • the signals from the signal electronics 54 may in turn be acquired by the data acquisition circuitry 32 (FIG. 1) .
  • the acquired signals are supplied to data processing circuitry and/or to image reconstruction circuitry.
  • the scintillator 50 may exhibit light ouput gain changes due to thermal fluctuations within the environment, thereby causing undesirable image artifacts.
  • the photodetector layer 52 and/or various data acquisition circuitry 32 may be sensitive to thermal changes within the environment. Accordingly, it may be beneficial to provide for systems and methods that maintain a tight control over these components, as further described below with respect to FIGS. 3-10.
  • signal electronics 56 may be provided behind the photodetector layer 52.
  • the signal electronics 56 may one or more chips or application specific integrated circuits (ASICs) (i.e., silicon packages) directly connected to photodiodes of the photodetector layer 52.
  • ASICs application specific integrated circuits
  • the ASICs may convert the analog signals generated at the photodiodes to digital signals for subsequent processing.
  • the signal electronics 52 are provided as a two-sided silicon package with one side directly connected to photodiodes of the photodetector layer 52 and the other side connected to a flex circuit 58 configured to conduct the converted digital signals downstream for subsequent processing.
  • FIG. 3 depicts a top view of a detector assembly 15 having a plurality of detector modules 20 each having a base module 62 coupled to a thermal control system 60, in accordance with an embodiment of the present disclosure.
  • the thermal control system 60 may be interchangeable, such that the base module 62 may interchangeably or removably couple to one or more different types or embodiments of the thermal control system 60 (e.g., thermoelectric cooler system or thermal heating system) .
  • the base module 62 may include an interchangeable modular frame design that is configured to implement one or more thermal control solutions, thereby providing a wide range of thermal control over the components of the detector assembly 15.
  • the interchangeable modular frame design allows a manufacturer and/or an operator of the imaging system 10 to modify the detector module 20 according to user needs. For example, in certain situations, an operator of the imaging system 10 may select the TEC system and/or the thermal heater system and make the necessary structural adjustments to the detector module 20 in the field.
  • the manufacturer and/or operator of the imaging system may select the type or embodiment of the thermal control system 60 based on environmental factors or needs. For example, the TEC system, which may provide more thermal control and regulation, may be utilized in highly variable thermal environments, such as rural environments that have unreliable power or air conditioning.
  • the thermal heater system which may provide simple and cost-effective thermal control and regulation, may be utilized in less variable thermal environments, such as environments that have rare occurrences of unreliable power or air conditioning.
  • the type or embodiment of the thermal control system 60 e.g., thermoelectric cooler system or thermal heating system
  • the thermal control system 60 may be selected based on the thermal environment in which the detector assembly 15 is utilized without impacting the overall configuration or function of the detector assembly 15. In this manner, components of the thermal control system 60 may be customized to control a wide range of temperature fluctuations in the environment, thereby enabling the detector assembly 15 to function accurately over a wider range of ambient operating temperatures than typical imaging systems 10.
  • the detector module 20 includes a base module 62 coupled to a thermal control system 60, as further described with respect to FIG. 4.
  • the thermal control system 60 may include an interchangeable thermal component 64 and a controller 70.
  • one or more attachment mechanisms 63 e.g., screws, fasteners, bolts, threads, etc.
  • the master interface plate 61 may be a frame or mounting board for the detector assembly 15, and each of the plurality of detector modules 20 may be coupled to the master interface plate 61.
  • each base module 62 may be coupled (e.g., removably coupled) to the interchangeable thermal component 64 of the thermal control system 60.
  • the interchangeable thermal component 64 is a thermoelectric cooler (TEC) system 66.
  • the interchangeable thermal component 64 may be a thermal heater system 68 (illustrated in FIGS. 8-10 .
  • each embodiment of the interchangeable thermal component 64 may be removably coupled to the same base module 62, such that a manufacturer and/or operator may replace or modify the type or embodiment of the interchangeable thermal component 64 coupled to the base module 62.
  • the base module 62 may be fixed to the master interface plate 61 of the detector assembly 15, while the interchangeable thermal component 64 is selected and coupled to the base module 62 according to manufacturer and/or user needs.
  • the thermal control system 60 may include a common cable connection 69 that may be utilized by the TEC system 66 and/or the thermal heater system 68.
  • the cable connection 69 may couple the interchangeable thermal component 64 to the controller 70 of the thermal control system 60.
  • the controller 70 is disposed outside of the thermal control system 60 and mounted on the detector assembly 15. In other embodiments, the controller 70 may be disposed within the interchangeable thermal component 64 and/or the base module 62.
  • the controller 70 may monitor and/or control the thermal control system 60 via a feedback loop.
  • the controller 70 may include a processor 72 and an associated memory 74.
  • the controller 70 may be a feedback controller that determines one or more thermal control signals (e.g., command signals) based on one or more feedback signals received from the interchangeable thermal component 64 and/or the base module 62.
  • the controller 70 may be a proportional-integral-derivative controller (e.g., PID controller) , a proportional-integral controller, a proportional-derivative controller, a integral controller, a proportional controller, or so forth.
  • the controller 70 may adjust the range and/or type of thermal control provided by the interchangeable thermal component 64 based on one or more feedback signals received from one or more sensors (illustrated in FIG. 7 and FIG. 10) disposed within the detector module 20. For example, in certain situations, based on the feedback signals received from the one or more sensors, the controller 70 may adjust the thermal control of the interchangeable thermal component 64 from a heating mode to a cooling mode. Likewise, in certain situations, based on the feedback signals received from the one or more sensors, the controller 70 may tighten or broaden the temperature range that the thermal control system 60 is configured to maintain.
  • the type and/or range of control regulated by the controller 70 may be dependent upon the configuration of the thermal control system 60. Accordingly, the controller 70 may determine whether the thermal control system 60 is configured with the TEC system 66 or the thermal heater system 68. In certain embodiments, the controller 70 may automatically detect whether the TEC system 66 or the thermal heater system 68 is configured for use based on the type of connection detected. For example, the TEC system 66 may utilize a connector having a different number of connector pins than the thermal heater system 68. Also, the TEC system 66 and/or the thermal heater system 68 may include a resistor or memory encoding information to identify the type of interchange thermal component 64 utilized within the thermal control system 60.
  • the TEC system 66 and/or the thermal heater system 68 may be configured to transmit information to the controller 70 to identify the type of configuration and/or other operation parameters or variables prior to initial use.
  • a manufacturer and/or an operator of the imaging system 10 may input the type of configuration to the controller 70 upon selecting or implementing a different configuration.
  • FIG. 4 depicts a perspective view of a base module 62 of the detector module 20, in accordance with an embodiment of the present disclosure.
  • the detector module 20 may include the base module 62 coupled to the interchangeable thermal component 64.
  • the base module 62 may be coupled to the master interface plate 61 of the detector assembly 15, and the interchangeable thermal component 64 may be removably coupled to the base module 62.
  • the thermal control system 60 may include the interchangeable thermal component 64 communicatively coupled to the controller 70. In this manner, the thermal control system 60 may regulate and/or control an operating temperature of the components within the detector module 20 while providing flexibility in the type and range of thermal control provided.
  • the base module 62 includes one or more mounting apertures 80 disposed within an interface plate 82.
  • the mounting apertures 80 may receive and retain the one or more attachment mechanisms 63 (e.g., screws, fasteners, bolts, threads, etc. ) that may be utilized to mount the base module 62 to the master interface plate 61 of the detector assembly 15.
  • the mounting apertures 80 may be designed to support the base module 62 as well as the interchangeable thermal component 64 that may be removably coupled to the base module 62.
  • any number of mounting apertures 80 in any shape or size may be disposed within the interface plate 82.
  • a surface of the interface plate 82 may contact the master interface plate 61 to provide further support for the base module 62 and/or the thermal control system 60.
  • the interface plate 82 may be designed (e.g., size, shape, thickness, length, etc. ) to support the weight of the base module 62 as well as the interchangeable thermal component 64 that may be removably coupled to the base module 62.
  • the base module 62 may include one or more guide rails 84 that support and direct the interchangeable thermal component 64 during the assembly process. Once assembled, the guide rails 84 may additionally secure the interchangeable thermal component 64 against the base module 62 to reduce undesired movement during the examination process. In certain embodiments, the base module 62 may not include the one or more guide rails 84, or the guide rails 84 may be disposed in other configurations.
  • the base module 62 includes a thermal interface material 86 that is designed to increase the thermal contact between the base module 62 and the interchangeable thermal component 64 removably coupled to the base module 62.
  • the thermal interface material 86 may be a universal mount or pad disposed on an interface surface 88 of a base plate 90 of the base module 62.
  • the thermal interface material 86 may provide effective heat transfer between the base module 62 and the interchangeable thermal component 64, and in some situations, may be designed to transfer heat away from detector components being cooled and into a heatsink.
  • the thermal interface material 86 may be a conformable substance that reduces air gaps and thermal resistance between the base module 62 and the interchangeable thermal component 64.
  • the thermal interface materials 86 may compress during assembly of the interchangeable thermal component 64 and the base module 62, thereby further improving thermal contact between the base module 62 and the interchangeable thermal component 64.
  • the thermal interface material 86 may be formed of any conductive material (e.g. silicon, paraffin wax, copper, etc. ) and may be in any form (e.g., gel, attachment tape, pad, grease, paste, heat spreaders, spreader plate, elastic compounds, etc. ) . Further, the dimensions (e.g., thickness, shape, size, surface area, etc. ) of the thermal interface material 86 may be designed based on the amount of heat transfer desired between the base module 62 and the interchangeable thermal component 64.
  • the base module 62 may include various support structures or guiding components 94 that direct or secure the cable connection 69 (not shown) routed from the base module 62 and to the controller 70.
  • the base module 62 may include connection terminals 96 that are configured or designed to connect to various processing circuitries or memory components.
  • FIG. 5 depicts a perspective view of an embodiment of the thermal control system 60 (e.g., the thermoelectric cooler (TEC) system 66) , in accordance with an embodiment of the present disclosure.
  • each detector module 20 may include the base module 62 coupled to the thermal control system 60.
  • the thermal control system 60 may include an interchangeable modular frame design (e.g., the interchangeable thermal component 64 removably coupled to the base module 62) that is configured to implement the TEC system 66 or the thermal heater system 68.
  • the interchangeable modular frame design provides flexible heating or cooling solutions for the detector module 20, allowing the detector module 20 to be utilized within a variety of thermal environments.
  • an operator of the imaging system 10 may select the TEC system 66 or the thermal heater system 68 and make the necessary structural adjustments to the base module 62 based on environmental factors.
  • the TEC system 66 may provide enhanced heating and/or cooling techniques, and therefore may be utilized within environments having greater temperature fluctuations, such as in environments that have less reliable power or air conditioning systems.
  • the TEC system 66 may heat or cool the detector module 20 to maintain the temperature of the detector module 20 at a near isothermal temperature even though the ambient air temperature around the detector are above and below the desired module operating temperature.
  • the TEC system 66 is an embodiment of the interchangeable thermal component 64 that may be removably coupled to one or more base modules 62 associated with one or more detector modules 20. Specifically, the TEC system 66 may be utilized for heating or cooling purposes, and therefore may be communicatively coupled to the controller 70 for temperature control and monitoring. In the illustrated embodiment, the TEC system 66 includes a first plate 100, a second plate 102, a heat sink 104, a fan 106, and a connector plate 108. However, it should be noted that in other embodiments of the TEC system 66, other components and configurations may be implemented, such as those known to one skilled in the art.
  • the TEC system 166 may use the Peltier effect to create a heat pump to either add or remove heat from the detector module, such that heat is transferred from one location to another (e.g., in cooling mode the heat is rejected from the base module 62 to the ambient air) .
  • rejected heat may be any undesired or excess heat having the potential to cause components of the base module 62 to function improperly.
  • the TEC system 166 creates a temperature differential between the first plate 100 and the second plate 102 via a source of current.
  • two unique semiconductor materials e.g., one N-type semiconductor material and one P-type semiconductor material
  • a P-type semiconductor material may be placed thermally in parallel and electrically in series with an N-type semiconductor material.
  • a voltage is applied to the free ends of the two plates 100, 102, a flow of current across the junction of the plates 100, 102 causes the temperature differential, which results in a heat flux from the second plate 102 to the first plate 100.
  • the second plate 102 may function as a cool side that absorbs rejected heat (e.g., from the base module 62) and transfers the rejected heat to the first plate 100, which may function as a hot side that transfer the heat into the heat sink 104.
  • the second plate 102 of the interchangeable thermal component 64 may be coupled to the thermal interface material 86 of the base module 62. Accordingly, the second plate 102 may absorb and transfer heat from the internal components of the base module 62 to the first plate 100, which may transfer the heat to the heat sink 104. In certain embodiments, the cooling fan 106 may transfer the rejected heat from the heat sink 104 and into the ambient air.
  • the current may be provided via a power source 110 (e.g., power connector pin) disposed on the connector plate 108.
  • communications between the TEC system 66 and the controller 70 may be provided via a communications source 112 (e.g., communications connector pin) .
  • the one or more sensors may provide thermal information, such as information related to the thermal operating conditions of the detector module 20, to the controller 70 via the communications source 112.
  • the connector plate 108 may include a combined connection for both the power source 110 and the communications source 112.
  • FIG. 6 depicts a perspective view of TEC system 66 of FIG. 5 coupled to the base module 62 of FIG. 4, in accordance with an embodiment of the present disclosure.
  • the second plate 102 of the TEC system 66 may be coupled to the thermal interface material 86, such that heat is transferred from the base module 62 and through the TEC system 66 into the ambient air.
  • the TEC system 66 may be configured to maintain the temperature of the detector module 20 within a particular range. Accordingly, in certain situations, the TEC system 66 may additionally be configured to heat the base module 62, if necessary.
  • FIG. 7 is a cross-sectional side view of the detector module 20 having the TEC system 66 coupled to the base module 62, in accordance with an embodiment of the present disclosure. Furthermore, the illustrated embodiment depicts the base module 62 coupled to the detector module 20, in accordance with an embodiment of the present disclosure.
  • the detector module 20 includes the base module 62 coupled to the thermal control system 60.
  • the base module 62 may include the collimator 18, the scintillator 50, the photodetector layer 52, and the signal electronics 52.
  • the base module 62 may include a cover 110 that covers the components of the detector module 20.
  • the cover 110 may be configured as an electromagnetic shield that protects components of the base module 62 (e.g., the collimator 18, the scintillator 50, the photodetector layer 52, and the signal electronics 52) from radiation.
  • the detector module 20 may include an outer cover 111 configured as an insulation barrier.
  • the outer cover 11 may be a foam insulation barrier formed out of a neoprene foam material.
  • the base module 62 may include a frame 113 configured as a heat spreader.
  • the frame 113 may help regulate the heat between a heat source (e.g., components of the base module 62 such as the collimator 18, the scintillator 50, the photodetector layer 52, and the signal electronics 52) and the interchangeable thermal component 60 (e.g., TEC system 66) .
  • the frame 113 may be formed from any material that has high thermal conductivity (e.g., aluminum, copper, etc. ) .
  • one or more attachment mechanisms 63 may be utilized to mount the base module 62 to the master interface plate 61 of the detector assembly 15. Indeed, other retaining mechanisms 112 (e.g., washers, caps, etc. ) may be utilized to secure the attachment mechanisms 63 within the mounting apertures 80.
  • the second plate 102 may be coupled to the thermal interface material 86 and may help to regulate the temperature of the internal components (e.g., the collimator 18, the scintillator 50, the photodetector layer 52, the signal electronics 54, etc. ) of the base module 62.
  • the second plate 102 may transfer the heat to the first plate 100, which may transfer the heat to the heat sink 104.
  • the cooling fan 106 may transfer the rejected heat from the heat sink 104 and into the ambient air, as indicated by the arrows 114.
  • the TEC system 66 coupled to the base module 62 and the detector module 20 may receive feedback signals from one or more sensors 120 disposed within the detector module 20.
  • the one or more sensors may be disposed between the base module 62 and the detector module 20.
  • the sensors 120 may be temperature sensors that provide feedback signals related to the temperature of the detector module or the TEC system 66 to the controller 70.
  • the one or more sensors may be disposed through the interchangeable thermal component (e.g., the TEC system 66) .
  • the sensors may be disposed proximate to the cooling fan 106 and/or the heat sink 104, and may detect information related to the heat flux or heat transfer.
  • the controller 70 may be configured to receive one or more feedback signals and process the feedback signals to detect whether the temperature of the detector module 20 is outside of a predetermined range. Further, based on the feedback signals received, the controller 70 may determine one or more command signals that adjust an operating parameter of the TEC system 66, thereby adjusting the temperature of the detector module 20 to maintain appropriate operating conditions. In particular, the TEC system 66 may be configured to heat or cool the detector module 20 in order to maintain the appropriate operating conditions. In certain embodiments, the setpoint temperature or setpoint range of temperatures may be provided via user-input, or may be programmed into the controller 70.
  • FIG. 8 depicts a perspective view of an embodiment of the thermal control system 60 (e.g., thermal heater system 68) , in accordance with an embodiment of the present disclosure.
  • each detector module 20 may include the base module 62 coupled to the thermal control system 60.
  • the thermal control system 60 may include an interchangeable modular frame design (e.g., the interchangeable thermal component 64 removably coupled to the base module 62) that is configured to implement the TEC system 66 or the thermal heater system 68.
  • the TEC system 66 and the thermal heater system 68 may be interchangeable systems that utilize the same base module 62, allowing for similar thermal control over the detector module 20.
  • the thermal heater system 68 may provide simple but reliable cooling techniques, and may be configured as a more cost-effective alternative to the TEC system 66. Accordingly, the thermal heater system 68 may be utilized within environments having less temperature fluctuations, such as in environments that have more reliable power or air conditioning systems. However, since the TEC system 66 and the thermal heater system 68 are flexible and interchangeable, an operator may modify the base module 62 on the field as desired, depending on current thermal environments. For example, the thermal heater system 68 may be configured to maintain the temperature of the detector module 20 at near isothermal temperature for ambient air temperature below the desirded detector operating temperature.
  • the thermal heater system 68 may include one or more layers designed and optimize for effective thermal control.
  • the thermal heater system 68 may include a base plate 122, a foil heater 124, and a foam insulation 126.
  • the base plate 122 may be coupled to the thermal interface material 86 and may help regulate the heat of the internal components of the detector module 20.
  • the foil heater 124 may be a one-piece flexible assembly formed of one or more layers of conductive material (e.g. copper, aluminum, silicone rubber, etc. ) , laminate materials, dielectric layers, or adhesive materials.
  • the foil heater 124 may be etched via photolithography techniques to form precise conductive elements on the surface.
  • the design fabrication of the one or more layers of the foil heater 124 may be determined by the type of heating system 68 desired.
  • the foam insulation 126 may be utilized to cover the one or more layers of the foil heater 124.
  • the thermal heater system 68 may include power lines 130 that provide power to the thermal heater system 68.
  • the thermal heater system 68 may include a thermostat safety feature 132 that regulates the temperature of the detector module 20 and the thermal heater system 68. For example, when the thermal heater system 68 is not needed to regulate or maintain the temperature of the detector module 20 within a particular range, the thermostat safety feature 132 may be configured to power off the thermal heater system 68.
  • FIG. 9 depicts a perspective view of the thermal heater system 68 of FIG. 8 coupled to the base module 62 of FIG. 4, in accordance with an embodiment of the present disclosure.
  • the base plate 122 of the thermal heater system 68 may be configured to couple to the thermal interface material 86 on the base module 62, such that that heat is transferred from the detector module 20 and into the thermal heater system 68.
  • one or more openings 134 disposed through the one or more layers of the thermal heater system 68 may be utilized by the bolts 92 (e.g., 4, 6, 8, 10 or more bolts 92) to secure the thermal heater system 68 to the base plate 90 of the base module 62.
  • FIG. 10 is a cross-sectional side view of the detector module 20 having the thermal heater system 68 coupled to the base module 62, in accordance with an embodiment of the present disclosure.
  • the base module 62 may include the collimator 18, the scintillator 50, the photodetector layer 52, and/or the signal electronics 52.
  • one or more attachment mechanisms 63 e.g., screws, fasteners, bolts, threads, etc. ) may be utilized to mount the base module 62 to master interface plate 61 of the detector assembly 15.
  • the base plate 122 may be coupled to the thermal interface material 86.
  • heat from the internal components (e.g., the collimator 18, the scintillator 50, the photodetector layer 52, the signal electronics 52, etc. ) of the base module 62 may be lost to the environment via the thermal heater system 68.
  • the thermal heater system 68 may regulate the temperature of the detector module 20 to be above temperatures of the ambient air or surrounding surfaces.
  • the thermal heater system 68 (including the foil heater 124, the foam insulation 126, etc. ) may be configured to regulate the temperature of the components of the detector module 20 through various convection and conduction techniques. Furthermore, as described above with respect to FIG.
  • one or more sensors 120 may be disposed between the base module 62 and the thermal heater system 68.
  • the sensors 120 may be temperature sensors that provide feedback signals related to the temperature of the detector module or the thermal heater system 68 to the controller 70.
  • the sensors may provide any information related to the thermal operating condition of the detector module 20, such as an current or historical operating temperature of the base module 62.
  • Fig. 11 illustrates a flow diagram of a method 140 for temperature control within the detector assembly 15 of FIG. 3, in accordance with an embodiment of the present disclosure.
  • Any suitable application-specific or general-purpose computer having a memory and processor may perform the method 140.
  • the controller 70 and associated processor 72 and memory 74 may be configured to perform the method 140.
  • the memory 74 which may be any tangible, non-transitory, machine-readable medium (e.g., an optical disc, solid state device, chip, firmware) , may store one or more sets of instructions that are executable by a processor of the controller 70 to perform one or more steps of the method 140.
  • the processor 72 in performing the method 140, may determine the type of thermal control system coupled to the base module 62 and may regulate and/or control the temperature range of the components of each detector module 12, thereby reducing the effects of fluctuations within the thermal environment on the CT system 10.
  • the controller 70 may be a feedback controller that determines one or more thermal control signals (e.g., command signals) based on one or more feedback signals received from the interchangeable thermal component 64 and/or the base module 62.
  • the method 140 includes receiving one or more feedback signals from the one or more sensors 120 (block 142) disposed within the detector module 20.
  • the sensors 120 may be temperature sensors that provide feedback signals related to the temperature of the detector module 20, the TEC system 66 and/or the thermal heater system 68 to the controller 70.
  • the feedback temperature may be used as an input for the feedback control loop implemented by the controller 70, and may be correlated to the current operating temperature of the components of the detector module 20 (e.g., the scintillator 50, the photodiodes of the photodetector layer 52, etc.
  • the method further includes processing the feedback signals (block 144) to determine whether the thermal control system 60 is configured with the TEC system 66 or the thermal heater system 68 (block 146) .
  • the controller 70 may automatically detect whether the TEC system 66 or the thermal heater system 68 is configured for use based on the type of connection detected or the type of feedback signals received (block 146) .
  • the controller 70 may be configured to retrieve and load information from the memory 74 of the controller 70 (block 148) . For example, in certain embodiments, the controller may retrieve a setpoint value, various control constants, and/or various actuator inputs based on the type of interchangeable thermal component 64 detected.
  • the setpoint value may be a temperature or a range of temperatures determined for appropriate operating conditions for the detector module 20. Further, it should be noted that the constants and/or the setpoint values retrieved from the memory 74 and loaded into the controller 70 may be determined by the type of thermal control system detected.
  • the method 140 may determine one or more one or more thermal control signals (e.g., command signals) based on the retrieved setpoint value and/or the feedback signals (block 150) . Specifically, the controller 70 may iteratively reduce the error between the setpoint values and/or constants and the received feedback signals related to the current operating temperature, thereby utilizing a feedback loop for appropriate temperature control. In addition, the method 140 may include sending the determined control signals to the thermal control system (block 152) to regulate and/or control the temperature range of the components of each detector module 12, thereby reducing the effects of fluctuations within the thermal environment on the CT system 10.
  • the thermal control system block 152 to regulate and/or control the temperature range of the components of each detector module 12, thereby reducing the effects of fluctuations within the thermal environment on the CT system 10.
  • each detector module 20 of a detector assembly 15 disposed within an imaging system 10 may include a base module 62 coupled to the thermal control system 60.
  • the thermal control system 60 may include an interchangeable thermal component 64 associated with the controller 70.
  • Each base module 62 may be coupled to the master interface plate 61 of the detector assembly 15, and each base module 62 may be removably coupled to the interchangeable thermal component 64.
  • the interchangeable thermal component 64 may be the TEC system 66, and in other embodiments, the interchangeable thermal component 64 may be the thermal heater system 68.
  • This interchangeable design may allow a manufacturer and/or an operator of the imaging system 10 to modify the detector module 20 according to environmental factors without changing the configuration and/or function of the imaging system 10, the detector assembly 15, and/or the detector module 20.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

A computed tomography (CT) detector module assembly (20) having a base module (62) is provided. The base module (62) includes a scintillator layer (50) configured to convert incident radiation into lower energy optical photons, and a photodetector layer (52) configured to detect the lower energy photons generated by the scintillator (50). The base module (62) also includes signal electronics (56) configured to receive signals generated by the photodetector layer (52). The base module (62) also includes a thermal interface material surface (86) that is removably coupled to an interchangeable thermal component (64). The interchangeable thermal component (64) regulates a temperature of the CT detector module assembly (20), and contacts a surface of the interchangeable thermal component (64). Thermal interface material (86) is configured to increase thermal contact between the base module (62) and the interchangeable thermal component (64).

Description

INTERCHANGEABLE MODULE FOR THERMAL CONTROL IN DETECTOR SYSTEMS BACKGROUND
The subject matter disclosed herein relates to diagnostic imaging and, more particularly, to systems and methods for utilizing interchangeable modules in detector systems for thermal control.
In imaging systems, an X-ray source emits radiation (e.g., X-rays) towards an object or subject (e.g., a patient, a manufactured part, a package, or a piece of baggage) to be imaged. As used herein, the terms “subject” and “object” may be interchangeably used to describe anything capable of being imaged. The emitted X-rays, after being attenuated by the subject or object, typically impinge upon an array of detector elements of an electronic detector. The intensity of the radiation reaching the detector is typically dependent on the attenuation and absorption of X-rays through the scanned subject or object. At the detector, a collimator may collimate the the X-rays, and a scintillator may convert some of the X-ray radiation to lower energy optical photons that strike the detector element configured to detect the optical photons. Each of the detector elements may include photodiodes that produce a separate electrical signal indicative of the amount of optical light detected, which generally corresponds to the incident X-ray radiation at the particular location of the detector element. The electrical signals are collected, digitized and transmitted to a data processing system for analysis and further processing to reconstruct an image.
The electronic detectors may be utilized for examination in a variety of thermal environments. For example, in certain situations, the detectors may be disposed in an imaging system designed for use in rural environments having unreliable power or air conditioning. In certain situations, detectors may be disposed in an imaging system designed for use in relatively urban environments that have rare occurrences ofunreliable power or air conditioning. However, the electronic detector may be sensitive to even slight changes in temperatures caused by internal components and/or environmental factors. For example, during operation of the imaging system, temperatures changes in the environment may cause components of  the detector (the collimator, the scintillator, the photodiodes, etc. ) to function poorly, thereby resulting in image artifacts (e.g., image noise, image errors, etc. ) when reconstructing an image. Accordingly, it may be beneficial to provide systems and methods that provide accurate temperature control for the detectors of an imaging system. Furthermore, it may be beneficial to provide the detectors of an imaging system with flexible temperature control systems that provide a range of temperature control for a variety of thermal environments.
BRIEF DESCRIPTION
In one embodiment, a computed tomography (CT) detector module assembly having a base module is provided. The base module includes a scintillator layer configured to convert incident radiation into lower energy optical photons, and a photodetector layer configured to detect the lower energy photons generated by the scintillator. The base module also includes signal electronics configured to receive signals generated by the photodetector layer. The base module also includes a thermal interface material surface that is removably coupled to an interchangeable thermal component. The interchangeable thermal component regulates a temperature of the CT detector module assembly, and contacts a surface of the interchangeable thermal component. Thermal interface material is configured to increase thermal contact between the base module and the interchangeable thermal component.
In another embodiment, a thermoelectric cooling (TEC) system is provided. The TEC system can be removably coupled to a base module of a computed tomography (CT) detector module assembly. The TEC system includes a first plate, a second plate, and a heat sink. A temperature differential generated between the first plate and the second plate transfers heat from the base module to the heat sink. The base modules includes a scintillator layer configured to convert incident radiation into lower energy optical photons and a photodetector layer configured to detect the lower energy photons generated by the scintillator. The base module also includes signal electronics that receives signals generated by the photodetector layer and a thermal interface material surface that interfaces with the second plate of the TEC system.
In another embodiment, a computed tomography (CT) imaging system is provided. The imaging system includes a radiation source that emits radiation and a CT detector assembly that detects the emitted radiation. The CT detector assembly includes a plurality of base modules. Each base module of the plurality of base modules includes a scintillator layer configured to convert incident radiation into lower energy optical photons and a photodetector layer configured to detect the lower energy photons generated by the scintillator. Each base module also includes signal electronics configured to receive signals generated by the photodetector layer and a thermal interface material surface. The thermal interface material surface removably couples to an interchangeable thermal component that regulates a temperature of the CT detector module assembly. The thermal interface material surface contacts with a surface of the interchangeable thermal component and increases thermal contact between the base module and the interchangeable thermal component.
BRIEF DESCRIPTION OF THE DRAWINGS
These and other features, aspects, and advantages of the present embodiments will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
FIG. 1 is a combined pictorial view and block diagram of a computed tomography (CT) imaging system illustrating an embodiment of the present disclosure;
FIG. 2 depicts a schematic side view of components of a detector assembly in accordance with an embodiment of the present disclosure;
FIG. 3 depicts a top view of a detector assembly having a plurality of detector modules each having a thermal control system, in accordance with an embodiment of the present disclosure;
FIG. 4 depicts a perspective view of a base module of a detector module, in accordance with an embodiment of the present disclosure;
FIG. 5 depicts a perspective view of a thermal control system (e.g., thermoelectric cooler) , in accordance with an embodiment of the present disclosure;
FIG. 6 depicts a perspective view of the thermoelectric cooler of FIG. 5 coupled to the base module of FIG. 4, in accordance with an embodiment of the present disclosure;
FIG. 7 is a cross-sectional side view of the detector module having the thermoelectric cooler coupled to the base module, in accordance with an embodiment of the present disclosure;
FIG. 8 depicts a perspective view of a thermal control system (e.g., thermal heater) , in accordance with an embodiment of the present disclosure;
FIG. 9 depicts a perspective view of the thermal heater of FIG. 8 coupled to the base module of FIG. 4, in accordance with an embodiment of the present disclosure;
FIG. 10 is a cross-sectional side view of the detector module having the thermal heater coupled to the base module, in accordance with an embodiment of the present disclosure; and
Fig. 11 is a flow diagram of a method for temperature control within the detector assembly of FIG. 3, in accordance with an embodiment of the present disclosure.
DETAILED DESCRIPTION
With the foregoing in mind and referring to FIG. 1, a computed tomography (CT) imaging system 10 is shown as including a gantry 12 representative of a “third generation” CT scanner. Gantry 12 has an X-ray source 14 that projects a beam of X-rays 16 toward a detector assembly 15 on the opposite side of the gantry 12. The detector assembly 15 includes a collimator assembly 18, a plurality of detector modules 20, and data acquisition systems (DAS) 32. The plurality of detector modules 20 detect the projected X-rays that pass through a medical patient 22,  and DAS 32 converts the data to digital signals for subsequent processing. Each detector module 20 in a conventional system produces an analog electrical signal that represents the intensity of an impinging X-ray beam and hence the attenuated beam as it passes through the patient 22. During a scan to acquire X-ray projection data, gantry 12 and the components mounted thereon rotate about a center of rotation 24. In certain embodiments, each detector module 20 may include a base module 62 coupled to an interchangeable thermal control system (e.g., thermoelectric cooler system, thermal heater system, etc. ) , as further described with respect to FIGS. 3-10. Indeed, the thermal control system may regulate and/or control the temperature range of the components of each detector module 12, thereby reducing the effects of fluctuations within the thermal environment on the CT system 10. Specifically, the thermal control system may be interchangeable, such that different types or embodiments of the thermal control system may be coupled to the base module 62 of the detector module 20.
Rotation of gantry 12 and the operation of X-ray source 14 are governed by a control mechanism 26 of CT system 10. Control mechanism 26 includes an X-ray controller 28 that provides power and timing signals to an X-ray source 14 and a gantry motor controller 30 that controls the rotational speed and position of gantry 12. An image reconstructor 34 receives sampled and digitized X-ray data from DAS 32 and performs high-speed reconstruction. The reconstructed image is applied as an input to a computer 36, which stores the image in a mass storage device 38. Computer 36 also receives commands and scanning parameters from an operator via console 40. An associated display 42 allows the operator to observe the reconstructed image and other data from computer 36. The operator supplied commands and parameters are used by computer 36 to provide control signals and information to DAS 32, X-ray controller 28, and gantry motor controller 30. In addition, computer 36 operates a table motor controller 44, which controls a motorized table 46 to position patient 22 and gantry 12. Particularly, table 46 moves portions of patient 22 through a gantry opening 48.
Referring now to FIG. 2, a schematic side view of a detector assembly 15 operating in accordance with certain aspects of the present disclosure is illustrated.  During imaging, radiation 16 (e.g., X-rays) from an imaging source 12 impinges on a scintillator 50 after being attenuated by an intervening subject or object undergoing imaging. In the depicted embodiment, the X-rays 16 are collimated by a collimator 18, after passing through the subject or object but prior to reaching the scintillator 50. Such collimation may provide some degree of X-ray scatter rejection and/or correction. In some situations, changes in the mechanical position of the collimator 18 relative to the scintillator 50 during operation of imaging system 10 may cause temperature fluctuations that cause gain shifts and spectral activity. Indeed, these gain shifts and spectral performance may lead to undesirable image artifacts (e.g., image noise, image errors, etc. ) .
Typically, the scintillator 50 is formed from a substance that absorbs radiation 16 (for example X-ray photons) and in response emits light of a characteristic wavelength, such as an optical wavelength, thereby releasing the absorbed energy. Various types of scintillation materials may be employed which convert the radiation incident on the detector assembly 20, such as X-rays photons, into a form of radiation detectable by the photodetector layer 52, e.g., a layer of photodiodes. The photodetector layer 52 generates analog electrical signals in response to the light emitted by the scintillator 50. The electrical signals generated by the photodetector layer 52 are in turn acquired by signal electronics 54. The signals from the signal electronics 54 may in turn be acquired by the data acquisition circuitry 32 (FIG. 1) . As discussed above, the acquired signals are supplied to data processing circuitry and/or to image reconstruction circuitry. In some situations, the scintillator 50 may exhibit light ouput gain changes due to thermal fluctuations within the environment, thereby causing undesirable image artifacts. Likewise, the photodetector layer 52 and/or various data acquisition circuitry 32 may be sensitive to thermal changes within the environment. Accordingly, it may be beneficial to provide for systems and methods that maintain a tight control over these components, as further described below with respect to FIGS. 3-10.
In certain embodiments, signal electronics 56 (such as the analog-to-digital conversion board or circuitry) may be provided behind the photodetector layer 52. The signal electronics 56 may one or more chips or application specific integrated  circuits (ASICs) (i.e., silicon packages) directly connected to photodiodes of the photodetector layer 52. In such an embodiment, the ASICs may convert the analog signals generated at the photodiodes to digital signals for subsequent processing. For example, in the depicted embodiment, the signal electronics 52 are provided as a two-sided silicon package with one side directly connected to photodiodes of the photodetector layer 52 and the other side connected to a flex circuit 58 configured to conduct the converted digital signals downstream for subsequent processing.
FIG. 3 depicts a top view of a detector assembly 15 having a plurality of detector modules 20 each having a base module 62 coupled to a thermal control system 60, in accordance with an embodiment of the present disclosure. The thermal control system 60 may be interchangeable, such that the base module 62 may interchangeably or removably couple to one or more different types or embodiments of the thermal control system 60 (e.g., thermoelectric cooler system or thermal heating system) . Indeed, the base module 62 may include an interchangeable modular frame design that is configured to implement one or more thermal control solutions, thereby providing a wide range of thermal control over the components of the detector assembly 15.
The interchangeable modular frame design allows a manufacturer and/or an operator of the imaging system 10 to modify the detector module 20 according to user needs. For example, in certain situations, an operator of the imaging system 10 may select the TEC system and/or the thermal heater system and make the necessary structural adjustments to the detector module 20 in the field. The manufacturer and/or operator of the imaging system may select the type or embodiment of the thermal control system 60 based on environmental factors or needs. For example, the TEC system, which may provide more thermal control and regulation, may be utilized in highly variable thermal environments, such as rural environments that have unreliable power or air conditioning. As a further example, the thermal heater system, which may provide simple and cost-effective thermal control and regulation, may be utilized in less variable thermal environments, such as environments that have rare occurrences of unreliable power or air conditioning. Accordingly, the type or embodiment of the thermal control system 60 (e.g., thermoelectric cooler system or  thermal heating system) may be selected based on the thermal environment in which the detector assembly 15 is utilized without impacting the overall configuration or function of the detector assembly 15. In this manner, components of the thermal control system 60 may be customized to control a wide range of temperature fluctuations in the environment, thereby enabling the detector assembly 15 to function accurately over a wider range of ambient operating temperatures than typical imaging systems 10.
With the forgoing in mind, in certain embodiments, the detector module 20 includes a base module 62 coupled to a thermal control system 60, as further described with respect to FIG. 4. The thermal control system 60 may include an interchangeable thermal component 64 and a controller 70. In certain embodiments, one or more attachment mechanisms 63 (e.g., screws, fasteners, bolts, threads, etc. ) may be utilized to mount the base module 62 to a master interface plate 61 of the detector assembly 15. The master interface plate 61 may be a frame or mounting board for the detector assembly 15, and each of the plurality of detector modules 20 may be coupled to the master interface plate 61. Furthermore, each base module 62 may be coupled (e.g., removably coupled) to the interchangeable thermal component 64 of the thermal control system 60. In the illustrated embodiment, the interchangeable thermal component 64 is a thermoelectric cooler (TEC) system 66. However, it should be noted that in other embodiments, the interchangeable thermal component 64 may be a thermal heater system 68 (illustrated in FIGS. 8-10) . In particular, each embodiment of the interchangeable thermal component 64 may be removably coupled to the same base module 62, such that a manufacturer and/or operator may replace or modify the type or embodiment of the interchangeable thermal component 64 coupled to the base module 62. Accordingly, the base module 62 may be fixed to the master interface plate 61 of the detector assembly 15, while the interchangeable thermal component 64 is selected and coupled to the base module 62 according to manufacturer and/or user needs.
It should be noted that while different embodiments of the interchangeable thermal component 64 may be coupled and/or removed from the base module 62, certain components of the thermal control system 60 may be constant and universally  utilized. For example, in certain embodiments, the thermal control system 60 may include a common cable connection 69 that may be utilized by the TEC system 66 and/or the thermal heater system 68. The cable connection 69 may couple the interchangeable thermal component 64 to the controller 70 of the thermal control system 60. In the illustrated embodiment, the controller 70 is disposed outside of the thermal control system 60 and mounted on the detector assembly 15. In other embodiments, the controller 70 may be disposed within the interchangeable thermal component 64 and/or the base module 62.
In certain embodiments, the controller 70 may monitor and/or control the thermal control system 60 via a feedback loop. The controller 70 may include a processor 72 and an associated memory 74. The controller 70 may be a feedback controller that determines one or more thermal control signals (e.g., command signals) based on one or more feedback signals received from the interchangeable thermal component 64 and/or the base module 62. The controller 70 may be a proportional-integral-derivative controller (e.g., PID controller) , a proportional-integral controller, a proportional-derivative controller, a integral controller, a proportional controller, or so forth. Specifically, the controller 70 may adjust the range and/or type of thermal control provided by the interchangeable thermal component 64 based on one or more feedback signals received from one or more sensors (illustrated in FIG. 7 and FIG. 10) disposed within the detector module 20. For example, in certain situations, based on the feedback signals received from the one or more sensors, the controller 70 may adjust the thermal control of the interchangeable thermal component 64 from a heating mode to a cooling mode. Likewise, in certain situations, based on the feedback signals received from the one or more sensors, the controller 70 may tighten or broaden the temperature range that the thermal control system 60 is configured to maintain.
In certain embodiments, the type and/or range of control regulated by the controller 70 may be dependent upon the configuration of the thermal control system 60. Accordingly, the controller 70 may determine whether the thermal control system 60 is configured with the TEC system 66 or the thermal heater system 68. In certain embodiments, the controller 70 may automatically detect whether the TEC system 66  or the thermal heater system 68 is configured for use based on the type of connection detected. For example, the TEC system 66 may utilize a connector having a different number of connector pins than the thermal heater system 68. Also, the TEC system 66 and/or the thermal heater system 68 may include a resistor or memory encoding information to identify the type of interchange thermal component 64 utilized within the thermal control system 60. For example, the TEC system 66 and/or the thermal heater system 68 may be configured to transmit information to the controller 70 to identify the type of configuration and/or other operation parameters or variables prior to initial use. As yet a further example, a manufacturer and/or an operator of the imaging system 10 may input the type of configuration to the controller 70 upon selecting or implementing a different configuration.
FIG. 4 depicts a perspective view of a base module 62 of the detector module 20, in accordance with an embodiment of the present disclosure. As noted above, the detector module 20 may include the base module 62 coupled to the interchangeable thermal component 64. In particular, the base module 62 may be coupled to the master interface plate 61 of the detector assembly 15, and the interchangeable thermal component 64 may be removably coupled to the base module 62. Further, as noted above, the thermal control system 60 may include the interchangeable thermal component 64 communicatively coupled to the controller 70. In this manner, the thermal control system 60 may regulate and/or control an operating temperature of the components within the detector module 20 while providing flexibility in the type and range of thermal control provided.
In certain embodiments, the base module 62 includes one or more mounting apertures 80 disposed within an interface plate 82. The mounting apertures 80 may receive and retain the one or more attachment mechanisms 63 (e.g., screws, fasteners, bolts, threads, etc. ) that may be utilized to mount the base module 62 to the master interface plate 61 of the detector assembly 15. In particular, the mounting apertures 80 may be designed to support the base module 62 as well as the interchangeable thermal component 64 that may be removably coupled to the base module 62. Accordingly, any number of mounting apertures 80 in any shape or size may be disposed within the interface plate 82. A surface of the interface plate 82  may contact the master interface plate 61 to provide further support for the base module 62 and/or the thermal control system 60. For example, the interface plate 82 may be designed (e.g., size, shape, thickness, length, etc. ) to support the weight of the base module 62 as well as the interchangeable thermal component 64 that may be removably coupled to the base module 62.
In certain embodiments, the base module 62 may include one or more guide rails 84 that support and direct the interchangeable thermal component 64 during the assembly process. Once assembled, the guide rails 84 may additionally secure the interchangeable thermal component 64 against the base module 62 to reduce undesired movement during the examination process. In certain embodiments, the base module 62 may not include the one or more guide rails 84, or the guide rails 84 may be disposed in other configurations.
In certain embodiments, the base module 62 includes a thermal interface material 86 that is designed to increase the thermal contact between the base module 62 and the interchangeable thermal component 64 removably coupled to the base module 62. Specifically, the thermal interface material 86 may be a universal mount or pad disposed on an interface surface 88 of a base plate 90 of the base module 62. The thermal interface material 86 may provide effective heat transfer between the base module 62 and the interchangeable thermal component 64, and in some situations, may be designed to transfer heat away from detector components being cooled and into a heatsink. In certain embodiments, the thermal interface material 86 may be a conformable substance that reduces air gaps and thermal resistance between the base module 62 and the interchangeable thermal component 64. It should be noted that in certain embodiments, the thermal interface materials 86 may compress during assembly of the interchangeable thermal component 64 and the base module 62, thereby further improving thermal contact between the base module 62 and the interchangeable thermal component 64. The thermal interface material 86 may be formed of any conductive material (e.g. silicon, paraffin wax, copper, etc. ) and may be in any form (e.g., gel, attachment tape, pad, grease, paste, heat spreaders, spreader plate, elastic compounds, etc. ) . Further, the dimensions (e.g., thickness, shape, size, surface area, etc. ) of the thermal interface material 86 may be designed based on the  amount of heat transfer desired between the base module 62 and the interchangeable thermal component 64.
Additionally, other components that provide support and functionality to the base module 62 may be provided. For example, in certain embodiments, one or more bolts 92 (e.g., 4, 6, 8, 10 or more bolts 92) may be provided to secure the interchangeable thermal component 64 to the base plate 90 of the base module 62. Furthermore, in certain embodiments, the base module 62 may include various support structures or guiding components 94 that direct or secure the cable connection 69 (not shown) routed from the base module 62 and to the controller 70. In yet other embodiments, the base module 62 may include connection terminals 96 that are configured or designed to connect to various processing circuitries or memory components.
FIG. 5 depicts a perspective view of an embodiment of the thermal control system 60 (e.g., the thermoelectric cooler (TEC) system 66) , in accordance with an embodiment of the present disclosure. Specifically, as noted above, each detector module 20 may include the base module 62 coupled to the thermal control system 60. Further, the thermal control system 60 may include an interchangeable modular frame design (e.g., the interchangeable thermal component 64 removably coupled to the base module 62) that is configured to implement the TEC system 66 or the thermal heater system 68. In this manner, the interchangeable modular frame design provides flexible heating or cooling solutions for the detector module 20, allowing the detector module 20 to be utilized within a variety of thermal environments. For example, an operator of the imaging system 10 may select the TEC system 66 or the thermal heater system 68 and make the necessary structural adjustments to the base module 62 based on environmental factors. As further described below, the TEC system 66 may provide enhanced heating and/or cooling techniques, and therefore may be utilized within environments having greater temperature fluctuations, such as in environments that have less reliable power or air conditioning systems. For example, the TEC system 66 may heat or cool the detector module 20 to maintain the temperature of the detector module 20 at a near isothermal temperature even though the ambient air  temperature around the detector are above and below the desired module operating temperature.
The TEC system 66 is an embodiment of the interchangeable thermal component 64 that may be removably coupled to one or more base modules 62 associated with one or more detector modules 20. Specifically, the TEC system 66 may be utilized for heating or cooling purposes, and therefore may be communicatively coupled to the controller 70 for temperature control and monitoring. In the illustrated embodiment, the TEC system 66 includes a first plate 100, a second plate 102, a heat sink 104, a fan 106, and a connector plate 108. However, it should be noted that in other embodiments of the TEC system 66, other components and configurations may be implemented, such as those known to one skilled in the art.
In certain embodiments, the TEC system 166 may use the Peltier effect to create a heat pump to either add or remove heat from the detector module, such that heat is transferred from one location to another (e.g., in cooling mode the heat is rejected from the base module 62 to the ambient air) . For the purposes of the disclosed embodiments, rejected heat may be any undesired or excess heat having the potential to cause components of the base module 62 to function improperly. In the illustrated embodiment, the TEC system 166 creates a temperature differential between the first plate 100 and the second plate 102 via a source of current. Specifically, in certain embodiments, two unique semiconductor materials (e.g., one N-type semiconductor material and one P-type semiconductor material) may be disposed between the  plates  100, 102 to generate the temperature differential. For example, a P-type semiconductor material may be placed thermally in parallel and electrically in series with an N-type semiconductor material. When a voltage is applied to the free ends of the two  plates  100, 102, a flow of current across the junction of the  plates  100, 102 causes the temperature differential, which results in a heat flux from the second plate 102 to the first plate 100. Accordingly, the second plate 102 may function as a cool side that absorbs rejected heat (e.g., from the base module 62) and transfers the rejected heat to the first plate 100, which may function as a hot side that transfer the heat into the heat sink 104.
For example, in the illustrated embodiment, the second plate 102 of the interchangeable thermal component 64 may be coupled to the thermal interface material 86 of the base module 62. Accordingly, the second plate 102 may absorb and transfer heat from the internal components of the base module 62 to the first plate 100, which may transfer the heat to the heat sink 104. In certain embodiments, the cooling fan 106 may transfer the rejected heat from the heat sink 104 and into the ambient air. The current may be provided via a power source 110 (e.g., power connector pin) disposed on the connector plate 108. Further, communications between the TEC system 66 and the controller 70 may be provided via a communications source 112 (e.g., communications connector pin) . In particular, the one or more sensors may provide thermal information, such as information related to the thermal operating conditions of the detector module 20, to the controller 70 via the communications source 112. In certain embodiments, the connector plate 108 may include a combined connection for both the power source 110 and the communications source 112.
FIG. 6 depicts a perspective view of TEC system 66 of FIG. 5 coupled to the base module 62 of FIG. 4, in accordance with an embodiment of the present disclosure. As noted above, the second plate 102 of the TEC system 66 may be coupled to the thermal interface material 86, such that heat is transferred from the base module 62 and through the TEC system 66 into the ambient air. In certain embodiments, the TEC system 66 may be configured to maintain the temperature of the detector module 20 within a particular range. Accordingly, in certain situations, the TEC system 66 may additionally be configured to heat the base module 62, if necessary.
FIG. 7 is a cross-sectional side view of the detector module 20 having the TEC system 66 coupled to the base module 62, in accordance with an embodiment of the present disclosure. Furthermore, the illustrated embodiment depicts the base module 62 coupled to the detector module 20, in accordance with an embodiment of the present disclosure.
As noted above, in certain embodiments, the detector module 20 includes the base module 62 coupled to the thermal control system 60. For example, as illustrated and described with respect to FIG. 2, the base module 62 may include the collimator 18, the scintillator 50, the photodetector layer 52, and the signal electronics 52. In certain embodiments, the base module 62 may include a cover 110 that covers the components of the detector module 20. The cover 110 may be configured as an electromagnetic shield that protects components of the base module 62 (e.g., the collimator 18, the scintillator 50, the photodetector layer 52, and the signal electronics 52) from radiation. In certain embodiments, the detector module 20 (e.g., the base module 62 coupled to the thermal control system 60) may include an outer cover 111 configured as an insulation barrier. For example, the outer cover 11 may be a foam insulation barrier formed out of a neoprene foam material. In certain embodiments, the base module 62 may include a frame 113 configured as a heat spreader. For example, the frame 113 may help regulate the heat between a heat source (e.g., components of the base module 62 such as the collimator 18, the scintillator 50, the photodetector layer 52, and the signal electronics 52) and the interchangeable thermal component 60 (e.g., TEC system 66) . The frame 113 may be formed from any material that has high thermal conductivity (e.g., aluminum, copper, etc. ) .
As noted above with respect to FIG. 3, one or more attachment mechanisms 63 (e.g., screws, fasteners, bolts, threads, etc. ) may be utilized to mount the base module 62 to the master interface plate 61 of the detector assembly 15. Indeed, other retaining mechanisms 112 (e.g., washers, caps, etc. ) may be utilized to secure the attachment mechanisms 63 within the mounting apertures 80. As noted above, the second plate 102 may be coupled to the thermal interface material 86 and may help to regulate the temperature of the internal components (e.g., the collimator 18, the scintillator 50, the photodetector layer 52, the signal electronics 54, etc. ) of the base module 62. Further, the second plate 102 may transfer the heat to the first plate 100, which may transfer the heat to the heat sink 104. In certain embodiments, the cooling fan 106 may transfer the rejected heat from the heat sink 104 and into the ambient air, as indicated by the arrows 114.
In particular, in certain embodiments, the TEC system 66 coupled to the base module 62 and the detector module 20 may receive feedback signals from one or more sensors 120 disposed within the detector module 20. Specifically, in certain embodiments, the one or more sensors may be disposed between the base module 62 and the detector module 20. For example, the sensors 120 may be temperature sensors that provide feedback signals related to the temperature of the detector module or the TEC system 66 to the controller 70. In certain embodiments, the one or more sensors may be disposed through the interchangeable thermal component (e.g., the TEC system 66) . For example, the sensors may be disposed proximate to the cooling fan 106 and/or the heat sink 104, and may detect information related to the heat flux or heat transfer.
As noted above, the controller 70 may be configured to receive one or more feedback signals and process the feedback signals to detect whether the temperature of the detector module 20 is outside of a predetermined range. Further, based on the feedback signals received, the controller 70 may determine one or more command signals that adjust an operating parameter of the TEC system 66, thereby adjusting the temperature of the detector module 20 to maintain appropriate operating conditions. In particular, the TEC system 66 may be configured to heat or cool the detector module 20 in order to maintain the appropriate operating conditions. In certain embodiments, the setpoint temperature or setpoint range of temperatures may be provided via user-input, or may be programmed into the controller 70.
FIG. 8 depicts a perspective view of an embodiment of the thermal control system 60 (e.g., thermal heater system 68) , in accordance with an embodiment of the present disclosure. Specifically, as noted above, each detector module 20 may include the base module 62 coupled to the thermal control system 60. Further, the thermal control system 60 may include an interchangeable modular frame design (e.g., the interchangeable thermal component 64 removably coupled to the base module 62) that is configured to implement the TEC system 66 or the thermal heater system 68. In particular, the TEC system 66 and the thermal heater system 68 may be interchangeable systems that utilize the same base module 62, allowing for similar thermal control over the detector module 20.
For example, as further described below, the thermal heater system 68 may provide simple but reliable cooling techniques, and may be configured as a more cost-effective alternative to the TEC system 66. Accordingly, the thermal heater system 68 may be utilized within environments having less temperature fluctuations, such as in environments that have more reliable power or air conditioning systems. However, since the TEC system 66 and the thermal heater system 68 are flexible and interchangeable, an operator may modify the base module 62 on the field as desired, depending on current thermal environments. For example, the thermal heater system 68 may be configured to maintain the temperature of the detector module 20 at near isothermal temperature for ambient air temperature below the desirded detector operating temperature.
In certain embodiments, the thermal heater system 68 may include one or more layers designed and optimize for effective thermal control. For example, in the illustrated embodiment, the thermal heater system 68 may include a base plate 122, a foil heater 124, and a foam insulation 126. In particular, the base plate 122 may be coupled to the thermal interface material 86 and may help regulate the heat of the internal components of the detector module 20. The foil heater 124 may be a one-piece flexible assembly formed of one or more layers of conductive material (e.g. copper, aluminum, silicone rubber, etc. ) , laminate materials, dielectric layers, or adhesive materials. In certain embodiments, the foil heater 124 may be etched via photolithography techniques to form precise conductive elements on the surface. Indeed, the design fabrication of the one or more layers of the foil heater 124 may be determined by the type of heating system 68 desired. In certain embodiments, the foam insulation 126 may be utilized to cover the one or more layers of the foil heater 124. In certain embodiments, the thermal heater system 68 may include power lines 130 that provide power to the thermal heater system 68. Furthermore, in certain embodiments, the thermal heater system 68 may include a thermostat safety feature 132 that regulates the temperature of the detector module 20 and the thermal heater system 68. For example, when the thermal heater system 68 is not needed to regulate or maintain the temperature of the detector module 20 within a particular range, the  thermostat safety feature 132 may be configured to power off the thermal heater system 68.
FIG. 9 depicts a perspective view of the thermal heater system 68 of FIG. 8 coupled to the base module 62 of FIG. 4, in accordance with an embodiment of the present disclosure. As noted above, the base plate 122 of the thermal heater system 68 may be configured to couple to the thermal interface material 86 on the base module 62, such that that heat is transferred from the detector module 20 and into the thermal heater system 68. Further, one or more openings 134 disposed through the one or more layers of the thermal heater system 68 may be utilized by the bolts 92 (e.g., 4, 6, 8, 10 or more bolts 92) to secure the thermal heater system 68 to the base plate 90 of the base module 62.
FIG. 10 is a cross-sectional side view of the detector module 20 having the thermal heater system 68 coupled to the base module 62, in accordance with an embodiment of the present disclosure. For example, as illustrated and described with respect to FIG. 2, the base module 62 may include the collimator 18, the scintillator 50, the photodetector layer 52, and/or the signal electronics 52. Furthermore, as noted above with respect to FIG. 3, one or more attachment mechanisms 63 (e.g., screws, fasteners, bolts, threads, etc. ) may be utilized to mount the base module 62 to master interface plate 61 of the detector assembly 15.
In the illustrated embodiment, the base plate 122 may be coupled to the thermal interface material 86. In particular, heat from the internal components (e.g., the collimator 18, the scintillator 50, the photodetector layer 52, the signal electronics 52, etc. ) of the base module 62 may be lost to the environment via the thermal heater system 68. Specifically, in certain embodiments, the thermal heater system 68 may regulate the temperature of the detector module 20 to be above temperatures of the ambient air or surrounding surfaces. Accordingly, the thermal heater system 68 (including the foil heater 124, the foam insulation 126, etc. ) may be configured to regulate the temperature of the components of the detector module 20 through various convection and conduction techniques. Furthermore, as described above with respect to FIG. 7, one or more sensors 120 may be disposed between the base module 62 and  the thermal heater system 68. In particular, the sensors 120 may be temperature sensors that provide feedback signals related to the temperature of the detector module or the thermal heater system 68 to the controller 70. In certain embodiments, the sensors may provide any information related to the thermal operating condition of the detector module 20, such as an current or historical operating temperature of the base module 62.
Fig. 11 illustrates a flow diagram of a method 140 for temperature control within the detector assembly 15 of FIG. 3, in accordance with an embodiment of the present disclosure. Any suitable application-specific or general-purpose computer having a memory and processor may perform the method 140. By way of example, as noted above with respect to FIG. 3, the controller 70 and associated processor 72 and memory 74 may be configured to perform the method 140. For example, the memory 74, which may be any tangible, non-transitory, machine-readable medium (e.g., an optical disc, solid state device, chip, firmware) , may store one or more sets of instructions that are executable by a processor of the controller 70 to perform one or more steps of the method 140. In accordance with present embodiments, the processor 72, in performing the method 140, may determine the type of thermal control system coupled to the base module 62 and may regulate and/or control the temperature range of the components of each detector module 12, thereby reducing the effects of fluctuations within the thermal environment on the CT system 10. For example, in certain embodiments, the controller 70 may be a feedback controller that determines one or more thermal control signals (e.g., command signals) based on one or more feedback signals received from the interchangeable thermal component 64 and/or the base module 62.
In the illustrated embodiments, the method 140 includes receiving one or more feedback signals from the one or more sensors 120 (block 142) disposed within the detector module 20. For example, the sensors 120 may be temperature sensors that provide feedback signals related to the temperature of the detector module 20, the TEC system 66 and/or the thermal heater system 68 to the controller 70. In certain embodiments, the feedback temperature may be used as an input for the feedback control loop implemented by the controller 70, and may be correlated to the current  operating temperature of the components of the detector module 20 (e.g., the scintillator 50, the photodiodes of the photodetector layer 52, etc. ) The method further includes processing the feedback signals (block 144) to determine whether the thermal control system 60 is configured with the TEC system 66 or the thermal heater system 68 (block 146) . In certain embodiments, the controller 70 may automatically detect whether the TEC system 66 or the thermal heater system 68 is configured for use based on the type of connection detected or the type of feedback signals received (block 146) . Based on the type of system detected or based on other type of information received, the controller 70 may be configured to retrieve and load information from the memory 74 of the controller 70 (block 148) . For example, in certain embodiments, the controller may retrieve a setpoint value, various control constants, and/or various actuator inputs based on the type of interchangeable thermal component 64 detected. In some embodiments, the setpoint value may be a temperature or a range of temperatures determined for appropriate operating conditions for the detector module 20. Further, it should be noted that the constants and/or the setpoint values retrieved from the memory 74 and loaded into the controller 70 may be determined by the type of thermal control system detected.
In certain embodiments, the method 140 may determine one or more one or more thermal control signals (e.g., command signals) based on the retrieved setpoint value and/or the feedback signals (block 150) . Specifically, the controller 70 may iteratively reduce the error between the setpoint values and/or constants and the received feedback signals related to the current operating temperature, thereby utilizing a feedback loop for appropriate temperature control. In addition, the method 140 may include sending the determined control signals to the thermal control system (block 152) to regulate and/or control the temperature range of the components of each detector module 12, thereby reducing the effects of fluctuations within the thermal environment on the CT system 10.
Technical effects of the disclosed embodiments include a detector module 20 including a thermal control system 60 coupled to a base module 62. In particular, each detector module 20 of a detector assembly 15 disposed within an imaging system 10 may include a base module 62 coupled to the thermal control system 60. The  thermal control system 60 may include an interchangeable thermal component 64 associated with the controller 70. Each base module 62 may be coupled to the master interface plate 61 of the detector assembly 15, and each base module 62 may be removably coupled to the interchangeable thermal component 64. In certain embodiments, the interchangeable thermal component 64 may be the TEC system 66, and in other embodiments, the interchangeable thermal component 64 may be the thermal heater system 68. This interchangeable design may allow a manufacturer and/or an operator of the imaging system 10 to modify the detector module 20 according to environmental factors without changing the configuration and/or function of the imaging system 10, the detector assembly 15, and/or the detector module 20.
This written description uses examples to disclose the subject matter, including the best mode, and also to enable any person skilled in the art to practice the subject matter, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the subject matter is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.

Claims (20)

  1. A computed tomography (CT) detector module assembly, comprising:
    a base module, comprising:
    a scintillator layer configured to convert incident radiation into lower energy optical photons;
    a photodetector layer configured to detect the lower energy photons generated by the scintillator;
    signal electronics configured to receive signals generated by the photodetector layer; and
    a thermal interface material surface configured to be removably coupled to an interchangeable thermal component, wherein the interchangeable thermal component is configured to regulate a temperature of the CT detector module assembly, and wherein the thermal interface material surface is configured to contact with a surface of the interchangeable thermal component, and wherein the thermal interface material is configured to increase thermal contact between the base module and the interchangeable thermal component.
  2. The CT detector module assembly of claim 1, wherein the interchangeable thermal component is a thermoelectric cooler (TEC) system.
  3. The CT detector module assembly of claim 2, wherein the TEC system is configured to heat or cool the CT detector module assembly to control the temperature of the CT detector module within a predetermined range.
  4. The CT detector module assembly of claim 2, wherein the TEC system comprises a first plate, a second plate, and a heat sink, and wherein a temperature differential between the first plate and the second plate transfers rejected heat from the base module to the heat sink.
  5. The CT detector module assembly of claim 4, wherein a cooling fan of the TEC system transfers the rejected heat from the heat sink into ambient air.
  6. The CT detector module assembly of claim 4, wherein the second plate is configured to contact the thermal interface material surface of the base module upon being removably coupled to the base module.
  7. The CT detector module assembly of claim 1, wherein the interchangeable thermal component is a thermal heater system.
  8. The CT detector module assembly of claim 7, wherein the thermal heater system comprises a base plate configured to contact the thermal interface material of the base module upon being removably coupled to the base module.
  9. The CT detector module assembly of claim 7, wherein the thermal heater system comprises a foil heater layer configured to transfer rejected heat from the base module into ambient air.
  10. The CT detector module assembly of claim 1, wherein the interchangeable thermal component is communicatively coupled to a controller configured to regulate an operating temperature of the base module.
  11. The CT detector module assembly of claim 10, wherein the controller is configured to automatically determine whether the interchangeable thermal component is a thermal heater system or a thermoelectric cooler (TEC) system.
  12. The CT detector module assembly of claim 10, comprising one or more temperature sensors disposed within the base module of the interchangeable thermal component.
  13. The CT detector module assembly of claim 12, wherein the one or more sensors are configured to provide one or more feedback signals related to the operating temperature of the base module to the controller.
  14. A system, comprising:
    a thermoelectric cooling (TEC) system configured to be removably coupled to a base module of a computed tomography (CT) detector module assembly, wherein the TEC system comprises a first plate, a second plate, and a heat sink, and wherein a temperature differential between the first plate and the second plate transfers heat from the base module to the heat sink, and wherein the base module comprises:
    a scintillator layer configured to convert incident radiation into lower energy optical photons;
    a photodetector layer configured to detect the lower energy photons generated by the scintillator;
    signal electronics configured to receive signals generated by the photodetector layer; and
    a thermal interface material surface configured to interface with the second plate of the TEC system.
  15. The system of claim 14, wherein a cooling fan of the TEC system transfers the rejected heat from the heat sink into ambient air.
  16. The system of claim 14, wherein the TEC system is communicatively coupled to a controller configured to regulate an operating temperature of the base module.
  17. The system of claim 16, comprising one or more sensors disposed within the TEC system, wherein the one or more sensors are configured to provide feedback signals to the controller.
  18. The system of claim 17, wherein the one or more feedback signals relate to the operating temperature of the base module, a flow of rejected heat from the base  module to the TEC system, or a flow of rejected heat from the heat sink to the ambient air.
  19. The system of claim 14, wherein the TEC system comprises a power source configured to receive a voltage, and wherein the voltage is applied to the first plate and the second plate to generate the temperature differential.
  20. A computed tomography (CT) imaging system, comprising:
    a radiation source configured to emit radiation; and
    a CT detector assembly configured to detect the emitted radiation, the CT detector assembly comprising:
    a plurality of base modules, wherein each base module of the plurality of base modules comprises:
    a scintillator layer configured to convert incident radiation into lower energy optical photons;
    a photodetector layer configured to detect the lower energy photons generated by the scintillator;
    signal electronics configured to receive signals generated by the photodetector layer; and
    a thermal interface material surface configured to be removably coupled to an interchangeable thermal component, wherein the interchangeable thermal component is configured to regulate a temperature of the CT detector module assembly, and wherein the thermal interface material surface is configured to contact with a surface of the interchangeable thermal component, and wherein the thermal interface material is configured to increase thermal contact between the base module and the interchangeable thermal component.
PCT/CN2015/082625 2015-06-29 2015-06-29 Interchangeable module for thermal control in detector systems WO2017000108A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/082625 WO2017000108A1 (en) 2015-06-29 2015-06-29 Interchangeable module for thermal control in detector systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/082625 WO2017000108A1 (en) 2015-06-29 2015-06-29 Interchangeable module for thermal control in detector systems

Publications (1)

Publication Number Publication Date
WO2017000108A1 true WO2017000108A1 (en) 2017-01-05

Family

ID=57607384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/082625 WO2017000108A1 (en) 2015-06-29 2015-06-29 Interchangeable module for thermal control in detector systems

Country Status (1)

Country Link
WO (1) WO2017000108A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107981881A (en) * 2017-11-24 2018-05-04 上海联影医疗科技有限公司 CT system and its detection device
CN108378864A (en) * 2018-03-19 2018-08-10 沈阳东软医疗系统有限公司 The detector temperature control method and Medical Devices of Medical Devices
US20190166716A1 (en) * 2017-11-29 2019-05-30 Shenyang Neusoft Medical Systems Co., Ltd. Heat dissipating device for medical imaging apparatus
CN111128991A (en) * 2019-12-10 2020-05-08 东软医疗系统股份有限公司 CT detector and CT machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1386582A1 (en) * 2002-07-30 2004-02-04 GE Medical Systems Global Technology Company LLC Thermoelectrically controlled X-ray detector array
JP2004121717A (en) * 2002-10-07 2004-04-22 Hitachi Medical Corp X-ray ct apparatus
US7236562B2 (en) * 2005-11-03 2007-06-26 General Electric Company Method of assembly and thermal management of CT detector electronics circuits
CN102160798A (en) * 2010-02-24 2011-08-24 株式会社东芝 X-ray ct apparatus and control method for x-ray ct apparatus
US20110248177A1 (en) * 2010-04-13 2011-10-13 Michael Crocker Test equipment for verification of crystal linearity at high-flux levels
US20120033784A1 (en) * 2010-08-06 2012-02-09 Keiji Matsuda X-ray detector and x-ray computer tomography scanner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1386582A1 (en) * 2002-07-30 2004-02-04 GE Medical Systems Global Technology Company LLC Thermoelectrically controlled X-ray detector array
JP2004121717A (en) * 2002-10-07 2004-04-22 Hitachi Medical Corp X-ray ct apparatus
US7236562B2 (en) * 2005-11-03 2007-06-26 General Electric Company Method of assembly and thermal management of CT detector electronics circuits
CN102160798A (en) * 2010-02-24 2011-08-24 株式会社东芝 X-ray ct apparatus and control method for x-ray ct apparatus
US20110248177A1 (en) * 2010-04-13 2011-10-13 Michael Crocker Test equipment for verification of crystal linearity at high-flux levels
US20120033784A1 (en) * 2010-08-06 2012-02-09 Keiji Matsuda X-ray detector and x-ray computer tomography scanner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107981881A (en) * 2017-11-24 2018-05-04 上海联影医疗科技有限公司 CT system and its detection device
US20190166716A1 (en) * 2017-11-29 2019-05-30 Shenyang Neusoft Medical Systems Co., Ltd. Heat dissipating device for medical imaging apparatus
CN108378864A (en) * 2018-03-19 2018-08-10 沈阳东软医疗系统有限公司 The detector temperature control method and Medical Devices of Medical Devices
CN111128991A (en) * 2019-12-10 2020-05-08 东软医疗系统股份有限公司 CT detector and CT machine

Similar Documents

Publication Publication Date Title
JP4590252B2 (en) Method and apparatus for temperature management of CT electronic device
JP4448668B2 (en) Thermoelectric controlled X-ray detector array
US10488532B2 (en) Detector unit for detector array of radiation imaging modality
US7512209B2 (en) Thermal stabilization methods and apparatus
US7236562B2 (en) Method of assembly and thermal management of CT detector electronics circuits
WO2017000108A1 (en) Interchangeable module for thermal control in detector systems
US7514692B2 (en) Method and apparatus for reducing polarization within an imaging device
US10531848B2 (en) Packaging for CT detector
JP4436719B2 (en) CT detector circuit thermal management system and method
JP6431919B2 (en) CT system and detector module
CN102160798A (en) X-ray ct apparatus and control method for x-ray ct apparatus
US7449696B2 (en) System and apparatus for heat management
US20110248177A1 (en) Test equipment for verification of crystal linearity at high-flux levels
KR101835089B1 (en) Radiation Detector, Apparatus For Radiography Using the same
JP4564141B2 (en) X-ray CT system
KR20160146640A (en) Packaging design for ct detector
JP5194862B2 (en) 2D image detector
US11020072B2 (en) System and method for regulating temperature of imaging detector sensors
EP1739459A1 (en) Computerized tomography system
CN114325797A (en) CT detection device and temperature control method thereof
JP2021145758A (en) X-ray ct apparatus, method for controlling x-ray ct apparatus and program
US10823684B2 (en) X-ray detector and X-ray CT apparatus
CN105982688B (en) Thermal control device for detector of CT (computed tomography) machine and detector
US11944476B2 (en) Apparatus and method of assembly of module for a CT detector
CN216984932U (en) CT detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15896639

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15896639

Country of ref document: EP

Kind code of ref document: A1