WO2016208793A1 - Method for enhancing antioxidant properties of graphite contained in magnesia-carbon refractories by means of surface modifying and magnesia-carbon refractories prepared by means of same - Google Patents

Method for enhancing antioxidant properties of graphite contained in magnesia-carbon refractories by means of surface modifying and magnesia-carbon refractories prepared by means of same Download PDF

Info

Publication number
WO2016208793A1
WO2016208793A1 PCT/KR2015/006767 KR2015006767W WO2016208793A1 WO 2016208793 A1 WO2016208793 A1 WO 2016208793A1 KR 2015006767 W KR2015006767 W KR 2015006767W WO 2016208793 A1 WO2016208793 A1 WO 2016208793A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphite
magnesia
graphite particles
antioxidant properties
contained
Prior art date
Application number
PCT/KR2015/006767
Other languages
French (fr)
Korean (ko)
Inventor
정연길
김은희
이재현
조근호
Original Assignee
창원대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 창원대학교 산학협력단 filed Critical 창원대학교 산학협력단
Publication of WO2016208793A1 publication Critical patent/WO2016208793A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/66Nitrates, with or without other cations besides aluminium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia

Definitions

  • the present invention relates to a method capable of enhancing the antioxidant properties of graphite, and in particular, the acid treatment of the graphite particle surface before coating the graphite surface with an aluminum precursor improves the efficiency of coating the metal precursor on the graphite surface, thereby improving the antioxidant activity of the graphite.
  • the present invention relates to a method for enhancing the antioxidant properties of graphite contained in magnesia-carbon refractory through surface modification capable of enhancing its properties, and to magnesia-carbon refractories prepared thereby.
  • magnesia carbon (MgO-C) refractories are widely used in basic furnaces, electric arc furnaces and metal ladles, which have low elasticity due to the corrosion resistance due to low wettability to molten metal and the presence of graphite used as carbon source. Because of its characteristics.
  • magnesia carbon MgO-C
  • the mechanical and thermal properties of magnesia carbon (MgO-C) refractories continue to deteriorate with use, due to the spalling phenomenon and pore formation by oxidation of graphite.
  • graphite was coated with a coating agent of a metal precursor (particularly an aluminum precursor) to prevent oxygen from accessing the graphite.
  • Patent Document 001 US Registered Patent No. 4824733
  • Patent Document 002 US Registered Patent No. 6455159
  • Patent Document 003 US Patent No. 6668984
  • Non-Patent Document 001 ZHANG S, LEE W E. Influence of additives on corrosion resistance and corroded microstructures of MgO.C refractories [J]. Journal of
  • Non-Patent Document 002 HASHEMI B, NEMATI Z A, FAGHIHI-SANI M A. Effects of resin and graphite content on density and oxidation behavior of MgO.C
  • Non-Patent Document 003 ZHANG S, MARRIOTT N J, LEE W E. Thermochemistry and
  • Non-Patent Document 004 SADRNEZHAAD S K, MAHSHID S, ASHEMI B H, NEMATI Z A. Oxidation mechanism of C in MgO.C refractory bricks [J]. Journal
  • Non-Patent Document 005 KIM E H, JO G H, LIM H T, BYEUN Y K, JUNG Y G.
  • Non-Patent Document 006 BUTTRY D A, ANSON F C. New strategies for electrocatalysis at polymer-coated electrodes reducton of dioxygen by cobalt porphyrins i Immobilized in nafion coatings on graphite electrodes [J]. Journal of
  • Non-Patent Document 007 KIM E H, LEE D, PAIK U G, JUNG Y G. Size effect in Ni-coated TiC particles for metal matrix composites [J]. Journal of Nanoscience
  • Non-Patent Document 008 KIM E H, LEE J H, JUNG Y G, LEE C G, LEE M K, PARK J J. Preparation of Ni-coated TiC particles using potential hydrogen (pH)
  • Non-Patent Document 009 PANDEY P C, UPADHYAY S U, SHUKLA N K, SHARMA S. Studies on the electrochemical performance of glucose biosensor
  • Non-Patent Document 010 HOU C H, LIANG C, YIACOUMI S, DAI S, TSOURIS C.
  • Non-Patent Document 011 LIU X G, QU Z Q, GENG D Y, HAN Z, JIANG J J, LIU W, ZHANG Z D. Influence of a graphite shell on the thermal and electromagnetic
  • Non-Patent Document 012 WANG Z, LIU J, LIANQ Q, WANG Y, LUO G. Carbon nanotubemodified electrodes for the simultaneous determination of doamine
  • Non-Patent Document 013 KNOX J H, WAN Q H. Chiral chromatography of amino- and
  • Non-Patent Document 014 ABIMAN P, CROSSLEY A, WILDGOOSE G G, JONES J H,
  • thermodynamic causes behind the anomalously large shifts in pKa values of benzoic acid-modified graphite and glassy carbon surfaces [J]. Langmuir, 2007, 23: 7847.7852.
  • Non-Patent Document 015 KIM E H, JUNG Y G, PAIK U G. Microstructure and mechanical properties of Al2O3 composites with surface-treated carbon nanotubes (CNTs): Dispersibility of modified carbon nanotubes (CNTs) on Al2O3 matrix [J]. Journal of Nanoscience and Nanotechnology, 2012, 12: 1332.1336.
  • an object of the present invention is to solve the above-mentioned problems and improves the efficiency of coating the metal precursor on the graphite surface by surface modification by acid treatment of the graphite particle surface before coating the graphite surface with the aluminum precursor, thereby improving the graphite. It is to provide a method for enhancing the antioxidant properties of graphite contained in the magnesia-carbon refractory through surface modification that can enhance the antioxidant properties of the magnesia-carbon refractory.
  • the present invention for achieving the above object comprises a reforming step (S100) for acid treatment of the graphite particles surface contained in the magnesia-carbon refractory, and a coating step (S200) for coating the modified graphite particle surface with an aluminum precursor
  • S100 reforming step
  • S200 coating step
  • One method is to enhance the antioxidant properties of graphite contained in magnesia-carbon refractory through surface modification.
  • the reforming step (S100) may include an eleventh step (S110) for introducing the graphite particles into a mixture 3: 1 (volume ratio) of sulfuric acid and nitric acid.
  • the twelfth step (S120) of sonicating the mixture to which the graphite particles are added for 3 hours and stirring for 24 hours, and the thirteenth step of washing the stirred graphite particles with distilled water It is also possible to include (S130), and the fourteenth step (S140) for drying the washed graphite particles.
  • the 13th step (S130) is washed with distilled water until the pH of the graphite particles to 7, the 14th step (S140) is filtered and dried for 48 hours at 80 °C after filtering the washed graphite particles It is also possible.
  • the coating step (S200) may include a twenty-first step (S210) of mixing and stirring the graphite particles that have undergone the modification step (S100) in an Al (NO 3 ) 3 solution.
  • the 21 st step (S210) is stirred the graphite particles mixed in the Al (NO 3) 3 solution for 1 hour at room temperature
  • the 22nd step (S220) is dried at 80 °C for 1 hour
  • the second 23 may be preheated to 300 ° C. for 1 hour in a hydrogen atmosphere.
  • the present invention is another feature of the magnesia-carbon refractory produced by the above-described method.
  • the surface of the graphite particles is subjected to surface modification by acid treatment, thereby improving the efficiency of coating the metal precursor on the graphite surface, thereby improving the antioxidant properties of the graphite.
  • FIG. 1 is a flowchart according to an embodiment of the present invention.
  • FIG. 2 is a photograph showing the dispersibility of graphite particles by the method according to an embodiment of the present invention.
  • FIG. 3 is an SEM image of EDS analysis results of surface modified graphite according to an embodiment of the present invention.
  • FIGS. 3A and 3B do not have a coating layer, and FIG. 3A is before heat treatment at 1000 ° C. and FIG. 3B is heat treatment at 1000 ° C.
  • FIG. It shows after. 3C and 3D show the case where the coating layer is present, and FIG. 3C shows the heat treatment at 1000 ° C. and FIG. 3D shows the heat treatment at 1000 ° C.
  • FIG. 3C shows the heat treatment at 1000 ° C.
  • FIG. 3D shows the heat treatment at 1000 ° C.
  • FIG. 4 is a combustion test result for modified graphite particles with and without a coating layer according to an embodiment of the present invention, the numbers 1 to 4 are modified graphite particles, 1 is a photograph after the combustion test at 500 °C 2 is a photograph after the combustion test at 700 ° C, 3 at 900 ° C, and 4 at 1000 ° C.
  • a1 to a4 is a case where there is no coating layer and b1 to b4 is a case where there is a coating layer.
  • FIG. 5 shows modified graphite XRD results with and without a coating layer according to one embodiment of the invention, where 5 (a) shows modified graphite without coating layer as before heat treatment and 5 (b) at 1000 ° C.
  • FIG. 5 (c) represents modified graphite with a coating layer after heat treatment for 1 period and without coating layer, 5 (c) shows modified graphite with coating layer after heat treatment at 500 ° C, 700 ° C and 900 ° C. And modified graphite with coating as after heat treatment at 1200 ° C.
  • the method for enhancing antioxidant activity of graphite (S10) includes a modified step (S100) of acid-treating the surface of graphite particles contained in magnesia-carbon refractory, as shown in FIG. 1, and the modified graphite.
  • acid treatment of the surface of the graphite particles before coating the surface of the graphite particles with a metal, that is, an aluminum precursor may improve the coating efficiency of the aluminum precursor, thereby improving the antioxidant properties of the graphite.
  • the reforming step (S100) is acid treatment of the surface of the graphite particles as described above, and for this purpose to include an eleventh step (S110) of injecting the graphite particles into a mixture 3: 1 (volume ratio) of sulfuric acid and nitric acid. Can be.
  • the mixture containing the graphite particles is sonicated for 3 hours and the twelfth step (S120) of stirring for 24 hours is performed. Thereafter, a thirteenth step (S130) of washing the stirred graphite particles with distilled water is performed, and the thirteenth step (S130) is preferably washed with distilled water until the pH of the graphite particles reaches 7.
  • a fourteenth step (S140) of drying the washed graphite particles is performed, wherein the washed graphite particles are replaced for the fourteenth step (S140). After filtering it is also possible to dry for 48 hours at 80 °C.
  • the coating step (S200) is performed.
  • the coating step (S200) includes a twenty-first step (S210) of mixing and stirring the graphite particles acid-treated by the modifying step (S100) in an Al (NO 3 ) 3 (aluminum nitrate) solution.
  • An aluminum coating is performed on the surface of the graphite particles by the twenty-first step (S210). At this time, it is preferable to stir the graphite particles mixed in the Al (NO 3 ) 3 solution at room temperature for 1 hour.
  • the twenty-second step (S220) is preferably dried at 80 °C for 1 hour. .
  • a twenty-third step S230 of preheating the dried smoking particles to a specific temperature is performed.
  • the twenty-third step S230 is performed in the twenty-third step S230.
  • the coating efficiency of the aluminum precursor on the graphite surface in the state with and without surface modification is examined through the degree of dispersion of the precursor.
  • the oxidation behavior of aluminum-coated graphite is examined by the microstructure and state analysis of the said graphite after a combustion test.
  • SEM scanning microscopy
  • EDS energy dispersive x-ray spectrometer
  • a combustion test for the modified graphite particles after or before coating with an aluminum precursor, as described below, is performed at a temperature range of 500 ° C. to 1000 ° C. for 1 hour, and the phase analysis after the combustion test is performed by an X-ray diffraction apparatus. (Model 3040 PW Philips X'pert MPD Eindhoven, The Netherlands) was performed.
  • the aluminum precursor in order to effectively inhibit the oxidation of graphite in the magnesia-carbon refractory, the aluminum precursor should be uniformly and homogeneously coated on the graphite surface and the coating efficiency of the aluminum precursor should be enhanced.
  • an anionic hydroxyl group must be provided on the graphite surface, and the surface of the graphite is modified by an acid to provide the hydroxyl group.
  • the graphite particles with and without modification are dispersed in an aqueous solution containing aluminum coated graphite particles, which will be described below with reference to FIG. 2.
  • numeral 1 represents graphite without a coating layer
  • numeral 2 represents graphite in three minutes after the coating layer is present
  • numeral 3 represents the case of the coating layer 3.
  • Graphite in the elapsed state is shown.
  • a1, a2, a3 represents original graphite without surface modification
  • b1, b2, b3 represents graphite with surface modification.
  • the surface modified graphite was well dispersed without aggregation (bl in FIG. 2), indicating that the acid produced a hydroxyl group with a negative charge on the graphite surface, resulting in a good aluminum coating.
  • the aluminum precursor is better coated on the graphite surface modified by the present invention.
  • the microstructure and elemental analysis results of the surface-modified graphite particles with and without the coating layer are examined through a heat treatment function.
  • Figure 3 is a SEM image of the surface-modified graphite EDS analysis of Figure 3a and 3b without the coating layer
  • Figure 3a before the heat treatment at 1000 °C and Figure 3b shows after the heat treatment at 1000 °C.
  • 3C and 3D show the case where the coating layer is present
  • FIG. 3C shows the heat treatment at 1000 ° C.
  • FIG. 3D shows the heat treatment at 1000 ° C.
  • FIG. 3A only O and C are detected in graphite as there is no coating layer.
  • FIG. 3C an element of aluminum is additionally detected in the graphite as there is no coating layer, because the structure after the aluminum layer is preheated at 300 ° C. is amorphous.
  • Graphite particles with and without coating layers after heat treatment at 1000 ° C. show different behavior. That is, as shown in FIG. 3B, various impurities are detected in the graphite in the absence of the coating layer, which indicates that graphite in the absence of the coating layer is easily decomposed.
  • numerals 1 to 4 are modified graphite particles, 1 is a photograph after a combustion test at 500 ° C., 2 is 700 ° C., 3 is a 900 ° C., and 4 is a photograph after a combustion test at 1000 ° C.
  • FIG. 4 a1 to a4 is a case where there is no coating layer and b1 to b4 is a case where there is a coating layer.
  • graphite coated with an aluminum precursor exhibits desirable conditions in a 700 ° C. combustion test and begins to react with oxygen at 900 ° C.
  • FIG. 4 shows that graphite coated with an aluminum precursor exhibits desirable conditions in a 700 ° C. combustion test and begins to react with oxygen at 900 ° C.
  • the aluminum coated graphite (the coating layer starts a complete reaction with oxygen at 1000 ° C.) shows a white color.
  • the coating layer (aluminum precursor) has a significant effect as an antioxidant which delays the oxidation of the graphite by a continuous and homogeneous coating on the graphite surface.
  • the mass loss of aluminum coated graphite is less than 10% (mass fraction) after the combustion test. Therefore, the coating process can be seen that the oxidation inhibition of the graphite is enhanced even if the mass gain by the oxidation of the coating layer is considered.
  • FIG. 5 shows modified graphite without a coating layer as before the heat treatment
  • 5 (b) shows modified graphite without a coating layer after being heated at 1000 ° C. for 1 hour
  • 5 (c) is 500.
  • 700 °C and 900 °C represents a modified graphite with a coating layer
  • 5 (d) represents a modified graphite with a coating layer after the heat treatment at 1000 °C and 1200 °C.
  • the graphite peak is detected up to 900 ° C. heat treatment (FIG. 5 (c)).
  • graphite was acid treated to improve the coating efficiency of the aluminum precursor.
  • the surface modified graphite exhibits improved dispersibility than the original graphite.
  • the modified graphite particles coated with the aluminum precursor precipitate over time because the charge due to the reaction between the cation and the graphite anion of the aluminum precursor disappears.
  • the aluminum coated graphite exhibited healthy conditions at 700 ° C. in the combustion test and started to react at 900 ° C.
  • the aluminum coated graphite was maintained up to 1000 ° C. even if the color turned white.
  • aluminum coated graphite is detected up to 900 ° C. and alumina and graphite have peaks at 1000 ° C.
  • the aluminum coated graphite was completely converted to alumina at 1200 ° C.
  • the high antioxidant properties of aluminum coated graphite are achieved by surface modified graphite and in this study aluminum coated graphite can enhance the antioxidant properties of MgO-C refractory.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The present invention relates to a method for enhancing the antioxidant properties of graphite contained in magnesia-carbon refractories by means of surface modifying and magnesia-carbon refractories prepared by means of same and, more particularly, to a method, for enhancing the antioxidant properties of graphite, in which the surface of graphite particles is surface modified by means of acid treating before having the surface of graphite coated with an aluminum precursor, thereby enhancing the efficiency of a metal precursor coating on the surface of the graphite and thus enhancing the antioxidant properties of the graphite.

Description

표면 개질을 통한 마그네시아-카본 내화물에 함유된 흑연의 항산화성 증진 방법 및 이에 의해 제조된 마그네시아-카본 내화물Method for enhancing the antioxidant properties of graphite contained in magnesia-carbon refractory through surface modification and magnesia-carbon refractory prepared thereby
본 발명은 흑연의 항산화성을 증진할 수 있는 방법에 대한 것으로서 특히 흑연 표면을 알루미늄 전구체로 코팅하기 전 흑연 입자 표면을 산 처리하여 금속 전구체를 흑연 표면에 코팅하는 효율을 향상시키고 이에 의해 흑연의 항산화성을 증진할 수 있는 표면 개질을 통한 마그네시아-카본 내화물에 함유된 흑연의 항산화성 증진 방법 및 이에 의해 제조된 마그네시아-카본 내화물에 대한 것이다.The present invention relates to a method capable of enhancing the antioxidant properties of graphite, and in particular, the acid treatment of the graphite particle surface before coating the graphite surface with an aluminum precursor improves the efficiency of coating the metal precursor on the graphite surface, thereby improving the antioxidant activity of the graphite. The present invention relates to a method for enhancing the antioxidant properties of graphite contained in magnesia-carbon refractory through surface modification capable of enhancing its properties, and to magnesia-carbon refractories prepared thereby.
일반적으로 마그네시아 카본 (MgO-C) 내화물은 기본적인 로나 전기 아크로, 그리고 금속 래들에 광범위하게 사용되는데, 이는 용융 금속에 대한 낮은 젖음성으로 인한 내부식성과 카본 소스로서 사용되는 흑연의 존재로 인해 낮은 탄성의 특성 때문이다.In general, magnesia carbon (MgO-C) refractories are widely used in basic furnaces, electric arc furnaces and metal ladles, which have low elasticity due to the corrosion resistance due to low wettability to molten metal and the presence of graphite used as carbon source. Because of its characteristics.
그러나, 마그네시아 카본(MgO-C) 내화물의 기계적 및 열적 특성은 사용에 따라 지속적으로 악화되는데, 이는 흑연의 산화에 의한 스폴링(spalling) 현상과 기공 생성에 기인한다.However, the mechanical and thermal properties of magnesia carbon (MgO-C) refractories continue to deteriorate with use, due to the spalling phenomenon and pore formation by oxidation of graphite.
따라서 상기 흑연의 산화를 방지하기 위해 상기 흑연에 산소와 상당한 반응성을 갖는 항산화제를 제조 공정동안 첨가하며 이론적으로는 거의 모든 흑연은 상기 항산화제의 산화가 상당 정도 진행될 때까지 산소와 반응하지 않아야한다.Therefore, to prevent oxidation of the graphite, an antioxidant having significant reactivity with oxygen is added to the graphite during the manufacturing process, and theoretically almost all graphite should not react with oxygen until the oxidation of the antioxidant proceeds to a considerable extent. .
그러나, 현실적으로는 상기 마그네시아 카본 (MgO-C) 내화물에 기공이 발생되는 현상으로 인해 항산화제가 흑연의 산화를 효과적으로 저지할 수 없다.However, in reality, due to a phenomenon in which pores are generated in the magnesia carbon (MgO-C) refractory, an antioxidant cannot effectively inhibit the oxidation of graphite.
이러한 문제점을 해결하기 위해 종래에는 금속 전구체(특히 알루미늄 전구체)의 코팅제로 하여 흑연을 코팅하여 산소가 흑연에의 접근을 차단하고자 하였다.In order to solve this problem, conventionally, graphite was coated with a coating agent of a metal precursor (particularly an aluminum precursor) to prevent oxygen from accessing the graphite.
그러나 이러한 종래 기술의 경우 상기 금속 전구체를 흑연 표면에 코팅하는 효율이 낮아서 흑연의 항산화성을 증진하기 어려운 문제점이 있었다. However, such a prior art has a problem that it is difficult to improve the antioxidant properties of graphite because the efficiency of coating the metal precursor on the graphite surface is low.
한편, 상술한 바와 같은 흑연의 산화 방지를 위한 기술은 널리 사용되고 있는 것으로서 특히 아래의 선행기술문헌에 기재되어 있으므로 이에 대한 자세한 설명과 도시는 생략한다. On the other hand, as described above, the technique for preventing oxidation of graphite is widely used, and since it is described in the following prior art document, detailed description and illustration thereof will be omitted.
[선행기술문헌][Preceding technical literature]
(특허문헌 001) 미국 등록 특허 제4824733호(Patent Document 001) US Registered Patent No. 4824733
(특허문헌 002) 미국 등록 특허 제6455159호(Patent Document 002) US Registered Patent No. 6455159
(특허문헌 003) 미국 등록 특허 제6668984호(Patent Document 003) US Patent No. 6668984
(비특허문헌 001) ZHANG S, LEE W E. Influence of additives on corrosion resistance and corroded microstructures of MgO.C refractories [J]. Journal of(Non-Patent Document 001) ZHANG S, LEE W E. Influence of additives on corrosion resistance and corroded microstructures of MgO.C refractories [J]. Journal of
the European Ceramic Society, 2001, 21: 2393.2405.the European Ceramic Society, 2001, 21: 2393.2405.
(비특허문헌 002) HASHEMI B, NEMATI Z A, FAGHIHI-SANI M A. Effects of resin and graphite content on density and oxidation behavior of MgO.C(Non-Patent Document 002) HASHEMI B, NEMATI Z A, FAGHIHI-SANI M A. Effects of resin and graphite content on density and oxidation behavior of MgO.C
refractory bricks [J]. Ceramics International, 2006, 32(3): 313.319.refractory bricks [J]. Ceramics International, 2006, 32 (3): 313.319.
(비특허문헌 003) ZHANG S, MARRIOTT N J, LEE W E. Thermochemistry and(Non-Patent Document 003) ZHANG S, MARRIOTT N J, LEE W E. Thermochemistry and
microstructures of MgO.C refractories containing various antioxidants [J]. Journal of the European Ceramic Society, 2001, 21: 1037.1047.microstructures of MgO.C refractories containing various antioxidants [J]. Journal of the European Ceramic Society, 2001, 21: 1037.1047.
(비특허문헌 004) SADRNEZHAAD S K, MAHSHID S, ASHEMI B H, NEMATI Z A. Oxidation mechanism of C in MgO.C refractory bricks [J]. Journal(Non-Patent Document 004) SADRNEZHAAD S K, MAHSHID S, ASHEMI B H, NEMATI Z A. Oxidation mechanism of C in MgO.C refractory bricks [J]. Journal
of the American Ceramic Society, 2006, 89: 1308.1316.of the American Ceramic Society, 2006, 89: 1308.1316.
(비특허문헌 005) KIM E H, JO G H, LIM H T, BYEUN Y K, JUNG Y G.(Non-Patent Document 005) KIM E H, JO G H, LIM H T, BYEUN Y K, JUNG Y G.
Development of MgO.C refractory having high oxidation resistanceDevelopment of MgO.C refractory having high oxidation resistance
by metal coating process [J]. Journal of Nanoscience and Nanotechnology (In-press).by metal coating process [J]. Journal of Nanoscience and Nanotechnology (In-press).
(비특허문헌 006) BUTTRY D A, ANSON F C. New strategies for electrocatalysis at polymer-coated electrodes reducton of dioxygen by cobalt porphyrins iImmobilized in nafion coatings on graphite electrodes [J]. Journal of(Non-Patent Document 006) BUTTRY D A, ANSON F C. New strategies for electrocatalysis at polymer-coated electrodes reducton of dioxygen by cobalt porphyrins i Immobilized in nafion coatings on graphite electrodes [J]. Journal of
the American Society, 1984, 106(1): 59.64.the American Society, 1984, 106 (1): 59.64.
(비특허문헌 007) KIM E H, LEE D, PAIK U G, JUNG Y G. Size effect in Ni-coated TiC particles for metal matrix composites [J]. Journal of Nanoscience(Non-Patent Document 007) KIM E H, LEE D, PAIK U G, JUNG Y G. Size effect in Ni-coated TiC particles for metal matrix composites [J]. Journal of Nanoscience
and Nanotechnology, 2011, 11: 1746.1749and Nanotechnology, 2011, 11: 1746.1749
(비특허문헌 008) KIM E H, LEE J H, JUNG Y G, LEE C G, LEE M K, PARK J J. Preparation of Ni-coated TiC particles using potential hydrogen (pH)(Non-Patent Document 008) KIM E H, LEE J H, JUNG Y G, LEE C G, LEE M K, PARK J J. Preparation of Ni-coated TiC particles using potential hydrogen (pH)
for dispersion into a molten metal [J]. Progress in Organic Coatings,for dispersion into a molten metal [J]. Progress in Organic Coatings,
2011, 70: 310.317.2011, 70: 310.317.
(비특허문헌 009) PANDEY P C, UPADHYAY S U, SHUKLA N K, SHARMA S. Studies on the electrochemical performance of glucose biosensor(Non-Patent Document 009) PANDEY P C, UPADHYAY S U, SHUKLA N K, SHARMA S. Studies on the electrochemical performance of glucose biosensor
based on ferrocene encapsulated ORMOSIL and glucose oxidasebased on ferrocene encapsulated ORMOSIL and glucose oxidase
modified graphite paste electrode [J]. Biosensors and Bioelectronics,modified graphite paste electrode [J]. Biosensors and Bioelectronics,
2003, 18: 1257.1268.2003, 18: 1257.1268.
(비특허문헌 010) HOU C H, LIANG C, YIACOUMI S, DAI S, TSOURIS C.(Non-Patent Document 010) HOU C H, LIANG C, YIACOUMI S, DAI S, TSOURIS C.
Electrosorption capacitance of nanostructured carbon-based materialsElectrosorption capacitance of nanostructured carbon-based materials
[J]. Journal of Colloid and Interface Science, 2006, 302: 54.61.[J]. Journal of Colloid and Interface Science, 2006, 302: 54.61.
(비특허문헌 011) LIU X G, QU Z Q, GENG D Y, HAN Z, JIANG J J, LIU W, ZHANG Z D. Influence of a graphite shell on the thermal and electromagnetic(Non-Patent Document 011) LIU X G, QU Z Q, GENG D Y, HAN Z, JIANG J J, LIU W, ZHANG Z D. Influence of a graphite shell on the thermal and electromagnetic
characteristics of FeNi nanoparticles [J]. Carbon, 2010, 48: 891.897.characteristics of FeNi nanoparticles [J]. Carbon, 2010, 48: 891.897.
(비특허문헌 012) WANG Z, LIU J, LIANQ Q, WANG Y, LUO G. Carbon nanotubemodified electrodes for the simultaneous determination of doamine(Non-Patent Document 012) WANG Z, LIU J, LIANQ Q, WANG Y, LUO G. Carbon nanotubemodified electrodes for the simultaneous determination of doamine
and ascorbic acid [J]. Analyst, 2002, 127: 653.658.and ascorbic acid [J]. Analyst, 2002, 127: 653.658.
(비특허문헌 013) KNOX J H, WAN Q H. Chiral chromatography of amino- and(Non-Patent Document 013) KNOX J H, WAN Q H. Chiral chromatography of amino- and
hydroxy-acids on surface modified porous graphite [J]. Chromatographia, 1995, 40: 9.14.hydroxy-acids on surface modified porous graphite [J]. Chromatographia, 1995, 40: 9.14.
(비특허문헌 014) ABIMAN P, CROSSLEY A, WILDGOOSE G G, JONES J H,(Non-Patent Document 014) ABIMAN P, CROSSLEY A, WILDGOOSE G G, JONES J H,
COMPTON R G. Investigating the thermodynamic causes behind the anomalously large shifts in pKa values of benzoic acid-modified graphite and glassy carbon surfaces [J]. Langmuir, 2007, 23: 7847.7852.COMPTON R G. Investigating the thermodynamic causes behind the anomalously large shifts in pKa values of benzoic acid-modified graphite and glassy carbon surfaces [J]. Langmuir, 2007, 23: 7847.7852.
(비특허문헌 015) KIM E H, JUNG Y G, PAIK U G. Microstructure and mechanical properties of Al2O3 composites with surface-treated carbon nanotubes (CNTs): Dispersibility of modified carbon nanotubes (CNTs) on Al2O3 matrix [J]. Journal of Nanoscience and Nanotechnology, 2012, 12: 1332.1336.(Non-Patent Document 015) KIM E H, JUNG Y G, PAIK U G. Microstructure and mechanical properties of Al2O3 composites with surface-treated carbon nanotubes (CNTs): Dispersibility of modified carbon nanotubes (CNTs) on Al2O3 matrix [J]. Journal of Nanoscience and Nanotechnology, 2012, 12: 1332.1336.
따라서 본 발명의 목적은 상술한 문제점을 해결하기 위한 것으로서 흑연 표면을 알루미늄 전구체로 코팅하기 전 흑연 입자 표면을 산 처리에 의한 표면 개질을 하여 금속 전구체를 흑연 표면에 코팅하는 효율을 향상시키고 이에 의해 흑연의 항산화성을 증진할 수 있는 표면 개질을 통한 마그네시아-카본 내화물에 함유된 흑연의 항산화성 증진 방법 및 이에 의해 제조된 마그네시아-카본 내화물을 제공함에 있다.Accordingly, an object of the present invention is to solve the above-mentioned problems and improves the efficiency of coating the metal precursor on the graphite surface by surface modification by acid treatment of the graphite particle surface before coating the graphite surface with the aluminum precursor, thereby improving the graphite. It is to provide a method for enhancing the antioxidant properties of graphite contained in the magnesia-carbon refractory through surface modification that can enhance the antioxidant properties of the magnesia-carbon refractory.
상기 목적을 달성하기 위한 본 발명은 마그네시아-카본 내화물에 함유된 흑연 입자 표면을 산처리하는 개질 단계(S100)와, 상기 개질된 흑연 입자 표면을 알루미늄 전구체로 코팅하는 코팅 단계(S200)를 포함하는 표면 개질을 통한 마그네시아-카본 내화물에 함유된 흑연의 항산화성 증진 방법에 일 특징이 있다.The present invention for achieving the above object comprises a reforming step (S100) for acid treatment of the graphite particles surface contained in the magnesia-carbon refractory, and a coating step (S200) for coating the modified graphite particle surface with an aluminum precursor One method is to enhance the antioxidant properties of graphite contained in magnesia-carbon refractory through surface modification.
이때, 상기 개질 단계(S100)는 상기 흑연 입자를 황산과 질산의 혼합물 3:1(부피비)에 투입하는 제11단계(S110)를 포함하는 것도 가능하다.In this case, the reforming step (S100) may include an eleventh step (S110) for introducing the graphite particles into a mixture 3: 1 (volume ratio) of sulfuric acid and nitric acid.
또한, 상기 제11단계(S110) 수행 후, 상기 흑연 입자가 투입된 혼합물을 3시간동안 초음파 처리하고 24시간 교반하는 제12단계(S120)와, 상기 교반된 흑연 입자를 증류수로 세척하는 제13단계(S130)와, 상기 세척된 흑연 입자를 건조하는 제14단계(S140)를 포함하는 것도 가능하다.In addition, after performing the eleventh step (S110), the twelfth step (S120) of sonicating the mixture to which the graphite particles are added for 3 hours and stirring for 24 hours, and the thirteenth step of washing the stirred graphite particles with distilled water It is also possible to include (S130), and the fourteenth step (S140) for drying the washed graphite particles.
또한, 상기 제13단계(S130)는 상기 흑연 입자의 pH가 7이 될 때까지 증류수로 세척하고, 상기 제14단계(S140)는 상기 세척된 흑연 입자를 필터링 한 후 80℃에서 48시간 동안 건조하는 것도 가능하다.In addition, the 13th step (S130) is washed with distilled water until the pH of the graphite particles to 7, the 14th step (S140) is filtered and dried for 48 hours at 80 ℃ after filtering the washed graphite particles It is also possible.
또한, 상기 코팅 단계(S200)는 상기 개질 단계(S100)를 거친 흑연 입자를 Al(NO3)3 용액에 혼합 및 교반하는 제21단계(S210)를 포함하는 것도 가능하다.In addition, the coating step (S200) may include a twenty-first step (S210) of mixing and stirring the graphite particles that have undergone the modification step (S100) in an Al (NO 3 ) 3 solution.
또한, 상기 제21단계(S210) 수행 후, 상기 혼합된 흑연 입자를 필터링하고 나서 건조하는 제22단계(S220)와, 상기 건조된 흡연 입자를 특정 온도로 예열하는 제23단계(S230)를 포함하는 것도 가능하다.In addition, after performing the twenty-first step (S210), filtering the mixed graphite particles and then the twenty-second step (S220) and the 23rd step (S230) for preheating the dried smoking particles to a specific temperature It is also possible.
또한, 상기 제21단계(S210)는 상기 Al(NO3)3 용액에 혼합된 흑연 입자를 실온에서 1시간동안 교반하고, 상기 제22단계(S220)는 1시간동안 80℃에서 건조되며, 상기 제23단계(S230)는 수소 분위기에서 1시간동안 300℃로 예열하는 것도 가능하다.In addition, the 21 st step (S210) is stirred the graphite particles mixed in the Al (NO 3) 3 solution for 1 hour at room temperature, the 22nd step (S220) is dried at 80 ℃ for 1 hour, the second 23 may be preheated to 300 ° C. for 1 hour in a hydrogen atmosphere.
또한, 본 발명은 상술한 방법에 의해 제조된 마그네시아-카본 내화물에 또 다른 특징이 있다.In addition, the present invention is another feature of the magnesia-carbon refractory produced by the above-described method.
본 발명의 특징 및 이점들은 첨부도면에 의거한 다음의 상세한 설명으로 더욱 명백해질 것이다.The features and advantages of the present invention will become more apparent from the following detailed description based on the accompanying drawings.
이에 앞서 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이고 사전적인 의미로 해석되어서는 아니 되며, 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다라는 원칙에 입각하여 본 발명의 기술적 사상에 부합되는 의미와 개념으로 해석되어야 한다.Prior to this, the terms or words used in this specification and claims are not to be interpreted in a conventional and dictionary sense, and the inventors may appropriately define the concept of terms in order to best explain their invention in the best way possible. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that there is.
본 발명에 의하면 흑연 입자 표면을 산 처리에 의한 표면 개질을 하여 금속 전구체를 흑연 표면에 코팅하는 효율을 향상시키고 이에 의해 흑연의 항산화성을 증진할 수 있는 효과가 있다.According to the present invention, the surface of the graphite particles is subjected to surface modification by acid treatment, thereby improving the efficiency of coating the metal precursor on the graphite surface, thereby improving the antioxidant properties of the graphite.
도 1은 본 발명의 일 실시예에 따른 순서도이다.1 is a flowchart according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 방법에 의한 것으로서 흑연 입자의 분산성을 나타내는 사진이다.2 is a photograph showing the dispersibility of graphite particles by the method according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 표면 개질된 흑연의 EDS 분석 결과 SEM 사진으로서 도 3a와 도 3b는 코팅층이 없는 경우로서 도 3a는 1000℃에서의 열처리 전이고 도 3b는 1000℃에서의 열처리 후를 나타낸다. 또한, 도 3c와 도 3d는 코팅층이 있는 경우로서 도 3c는 1000℃에서의 열처리 전을 나타내고 도 3d는 1000℃에서의 열처리 후를 나타낸다.3 is an SEM image of EDS analysis results of surface modified graphite according to an embodiment of the present invention. FIGS. 3A and 3B do not have a coating layer, and FIG. 3A is before heat treatment at 1000 ° C. and FIG. 3B is heat treatment at 1000 ° C. FIG. It shows after. 3C and 3D show the case where the coating layer is present, and FIG. 3C shows the heat treatment at 1000 ° C. and FIG. 3D shows the heat treatment at 1000 ° C. FIG.
도 4는 본 발명의 일 실시예에 따라 코팅층이 있는 경우와 없는 경우의 개질된 흑연 입자에 대한 연소 테스트 결과로서, 숫자 1부터 4는 개질된 흑연 입자로서 1은 500℃에서의 연소 테스트 후의 사진이고, 2는 700℃, 3은 900℃ 그리고 4는 1000℃에서의 연소 테스트 후의 사진이다. 또한 a1에서 a4는 코팅층이 없는 경우이고 b1에서 b4는 코팅층이 있는 경우이다.4 is a combustion test result for modified graphite particles with and without a coating layer according to an embodiment of the present invention, the numbers 1 to 4 are modified graphite particles, 1 is a photograph after the combustion test at 500 ℃ 2 is a photograph after the combustion test at 700 ° C, 3 at 900 ° C, and 4 at 1000 ° C. In addition, a1 to a4 is a case where there is no coating layer and b1 to b4 is a case where there is a coating layer.
도 5는 본 발명의 일 실시예에 따라 코팅층이 있는 경우와 없는 경우의 개질된 그라파이트 XRD 결과로서, 5(a)는 열처리 전으로서 코팅층이 없는 개질된 흑연을 나타내고 5(b)는 1000℃에서 1기간 동안 열처된 후로서 코팅층이 없는 개질된 흑연을 나타내며, 5(c)는 500℃,700℃ 그리고 900℃에서 열처리된 후로서 코팅층이 있는 개질된 흑연을 나타내며, 5(d)는 1000℃와 1200℃에서 열처리된 후 로서 코팅층이 있는 개질된 흑연을 나타낸다.FIG. 5 shows modified graphite XRD results with and without a coating layer according to one embodiment of the invention, where 5 (a) shows modified graphite without coating layer as before heat treatment and 5 (b) at 1000 ° C. FIG. 5 (c) represents modified graphite with a coating layer after heat treatment for 1 period and without coating layer, 5 (c) shows modified graphite with coating layer after heat treatment at 500 ° C, 700 ° C and 900 ° C. And modified graphite with coating as after heat treatment at 1200 ° C.
이하, 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 설명하기로 한다. 이 과정에서 도면에 도시된 선들의 두께나 구성요소의 크기 등은 설명의 명료성과 편의상 과장되게 도시되어 있을 수 있다.Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings. In this process, the thickness of the lines or the size of the components shown in the drawings may be exaggerated for clarity and convenience of description.
또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 그러므로, 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 하여 내려져야 할 것이다.In addition, terms to be described below are terms defined in consideration of functions in the present invention, which may vary according to the intention or convention of a user or an operator. Therefore, definitions of these terms should be made based on the contents throughout the specification.
아울러, 아래의 실시예는 본 발명의 권리범위를 한정하는 것이 아니라 본 발명의 청구범위에 제시된 구성요소의 예시적인 사항에 불과하며, 본 발명의 명세서 전반에 걸친 기술사상에 포함되고 청구범위의 구성요소에서 균등물로서 치환 가능한 구성요소를 포함하는 실시예는 본 발명의 권리범위에 포함될 수 있다.In addition, the following examples are not intended to limit the scope of the present invention but merely illustrative of the components set forth in the claims of the present invention, which are included in the technical spirit throughout the specification of the present invention and constitute the claims Embodiments that include a substitutable component as an equivalent in the element may be included in the scope of the present invention.
실시예Example
본 발명의 일 실시예에 따른 흑연의 항산화성 증진 방법(S10)은 도 1에 도시된 바와 같이 마그네시아-카본 내화물에 함유된 흑연 입자 표면을 산처리하는 개질 단계(S100)와, 상기 개질된 흑연 입자 표면을 알루미늄 전구체로 코팅하는 코팅 단계(S200)를 포함한다.According to an embodiment of the present invention, the method for enhancing antioxidant activity of graphite (S10) includes a modified step (S100) of acid-treating the surface of graphite particles contained in magnesia-carbon refractory, as shown in FIG. 1, and the modified graphite. The coating step (S200) for coating the particle surface with an aluminum precursor.
즉, 상기 흑연 입자 표면을 금속 즉, 알루미늄 전구체로 코팅하기 전에 흑연 입자 표면을 산처리하면 상기 알루미늄 전구체의 코팅 효율을 향상시킬 수 있어 상술한 바와 같이 흑연의 항산화성을 향상시킬 수 있다.That is, acid treatment of the surface of the graphite particles before coating the surface of the graphite particles with a metal, that is, an aluminum precursor, may improve the coating efficiency of the aluminum precursor, thereby improving the antioxidant properties of the graphite.
이때, 상기 개질 단계(S100)는 상술한 바와 같이 흑연 입자 표면을 산 처리하게 되며 이를 위해 상기 흑연 입자를 황산과 질산의 혼합물 3:1(부피비)에 투입하는 제11단계(S110)를 포함할 수 있다.At this time, the reforming step (S100) is acid treatment of the surface of the graphite particles as described above, and for this purpose to include an eleventh step (S110) of injecting the graphite particles into a mixture 3: 1 (volume ratio) of sulfuric acid and nitric acid. Can be.
이와 같은 제11단계(S110)에 의해 표면을 산 처리한 후 상기 흑연 입자가 투입된 혼합물을 3시간동안 초음파 처리하고 24시간 교반하는 제12단계(S120)를 수행한다. 이후, 상기 교반된 흑연 입자를 증류수로 세척하는 제13단계(S130)를 수행하며, 상기 제13단계(S130)는 상기 흑연 입자의 pH가 7이 될 때까지 증류수로 세척하는 것이 바람직하다.After the acid treatment of the surface by the eleventh step (S110), the mixture containing the graphite particles is sonicated for 3 hours and the twelfth step (S120) of stirring for 24 hours is performed. Thereafter, a thirteenth step (S130) of washing the stirred graphite particles with distilled water is performed, and the thirteenth step (S130) is preferably washed with distilled water until the pH of the graphite particles reaches 7.
한편, 상기 제13단계(S130)에 의해 흑연 입자를 세척한 후 상기 세척된 흑연 입자를 건조하는 제14단계(S140)를 수행하는데, 상기 제14단계(S140)를 위해 상기 세척된 흑연 입자를 필터링 한 후 80℃에서 48시간동안 건조하는 것도 가능하다.Meanwhile, after washing the graphite particles by the thirteenth step (S130), a fourteenth step (S140) of drying the washed graphite particles is performed, wherein the washed graphite particles are replaced for the fourteenth step (S140). After filtering it is also possible to dry for 48 hours at 80 ℃.
이상 설명한 바와 같은 본 발명의 개질 단계(S100)에 의해 표면을 산처리한 후 상기 코팅 단계(S200)를 수행한다.After the acid treatment of the surface by the modification step (S100) of the present invention as described above, the coating step (S200) is performed.
이때, 상기 코팅 단계(S200)는 상기 개질 단계(S100)에 의해 산처리된 흑연 입자를 Al(NO3)3(질산 알루미늄) 용액에 혼합 및 교반하는 제21단계(S210)를 포함한다.In this case, the coating step (S200) includes a twenty-first step (S210) of mixing and stirring the graphite particles acid-treated by the modifying step (S100) in an Al (NO 3 ) 3 (aluminum nitrate) solution.
이러한 제21단계(S210)에 의해 상기 흑연 입자 표면에 알루미늄 코팅이 이루어지게 되며, 이 때, 상기 Al(NO3)3 용액에 혼합된 흑연 입자를 실온에서 1시간동안 교반하는 것이 바람직하다.An aluminum coating is performed on the surface of the graphite particles by the twenty-first step (S210). At this time, it is preferable to stir the graphite particles mixed in the Al (NO 3 ) 3 solution at room temperature for 1 hour.
상기 제21단계(S210) 수행 후, 상기 혼합된 흑연 입자를 필터링하고 나서 건조하는 제22단계(S220)를 수행하며, 상기 제22단계(S220)는 1시간동안 80℃에서 건조하는 것이 바람직하다.After performing the twenty-first step (S210), performing the twenty-second step (S220) of filtering and drying the mixed graphite particles, the twenty-second step (S220) is preferably dried at 80 ℃ for 1 hour. .
한편, 상기 제22단계(S220) 수행 후, 상기 건조된 흡연 입자를 특정 온도로 예열하는 제23단계(S230)를 수행하며, 이 때, 상기 제23단계(S230)는 상기 제23단계(S230)는 수소 분위기에서 1시간동안 300℃로 예열하는 것이 바람직하다.Meanwhile, after performing the twenty-second step S220, a twenty-third step S230 of preheating the dried smoking particles to a specific temperature is performed. In this case, the twenty-third step S230 is performed in the twenty-third step S230. ) Is preferably preheated to 300 ° C. for 1 hour in a hydrogen atmosphere.
상술한 본 발명의 효과에 대해 표면 개질이 있는 상태와 없는 상태에서의 흑연 표면에 대한 알루미늄 전구체의 코팅 효율이 상기 전구체의 분산도를 통해 검토된다. 그리고 알루미늄 코팅된 흑연의 산화 거동이 연소 시험 후의 상기 흑연의 미세 구조와 상태 분석에 의해 검토된다.With respect to the effects of the present invention described above, the coating efficiency of the aluminum precursor on the graphite surface in the state with and without surface modification is examined through the degree of dispersion of the precursor. And the oxidation behavior of aluminum-coated graphite is examined by the microstructure and state analysis of the said graphite after a combustion test.
우선 흑연 입자의 미소 조식 분석과 원소 분석을 위해 주사형 전자 현미경(SEM ; Model JSM-5610; JEOL, Tokyo, Japan)과 에너지 분산 x선 분광계(EDS; 에너지 분해능 133eV, Oxford Inst., Oxford, UK)가 각각 사용되었다.First, scanning microscopy (SEM; Model JSM-5610; JEOL, Tokyo, Japan) and energy dispersive x-ray spectrometer (EDS; energy resolution 133eV, Oxford Inst., Oxford, UK) for micro breakfast analysis and elemental analysis of graphite particles Are used respectively.
또한, 후술되는 바와 같이 알루미늄 전구체로 코팅된 후 또는 코팅되기 전 개질된 흑연 입자를 위한 연소 테스트가 1시간동안 500℃ 내지 1000℃의 온도 범위에서 수행되는데, 연소 시험 후의 위상 분석은 X 선 회절 장치 (모델 3040 PW 필립스 X'pert MPD 아인트호벤, 네덜란드)를 사용하여 수행 하였다.In addition, a combustion test for the modified graphite particles after or before coating with an aluminum precursor, as described below, is performed at a temperature range of 500 ° C. to 1000 ° C. for 1 hour, and the phase analysis after the combustion test is performed by an X-ray diffraction apparatus. (Model 3040 PW Philips X'pert MPD Eindhoven, The Netherlands) was performed.
상술한 바와 같이 마그네시아-카본 내화물에서 흑연의 산화를 효과적으로 저지하기 위해 알루미늄 전구체가 흑연 표면에 균일하고 균질하게 코팅되어야 하고 상기 알루미늄 전구체의 코팅 효율이 강화되어야 한다.As described above, in order to effectively inhibit the oxidation of graphite in the magnesia-carbon refractory, the aluminum precursor should be uniformly and homogeneously coated on the graphite surface and the coating efficiency of the aluminum precursor should be enhanced.
이를 위해 흑연 표면에 음이온의 수산기를 제공하여야 하고 상기 수산기를 제공하기 위해 흑연의 표면이 산에 의해 개질되는 것이다.To this end, an anionic hydroxyl group must be provided on the graphite surface, and the surface of the graphite is modified by an acid to provide the hydroxyl group.
상기 표면 개질의 효과를 확인하기 위해 개질이 된 경우와 되지 않은 경우의 흑연 입자를 알루미늄 코팅된 흑연 입자를 포함하는 수용액에 분산되며 이하 도 2를 참조하여 설명한다.In order to confirm the effect of the surface modification, the graphite particles with and without modification are dispersed in an aqueous solution containing aluminum coated graphite particles, which will be described below with reference to FIG. 2.
상기 도 2는 흑연 입자의 분산성을 나타내는 사진으로서 숫자 1은 코팅층이 없는 흑연을 나타내고, 숫자2는 코팅층이 있는 경우로서 3분 경과한 상태의 흑연을 나타내고, 숫자3은 코팅층이 있는 경우로서 3일 경과한 상태의 흑연을 나타낸다. 또한, a1,a2,a3는 표면 개질 하지 않은 원래의 흑연을 나타내고 b1,b2,b3는 표면 개질이 이루어진 흑연을 나타낸다.2 is a photograph showing the dispersibility of graphite particles, numeral 1 represents graphite without a coating layer, numeral 2 represents graphite in three minutes after the coating layer is present, and numeral 3 represents the case of the coating layer 3. Graphite in the elapsed state is shown. In addition, a1, a2, a3 represents original graphite without surface modification, and b1, b2, b3 represents graphite with surface modification.
도시된 바와 같이 산 처리 후, 표면 개질된 흑연이 응집 없이 잘 분산되었으며(도 2의 b1), 이는 상기 산에 의해 흑연 표면에 음전하를 가지는 수산기가 생성되어 알루미늄 코팅이 잘된 것을 나타낸다.After the acid treatment, as shown, the surface modified graphite was well dispersed without aggregation (bl in FIG. 2), indicating that the acid produced a hydroxyl group with a negative charge on the graphite surface, resulting in a good aluminum coating.
이에 비해 도 2의 (a1)에 나타난 바와 같이 표면 개질이 되지 않은 흑연은 몇 분이내에 침전됨을 확인할 수 있어 알루미늄 코팅의 효율 향상을 위해 상술한 바와 같이 산 처리에 의한 표면 개질이 필요함을 알 수 있다.On the other hand, as shown in FIG. 2 (a1), it can be seen that graphite which is not surface modified is precipitated within a few minutes, and thus surface modification by acid treatment is necessary to improve the efficiency of aluminum coating. .
특히 , 알루미늄 전구체로 코팅된 경우를 비교해 보면 표면 개질되지 않은 흑연(도 2의 a2)은 표면 개질된 흑연(도 2의 b2)보다 빨리 침전됨을 확인할 수 있어 상술한 바와 같이 표면 개질이 흑연 표면의 코팅에 유리함을 다시 확인할 수 있다.In particular, comparing the case of coating with an aluminum precursor, it can be seen that the surface-modified graphite (a2 of FIG. 2) is precipitated faster than the surface-modified graphite (b2 of FIG. 2). It can be seen again in favor of the coating.
다시 말해서 알루미늄 전구체가 본 발명에 의해 개질된 흑연 표면에 보다 코팅이 잘 되는 것을 알 수 있다.In other words, it can be seen that the aluminum precursor is better coated on the graphite surface modified by the present invention.
이하 도 3을 참조하여 코팅층이 있는 경우와 없는 경우에 대해 표면 개질된 흑연 입자에 대한 미소 조직과 원소 분석 결과를 열 처리 함수를 통해 검토한다.Hereinafter, with reference to FIG. 3, the microstructure and elemental analysis results of the surface-modified graphite particles with and without the coating layer are examined through a heat treatment function.
이때, 상기 도 3은 표면 개질된 흑연의 EDS 분석 결과 SEM 사진으로서 도 3a와 도 3b는 코팅층이 없는 경우로서 도 3a는 1000℃에서의 열처리 전이고 도 3b는 1000℃에서의 열처리 후를 나타낸다. 또한, 도 3c와 도 3d는 코팅층이 있는 경우로서 도 3c는 1000℃에서의 열처리 전을 나타내고 도 3d는 1000℃에서의 열처리 후를 나타낸다.In this case, Figure 3 is a SEM image of the surface-modified graphite EDS analysis of Figure 3a and 3b without the coating layer, Figure 3a before the heat treatment at 1000 ℃ and Figure 3b shows after the heat treatment at 1000 ℃. 3C and 3D show the case where the coating layer is present, and FIG. 3C shows the heat treatment at 1000 ° C. and FIG. 3D shows the heat treatment at 1000 ° C. FIG.
도 3a에서는 코팅층이 없는 경우로서 흑연에 O와 C만이 탐지된다. 또한 도 3c에서는 코팅층이 없는 경우로서 흑연에 알루미늄 원소가 추가적으로 탐지되는데 이러한 것은 알루미늄 층이 300℃에서 예열 처리된 후의 조직이 비정질이기 때문이다.In FIG. 3A, only O and C are detected in graphite as there is no coating layer. In addition, in FIG. 3C, an element of aluminum is additionally detected in the graphite as there is no coating layer, because the structure after the aluminum layer is preheated at 300 ° C. is amorphous.
한편, 알루미늄 전구체가 흑연 표면에 균일하게 코팅되었다라는 전제 아래 1000℃ 열처리 후 상기 비정질 알루미늄 층에서 변환된 다각형 Al2O3입자들은 도 3d에 나타난 바와 같이 흑연 표면에 완벽하게 덮여져 있으며 이에 대해 보다 상세히 검토한다.Meanwhile, the polygonal Al 2 O 3 particles converted in the amorphous aluminum layer after 1000 ° C. heat treatment under the premise that the aluminum precursor was uniformly coated on the graphite surface are completely covered on the graphite surface as shown in FIG. 3d. Review in detail.
1000℃에서의 열처리후 코팅층이 있는 경우와 없는 경우의 흑연 입자는 다른 양상을 보인다. 즉, 도 3b에 나타난 바와 같이 코팅층이 없는 경우 흑연에 다양한 불순물이 탐지되는데 이는 코팅층 없는 경우의 흑연이 쉽게 분해됨을 나타낸다.Graphite particles with and without coating layers after heat treatment at 1000 ° C. show different behavior. That is, as shown in FIG. 3B, various impurities are detected in the graphite in the absence of the coating layer, which indicates that graphite in the absence of the coating layer is easily decomposed.
그러나 상기 코팅층이 있는 그라파이트에서 Al, O, 그리고 C원소만이 탐지되며 열처리 후 Al과O는 증가하고 C는 감소되는 경향을 보인다(도 3d)However, only Al, O, and C elements are detected in the graphite with the coating layer, and Al and O tend to increase and C decrease after heat treatment (FIG. 3D).
그러므로 그라파이트 산화는 표면에 형성되는 알루미늄 층(산소 차단층 역할)에 의해 억제되는 것으로 추측될 수 있다.Therefore, it can be assumed that graphite oxidation is suppressed by the aluminum layer (which serves as an oxygen barrier layer) formed on the surface.
이하 도 4를 참조하여 코팅층이 있는 경우와 없는 경우의 개질된 흑연 입자에 대한 연소 테스트 결과를 검토한다.4, the combustion test results for the modified graphite particles with and without the coating layer are reviewed.
상기 도 4에서 숫자 1부터 4는 개질된 흑연 입자로서 1은 500℃에서의 연소 테스트 후의 사진이고, 2는 700℃, 3은 900℃ 그리고 4는 1000℃에서의 연소 테스트 후의 사진이다. 또한 a1에서 a4는 코팅층이 없는 경우이고 b1에서 b4는 코팅층이 있는 경우이다.In FIG. 4, numerals 1 to 4 are modified graphite particles, 1 is a photograph after a combustion test at 500 ° C., 2 is 700 ° C., 3 is a 900 ° C., and 4 is a photograph after a combustion test at 1000 ° C. FIG. In addition, a1 to a4 is a case where there is no coating layer and b1 to b4 is a case where there is a coating layer.
연소 테스트에서 온도가 증가함에 따라 코팅층이 없는 경우의 흑연은 분해되고 산화되어(도 4의 a참조) 700℃에서 그레이 색채를, 900℃에서 브라운 색채를 각각 나타낸다.As the temperature increased in the combustion test, the graphite in the absence of the coating layer was decomposed and oxidized (see a in FIG. 4) to give a gray color at 700 ° C. and a brown color at 900 ° C., respectively.
실제로, 코팅층이 없는 흑연은 700℃에서 반응을 시작하고 900℃에서 완전히 반응한다.In practice, graphite without coating layer starts the reaction at 700 ° C. and reacts completely at 900 ° C.
그러나, 도 4의 b에 나타난 바와 같이 알루미늄 전구체로 코팅된 흑연은 700℃ 연소 테스트에서 바람직한 조건을 나타내고 900℃에서 산소와 반응을 시작한다.However, as shown in b of FIG. 4, graphite coated with an aluminum precursor exhibits desirable conditions in a 700 ° C. combustion test and begins to react with oxygen at 900 ° C. FIG.
최종적으로 알루미늄 코팅된 흑연(코팅층이 산소와 1000℃에서 완전한 반응을 시작함)은 화이트 칼라를 나타낸다.Finally, the aluminum coated graphite (the coating layer starts a complete reaction with oxygen at 1000 ° C.) shows a white color.
이는 코팅층(알루미늄 전구체)이 흑연 표면에 연속적이고 균질한 코팅에 의해 흑연의 산화를 지연시키는 항산화제로서 상당한 효과를 나타내는 것을 의미한다.This means that the coating layer (aluminum precursor) has a significant effect as an antioxidant which delays the oxidation of the graphite by a continuous and homogeneous coating on the graphite surface.
또한, 알루미늄 코팅된 흑연의 질량 손실은 연소 테스트 후 10%(질량 분율)이하이다. 따라서 코팅 과정은 코팅층의 산화에 의한 질량 획득이 고려되더라도 흑연의 산화 억제가 강화되는 것으로 볼 수 있다.In addition, the mass loss of aluminum coated graphite is less than 10% (mass fraction) after the combustion test. Therefore, the coating process can be seen that the oxidation inhibition of the graphite is enhanced even if the mass gain by the oxidation of the coating layer is considered.
이하 도 5를 참조하여 코팅층이 있는 경우와 없는 경우의 개질된 그라파이트 XRD 결과에 대해 검토한다.Hereinafter, the modified graphite XRD results with and without the coating layer will be examined with reference to FIG. 5.
상기 도5의 5(a)는 열처리 전으로서 코팅층이 없는 개질된 흑연을 나타내고 5(b)는 1000℃에서 1시간 동안 열처된 후로서 코팅층이 없는 개질된 흑연을 나타내며, 5(c)는 500℃,700℃ 그리고 900℃에서 열처리된 후로서 코팅층이 있는 개질된 흑연을 나타내며, 5(d)는 1000℃와 1200℃에서 열처리된 후 로서 코팅층이 있는 개질된 흑연을 나타낸다.5 (a) of FIG. 5 shows modified graphite without a coating layer as before the heat treatment, and 5 (b) shows modified graphite without a coating layer after being heated at 1000 ° C. for 1 hour, and 5 (c) is 500. After the heat treatment at ℃, 700 ℃ and 900 ℃ represents a modified graphite with a coating layer, 5 (d) represents a modified graphite with a coating layer after the heat treatment at 1000 ℃ and 1200 ℃.
코팅층이 없는 경우 열처리 전에는 흑연 피크가 탐지되나(도5(a)), 1000℃에서의 열처리후에는 사라진다.(도 5(b))In the absence of a coating layer, graphite peaks are detected before heat treatment (FIG. 5 (a)), but disappear after heat treatment at 1000 DEG C. (FIG. 5 (b)).
그러나 코팅층이 있는 경우 900℃ 열처리까지는 흑연 피크가 탐지된다.(도 5(c))However, if there is a coating layer, the graphite peak is detected up to 900 ° C. heat treatment (FIG. 5 (c)).
알루미나(Al2O3)와 흑연의 피크는 1000℃ 열처리 후 비정질 피크 특성을 가지는 열처리후 공존하며, 이는 상기 흑연이 분해되고 상기 코팅층이 완전히 결정화되지 않음을 나타낸다.(도 5(d))The peaks of alumina (Al 2 O 3 ) and graphite coexist after heat treatment having an amorphous peak characteristic after 1000 ° C. heat treatment, indicating that the graphite is decomposed and the coating layer is not completely crystallized (FIG. 5 (d)).
최종적으로 상기 알루미늄 코팅된 흑연은 1200℃에서 알루미나로 변환된다. 상기 결과는 연소 테스트의 결과와 잘 일치한다. 상 분석 결과로서 흑연의 산화 저항은 알루미늄 전구체의 코팅에 의해 강화된다.Finally the aluminum coated graphite is converted to alumina at 1200 ° C. The results are in good agreement with the results of the combustion test. As a result of the phase analysis, the oxidation resistance of the graphite is enhanced by the coating of the aluminum precursor.
이상 설명한 바와 같이 본 발명의 경우 흑연이 알루미늄 전구체의 코팅 효율 향상을 위해 산 처리되었다. 상기 표면 개질된 흑연은 원래의 흑연보다 향상된 분산성을 나타낸다. As described above, in the case of the present invention, graphite was acid treated to improve the coating efficiency of the aluminum precursor. The surface modified graphite exhibits improved dispersibility than the original graphite.
알루미늄 전구체로 코팅된 개질 흑연 입자는 시간에 따라 침전되며 이는 알루미늄 전구체의 양이온과 흑연 음이온사이의 반응에 의한 전하가 사라지기 때문이다.The modified graphite particles coated with the aluminum precursor precipitate over time because the charge due to the reaction between the cation and the graphite anion of the aluminum precursor disappears.
알루미늄 전구체가 흑연 표면에 잘 코팅됨은 증명되었다. 알루미늄 전구체의 코팅에 대한 증거는 미소 조직과 원소 분석에 의해 관찰될 수 있다. 흑연의 표면 개질은 흑연 표면에 대한 알루미늄 전구체의 코팅 효율을 향상시키며, 표면 개질이 없는 경우 질량 획득은 1.5%이고 표면 개질이 있는 경우 1.9%였다.It has been demonstrated that aluminum precursors are well coated on graphite surfaces. Evidence for the coating of aluminum precursors can be observed by microstructure and elemental analysis. The surface modification of the graphite improves the coating efficiency of the aluminum precursor on the graphite surface, the mass gain is 1.5% without surface modification and 1.9% with surface modification.
한편, 표면이 개질되지 않은 흑연은 700℃의 연소 테스트에서 산소와 반응을 시작하였으며 900℃에서 완전히 반응을 하였다.On the other hand, graphite with no surface modification began to react with oxygen in a combustion test at 700 ° C. and completely reacted at 900 ° C.
그러나 알루미늄 코팅된 흑연은 연소 테스트에서 700℃에서 건전한 조건을 나타내고 900℃에서 반응을 시작하였다. 상기 알루미늄 코팅된 흑연은 칼라가 화이트로 변하더라도 1000℃까지는 유지되었다.However, the aluminum coated graphite exhibited healthy conditions at 700 ° C. in the combustion test and started to react at 900 ° C. The aluminum coated graphite was maintained up to 1000 ° C. even if the color turned white.
이러한 결과는 코팅층이 균일하고 연속적으로 흑연 표면을 코팅하여 흑연의 산화를 지연시킴을 뜻한다.This result means that the coating layer coats the graphite surface uniformly and continuously to delay the oxidation of the graphite.
부가적으로 알루미늄 코팅된 흑연은 900℃까지 검출되고 알루미나와 흑연은 1000℃에서 피크가 공존한다.Additionally, aluminum coated graphite is detected up to 900 ° C. and alumina and graphite have peaks at 1000 ° C.
최종적으로 알루미늄 코팅된 흑연은 1200℃에서 완전히 알루미나로 변환되었다. 결과적으로 알루미늄 코팅된 흑연의 높은 항산화성이 표면 개질된 흑연에 의해 달성되고 이 연구에서 알루미늄 코팅된 흑연은 MgO-C 내화물의 항산화성을 증진할 수 있다.Finally, the aluminum coated graphite was completely converted to alumina at 1200 ° C. As a result, the high antioxidant properties of aluminum coated graphite are achieved by surface modified graphite and in this study aluminum coated graphite can enhance the antioxidant properties of MgO-C refractory.

Claims (8)

  1. 마그네시아-카본 내화물에 함유된 흑연 입자 표면을 산처리하는 개질 단계(S100)와, A reforming step (S100) of acid-treating the surface of the graphite particles contained in the magnesia-carbon refractory material;
    상기 개질된 흑연 입자 표면을 알루미늄 전구체로 코팅하는 코팅 단계(S200)를 포함하는 표면 개질을 통한 마그네시아-카본 내화물에 함유된 흑연의 항산화성 증진 방법.Method for enhancing the antioxidant properties of graphite contained in magnesia-carbon refractory through surface modification comprising the step of coating the modified graphite particle surface with an aluminum precursor (S200).
  2. 제1항에 있어서, The method of claim 1,
    상기 개질 단계(S100)는 상기 흑연 입자를 황산과 질산의 혼합물 3:1(부피비)에 투입하는 제11단계(S110)를 포함하는 표면 개질을 통한 마그네시아-카본 내화물에 함유된 흑연의 항산화성 증진 방법. The reforming step (S100) is to enhance the antioxidant properties of the graphite contained in the magnesia-carbon refractory through the surface modification, including the eleventh step (S110) for introducing the graphite particles into a mixture 3: 1 (volume ratio) of sulfuric acid and nitric acid Way.
  3. 제2항에 있어서,The method of claim 2,
    상기 제11단계(S110) 수행 후, 상기 흑연 입자가 투입된 혼합물을 3시간동안 초음파 처리하고 24시간 교반하는 제12단계(S120)와,After performing the eleventh step (S110), the twelfth step (S120) of sonicating the mixture into which the graphite particles are added for 3 hours and stirring for 24 hours,
    상기 교반된 흑연 입자를 증류수로 세척하는 제13단계(S130)와,A thirteenth step (S130) of washing the stirred graphite particles with distilled water;
    상기 세척된 흑연 입자를 건조하는 제14단계(S140)를 포함하는 표면 개질을 통한 마그네시아-카본 내화물에 함유된 흑연의 항산화성 증진 방법.Method for enhancing the antioxidant properties of graphite contained in magnesia-carbon refractory through surface modification comprising the step 14 of drying the washed graphite particles (S140).
  4. 제3항에 있어서,The method of claim 3,
    상기 제13단계(S130)는 상기 흑연 입자의 pH가 7이 될 때까지 증류수로 세척하고,The thirteenth step (S130) is washed with distilled water until the pH of the graphite particles is 7,
    상기 제14단계(S140)는 상기 세척된 흑연 입자를 필터링 한 후 80℃에서 48시간동안 건조하는 표면 개질을 통한 마그네시아-카본 내화물에 함유된 흑연의 항산화성 증진 방법.The 14th step (S140) is a method of increasing the antioxidant properties of graphite contained in magnesia-carbon refractory through surface modification after filtering the washed graphite particles and dried for 48 hours at 80 ℃.
  5. 제1항에 있어서,The method of claim 1,
    상기 코팅 단계(S200)는 상기 개질 단계(S100)를 거친 흑연 입자를 Al(NO3)3 용액에 혼합 및 교반하는 제21단계(S210)를 포함하는 표면 개질을 통한 마그네시아-카본 내화물에 함유된 흑연의 항산화성 증진 방법.The coating step (S200) is contained in the magnesia-carbon refractory through the surface modification comprising a twenty-first step (S210) of mixing and stirring the graphite particles subjected to the modification step (S100) to Al (NO 3 ) 3 solution Method of enhancing the antioxidant properties of graphite.
  6. 제5항에 있어서,The method of claim 5,
    상기 제21단계(S210) 수행 후,After performing the 21 st step (S210),
    상기 혼합된 흑연 입자를 필터링하고 나서 건조하는 제22단계(S220)와,A twenty-second step (S220) of filtering and drying the mixed graphite particles;
    상기 건조된 흡연 입자를 특정 온도로 예열하는 제23단계(S230)를 포함하는 표면 개질을 통한 마그네시아-카본 내화물에 함유된 흑연의 항산화성 증진 방법.Method for enhancing the antioxidant activity of the graphite contained in the magnesia-carbon refractory through surface modification comprising the twenty-third step (S230) of preheating the dried smoking particles to a specific temperature.
  7. 제6항에 있어서,The method of claim 6,
    상기 제21단계(S210)는 상기 Al(NO3)3 용액에 혼합된 흑연 입자를 실온에서 1시간동안 교반하고,In the twenty-first step (S210), the graphite particles mixed in the Al (NO 3 ) 3 solution are stirred for 1 hour at room temperature,
    상기 제22단계(S220)는 1시간동안 80℃에서 건조되며,The twenty-second step (S220) is dried at 80 ℃ for 1 hour,
    상기 제23단계(S230)는 수소 분위기에서 1시간동안 300℃로 예열하는 표면 개질을 통한 마그네시아-카본 내화물에 함유된 흑연의 항산화성 증진 방법.The twenty-third step (S230) is a method of increasing the antioxidant properties of graphite contained in the magnesia-carbon refractory through surface modification to preheat to 300 ℃ for 1 hour in a hydrogen atmosphere.
  8. 제1항 내지 제7항 중 어느 한 항에 기재된 방법에 의해 제조된 마그네시아-카본 내화물.Magnesia-carbon refractory produced by the method according to any one of claims 1 to 7.
PCT/KR2015/006767 2015-06-22 2015-07-01 Method for enhancing antioxidant properties of graphite contained in magnesia-carbon refractories by means of surface modifying and magnesia-carbon refractories prepared by means of same WO2016208793A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150088659A KR101772031B1 (en) 2015-06-22 2015-06-22 Method for improvement of oxidation resistance in graphite for MgO-C refractory through surface modification and MgO-C refractory by the same
KR10-2015-0088659 2015-06-22

Publications (1)

Publication Number Publication Date
WO2016208793A1 true WO2016208793A1 (en) 2016-12-29

Family

ID=57585539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/006767 WO2016208793A1 (en) 2015-06-22 2015-07-01 Method for enhancing antioxidant properties of graphite contained in magnesia-carbon refractories by means of surface modifying and magnesia-carbon refractories prepared by means of same

Country Status (2)

Country Link
KR (1) KR101772031B1 (en)
WO (1) WO2016208793A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113443853A (en) * 2021-07-05 2021-09-28 宜兴必方陶瓷科技有限公司 Preparation method of hydrophilic graphite for carbon-containing refractory material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180040749A (en) * 2016-10-12 2018-04-23 (주)제너코트 Method for improving property of graphite surface using liquid coating
CN115196980B (en) * 2022-06-24 2023-05-26 偃师中岳耐火材料有限公司 Preparation method of magnesia carbon refractory castable

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0596801A2 (en) * 1992-11-04 1994-05-11 ENVIRONMENTAL SYSTEMS Ltd. Expandable graphite compositions for absorption of liquids and method for the manufacture thereof
JPH09110538A (en) * 1995-10-25 1997-04-28 Kawasaki Steel Corp Fine powder composition for magnesia-graphite based castable, its production and magnesia-graphite based castable
US20020096407A1 (en) * 2000-12-06 2002-07-25 Gray Paul E. Oxidation protection for carbon/carbon composite and graphite friction materials
KR100907334B1 (en) * 2008-01-04 2009-07-13 성균관대학교산학협력단 Method of covalent bond formation between aluminum and carbon materials, method of preparing aluminum and carbon materials composite and aluminum and carbon materials composite prepared by the same
KR20120139035A (en) * 2011-06-16 2012-12-27 인하대학교 산학협력단 Manufacturing method of transition metal nanoparticles loaded graphite composites for the hydrogen storage

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1273898A (en) 1986-04-25 1990-09-11 Serge Dallaire Anti-oxidant barrier for carbon based material
US6455159B1 (en) 2000-02-18 2002-09-24 Honeywell International Inc. Oxidation protection for carbon/carbon composites and graphites

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0596801A2 (en) * 1992-11-04 1994-05-11 ENVIRONMENTAL SYSTEMS Ltd. Expandable graphite compositions for absorption of liquids and method for the manufacture thereof
JPH09110538A (en) * 1995-10-25 1997-04-28 Kawasaki Steel Corp Fine powder composition for magnesia-graphite based castable, its production and magnesia-graphite based castable
US20020096407A1 (en) * 2000-12-06 2002-07-25 Gray Paul E. Oxidation protection for carbon/carbon composite and graphite friction materials
KR100907334B1 (en) * 2008-01-04 2009-07-13 성균관대학교산학협력단 Method of covalent bond formation between aluminum and carbon materials, method of preparing aluminum and carbon materials composite and aluminum and carbon materials composite prepared by the same
KR20120139035A (en) * 2011-06-16 2012-12-27 인하대학교 산학협력단 Manufacturing method of transition metal nanoparticles loaded graphite composites for the hydrogen storage

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHO, GEUN - HO ET AL.: "Improvement of Oxidation Resistance in Graphite for Mg-O-C Refractory through Surface Modification", TRANS. NONFERROUS MET. SOC. CHINA, vol. 24, 1 July 2014 (2014-07-01), pages s119 - s124, XP055340379 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113443853A (en) * 2021-07-05 2021-09-28 宜兴必方陶瓷科技有限公司 Preparation method of hydrophilic graphite for carbon-containing refractory material

Also Published As

Publication number Publication date
KR20160150528A (en) 2016-12-30
KR101772031B1 (en) 2017-08-28

Similar Documents

Publication Publication Date Title
WO2016208793A1 (en) Method for enhancing antioxidant properties of graphite contained in magnesia-carbon refractories by means of surface modifying and magnesia-carbon refractories prepared by means of same
WO2011078462A2 (en) Graphene dispersion and graphene-ionic liquid polymer compound
WO2015046691A1 (en) Shape-adjusted iron oxalate hydrate particles and production method therefor, and iron oxide/carbon composite produced by using iron oxalate hydrate particles and production method therefor
WO2014030782A1 (en) Carbon fibre composite coated with silicon carbide, and production method for same
WO2021125726A1 (en) Silanized boron nitride composite and preparation method therefor
WO2018056595A1 (en) Discharge plasma sintering method for manufacturing single-walled carbon nanotube reinforced metal matrix composite and composite material produced thereby
US9394205B2 (en) Process for preparing ceramic powders in the presence of a source of carbon, powders thus obtained and their use
WO2015142035A1 (en) Plate-like aluminum oxide and preparation method therefor
Coupé et al. Dispersion behaviour of laser-synthesized silicon carbide nanopowders in ethanol for electrophoretic infiltration
WO2014098366A1 (en) Production method for a carbon-based composite metal oxide nanocatalyst carrier, and composite metal oxide nanocatalyst carrier therefrom
KR101491533B1 (en) Manufacturing method of metal particles covered with carbon using polydopamine and the metal particles covered with carbon
WO2013133467A1 (en) Method for producing planar carbon nanoparticles, and method for producing aluminum/carbon composite material using same
Geun-Ho et al. Improvement of oxidation resistance in graphite for MgO–C refractory through surface modification
Khattab et al. Ceramic compositions based on nano forsterite/nano magnesium aluminate spinel powders
WO2018164472A1 (en) Conductive ceramic composition having excellent electrical conductivity
WO2020122684A1 (en) Magnesia, method for manufacturing same, highly thermally conductive magnesia composition, and magnesia ceramic using same
WO2020009421A1 (en) Method for producing graphite oxide and graphene oxide in eco-friendly manner by using hydroxylation reaction
Cho et al. Improving oxidation resistance and fracture strength of MgO–C refractory material through precursor coating
WO2019231045A1 (en) Silicon carbide sintered body having oxidation resistance layer, and method for producing same
CN108083775A (en) Copper converter top magnesia-composite material of silicon carbide and preparation method thereof
WO2014168273A1 (en) Multilayer silicon compound-coated carbon composite, production method therefor, and fuel cell electrode catalyst using same
WO2019198985A2 (en) Method for producing graphene oxide
WO2018222003A1 (en) Polycrystalline zirconia compound and method for preparing same
WO2019088507A1 (en) Silver powder and method for producing same
WO2011034269A1 (en) Mold for synthesizing ceramic powder by means of a spark plasma sintering method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15896427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15896427

Country of ref document: EP

Kind code of ref document: A1