WO2016208675A1 - Freeze-dried platelet-rich plasma and use thereof - Google Patents

Freeze-dried platelet-rich plasma and use thereof Download PDF

Info

Publication number
WO2016208675A1
WO2016208675A1 PCT/JP2016/068682 JP2016068682W WO2016208675A1 WO 2016208675 A1 WO2016208675 A1 WO 2016208675A1 JP 2016068682 W JP2016068682 W JP 2016068682W WO 2016208675 A1 WO2016208675 A1 WO 2016208675A1
Authority
WO
WIPO (PCT)
Prior art keywords
platelet
rich plasma
prp
freeze
concentration
Prior art date
Application number
PCT/JP2016/068682
Other languages
French (fr)
Japanese (ja)
Inventor
泉 朝比奈
佑哉 中谷
秀樹 縣
吉慶 住田
喬充 古賀
Original Assignee
株式会社Tesホールディングス
国立大学法人長崎大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Tesホールディングス, 国立大学法人長崎大学 filed Critical 株式会社Tesホールディングス
Publication of WO2016208675A1 publication Critical patent/WO2016208675A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/16Blood plasma; Blood serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses

Definitions

  • the present invention relates to freeze-dried platelet-rich plasma and use thereof.
  • This application claims priority based on Japanese Patent Application No. 2015-125916 filed in Japan on June 23, 2015, the contents of which are incorporated herein by reference.
  • platelet-rich plasma is effective for regenerative treatment of various tissues such as skin, mucous membrane, bone and periodontal tissue.
  • platelet-rich plasma basically needs to be prepared at the time of use, which has hindered its clinical spread. Therefore, a technique for preserving platelet-rich plasma is required.
  • Patent Document 1 includes platelet-rich plasma that has been coated on a solid support and then freeze-dried, and is used after the platelet-rich plasma has been refrigerated for at least one day after being freeze-dried. The material for regenerative treatment is described.
  • Non-Patent Document 1 describes platelet-rich plasma freeze-dried after absorption of trehalose.
  • the platelet-rich plasma described in Patent Document 1 since the platelet-rich plasma described in Patent Document 1 has a solid support as an essential component, it may be difficult to gel the platelet-rich plasma, for example.
  • the platelet-rich plasma described in Non-Patent Document 1 has a complicated manufacturing process, and a complicated procedure may be required at the time of reconstitution.
  • an object of the present invention is to provide platelet-rich plasma that can be stored and can be produced and used more easily and a method for producing the same.
  • the present invention is as follows. (1) Platelet-rich plasma that is lyophilized and substantially free of exogenous low molecular sugars. (2) The platelet-rich plasma according to (1), which is not coated on a solid support. (3) A platelet-rich plasma composition containing the platelet-rich plasma according to (1) or (2) and a solvent. (4) The platelet-rich plasma composition according to (3), wherein the platelet concentration is 200 to 1000 ( ⁇ 10 4 cells / ⁇ L). (5) A coagulum of the platelet-rich plasma composition according to (3) or (4). (6) A method for producing freeze-dried platelet-rich plasma, comprising a step of freezing platelet-rich plasma at ⁇ 20 ° C. or lower and a step of freeze-drying the frozen platelet-rich plasma.
  • 10 is a graph showing the results of Experimental Example 4.
  • 10 is a graph showing the results of Experimental Example 4.
  • 10 is a graph showing the results of Experimental Example 4. It is a figure which shows the photograph which shows the result of Experimental example 5, and an evaluation result.
  • (A) is a photograph showing an incision line of the head of a nude mouse in Experimental Example 6, and FIG. 5
  • FIG. 5 (b) is a photograph showing a state in which a sample is transplanted into the nude mouse in Experimental Example 6,
  • FIG. (C) is a photograph of a nude mouse immediately after transplanting a sample in Experimental Example 6.
  • A) is a photomicrograph showing the results of hematoxylin and eosin staining of a sample taken from a nude mouse in Experimental Example 6.
  • (B) is an enlarged view of a region surrounded by a square in (a).
  • the scale bar indicates 200 ⁇ m.
  • (A) is a photomicrograph showing the results of hematoxylin and eosin staining of a sample taken from a nude mouse in Experimental Example 6.
  • (B) is an enlarged view of a region surrounded by a square in (a).
  • the scale bar indicates 200 ⁇ m.
  • (A) is a photomicrograph showing the results of hematoxylin and eosin staining of a sample taken from a nude mouse in Experimental Example 6.
  • (B) is an enlarged view of a region surrounded by a square in (a).
  • the scale bar indicates 200 ⁇ m.
  • (A) is a photomicrograph showing the results of hematoxylin and eosin staining of a sample taken from a nude mouse in Experimental Example 6.
  • (B) is an enlarged view of a region surrounded by a square in (a). The scale bar indicates 200 ⁇ m. It is a graph which shows the calculation result of the bone formation rate in Experimental example 6.
  • the present invention provides platelet rich plasma that is lyophilized and substantially free of exogenous low molecular sugars.
  • the freeze-dried platelet-rich plasma according to the present embodiment can be stored and can be more easily produced and used.
  • being storable means that the activity can be maintained even when stored at 4 ° C. for one month or longer.
  • Examples of the activity of platelet-rich plasma include gel forming activity described later, the activity of growth factors contained in platelet-rich plasma, and the like.
  • examples of the low molecular sugar include sugars having an action of improving resistance to freezing of animal cells and the like, such as trehalose, sucrose, and maltose.
  • the phrase “substantially free of exogenous low-molecular sugars” means that sugars that improve freezing resistance are not added from the outside during freeze-drying of platelet-rich plasma. The presence of sugar is acceptable.
  • an anticoagulant may be added to the blood at the time of collecting blood used for the production of platelet-rich plasma, and glucose may be added to the anticoagulant. Is not included in exogenous low-molecular sugars.
  • Non-Patent Document 1 As described in Non-Patent Document 1, conventionally, in order to preserve platelet-rich plasma by freeze-drying, it has been thought that low molecular sugars such as trehalose need to be absorbed in advance by platelets. On the other hand, the inventors have found that platelet-rich plasma can be lyophilized while maintaining the activity without performing treatment such as absorption of low-molecular sugars into platelets.
  • the lyophilized product of this embodiment can be produced more easily because it does not require treatment such as absorption of low molecular sugars by platelets. Moreover, the lyophilized body of platelet-rich plasma described in Non-Patent Document 1 needs to be prehydrated by allowing it to stand in a saturated water vapor environment at 37 ° C. before reconstitution. On the other hand, when reconstituting the freeze-dried platelet-rich plasma according to the present embodiment, prehydration is not essential and can be used more easily.
  • freeze-dried body of this embodiment is not coated on the solid support.
  • the platelet-rich plasma of this embodiment can be lyophilized and stably stored even if it is not coated on a solid support.
  • the freeze-dried body of the present embodiment includes “platelet-rich plasma freeze-dried after being coated on a solid support, and used after the platelet-rich plasma has been refrigerated for at least one day after being freeze-dried. It may not be “a material for regenerative treatment”.
  • the solid support means, for example, a short-absorbable biodegradable polymer or bioabsorbable polymer such as polyglycolic acid, polylactic acid, and copolymers thereof; propanediol, poly (L-lactide-co-) Long-degradable biodegradable polymers or bioabsorbable polymers such as epsilon-caprolactone), polycaprolactone and copolymers thereof; polybutylene succinate, polyvinyl alcohol, chitosan and other biodegradable polymers or bioabsorbable polymers; Examples include a support made of silk, which is a non-biodegradable polymer.
  • Examples of the shape of the solid support include fiber products such as woven fabrics, knitted fabrics, nonwoven fabrics, stitches, cotton, cloth, paper, and filters; and porous substrates including granular materials and foams.
  • Examples of the textile products include woven fabrics such as meshes and gauze fabrics; those commonly used as wound dressings such as knitted fabrics, nonwoven fabrics, stitches, and cotton.
  • being coated means that the solid support is covered with a solution containing platelet-rich plasma. That is, being coated means that the platelet-rich plasma is coagulated on the surface of the solid support, the above solution is permeated by capillary action through the fiber gaps and pores of the solid support, The solid support is dissolved or decomposed in the presence of the above solution, and the above solution is absorbed by the solid support by forming a layer or membrane of the above solution on the surface of the solid support. means.
  • the present invention provides a platelet-rich plasma composition containing the platelet-rich plasma and solvent described above. It can also be said that the platelet-rich plasma composition of the present embodiment is a reconstituted platelet-rich plasma obtained by adding a solvent to the above-mentioned freeze-dried platelet-rich plasma.
  • the reconstituted platelet-rich plasma of this embodiment is fresh platelet-rich plasma that has not been lyophilized even after the freeze-dried form of platelet-rich plasma has been stored for a long time. Can exhibit the same activity.
  • the platelets contained in the platelet-rich plasma obtained by reconstitution of the above-mentioned freeze-dried platelet-rich plasma have a history of freeze-drying once. Therefore, it is predicted that the surface structure of platelets is different from that of fresh platelet-rich plasma.
  • the solvent examples include sterilized water, physiological saline, and phosphate buffer.
  • the solvent may be added to the lyophilized platelet-rich plasma in an amount that is equivalent to the platelet-rich plasma before lyophilization, or may be added in an amount that is less than that before lyophilization. In the former case, platelet-rich plasma having a platelet concentration equivalent to that before lyophilization is obtained. In the latter case, platelet-rich plasma having a platelet concentration higher (concentrated) than platelet-rich plasma before lyophilization is obtained.
  • the reconstituted platelet-rich plasma of this embodiment may have a platelet concentration of 200-1000 ( ⁇ 10 4 cells / ⁇ L).
  • the platelet concentration of general platelet-rich plasma is 100 to 200 ( ⁇ 10 4 cells / ⁇ L). Therefore, platelet-rich plasma having a platelet concentration of 200 to 1000 ( ⁇ 10 4 cells / ⁇ L) is concentrated about 2 to 5 times compared with general platelet-rich plasma.
  • the reconstituted platelet-rich plasma of this embodiment may have a platelet concentration of 200 to 800 ( ⁇ 10 4 cells / ⁇ L) or 200 to 600 ( ⁇ 10 4 cells / ⁇ L).
  • concentrated platelet-rich plasma can more strongly promote tissue regeneration in vivo compared to unconcentrated platelet-rich plasma.
  • the present invention provides a clot (gel) of the platelet-rich plasma composition described above.
  • the gel according to the present embodiment is obtained by reconstituting a platelet-rich plasma with a solvent and further coagulating it.
  • the gel of the present embodiment can be produced, for example, by adding calcium chloride to reconstituted platelet-rich plasma and activating and coagulating a blood coagulation factor contained in the plasma.
  • prothrombin contained in plasma is changed to thrombin by the action of thromboplastin released from platelets and calcium ions, and fibrinogen in plasma becomes fibrin by the enzyme activity of thrombin.
  • Fibrin binds to each other by the action of calcium ions and the like, forming a network structure and solidifying.
  • the gel of the present embodiment serves as a scaffold for cells, and can keep platelet-rich plasma locally for a long period of time, and can gradually release growth factors and the like contained in the platelet-rich plasma. It is useful for regenerative treatment of various tissues such as bone and periodontal tissue.
  • a bone filling material or the like may be added to the platelet-rich plasma.
  • autologous serum may be added to platelet-rich plasma to improve clotting activity.
  • the present invention provides a method for producing freeze-dried platelet-rich plasma comprising the steps of freezing platelet-rich plasma at ⁇ 20 ° C. or lower and freeze-drying the frozen platelet-rich plasma. provide. It can be said that the production method of this embodiment is a method for preserving platelet-rich plasma.
  • Platelet rich plasma can be prepared by a general method. Specifically, first, peripheral venous blood is collected from a patient. At this time, an anticoagulant is added to the collected peripheral blood.
  • an anticoagulant a common one can be used, and examples thereof include citric acid solution, sodium fluoride, ethylenediaminetetraacetic acid (EDTA) solution, ACD (acid-citrate-dextrose) solution, heparin and the like. .
  • the peripheral blood to which the anticoagulant has been added is placed in a centrifuge tube and centrifuged, for example, at 4 ° C. and 1000 to 1200 ⁇ g for 10 to 30 minutes. After centrifugation, the peripheral blood is separated into a plasma layer, a white blood cell layer (buffy coat), and a red blood cell layer in order from the top. Since platelets are accumulated above the buffy coat, platelet-rich plasma can be obtained by collecting the vicinity thereof. For example, on the basis of the position of the buffy coat, mark 1/10 volume above the blood in the centrifuge tube, remove the platelet blood plasma above the mark, and remove platelets located below the mark The layer and buffy coat may be collected and used as platelet rich plasma.
  • platelet-rich plasma may be collected from peripheral blood using a commercially available instrument (for example, “Gravational Platelet Separation System”, Biomet).
  • Step of freezing platelet-rich plasma the platelet-rich plasma is frozen.
  • the freezing temperature may be ⁇ 50 ° C. or lower, ⁇ 80 ° C. or lower, ⁇ 150 ° C. or lower, or ⁇ 190 ° C. or lower.
  • a commercially available deep freezer can be used.
  • ⁇ 190 ° C. or lower for example, liquid nitrogen can be used.
  • the frozen platelet-rich plasma is lyophilized.
  • the lyophilization is preferably performed within a few days after the platelet-rich plasma is frozen.
  • the platelet-rich plasma may be freeze-dried immediately after freezing or may be freeze-dried 24 hours after freezing.
  • Freeze-drying can be performed by a general method.
  • lyophilization may be performed using a freeze dryer (model “EYELA FD-1000”, Tokyo Rika Kikai Co., Ltd.) at ⁇ 50 ° C. and 15 Pa.
  • the platelet-rich plasma after lyophilization may be stored at room temperature, but is preferably stored at a lower temperature. For example, it may be stored at 4 ° C. or may be stored at ⁇ 20 ° C., for example.
  • peripheral blood to which an anticoagulant was added was placed in a centrifuge tube and centrifuged with a centrifuge (trade name “Medifuge”, manufactured by Silfrent). After centrifugation, the peripheral blood was separated into a plasma layer, a white blood cell layer (buffy coat), and a red blood cell layer in order from the top. Subsequently, the position of the buffy coat was used as a reference to mark an upper portion of 1/10 volume of blood in the centrifuge tube. Above the above mark, it was removed because it was sputum platelet plasma. Subsequently, the platelet layer and the buffy coat located below the mark were collected and used as platelet-rich plasma.
  • platelet-rich plasma may be referred to as (Platelet Rich Plasma, PRP).
  • Example 3 Freeze-drying of platelet-rich plasma
  • the platelet-rich plasma prepared in Experimental Example 1 was frozen in a deep freezer at ⁇ 80 ° C. for 24 hours, and then freeze-dried (model “EYELA FD-1000”, Tokyo Rika Instruments) at ⁇ 50 ° C. and 15 Pa. Lyophilized to obtain a lyophilized platelet-rich plasma.
  • Example 4 Measurement of growth factor concentration in platelet-rich plasma
  • a fresh platelet-rich plasma prepared in the same manner as in Experimental Example 1 was frozen at -20 degrees and thawed at 37 ° C. twice to extract growth factors, and a reference platelet-rich plasma (hereinafter referred to as “reference PRP”). ).
  • the freeze-dried platelet-rich plasma prepared in Experimental Example 3 was stored at 4 ° C. for 1 month and then reconstituted at the same magnification by adding sterilized water (hereinafter referred to as “ ⁇ 1FD-PRP”).
  • ⁇ 1FD-PRP sterilized water
  • lyophilized platelet-rich plasma prepared in Experimental Example 3 at 4 ° C. for 1 month, and then reconstituted to 1/3 volume by adding sterile water (platelet concentration is 3 times concentrated)
  • ⁇ 3FD-PRP was prepared.
  • vascular endothelial growth factor The concentration of vascular (secondary growth factor, VEGF) was measured by an ELISA method using a commercially available kit. More specifically, a kit (trade name “Quantikine Human PDGF-BB ELISA”, catalog number “DBB00”, R & D Systems) was used for measurement of PDGF-BB. A kit (trade name “Quantikine Human TGF- ⁇ 1 ELISA”, catalog number “DBB00”, R & D Systems) was used for the measurement of TGF- ⁇ 1.
  • VEGF measurement was used for VEGF measurement.
  • concentration of each growth factor was measured four times for each of the reference PRP, x1FD-PRP and x3FD-PRP derived from three donors.
  • FIG. 1 is a graph showing the measurement results of the PDGF-BB concentration in the standard PRP, ⁇ 1FD-PRP, and ⁇ 3FD-PRP.
  • the graph shows the average value
  • the error bar shows the standard deviation.
  • “ns” indicates that there is no significant difference with a risk rate of less than 1%.
  • the numbers in the figure indicate relative values of the PDGF-BB concentration with the PDGF-BB concentration in the reference PRP being 1.
  • the concentration of PDGF-BB in x1FD-PRP was equivalent to the concentration of PDGF-BB in the reference PRP.
  • the concentration of PDGF-BB in x3FD-PRP was shown to be about 2.8 times the concentration of PDGF-BB in reference PRP.
  • FIG. 2 is a graph showing the measurement results of the concentration of TGF- ⁇ 1 in the standard PRP, ⁇ 1FD-PRP and ⁇ 3FD-PRP.
  • the graph shows the average value
  • the error bar shows the standard deviation.
  • “ns” indicates that there is no significant difference with a risk rate of less than 1%.
  • the numbers in the figure show the relative values of the TGF- ⁇ 1 concentration, where the TGF- ⁇ 1 concentration in the reference PRP is 1.
  • the concentration of PDGF-BB in x1FD-PRP was equivalent to the concentration of TGF- ⁇ 1 in the reference PRP. Further, it was shown that the concentration of TGF- ⁇ 1 in ⁇ 3FD-PRP was about 2.5 times the concentration of TGF- ⁇ 1 in reference PRP.
  • FIG. 3 is a graph showing the measurement results of the concentration of VEGF in the standard PRP, ⁇ 1FD-PRP, and ⁇ 3FD-PRP.
  • the graph shows the average value
  • the error bar shows the standard deviation.
  • “**” indicates that there is a significant difference at a risk rate of less than 1%.
  • the numbers in the figure indicate relative values of the concentration of VEGF, where the concentration of VEGF in the reference PRP is 1.
  • the concentration of VEGF in x1FD-PRP was lower than the concentration of VEGF in the reference PRP. Further, it was shown that the concentration of VEGF in x3FD-PRP was about 1.5 times the concentration of VEGF in reference PRP.
  • ⁇ -tricalcium phosphate (trade name “Osferion (registered trademark) G1”, manufactured by Olympus) 25 mg, which is a bone filling material, is added to the above-mentioned reconstituted platelet-rich plasma or fresh platelet-rich plasma 100 ⁇ L. Then, 10 ⁇ L of autoserum and 10 ⁇ L of 2 w / v% calcium chloride aqueous solution were mixed, and the gelation state 10 minutes after mixing was evaluated according to the following criteria. +: Completely solidified. ⁇ : Partially solidified. -: Not solidified.
  • FIG. 4 shows a photograph of the mixture after 10 minutes of mixing, a photograph of the platelet-rich plasma gel taken out with tweezers after 10 minutes of mixing, and an evaluation result of the gelation state of the platelet-rich plasma.
  • FIG. 5 (a) is a photograph showing the incision line of the head of a nude mouse
  • FIG. 5 (b) is a photograph showing a state of transplanting the sample into the nude mouse
  • FIG. 5 (c) is a photograph of the sample. It is the photograph of the nude mouse immediately after transplanting.
  • Osteogenesis rate (%) Bone formation area ( ⁇ m 2 ) / Transplant sample area ( ⁇ m 2 ) ⁇ 100 (1)
  • FIG. 6 (a) is a photomicrograph showing the results of hematoxylin and eosin staining of a ⁇ -TCP sample taken from a nude mouse.
  • FIG. 6B is an enlarged view of a region surrounded by a square in FIG. The scale bar indicates 200 ⁇ m.
  • FIG. 7 (a) is a photomicrograph showing the results of hematoxylin and eosin staining of a fresh PRP sample taken from a nude mouse.
  • FIG. 7B is an enlarged view of a region surrounded by a square in FIG. The scale bar indicates 200 ⁇ m.
  • FIG. 8 (a) is a photomicrograph showing the results of hematoxylin and eosin staining of a x1FD-PRP sample taken from nude mice.
  • FIG. 8B is an enlarged view of a region surrounded by a square in FIG. The scale bar indicates 200 ⁇ m.
  • FIG. 9 (a) is a micrograph showing the results of hematoxylin and eosin staining of a ⁇ 3FD-PRP sample taken from nude mice.
  • FIG. 9B is an enlarged view of a region surrounded by a square in FIG. The scale bar indicates 200 ⁇ m.
  • FIG. 10 is a graph showing the calculation results of the bone formation rate in nude mice transplanted with each sample.
  • the graph shows the average value
  • the error bar shows the standard deviation.
  • “**” indicates that there is a significant difference when the risk rate is less than 1%
  • “*” indicates that there is a significant difference when the risk rate is less than 5%.
  • the number in a figure shows an average value.
  • n 3.
  • the group transplanted with the fresh PRP sample, ⁇ 1FD-PRP sample and ⁇ 3FD-PRP sample significantly promoted osteogenesis compared to the group transplanted with ⁇ -TCP sample. It was.
  • the osteogenesis rate of the group transplanted with the ⁇ 1FD-PRP sample was not significantly different from the osteogenesis rate of the group transplanted with the fresh PRP sample.
  • the osteogenesis rate of the group transplanted with the ⁇ 3FD-PRP sample was significantly higher than the osteogenesis rate of the group transplanted with the ⁇ 1FD-PRP sample.
  • the platelet-rich plasma can be stored for a long time without losing its function by freeze-drying.
  • platelets can be concentrated when reconstituted a freeze-dried form of platelet-rich plasma, thereby further promoting tissue regeneration.

Abstract

Provided are freeze-dried platelet-rich plasma that is substantially free of exogenous low-molecular-weight sugars, and a method for producing a freeze-dried platelet-rich plasma comprising a step for freezing platelet-rich plasma at -20°C or less and a step for freeze drying the frozen platelet-rich plasma.

Description

凍結乾燥された多血小板血漿及びその使用Lyophilized platelet rich plasma and uses thereof
 本発明は、凍結乾燥された多血小板血漿及びその使用に関する。本願は、2015年6月23日に、日本に出願された特願2015-125916号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to freeze-dried platelet-rich plasma and use thereof. This application claims priority based on Japanese Patent Application No. 2015-125916 filed in Japan on June 23, 2015, the contents of which are incorporated herein by reference.
 多血小板血漿は、皮膚、粘膜、骨、歯周組織等の様々な組織の再生治療に有効であることが知られている。しかしながら、多血小板血漿は基本的に用時調製する必要があり、臨床への普及の妨げとなっている。そこで、多血小板血漿を保存する技術が求められている。 It is known that platelet-rich plasma is effective for regenerative treatment of various tissues such as skin, mucous membrane, bone and periodontal tissue. However, platelet-rich plasma basically needs to be prepared at the time of use, which has hindered its clinical spread. Therefore, a technique for preserving platelet-rich plasma is required.
 例えば、特許文献1には、固体支持体にコーティングされた後に凍結乾燥された多血小板血漿を含み、前記多血小板血漿が凍結乾燥されてから少なくとも1日間冷蔵保存された後に使用されることを特徴とする、再生治療用材料が記載されている。また、非特許文献1には、トレハロースを吸収させた後に凍結乾燥した多血小板血漿が記載されている。 For example, Patent Document 1 includes platelet-rich plasma that has been coated on a solid support and then freeze-dried, and is used after the platelet-rich plasma has been refrigerated for at least one day after being freeze-dried. The material for regenerative treatment is described. Non-Patent Document 1 describes platelet-rich plasma freeze-dried after absorption of trehalose.
特開2011-120763号公報JP 2011-120663 A
 しかしながら、特許文献1に記載された多血小板血漿は、固体支持体を必須の構成とするものであるため、例えば、多血小板血漿のゲル化等が困難な場合がある。また、非特許文献1に記載された多血小板血漿は、その製造工程が煩雑であり、また、再構成時にも煩雑な手順が必要となる場合がある。 However, since the platelet-rich plasma described in Patent Document 1 has a solid support as an essential component, it may be difficult to gel the platelet-rich plasma, for example. In addition, the platelet-rich plasma described in Non-Patent Document 1 has a complicated manufacturing process, and a complicated procedure may be required at the time of reconstitution.
 そこで、本発明は、保存可能でより簡便に製造及び利用することができる多血小板血漿及びその製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide platelet-rich plasma that can be stored and can be produced and used more easily and a method for producing the same.
 本発明は以下の通りである。
(1)凍結乾燥され、外因性の低分子糖を実質的に含有しない、多血小板血漿。
(2)固体支持体にコーティングされていない、(1)に記載の多血小板血漿。
(3)(1)又は(2)に記載の多血小板血漿及び溶媒を含有する、多血小板血漿組成物。
(4)血小板濃度が200~1000(×10個/μL)である、(3)に記載の多血小板血漿組成物。
(5)(3)又は(4)に記載の多血小板血漿組成物の凝固物。
(6)多血小板血漿を-20℃以下で凍結する工程と、凍結した前記多血小板血漿を凍結乾燥する工程と、を備える、凍結乾燥された多血小板血漿の製造方法。
The present invention is as follows.
(1) Platelet-rich plasma that is lyophilized and substantially free of exogenous low molecular sugars.
(2) The platelet-rich plasma according to (1), which is not coated on a solid support.
(3) A platelet-rich plasma composition containing the platelet-rich plasma according to (1) or (2) and a solvent.
(4) The platelet-rich plasma composition according to (3), wherein the platelet concentration is 200 to 1000 (× 10 4 cells / μL).
(5) A coagulum of the platelet-rich plasma composition according to (3) or (4).
(6) A method for producing freeze-dried platelet-rich plasma, comprising a step of freezing platelet-rich plasma at −20 ° C. or lower and a step of freeze-drying the frozen platelet-rich plasma.
 本発明によれば、保存可能でより簡便に製造及び利用することができる多血小板血漿及びその製造方法を提供することができる。 According to the present invention, it is possible to provide platelet-rich plasma that can be stored and can be produced and used more easily and a method for producing the same.
実験例4の結果を示すグラフである。10 is a graph showing the results of Experimental Example 4. 実験例4の結果を示すグラフである。10 is a graph showing the results of Experimental Example 4. 実験例4の結果を示すグラフである。10 is a graph showing the results of Experimental Example 4. 実験例5の結果を示す写真及び評価結果を示す図である。It is a figure which shows the photograph which shows the result of Experimental example 5, and an evaluation result. (a)は実験例6におけるヌードマウスの頭部の切開線を示す写真であり、図5(b)は実験例6においてヌードマウスに試料を移植している様子を示す写真であり、図5(c)は実験例6において試料を移植した直後のヌードマウスの写真である。(A) is a photograph showing an incision line of the head of a nude mouse in Experimental Example 6, and FIG. 5 (b) is a photograph showing a state in which a sample is transplanted into the nude mouse in Experimental Example 6, FIG. (C) is a photograph of a nude mouse immediately after transplanting a sample in Experimental Example 6. (a)は実験例6において、ヌードマウスから取出した試料のヘマトキシリン・エオジン染色の結果を示す顕微鏡写真である。(b)は、(a)の四角で囲んだ領域の拡大図である。スケールバーは200μmを示す。(A) is a photomicrograph showing the results of hematoxylin and eosin staining of a sample taken from a nude mouse in Experimental Example 6. (B) is an enlarged view of a region surrounded by a square in (a). The scale bar indicates 200 μm. (a)は実験例6において、ヌードマウスから取出した試料のヘマトキシリン・エオジン染色の結果を示す顕微鏡写真である。(b)は、(a)の四角で囲んだ領域の拡大図である。スケールバーは200μmを示す。(A) is a photomicrograph showing the results of hematoxylin and eosin staining of a sample taken from a nude mouse in Experimental Example 6. (B) is an enlarged view of a region surrounded by a square in (a). The scale bar indicates 200 μm. (a)は実験例6において、ヌードマウスから取出した試料のヘマトキシリン・エオジン染色の結果を示す顕微鏡写真である。(b)は、(a)の四角で囲んだ領域の拡大図である。スケールバーは200μmを示す。(A) is a photomicrograph showing the results of hematoxylin and eosin staining of a sample taken from a nude mouse in Experimental Example 6. (B) is an enlarged view of a region surrounded by a square in (a). The scale bar indicates 200 μm. (a)は実験例6において、ヌードマウスから取出した試料のヘマトキシリン・エオジン染色の結果を示す顕微鏡写真である。(b)は、(a)の四角で囲んだ領域の拡大図である。スケールバーは200μmを示す。(A) is a photomicrograph showing the results of hematoxylin and eosin staining of a sample taken from a nude mouse in Experimental Example 6. (B) is an enlarged view of a region surrounded by a square in (a). The scale bar indicates 200 μm. 実験例6における骨新生率の算出結果を示すグラフである。It is a graph which shows the calculation result of the bone formation rate in Experimental example 6.
[凍結乾燥された多血小板血漿]
 1実施形態において、本発明は、凍結乾燥され、外因性の低分子糖を実質的に含有しない、多血小板血漿を提供する。
[Freeze-dried platelet-rich plasma]
In one embodiment, the present invention provides platelet rich plasma that is lyophilized and substantially free of exogenous low molecular sugars.
 本実施形態に係る多血小板血漿の凍結乾燥体は、保存可能であり、より簡便に製造及び利用することができる。ここで、保存可能であるとは、例えば4℃で1か月以上保存しても、その活性を維持できることを意味する。 The freeze-dried platelet-rich plasma according to the present embodiment can be stored and can be more easily produced and used. Here, being storable means that the activity can be maintained even when stored at 4 ° C. for one month or longer.
 多血小板血漿の活性としては、例えば、後述するゲル形成活性、多血小板血漿が含有する成長因子の活性等が挙げられる。 Examples of the activity of platelet-rich plasma include gel forming activity described later, the activity of growth factors contained in platelet-rich plasma, and the like.
 本実施形態の凍結乾燥体において、低分子糖としては、トレハロース、スクロース、マルトース等の、動物細胞等の凍結に対する耐性を向上させる作用を有する糖が挙げられる。 In the lyophilized product of the present embodiment, examples of the low molecular sugar include sugars having an action of improving resistance to freezing of animal cells and the like, such as trehalose, sucrose, and maltose.
 また、外因性の低分子糖を実質的に含有しないとは、多血小板血漿の凍結乾燥に際し、凍結に対する耐性を向上させる糖を外部から添加しないことを意味し、多血小板血漿が本来含有している糖の存在は許容される。 In addition, the phrase “substantially free of exogenous low-molecular sugars” means that sugars that improve freezing resistance are not added from the outside during freeze-drying of platelet-rich plasma. The presence of sugar is acceptable.
 また、多血小板血漿の製造に用いる血液の採血時に、血液に抗凝固剤を添加する場合があり、抗凝固剤にはブドウ糖が添加されている場合があるが、抗凝固剤が通常含有する量のブドウ糖は外因性の低分子糖には含まないものとする。 In addition, an anticoagulant may be added to the blood at the time of collecting blood used for the production of platelet-rich plasma, and glucose may be added to the anticoagulant. Is not included in exogenous low-molecular sugars.
 非特許文献1に記載されているように、従来、多血小板血漿を凍結乾燥により保存するためには、トレハロース等の低分子糖を予め血小板に吸収させる必要があると考えられていた。これに対し、発明者らは、低分子糖を血小板に吸収させる等の処理を行わなくても、活性を維持したまま多血小板血漿を凍結乾燥できることを見出した。 As described in Non-Patent Document 1, conventionally, in order to preserve platelet-rich plasma by freeze-drying, it has been thought that low molecular sugars such as trehalose need to be absorbed in advance by platelets. On the other hand, the inventors have found that platelet-rich plasma can be lyophilized while maintaining the activity without performing treatment such as absorption of low-molecular sugars into platelets.
 本実施形態の凍結乾燥体は、低分子糖を血小板に吸収させる等の処理が不要であることから、より簡便に製造することができる。また、非特許文献1に記載された多血小板血漿の凍結乾燥体は、再構成の前に37℃、飽和水蒸気環境で静置する、プレハイドレーションが必要である。これに対し、本実施形態に係る多血小板血漿の凍結乾燥体を再構成する場合には、プレハイドレーションは必須ではなく、より簡便に利用することができる。 The lyophilized product of this embodiment can be produced more easily because it does not require treatment such as absorption of low molecular sugars by platelets. Moreover, the lyophilized body of platelet-rich plasma described in Non-Patent Document 1 needs to be prehydrated by allowing it to stand in a saturated water vapor environment at 37 ° C. before reconstitution. On the other hand, when reconstituting the freeze-dried platelet-rich plasma according to the present embodiment, prehydration is not essential and can be used more easily.
 本実施形態の凍結乾燥体は、固体支持体にコーティングされていないことが好ましい。
本実施形態の多血小板血漿は、固体支持体にコーティングされていなくても、凍結乾燥され、安定に保存することができる。
It is preferable that the freeze-dried body of this embodiment is not coated on the solid support.
The platelet-rich plasma of this embodiment can be lyophilized and stably stored even if it is not coated on a solid support.
 つまり、本実施形態の凍結乾燥体は、「固体支持体にコーティングされた後に凍結乾燥された多血小板血漿を含み、前記多血小板血漿が凍結乾燥されてから少なくとも1日間冷蔵保存された後に使用されることを特徴とする、再生治療用材料」ではなくてもよい。 In other words, the freeze-dried body of the present embodiment includes “platelet-rich plasma freeze-dried after being coated on a solid support, and used after the platelet-rich plasma has been refrigerated for at least one day after being freeze-dried. It may not be “a material for regenerative treatment”.
 ここで、固体支持体とは、例えば、ポリグリコール酸、ポリ乳酸、これらの共重合体等の短期吸収性の生分解性ポリマー又は生体吸収性ポリマー;プロパンジオール、ポリ(L-ラクチド-コ-イプシロン-カプロラクトン)、ポリカプロラクトン、これらの共重合体等の長期分解性の生分解性ポリマー又は生体吸収性ポリマー;ポリブチレンサクシネート、ポリビニルアルコール、キトサンその他の生分解性ポリマー又は生体吸収性ポリマー;非生分解性ポリマーである絹等を材質とする支持体が挙げられる。 Here, the solid support means, for example, a short-absorbable biodegradable polymer or bioabsorbable polymer such as polyglycolic acid, polylactic acid, and copolymers thereof; propanediol, poly (L-lactide-co-) Long-degradable biodegradable polymers or bioabsorbable polymers such as epsilon-caprolactone), polycaprolactone and copolymers thereof; polybutylene succinate, polyvinyl alcohol, chitosan and other biodegradable polymers or bioabsorbable polymers; Examples include a support made of silk, which is a non-biodegradable polymer.
 固体支持体の形状としては、例えば、織物、編物、不織布、ステッチ、綿、布、紙、フィルター等の繊維製品;粒状体及び発泡体を含む多孔性基材等が挙げられる。また繊維製品としては、メッシュ、ガーゼ地等の織物;編物、不織布、ステッチ、綿等の創傷被覆材として慣用されるものが挙げられる。 Examples of the shape of the solid support include fiber products such as woven fabrics, knitted fabrics, nonwoven fabrics, stitches, cotton, cloth, paper, and filters; and porous substrates including granular materials and foams. Examples of the textile products include woven fabrics such as meshes and gauze fabrics; those commonly used as wound dressings such as knitted fabrics, nonwoven fabrics, stitches, and cotton.
 また、コーティングされているとは、固体支持体が多血小板血漿を含む溶液に覆われていることを意味する。すなわち、コーティングされているとは、多血小板血漿が固体支持体の表面で凝固していること、上記の溶液が固体支持体の繊維間隙や細孔を通って毛細管現象で浸透していること、上記の溶液の存在下で固体支持体が溶解又は分解し、固体支持体の表面に上記の溶液の層又は膜が形成されることによって、固体支持体に上記の溶液が吸収されること等を意味する。 Also, being coated means that the solid support is covered with a solution containing platelet-rich plasma. That is, being coated means that the platelet-rich plasma is coagulated on the surface of the solid support, the above solution is permeated by capillary action through the fiber gaps and pores of the solid support, The solid support is dissolved or decomposed in the presence of the above solution, and the above solution is absorbed by the solid support by forming a layer or membrane of the above solution on the surface of the solid support. means.
[再構成された多血小板血漿]
 1実施形態において、本発明は、上述した多血小板血漿及び溶媒を含有する、多血小板血漿組成物を提供する。本実施形態の多血小板血漿組成物は、上述した多血小板血漿の凍結乾燥体に溶媒を添加してなる、再構成された多血小板血漿であるということもできる。
[Reconstituted platelet-rich plasma]
In one embodiment, the present invention provides a platelet-rich plasma composition containing the platelet-rich plasma and solvent described above. It can also be said that the platelet-rich plasma composition of the present embodiment is a reconstituted platelet-rich plasma obtained by adding a solvent to the above-mentioned freeze-dried platelet-rich plasma.
 後述する実施例において示すように、本実施形態の再構成された多血小板血漿は、多血小板血漿の凍結乾燥体が長時間保存された後であっても、凍結乾燥していない新鮮多血小板血漿と同等の活性を示すことができる。 As shown in the examples described later, the reconstituted platelet-rich plasma of this embodiment is fresh platelet-rich plasma that has not been lyophilized even after the freeze-dried form of platelet-rich plasma has been stored for a long time. Can exhibit the same activity.
 なお、上述した多血小板血漿の凍結乾燥体を再構成した多血小板血漿が含有する血小板は、一度凍結乾燥された履歴を有している。そのため、血小板の表面構造等が新鮮多血小板血漿中の血小板とは異なっていることが予測される。しかしながら、血小板の表面構造がどのように変化しているかを特定することは困難であり、血小板の表面構造等により、上述した多血小板血漿の凍結乾燥体を再構成した多血小板血漿であるか否かを特定することも困難である。 The platelets contained in the platelet-rich plasma obtained by reconstitution of the above-mentioned freeze-dried platelet-rich plasma have a history of freeze-drying once. Therefore, it is predicted that the surface structure of platelets is different from that of fresh platelet-rich plasma. However, it is difficult to specify how the surface structure of platelets changes, and whether or not the platelet-rich plasma is a reconstituted lyophilized body of the above-mentioned platelet-rich plasma based on the surface structure of platelets or the like. It is also difficult to specify.
 溶媒としては、滅菌水、生理的食塩水、リン酸緩衝液等が挙げられる。溶媒は、多血小板血漿の凍結乾燥体に、凍結乾燥前の多血小板血漿と等容量となる量添加してもよく、凍結乾燥前よりも少ない容量となる量添加してもよい。前者の場合には、凍結乾燥前の多血小板血漿と同等の血小板濃度を有する多血小板血漿が得られる。また、後者の場合には、凍結乾燥前の多血小板血漿よりも血小板濃度が高い(濃縮された)多血小板血漿が得られる。 Examples of the solvent include sterilized water, physiological saline, and phosphate buffer. The solvent may be added to the lyophilized platelet-rich plasma in an amount that is equivalent to the platelet-rich plasma before lyophilization, or may be added in an amount that is less than that before lyophilization. In the former case, platelet-rich plasma having a platelet concentration equivalent to that before lyophilization is obtained. In the latter case, platelet-rich plasma having a platelet concentration higher (concentrated) than platelet-rich plasma before lyophilization is obtained.
 1実施形態において、本実施形態の再構成された多血小板血漿は、血小板濃度が200~1000(×10個/μL)であってもよい。一般的な多血小板血漿の血小板濃度は100~200(×10個/μL)である。したがって、血小板濃度が200~1000(×10個/μL)である多血小板血漿は、一般的な多血小板血漿と比較して2~5倍程度に濃縮されている。本実施形態の再構成された多血小板血漿は、血小板濃度が200~800(×10個/μL)であってもよく、200~600(×10個/μL)であってもよい。 In one embodiment, the reconstituted platelet-rich plasma of this embodiment may have a platelet concentration of 200-1000 (× 10 4 cells / μL). The platelet concentration of general platelet-rich plasma is 100 to 200 (× 10 4 cells / μL). Therefore, platelet-rich plasma having a platelet concentration of 200 to 1000 (× 10 4 cells / μL) is concentrated about 2 to 5 times compared with general platelet-rich plasma. The reconstituted platelet-rich plasma of this embodiment may have a platelet concentration of 200 to 800 (× 10 4 cells / μL) or 200 to 600 (× 10 4 cells / μL).
 後述する実施例において示すように、濃縮されていない多血小板血漿と比較して、濃縮された多血小板血漿は、インビボで組織再生をより強力に促進することができる。 As shown in the examples described below, concentrated platelet-rich plasma can more strongly promote tissue regeneration in vivo compared to unconcentrated platelet-rich plasma.
[多血小板血漿ゲル]
 1実施形態において、本発明は、上述した多血小板血漿組成物の凝固物(ゲル)を提供する。本実施形態のゲルは、上述した多血小板血漿に溶媒を添加して再構成し、更に凝固させたものである。本実施形態のゲルは、例えば、再構成された多血小板血漿に塩化カルシウムを添加し、血漿中に含まれる血液凝固因子を活性化させて凝固させること等により製造することができる。
[Platelet-rich plasma gel]
In one embodiment, the present invention provides a clot (gel) of the platelet-rich plasma composition described above. The gel according to the present embodiment is obtained by reconstituting a platelet-rich plasma with a solvent and further coagulating it. The gel of the present embodiment can be produced, for example, by adding calcium chloride to reconstituted platelet-rich plasma and activating and coagulating a blood coagulation factor contained in the plasma.
 より具体的には、血小板から放出されたトロンボプラスチンと、カルシウムイオンの作用により、血漿中に含まれるプロトロンビンがトロンビンに変化し、トロンビンの酵素活性により、血漿中のフィブリノーゲンがフィブリンとなる。フィブリンはカルシウムイオン等の作用で相互に結合し、網目状の構造を形成して凝固する。 More specifically, prothrombin contained in plasma is changed to thrombin by the action of thromboplastin released from platelets and calcium ions, and fibrinogen in plasma becomes fibrin by the enzyme activity of thrombin. Fibrin binds to each other by the action of calcium ions and the like, forming a network structure and solidifying.
 本実施形態のゲルは、細胞の足場となるとともに、多血小板血漿を局所に長期間とどめることができ、多血小板血漿中に含まれる成長因子等を徐放させることができるため、皮膚、粘膜、骨、歯周組織等の様々な組織の再生治療等に有用である。 The gel of the present embodiment serves as a scaffold for cells, and can keep platelet-rich plasma locally for a long period of time, and can gradually release growth factors and the like contained in the platelet-rich plasma. It is useful for regenerative treatment of various tissues such as bone and periodontal tissue.
 本実施形態のゲルの調製において、多血小板血漿に、例えば骨補填材等を添加してもよい。また、多血小板血漿に自己血清を添加して、凝固活性を向上させてもよい。 In the preparation of the gel of the present embodiment, for example, a bone filling material or the like may be added to the platelet-rich plasma. In addition, autologous serum may be added to platelet-rich plasma to improve clotting activity.
[凍結乾燥された多血小板血漿の製造方法]
 1実施形態において、本発明は、多血小板血漿を-20℃以下で凍結する工程と、凍結した前記多血小板血漿を凍結乾燥する工程と、を備える、凍結乾燥された多血小板血漿の製造方法を提供する。本実施形態の製造方法は、多血小板血漿の保存方法であるともいえる。
[Method for producing freeze-dried platelet-rich plasma]
In one embodiment, the present invention provides a method for producing freeze-dried platelet-rich plasma comprising the steps of freezing platelet-rich plasma at −20 ° C. or lower and freeze-drying the frozen platelet-rich plasma. provide. It can be said that the production method of this embodiment is a method for preserving platelet-rich plasma.
(多血小板血漿)
 多血小板血漿は一般的な方法で調製することができる。具体的には、まず、患者から末梢静脈血を採取する。この時、採取した末梢血に、抗凝固剤を添加する。抗凝固剤としては、一般的なものを使用することができ、例えば、クエン酸溶液、フッ化ナトリウム、エチレンジアミン四酢酸(EDTA)溶液、ACD(acid-citrate-dextrose)溶液、ヘパリン等が挙げられる。
(Platelet rich plasma)
Platelet rich plasma can be prepared by a general method. Specifically, first, peripheral venous blood is collected from a patient. At this time, an anticoagulant is added to the collected peripheral blood. As the anticoagulant, a common one can be used, and examples thereof include citric acid solution, sodium fluoride, ethylenediaminetetraacetic acid (EDTA) solution, ACD (acid-citrate-dextrose) solution, heparin and the like. .
 続いて、抗凝固剤を添加した末梢血を遠心管に入れ、例えば4℃、1000~1200×gで10~30分間遠心分離する。遠心分離後、末梢血は、上から順に、血漿の層、白血球層(バッフィーコート)、赤血球層に分離する。バッフィーコートの上方に血小板が集積しているため、その付近を回収することにより、多血小板血漿を得ることができる。
例えば、バッフィーコートの位置を基準として、遠心管に入れた血液の1/10容量分上方に印を付け、上記印より上方は寡血小板血漿であるため除去し、上記印の下方に位置する血小板層及びバッフィーコートを回収し、これを多血小板血漿とするとよい。
Subsequently, the peripheral blood to which the anticoagulant has been added is placed in a centrifuge tube and centrifuged, for example, at 4 ° C. and 1000 to 1200 × g for 10 to 30 minutes. After centrifugation, the peripheral blood is separated into a plasma layer, a white blood cell layer (buffy coat), and a red blood cell layer in order from the top. Since platelets are accumulated above the buffy coat, platelet-rich plasma can be obtained by collecting the vicinity thereof.
For example, on the basis of the position of the buffy coat, mark 1/10 volume above the blood in the centrifuge tube, remove the platelet blood plasma above the mark, and remove platelets located below the mark The layer and buffy coat may be collected and used as platelet rich plasma.
 あるいは、市販の器具(例えば、商品名「Gravitational Platelet Separation System」、Biomet社)等を用いて末梢血より多血小板血漿を回収してもよい。 Alternatively, platelet-rich plasma may be collected from peripheral blood using a commercially available instrument (for example, “Gravational Platelet Separation System”, Biomet).
(多血小板血漿を凍結する工程)
 本工程において、多血小板血漿を凍結する。凍結温度は-50℃以下であってもよく、-80℃以下であってもよく、-150℃以下であってもよく、-190℃以下であってもよい。-50℃~-150℃で凍結するには、例えば、市販のディープフリーザー等を用いることができる。また、-190℃以下で凍結するには、例えば、液体窒素等を用いることができる。
(Step of freezing platelet-rich plasma)
In this step, the platelet-rich plasma is frozen. The freezing temperature may be −50 ° C. or lower, −80 ° C. or lower, −150 ° C. or lower, or −190 ° C. or lower. For freezing at −50 ° C. to −150 ° C., for example, a commercially available deep freezer can be used. For freezing at −190 ° C. or lower, for example, liquid nitrogen can be used.
(凍結乾燥する工程)
 本工程において、凍結された多血小板血漿を凍結乾燥する。凍結乾燥は、多血小板血漿の凍結から数日以内に行うことが好ましい。例えば多血小板血漿の凍結直後に凍結乾燥してもよいし、凍結から24時間後に凍結乾燥してもよい。
(Freeze drying process)
In this step, the frozen platelet-rich plasma is lyophilized. The lyophilization is preferably performed within a few days after the platelet-rich plasma is frozen. For example, the platelet-rich plasma may be freeze-dried immediately after freezing or may be freeze-dried 24 hours after freezing.
 凍結乾燥は一般的な方法で行うことができる。例えば、凍結乾燥機(型式「EYELA FD-1000」、東京理化器械)を用いて-50℃、15Paの条件で凍結乾燥することが挙げられる。 Freeze-drying can be performed by a general method. For example, lyophilization may be performed using a freeze dryer (model “EYELA FD-1000”, Tokyo Rika Kikai Co., Ltd.) at −50 ° C. and 15 Pa.
 凍結乾燥後の多血小板血漿は、室温で保存してもよいが、より低温で保存することが好ましい。例えば4℃で保存してもよいし、例えば-20℃で保存してもよい。 The platelet-rich plasma after lyophilization may be stored at room temperature, but is preferably stored at a lower temperature. For example, it may be stored at 4 ° C. or may be stored at −20 ° C., for example.
 次に実験例を示して本発明を更に詳細に説明するが、本発明は以下の実験例に限定されるものではない。 Next, the present invention will be described in more detail with reference to experimental examples, but the present invention is not limited to the following experimental examples.
[実験例1]
(多血小板血漿の調製)
 A、B及びCの3人のドナーより、ヒト末梢静脈血を採取した。この時、採取した末梢血に、抗凝固剤として10w/v%のクエン酸溶液を、末梢血9容量当たり1容量添加した。
[Experimental Example 1]
(Preparation of platelet-rich plasma)
Human peripheral venous blood was collected from three donors A, B and C. At this time, a volume of 10 w / v citrate solution as an anticoagulant was added to the collected peripheral blood at 1 volume per 9 volumes of peripheral blood.
 続いて、抗凝固剤を添加した末梢血を遠心管に入れ、遠心機(商品名「Medifuge」、Silfradent社製)で遠心分離した。遠心分離後、末梢血は、上から順に、血漿の層、白血球層(バッフィーコート)、赤血球層に分離した。続いて、バッフィーコートの位置を基準として、遠心管に入れた血液の1/10容量分上方に印を付けた。上記印より上方は寡血小板血漿であるため除去した。続いて、上記印の下方に位置する血小板層及びバッフィーコートを回収し、これを多血小板血漿とした。以下、多血小板血漿を(Platelet Rich Plasma、PRP)という場合がある。 Subsequently, peripheral blood to which an anticoagulant was added was placed in a centrifuge tube and centrifuged with a centrifuge (trade name “Medifuge”, manufactured by Silfrent). After centrifugation, the peripheral blood was separated into a plasma layer, a white blood cell layer (buffy coat), and a red blood cell layer in order from the top. Subsequently, the position of the buffy coat was used as a reference to mark an upper portion of 1/10 volume of blood in the centrifuge tube. Above the above mark, it was removed because it was sputum platelet plasma. Subsequently, the platelet layer and the buffy coat located below the mark were collected and used as platelet-rich plasma. Hereinafter, platelet-rich plasma may be referred to as (Platelet Rich Plasma, PRP).
[実験例2]
(末梢血及び多血小板血漿中の血球数の測定)
 実験例1における各ドナー由来の末梢血及び多血小板血漿中の白血球、赤血球及び血小板の数を測定した。また、末梢血中の血小板数を基準とした、多血小板血漿中の血小板の濃縮率も算出した。表1に、各ドナー由来の末梢血及び多血小板血漿中の血球数の測定結果及び血小板の濃縮率を示す。その結果、全てのドナーにおいて、新鮮多血小板血漿(凍結乾燥していない多血小板血漿、新鮮PRP)における血小板濃縮率は約6倍であった。
[Experiment 2]
(Measurement of the number of blood cells in peripheral blood and platelet-rich plasma)
The numbers of white blood cells, red blood cells, and platelets in peripheral blood and platelet-rich plasma from each donor in Experimental Example 1 were measured. In addition, the concentration ratio of platelets in platelet-rich plasma based on the number of platelets in peripheral blood was also calculated. Table 1 shows the measurement results of the number of blood cells in the peripheral blood and platelet-rich plasma derived from each donor, and the platelet concentration rate. As a result, in all donors, the platelet concentration rate in fresh platelet-rich plasma (non-lyophilized platelet-rich plasma, fresh PRP) was about 6 times.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[実験例3]
(多血小板血漿の凍結乾燥)
 実験例1で調製した多血小板血漿を-80℃のディープフリーザーで24時間凍結した後、凍結乾燥機(型式「EYELA FD-1000」、東京理化器械)を用いて-50℃、15Paの条件で凍結乾燥し、多血小板血漿の凍結乾燥体を得た。
[Experiment 3]
(Freeze-drying of platelet-rich plasma)
The platelet-rich plasma prepared in Experimental Example 1 was frozen in a deep freezer at −80 ° C. for 24 hours, and then freeze-dried (model “EYELA FD-1000”, Tokyo Rika Instruments) at −50 ° C. and 15 Pa. Lyophilized to obtain a lyophilized platelet-rich plasma.
[実験例4]
(多血小板血漿中の成長因子の濃度の測定)
 実験例1と同様にして調製した新鮮多血小板血漿を-20度で冷凍し37℃で解凍するサイクルを2度行って成長因子を抽出し、基準多血小板血漿(以下、「基準PRP」という。)とした。また、実験例3で調製した多血小板血漿の凍結乾燥体を1か月間4℃で保存した後、滅菌水を添加して等倍に再構成したもの(以下、「×1FD-PRP」という。)及び、実験例3で調製した多血小板血漿の凍結乾燥体を1か月間4℃で保存した後、滅菌水を添加して1/3容量に再構成したもの(血小板濃度は3倍濃縮である。以下、「×3FD-PRP」という。)を作製した。
[Experimental Example 4]
(Measurement of growth factor concentration in platelet-rich plasma)
A fresh platelet-rich plasma prepared in the same manner as in Experimental Example 1 was frozen at -20 degrees and thawed at 37 ° C. twice to extract growth factors, and a reference platelet-rich plasma (hereinafter referred to as “reference PRP”). ). In addition, the freeze-dried platelet-rich plasma prepared in Experimental Example 3 was stored at 4 ° C. for 1 month and then reconstituted at the same magnification by adding sterilized water (hereinafter referred to as “× 1FD-PRP”). ) And lyophilized platelet-rich plasma prepared in Experimental Example 3 at 4 ° C. for 1 month, and then reconstituted to 1/3 volume by adding sterile water (platelet concentration is 3 times concentrated) In the following, “× 3FD-PRP” was prepared.
 基準PRP、×1FD-PRP及び×3FD-PRPについて、血小板由来成長因子(Platelet-Derived Growth Factor、PDGF)-BB、トランスフォーミング増殖因子(Transforming growth factor、TGF)-β1、血管内皮細胞増殖因子(vascular endothelial growth factor、VEGF)の濃度を市販のキットを用いたELISA法により測定した。より具体的には、PDGF-BBの測定にはキット(商品名「Quantikine Human PDGF-BB ELISA」、カタログ番号「DBB00」、R&D Systems社)を使用した。また、TGF-β1の測定にはキット(商品名「Quantikine Human TGF-β1 ELISA」、カタログ番号「DBB00」、R&D Systems社)を使用した。また、VEGFの測定にはキット(商品名「Quantikine Human VEGF ELISA」、カタログ番号「DVE00」、R&D Systems社)を使用した。各成長因子の濃度の測定は、3人のドナーに由来する基準PRP、×1FD-PRP及び×3FD-PRPそれぞれについて各4回ずつ行った。 For reference PRP, × 1FD-PRP and × 3FD-PRP, platelet-derived growth factor (PDGF) -BB, transforming growth factor (TGF) -β1, vascular endothelial growth factor ( The concentration of vascular (secondary growth factor, VEGF) was measured by an ELISA method using a commercially available kit. More specifically, a kit (trade name “Quantikine Human PDGF-BB ELISA”, catalog number “DBB00”, R & D Systems) was used for measurement of PDGF-BB. A kit (trade name “Quantikine Human TGF-β1 ELISA”, catalog number “DBB00”, R & D Systems) was used for the measurement of TGF-β1. In addition, a kit (trade name “Quantikine Human VEGF ELISA”, catalog number “DVE00”, R & D Systems) was used for VEGF measurement. The concentration of each growth factor was measured four times for each of the reference PRP, x1FD-PRP and x3FD-PRP derived from three donors.
 図1は基準PRP、×1FD-PRP及び×3FD-PRPにおける、PDGF-BBの濃度の測定結果を示すグラフである。図中、グラフは平均値を示し、エラーバーは標準偏差を示す。また、「n.s.」は危険率1%未満で有意差がないことを示す。また、図中の数字は基準PRP中のPDGF-BBの濃度を1としたPDGF-BBの濃度の相対値を示す。 FIG. 1 is a graph showing the measurement results of the PDGF-BB concentration in the standard PRP, × 1FD-PRP, and × 3FD-PRP. In the figure, the graph shows the average value, and the error bar shows the standard deviation. Further, “ns” indicates that there is no significant difference with a risk rate of less than 1%. The numbers in the figure indicate relative values of the PDGF-BB concentration with the PDGF-BB concentration in the reference PRP being 1.
 その結果、×1FD-PRP中のPDGF-BBの濃度は、基準PRP中のPDGF-BBの濃度と同等であることが示された。また、×3FD-PRP中のPDGF-BBの濃度は、基準PRP中のPDGF-BBの濃度の約2.8倍であることが示された。 As a result, it was shown that the concentration of PDGF-BB in x1FD-PRP was equivalent to the concentration of PDGF-BB in the reference PRP. In addition, the concentration of PDGF-BB in x3FD-PRP was shown to be about 2.8 times the concentration of PDGF-BB in reference PRP.
 図2は基準PRP、×1FD-PRP及び×3FD-PRPにおける、TGF-β1の濃度の測定結果を示すグラフである。図中、グラフは平均値を示し、エラーバーは標準偏差を示す。また、「n.s.」は危険率1%未満で有意差がないことを示す。また、図中の数字は基準PRP中のTGF-β1の濃度を1としたTGF-β1の濃度の相対値を示す。 FIG. 2 is a graph showing the measurement results of the concentration of TGF-β1 in the standard PRP, × 1FD-PRP and × 3FD-PRP. In the figure, the graph shows the average value, and the error bar shows the standard deviation. Further, “ns” indicates that there is no significant difference with a risk rate of less than 1%. The numbers in the figure show the relative values of the TGF-β1 concentration, where the TGF-β1 concentration in the reference PRP is 1.
 その結果、×1FD-PRP中のPDGF-BBの濃度は、基準PRP中のTGF-β1の濃度と同等であることが示された。また、×3FD-PRP中のTGF-β1の濃度は、基準PRP中のTGF-β1の濃度の約2.5倍であることが示された。 As a result, it was shown that the concentration of PDGF-BB in x1FD-PRP was equivalent to the concentration of TGF-β1 in the reference PRP. Further, it was shown that the concentration of TGF-β1 in × 3FD-PRP was about 2.5 times the concentration of TGF-β1 in reference PRP.
 図3は基準PRP、×1FD-PRP及び×3FD-PRPにおける、VEGFの濃度の測定結果を示すグラフである。図中、グラフは平均値を示し、エラーバーは標準偏差を示す。また、「**」は危険率1%未満で有意差があることを示す。また、図中の数字は基準PRP中のVEGFの濃度を1としたVEGFの濃度の相対値を示す。 FIG. 3 is a graph showing the measurement results of the concentration of VEGF in the standard PRP, × 1FD-PRP, and × 3FD-PRP. In the figure, the graph shows the average value, and the error bar shows the standard deviation. Further, “**” indicates that there is a significant difference at a risk rate of less than 1%. The numbers in the figure indicate relative values of the concentration of VEGF, where the concentration of VEGF in the reference PRP is 1.
 その結果、×1FD-PRP中のVEGFの濃度は、基準PRP中のVEGFの濃度よりも低いことが示された。また、×3FD-PRP中のVEGFの濃度は、基準PRP中のVEGFの濃度の約1.5倍であることが示された。 As a result, it was shown that the concentration of VEGF in x1FD-PRP was lower than the concentration of VEGF in the reference PRP. Further, it was shown that the concentration of VEGF in x3FD-PRP was about 1.5 times the concentration of VEGF in reference PRP.
[実験例5]
(多血小板血漿のゲル化能の評価)
 実験例3で調製した多血小板血漿の凍結乾燥体を、調製直後(FD直後)、1日間(FD1日後)、3日間(FD3日後)、1週間(FD1週後)、2週間(FD2週後)及び4週間(FD4週後)4℃で保存後に滅菌水を添加して等倍に再構成したものについて、ゲル化能(フィブリン化能、凝固能)を評価した。対照として、実験例1と同様にして調製した新鮮多血小板血漿について同様の評価を行った。
[Experimental Example 5]
(Evaluation of gelation ability of platelet-rich plasma)
The lyophilized platelet-rich plasma prepared in Experimental Example 3 was immediately after preparation (immediately after FD), 1 day (after 1 day of FD), 3 days (after 3 days of FD), 1 week (after 1 week of FD), 2 weeks (after 2 weeks of FD) ) And 4 weeks (after 4 weeks of FD) Gel storage ability (fibrinization ability, coagulation ability) was evaluated for those reconstituted at an equal magnification by adding sterilized water after storage at 4 ° C. As a control, the same evaluation was performed on fresh platelet-rich plasma prepared in the same manner as in Experimental Example 1.
 より具体的には、骨補填材であるβ-リン酸三カルシウム(商品名「Osferion(登録商標)G1」、オリンパス社製)25mgに、上記の再構成した多血小板血漿又は新鮮多血小板血漿100μL、自己血清10μL及び2w/v%塩化カルシウム水溶液10μLを混和し、混和から10分後のゲル化状態を以下の基準で評価した。
 +:完全に凝固した。
 ±:一部凝固した。
 -:凝固しなかった。
More specifically, β-tricalcium phosphate (trade name “Osferion (registered trademark) G1”, manufactured by Olympus) 25 mg, which is a bone filling material, is added to the above-mentioned reconstituted platelet-rich plasma or fresh platelet-rich plasma 100 μL. Then, 10 μL of autoserum and 10 μL of 2 w / v% calcium chloride aqueous solution were mixed, and the gelation state 10 minutes after mixing was evaluated according to the following criteria.
+: Completely solidified.
±: Partially solidified.
-: Not solidified.
 図4は、混和10分後の混和物の写真、混和10分後にピンセットで取出した多血小板血漿のゲルの写真、及び多血小板血漿のゲル化状態の評価結果を示す図である。その結果、多血小板血漿の凍結乾燥体は、保存4週間後においても新鮮多血小板血漿と同様のゲル化能を示すことが明らかとなった。 FIG. 4 shows a photograph of the mixture after 10 minutes of mixing, a photograph of the platelet-rich plasma gel taken out with tweezers after 10 minutes of mixing, and an evaluation result of the gelation state of the platelet-rich plasma. As a result, it was clarified that the freeze-dried platelet-rich plasma exhibited the same gelation ability as fresh platelet-rich plasma even after 4 weeks of storage.
[実験例6]
(多血小板血漿の骨再生促進能の評価)
 ヌードマウス頭蓋骨膜下モデルを用いて多血小板血漿の骨再生促進能を評価した。具体的には、6週齢のオスのヌードマウス(BALB/c)の頭蓋骨上の骨膜下に後述する試料を移植した。続いて、4週間後及び8週間後に移植した各試料を取出し、脱灰標本を作製してヘマトキシリン・エオジン染色を行い、組織学的な解析により骨再生促進能を評価した。
[Experimental Example 6]
(Evaluation of the ability of platelet-rich plasma to promote bone regeneration)
The ability of platelet rich plasma to promote bone regeneration was evaluated using a nude mouse subperiosteal model. Specifically, a sample described later was transplanted under the periosteum on the skull of a 6-week-old male nude mouse (BALB / c). Subsequently, the transplanted samples were taken out after 4 weeks and 8 weeks, decalcified specimens were prepared and stained with hematoxylin and eosin, and the ability to promote bone regeneration was evaluated by histological analysis.
 図5(a)はヌードマウスの頭部の切開線を示す写真であり、図5(b)はヌードマウスに試料を移植している様子を示す写真であり、図5(c)は試料を移植した直後のヌードマウスの写真である。 FIG. 5 (a) is a photograph showing the incision line of the head of a nude mouse, FIG. 5 (b) is a photograph showing a state of transplanting the sample into the nude mouse, and FIG. 5 (c) is a photograph of the sample. It is the photograph of the nude mouse immediately after transplanting.
 試料としては、以下の(i)~(iv)を使用した。
 (i)骨補填材であるβ-リン酸三カルシウム(商品名「Osferion(登録商標)G1」、オリンパス社製)(以下、本実験例において「β-TCP試料」という。)
 (ii)骨補填材であるβ-リン酸三カルシウム(商品名「Osferion(登録商標)G1」、オリンパス社製)25mgに、新鮮多血小板血漿100μL、ヒト血清(自己血清)10μL及び2w/v%塩化カルシウム水溶液10μLを混和して10分間静置しゲル化させたもの(以下、本実験例において「新鮮PRP試料」という。)
 (iii)上記「新鮮PRP試料」の調製において、新鮮多血小板血漿の代わりに、実験例3で調製した多血小板血漿の凍結乾燥体を1か月間4℃で保存した後、滅菌水を添加して等倍に再構成したものを使用した試料(以下、本実験例において「×1FD-PRP試料」という。)
 (iv)上記「新鮮PRP試料」の調製において、新鮮多血小板血漿の代わりに、実験例3で調製した多血小板血漿の凍結乾燥体を1か月間4℃で保存した後、滅菌水を添加して1/3容量に再構成したものを使用した試料(以下、本実験例において「×3FD-PRP試料」という。)
The following (i) to (iv) were used as samples.
(I) β-tricalcium phosphate (trade name “Osferion (registered trademark) G1,” manufactured by Olympus Co., Ltd.) (hereinafter referred to as “β-TCP sample” in this experimental example)
(Ii) β-tricalcium phosphate (trade name “Osferion (registered trademark) G1”, manufactured by Olympus Co., Ltd.), 25 mg, which is a bone filling material, 100 μL of fresh platelet-rich plasma, 10 μL of human serum (autologous serum) and 2 w / v 10 μL of 10% calcium chloride aqueous solution mixed and allowed to stand for 10 minutes to gel (hereinafter referred to as “fresh PRP sample” in this experimental example)
(Iii) In the preparation of the “fresh PRP sample”, the freeze-dried product of platelet-rich plasma prepared in Experimental Example 3 was stored at 4 ° C. for 1 month instead of fresh platelet-rich plasma, and then sterilized water was added. Samples that were reconstructed at the same magnification (hereinafter referred to as “× 1FD-PRP sample” in this experimental example)
(Iv) In preparation of the above “fresh PRP sample”, the lyophilized body of platelet-rich plasma prepared in Experimental Example 3 was stored at 4 ° C. for 1 month instead of fresh platelet-rich plasma, and then sterilized water was added. Samples reconstituted to 1/3 capacity (hereinafter referred to as “× 3FD-PRP sample” in this experimental example)
 組織学的な解析は、次のようにして行った。ヘマトキシリン・エオジン染色像をもとに解析ソフトウエアであるNIH Image(Image J)を用いて、移植試料面積及び骨新生面積を測定した。続いて、下記式(1)により、骨新生率(%)を算出した。
 骨新生率(%)=骨新生面積(μm)/移植試料面積(μm)×100 (1)
The histological analysis was performed as follows. Based on the hematoxylin and eosin stained image, NIH Image (Image J), which is analysis software, was used to measure the area of the transplanted sample and the area of osteogenesis. Subsequently, the bone formation rate (%) was calculated by the following formula (1).
Osteogenesis rate (%) = Bone formation area (μm 2 ) / Transplant sample area (μm 2 ) × 100 (1)
 図6(a)はヌードマウスから取出したβ-TCP試料のヘマトキシリン・エオジン染色の結果を示す顕微鏡写真である。図6(b)は、図6(a)の四角で囲んだ領域の拡大図である。スケールバーは200μmを示す。 FIG. 6 (a) is a photomicrograph showing the results of hematoxylin and eosin staining of a β-TCP sample taken from a nude mouse. FIG. 6B is an enlarged view of a region surrounded by a square in FIG. The scale bar indicates 200 μm.
 図7(a)はヌードマウスから取出した新鮮PRP試料のヘマトキシリン・エオジン染色の結果を示す顕微鏡写真である。図7(b)は、図7(a)の四角で囲んだ領域の拡大図である。スケールバーは200μmを示す。 FIG. 7 (a) is a photomicrograph showing the results of hematoxylin and eosin staining of a fresh PRP sample taken from a nude mouse. FIG. 7B is an enlarged view of a region surrounded by a square in FIG. The scale bar indicates 200 μm.
 図8(a)はヌードマウスから取出した×1FD-PRP試料のヘマトキシリン・エオジン染色の結果を示す顕微鏡写真である。図8(b)は、図8(a)の四角で囲んだ領域の拡大図である。スケールバーは200μmを示す。 FIG. 8 (a) is a photomicrograph showing the results of hematoxylin and eosin staining of a x1FD-PRP sample taken from nude mice. FIG. 8B is an enlarged view of a region surrounded by a square in FIG. The scale bar indicates 200 μm.
 図9(a)はヌードマウスから取出した×3FD-PRP試料のヘマトキシリン・エオジン染色の結果を示す顕微鏡写真である。図9(b)は、図9(a)の四角で囲んだ領域の拡大図である。スケールバーは200μmを示す。 FIG. 9 (a) is a micrograph showing the results of hematoxylin and eosin staining of a × 3FD-PRP sample taken from nude mice. FIG. 9B is an enlarged view of a region surrounded by a square in FIG. The scale bar indicates 200 μm.
 その結果、β-TCP試料を移植した群では、頭蓋骨上にわずかに骨新生が認められた。また、新鮮PRP試料、×1FD-PRP試料及び×3FD-PRP試料を移植した群では、明確な骨新生が認められ、×3FD-PRP試料を移植した群では骨置換の促進が認められた。 As a result, in the group transplanted with β-TCP sample, bone formation was slightly observed on the skull. In addition, clear bone formation was observed in the group transplanted with the fresh PRP sample, × 1FD-PRP sample, and × 3FD-PRP sample, and bone replacement was promoted in the group transplanted with the × 3FD-PRP sample.
 図10は、各試料を移植したヌードマウスにおける骨新生率の算出結果を示すグラフである。図中、グラフは平均値を示し、エラーバーは標準偏差を示す。また、「**」は危険率1%未満で有意差があることを示し、「*」は危険率5%未満で有意差があることを示す。また、図中の数字は平均値を示す。 FIG. 10 is a graph showing the calculation results of the bone formation rate in nude mice transplanted with each sample. In the figure, the graph shows the average value, and the error bar shows the standard deviation. In addition, “**” indicates that there is a significant difference when the risk rate is less than 1%, and “*” indicates that there is a significant difference when the risk rate is less than 5%. Moreover, the number in a figure shows an average value.
 β-TCP試料を移植した群はn=3であった。また、新鮮PRP試料、×1FD-PRP試料及び×3FD-PRP試料を移植した群は、3名のドナーそれぞれに由来する多血小板血漿についてn=3(合計n=9)であった。 The group transplanted with β-TCP sample had n = 3. In the group transplanted with fresh PRP sample, × 1FD-PRP sample, and × 3FD-PRP sample, n = 3 (total n = 9) for platelet-rich plasma derived from each of the three donors.
 その結果、新鮮PRP試料、×1FD-PRP試料及び×3FD-PRP試料を移植した群は、いずれもβ-TCP試料を移植した群と比較して有意に骨新生を促進したことが明らかとなった。また、×1FD-PRP試料を移植した群の骨新生率は、新鮮PRP試料を移植した群の骨新生率と比較して有意な差は認められなかった。また、×3FD-PRP試料を移植した群の骨新生率は、×1FD-PRP試料を移植した群の骨新生率と比較して有意に高かったことが明らかとなった。 As a result, it was clarified that the group transplanted with the fresh PRP sample, × 1FD-PRP sample and × 3FD-PRP sample significantly promoted osteogenesis compared to the group transplanted with β-TCP sample. It was. In addition, the osteogenesis rate of the group transplanted with the × 1FD-PRP sample was not significantly different from the osteogenesis rate of the group transplanted with the fresh PRP sample. Further, it was revealed that the osteogenesis rate of the group transplanted with the × 3FD-PRP sample was significantly higher than the osteogenesis rate of the group transplanted with the × 1FD-PRP sample.
 以上の実験例の結果から、多血小板血漿を凍結乾燥することにより、その機能を失うことなく長期保存することが可能であることが示された。また、多血小板血漿の凍結乾燥体を再構成する時に血小板を濃縮することができ、これにより組織再生をより促進できることが示された。 From the results of the above experimental examples, it was shown that the platelet-rich plasma can be stored for a long time without losing its function by freeze-drying. In addition, it was shown that platelets can be concentrated when reconstituted a freeze-dried form of platelet-rich plasma, thereby further promoting tissue regeneration.
 本発明によれば、保存可能でより簡便に製造及び利用することができる多血小板血漿及びその製造方法を提供することができる。 According to the present invention, it is possible to provide platelet-rich plasma that can be stored and can be produced and used more easily and a method for producing the same.

Claims (6)

  1.  凍結乾燥され、外因性の低分子糖を実質的に含有しない、多血小板血漿。 Platelet-rich plasma that is lyophilized and substantially free of exogenous low-molecular sugars.
  2.  固体支持体にコーティングされていない、請求項1に記載の多血小板血漿。 The platelet-rich plasma according to claim 1, which is not coated on a solid support.
  3.  請求項1又は2に記載の多血小板血漿及び溶媒を含有する、多血小板血漿組成物。 A platelet-rich plasma composition comprising the platelet-rich plasma according to claim 1 or 2 and a solvent.
  4.  血小板濃度が200~1000(×10個/μL)である、請求項3に記載の多血小板血漿組成物。 The platelet-rich plasma composition according to claim 3, wherein the platelet concentration is 200 to 1000 (× 10 4 cells / μL).
  5.  請求項3又は4に記載の多血小板血漿組成物の凝固物。 A coagulum of the platelet-rich plasma composition according to claim 3 or 4.
  6.  多血小板血漿を-20℃以下で凍結する工程と、
     凍結した前記多血小板血漿を凍結乾燥する工程と、
     を備える、凍結乾燥された多血小板血漿の製造方法。
    Freezing the platelet-rich plasma at −20 ° C. or lower;
    Lyophilizing the frozen platelet-rich plasma;
    A method for producing freeze-dried platelet-rich plasma comprising:
PCT/JP2016/068682 2015-06-23 2016-06-23 Freeze-dried platelet-rich plasma and use thereof WO2016208675A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015125916 2015-06-23
JP2015-125916 2015-06-23

Publications (1)

Publication Number Publication Date
WO2016208675A1 true WO2016208675A1 (en) 2016-12-29

Family

ID=57585191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068682 WO2016208675A1 (en) 2015-06-23 2016-06-23 Freeze-dried platelet-rich plasma and use thereof

Country Status (1)

Country Link
WO (1) WO2016208675A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111265548A (en) * 2020-03-20 2020-06-12 山东省齐鲁细胞治疗工程技术有限公司 Preparation method of platelet-rich cytokine plasma freeze-dried powder
US10843100B2 (en) 2010-10-29 2020-11-24 Velico Medical, Inc. Spray drier assembly for automated spray drying
WO2021117886A1 (en) * 2019-12-12 2021-06-17 国立大学法人千葉大学 Freeze-dried preparation containing megakaryocytes and platelets
US11052045B2 (en) 2014-09-19 2021-07-06 Velico Medical, Inc. Formulations and methods for contemporaneous stabilization of active proteins during spray drying and storage
JP7175055B1 (en) * 2021-05-14 2022-11-18 セルソース株式会社 Blood-derived growth factor-containing composition and method for preparing the same
US11841189B1 (en) 2022-09-15 2023-12-12 Velico Medical, Inc. Disposable for a spray drying system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08109136A (en) * 1994-02-22 1996-04-30 Nippon Telegr & Teleph Corp <Ntt> Lyophilyzed product of blood cell, stem cell and platelet and method for producing thereof
JP2001508807A (en) * 1997-11-12 2001-07-03 バイオ−プロダクツ・アンド・バイオ−エンジニアリング・アクチエンゲゼルシヤフト Pharmaceutical products for promoting wound healing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08109136A (en) * 1994-02-22 1996-04-30 Nippon Telegr & Teleph Corp <Ntt> Lyophilyzed product of blood cell, stem cell and platelet and method for producing thereof
JP2001508807A (en) * 1997-11-12 2001-07-03 バイオ−プロダクツ・アンド・バイオ−エンジニアリング・アクチエンゲゼルシヤフト Pharmaceutical products for promoting wound healing

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
PIETRAMAGGIORI G. ET AL.: "Freeze-dried platelet- rich plasma shows beneficial healing properties in chronic wounds.", WOUND REPAIR REGEN., vol. 14, no. 5, 2006, pages 573 - 580, XP002687378 *
TSUNETAKA OGURA ET AL.: "Freeze Dry Gijutsu o Mochiita Konoshuku Takesshoban Kessho no Chosei", RESEARCH COUNCIL MEETING OF JAPAN SOCIETY OF PLASTIC AND RECONSTRUCTIVE SURGERY PROGRAM., vol. 22 nd, 2013, pages 123 *
TSUNETAKA OGURA ET AL.: "Freeze Dry Platelet- Rich Plasma ni yoru Sosho Chiyu Sokushin Koka no Kento", REGENERATIVE MEDICINE, vol. 14, February 2015 (2015-02-01), pages 269 *
YUYA NAKATANI ET AL.: "Freeze Dry Hozon shita Takesshoban Kessho (Platelet Rich Plasma) no Yuyosei no Kento", REGENERATIVE MEDICINE, vol. 14, February 2015 (2015-02-01), pages 195 *
YUYA NAKATANI ET AL.: "Platelet Rich Plasma (PRP) no Kokateki Hozonho no Kento", REGENERATIVE MEDICINE, vol. 13, 2014, pages 214 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10843100B2 (en) 2010-10-29 2020-11-24 Velico Medical, Inc. Spray drier assembly for automated spray drying
US11052045B2 (en) 2014-09-19 2021-07-06 Velico Medical, Inc. Formulations and methods for contemporaneous stabilization of active proteins during spray drying and storage
US11806431B2 (en) 2014-09-19 2023-11-07 Velico Medical, Inc. Formulations and methods for contemporaneous stabilization of active proteins during spray drying and storage
WO2021117886A1 (en) * 2019-12-12 2021-06-17 国立大学法人千葉大学 Freeze-dried preparation containing megakaryocytes and platelets
JPWO2021117886A1 (en) * 2019-12-12 2021-12-09 国立大学法人千葉大学 Freeze-dried preparation containing megakaryocytes and platelets
JP7058431B2 (en) 2019-12-12 2022-04-22 国立大学法人千葉大学 Freeze-dried preparation containing megakaryocytes and platelets
CN111265548A (en) * 2020-03-20 2020-06-12 山东省齐鲁细胞治疗工程技术有限公司 Preparation method of platelet-rich cytokine plasma freeze-dried powder
JP7175055B1 (en) * 2021-05-14 2022-11-18 セルソース株式会社 Blood-derived growth factor-containing composition and method for preparing the same
US11841189B1 (en) 2022-09-15 2023-12-12 Velico Medical, Inc. Disposable for a spray drying system
US11913722B1 (en) 2022-09-15 2024-02-27 Velico Medical, Inc. Rapid spray drying system
US11913723B1 (en) 2022-09-15 2024-02-27 Velico Medical, Inc. Baffle plate used in a disposable for a spray drying system

Similar Documents

Publication Publication Date Title
WO2016208675A1 (en) Freeze-dried platelet-rich plasma and use thereof
Thorn et al. Autologous fibrin glue with growth factors in reconstructive maxillofacial surgery
Seon et al. Functional improvement of hemostatic dressing by addition of recombinant batroxobin
US9011929B2 (en) Composition for inducing tissue regeneration by activating platelet-rich plasma (PRP)
Liao et al. Combination of guided osteogenesis with autologous platelet-rich fibrin glue and mesenchymal stem cell for mandibular reconstruction
Gu et al. Polyphosphate-crosslinked collagen scaffolds for hemostasis and alveolar bone regeneration after tooth extraction
JP5406915B2 (en) Biocompatible implant
AU2017311658B2 (en) Hemostatic compositions and methods of making thereof
JP2009538677A (en) Biomembrane for tissue regeneration
EP3242656A1 (en) Hemostatic products
KR102059120B1 (en) Coagulation controlling agents and devices comprising the same
US11744917B2 (en) Tissular formulation or adhesive obtained from a blood composition containing platelets, and method for the preparation of said formulation
Crisci et al. A new instrument aid of plastic surgeon: membranes L-PRF (Platelet-Rich-Fibrin)
Brucoli et al. Plasma rich in growth factors (PRGF) for the promotion of bone cell proliferation and tissue regeneration
US20180325961A1 (en) Acellular regenerative products and methods of their manufacture
US8691263B2 (en) Extracellular matrix comprising platelet concentrate and cryoprecipitate polymerized in situ
US20210060066A1 (en) Compositions and methods for platelet enriched fibrin constructs
JP2014030663A (en) Sustained release material for tissue recovery
Altıntop et al. A novel hemostatic scaffold material and the importance of scaffold formation on ending hemorrhage: An experimental rat study.
TWI300806B (en) Medium and method for preserving platelets, red blood cells, and other non-nulceus cells and platelets-containing composition
Johnson et al. A-PRF: A Novel Member of the PRF Clan
Csönge et al. Thermal manipulation of human bone collagen membrane (SoftBone) and platelet-rich fibrin (PRF) membranes
RU2571288C1 (en) Method for producing ex vivo soluble fibrinogen
RU2354406C1 (en) Hemostatic material
US20150140117A1 (en) Bioactivated bone substitute material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16814444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP