WO2016208475A1 - Inspection apparatus and inspection method - Google Patents

Inspection apparatus and inspection method Download PDF

Info

Publication number
WO2016208475A1
WO2016208475A1 PCT/JP2016/067864 JP2016067864W WO2016208475A1 WO 2016208475 A1 WO2016208475 A1 WO 2016208475A1 JP 2016067864 W JP2016067864 W JP 2016067864W WO 2016208475 A1 WO2016208475 A1 WO 2016208475A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
passage
pump
tank
atmospheric
Prior art date
Application number
PCT/JP2016/067864
Other languages
French (fr)
Japanese (ja)
Inventor
遼佑 岸
加藤 康夫
長谷川 茂
伊藤 智啓
真 兼子
康誠 高木
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016111892A external-priority patent/JP6358287B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US15/738,241 priority Critical patent/US10156208B2/en
Priority to DE112016002801.6T priority patent/DE112016002801B4/en
Priority to CN201680036116.8A priority patent/CN107709747B/en
Publication of WO2016208475A1 publication Critical patent/WO2016208475A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir

Definitions

  • the present disclosure relates to an inspection apparatus and an inspection method for inspecting evaporative fuel leakage.
  • the inspection apparatus described in Patent Document 1 inspects the leakage of evaporated fuel by the following method. First, when the internal combustion engine is stopped, the pump is operated with the flow path leading to the atmosphere, the flow path leading to the reference orifice, and the flow path leading to the pump in this order, and the flow leading to the reference orifice is performed. The road pressure is detected as a reference pressure. Next, the electromagnetic valve is driven, the flow path leading to the atmosphere is shut off, and switching is performed so that the flow path leading to the pump and the flow path leading to the canister and the tank communicate. Subsequently, the pump is operated to depressurize the fuel tank, and the pressure in the flow path leading to the canister and the tank is detected as the system pressure. Finally, by comparing the reference pressure and the system pressure, it is determined whether or not the evaporative fuel leakage of the canister and the fuel tank is within an allowable range.
  • the inspection apparatus described in Patent Document 1 uses a solenoid valve to communicate and block the flow path leading to the atmosphere, the flow path leading to the reference orifice, the flow path leading to the pump, and the flow path leading to the canister and the tank. Switching.
  • the drive portion of the electromagnetic valve is composed of a coil, a stator, a mover, and the like. For this reason, the physique of the inspection apparatus is enlarged by the drive part of the electromagnetic valve. In addition, the power consumed by the inspection apparatus may increase due to the driving of the electromagnetic valve.
  • This disclosure aims to provide an inspection apparatus and an inspection method capable of reducing the size and reducing the power consumption.
  • the inspection apparatus includes a pressure sensor, a reference orifice, a pump, and a switching valve.
  • the reference orifice is provided in the first communication path that connects the pressure path provided with the pressure sensor and the tank path communicating with the fuel tank.
  • One of the suction port and the discharge port communicates with an air passage that communicates with the atmosphere, and the other communicates with a pressure passage, and the pump can depressurize or pressurize the pressure passage.
  • the switching valve operates in accordance with the pressure difference between the pressure passage and the atmospheric passage that changes by driving the pump, blocks communication of the second communication passage leading to the pressure passage to other than the pressure passage, and connects the atmospheric passage and the tank passage. Can be switched between a state in which the second communication passage and the tank passage are communicated with each other, and a state in which communication between the atmosphere passage and the pump and other than the atmosphere is blocked.
  • the inspection apparatus can be equipped with a switching valve that operates in accordance with the differential pressure between the pressure passage and the atmospheric passage, thereby eliminating the electromagnetic valve provided in the conventional inspection apparatus. Therefore, the inspection apparatus can be simplified in configuration and downsized. Further, since the inspection device does not use a solenoid valve, it is possible to reduce power consumption.
  • the inspection method includes a first reference pressure detection step, a tank pressure reduction step, a system pressure detection step, and a determination step.
  • the switching valve shuts off the communication of the second communication passage other than the pressure passage other than the pressure passage, and rotates the pump at a low speed while the air passage and the tank passage are in communication with each other. Is stored as the first reference pressure.
  • the switching valve is operated by switching the pump from the low speed rotation to the high speed rotation, and the switching valve blocks communication between the pump and the atmosphere other than the atmosphere passage and communicates the second communication passage and the tank passage. Then, depressurize the tank passage.
  • the pump In the system pressure detection process, the pump is rotated at a low speed with the same switching valve as in the tank pressure reduction process, and the pressure detected by the pressure sensor is stored as the system pressure.
  • the first reference pressure is compared with the system pressure, and when the absolute value of the system pressure is smaller than the absolute value of the first reference pressure, or the absolute value of the difference between the system pressure and the first reference pressure is predetermined. When it is smaller than the threshold value, it is determined that the fuel vapor leakage of the fuel tank is larger than the reference value.
  • the evaporated fuel in the fuel tank It is determined that the leak is smaller than the reference value.
  • the absolute value here is an absolute value relative to the relative pressure when the atmospheric pressure is zero.
  • this inspection method allows the evaporative fuel leakage inspection method to operate the switching valve by changing the pump speed. Further, in this inspection method, the inspection can be completed in a short time by rotating the pump at a high speed to decompress the fuel tank and the canister. Therefore, this inspection method can reduce the power consumed for the inspection.
  • FIG. 2 is an enlarged view showing a state where a switching valve is operated in a II part of FIG.
  • the inspection apparatus is used for inspection of leakage of evaporated fuel from a fuel tank and a canister.
  • FIG. 1 schematically shows an engine 2 to which the inspection apparatus 1 of the first embodiment is applied.
  • a throttle valve 4 and an injector 5 are provided in the intake passage 3 for introducing air into the engine 2.
  • the fuel injected from the injector 5 into the intake passage 3 is introduced into the combustion chamber 6 of the engine 2 together with the air flowing through the intake passage 3, burned in the combustion chamber 6, and then discharged to the atmosphere via the exhaust passage 7. .
  • Evaporated fuel is generated inside the fuel tank 8 in which fuel to be supplied to the injector 5 is stored due to evaporation of the fuel.
  • the fuel tank 8 and the intake passage 3 communicate with each other through the first purge passage 9, the canister 10 and the second purge passage 11.
  • the evaporated fuel generated in the fuel tank 8 flows through the first purge passage 9 and is adsorbed and held by the adsorbent 12 such as activated carbon that the canister 10 has.
  • the inspection device 1 is for inspecting evaporative fuel leakage from the fuel tank 8, the canister 10, the first purge passage 9 and the second purge passage 11 to the outside air.
  • the inspection apparatus 1 includes a pump 20, a pressure sensor 21, a switching valve 30, a reference orifice 22, a ventilation orifice 23, and the like. Further, the inspection apparatus 1 is formed with an atmospheric passage 24, a tank passage 25, a pressure passage 26, a first communication passage 27, a second communication passage 28, and the like.
  • the atmosphere passage 24 is open to the atmosphere through a filter 29.
  • the atmospheric passage 24 communicates with the atmospheric port 36 of the switching valve 30.
  • the tank passage 25 communicates with the canister 10.
  • the canister 10 communicates with the fuel tank 8 via the first purge passage 9 described above.
  • the pump 20 is, for example, a vane pump that sends air from the suction port 201 to the discharge port 202 in accordance with the rotational speed of an impeller (not shown) that is rotated by a motor (not shown).
  • the pump 20 has a suction port 201 in communication with the pressure passage 26 and a discharge port 202 in communication with the atmospheric passage 24.
  • the pump 20 can depressurize and pressurize the pressure passage 26.
  • the pressure passage 26 communicates with the first communication passage 27, the second communication passage 28, and the pressure introduction port 35 of the switching valve 30.
  • the pump 20 can also send air from the discharge port 202 to the suction port 201 when the rotation direction of the impeller is reversed. Therefore, the pump 20 can be mounted with the discharge port 202 and the suction port 201 reversed. That is, the discharge port 202 and the suction port 201 are names for convenience.
  • the pressure sensor 21 provided in the pressure passage 26 detects the atmospheric pressure in the pressure passage 26 and transmits the signal to an electronic control unit (ECU) 50 of the vehicle.
  • the ECU 50 is a computer having a CPU, a RAM, a ROM, an input / output port, and the like.
  • the ECU 50 detects leakage of evaporated fuel from the fuel tank 8 and the like based on a signal input from the pressure sensor 21.
  • the ECU 50 can control the rotational speed of the impeller of the pump 20 by controlling the power supplied to the motor of the pump 20.
  • the first communication passage 27 communicates the pressure passage 26 and the tank passage 25 without passing through the switching valve 30.
  • a reference orifice 22 is provided in the first communication path 27.
  • the reference orifice 22 is set smaller than the size of the opening in which the fuel vapor leakage in the fuel tank 8 is allowed.
  • the current standards of CARB (California Air Resources Board) and EPA (Environmental Protection Agency: US Department of the Environment) require detection of evaporative fuel leakage from an opening corresponding to ⁇ 0.5 mm.
  • the cross-sectional area of the reference orifice 22 is set to ⁇ 0.25 mm, for example.
  • the second communication passage 28 communicates the pressure passage 26 and the ventilation port 38 of the switching valve 30.
  • a ventilation orifice 23 is provided in the second communication passage 28. Note that the vent orifice 23 may not be provided in the second communication path 28.
  • the switching valve 30 is a differential pressure valve that operates in accordance with the differential pressure between the pressure passage 26 and the atmospheric passage 24 that changes as the pump 20 is driven.
  • the switching valve 30 includes a housing 31, a valve member 40, and a spring 41.
  • the housing 31 has a pressure chamber 32, an atmospheric pressure chamber 33, and a tank pressure chamber 34 formed therein.
  • the housing 31 is provided with a pressure introduction port 35 and an atmospheric port 36.
  • the pressure introduction port 35 communicates the pressure passage 26 and the pressure chamber 32.
  • the atmospheric port 36 communicates the atmospheric passage 24 and the atmospheric pressure chamber 33.
  • the tank port 37 communicates the tank passage 25 and the tank pressure chamber 34.
  • the ventilation port 38 communicates the second communication passage 28 and the tank pressure chamber 34.
  • the housing 31 may be composed of a single member or a plurality of members, or a part of the housing 31 may be an atmospheric passage 24, a tank passage 25, a pressure passage 26, or a second communication passage. It may be configured integrally with a member forming 28 or the like. That is, in the first embodiment, the member forming the pressure chamber 32, the atmospheric pressure chamber 33, and the tank pressure chamber 34 is referred to as a housing 31.
  • the valve member 40 has a diaphragm 42 and a valve body 43.
  • the diaphragm 42 divides the pressure chamber 32 and the atmospheric pressure chamber 33 and operates by receiving a differential pressure between the pressure chamber 32 and the atmospheric pressure chamber 33.
  • the diaphragm 42 is urged toward the atmospheric pressure chamber 33 by a spring 41 provided in the pressure chamber 32.
  • the valve body 43 has a connection portion 44 connected to the diaphragm 42 and operates together with the diaphragm 42. As shown in FIG. 2, the valve body 43 can be seated and separated from a first valve seat 381 in which the first seat surface 45 is provided in the ventilation port 38. Further, as shown in FIG. 3, the valve body 43 can be seated on and separated from a second valve seat 331 in which the second seat surface 46 is provided between the tank pressure chamber 34 and the atmospheric pressure chamber 33.
  • valve body 43 may seat to the 1st valve seat 381 with the elastic force of the diaphragm 42 itself, without providing the spring 41.
  • a position when the valve body 43 is seated on the first valve seat 381 is referred to as a first position.
  • valve body 43 when the valve body 43 is seated on the second valve seat 331, the communication to the atmosphere other than the pump 20 and the atmosphere in the atmospheric passage 24 is blocked, while the second communication passage 28 and the tank passage 25. And communicate.
  • a position when the valve body 43 is seated on the second valve seat 331 is referred to as a second position.
  • the valve element 43 is movable between the first position and the second position.
  • the surface on which the valve body 43 is exposed to the ventilation port 38 side when the valve body 43 is seated on the first valve seat 381 is referred to as a first pressure receiving surface 431.
  • a surface where the valve body 43 is exposed to the atmospheric pressure chamber 33 side when the valve body 43 is seated on the second valve seat 331 is referred to as a second pressure receiving surface 432.
  • the second pressure receiving surface 432 is smaller than the first pressure receiving surface 431.
  • the force acting on the valve body 43 due to the differential pressure between the tank pressure chamber 34 and the atmospheric pressure chamber 33 is the second ream when the valve body 43 is in the first position.
  • the differential pressure between the passage 28 and the tank pressure chamber 34 is smaller than the force acting on the valve body 43.
  • the second communication passage 28 communicates with the pressure passage 26. Therefore, the differential pressure between the atmospheric passage 24 and the pressure passage 26 when the valve body 43 moves from the second position to the first position is the atmospheric passage 24 when the valve body 43 moves from the first position to the second position. And a pressure difference smaller than the pressure passage 26.
  • the differential pressure between the atmospheric passage 24 and the pressure passage 26 when the valve body 43 moves from the first position to the second position is referred to as operating pressure.
  • the differential pressure between the atmospheric passage 24 and the pressure passage 26 when the valve body 43 moves from the first position to the second position is referred to as return pressure.
  • FIG. 4 shows the relationship between the operating pressure and return pressure of the switching valve 30.
  • the horizontal axis indicates a value smaller than zero.
  • the absolute value of the relative pressure when the atmospheric pressure is 0 is assumed.
  • the broken line B in FIG. 4 shows the characteristics of the pressure of the air passing through both the reference orifice 22 provided in the first communication passage 27 and the ventilation orifice 23 provided in the second communication passage 28 and the flow rate thereof. Yes.
  • this characteristic is referred to as a reference and vent orifice characteristic.
  • the solid line C in FIG. 4 shows the characteristics of the flow path resistance and the flow rate when the pump 20 is rotated at a low speed.
  • the broken line D in FIG. 4 shows the characteristics of the flow path resistance and the flow rate when the pump 20 is rotated at a high speed.
  • the low-speed rotation of the pump 20 is a state where a predetermined current is supplied to the motor of the pump 20 to rotate the impeller of the pump 20, or the motor or impeller of the pump 20 is rotated at a predetermined number of rotations. The state when it is rotated.
  • the high-speed rotation of the pump 20 is a state in which a predetermined current larger than that at the time of low-speed rotation is supplied to the motor of the pump 20 to rotate the impeller of the pump 20 or a speed that is higher than that at the time of low-speed rotation.
  • the current value or the number of rotations supplied to the pump 20 can be set as appropriate through experiments.
  • the rotational speed of the pump 20 during high speed rotation is set to a rotational speed at which the fuel tank 8 does not collapse due to deformation or the like when the fuel tank 8 is depressurized by driving the pump 20.
  • the pressure at which the fuel tank 8 is crushed by deformation or the like is indicated by a symbol E.
  • the pressure when the pump 20 rotates at a low speed in the reference orifice characteristic indicated by the solid line A is referred to as a first reference pressure Pref1.
  • a leak determination threshold value set in consideration of an output error of the pressure sensor 21 based on the first reference pressure Pref1 is indicated by a symbol T.
  • the second reference pressure Pref2 is set to a value smaller than the pressure at which the fuel tank 8 is crushed by deformation or the like when the fuel tank 8 is depressurized by driving the pump 20.
  • the operating pressure of the valve member 40 is set to be larger than the first reference pressure Pref1 or the leak judgment threshold T and smaller than the second reference pressure Pref2.
  • the return pressure of the valve member 40 is set to be smaller than the first reference pressure Pref1 or the leak judgment threshold T and larger than zero.
  • the valve member 40 has a predetermined hysteresis in the operating pressure and the return pressure. That is, when the differential pressure between the atmospheric passage 24 and the pressure passage 26 is larger than the first reference pressure Pref1 or the leak judgment threshold T and smaller than the second reference pressure Pref2, the valve member 40 is moved from the first position to the first position. Move to 2 position. On the other hand, when the differential pressure between the atmospheric passage 24 and the pressure passage 26 is smaller than the first reference pressure Pref1 or the leakage judgment threshold T and larger than 0, the valve member 40 moves from the second position to the first position. To do.
  • the middle stage is a graph showing the rotational speed of the pump 20 with the passage of time
  • the lower stage shows the detected pressure of the pressure sensor 21 with the passage of time. It is a graph which shows a change. Note that the pump 20 depressurizes the pressure passage 26 during normal rotation. Here too, when referring to the magnitude of the pressure, it means the absolute value.
  • the inspection for evaporative fuel leakage starts when a predetermined time has elapsed after the operation of the engine 2 is stopped.
  • the predetermined time is set to a time required for the temperature of the vehicle to stabilize.
  • the ECU 50 detects the atmospheric pressure P0. This process is performed with the pump 20 stopped before the time t0 to the time t1 in FIG. At that time, the switching valve 30 is in the first position, and the pressure passage 26, the first communication passage 27, and the atmospheric passage 24 communicate with each other. Therefore, the pressure sensor 21 detects the atmospheric pressure P0 and transmits it to the ECU 50. The ECU 50 corrects various parameters used for subsequent processing according to the altitude of the vehicle calculated based on the atmospheric pressure P0.
  • the ECU 50 drives the pump 20 at a low speed.
  • the pump 20 starts driving at low speed rotation at time t1 in FIG. 7, the pressure detected by the pressure sensor 21 starts to decrease thereafter.
  • the switching valve 30 shown in FIG. 8A1 is in the first position.
  • hatching is described in the flow path that is depressurized by driving the pump 20.
  • air flows through the reference orifice 22 of the first communication passage 27 that communicates with the pressure passage 26.
  • the ECU 50 determines whether or not a predetermined time has elapsed from the start of driving of the pump 20.
  • the ECU 50 repeats the process of S3 until a predetermined time has elapsed.
  • the pressure detected by the pressure sensor 21 that has decreased since time t1 in FIG. 7 reaches the first reference pressure Pref1 at time t2. Then, after the time t2, the first reference pressure Pref1 is maintained.
  • the ECU 50 determines whether or not the detected pressure of the pressure sensor 21 reaches the predetermined pressure and maintains the predetermined pressure instead of determining whether or not the predetermined time has elapsed. You may perform the process which determines. In that case, the ECU 50 repeats the process of S3 until the detected pressure of the pressure sensor 21 reaches the predetermined pressure.
  • the ECU 50 stores the pressure detected by the pressure sensor 21 as the first reference pressure Pref1. This process is performed between time t2 and t3 in FIG. The flow rate characteristic at that time is indicated by a symbol M1 in the graph of FIG.
  • the ECU 50 switches the drive of the pump 20 to high speed rotation.
  • the pump 20 is switched to high speed rotation at time t3 in FIG.
  • the flow path indicated by hatching in FIG. 8 (B1) is depressurized, and the switching valve 30 starts the switching operation.
  • the flow rate characteristics at that time shift from the symbol M1 shown in the graph of FIG. 8B2 to the direction in which the flow rate and pressure increase along the solid line A (the direction of the solid arrow Ah1 in FIG. 8B2). .
  • the switching valve 30 is switched from the first position to the second position. That is, as shown in FIG. 8 (C1), the switching valve 30 is in the second position.
  • the pressure detected by the pressure sensor 21 decreases after time t4 in FIG.
  • the flow rate characteristic at that time shifts from that indicated by the symbol M1 in the graph of FIG. 8C2 to that indicated by the symbol M3 via the one indicated by the symbol M2.
  • the detected pressure of the pressure sensor 21 becomes the second reference pressure Pref2.
  • the pressure detected by the pressure sensor 21 maintains the second reference pressure Pref2 after time t5 in FIG.
  • time t5 as indicated by a broken line F
  • the inside of the canister 10 and the inside of the fuel tank 8 are also depressurized and approach the second reference pressure Pref2.
  • the flow path indicated by hatching in FIG. 8 (D1) is decompressed, and the interior of the canister 10 and the fuel tank 8 are decompressed.
  • the flow rate characteristic at that time is indicated by a symbol M3 in the graph of FIG. 8 (D2).
  • the ECU 50 determines whether or not a predetermined time has elapsed since the detected pressure of the pressure sensor 21 has reached the second reference pressure Pref2. The ECU 50 repeats the process of S8 until a predetermined time has elapsed.
  • the ECU 50 may perform a process of determining whether or not the detected pressure of the pressure sensor 21 has become larger than the second reference pressure Pref2 instead of or in addition to determining the elapse of the predetermined time. Good. In that case, the ECU 50 repeats the process of S8 until the detected pressure of the pressure sensor 21 becomes larger than the second reference pressure Pref2. Further, the ECU 50 may perform processing for determining whether or not a predetermined time has elapsed since the pressure detected by the pressure sensor 21 has been switched to high speed rotation of the pump.
  • ECU50 will transfer a process to S9, if predetermined time passes, after the detection pressure of the pressure sensor 21 becomes 2nd reference pressure Pref2.
  • the ECU 50 switches the drive of the pump 20 to low speed rotation.
  • the pump 20 is switched to low speed rotation at time t7 in FIG. 7, and thereafter the detected pressure decreases.
  • the switching valve 30 maintains the state of the second position without switching.
  • the flow rate characteristic at that time shifts from that indicated by the symbol M4 in the graph of FIG. 9 (F2) to that indicated by the symbol M5.
  • the ECU 50 determines whether or not a predetermined time has elapsed since the drive of the pump 20 was switched to low speed rotation.
  • the ECU 50 repeats the process of S10 until a predetermined time has elapsed.
  • the pressure detected by the pressure sensor 21 is maintained at a constant pressure after time t8 in FIG.
  • the flow rate characteristic at that time is indicated by the symbol M5 in the graph of FIG. 9 (F2).
  • the ECU 50 may perform a process of determining whether or not the detected pressure of the pressure sensor 21 is maintained at the predetermined pressure instead of or at the same time as determining whether the predetermined time has elapsed. Good. In that case, ECU50 repeats the process of S10 until the detection pressure of the pressure sensor 21 maintains a predetermined pressure.
  • the ECU 50 stores the detected pressure of the pressure sensor 21 as the system pressure Pt. This process is performed between times t8 and t9 in FIG.
  • the system pressure means that the switching valve 30 blocks communication between the pump 20 and the atmosphere other than the atmosphere in the atmosphere passage 24 and rotates the pump 20 at a low speed in a state where the second communication passage 28 and the tank passage 25 are communicated. Is the pressure detected by the pressure sensor 21 at the time.
  • the ECU 50 compares the first reference pressure Pref1 and the system pressure Pt.
  • the predetermined threshold is a value set in consideration of an output error of the pressure sensor 21 and the like, and is a difference between the leak determination threshold T and the first reference pressure Pref1.
  • the ECU 50 determines that the fuel vapor leakage hole from the fuel tank 8 or the canister 10 is smaller than the reference value.
  • the reference value is a value corresponding to the cross-sectional area of the reference orifice 22.
  • the ECU 50 determines that the absolute value of the system pressure Pt is equal to or smaller than the absolute value of the first reference pressure Pref1, or the difference between the absolute value of the system pressure Pt and the absolute value of the first reference pressure Pref1 is a predetermined value. When it is below the threshold, the process proceeds to S14. This is a case where the detected pressure of the pressure sensor 21 is the one indicated by the broken line Y in the lower graph of FIG. 7 (system pressure Pty shown in FIG. 7).
  • the ECU 50 determines that the fuel vapor leakage from the fuel tank 8 or the canister 10 is larger than the reference value.
  • the ECU 50 performs a process of turning on a warning lamp on the instrument panel during the next engine operation.
  • the ECU 50 stops driving the pump 20, or reversely rotates the impeller of the pump 20. In either case, the detected pressure decreases after time t9 in FIG.
  • the ECU 50 stops driving the pump 20 in S17 and ends the process.
  • the ECU 50 may drive the pump 20 in the normal direction at a low speed.
  • the detected pressure of the pressure sensor 21 decreases after time t10 in FIG. 7, and the first reference pressure Pref1 is maintained after time 11.
  • the flow path indicated by hatching in FIG. 9 (H 1) is decompressed, and air flows through the reference orifice 22 of the first communication path 27 communicating with the pressure path 26.
  • the flow rate characteristic at that time shifts from that indicated by the symbol M5 in the graph of FIG. 9 (H2) to that indicated by the symbol M1.
  • the ECU 50 compares the first reference pressure Pref1 detected after time 11 with the first reference pressure Pref1 detected in S4, and determines whether or not the error of these values is within a predetermined range.
  • the ECU 50 may measure the atmospheric pressure P0 again, and compare the detected value with the atmospheric pressure P0 detected in S1, and determine whether or not the error of these values is within a predetermined range.
  • the ECU 50 ends the process when one or both of these errors are within a predetermined range. On the other hand, when one or both of these errors are larger than the predetermined range, the ECU 50 discards the determination made in S13 to S15.
  • the processing from S2 to S4 corresponds to the first reference pressure detection step
  • the processing from S5 to S8 corresponds to the tank pressure reduction step
  • the processing from S9 to S11 corresponds to the system pressure detection step
  • S12 To S14 correspond to the determination step.
  • the inspection apparatus 1 or the inspection method of the first embodiment has the following operational effects.
  • the inspection apparatus 1 reduces the reference pressure by the reference orifice 22, that is, the first reference pressure Pref1 and the fuel tank 8 only by reducing the pressure passage 26 by driving the pump 20 by the flow path configuration. It is possible to detect both of the system pressures Pt. Therefore, since the inspection apparatus 1 can detect both the reference pressure and the system pressure Pt with the rotation direction of the impeller of the pump 20 being the same, the detection accuracy can be improved.
  • the switching valve 30 provided in the inspection device 1 of the first embodiment has a pressure chamber 32, an atmospheric pressure chamber 33, and a tank pressure chamber 34 formed inside the housing 31.
  • the valve member 40 operates according to the differential pressure between the pressure chamber 32 and the atmospheric pressure chamber 33. With the configuration of the switching valve 30, the valve member 40 can be operated by changing the differential pressure between the pressure chamber 32 and the atmospheric pressure chamber 33 by controlling the rotation speed of the pump 20.
  • the valve member 40 with which the switching valve 30 is provided is the absolute value of the differential pressure
  • the absolute value of the differential pressure between the pressure chamber 32 and the atmospheric pressure chamber 33 when the valve member 40 moves from the second position to the first position is smaller.
  • the valve member 40 is moved to the second position. It is possible to stay in place. Therefore, the system pressure Pt can be detected by rotating the pump 20 at a low speed while the valve member 40 is in the second position.
  • the valve member 40 included in the switching valve 30 includes a diaphragm 42 and a valve body 43 that operates together with the diaphragm 42.
  • the valve body 43 has a second pressure receiving surface exposed to the atmosphere port 36 when seated on the second valve seat 331 than the first pressure receiving surface 431 exposed to the vent port 38 when seated on the first valve seat 381. 432 is smaller.
  • the switching valve 30 can make the absolute value of the return pressure smaller than the absolute value of the operating pressure.
  • the absolute value of the operating pressure of the switching valve 30 is larger than the absolute value of the first reference pressure Pref1 or the absolute value of the leak judgment threshold (T), and the second reference pressure Pref2 It is set smaller than the absolute value.
  • the valve member 40 can be moved from the first position to the second position, and the tank can be decompressed in a short time.
  • the absolute value of the return pressure of the switching valve 30 is set to be smaller than the absolute value of the first reference pressure Pref1 or the absolute value of the leak judgment threshold (T) and larger than 0.
  • the inspection apparatus 1 includes the ventilation orifice 23 in the second communication path 28.
  • the vent orifice 23 is a pressure introduction port from the atmospheric passage 24 and the tank passage 25 through the second communication passage 28 and the pressure passage 26 while the valve member 40 of the switching valve 30 is moving between the first position and the second position.
  • the flow of air from 35 to the pressure chamber 32 is suppressed. Therefore, the vent orifice 23 can guarantee the operation of the valve member 40.
  • the evaporative fuel leakage inspection method includes a first reference pressure detection step (S2-S4), a tank pressure reduction step (S5-S8), a system pressure detection step (S9-S11), and a determination step ( S12-S14).
  • the evaporative fuel leakage inspection method can control the operation of the switching valve 30 by changing the rotational speed of the pump 20. Further, in this inspection method, the evaporated fuel leakage inspection can be completed in a short time by rotating the pump 20 at a high speed to decompress the fuel tank 8 and the canister 10. Therefore, this inspection method can reduce the electric power consumed for the evaporative fuel leakage inspection.
  • the processing from S1 to S7 is the same as the processing of the first embodiment.
  • the ECU 50 determines whether or not the detected pressure of the pressure sensor 21 has become larger than the second reference pressure Pref2. If the ECU 50 determines in S20 that the pressure detected by the pressure sensor 21 has become larger than the second reference pressure Pref2, the process proceeds to S9.
  • the ECU 50 determines in S20 that the detected pressure of the pressure sensor 21 is equal to or lower than the second reference pressure Pref2, the process proceeds to S21, and the detected pressure of the pressure sensor 21 becomes the second reference pressure Pref2. It is determined whether or not a predetermined time has passed. If the predetermined time has not elapsed in S21, the ECU 50 returns the process to S20.
  • the ECU 50 proceeds to S22.
  • the predetermined time is set to a time during which the fuel tank 8 and the canister 10 can be sufficiently decompressed by driving the pump 20.
  • the ECU 50 determines that the fuel tank 8 or the canister 10 has a hole larger than the sum of the cross-sectional area of the reference orifice 22 and the cross-sectional area of the ventilation orifice 23.
  • the sum of the cross-sectional area of the reference orifice 22 and the cross-sectional area of the ventilation orifice 23 is referred to as a large diameter reference value.
  • the cross-sectional area of the reference orifice 22 is referred to as a small diameter reference value.
  • the ECU 50 performs a process of turning on a warning lamp on the instrument panel during the next engine operation, and ends the process.
  • the ECU 50 determines that the absolute value of the system pressure Pt is equal to or less than the absolute value of the first reference pressure Pref1, or the difference between the absolute value of the system pressure Pt and the absolute value of the first reference pressure Pref1 is greater than a predetermined threshold value. When it is smaller, the process proceeds to S24.
  • the ECU 50 determines that the evaporated fuel leakage from the fuel tank 8 or the canister 10 is larger than the small diameter reference value and smaller than the large diameter reference value. In S15, the ECU 50 performs a process of turning on the warning lamp on the instrument panel during the next engine operation.
  • the processing from S20 to S22 corresponds to the large diameter determination step
  • the processing from S12, S13, and S24 corresponds to the small diameter determination step.
  • the inspection method of the second embodiment can detect an evaporative fuel leak larger than the large diameter reference value by the large diameter determination step. Moreover, it is possible to detect the fuel vapor leakage between the small diameter reference value and the large diameter reference value by the small diameter determination step.
  • FIG. 12 shows an inspection apparatus 1 according to the third embodiment of the present disclosure.
  • the valve member 40 of the switching valve 30 includes a first valve body 401 and a second valve body 402.
  • the first valve body 401 can be seated and separated from the first valve seat 381, and the second valve body 402 can be seated and separated from the second valve seat 331.
  • the first valve body 401 and the second valve body 402 are provided at a predetermined distance. Thereby, in order to switch the 1st position and the 2nd position in change valve 30, it is possible to shorten time for valve member 40 to move.
  • the switching valve 30 the air flowing into the tank pressure chamber 34 from the atmospheric passage 24 and the tank passage 25 is transferred from the ventilation port 38 while the valve member 40 is moving between the first position and the second position. It is possible to reduce the flow rate flowing from the pressure introduction port 35 to the pressure chamber 32 through the second communication passage 28 and the pressure passage 26. Therefore, the switching valve 30 can guarantee the operation of the valve member 40.
  • the ventilation orifice 23 of the second communication path 28 can be eliminated by shortening the time for the valve member 40 to move between the first position and the second position. It is also possible to adjust the flow passage cross-sectional area of the second communication path 28 so that the second communication path 28 has the same function as the vent orifice 23.
  • FIG. 13 An inspection apparatus 1 according to the fourth embodiment of the present disclosure is shown in FIG.
  • the ventilation orifice 23 is provided between the second communication passage 28 of the pressure passage 26 and the suction port 201.
  • the ventilation orifice 23 is provided between a portion P261 connected to the second communication passage 28 of the pressure passage 26 and a portion P262 connected to the suction port 201 of the pressure passage 26.
  • the sectional area of the ventilation orifice 23 is larger than the sectional area of the reference orifice 22.
  • FIG. 15 shows the time axis in the evaporative fuel leakage inspection
  • the middle part is a graph showing the rotational speed of the pump 20 with time
  • the lower part shows the detected pressure of the pressure sensor 21 with time. It is a graph which shows a change.
  • the pump 20 depressurizes the pressure passage 26 during normal rotation.
  • the magnitude of the pressure it means the absolute value.
  • the processing from S1 to S6 is the same as the processing of the first embodiment.
  • the drive of the pump 20 is switched to high speed rotation in S5
  • the pressure detected by the pressure sensor 21 gradually decreases after time t4 in FIG.
  • the valve member 40 starts moving from the first position to the second position (S6).
  • the pressure detected by the pressure sensor 21 once returns to the atmospheric pressure at time t5 in FIG. 15, and then the pressure waveforms in the canister 10 and the fuel tank 8 (broken line) It shows the same change as F).
  • the ECU 50 determines whether or not a predetermined time has elapsed since the detected pressure of the pressure sensor 21 has reached the target value.
  • the ECU 50 repeats the process of S40 until a predetermined time has elapsed.
  • the target value in S40 is a value determined from the pressure resistance of the fuel tank 8, the size of the hole to be detected, and the like.
  • the ECU 50 may perform a process of determining whether or not the detected pressure of the pressure sensor 21 has become larger than the target value instead of determining whether or not the predetermined time has elapsed. In that case, the ECU 50 repeats the process of S40 until the detected pressure of the pressure sensor 21 becomes larger than the target value. Further, the ECU 50 may perform processing for determining whether or not a predetermined time has elapsed since the pressure detected by the pressure sensor 21 has been switched to high speed rotation of the pump.
  • ECU50 will transfer a process to S9, if predetermined time passes after the detection pressure of the pressure sensor 21 becomes a target value.
  • the atmospheric pressure chamber 33 and the pressure chamber 32 communicate with each other via the second communication passage 28 and the pressure passage 26. At this time, a differential pressure between the pressure chamber 32 and the atmospheric pressure chamber 33 can be formed by the ventilation orifice 23. Thereby, the state in which the valve body 43 exists in a 2nd position is maintainable.
  • the pressure passage 26 in the vicinity of the pressure sensor 21 and the fuel tank 8 and the canister 10 are connected to the second communication passage 28 from the portion P263 of the pressure passage 26 connected to the pressure sensor 21. Are communicated via the pressure passage 26, the second communication passage 28, the tank pressure chamber 34, and the tank passage 25 to the portion P 261 connected to.
  • air is passed through the pressure passage 26 and the second communication passage 28 from the portion P263 connected to the pressure sensor 21 of the pressure passage 26 to the portion P261 connected to the second communication passage 28. Since there is no portion such as the orifice 23 that becomes a resistance for the gas to flow, leakage in the canister 10 and the fuel tank 8 can be detected with high accuracy.
  • FIG. 16 shows an inspection apparatus 1 according to the fifth embodiment of the present disclosure.
  • a check valve 60 is provided on the pressure passage 26 between the ventilation orifice 23 and the pump 20.
  • the check valve 60 is provided between the portion P261 and the portion P262 of the pressure passage 26 and on the pump 20 side of the ventilation orifice 23.
  • the check valve 60 includes a housing 61, a valve member 62, and a spring 63.
  • the housing 61 has two ports 611 and 612.
  • the port 611 communicates with the pressure passage 26 in which the ventilation orifice 23 is provided.
  • the port 612 communicates with the pressure passage 26 on the site P262 side.
  • the two ports 611 and 612 communicate with the valve chamber 610 included in the housing 61.
  • the valve member 62 is accommodated in the valve chamber 610 so as to be reciprocally movable.
  • the valve member 62 can abut on a valve seat 613 formed so as to protrude around the inside of the port 612.
  • the spring 63 is provided in the radial direction of the valve seat 613.
  • the first end of the spring 63 is in contact with the inner wall of the housing 61.
  • the second end of the spring 63 is in contact with the valve member 62.
  • the spring 63 biases the valve member 62 so that the valve member 62 is separated from the valve seat 613.
  • the evaporative fuel leakage inspection method according to the fifth embodiment is performed in accordance with the flowcharts shown in FIGS.
  • the check valve 60 when there is no relatively large pressure difference between the gas pressure on the port 611 side and the gas pressure on the port 612 side, for example, when the pump 20 is driven at a low speed in S9, Since the valve member 62 is separated from the valve seat 613, the gas flow between the port 611 and the port 612 is allowed. On the other hand, when the gas pressure on the port 611 side is larger than the gas pressure on the port 612 side by a predetermined value or more, for example, when the drive of the pump 20 is stopped in S16, the valve member 62 contacts the valve seat 613, The gas flow between the port 611 and the port 612 is blocked. That is, the check valve 60 is a normally open check valve.
  • the pressure chamber 32 is supplied to the fuel tank 8 and the canister 10 and the like due to the size relationship. Gas flows in from. For this reason, the time until the pressure in the pressure chamber 32 is increased and the valve body 43 returns to the first position becomes longer.
  • the check valve 60 prevents the back flow from the pressure chamber 32 to the fuel tank 8 and the canister 10, and shortens the time until the valve body 43 returns to the first position. . Thereby, the time required for the inspection of the evaporated fuel leakage can be shortened.
  • FIGS. 17 and 18 An inspection apparatus 1 according to the sixth embodiment of the present disclosure is shown in FIGS. 17 and 18.
  • a switching valve 70 having a configuration different from that of the switching valve 30 is provided, and a check valve 80 is provided on the pressure passage 26 between the ventilation orifice 23 and the pump 20.
  • the pump 20 pressurizes the fuel tank 8 and the canister 10 to inspect the fuel tank 8 and the canister 10 for fuel vapor leakage.
  • the switching valve 70 is a differential pressure valve that operates in accordance with the differential pressure between the pressure passage 26 and the atmospheric passage 24 that changes as the pump 20 is driven.
  • the switching valve 70 includes a housing 31, a valve member 90, and a spring 91.
  • the valve member 90 includes a diaphragm 92, a first valve body 901, and a second valve body 902.
  • the diaphragm 92 divides the pressure chamber 32 and the atmospheric pressure chamber 33 and operates by receiving a differential pressure between the pressure chamber 32 and the atmospheric pressure chamber 33.
  • 1st valve body 901 and 2nd valve body 902 have the connection part 94 connected to the diaphragm 92, and operate
  • FIG. 1st valve body 901 and 2nd valve body 902 have the connection part 94 connected to the diaphragm 92, and operate
  • the first valve body 901 is provided at the end of the connection portion 94 protruding from the ventilation port 38 on the side opposite to the side connected to the diaphragm 92. As a result, the first valve body 901 reciprocates together with the connecting portion 94 outside the housing 31.
  • the first valve body 901 can be seated and separated from a first valve seat 382 provided around the outside of the ventilation port 38.
  • the first valve body 901 is biased to be seated on the first valve seat 382 by a spring 91 provided on the opposite side of the first valve body 901 from the first valve seat 382 side.
  • the first valve body 901 may be configured to be seated on the first valve seat 382 by the elastic force of the diaphragm 92 itself without providing the spring 91.
  • the second valve body 902 is provided on the diaphragm 92 side of the connecting portion 94 so as to be able to reciprocate in the atmospheric pressure chamber 33.
  • the second valve body 902 can be seated on and separated from a second valve seat 332 provided between the tank pressure chamber 34 and the atmospheric pressure chamber 33 so as to protrude in the direction of the diaphragm 92.
  • the first valve body 901 is configured to be separated from the first valve seat 382 when the second valve body 902 is seated on the second valve seat 332.
  • a position when the first valve body 901 is seated on the first valve seat 382 is referred to as a first position.
  • the second valve body 902 when the second valve body 902 is seated on the second valve seat 332, the communication to the atmosphere 20 other than the pump 20 and the atmosphere is blocked while the second communication path 28 and the tank
  • the passage 25 communicates with the passage 25.
  • a position when the valve body 43 is seated on the second valve seat 331 is referred to as a second position.
  • the valve member 90 is movable between the first position and the second position.
  • second pressure receiving surface 904. a surface where the second valve body 902 is exposed to the atmospheric pressure chamber 33 side when the second valve body 902 is seated on the second valve seat 332 is referred to as a second pressure receiving surface 904.
  • the second pressure receiving surface 904 is smaller than the first pressure receiving surface 903. Therefore, the force that the differential pressure between the tank pressure chamber 34 and the atmospheric pressure chamber 33 acts on the second valve body 902 when the valve member 90 is in the second position is the first when the valve member 90 is in the first position.
  • the differential pressure between the two communication passages 28 and the tank pressure chamber 34 is smaller than the force acting on the first valve body 901. Therefore, the differential pressure between the atmospheric passage 24 and the pressure passage 26 when the valve member 90 moves from the second position to the first position is the atmospheric passage 24 when the valve body 43 moves from the first position to the second position. And a pressure difference smaller than the pressure passage 26.
  • the differential pressure between the atmospheric passage 24 and the pressure passage 26 when the valve member 90 moves from the first position to the second position is referred to as operating pressure.
  • the differential pressure between the atmospheric passage 24 and the pressure passage 26 when the valve member 90 moves from the first position to the second position is referred to as return pressure.
  • the relationship between the operating pressure and the return pressure in the switching valve 70 is the same as that of the switching valve 30.
  • the check valve 80 has a housing 81, a valve member 82, and a spring 83.
  • the housing 81 has two ports 811 and 812.
  • the port 811 communicates with the pressure passage 26 in which the ventilation orifice 23 is provided.
  • the port 812 communicates with a portion P262 connected to the discharge port 202 of the pressure passage 26.
  • the two ports 811 and 812 communicate with a valve chamber 810 included in the housing 81.
  • the valve member 82 is accommodated in the valve chamber 810 and provided so as to be reciprocally movable.
  • the valve member 82 can contact a valve seat 813 formed around the inside of the port 812.
  • the spring 83 is provided on the opposite side to the valve seat 813 of the valve member 82.
  • the first end of the spring 83 is in contact with the inner wall of the housing 81.
  • the second end of the spring 83 is in contact with the valve member 82.
  • the spring 83 biases the valve member 82 so that the valve member 82 contacts the valve seat 813.
  • the check valve 80 when the gas pressure on the port 812 side is smaller than the gas pressure on the port 811 side, the valve member 82 contacts the valve seat 823, and therefore, between the port 811 and the port 812. Regulates gas flow at On the other hand, when the gas pressure on the port 812 side is larger than the gas pressure on the port 811 side by a predetermined value or more, for example, when the pump 20 is driven at low speed rotation, the valve member 82 is separated from the valve seat 813. , Gas flow between the port 811 and the port 812 is allowed. That is, the check valve 80 is a normally closed check valve.
  • FIG. 19 shows the time axis in the evaporative fuel leak inspection
  • the middle part is a graph showing the rotation speed of the pump 20 with time
  • the lower part shows the detected pressure of the pressure sensor 21 with time. It is a graph which shows a change.
  • the pump 20 pressurizes the pressure passage 26 during normal rotation.
  • the absolute value is assumed.
  • the inspection for evaporative fuel leakage starts when a predetermined time has elapsed after the operation of the engine 2 is stopped.
  • the predetermined time is set to a time required for the temperature of the vehicle to stabilize.
  • the ECU 50 detects the atmospheric pressure P0. This process is performed in a state where the pump 20 is stopped between time t0 and time t1 in FIG. At this time, the switching valve 70 is in the first position.
  • the ECU 50 drives the pump 20 at a low speed.
  • the pump 20 starts to be driven at a low speed rotation at time t1 in FIG. 19, the pressure detected by the pressure sensor 21 starts to increase thereafter.
  • air flows through the reference orifice 22 of the first communication passage 27 communicating with the pressure passage 26.
  • the ECU 50 determines whether or not a predetermined time has elapsed from the start of driving of the pump 20. In this process, the detected pressure of the pressure sensor 21 that has increased after time t1 in FIG. 19 reaches the first reference pressure Pref1 at time t2. Then, after the time t2, the first reference pressure Pref1 is maintained. In S3, the ECU 50 determines whether or not the detected pressure of the pressure sensor 21 reaches the predetermined pressure and maintains the predetermined pressure instead of determining whether or not the predetermined time has elapsed. You may perform the process which determines.
  • the ECU 50 stores the detected pressure of the pressure sensor 21 as the first reference pressure Pref1 (between times t2 and t3 in FIG. 19).
  • the ECU 50 switches the drive of the pump 20 to high speed rotation.
  • the drive of the pump 20 is switched to high speed rotation at time t3 in FIG. 19
  • the detected pressure of the pressure sensor 21 gradually increases after time t4 in FIG.
  • the valve member 90 starts moving from the first position to the second position (S6).
  • the valve member 90 moves, the pressure detected by the pressure sensor 21 once returns to atmospheric pressure at time t5 in FIG. 19, and then the pressure waveforms in the canister 10 and the fuel tank 8 (broken line F). ) Shows the same change.
  • the valve member 90 When the valve member 90 is moving from the first position to the second position in S6, the inside of the canister 10 and the fuel tank 8 are pressurized. Thereby, when the small hole below the sum total of the cross-sectional area of the reference
  • the detected pressure graph of the pressure sensor 21 in FIG. As shown, the detected pressure maintains a pressure corresponding to the size of the hole where the fuel vapor may leak.
  • the ECU 50 determines whether or not a predetermined time has elapsed since the detected pressure of the pressure sensor 21 has reached the target value. The ECU 50 repeats the process of S40 until a predetermined time has elapsed. When a predetermined time has elapsed since the detected pressure of the pressure sensor 21 has reached the target value, the ECU 50 proceeds to S9.
  • the ECU 50 may determine whether or not a predetermined time has elapsed since the pump was switched to high speed rotation.
  • the ECU 50 switches the drive of the pump 20 to low speed rotation.
  • the pump 20 switches to low speed rotation at time t7 in FIG. 19, and thereafter the detected pressure decreases, but the switching valve 70 maintains the state of the second position without switching.
  • the ECU 50 determines whether or not a predetermined time has elapsed since the drive of the pump 20 was switched to low speed rotation.
  • the ECU 50 repeats the process of S10 until a predetermined time has elapsed. In this process, the pressure detected by the pressure sensor 21 is maintained at a constant pressure after time t8 in FIG.
  • the ECU 50 may perform a process of determining whether or not the detected pressure of the pressure sensor 21 is maintained at the predetermined pressure instead of or at the same time as determining whether the predetermined time has elapsed. Good.
  • the ECU 50 stores the detected pressure of the pressure sensor 21 as the system pressure Pt. This process is performed between times t8 and t9 in FIG.
  • the ECU 50 compares the first reference pressure Pref1 and the system pressure Pt. When the absolute value of the system pressure Pt is greater than the absolute value of the first reference pressure Pref1 and the absolute value of the difference between the system pressure Pt and the first reference pressure Pref1 is greater than a predetermined threshold, the ECU 50 proceeds to S13. Transition.
  • the ECU 50 determines that the fuel vapor leakage hole from the fuel tank 8 or the canister 10 is smaller than the reference value.
  • the ECU 50 determines that the absolute value of the system pressure Pt is equal to or less than the absolute value of the first reference pressure Pref1, or the absolute value of the difference between the system pressure Pt and the first reference pressure Pref1 is equal to or less than a predetermined threshold value.
  • the process proceeds to S14. This is a case where the detected pressure of the pressure sensor 21 is the one indicated by the broken line Y in the lower graph of FIG. 19 (system pressure Pty shown in FIG. 19).
  • the ECU 50 determines that the fuel vapor leakage from the fuel tank 8 or the canister 10 is larger than the reference value.
  • the ECU 50 performs a process of turning on a warning lamp on the instrument panel during the next engine operation.
  • the ECU 50 stops driving the pump 20, or reversely rotates the impeller of the pump 20. In either case, the detected pressure decreases after time t9 in FIG.
  • the switching valve 70 starts a switching operation from the second position to the first position.
  • the ECU 50 stops driving the pump 20 in S17.
  • the check valve 80 which is a normally closed check valve, blocks the gas flow between the port 811 and the port 812. Thereby, after the pressure of the pressure chamber 32 having a smaller volume than the fuel tank 8 and the canister 10 becomes close to the atmospheric pressure to some extent, the pressure in the fuel tank 8 and the canister 10 returns to the atmospheric pressure.
  • the fuel tank 8 and the canister 10 are pressurized and the fuel vapor leakage is inspected.
  • the gas flows from the pressure chamber 32 into the fuel tank 8, the canister 10 and the like due to the size relationship.
  • the check valve 80 prevents backflow from the pressure chamber 32 to the fuel tank 8 and the canister 10. Thereby, the time until the valve member 90 returns to the first position can be shortened.
  • the valve member 90 includes a first valve body 901 that can be seated on the first valve seat 382 and a second valve body 902 that can be seated on the second valve seat 332. ing. Since the first valve body 901 and the second valve body 902 are provided at a predetermined distance, the time required for the valve member 90 to move to switch between the first position and the second position in the switching valve 70 is shortened. can do.
  • the inspection apparatus 1 operates the switching valve 30 by reducing the pressure passage 26 by driving the pump 20, and detects the first reference pressure Pref1, the second reference pressure Pref2, and the system pressure Pt. Went.
  • the inspection device 1 operates the switching valve 30 by pressurizing the pressure passage 26 by driving the pump 20, thereby operating the first reference pressure Pref 1, the second reference pressure Pref 2, and The system pressure Pt may be detected.
  • the driving of the pump 20 shown in the middle stage of FIG. 7 is a graph in which the normal rotation and the reverse rotation are reversed with the rotation speed 0 as the center.
  • the change in the detected pressure of the pressure sensor 21 shown in the lower part of FIG. 7 is a graph in which the decompression side and the pressurization side are reversed with the atmospheric pressure P0 as the center.
  • the present disclosure is not limited to the above-described embodiment, and can be applied to various forms without departing from the gist thereof.
  • the vent orifice 23 is provided between a portion P261 connected to the second communication passage 28 of the pressure passage 26 and a portion P262 connected to the suction port 201 or the discharge port 202 of the pressure passage 26. ing. However, if the vent orifice 23 is provided between the part P264 (see FIG. 13) connected to the pressure introduction port 35 of the pressure passage 26 and the part P262, or between the part P262 and the part P261 of the pressure passage 26. Good. Moreover, you may use together with the ventilation
  • the inspection apparatus 1 includes the check valve 80.
  • the check valve 80 may not be provided. Further, the ventilation orifice 23 may not be provided.

Abstract

This inspection apparatus is provided with a pressure sensor (21), a reference orifice (22), a pump (20), and switching valves (30, 70). The reference orifice is provided to a first communication channel (27) for ensuring communication between a pressure passage (26) that is provided with the pressure sensor and a tank passage (25) that is in communication with a fuel tank (8). In the pump, either one of an intake port (201) and a discharge port (202) is in communication with an atmosphere passage (24) communicated with the atmosphere, the other is in communication with the pressure passage, and the pressure in the pressure passage can be reduced or increased. The switching valves operate in accordance with the pressure difference between the atmosphere passage and the pressure passage that varies due to the driving of the pump, and are capable of switching between a state in which a second communication channel (28) that opens into the pressure passage is blocked from communicating with passages other than the pressure passage, and the atmosphere passage and the tank passage are in communication with each other, and a state in which communication is blocked between non-atmosphere and the pump in the atmosphere passage, and the second communication channel and the tank passage are in communication with each other.

Description

検査装置および検査方法Inspection apparatus and inspection method 関連出願の相互参照Cross-reference of related applications
 本出願は、2015年6月22日に出願された日本特許出願番号2015-124921号と、2016年6月3日に出願された日本特許出願番号2016-111892号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2015-124922 filed on June 22, 2015 and Japanese Patent Application No. 2016-1111892 filed on June 3, 2016. The description is incorporated.
 本開示は、蒸発燃料の漏れを検査する検査装置および検査方法に関する。 The present disclosure relates to an inspection apparatus and an inspection method for inspecting evaporative fuel leakage.
 従来、燃料タンク内で発生する蒸発燃料の漏れ、および、燃料タンクで発生した蒸発燃料を回収するキャニスタからの蒸発燃料の漏れを検査する検査装置が知られている。 2. Description of the Related Art Conventionally, there has been known an inspection apparatus that inspects leakage of evaporated fuel generated in a fuel tank and leakage of evaporated fuel from a canister that collects evaporated fuel generated in the fuel tank.
 特許文献1に記載の検査装置は、次に示す方法によって蒸発燃料の漏れを検査している。その方法は、先ず、内燃機関の停止時に、大気に通じる流路と基準オリフィスに通じる流路とポンプに通じる流路とをこの順で連通させた状態でポンプを作動し、基準オリフィスに通じる流路の圧力を基準圧として検出する。次に、電磁弁を駆動し、大気に通じる流路を遮断し、ポンプに通じる流路とキャニスタおよびタンクに通じる流路とが連通するように切り替える。続いて、ポンプを作動して燃料タンクを減圧し、キャニスタおよびタンクに通じる流路の圧力をシステム圧として検出する。最後に、基準圧とシステム圧とを比較することにより、キャニスタおよび燃料タンクの蒸発燃料漏れが許容範囲内であるか否かを判定する。 The inspection apparatus described in Patent Document 1 inspects the leakage of evaporated fuel by the following method. First, when the internal combustion engine is stopped, the pump is operated with the flow path leading to the atmosphere, the flow path leading to the reference orifice, and the flow path leading to the pump in this order, and the flow leading to the reference orifice is performed. The road pressure is detected as a reference pressure. Next, the electromagnetic valve is driven, the flow path leading to the atmosphere is shut off, and switching is performed so that the flow path leading to the pump and the flow path leading to the canister and the tank communicate. Subsequently, the pump is operated to depressurize the fuel tank, and the pressure in the flow path leading to the canister and the tank is detected as the system pressure. Finally, by comparing the reference pressure and the system pressure, it is determined whether or not the evaporative fuel leakage of the canister and the fuel tank is within an allowable range.
特開2014-152678号公報JP 2014-152678 A
 ところで、特許文献1に記載の検査装置は、大気に通じる流路と基準オリフィスに通じる流路とポンプに通じる流路とキャニスタおよびタンクに通じる流路との連通および遮断を、電磁弁を用いて切り替えている。その電磁弁の駆動部は、コイル、固定子および可動子等から構成されている。そのため、電磁弁の駆動部により、検査装置の体格が大型化する。また、電磁弁の駆動により、検査装置が消費する電力が増大するおそれがある。 By the way, the inspection apparatus described in Patent Document 1 uses a solenoid valve to communicate and block the flow path leading to the atmosphere, the flow path leading to the reference orifice, the flow path leading to the pump, and the flow path leading to the canister and the tank. Switching. The drive portion of the electromagnetic valve is composed of a coil, a stator, a mover, and the like. For this reason, the physique of the inspection apparatus is enlarged by the drive part of the electromagnetic valve. In addition, the power consumed by the inspection apparatus may increase due to the driving of the electromagnetic valve.
 本開示は、体格を小型化すると共に消費電力を低減することが可能な検査装置および検査方法を提供することを目的とする。 This disclosure aims to provide an inspection apparatus and an inspection method capable of reducing the size and reducing the power consumption.
 本開示の第1態様による検査装置は、圧力センサ、基準オリフィス、ポンプおよび切替弁を備える。圧力センサが設けられた圧力通路と、燃料タンクに連通するタンク通路とを連通する第1連通路に基準オリフィスは設けられる。ポンプは、吸入口または吐出口の一方が大気と連通する大気通路に連通し、他方が圧力通路に連通し、圧力通路を減圧または加圧可能である。切替弁は、ポンプの駆動により変化する圧力通路と大気通路との差圧に応じて動作し、圧力通路に通じる第2連通路の圧力通路以外への連通を遮断すると共に大気通路とタンク通路とを連通する状態と、大気通路におけるポンプおよび大気以外への連通を遮断すると共に第2連通路とタンク通路とを連通する状態とを切り替え可能である。 The inspection apparatus according to the first aspect of the present disclosure includes a pressure sensor, a reference orifice, a pump, and a switching valve. The reference orifice is provided in the first communication path that connects the pressure path provided with the pressure sensor and the tank path communicating with the fuel tank. One of the suction port and the discharge port communicates with an air passage that communicates with the atmosphere, and the other communicates with a pressure passage, and the pump can depressurize or pressurize the pressure passage. The switching valve operates in accordance with the pressure difference between the pressure passage and the atmospheric passage that changes by driving the pump, blocks communication of the second communication passage leading to the pressure passage to other than the pressure passage, and connects the atmospheric passage and the tank passage. Can be switched between a state in which the second communication passage and the tank passage are communicated with each other, and a state in which communication between the atmosphere passage and the pump and other than the atmosphere is blocked.
 これにより、検査装置は、圧力通路と大気通路との差圧に応じて動作する切替弁を備えることにより、従来の検査装置が備えていた電磁弁を廃止することが可能である。したがって、検査装置は、構成を簡素なものとするとともに、体格を小型化することが可能である。また、検査装置は、電磁弁を使用しないので、消費電力を低減することが可能である。 Thus, the inspection apparatus can be equipped with a switching valve that operates in accordance with the differential pressure between the pressure passage and the atmospheric passage, thereby eliminating the electromagnetic valve provided in the conventional inspection apparatus. Therefore, the inspection apparatus can be simplified in configuration and downsized. Further, since the inspection device does not use a solenoid valve, it is possible to reduce power consumption.
 本開示の第2態様による検査方法は、第1基準圧検出工程、タンク減圧工程、システム圧検出工程および判定工程を含む。第1基準圧検出工程では、切替弁が圧力通路に通じる第2連通路の圧力通路以外への連通を遮断すると共に大気通路とタンク通路とを連通した状態で、ポンプを低速回転させ、圧力センサが検出した圧力を第1基準圧として記憶する。タンク減圧工程では、ポンプを低速回転から高速回転に切り替えて切替弁を動作させ、切替弁が大気通路におけるポンプおよび大気以外への連通を遮断すると共に第2連通路とタンク通路とを連通した状態で、タンク通路を減圧する。システム圧検出工程では、タンク減圧工程と同じ切替弁の状態で、ポンプを低速回転させ、圧力センサが検出した圧力をシステム圧として記憶する。判定工程では、第1基準圧とシステム圧とを比較し、第1基準圧の絶対値よりシステム圧の絶対値が小さいとき、または、システム圧と第1基準圧との差の絶対値が所定の閾値より小さいとき、燃料タンクの蒸発燃料漏れが基準値よりも大きいと判定する。また、判定工程では、第1基準圧の絶対値よりシステム圧の絶対値が大きく、かつ、システム圧と第1基準圧との差の絶対値が所定の閾値より大きいとき、燃料タンクの蒸発燃料漏れが基準値よりも小さいと判定する。ここでいう絶対値とは大気圧を0とした場合の相対圧に対する絶対値のことである。 The inspection method according to the second aspect of the present disclosure includes a first reference pressure detection step, a tank pressure reduction step, a system pressure detection step, and a determination step. In the first reference pressure detecting step, the switching valve shuts off the communication of the second communication passage other than the pressure passage other than the pressure passage, and rotates the pump at a low speed while the air passage and the tank passage are in communication with each other. Is stored as the first reference pressure. In the tank depressurization step, the switching valve is operated by switching the pump from the low speed rotation to the high speed rotation, and the switching valve blocks communication between the pump and the atmosphere other than the atmosphere passage and communicates the second communication passage and the tank passage. Then, depressurize the tank passage. In the system pressure detection process, the pump is rotated at a low speed with the same switching valve as in the tank pressure reduction process, and the pressure detected by the pressure sensor is stored as the system pressure. In the determination step, the first reference pressure is compared with the system pressure, and when the absolute value of the system pressure is smaller than the absolute value of the first reference pressure, or the absolute value of the difference between the system pressure and the first reference pressure is predetermined. When it is smaller than the threshold value, it is determined that the fuel vapor leakage of the fuel tank is larger than the reference value. In the determination step, when the absolute value of the system pressure is larger than the absolute value of the first reference pressure and the absolute value of the difference between the system pressure and the first reference pressure is greater than a predetermined threshold, the evaporated fuel in the fuel tank It is determined that the leak is smaller than the reference value. The absolute value here is an absolute value relative to the relative pressure when the atmospheric pressure is zero.
 これにより、蒸発燃料漏れの検査方法は、ポンプの回転数の変更により切替弁を作動することが可能である。また、この検査方法は、ポンプを高速回転させて燃料タンクおよびキャニスタを減圧することで、検査を短時間で終了させることが可能である。したがって、この検査方法は、検査に消費される電力を低減することができる。 This allows the evaporative fuel leakage inspection method to operate the switching valve by changing the pump speed. Further, in this inspection method, the inspection can be completed in a short time by rotating the pump at a high speed to decompress the fuel tank and the canister. Therefore, this inspection method can reduce the power consumed for the inspection.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
本開示の第1実施形態による検査装置が適用されるエンジンの吸気系統を示す模式図であり、 図1のII部分の拡大図であり、 図1のII部分において、切替弁が作動した状態を示す拡大図であり、 切替弁の作動圧と戻り圧との関係を示すグラフであり、 本開示の第1実施形態による検査装置における蒸発燃料漏れの検査方法のフローチャートであり、 本開示の第1実施形態による検査装置における蒸発燃料漏れの検査方法のフローチャートであり、 本開示の第1実施形態による検査装置における蒸発燃料漏れの検査のタイムチャートであり、 本開示の第1実施形態による検査装置における蒸発燃料漏れの検査の各段階における説明図であり、 本開示の第1実施形態による検査装置における蒸発燃料漏れの検査の各段階における説明図であり、 本開示の第2実施形態による検査装置における検査方法のフローチャートであり、 本開示の第2実施形態による検査装置における検査方法のフローチャートであり、 本開示の第3実施形態による検査装置の模式図であり、 本開示の第4実施形態による検査装置の模式図であり、 本開示の第4実施形態による検査装置における検査方法のフローチャートであり、 本開示の第4実施形態による検査装置における蒸発燃料漏れの検査のタイムチャートであり、 本開示の第5実施形態による検査装置の模式図であり、 本開示の第6実施形態による検査装置の模式図であり、 図17において、切替弁が作動した状態を示す模式図であり、 本開示の第6実施形態による検査装置における蒸発燃料漏れの検査のタイムチャートである。
The above and other objects, features, and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
It is a schematic diagram showing an intake system of an engine to which the inspection device according to the first embodiment of the present disclosure is applied, It is an enlarged view of the II part of FIG. FIG. 2 is an enlarged view showing a state where a switching valve is operated in a II part of FIG. Is a graph showing the relationship between the switching valve operating pressure and the return pressure, It is a flowchart of the inspection method of the fuel vapor leakage in the inspection device according to the first embodiment of the present disclosure, It is a flowchart of the inspection method of the fuel vapor leakage in the inspection device according to the first embodiment of the present disclosure, It is a time chart of the test | inspection of the fuel vapor leak in the test | inspection apparatus by 1st Embodiment of this indication, It is explanatory drawing in each step | level of the test | inspection of the fuel vapor leak in the test | inspection apparatus by 1st Embodiment of this indication, It is explanatory drawing in each step | level of the test | inspection of the fuel vapor leak in the test | inspection apparatus by 1st Embodiment of this indication, It is a flowchart of the test | inspection method in the test | inspection apparatus by 2nd Embodiment of this indication, It is a flowchart of the test | inspection method in the test | inspection apparatus by 2nd Embodiment of this indication, It is a mimetic diagram of an inspection device by a 3rd embodiment of this indication, It is a schematic diagram of the inspection apparatus by 4th Embodiment of this indication, It is a flowchart of the test | inspection method in the test | inspection apparatus by 4th Embodiment of this indication, It is a time chart of the test | inspection of the fuel vapor leak in the test | inspection apparatus by 4th Embodiment of this indication, It is a schematic diagram of the inspection apparatus by 5th Embodiment of this indication, It is a mimetic diagram of an inspection device by a 6th embodiment of this indication, In FIG. 17, it is a schematic diagram which shows the state which the switching valve act | operated, It is a time chart of the test | inspection of the fuel vapor leak in the test | inspection apparatus by 6th Embodiment of this indication.
 以下、本開示の複数の実施形態による検査装置および検査方法を図面に基づいて説明する。なお、複数の実施形態において、実質的に同一の構成には同一の符号を付して説明を省略する。 Hereinafter, an inspection apparatus and an inspection method according to a plurality of embodiments of the present disclosure will be described with reference to the drawings. Note that, in a plurality of embodiments, substantially the same configuration is denoted by the same reference numeral, and description thereof is omitted.
 (第1実施形態)
 本開示の第1実施形態による検査装置は、燃料タンクおよびキャニスタからの蒸発燃料の漏れの検査に用いられるものである。
(First embodiment)
The inspection apparatus according to the first embodiment of the present disclosure is used for inspection of leakage of evaporated fuel from a fuel tank and a canister.
 図1は、第1実施形態の検査装置1が適用されたエンジン2を模式的に示している。エンジン2に空気を導入する吸気通路3には、スロットル弁4およびインジェクタ5が設けられている。インジェクタ5から吸気通路3に噴射された燃料は、吸気通路3を流れる空気とともにエンジン2の燃焼室6に導入され、燃焼室6で燃焼した後、排気通路7を経由して大気へ排出される。 FIG. 1 schematically shows an engine 2 to which the inspection apparatus 1 of the first embodiment is applied. A throttle valve 4 and an injector 5 are provided in the intake passage 3 for introducing air into the engine 2. The fuel injected from the injector 5 into the intake passage 3 is introduced into the combustion chamber 6 of the engine 2 together with the air flowing through the intake passage 3, burned in the combustion chamber 6, and then discharged to the atmosphere via the exhaust passage 7. .
 インジェクタ5に供給する燃料が貯留された燃料タンク8の内側には、燃料の蒸発により蒸発燃料が発生する。その蒸発燃料を処理するため、燃料タンク8と吸気通路3とは、第1パージ通路9、キャニスタ10および第2パージ通路11を通じて連通している。燃料タンク8で発生した蒸発燃料は第1パージ通路9を流れ、キャニスタ10が有する活性炭等の吸着材12に吸着保持される。 Evaporated fuel is generated inside the fuel tank 8 in which fuel to be supplied to the injector 5 is stored due to evaporation of the fuel. In order to process the evaporated fuel, the fuel tank 8 and the intake passage 3 communicate with each other through the first purge passage 9, the canister 10 and the second purge passage 11. The evaporated fuel generated in the fuel tank 8 flows through the first purge passage 9 and is adsorbed and held by the adsorbent 12 such as activated carbon that the canister 10 has.
 エンジン2の運転中、第2パージ通路11に設けられたパージ弁13が開弁すると、キャニスタ10に吸着保持された蒸発燃料は吸着材12から離脱し、第2パージ通路11を経由して吸気通路3に除去される。 When the purge valve 13 provided in the second purge passage 11 is opened during the operation of the engine 2, the evaporated fuel adsorbed and held in the canister 10 is separated from the adsorbent 12 and is sucked through the second purge passage 11. It is removed in the passage 3.
 検査装置1は、上述した燃料タンク8、キャニスタ10、第1パージ通路9および第2パージ通路11から外気への蒸発燃料漏れを検査するものである。 The inspection device 1 is for inspecting evaporative fuel leakage from the fuel tank 8, the canister 10, the first purge passage 9 and the second purge passage 11 to the outside air.
 図2に示すように、検査装置1は、ポンプ20、圧力センサ21、切替弁30、基準オリフィス22および通気オリフィス23などを備えている。また、検査装置1には、大気通路24、タンク通路25、圧力通路26、第1連通路27および第2連通路28などが形成されている。 As shown in FIG. 2, the inspection apparatus 1 includes a pump 20, a pressure sensor 21, a switching valve 30, a reference orifice 22, a ventilation orifice 23, and the like. Further, the inspection apparatus 1 is formed with an atmospheric passage 24, a tank passage 25, a pressure passage 26, a first communication passage 27, a second communication passage 28, and the like.
 大気通路24は、フィルタ29を介して大気開放されている。また、大気通路24は、切替弁30の大気ポート36に連通している。 The atmosphere passage 24 is open to the atmosphere through a filter 29. The atmospheric passage 24 communicates with the atmospheric port 36 of the switching valve 30.
 タンク通路25は、キャニスタ10に連通している。キャニスタ10は、上述した第1パージ通路9を経由して燃料タンク8に連通している。 The tank passage 25 communicates with the canister 10. The canister 10 communicates with the fuel tank 8 via the first purge passage 9 described above.
 ポンプ20は、例えば、図示していないモータにより回転する図示していない羽根車の回転数に応じて吸入口201から吐出口202へ空気を送るベーンポンプである。 The pump 20 is, for example, a vane pump that sends air from the suction port 201 to the discharge port 202 in accordance with the rotational speed of an impeller (not shown) that is rotated by a motor (not shown).
 ポンプ20は、吸入口201が圧力通路26に連通し、吐出口202が大気通路24に連通している。ポンプ20は、圧力通路26を減圧および加圧可能である。圧力通路26は、第1連通路27、第2連通路28、および切替弁30の圧力導入ポート35に連通している。 The pump 20 has a suction port 201 in communication with the pressure passage 26 and a discharge port 202 in communication with the atmospheric passage 24. The pump 20 can depressurize and pressurize the pressure passage 26. The pressure passage 26 communicates with the first communication passage 27, the second communication passage 28, and the pressure introduction port 35 of the switching valve 30.
 なお、このポンプ20は、羽根車の回転方向を逆転させると、吐出口202から吸入口201へ空気を送ることも可能である。そのため、ポンプ20は、吐出口202と吸入口201を逆にして取り付けることも可能である。即ち、吐出口202と吸入口201は便宜上の名称である。 The pump 20 can also send air from the discharge port 202 to the suction port 201 when the rotation direction of the impeller is reversed. Therefore, the pump 20 can be mounted with the discharge port 202 and the suction port 201 reversed. That is, the discharge port 202 and the suction port 201 are names for convenience.
 圧力通路26に設けられた圧力センサ21は、圧力通路26の気圧を検出し、その信号を車両の電子制御装置(ECU)50に伝送する。ECU50は、CPU、RAM、ROMおよび入出力ポート等を有するコンピュータである。ECU50は、圧力センサ21から入力される信号に基づき、燃料タンク8等の蒸発燃料の漏れを検出する。また、ECU50は、ポンプ20のモータへ供給する電力を制御することにより、ポンプ20の羽根車の回転数を制御可能である。 The pressure sensor 21 provided in the pressure passage 26 detects the atmospheric pressure in the pressure passage 26 and transmits the signal to an electronic control unit (ECU) 50 of the vehicle. The ECU 50 is a computer having a CPU, a RAM, a ROM, an input / output port, and the like. The ECU 50 detects leakage of evaporated fuel from the fuel tank 8 and the like based on a signal input from the pressure sensor 21. The ECU 50 can control the rotational speed of the impeller of the pump 20 by controlling the power supplied to the motor of the pump 20.
 第1連通路27は、圧力通路26とタンク通路25とを切替弁30を介することなく連通している。その第1連通路27に基準オリフィス22が設けられている。基準オリフィス22は、燃料タンク8における蒸発燃料漏れが許容される開口の大きさより小さく設定されている。例えば、現行のCARB(CaliforniaAirResourcesBoard:カリフォルニア大気資源局)およびEPA(EnvironmentalProtectionAgency:米国環境省)の基準では、φ0.5mm相当の開口からの蒸発燃料漏れの検出が要求されている。第1実施形態では、基準オリフィス22の断面積は、例えばφ0.25mmに設定されている。 The first communication passage 27 communicates the pressure passage 26 and the tank passage 25 without passing through the switching valve 30. A reference orifice 22 is provided in the first communication path 27. The reference orifice 22 is set smaller than the size of the opening in which the fuel vapor leakage in the fuel tank 8 is allowed. For example, the current standards of CARB (California Air Resources Board) and EPA (Environmental Protection Agency: US Department of the Environment) require detection of evaporative fuel leakage from an opening corresponding to φ0.5 mm. In the first embodiment, the cross-sectional area of the reference orifice 22 is set to φ0.25 mm, for example.
 第2連通路28は、圧力通路26と切替弁30の通気ポート38とを連通する。その第2連通路28に通気オリフィス23が設けられている。なお、第2連通路28に通気オリフィス23を設けなくてもよい。 The second communication passage 28 communicates the pressure passage 26 and the ventilation port 38 of the switching valve 30. A ventilation orifice 23 is provided in the second communication passage 28. Note that the vent orifice 23 may not be provided in the second communication path 28.
 切替弁30は、ポンプ20の駆動により変化する圧力通路26と大気通路24との差圧に応じて動作する差圧弁である。切替弁30は、ハウジング31、弁部材40およびスプリング41を有する。 The switching valve 30 is a differential pressure valve that operates in accordance with the differential pressure between the pressure passage 26 and the atmospheric passage 24 that changes as the pump 20 is driven. The switching valve 30 includes a housing 31, a valve member 40, and a spring 41.
 ハウジング31は、内側に圧力室32、大気圧室33およびタンク圧室34が形成されている。また、ハウジング31には、圧力導入ポート35、大気ポート36が設けられている。 The housing 31 has a pressure chamber 32, an atmospheric pressure chamber 33, and a tank pressure chamber 34 formed therein. The housing 31 is provided with a pressure introduction port 35 and an atmospheric port 36.
 圧力導入ポート35は、圧力通路26と圧力室32とを連通している。大気ポート36は、大気通路24と大気圧室33とを連通している。タンクポート37は、タンク通路25とタンク圧室34とを連通している。通気ポート38は、第2連通路28とタンク圧室34とを連通している。 The pressure introduction port 35 communicates the pressure passage 26 and the pressure chamber 32. The atmospheric port 36 communicates the atmospheric passage 24 and the atmospheric pressure chamber 33. The tank port 37 communicates the tank passage 25 and the tank pressure chamber 34. The ventilation port 38 communicates the second communication passage 28 and the tank pressure chamber 34.
 なお、ハウジング31は、単一の部材から構成されていても、複数の部材から構成されていてもよく、或いは、その一部が大気通路24、タンク通路25、圧力通路26、第2連通路28などを形成する部材と一体に構成されていてもよい。即ち、第1実施形態では、圧力室32、大気圧室33およびタンク圧室34を形成している部材をハウジング31というものとする。 The housing 31 may be composed of a single member or a plurality of members, or a part of the housing 31 may be an atmospheric passage 24, a tank passage 25, a pressure passage 26, or a second communication passage. It may be configured integrally with a member forming 28 or the like. That is, in the first embodiment, the member forming the pressure chamber 32, the atmospheric pressure chamber 33, and the tank pressure chamber 34 is referred to as a housing 31.
 弁部材40は、ダイアフラム42および弁体43を有する。 The valve member 40 has a diaphragm 42 and a valve body 43.
 ダイアフラム42は、圧力室32と大気圧室33とを仕切り、圧力室32と大気圧室33との差圧を受けて動作する。ダイアフラム42は、圧力室32に設けられたスプリング41により、大気圧室33側に付勢されている。 The diaphragm 42 divides the pressure chamber 32 and the atmospheric pressure chamber 33 and operates by receiving a differential pressure between the pressure chamber 32 and the atmospheric pressure chamber 33. The diaphragm 42 is urged toward the atmospheric pressure chamber 33 by a spring 41 provided in the pressure chamber 32.
 弁体43は、ダイアフラム42に接続する接続部44を有し、ダイアフラム42と共に動作する。図2に示すように、弁体43は、第1シート面45が通気ポート38に設けられた第1弁座381に着座および離座可能である。また、図3に示すように、弁体43は、第2シート面46がタンク圧室34と大気圧室33との間に設けられた第2弁座331に着座および離座可能である。 The valve body 43 has a connection portion 44 connected to the diaphragm 42 and operates together with the diaphragm 42. As shown in FIG. 2, the valve body 43 can be seated and separated from a first valve seat 381 in which the first seat surface 45 is provided in the ventilation port 38. Further, as shown in FIG. 3, the valve body 43 can be seated on and separated from a second valve seat 331 in which the second seat surface 46 is provided between the tank pressure chamber 34 and the atmospheric pressure chamber 33.
 なお、スプリング41を設けることなく、ダイアフラム42自身の弾性力により、弁体43が第1弁座381に着座するように構成してもよい。 In addition, you may comprise so that the valve body 43 may seat to the 1st valve seat 381 with the elastic force of the diaphragm 42 itself, without providing the spring 41. FIG.
 図2に示すように、弁体43が第1弁座381に着座するとき、第2連通路28における圧力通路26以外への連通が遮断される一方、大気通路24とタンク通路25とは、連通している。弁体43が第1弁座381に着座したときの位置を第1位置と称する。 As shown in FIG. 2, when the valve body 43 is seated on the first valve seat 381, communication with the second communication passage 28 other than the pressure passage 26 is blocked, while the atmospheric passage 24 and the tank passage 25 are Communicate. A position when the valve body 43 is seated on the first valve seat 381 is referred to as a first position.
 一方、図3に示すように、弁体43が第2弁座331に着座するとき、大気通路24におけるポンプ20および大気以外への連通が遮断される一方、第2連通路28とタンク通路25とは、連通している。弁体43が第2弁座331に着座したときの位置を第2位置と称する。 On the other hand, as shown in FIG. 3, when the valve body 43 is seated on the second valve seat 331, the communication to the atmosphere other than the pump 20 and the atmosphere in the atmospheric passage 24 is blocked, while the second communication passage 28 and the tank passage 25. And communicate. A position when the valve body 43 is seated on the second valve seat 331 is referred to as a second position.
 弁体43は、第1位置と第2位置とを移動可能である。 The valve element 43 is movable between the first position and the second position.
 図2に示すように、弁体43が第1弁座381に着座しているときに弁体43が通気ポート38側に露出する面を第1受圧面431と称する。また、図3に示すように、弁体43が第2弁座331に着座しているときに弁体43が大気圧室33側に露出する面を第2受圧面432と称する。ここで、第2弁座331の開口面積は、第1弁座381の開口面積より小さく形成されているため、第2受圧面432は、第1受圧面431より小さい。そのため、弁体43が第2位置にあるときにタンク圧室34と大気圧室33との差圧が弁体43に作用する力は、弁体43が第1位置にあるときに第2連通路28とタンク圧室34との差圧が弁体43に作用する力より小さいものとなる。なお、上述したように第2連通路28は圧力通路26に連通している。したがって、弁体43が第2位置から第1位置に移動するときの大気通路24と圧力通路26との差圧は、弁体43が第1位置から第2位置に移動するときの大気通路24と圧力通路26との差圧より小さいものとなる。 As shown in FIG. 2, the surface on which the valve body 43 is exposed to the ventilation port 38 side when the valve body 43 is seated on the first valve seat 381 is referred to as a first pressure receiving surface 431. Further, as shown in FIG. 3, a surface where the valve body 43 is exposed to the atmospheric pressure chamber 33 side when the valve body 43 is seated on the second valve seat 331 is referred to as a second pressure receiving surface 432. Here, since the opening area of the second valve seat 331 is smaller than the opening area of the first valve seat 381, the second pressure receiving surface 432 is smaller than the first pressure receiving surface 431. Therefore, when the valve body 43 is in the second position, the force acting on the valve body 43 due to the differential pressure between the tank pressure chamber 34 and the atmospheric pressure chamber 33 is the second ream when the valve body 43 is in the first position. The differential pressure between the passage 28 and the tank pressure chamber 34 is smaller than the force acting on the valve body 43. As described above, the second communication passage 28 communicates with the pressure passage 26. Therefore, the differential pressure between the atmospheric passage 24 and the pressure passage 26 when the valve body 43 moves from the second position to the first position is the atmospheric passage 24 when the valve body 43 moves from the first position to the second position. And a pressure difference smaller than the pressure passage 26.
 弁体43が第1位置から第2位置に移動するときの大気通路24と圧力通路26との差圧を作動圧と称する。また、弁体43が第1位置から第2位置に移動するときの大気通路24と圧力通路26との差圧を戻り圧と称する。 The differential pressure between the atmospheric passage 24 and the pressure passage 26 when the valve body 43 moves from the first position to the second position is referred to as operating pressure. The differential pressure between the atmospheric passage 24 and the pressure passage 26 when the valve body 43 moves from the first position to the second position is referred to as return pressure.
 図4では、切替弁30の作動圧および戻り圧の関係を示している。 FIG. 4 shows the relationship between the operating pressure and return pressure of the switching valve 30.
 図4において、横軸は0よりも小さい値を示している。また、図4および以下の説明において、特に断りなく圧力の大小をいう場合、大気圧を0とした場合の相対圧の絶対値をいうものとする。 In FIG. 4, the horizontal axis indicates a value smaller than zero. In FIG. 4 and the following description, when referring to the magnitude of the pressure without particular notice, the absolute value of the relative pressure when the atmospheric pressure is 0 is assumed.
 図4の実線Aは、第1連通路27に設けられた基準オリフィス22のみを通過する空気の圧力と、その流量との特性を示している。以下、この特性を、基準オリフィス特性という。 4 indicates the characteristics of the pressure of the air passing through only the reference orifice 22 provided in the first communication passage 27 and the flow rate thereof. Hereinafter, this characteristic is referred to as a reference orifice characteristic.
 図4の破線Bは、第1連通路27に設けられた基準オリフィス22および第2連通路28に設けられた通気オリフィス23の両方を通過する空気の圧力と、その流量との特性を示している。以下、この特性を、基準および通気オリフィス特性という。 The broken line B in FIG. 4 shows the characteristics of the pressure of the air passing through both the reference orifice 22 provided in the first communication passage 27 and the ventilation orifice 23 provided in the second communication passage 28 and the flow rate thereof. Yes. Hereinafter, this characteristic is referred to as a reference and vent orifice characteristic.
 図4の実線Cは、ポンプ20を低速回転させたときの流路抵抗と、その流量との特性を示している。 The solid line C in FIG. 4 shows the characteristics of the flow path resistance and the flow rate when the pump 20 is rotated at a low speed.
 図4の破線Dは、ポンプ20を高速回転させたときの流路抵抗と、その流量との特性を示している。 The broken line D in FIG. 4 shows the characteristics of the flow path resistance and the flow rate when the pump 20 is rotated at a high speed.
 なお、ポンプ20の低速回転とは、ポンプ20のモータに所定の電流を供給してポンプ20の羽根車を回転させたときの状態、または、ポンプ20のモータまたは羽根車を所定の回転数で回転させたときの状態をいう。 The low-speed rotation of the pump 20 is a state where a predetermined current is supplied to the motor of the pump 20 to rotate the impeller of the pump 20, or the motor or impeller of the pump 20 is rotated at a predetermined number of rotations. The state when it is rotated.
 また、ポンプ20の高速回転とは、低速回転時よりも大きい所定の電流をポンプ20のモータに供給してポンプ20の羽根車を回転させたときの状態、または、低速回転時よりも速い所定の回転数でポンプ20のモータまたは羽根車を回転させたときの状態をいう。 The high-speed rotation of the pump 20 is a state in which a predetermined current larger than that at the time of low-speed rotation is supplied to the motor of the pump 20 to rotate the impeller of the pump 20 or a speed that is higher than that at the time of low-speed rotation. The state when the motor of the pump 20 or the impeller is rotated at the number of rotations.
 ポンプ20に供給する電流値または回転数は、実験などにより適宜設定することが可能である。なお、ポンプ20の高速回転時の回転数は、ポンプ20の駆動により燃料タンク8を減圧した際に燃料タンク8が変形等により潰れることの無い回転数に設定されている。図4では、燃料タンク8が変形等により潰れる圧力を符号Eで示している。 The current value or the number of rotations supplied to the pump 20 can be set as appropriate through experiments. The rotational speed of the pump 20 during high speed rotation is set to a rotational speed at which the fuel tank 8 does not collapse due to deformation or the like when the fuel tank 8 is depressurized by driving the pump 20. In FIG. 4, the pressure at which the fuel tank 8 is crushed by deformation or the like is indicated by a symbol E.
 実線Aに示す基準オリフィス特性におけるポンプ20の低速回転時の圧力を第1基準圧Pref1と称する。第1基準圧Pref1に基づいて圧力センサ21の出力誤差等を考慮して設定された漏れ判断の閾値を符号Tで示す。 The pressure when the pump 20 rotates at a low speed in the reference orifice characteristic indicated by the solid line A is referred to as a first reference pressure Pref1. A leak determination threshold value set in consideration of an output error of the pressure sensor 21 based on the first reference pressure Pref1 is indicated by a symbol T.
 また、破線Bに示す基準および通気オリフィス特性におけるポンプ20の高速回転時の圧力を第2基準圧Pref2と称する。第2基準圧Pref2は、ポンプ20の駆動により燃料タンク8を減圧した際に燃料タンク8が変形等により潰れる圧力より小さい値となるように設定されている。 Further, the pressure at the time of high speed rotation of the pump 20 in the reference and vent orifice characteristics shown by the broken line B is referred to as a second reference pressure Pref2. The second reference pressure Pref2 is set to a value smaller than the pressure at which the fuel tank 8 is crushed by deformation or the like when the fuel tank 8 is depressurized by driving the pump 20.
 弁部材40の作動圧は、第1基準圧Pref1または漏れ判断の閾値Tより大きく、且つ、第2基準圧Pref2より小さく設定されている。また、弁部材40の戻り圧は、第1基準圧Pref1または漏れ判断の閾値Tより小さく、且つ、0より大きく設定されている。これにより、弁部材40は、作動圧と戻り圧とに所定のヒステリシスを有する。即ち、大気通路24と圧力通路26との差圧が第1基準圧Pref1または漏れ判断の閾値Tより大きく、且つ、第2基準圧Pref2より小さい圧力のとき、弁部材40は第1位置から第2位置に移動する。一方、大気通路24と圧力通路26との差圧が第1基準圧Pref1または漏れ判断の閾値Tより小さく、且つ、0より大きい圧力のとき、弁部材40は第2位置から第1位置に移動する。 The operating pressure of the valve member 40 is set to be larger than the first reference pressure Pref1 or the leak judgment threshold T and smaller than the second reference pressure Pref2. The return pressure of the valve member 40 is set to be smaller than the first reference pressure Pref1 or the leak judgment threshold T and larger than zero. Thereby, the valve member 40 has a predetermined hysteresis in the operating pressure and the return pressure. That is, when the differential pressure between the atmospheric passage 24 and the pressure passage 26 is larger than the first reference pressure Pref1 or the leak judgment threshold T and smaller than the second reference pressure Pref2, the valve member 40 is moved from the first position to the first position. Move to 2 position. On the other hand, when the differential pressure between the atmospheric passage 24 and the pressure passage 26 is smaller than the first reference pressure Pref1 or the leakage judgment threshold T and larger than 0, the valve member 40 moves from the second position to the first position. To do.
 次に、蒸発燃料漏れの検査方法について、図5および図6のフローチャート、図7のタイムチャート、並びに、図8および図9の模式図およびグラフを参照して説明する。 Next, an evaporative fuel leakage inspection method will be described with reference to the flowcharts of FIGS. 5 and 6, the time chart of FIG. 7, and the schematic diagrams and graphs of FIGS.
 なお、図7の上段は蒸発燃料漏れの検査における時間軸を示し、中段は時間の経過に伴うポンプ20の回転数を示すグラフであり、下段は時間の経過に伴う圧力センサ21の検出圧の変化を示すグラフである。なお、ポンプ20は、正転時に圧力通路26を減圧するものとする。ここでも、圧力の大小をいう場合、絶対値をいうものとする。 7 shows the time axis in the evaporative fuel leakage inspection, the middle stage is a graph showing the rotational speed of the pump 20 with the passage of time, and the lower stage shows the detected pressure of the pressure sensor 21 with the passage of time. It is a graph which shows a change. Note that the pump 20 depressurizes the pressure passage 26 during normal rotation. Here too, when referring to the magnitude of the pressure, it means the absolute value.
 蒸発燃料漏れの検査は、エンジン2の運転が停止した後、所定時間が経過すると開始される。その所定時間は、車両の温度が安定するために必要な時間に設定されている。 The inspection for evaporative fuel leakage starts when a predetermined time has elapsed after the operation of the engine 2 is stopped. The predetermined time is set to a time required for the temperature of the vehicle to stabilize.
 S1でECU50は、大気圧P0を検出する。この処理は、図7の時刻t0から時刻t1の前において、ポンプ20が停止した状態で行われる。そのとき、切替弁30は第1位置にあり、圧力通路26と第1連通路27と大気通路24とが連通している。そのため、圧力センサ21は大気圧P0を検出し、ECU50に伝送する。ECU50は、大気圧P0に基づいて算出した車両の標高に応じ、その後の処理に用いられる各種パラメータを補正する。 In S1, the ECU 50 detects the atmospheric pressure P0. This process is performed with the pump 20 stopped before the time t0 to the time t1 in FIG. At that time, the switching valve 30 is in the first position, and the pressure passage 26, the first communication passage 27, and the atmospheric passage 24 communicate with each other. Therefore, the pressure sensor 21 detects the atmospheric pressure P0 and transmits it to the ECU 50. The ECU 50 corrects various parameters used for subsequent processing according to the altitude of the vehicle calculated based on the atmospheric pressure P0.
 S2でECU50は、ポンプ20を低速回転にて駆動する。この処理では、図7の時刻t1において、ポンプ20が低速回転で駆動を開始すると、それ以降、圧力センサ21の検出圧が低下し始める。そのとき、図8(A1)に示す切替弁30は、第1位置の状態にある。図8の(A1)では、ポンプ20の駆動によって減圧される流路にハッチを記載している。そのポンプ20の駆動により、圧力通路26に連通する第1連通路27の基準オリフィス22を空気が流れる。 In S2, the ECU 50 drives the pump 20 at a low speed. In this process, when the pump 20 starts driving at low speed rotation at time t1 in FIG. 7, the pressure detected by the pressure sensor 21 starts to decrease thereafter. At that time, the switching valve 30 shown in FIG. 8A1 is in the first position. In (A1) of FIG. 8, hatching is described in the flow path that is depressurized by driving the pump 20. By driving the pump 20, air flows through the reference orifice 22 of the first communication passage 27 that communicates with the pressure passage 26.
 S3でECU50は、ポンプ20の駆動開始から所定時間が経過したか否かを判定する。ECU50は、所定時間が経過するまで、S3の処理を繰り返す。この処理では、図7の時刻t1以降に低下した圧力センサ21の検出圧が、時刻t2で第1基準圧Pref1に到達する。そして、時刻t2以降、第1基準圧Pref1が維持される。 In S3, the ECU 50 determines whether or not a predetermined time has elapsed from the start of driving of the pump 20. The ECU 50 repeats the process of S3 until a predetermined time has elapsed. In this process, the pressure detected by the pressure sensor 21 that has decreased since time t1 in FIG. 7 reaches the first reference pressure Pref1 at time t2. Then, after the time t2, the first reference pressure Pref1 is maintained.
 なお、S3において、ECU50は、所定時間の経過を判定することに代えて、またはそれと共に、圧力センサ21の検出圧が所定の圧力に到達し、その所定の圧力を維持している状態か否かを判定する処理を行ってもよい。その場合、ECU50は、圧力センサ21の検出圧がその所定の圧力に到達するまでS3の処理を繰り返す。 In S3, the ECU 50 determines whether or not the detected pressure of the pressure sensor 21 reaches the predetermined pressure and maintains the predetermined pressure instead of determining whether or not the predetermined time has elapsed. You may perform the process which determines. In that case, the ECU 50 repeats the process of S3 until the detected pressure of the pressure sensor 21 reaches the predetermined pressure.
 S4でECU50は、圧力センサ21の検出圧を第1基準圧Pref1として記憶する。この処理は、図7の時刻t2からt3の間に行われる。そのときの流量特性を図8(A2)のグラフに符号M1で示す。 In S4, the ECU 50 stores the pressure detected by the pressure sensor 21 as the first reference pressure Pref1. This process is performed between time t2 and t3 in FIG. The flow rate characteristic at that time is indicated by a symbol M1 in the graph of FIG.
 S5でECU50は、ポンプ20の駆動を高速回転に切り替える。この処理では、図7の時刻t3でポンプ20が高速回転に切り替わる。このとき、図8(B1)にハッチで示した流路が減圧され、切替弁30が切り替え動作を開始する。そのときの流量特性は、図8(B2)のグラフに示す符号M1から実線Aに沿って流量および圧力が増大する方向(図8(B2)中の実線矢印Ah1の方向)へ移行してゆく。 In S5, the ECU 50 switches the drive of the pump 20 to high speed rotation. In this process, the pump 20 is switched to high speed rotation at time t3 in FIG. At this time, the flow path indicated by hatching in FIG. 8 (B1) is depressurized, and the switching valve 30 starts the switching operation. The flow rate characteristics at that time shift from the symbol M1 shown in the graph of FIG. 8B2 to the direction in which the flow rate and pressure increase along the solid line A (the direction of the solid arrow Ah1 in FIG. 8B2). .
 S6で切替弁30は、第1位置から第2位置に切り替わる。即ち、図8(C1)に示すように、切替弁30は第2位置の状態となる。この処理により、図7の時刻t4以降、圧力センサ21の検出圧が低下する。そのときの流量特性は、図8(C2)のグラフにおいて符号M1で示すものから符号M2に示すものを経由し、符号M3に示すものへ移行してゆく。 In S6, the switching valve 30 is switched from the first position to the second position. That is, as shown in FIG. 8 (C1), the switching valve 30 is in the second position. By this process, the pressure detected by the pressure sensor 21 decreases after time t4 in FIG. The flow rate characteristic at that time shifts from that indicated by the symbol M1 in the graph of FIG. 8C2 to that indicated by the symbol M3 via the one indicated by the symbol M2.
 S7で圧力センサ21の検出圧は、第2基準圧Pref2となる。この処理では、図7の時刻t5以降、圧力センサ21の検出圧は第2基準圧Pref2を維持する。また、時刻t5以降、破線Fで示すように、キャニスタ10内および燃料タンク8内も減圧され、第2基準圧Pref2に近づいてゆく。このとき、図8(D1)にハッチで示した流路が減圧され、キャニスタ10内および燃料タンク8内も減圧される。そのときの流量特性は、図8(D2)のグラフに符号M3で示すものである。 In S7, the detected pressure of the pressure sensor 21 becomes the second reference pressure Pref2. In this process, the pressure detected by the pressure sensor 21 maintains the second reference pressure Pref2 after time t5 in FIG. In addition, after time t5, as indicated by a broken line F, the inside of the canister 10 and the inside of the fuel tank 8 are also depressurized and approach the second reference pressure Pref2. At this time, the flow path indicated by hatching in FIG. 8 (D1) is decompressed, and the interior of the canister 10 and the fuel tank 8 are decompressed. The flow rate characteristic at that time is indicated by a symbol M3 in the graph of FIG. 8 (D2).
 S8でECU50は、圧力センサ21の検出圧が第2基準圧Pref2になってから所定時間が経過したか否かを判定する。ECU50は、所定時間が経過するまで、S8の処理を繰り返す。 In S8, the ECU 50 determines whether or not a predetermined time has elapsed since the detected pressure of the pressure sensor 21 has reached the second reference pressure Pref2. The ECU 50 repeats the process of S8 until a predetermined time has elapsed.
 なお、S8において、ECU50は、所定時間の経過を判定することに代えて、またはそれと共に、圧力センサ21の検出圧が第2基準圧Pref2より大きくなったか否かを判定する処理を行ってもよい。その場合、ECU50は、圧力センサ21の検出圧が、第2基準圧Pref2より大きくなるまでS8の処理を繰り返す。また、ECU50は、圧力センサ21の検出圧がポンプが高速回転に切り替わってから所定時間が経過したか否かを判定する処理を行ってもよい。 In S8, the ECU 50 may perform a process of determining whether or not the detected pressure of the pressure sensor 21 has become larger than the second reference pressure Pref2 instead of or in addition to determining the elapse of the predetermined time. Good. In that case, the ECU 50 repeats the process of S8 until the detected pressure of the pressure sensor 21 becomes larger than the second reference pressure Pref2. Further, the ECU 50 may perform processing for determining whether or not a predetermined time has elapsed since the pressure detected by the pressure sensor 21 has been switched to high speed rotation of the pump.
 S8の処理では、図9(E1)にハッチで示した流路がさらに減圧され、キャニスタ10内および燃料タンク8内もさらに減圧されている。これにより、燃料タンク8またはキャニスタ10に基準オリフィス22の断面積と通気オリフィス23の断面積との合計以下の小さい穴が開いている場合、または、燃料タンク8またはキャニスタ10に穴が開いていない場合、図7の時刻t6以降、圧力センサ21の検出圧が第2基準圧Pref2よりも低下する。そのときの流量特性は、図9(E2)のグラフに符号M3で示すものから実線矢印Ah2に沿って符号M4で示すものへと移行する。 In the process of S8, the flow path indicated by hatching in FIG. 9 (E1) is further depressurized, and the inside of the canister 10 and the fuel tank 8 are further depressurized. Thereby, when the small hole below the sum total of the cross-sectional area of the reference | standard orifice 22 and the cross-sectional area of the ventilation | gas_flowing orifice 23 is opened in the fuel tank 8 or the canister 10, or the hole is not opened in the fuel tank 8 or the canister 10 In this case, the pressure detected by the pressure sensor 21 is lower than the second reference pressure Pref2 after time t6 in FIG. The flow rate characteristic at that time shifts from that indicated by the symbol M3 in the graph of FIG. 9E2 to that indicated by the symbol M4 along the solid line arrow Ah2.
 一方、燃料タンク8またはキャニスタ10に、基準オリフィス22の断面積と通気オリフィス23の断面積との合計よりも大きい穴が開いている場合、図7の圧力センサ21の検出圧のグラフに破線Xで示すように、検出圧は第2基準圧Pref2を維持する。 On the other hand, when a hole larger than the sum of the cross-sectional area of the reference orifice 22 and the cross-sectional area of the vent orifice 23 is opened in the fuel tank 8 or the canister 10, a broken line X is shown in the graph of the detected pressure of the pressure sensor 21 in FIG. As shown, the detected pressure is maintained at the second reference pressure Pref2.
 ECU50は、圧力センサ21の検出圧が第2基準圧Pref2となってから所定時間が経過すると、処理をS9に移行する。 ECU50 will transfer a process to S9, if predetermined time passes, after the detection pressure of the pressure sensor 21 becomes 2nd reference pressure Pref2.
 S9でECU50は、ポンプ20の駆動を低速回転に切り替える。この処理では、図7の時刻t7でポンプ20が低速回転に切り替わり、それ以降、検出圧が小さくなっていく。このとき、図9(F1)にハッチで示した流路の圧力が小さいものとなるが、切替弁30は切り替わることなく第2位置の状態を維持する。そのときの流量特性は、図9(F2)のグラフで符号M4で示すものから、符号M5で示すものへ移行してゆく。 In S9, the ECU 50 switches the drive of the pump 20 to low speed rotation. In this process, the pump 20 is switched to low speed rotation at time t7 in FIG. 7, and thereafter the detected pressure decreases. At this time, although the pressure of the flow path indicated by hatching in FIG. 9 (F1) is small, the switching valve 30 maintains the state of the second position without switching. The flow rate characteristic at that time shifts from that indicated by the symbol M4 in the graph of FIG. 9 (F2) to that indicated by the symbol M5.
 S10でECU50は、ポンプ20の駆動を低速回転に切り替えてから所定時間が経過したか否かを判定する。ECU50は、所定時間が経過するまで、S10の処理を繰り返す。この処理では、図7の時刻t8以降、圧力センサ21の検出圧が一定の圧力に維持される。そのときの流量特性は、図9(F2)のグラフに符号M5で示すものである。 In S10, the ECU 50 determines whether or not a predetermined time has elapsed since the drive of the pump 20 was switched to low speed rotation. The ECU 50 repeats the process of S10 until a predetermined time has elapsed. In this process, the pressure detected by the pressure sensor 21 is maintained at a constant pressure after time t8 in FIG. The flow rate characteristic at that time is indicated by the symbol M5 in the graph of FIG. 9 (F2).
 なお、S10において、ECU50は、所定時間の経過を判定することに代えて、またはそれと共に、圧力センサ21の検出圧が所定圧を維持するようになったか否かを判定する処理を行ってもよい。その場合、ECU50は、圧力センサ21の検出圧が、所定圧を維持するまでS10の処理を繰り返す。 In S10, the ECU 50 may perform a process of determining whether or not the detected pressure of the pressure sensor 21 is maintained at the predetermined pressure instead of or at the same time as determining whether the predetermined time has elapsed. Good. In that case, ECU50 repeats the process of S10 until the detection pressure of the pressure sensor 21 maintains a predetermined pressure.
 S11でECU50は、圧力センサ21の検出圧をシステム圧Ptとして記憶する。この処理は、図7の時刻t8からt9の間に行われる。本開示において、システム圧とは、切替弁30が大気通路24におけるポンプ20および大気以外への連通を遮断すると共に第2連通路28とタンク通路25とを連通した状態でポンプ20を低速回転させたときに、圧力センサ21が検出した圧力をいう。 In S11, the ECU 50 stores the detected pressure of the pressure sensor 21 as the system pressure Pt. This process is performed between times t8 and t9 in FIG. In the present disclosure, the system pressure means that the switching valve 30 blocks communication between the pump 20 and the atmosphere other than the atmosphere in the atmosphere passage 24 and rotates the pump 20 at a low speed in a state where the second communication passage 28 and the tank passage 25 are communicated. Is the pressure detected by the pressure sensor 21 at the time.
 S12でECU50は、第1基準圧Pref1とシステム圧Ptとを比較する。ECU50は、システム圧Ptの絶対値が第1基準圧Pref1の絶対値より大きく、かつ、システム圧Ptの絶対値と第1基準圧Pref1の絶対値との差が所定の閾値より大きいとき、処理をS13に移行する。なお、ここでの所定の閾値は、圧力センサ21の出力誤差等を考慮して設定された値であり、漏れ判断の閾値Tと第1基準圧Pref1との差である。 In S12, the ECU 50 compares the first reference pressure Pref1 and the system pressure Pt. When the absolute value of the system pressure Pt is greater than the absolute value of the first reference pressure Pref1, and the difference between the absolute value of the system pressure Pt and the absolute value of the first reference pressure Pref1 is greater than a predetermined threshold, the ECU 50 To S13. Here, the predetermined threshold is a value set in consideration of an output error of the pressure sensor 21 and the like, and is a difference between the leak determination threshold T and the first reference pressure Pref1.
 S13でECU50は、燃料タンク8またはキャニスタ10からの蒸発燃料漏れの穴が基準値よりも小さいと判定する。なお、基準値とは、基準オリフィス22の断面積に対応する値である。 In S13, the ECU 50 determines that the fuel vapor leakage hole from the fuel tank 8 or the canister 10 is smaller than the reference value. The reference value is a value corresponding to the cross-sectional area of the reference orifice 22.
 一方、S12でECU50は、システム圧Ptの絶対値が第1基準圧Pref1の絶対値以下であるとき、または、システム圧Ptの絶対値と第1基準圧Pref1の絶対値との差が所定の閾値以下であるとき、処理をS14に移行する。これは、圧力センサ21の検出圧が、図7の下段のグラフに破線Yで示すもの(図7に示すシステム圧Pty)となる場合である。 On the other hand, in S12, the ECU 50 determines that the absolute value of the system pressure Pt is equal to or smaller than the absolute value of the first reference pressure Pref1, or the difference between the absolute value of the system pressure Pt and the absolute value of the first reference pressure Pref1 is a predetermined value. When it is below the threshold, the process proceeds to S14. This is a case where the detected pressure of the pressure sensor 21 is the one indicated by the broken line Y in the lower graph of FIG. 7 (system pressure Pty shown in FIG. 7).
 S14でECU50は、燃料タンク8またはキャニスタ10からの蒸発燃料漏れが基準値よりも大きいと判定する。 In S14, the ECU 50 determines that the fuel vapor leakage from the fuel tank 8 or the canister 10 is larger than the reference value.
 S15でECU50は、次のエンジン運転時にインストルメントパネルの警告ランプを点灯させる処理を行う。 In S15, the ECU 50 performs a process of turning on a warning lamp on the instrument panel during the next engine operation.
 S16でECU50は、ポンプ20の駆動を停止するか、または、ポンプ20の羽根車を逆回転させる。いずれの場合でも、図7の時刻t9以降、検出圧が小さくなる。 In S16, the ECU 50 stops driving the pump 20, or reversely rotates the impeller of the pump 20. In either case, the detected pressure decreases after time t9 in FIG.
 図7の時刻t9以降に実線で示したように、ポンプ20の羽根車を逆回転させた場合、図9(G1)でハッチで示した流路が加圧され、圧力通路26と大気通路24との差圧が切替弁30の戻り圧より小さくなると、切替弁30が第2位置から第1位置への切り替え動作を開始する。 As indicated by the solid line after time t9 in FIG. 7, when the impeller of the pump 20 is rotated in reverse, the flow path indicated by hatching in FIG. 9 (G1) is pressurized, and the pressure passage 26 and the atmospheric passage 24 The switching valve 30 starts a switching operation from the second position to the first position.
 ポンプ20の駆動を停止した場合、図9(G1)でハッチで示した流路の圧力が0に近づき、圧力通路26と大気通路24との差圧が切替弁30の戻り圧より小さくなると、切替弁30は第2位置から第1位置への切り替え動作を開始する。 When the driving of the pump 20 is stopped, the pressure of the flow path indicated by hatching in FIG. 9 (G1) approaches 0, and the differential pressure between the pressure passage 26 and the atmospheric passage 24 becomes smaller than the return pressure of the switching valve 30. The switching valve 30 starts a switching operation from the second position to the first position.
 切替弁30が第1位置に切り替わると、S17でECU50はポンプ20の駆動を停止し、処理を終了する。 When the switching valve 30 is switched to the first position, the ECU 50 stops driving the pump 20 in S17 and ends the process.
 なお、切替弁30が第1位置に切り替わった後、ECU50はポンプ20を低速回転で正転駆動してもよい。その処理を行う場合、図7の時刻t10以降に圧力センサ21の検出圧が低下し、時刻11以降に第1基準圧Pref1を維持する。このとき、図9(H1)にハッチで示した流路が減圧され、圧力通路26に連通する第1連通路27の基準オリフィス22を空気が流れる。そのときの流量特性は、図9(H2)のグラフに符号M5で示すものから、符号M1で示すものへ移行する。このとき、ECU50は、時刻11以降に検出した第1基準圧Pref1と、S4で検出した第1基準圧Pref1とを比較し、それらの値の誤差が所定範囲内か否かを判定する。 In addition, after the switching valve 30 is switched to the first position, the ECU 50 may drive the pump 20 in the normal direction at a low speed. When this process is performed, the detected pressure of the pressure sensor 21 decreases after time t10 in FIG. 7, and the first reference pressure Pref1 is maintained after time 11. At this time, the flow path indicated by hatching in FIG. 9 (H 1) is decompressed, and air flows through the reference orifice 22 of the first communication path 27 communicating with the pressure path 26. The flow rate characteristic at that time shifts from that indicated by the symbol M5 in the graph of FIG. 9 (H2) to that indicated by the symbol M1. At this time, the ECU 50 compares the first reference pressure Pref1 detected after time 11 with the first reference pressure Pref1 detected in S4, and determines whether or not the error of these values is within a predetermined range.
 なお、ECU50は大気圧P0を再度計測し、その検出値とS1で検出した大気圧P0と比較し、それらの値の誤差が所定範囲内か否かを判定してもよい。 Note that the ECU 50 may measure the atmospheric pressure P0 again, and compare the detected value with the atmospheric pressure P0 detected in S1, and determine whether or not the error of these values is within a predetermined range.
 ECU50は、それらの一方の誤差または両方の誤差が所定範囲内のものである場合、処理を終了する。一方、ECU50は、それらの一方の誤差または両方の誤差が所定範囲より大きい場合、S13から15で行った判定を破棄する。 The ECU 50 ends the process when one or both of these errors are within a predetermined range. On the other hand, when one or both of these errors are larger than the predetermined range, the ECU 50 discards the determination made in S13 to S15.
 上述した検査方法において、S2からS4の処理が第1基準圧検出工程に相当し、S5からS8の処理がタンク減圧工程に相当し、S9からS11の処理がシステム圧検出工程に相当し、S12からS14の処理が判定工程に相当する。 In the inspection method described above, the processing from S2 to S4 corresponds to the first reference pressure detection step, the processing from S5 to S8 corresponds to the tank pressure reduction step, the processing from S9 to S11 corresponds to the system pressure detection step, and S12 To S14 correspond to the determination step.
 第1実施形態の検査装置1または検査方法は、次の作用効果を奏する。(1)第1実施形態の検査装置1は、圧力通路26と大気通路24との差圧に応じて動作する切替弁30を備えることにより、従来の検査装置1が備えていた電磁弁を廃止することが可能である。したがって、検査装置1は、構成を簡素なものとするとともに、体格を小型化することが可能である。また、検査装置1は、電磁弁を使用しないので、消費電力を低減することが可能である。 The inspection apparatus 1 or the inspection method of the first embodiment has the following operational effects. (1) The inspection apparatus 1 according to the first embodiment abolishes the electromagnetic valve provided in the conventional inspection apparatus 1 by including the switching valve 30 that operates according to the differential pressure between the pressure passage 26 and the atmospheric passage 24. Is possible. Therefore, the inspection apparatus 1 can have a simple configuration and can be downsized. Moreover, since the test | inspection apparatus 1 does not use a solenoid valve, it is possible to reduce power consumption.
 さらに、検査装置1は、その流路構成により、ポンプ20の駆動により圧力通路26の減圧のみを行うことで、基準オリフィス22による基準圧力、すなわち、第1基準圧Pref1と、燃料タンク8を減圧したときのシステム圧Ptの両方を検出することが可能である。したがって、検査装置1は、ポンプ20の羽根車の回転方向が同じ状態で、基準圧力およびシステム圧Ptの両方が検出できるので、検出精度を高めることができる。 Further, the inspection apparatus 1 reduces the reference pressure by the reference orifice 22, that is, the first reference pressure Pref1 and the fuel tank 8 only by reducing the pressure passage 26 by driving the pump 20 by the flow path configuration. It is possible to detect both of the system pressures Pt. Therefore, since the inspection apparatus 1 can detect both the reference pressure and the system pressure Pt with the rotation direction of the impeller of the pump 20 being the same, the detection accuracy can be improved.
 (2)第1実施形態の検査装置1が備える切替弁30は、ハウジング31の内側に圧力室32、大気圧室33およびタンク圧室34が形成されている。その圧力室32と大気圧室33との差圧に応じて弁部材40が動作する。この切替弁30の構成により、ポンプ20の回転数の制御により圧力室32と大気圧室33との差圧を変え、弁部材40を動作させることが可能である。 (2) The switching valve 30 provided in the inspection device 1 of the first embodiment has a pressure chamber 32, an atmospheric pressure chamber 33, and a tank pressure chamber 34 formed inside the housing 31. The valve member 40 operates according to the differential pressure between the pressure chamber 32 and the atmospheric pressure chamber 33. With the configuration of the switching valve 30, the valve member 40 can be operated by changing the differential pressure between the pressure chamber 32 and the atmospheric pressure chamber 33 by controlling the rotation speed of the pump 20.
 (3)第1実施形態では、切替弁30が備える弁部材40は、弁部材40が第1位置から第2位置に移動するときの圧力室32と大気圧室33との差圧の絶対値より、弁部材40が第2位置から第1位置に移動するときの圧力室32と大気圧室33との差圧の絶対値の方が小さい。 (3) In 1st Embodiment, the valve member 40 with which the switching valve 30 is provided is the absolute value of the differential pressure | voltage of the pressure chamber 32 and the atmospheric pressure chamber 33 when the valve member 40 moves to a 2nd position from a 1st position. Thus, the absolute value of the differential pressure between the pressure chamber 32 and the atmospheric pressure chamber 33 when the valve member 40 moves from the second position to the first position is smaller.
 これにより、ポンプ20を高速回転して弁部材40を第2位置の状態とした後、圧力室32と大気圧室33との差圧の絶対値を小さくしても、弁部材40を第2位置に留めることが可能である。そのため、弁部材40を第2位置とした状態で、ポンプ20を低速回転させてシステム圧Ptを検出することができる。 As a result, even if the absolute value of the differential pressure between the pressure chamber 32 and the atmospheric pressure chamber 33 is reduced after the pump 20 is rotated at a high speed to bring the valve member 40 into the second position, the valve member 40 is moved to the second position. It is possible to stay in place. Therefore, the system pressure Pt can be detected by rotating the pump 20 at a low speed while the valve member 40 is in the second position.
 (4)第1実施形態では、切替弁30が備える弁部材40は、ダイアフラム42、およびそのダイアフラム42と共に動作する弁体43を有する。弁体43は、第1弁座381に着座したときに通気ポート38側に露出する第1受圧面431より、第2弁座331に着座したときに大気ポート36側に露出する第2受圧面432の方が小さい。 (4) In the first embodiment, the valve member 40 included in the switching valve 30 includes a diaphragm 42 and a valve body 43 that operates together with the diaphragm 42. The valve body 43 has a second pressure receiving surface exposed to the atmosphere port 36 when seated on the second valve seat 331 than the first pressure receiving surface 431 exposed to the vent port 38 when seated on the first valve seat 381. 432 is smaller.
 これにより、弁部材40が第1位置にあるときにタンク圧室34と第2連通路28との差圧により弁体43が受ける力よりも、弁部材40が第2位置にあるときにタンク圧室34と大気圧室33との差圧により弁体43が受ける力が小さいものとなる。したがって、切替弁30は、作動圧の絶対値より、戻り圧の絶対値を小さくすることが可能である。 Thus, when the valve member 40 is in the second position, the tank member 40 is in the second position rather than the force received by the valve body 43 due to the differential pressure between the tank pressure chamber 34 and the second communication passage 28 when the valve member 40 is in the first position. The force received by the valve body 43 due to the differential pressure between the pressure chamber 34 and the atmospheric pressure chamber 33 is small. Therefore, the switching valve 30 can make the absolute value of the return pressure smaller than the absolute value of the operating pressure.
 (5)第1実施形態では、切替弁30の作動圧の絶対値が、第1基準圧Pref1の絶対値または漏れ判断の閾値(T)の絶対値より大きく、且つ、第2基準圧Pref2の絶対値より小さく設定される。 (5) In the first embodiment, the absolute value of the operating pressure of the switching valve 30 is larger than the absolute value of the first reference pressure Pref1 or the absolute value of the leak judgment threshold (T), and the second reference pressure Pref2 It is set smaller than the absolute value.
 これにより、第1基準圧Pref1を測定した後、弁部材40を第1位置から第2位置に移動し、タンクを短時間で減圧することが可能である。 Thus, after measuring the first reference pressure Pref1, the valve member 40 can be moved from the first position to the second position, and the tank can be decompressed in a short time.
 また、第1実施形態では、切替弁30の戻り圧の絶対値が、第1基準圧Pref1の絶対値または漏れ判断の閾値(T)の絶対値より小さく、且つ、0より大きく設定される。 In the first embodiment, the absolute value of the return pressure of the switching valve 30 is set to be smaller than the absolute value of the first reference pressure Pref1 or the absolute value of the leak judgment threshold (T) and larger than 0.
 これにより、弁部材40を第2位置に留めた状態で、ポンプ20を低速回転させ、システム圧Ptを測定することが可能である。 Thus, it is possible to measure the system pressure Pt by rotating the pump 20 at a low speed with the valve member 40 held at the second position.
 (6)第1実施形態の検査装置1は、第2連通路28に通気オリフィス23を備える。 (6) The inspection apparatus 1 according to the first embodiment includes the ventilation orifice 23 in the second communication path 28.
 通気オリフィス23は、切替弁30の弁部材40が第1位置と第2位置とを移動している途中で、大気通路24およびタンク通路25から第2連通路28および圧力通路26を通じて圧力導入ポート35から圧力室32へ空気が流れることを抑制する。したがって、通気オリフィス23は、弁部材40の動作を保証することができる。 The vent orifice 23 is a pressure introduction port from the atmospheric passage 24 and the tank passage 25 through the second communication passage 28 and the pressure passage 26 while the valve member 40 of the switching valve 30 is moving between the first position and the second position. The flow of air from 35 to the pressure chamber 32 is suppressed. Therefore, the vent orifice 23 can guarantee the operation of the valve member 40.
 (7)第1実施形態による蒸発燃料漏れの検査方法は、第1基準圧検出工程(S2―S4)、タンク減圧工程(S5―S8)、システム圧検出工程(S9―S11)および判定工程(S12―S14)を含む。 (7) The evaporative fuel leakage inspection method according to the first embodiment includes a first reference pressure detection step (S2-S4), a tank pressure reduction step (S5-S8), a system pressure detection step (S9-S11), and a determination step ( S12-S14).
 これにより、蒸発燃料漏れの検査方法は、ポンプ20の回転数の変更により切替弁30の動作を制御することが可能である。また、この検査方法は、ポンプ20を高速回転させて燃料タンク8およびキャニスタ10を減圧することで、蒸発燃料漏れ検査を短時間で終了させることが可能である。したがって、この検査方法は、蒸発燃料漏れ検査に消費される電力を低減することができる。 Thus, the evaporative fuel leakage inspection method can control the operation of the switching valve 30 by changing the rotational speed of the pump 20. Further, in this inspection method, the evaporated fuel leakage inspection can be completed in a short time by rotating the pump 20 at a high speed to decompress the fuel tank 8 and the canister 10. Therefore, this inspection method can reduce the electric power consumed for the evaporative fuel leakage inspection.
 (第2実施形態)
 本開示の第2実施形態による蒸発燃料漏れの検査方法を図10および図11のフローチャートを参照して説明する。
(Second Embodiment)
A method for inspecting an evaporated fuel leak according to the second embodiment of the present disclosure will be described with reference to the flowcharts of FIGS. 10 and 11.
 第2実施形態の検査方法において、S1からS7の処理は、第1実施形態の処理と同じである。 In the inspection method of the second embodiment, the processing from S1 to S7 is the same as the processing of the first embodiment.
 第2実施形態では、S7に続くS20でECU50は、圧力センサ21の検出圧が第2基準圧Pref2より大きくなったか否かを判定する。S20で、ECU50は、圧力センサ21の検出圧が第2基準圧Pref2より大きくなったと判定すると、処理をS9に移行する。 In the second embodiment, in S20 following S7, the ECU 50 determines whether or not the detected pressure of the pressure sensor 21 has become larger than the second reference pressure Pref2. If the ECU 50 determines in S20 that the pressure detected by the pressure sensor 21 has become larger than the second reference pressure Pref2, the process proceeds to S9.
 一方、S20で、ECU50は、圧力センサ21の検出圧が第2基準圧Pref2以下であると判定した場合、処理をS21に移行し、圧力センサ21の検出圧が第2基準圧Pref2になってから所定時間が経過したか否かを判定する。S21でECU50は、所定時間が経過していない場合、処理をS20に戻す。 On the other hand, if the ECU 50 determines in S20 that the detected pressure of the pressure sensor 21 is equal to or lower than the second reference pressure Pref2, the process proceeds to S21, and the detected pressure of the pressure sensor 21 becomes the second reference pressure Pref2. It is determined whether or not a predetermined time has passed. If the predetermined time has not elapsed in S21, the ECU 50 returns the process to S20.
 一方、S21で、ECU50は、圧力センサ21の検出圧が第2基準圧Pref2になってから所定時間が経過した場合、処理をS22に移行する。ここでの所定時間は、ポンプ20の駆動により燃料タンク8およびキャニスタ10の減圧を十分に行うことのできる時間に設定される。 On the other hand, in S21, when a predetermined time has elapsed since the detected pressure of the pressure sensor 21 becomes the second reference pressure Pref2, the ECU 50 proceeds to S22. The predetermined time here is set to a time during which the fuel tank 8 and the canister 10 can be sufficiently decompressed by driving the pump 20.
 S22でECU50は、燃料タンク8またはキャニスタ10に、基準オリフィス22の断面積と通気オリフィス23の断面積との合計よりも大きい穴が開いていると判定する。第2実施形態では、基準オリフィス22の断面積と通気オリフィス23の断面積との合計を、大径基準値と称する。これに対し、基準オリフィス22の断面積を小径基準値と称する。 In S22, the ECU 50 determines that the fuel tank 8 or the canister 10 has a hole larger than the sum of the cross-sectional area of the reference orifice 22 and the cross-sectional area of the ventilation orifice 23. In the second embodiment, the sum of the cross-sectional area of the reference orifice 22 and the cross-sectional area of the ventilation orifice 23 is referred to as a large diameter reference value. On the other hand, the cross-sectional area of the reference orifice 22 is referred to as a small diameter reference value.
 S23でECU50は、次のエンジン運転時にインストルメントパネルの警告ランプを点灯させる処理を行い、処理を終了する。 In S23, the ECU 50 performs a process of turning on a warning lamp on the instrument panel during the next engine operation, and ends the process.
 上述のとおり、S20で、ECU50は、圧力センサ21の検出圧が第2基準圧Pref2より大きいと判定した場合、処理をS9に移行する。続くS9からS12のYES判定までの処理は、第1実施形態の処理と同じである。 As described above, when the ECU 50 determines in S20 that the detected pressure of the pressure sensor 21 is greater than the second reference pressure Pref2, the process proceeds to S9. The subsequent processes from S9 to S12 are the same as those in the first embodiment.
 S12でECU50は、システム圧Ptの絶対値が第1基準圧Pref1の絶対値以下であるとき、または、システム圧Ptの絶対値と第1基準圧Pref1の絶対値との差が所定の閾値より小さいとき、処理をS24に移行する。 In S12, the ECU 50 determines that the absolute value of the system pressure Pt is equal to or less than the absolute value of the first reference pressure Pref1, or the difference between the absolute value of the system pressure Pt and the absolute value of the first reference pressure Pref1 is greater than a predetermined threshold value. When it is smaller, the process proceeds to S24.
 S24でECU50は、燃料タンク8またはキャニスタ10からの蒸発燃料漏れが小径基準値よりも大きく、大径基準値より小さいと判定する。そして、S15でECU50は、次のエンジン運転時にインストルメントパネルの警告ランプを点灯させる処理を行う。 In S24, the ECU 50 determines that the evaporated fuel leakage from the fuel tank 8 or the canister 10 is larger than the small diameter reference value and smaller than the large diameter reference value. In S15, the ECU 50 performs a process of turning on the warning lamp on the instrument panel during the next engine operation.
 続くS16およびS17の処理は、第1実施形態の処理と同じである。 The subsequent processes in S16 and S17 are the same as those in the first embodiment.
 上述した検査方法において、S20からS22の処理が大径判定工程に相当し、S12、S13およびS24の処理が小径判定工程に相当する。 In the inspection method described above, the processing from S20 to S22 corresponds to the large diameter determination step, and the processing from S12, S13, and S24 corresponds to the small diameter determination step.
 第2実施形態の検査方法は、大径判定工程により、大径基準値よりも大きい蒸発燃料漏れを検出することが可能である。また、小径判定工程により、小径基準値と大径基準値との間の蒸発燃料漏れを検出することが可能である。 The inspection method of the second embodiment can detect an evaporative fuel leak larger than the large diameter reference value by the large diameter determination step. Moreover, it is possible to detect the fuel vapor leakage between the small diameter reference value and the large diameter reference value by the small diameter determination step.
 (第3実施形態)
 本開示の第3実施形態による検査装置1を図12に示す。第3実施形態では、切替弁30の弁部材40が、第1弁体401と第2弁体402を有する。第1弁体401は第1弁座381に着座および離座可能であり、第2弁体402は第2弁座331に着座および離座可能である。第1弁体401と第2弁体402とは所定の距離を離して設けられている。これにより、切替弁30において第1位置と第2位置とを切り替えるために弁部材40が移動する時間を短くすることが可能である。そのため、この切替弁30は、弁部材40が第1位置と第2位置とを移動している途中で、大気通路24およびタンク通路25からタンク圧室34に流入した空気が、通気ポート38から第2連通路28および圧力通路26を通じ、圧力導入ポート35から圧力室32へ流れる流量を低減することが可能である。したがって、この切替弁30は、弁部材40の動作を保証することができる。
(Third embodiment)
FIG. 12 shows an inspection apparatus 1 according to the third embodiment of the present disclosure. In the third embodiment, the valve member 40 of the switching valve 30 includes a first valve body 401 and a second valve body 402. The first valve body 401 can be seated and separated from the first valve seat 381, and the second valve body 402 can be seated and separated from the second valve seat 331. The first valve body 401 and the second valve body 402 are provided at a predetermined distance. Thereby, in order to switch the 1st position and the 2nd position in change valve 30, it is possible to shorten time for valve member 40 to move. Therefore, in the switching valve 30, the air flowing into the tank pressure chamber 34 from the atmospheric passage 24 and the tank passage 25 is transferred from the ventilation port 38 while the valve member 40 is moving between the first position and the second position. It is possible to reduce the flow rate flowing from the pressure introduction port 35 to the pressure chamber 32 through the second communication passage 28 and the pressure passage 26. Therefore, the switching valve 30 can guarantee the operation of the valve member 40.
 なお、弁部材40が第1位置と第2位置とを移動する時間を短くすることで、第2連通路28の通気オリフィス23を廃止することも可能である。なお、第2連通路28の流路断面積を調整し、第2連通路28に通気オリフィス23と同じ機能を持たせることも可能である。 It should be noted that the ventilation orifice 23 of the second communication path 28 can be eliminated by shortening the time for the valve member 40 to move between the first position and the second position. It is also possible to adjust the flow passage cross-sectional area of the second communication path 28 so that the second communication path 28 has the same function as the vent orifice 23.
 (第4実施形態)
 本開示の第4実施形態による検査装置1を図13に示す。第4実施形態では、通気オリフィス23は、圧力通路26の第2連通路28と吸入口201との間に設けられている。具体的には、図13に示すように、圧力通路26が圧力導入ポート35から順に、ポンプ20の吸入口201、第2連通路28、第1連通路27に連通している場合、通気オリフィス23は、圧力通路26の第2連通路28に接続する部位P261と圧力通路26の吸入口201に接続する部位P262との間に設けられる。このとき、通気オリフィス23の断面積は、基準オリフィス22の断面積に比べ大きい。
(Fourth embodiment)
An inspection apparatus 1 according to the fourth embodiment of the present disclosure is shown in FIG. In the fourth embodiment, the ventilation orifice 23 is provided between the second communication passage 28 of the pressure passage 26 and the suction port 201. Specifically, as shown in FIG. 13, when the pressure passage 26 communicates with the suction port 201, the second communication passage 28, and the first communication passage 27 of the pump 20 in order from the pressure introduction port 35, the ventilation orifice 23 is provided between a portion P261 connected to the second communication passage 28 of the pressure passage 26 and a portion P262 connected to the suction port 201 of the pressure passage 26. At this time, the sectional area of the ventilation orifice 23 is larger than the sectional area of the reference orifice 22.
 次に、第4実施形態による蒸発燃料漏れの検査方法について、図14のフローチャート、および、図15のタイムチャートを参照して説明する。第4実施形態による蒸発燃料漏れの検査方法は、図14および図6に示すフローチャートに沿って行われる。なお、図15の上段は蒸発燃料漏れの検査における時間軸を示し、中段は時間の経過に伴うポンプ20の回転数を示すグラフであり、下段は時間の経過に伴う圧力センサ21の検出圧の変化を示すグラフである。なお、ポンプ20は、正転時に圧力通路26を減圧するものとする。ここでも、圧力の大小をいう場合、絶対値をいうものとする。 Next, an evaporative fuel leakage inspection method according to the fourth embodiment will be described with reference to the flowchart of FIG. 14 and the time chart of FIG. The method for inspecting fuel vapor leakage according to the fourth embodiment is performed along the flowcharts shown in FIGS. 14 and 6. The upper part of FIG. 15 shows the time axis in the evaporative fuel leakage inspection, the middle part is a graph showing the rotational speed of the pump 20 with time, and the lower part shows the detected pressure of the pressure sensor 21 with time. It is a graph which shows a change. Note that the pump 20 depressurizes the pressure passage 26 during normal rotation. Here too, when referring to the magnitude of the pressure, it means the absolute value.
 第4実施形態の検査方法において、S1からS6の処理は、第1実施形態の処理と同じである。S5でポンプ20の駆動を高速回転に切り替えると、図15の時刻t4以降、圧力センサ21の検出圧は徐々に低下する。圧力センサ21の検出圧が作動圧に到達すると、弁部材40が第1位置から第2位置に向けて移動を開始する(S6)。第4実施形態では、弁部材40が移動を開始すると、圧力センサ21の検出圧は、図15の時刻t5において一旦大気圧まで戻り、その後、キャニスタ10内および燃料タンク8内の圧力波形(破線F)と同じ変化を示す。このとき、燃料タンク8またはキャニスタ10に、基準オリフィス22の断面積と通気オリフィス23の断面積との合計よりも大きい穴が開いている場合、図15の破線Xで示すように、穴の面積に応じた圧力で一定となる。 In the inspection method of the fourth embodiment, the processing from S1 to S6 is the same as the processing of the first embodiment. When the drive of the pump 20 is switched to high speed rotation in S5, the pressure detected by the pressure sensor 21 gradually decreases after time t4 in FIG. When the detected pressure of the pressure sensor 21 reaches the operating pressure, the valve member 40 starts moving from the first position to the second position (S6). In the fourth embodiment, when the valve member 40 starts moving, the pressure detected by the pressure sensor 21 once returns to the atmospheric pressure at time t5 in FIG. 15, and then the pressure waveforms in the canister 10 and the fuel tank 8 (broken line) It shows the same change as F). At this time, when a hole larger than the sum of the cross-sectional area of the reference orifice 22 and the cross-sectional area of the ventilation orifice 23 is opened in the fuel tank 8 or the canister 10, as shown by a broken line X in FIG. It becomes constant at the pressure according to.
 S40でECU50は、圧力センサ21の検出圧が目標値になってから所定時間が経過したか否かを判定する。ECU50は、所定時間が経過するまで、S40の処理を繰り返す。ここで、S40における目標値は、燃料タンク8の耐圧や検出すべき穴の大きさなどから決定される値である。 In S40, the ECU 50 determines whether or not a predetermined time has elapsed since the detected pressure of the pressure sensor 21 has reached the target value. The ECU 50 repeats the process of S40 until a predetermined time has elapsed. Here, the target value in S40 is a value determined from the pressure resistance of the fuel tank 8, the size of the hole to be detected, and the like.
 なお、S40において、ECU50は、所定時間の経過を判定することに代えて、またはそれと共に、圧力センサ21の検出圧が目標値より大きくなったか否かを判定する処理を行ってもよい。その場合、ECU50は、圧力センサ21の検出圧が、目標値より大きくなるまでS40の処理を繰り返す。また、ECU50は、圧力センサ21の検出圧がポンプが高速回転に切り替わってから所定時間が経過したか否かを判定する処理を行ってもよい。 In S40, the ECU 50 may perform a process of determining whether or not the detected pressure of the pressure sensor 21 has become larger than the target value instead of determining whether or not the predetermined time has elapsed. In that case, the ECU 50 repeats the process of S40 until the detected pressure of the pressure sensor 21 becomes larger than the target value. Further, the ECU 50 may perform processing for determining whether or not a predetermined time has elapsed since the pressure detected by the pressure sensor 21 has been switched to high speed rotation of the pump.
 ECU50は、圧力センサ21の検出圧が目標値となってから所定時間が経過すると、処理をS9に移行する。 ECU50 will transfer a process to S9, if predetermined time passes after the detection pressure of the pressure sensor 21 becomes a target value.
 続くS9からS17の処理は、第1実施形態の処理と同じである。 The subsequent processes from S9 to S17 are the same as those in the first embodiment.
 検査装置1において、弁体43が第2位置にあるとき、大気圧室33と圧力室32とは、第2連通路28および圧力通路26を介して連通している。このとき、通気オリフィス23により圧力室32と大気圧室33との差圧を形成することができる。これにより、弁体43が第2位置にある状態を維持することができる。 In the inspection apparatus 1, when the valve body 43 is in the second position, the atmospheric pressure chamber 33 and the pressure chamber 32 communicate with each other via the second communication passage 28 and the pressure passage 26. At this time, a differential pressure between the pressure chamber 32 and the atmospheric pressure chamber 33 can be formed by the ventilation orifice 23. Thereby, the state in which the valve body 43 exists in a 2nd position is maintainable.
 また、システム圧Ptを検出するとき、圧力センサ21近傍の圧力通路26と燃料タンク8内およびキャニスタ10内とは、圧力通路26の圧力センサ21に接続している部位P263から第2連通路28に接続する部位P261までの圧力通路26、第2連通路28、タンク圧室34、および、タンク通路25を介して連通している。第4実施形態による検査装置1では、この圧力通路26の圧力センサ21に接続している部位P263から第2連通路28に接続する部位P261までの圧力通路26や第2連通路28に、通気オリフィス23のような気体が流れるための抵抗となる部位がないため、精度良くキャニスタ10内および燃料タンク8内の漏れを検出することができる。 When the system pressure Pt is detected, the pressure passage 26 in the vicinity of the pressure sensor 21 and the fuel tank 8 and the canister 10 are connected to the second communication passage 28 from the portion P263 of the pressure passage 26 connected to the pressure sensor 21. Are communicated via the pressure passage 26, the second communication passage 28, the tank pressure chamber 34, and the tank passage 25 to the portion P 261 connected to. In the inspection apparatus 1 according to the fourth embodiment, air is passed through the pressure passage 26 and the second communication passage 28 from the portion P263 connected to the pressure sensor 21 of the pressure passage 26 to the portion P261 connected to the second communication passage 28. Since there is no portion such as the orifice 23 that becomes a resistance for the gas to flow, leakage in the canister 10 and the fuel tank 8 can be detected with high accuracy.
 (第5実施形態)
 本開示の第5実施形態による検査装置1を図16に示す。第5実施形態では、通気オリフィス23とポンプ20との間の圧力通路26上に逆止弁60が設けられている。
(Fifth embodiment)
FIG. 16 shows an inspection apparatus 1 according to the fifth embodiment of the present disclosure. In the fifth embodiment, a check valve 60 is provided on the pressure passage 26 between the ventilation orifice 23 and the pump 20.
 具体的には、図14に示すように、逆止弁60は、圧力通路26の部位P261と部位P262との間であって、通気オリフィス23のポンプ20側に設けられている。逆止弁60は、ハウジング61、弁部材62およびスプリング63を有する。 Specifically, as shown in FIG. 14, the check valve 60 is provided between the portion P261 and the portion P262 of the pressure passage 26 and on the pump 20 side of the ventilation orifice 23. The check valve 60 includes a housing 61, a valve member 62, and a spring 63.
 ハウジング61は、二つのポート611、612を有する。ポート611は、通気オリフィス23が設けられている圧力通路26に連通している。ポート612は、部位P262側の圧力通路26と連通している。二つのポート611、612は、ハウジング61が有する弁室610に連通している。 The housing 61 has two ports 611 and 612. The port 611 communicates with the pressure passage 26 in which the ventilation orifice 23 is provided. The port 612 communicates with the pressure passage 26 on the site P262 side. The two ports 611 and 612 communicate with the valve chamber 610 included in the housing 61.
 弁部材62は、弁室610に収容され往復移動可能に設けられている。弁部材62は、ポート612の内側の周囲に突出するよう形成されている弁座613に当接可能である。 The valve member 62 is accommodated in the valve chamber 610 so as to be reciprocally movable. The valve member 62 can abut on a valve seat 613 formed so as to protrude around the inside of the port 612.
 スプリング63は、弁座613の径内方向に設けられている。スプリング63の第1端は、ハウジング61の内壁に当接している。スプリング63の第2端は、弁部材62に当接している。スプリング63は、弁部材62が弁座613から離間するよう弁部材62を付勢する。 The spring 63 is provided in the radial direction of the valve seat 613. The first end of the spring 63 is in contact with the inner wall of the housing 61. The second end of the spring 63 is in contact with the valve member 62. The spring 63 biases the valve member 62 so that the valve member 62 is separated from the valve seat 613.
 第5実施形態による蒸発燃料漏れの検査方法は、図14および図6に示すフローチャートに沿って行われる。 The evaporative fuel leakage inspection method according to the fifth embodiment is performed in accordance with the flowcharts shown in FIGS.
 逆止弁60では、ポート611側の気体の圧力とポート612側の気体の圧力との間に比較的大きな圧力差がない場合、例えば、S9でポンプ20の駆動を低速回転にしているとき、弁部材62は弁座613から離間しているため、ポート611とポート612との間での気体の流れを許容する。一方、ポート611側の気体の圧力がポート612側の気体の圧力に比べ所定値以上大きくなる場合、例えば、S16でポンプ20の駆動を停止させるとき、弁部材62が弁座613に当接し、ポート611とポート612との間での気体の流れを遮断する。すなわち、逆止弁60は、ノーマルオープン式の逆止弁である。 In the check valve 60, when there is no relatively large pressure difference between the gas pressure on the port 611 side and the gas pressure on the port 612 side, for example, when the pump 20 is driven at a low speed in S9, Since the valve member 62 is separated from the valve seat 613, the gas flow between the port 611 and the port 612 is allowed. On the other hand, when the gas pressure on the port 611 side is larger than the gas pressure on the port 612 side by a predetermined value or more, for example, when the drive of the pump 20 is stopped in S16, the valve member 62 contacts the valve seat 613, The gas flow between the port 611 and the port 612 is blocked. That is, the check valve 60 is a normally open check valve.
 第5実施形態による検査装置1では、S16においてポンプ20の駆動を停止し圧力室32や燃料タンク8などを大気圧に戻すとき、容積の大小関係から燃料タンク8やキャニスタ10などに圧力室32から気体が流入する。このため、圧力室32の圧力を上昇させ弁体43が第1位置に復帰するまでの時間が長くなる。 In the inspection apparatus 1 according to the fifth embodiment, when the drive of the pump 20 is stopped and the pressure chamber 32 and the fuel tank 8 are returned to the atmospheric pressure in S16, the pressure chamber 32 is supplied to the fuel tank 8 and the canister 10 and the like due to the size relationship. Gas flows in from. For this reason, the time until the pressure in the pressure chamber 32 is increased and the valve body 43 returns to the first position becomes longer.
 そこで、第5実施形態による検査装置1では、逆止弁60によって圧力室32から燃料タンク8やキャニスタ10への逆流を防止し、弁体43が第1位置に復帰するまでの時間を短くする。これにより、蒸発燃料漏れの検査にかかる時間を短くすることができる。 Therefore, in the inspection apparatus 1 according to the fifth embodiment, the check valve 60 prevents the back flow from the pressure chamber 32 to the fuel tank 8 and the canister 10, and shortens the time until the valve body 43 returns to the first position. . Thereby, the time required for the inspection of the evaporated fuel leakage can be shortened.
 (第6実施形態)
 本開示の第6実施形態による検査装置1を図17および図18に示す。第6実施形態では、切替弁30とは構成が異なる切替弁70を備えると共に、通気オリフィス23とポンプ20との間の圧力通路26上に逆止弁80が設けられている。第6実施形態による検査装置1では、ポンプ20が燃料タンク8内およびキャニスタ10内を加圧することによって燃料タンク8およびキャニスタ10の蒸発燃料漏れを検査する。
(Sixth embodiment)
An inspection apparatus 1 according to the sixth embodiment of the present disclosure is shown in FIGS. 17 and 18. In the sixth embodiment, a switching valve 70 having a configuration different from that of the switching valve 30 is provided, and a check valve 80 is provided on the pressure passage 26 between the ventilation orifice 23 and the pump 20. In the inspection apparatus 1 according to the sixth embodiment, the pump 20 pressurizes the fuel tank 8 and the canister 10 to inspect the fuel tank 8 and the canister 10 for fuel vapor leakage.
 切替弁70は、ポンプ20の駆動により変化する圧力通路26と大気通路24との差圧に応じて動作する差圧弁である。切替弁70は、ハウジング31、弁部材90およびスプリング91を有する。 The switching valve 70 is a differential pressure valve that operates in accordance with the differential pressure between the pressure passage 26 and the atmospheric passage 24 that changes as the pump 20 is driven. The switching valve 70 includes a housing 31, a valve member 90, and a spring 91.
 弁部材90は、ダイアフラム92、第1弁体901、および、第2弁体902を有する。 The valve member 90 includes a diaphragm 92, a first valve body 901, and a second valve body 902.
 ダイアフラム92は、圧力室32と大気圧室33とを仕切り、圧力室32と大気圧室33との差圧を受けて動作する。 The diaphragm 92 divides the pressure chamber 32 and the atmospheric pressure chamber 33 and operates by receiving a differential pressure between the pressure chamber 32 and the atmospheric pressure chamber 33.
 第1弁体901および第2弁体902は、ダイアフラム92に接続する接続部94を有し、ダイアフラム92と共に動作する。 1st valve body 901 and 2nd valve body 902 have the connection part 94 connected to the diaphragm 92, and operate | move with the diaphragm 92. FIG.
 第1弁体901は、通気ポート38から突出している接続部94のダイアフラム92に接続する側とは反対側の端部に設けられている。これにより、第1弁体901は、ハウジング31の外側において接続部94と共に往復移動する。第1弁体901は、通気ポート38の外側の周囲に設けられた第1弁座382に着座および離座可能である。第1弁体901は、第1弁体901の第1弁座382側とは反対側に設けられているスプリング91によって第1弁座382に着座するよう付勢されている。なお、スプリング91を設けることなく、ダイアフラム92自身の弾性力により、第1弁体901が第1弁座382に着座するように構成してもよい。 The first valve body 901 is provided at the end of the connection portion 94 protruding from the ventilation port 38 on the side opposite to the side connected to the diaphragm 92. As a result, the first valve body 901 reciprocates together with the connecting portion 94 outside the housing 31. The first valve body 901 can be seated and separated from a first valve seat 382 provided around the outside of the ventilation port 38. The first valve body 901 is biased to be seated on the first valve seat 382 by a spring 91 provided on the opposite side of the first valve body 901 from the first valve seat 382 side. The first valve body 901 may be configured to be seated on the first valve seat 382 by the elastic force of the diaphragm 92 itself without providing the spring 91.
 第2弁体902は、接続部94のダイアフラム92側であって、大気圧室33を往復移動可能なよう設けられている。第2弁体902は、タンク圧室34と大気圧室33との間においてダイアフラム92の方向に突出するよう設けられた第2弁座332に着座および離座可能である。第2弁体902が第2弁座332に着座しているとき、第1弁体901は、第1弁座382から離座するよう構成されている。 The second valve body 902 is provided on the diaphragm 92 side of the connecting portion 94 so as to be able to reciprocate in the atmospheric pressure chamber 33. The second valve body 902 can be seated on and separated from a second valve seat 332 provided between the tank pressure chamber 34 and the atmospheric pressure chamber 33 so as to protrude in the direction of the diaphragm 92. The first valve body 901 is configured to be separated from the first valve seat 382 when the second valve body 902 is seated on the second valve seat 332.
 図17に示すように、第1弁体901が第1弁座382に着座するとき、第2連通路28における圧力通路26以外への連通が遮断される一方、大気通路24とタンク通路25とは、連通している。第1弁体901が第1弁座382に着座したときの位置を第1位置と称する。 As shown in FIG. 17, when the first valve body 901 is seated on the first valve seat 382, communication with the second communication passage 28 other than the pressure passage 26 is blocked, while the air passage 24, the tank passage 25, Are communicating. A position when the first valve body 901 is seated on the first valve seat 382 is referred to as a first position.
 一方、図18に示すように、第2弁体902が第2弁座332に着座するとき、大気通路24におけるポンプ20および大気以外への連通が遮断される一方、第2連通路28とタンク通路25とは、連通している。弁体43が第2弁座331に着座したときの位置を第2位置と称する。弁部材90は、第1位置と第2位置とを移動可能である。 On the other hand, as shown in FIG. 18, when the second valve body 902 is seated on the second valve seat 332, the communication to the atmosphere 20 other than the pump 20 and the atmosphere is blocked while the second communication path 28 and the tank The passage 25 communicates with the passage 25. A position when the valve body 43 is seated on the second valve seat 331 is referred to as a second position. The valve member 90 is movable between the first position and the second position.
 図17に示すように、第1弁体901が第1弁座382に着座しているときに第1弁体901が通気ポート38側に露出する面を第1受圧面903と称する。また、図18に示すように、第2弁体902が第2弁座332に着座しているときに第2弁体902が大気圧室33側に露出する面を第2受圧面904と称する。 As shown in FIG. 17, when the first valve body 901 is seated on the first valve seat 382, the surface on which the first valve body 901 is exposed to the ventilation port 38 side is referred to as a first pressure receiving surface 903. Further, as shown in FIG. 18, a surface where the second valve body 902 is exposed to the atmospheric pressure chamber 33 side when the second valve body 902 is seated on the second valve seat 332 is referred to as a second pressure receiving surface 904. .
 ここで、第2弁座332の開口面積は、第1弁座382の開口面積より小さく形成されているため、第2受圧面904は、第1受圧面903より小さい。そのため、弁部材90が第2位置にあるときにタンク圧室34と大気圧室33との差圧が第2弁体902に作用する力は、弁部材90が第1位置にあるときに第2連通路28とタンク圧室34との差圧が第1弁体901に作用する力より小さいものとなる。したがって、弁部材90が第2位置から第1位置に移動するときの大気通路24と圧力通路26との差圧は、弁体43が第1位置から第2位置に移動するときの大気通路24と圧力通路26との差圧より小さいものとなる。 Here, since the opening area of the second valve seat 332 is smaller than the opening area of the first valve seat 382, the second pressure receiving surface 904 is smaller than the first pressure receiving surface 903. Therefore, the force that the differential pressure between the tank pressure chamber 34 and the atmospheric pressure chamber 33 acts on the second valve body 902 when the valve member 90 is in the second position is the first when the valve member 90 is in the first position. The differential pressure between the two communication passages 28 and the tank pressure chamber 34 is smaller than the force acting on the first valve body 901. Therefore, the differential pressure between the atmospheric passage 24 and the pressure passage 26 when the valve member 90 moves from the second position to the first position is the atmospheric passage 24 when the valve body 43 moves from the first position to the second position. And a pressure difference smaller than the pressure passage 26.
 弁部材90が第1位置から第2位置に移動するときの大気通路24と圧力通路26との差圧を作動圧と称する。また、弁部材90が第1位置から第2位置に移動するときの大気通路24と圧力通路26との差圧を戻り圧と称する。切替弁70における作動圧および戻り圧の関係は、切替弁30と同じである。 The differential pressure between the atmospheric passage 24 and the pressure passage 26 when the valve member 90 moves from the first position to the second position is referred to as operating pressure. The differential pressure between the atmospheric passage 24 and the pressure passage 26 when the valve member 90 moves from the first position to the second position is referred to as return pressure. The relationship between the operating pressure and the return pressure in the switching valve 70 is the same as that of the switching valve 30.
 逆止弁80は、ハウジング81、弁部材82およびスプリング83を有する。 The check valve 80 has a housing 81, a valve member 82, and a spring 83.
 ハウジング81は、二つのポート811、812を有する。ポート811は、通気オリフィス23が設けられている圧力通路26に連通している。ポート812は、圧力通路26の吐出口202に接続する部位P262と連通している。二つのポート811、812は、ハウジング81が有する弁室810に連通している。 The housing 81 has two ports 811 and 812. The port 811 communicates with the pressure passage 26 in which the ventilation orifice 23 is provided. The port 812 communicates with a portion P262 connected to the discharge port 202 of the pressure passage 26. The two ports 811 and 812 communicate with a valve chamber 810 included in the housing 81.
 弁部材82は、弁室810に収容され往復移動可能に設けられている。弁部材82は、ポート812の内側の周囲に形成されている弁座813に当接可能である。 The valve member 82 is accommodated in the valve chamber 810 and provided so as to be reciprocally movable. The valve member 82 can contact a valve seat 813 formed around the inside of the port 812.
 スプリング83は、弁部材82の弁座813とは反対側に設けられている。スプリング83の第1端は、ハウジング81の内壁に当接している。スプリング83の第2端は、弁部材82に当接している。スプリング83は、弁部材82が弁座813に当接するよう弁部材82を付勢する。 The spring 83 is provided on the opposite side to the valve seat 813 of the valve member 82. The first end of the spring 83 is in contact with the inner wall of the housing 81. The second end of the spring 83 is in contact with the valve member 82. The spring 83 biases the valve member 82 so that the valve member 82 contacts the valve seat 813.
 逆止弁80では、ポート812側の気体の圧力がポート811側の気体の圧力に比べて所定値より小さい場合、弁部材82は弁座823に当接するため、ポート811とポート812との間での気体の流れを規制する。一方、ポート812側の気体の圧力がポート811側の気体の圧力に比べ所定値以上大きくなる場合、例えば、ポンプ20が低速回転で駆動しているとき、弁部材82が弁座813から離間し、ポート811とポート812との間での気体の流れが許容される。すなわち、逆止弁80は、ノーマルクローズ式の逆止弁である。 In the check valve 80, when the gas pressure on the port 812 side is smaller than the gas pressure on the port 811 side, the valve member 82 contacts the valve seat 823, and therefore, between the port 811 and the port 812. Regulates gas flow at On the other hand, when the gas pressure on the port 812 side is larger than the gas pressure on the port 811 side by a predetermined value or more, for example, when the pump 20 is driven at low speed rotation, the valve member 82 is separated from the valve seat 813. , Gas flow between the port 811 and the port 812 is allowed. That is, the check valve 80 is a normally closed check valve.
 次に、第6実施形態による蒸発燃料漏れの検査方法について、図19のタイムチャートを参照して説明する。第6実施形態による蒸発燃料漏れの検査方法は、図14および図6に示すフローチャートに沿って行われる。なお、図19の上段は蒸発燃料漏れの検査における時間軸を示し、中段は時間の経過に伴うポンプ20の回転数を示すグラフであり、下段は時間の経過に伴う圧力センサ21の検出圧の変化を示すグラフである。なお、ポンプ20は、正転時に圧力通路26を加圧するものとする。ここでは、圧力の大小をいう場合、絶対値をいうものとする。 Next, an evaporative fuel leakage inspection method according to the sixth embodiment will be described with reference to the time chart of FIG. The method for inspecting fuel vapor leakage according to the sixth embodiment is performed in accordance with the flowcharts shown in FIGS. 14 and 6. Note that the upper part of FIG. 19 shows the time axis in the evaporative fuel leak inspection, the middle part is a graph showing the rotation speed of the pump 20 with time, and the lower part shows the detected pressure of the pressure sensor 21 with time. It is a graph which shows a change. The pump 20 pressurizes the pressure passage 26 during normal rotation. Here, when referring to the magnitude of pressure, the absolute value is assumed.
 蒸発燃料漏れの検査は、エンジン2の運転が停止した後、所定時間が経過すると開始される。その所定時間は、車両の温度が安定するために必要な時間に設定されている。 The inspection for evaporative fuel leakage starts when a predetermined time has elapsed after the operation of the engine 2 is stopped. The predetermined time is set to a time required for the temperature of the vehicle to stabilize.
 S1でECU50は、大気圧P0を検出する。この処理は、図19の時刻t0から時刻t1までの間において、ポンプ20が停止した状態で行われる。このとき、切替弁70は第1位置にある。 In S1, the ECU 50 detects the atmospheric pressure P0. This process is performed in a state where the pump 20 is stopped between time t0 and time t1 in FIG. At this time, the switching valve 70 is in the first position.
 S2でECU50は、ポンプ20を低速回転にて駆動する。図19の時刻t1において、ポンプ20が低速回転で駆動を開始すると、それ以降、圧力センサ21の検出圧が上昇し始める。ポンプ20の駆動により、圧力通路26に連通する第1連通路27の基準オリフィス22を空気が流れる。 In S2, the ECU 50 drives the pump 20 at a low speed. When the pump 20 starts to be driven at a low speed rotation at time t1 in FIG. 19, the pressure detected by the pressure sensor 21 starts to increase thereafter. By driving the pump 20, air flows through the reference orifice 22 of the first communication passage 27 communicating with the pressure passage 26.
 S3でECU50は、ポンプ20の駆動開始から所定時間が経過したか否かを判定する。この処理では、図19の時刻t1以降に上昇した圧力センサ21の検出圧が、時刻t2で第1基準圧Pref1に到達する。そして、時刻t2以降、第1基準圧Pref1が維持される。なお、S3において、ECU50は、所定時間の経過を判定することに代えて、またはそれと共に、圧力センサ21の検出圧が所定の圧力に到達し、その所定の圧力を維持している状態か否かを判定する処理を行ってもよい。 In S3, the ECU 50 determines whether or not a predetermined time has elapsed from the start of driving of the pump 20. In this process, the detected pressure of the pressure sensor 21 that has increased after time t1 in FIG. 19 reaches the first reference pressure Pref1 at time t2. Then, after the time t2, the first reference pressure Pref1 is maintained. In S3, the ECU 50 determines whether or not the detected pressure of the pressure sensor 21 reaches the predetermined pressure and maintains the predetermined pressure instead of determining whether or not the predetermined time has elapsed. You may perform the process which determines.
 S4でECU50は、圧力センサ21の検出圧を第1基準圧Pref1として記憶する(図19の時刻t2からt3までの間)。 In S4, the ECU 50 stores the detected pressure of the pressure sensor 21 as the first reference pressure Pref1 (between times t2 and t3 in FIG. 19).
 S5でECU50は、ポンプ20の駆動を高速回転に切り替える。図19の時刻t3でポンプ20の駆動を高速回転に切り替えると、図19の時刻t4以降、圧力センサ21の検出圧は徐々に上昇する。圧力センサ21の検出圧が作動圧に到達すると、弁部材90が第1位置から第2位置に向けて移動を開始する(S6)。第6実施形態では、弁部材90が移動すると、圧力センサ21の検出圧は、図19の時刻t5において、一旦大気圧まで戻り、その後、キャニスタ10内および燃料タンク8内の圧力波形(破線F)と同じ変化を示す。 In S5, the ECU 50 switches the drive of the pump 20 to high speed rotation. When the drive of the pump 20 is switched to high speed rotation at time t3 in FIG. 19, the detected pressure of the pressure sensor 21 gradually increases after time t4 in FIG. When the detected pressure of the pressure sensor 21 reaches the operating pressure, the valve member 90 starts moving from the first position to the second position (S6). In the sixth embodiment, when the valve member 90 moves, the pressure detected by the pressure sensor 21 once returns to atmospheric pressure at time t5 in FIG. 19, and then the pressure waveforms in the canister 10 and the fuel tank 8 (broken line F). ) Shows the same change.
 S6で弁部材90が第1位置から第2位置に向けて移動しているとき、キャニスタ10内および燃料タンク8内は加圧される。これにより、燃料タンク8またはキャニスタ10に基準オリフィス22の断面積と通気オリフィス23の断面積との合計以下の小さい穴が開いている場合、または、燃料タンク8またはキャニスタ10に穴が開いていない場合、圧力センサ21の検出圧は、システム圧Ptより大きくなる。 When the valve member 90 is moving from the first position to the second position in S6, the inside of the canister 10 and the fuel tank 8 are pressurized. Thereby, when the small hole below the sum total of the cross-sectional area of the reference | standard orifice 22 and the cross-sectional area of the ventilation | gas_flowing orifice 23 is opened in the fuel tank 8 or the canister 10, or the hole is not opened in the fuel tank 8 or the canister 10 In this case, the detected pressure of the pressure sensor 21 is larger than the system pressure Pt.
 一方、燃料タンク8またはキャニスタ10に、基準オリフィス22の断面積と通気オリフィス23の断面積との合計よりも大きい穴が開いている場合、図19の圧力センサ21の検出圧のグラフに破線Xで示すように、検出圧は、燃料蒸気が漏れ出すおそれがある穴の大きさに対応する圧力を維持する。 On the other hand, if the fuel tank 8 or the canister 10 has a hole larger than the sum of the cross-sectional area of the reference orifice 22 and the cross-sectional area of the ventilation orifice 23, the detected pressure graph of the pressure sensor 21 in FIG. As shown, the detected pressure maintains a pressure corresponding to the size of the hole where the fuel vapor may leak.
 S40でECU50は、圧力センサ21の検出圧が目標値になってから所定時間が経過したか否かを判定する。ECU50は、所定時間が経過するまで、S40の処理を繰り返す。ECU50は、圧力センサ21の検出圧が目標値となってから所定時間が経過すると、処理をS9に移行する。 In S40, the ECU 50 determines whether or not a predetermined time has elapsed since the detected pressure of the pressure sensor 21 has reached the target value. The ECU 50 repeats the process of S40 until a predetermined time has elapsed. When a predetermined time has elapsed since the detected pressure of the pressure sensor 21 has reached the target value, the ECU 50 proceeds to S9.
 また、ECU50は、ポンプが高速回転に切り替わってから所定時間が経過したか否かを判定してもよい。 Further, the ECU 50 may determine whether or not a predetermined time has elapsed since the pump was switched to high speed rotation.
 S9でECU50は、ポンプ20の駆動を低速回転に切り替える。この処理では、図19の時刻t7でポンプ20が低速回転に切り替わり、それ以降、検出圧が小さくなっていくが、切替弁70は切り替わることなく第2位置の状態を維持する。 In S9, the ECU 50 switches the drive of the pump 20 to low speed rotation. In this process, the pump 20 switches to low speed rotation at time t7 in FIG. 19, and thereafter the detected pressure decreases, but the switching valve 70 maintains the state of the second position without switching.
 S10でECU50は、ポンプ20の駆動を低速回転に切り替えてから所定時間が経過したか否かを判定する。ECU50は、所定時間が経過するまで、S10の処理を繰り返す。この処理では、図19の時刻t8以降、圧力センサ21の検出圧が一定の圧力に維持される。 In S10, the ECU 50 determines whether or not a predetermined time has elapsed since the drive of the pump 20 was switched to low speed rotation. The ECU 50 repeats the process of S10 until a predetermined time has elapsed. In this process, the pressure detected by the pressure sensor 21 is maintained at a constant pressure after time t8 in FIG.
 なお、S10において、ECU50は、所定時間の経過を判定することに代えて、またはそれと共に、圧力センサ21の検出圧が所定圧を維持するようになったか否かを判定する処理を行ってもよい。 In S10, the ECU 50 may perform a process of determining whether or not the detected pressure of the pressure sensor 21 is maintained at the predetermined pressure instead of or at the same time as determining whether the predetermined time has elapsed. Good.
 S11でECU50は、圧力センサ21の検出圧をシステム圧Ptとして記憶する。この処理は、図19の時刻t8からt9の間に行われる。 In S11, the ECU 50 stores the detected pressure of the pressure sensor 21 as the system pressure Pt. This process is performed between times t8 and t9 in FIG.
 S12でECU50は、第1基準圧Pref1とシステム圧Ptとを比較する。ECU50は、システム圧Ptの絶対値が第1基準圧Pref1の絶対値より大きく、かつ、システム圧Ptと第1基準圧Pref1との差の絶対値が所定の閾値より大きいとき、処理をS13に移行する。 In S12, the ECU 50 compares the first reference pressure Pref1 and the system pressure Pt. When the absolute value of the system pressure Pt is greater than the absolute value of the first reference pressure Pref1 and the absolute value of the difference between the system pressure Pt and the first reference pressure Pref1 is greater than a predetermined threshold, the ECU 50 proceeds to S13. Transition.
 S13でECU50は、燃料タンク8またはキャニスタ10からの蒸発燃料漏れの穴が基準値よりも小さいと判定する。 In S13, the ECU 50 determines that the fuel vapor leakage hole from the fuel tank 8 or the canister 10 is smaller than the reference value.
 一方、S12でECU50は、システム圧Ptの絶対値が第1基準圧Pref1の絶対値以下であるとき、または、システム圧Ptと第1基準圧Pref1との差の絶対値が所定の閾値以下であるとき、処理をS14に移行する。これは、圧力センサ21の検出圧が、図19の下段のグラフに破線Yで示すもの(図19に示すシステム圧Pty)となる場合である。 On the other hand, in S12, the ECU 50 determines that the absolute value of the system pressure Pt is equal to or less than the absolute value of the first reference pressure Pref1, or the absolute value of the difference between the system pressure Pt and the first reference pressure Pref1 is equal to or less than a predetermined threshold value. When there is, the process proceeds to S14. This is a case where the detected pressure of the pressure sensor 21 is the one indicated by the broken line Y in the lower graph of FIG. 19 (system pressure Pty shown in FIG. 19).
 S14でECU50は、燃料タンク8またはキャニスタ10からの蒸発燃料漏れが基準値よりも大きいと判定する。 In S14, the ECU 50 determines that the fuel vapor leakage from the fuel tank 8 or the canister 10 is larger than the reference value.
 S15でECU50は、次のエンジン運転時にインストルメントパネルの警告ランプを点灯させる処理を行う。 In S15, the ECU 50 performs a process of turning on a warning lamp on the instrument panel during the next engine operation.
 S16でECU50は、ポンプ20の駆動を停止するか、または、ポンプ20の羽根車を逆回転させる。いずれの場合でも、図19の時刻t9以降、検出圧が小さくなる。圧力通路26と大気通路24との差圧が切替弁70の戻り圧より小さくなると、切替弁70は第2位置から第1位置への切り替え動作を開始する。 In S16, the ECU 50 stops driving the pump 20, or reversely rotates the impeller of the pump 20. In either case, the detected pressure decreases after time t9 in FIG. When the differential pressure between the pressure passage 26 and the atmospheric passage 24 becomes smaller than the return pressure of the switching valve 70, the switching valve 70 starts a switching operation from the second position to the first position.
 切替弁70が第1位置に切り替わると、S17でECU50はポンプ20の駆動を停止する。このとき、ノーマルクローズ式の逆止弁である逆止弁80は、ポート811とポート812との間での気体の流れを遮断している。これにより、燃料タンク8やキャニスタ10に比べ容積が小さい圧力室32の圧力がある程度大気圧に近くなった後、燃料タンク8内やキャニスタ10内の圧力が大気圧に戻る。 When the switching valve 70 is switched to the first position, the ECU 50 stops driving the pump 20 in S17. At this time, the check valve 80, which is a normally closed check valve, blocks the gas flow between the port 811 and the port 812. Thereby, after the pressure of the pressure chamber 32 having a smaller volume than the fuel tank 8 and the canister 10 becomes close to the atmospheric pressure to some extent, the pressure in the fuel tank 8 and the canister 10 returns to the atmospheric pressure.
 このようにして、第6実施形態による蒸発燃料漏れの検査方法を終了する。 Thus, the evaporative fuel leakage inspection method according to the sixth embodiment is completed.
 第6実施形態による検査装置1では、燃料タンク8およびキャニスタ10を加圧し、蒸発燃料漏れの検査を行う。このとき、S16においてポンプ20の駆動を停止し圧力室32や燃料タンク8などを大気圧に戻すとき、容積の大小関係から燃料タンク8やキャニスタ10などに圧力室32から気体が流入する。このため、圧力室32の圧力を上昇させ弁体43が第1位置に復帰するまでの時間が長くなる。このとき、逆止弁80によって圧力室32から燃料タンク8やキャニスタ10への逆流を防止する。これにより、弁部材90が第1位置に復帰するまでの時間を短くすることができる。 In the inspection apparatus 1 according to the sixth embodiment, the fuel tank 8 and the canister 10 are pressurized and the fuel vapor leakage is inspected. At this time, when the drive of the pump 20 is stopped in S16 and the pressure chamber 32, the fuel tank 8 and the like are returned to the atmospheric pressure, the gas flows from the pressure chamber 32 into the fuel tank 8, the canister 10 and the like due to the size relationship. For this reason, the time until the pressure in the pressure chamber 32 is increased and the valve body 43 returns to the first position becomes longer. At this time, the check valve 80 prevents backflow from the pressure chamber 32 to the fuel tank 8 and the canister 10. Thereby, the time until the valve member 90 returns to the first position can be shortened.
 また、第6実施形態による検査装置1では、弁部材90は、第1弁座382に着座可能な第1弁体901と第2弁座332に着座可能な第2弁体902とを有している。第1弁体901および第2弁体902は、所定の距離を離して設けられているため、切替弁70において第1位置と第2位置とを切り替えるために弁部材90が移動する時間を短くすることができる。 In the inspection device 1 according to the sixth embodiment, the valve member 90 includes a first valve body 901 that can be seated on the first valve seat 382 and a second valve body 902 that can be seated on the second valve seat 332. ing. Since the first valve body 901 and the second valve body 902 are provided at a predetermined distance, the time required for the valve member 90 to move to switch between the first position and the second position in the switching valve 70 is shortened. can do.
 (他の実施形態)
 上述した実施形態では、検査装置1は、ポンプ20の駆動により圧力通路26の減圧を行うことで、切替弁30を動作させ、第1基準圧Pref1、第2基準圧Pref2およびシステム圧Ptの検出を行った。これに対し、他の実施形態では、検査装置1は、ポンプ20の駆動により圧力通路26の加圧を行うことで、切替弁30を動作させ、第1基準圧Pref1、第2基準圧Pref2およびシステム圧Ptの検出を行ってもよい。この場合、図7の中段に示したポンプ20の駆動は、回転数0を中心として正転と逆転を反転させたグラフとなる。また、図7の下段に示した圧力センサ21の検出圧の変化は、大気圧P0を中心として減圧側と加圧側とを反転させたグラフとなる。
(Other embodiments)
In the above-described embodiment, the inspection apparatus 1 operates the switching valve 30 by reducing the pressure passage 26 by driving the pump 20, and detects the first reference pressure Pref1, the second reference pressure Pref2, and the system pressure Pt. Went. On the other hand, in another embodiment, the inspection device 1 operates the switching valve 30 by pressurizing the pressure passage 26 by driving the pump 20, thereby operating the first reference pressure Pref 1, the second reference pressure Pref 2, and The system pressure Pt may be detected. In this case, the driving of the pump 20 shown in the middle stage of FIG. 7 is a graph in which the normal rotation and the reverse rotation are reversed with the rotation speed 0 as the center. Further, the change in the detected pressure of the pressure sensor 21 shown in the lower part of FIG. 7 is a graph in which the decompression side and the pressurization side are reversed with the atmospheric pressure P0 as the center.
 このように、本開示は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の形態に適用可能である。 As described above, the present disclosure is not limited to the above-described embodiment, and can be applied to various forms without departing from the gist thereof.
 第4~6実施形態では、通気オリフィス23は、圧力通路26の第2連通路28に接続する部位P261と圧力通路26の吸入口201または吐出口202に接続する部位P262との間に設けられている。しかしながら、通気オリフィス23は、圧力通路26の圧力導入ポート35に接続する部位P264(図13参照)と部位P262との間、または、圧力通路26の部位P262と部位P261との間に設けられればよい。また、第1、2実施形態の第2連通路28に設けられる通気オリフィス23と併用してもよい。 In the fourth to sixth embodiments, the vent orifice 23 is provided between a portion P261 connected to the second communication passage 28 of the pressure passage 26 and a portion P262 connected to the suction port 201 or the discharge port 202 of the pressure passage 26. ing. However, if the vent orifice 23 is provided between the part P264 (see FIG. 13) connected to the pressure introduction port 35 of the pressure passage 26 and the part P262, or between the part P262 and the part P261 of the pressure passage 26. Good. Moreover, you may use together with the ventilation | gas_flowing orifice 23 provided in the 2nd communicating path 28 of 1st, 2 embodiment.
 第6実施形態では、検査装置1は、逆止弁80を備えるとした。逆止弁80はなくてもよい。また、通気オリフィス23もなくてもよい。 In the sixth embodiment, the inspection apparatus 1 includes the check valve 80. The check valve 80 may not be provided. Further, the ventilation orifice 23 may not be provided.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

 
Although the present disclosure has been described with reference to the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (12)

  1.  燃料タンク(8)の蒸発燃料漏れを検出する検査装置であって、
     圧力センサ(21)と、
     前記圧力センサが設けられた圧力通路(26)と前記燃料タンクに連通するタンク通路(25)とを連通する第1連通路(27)に設けられた基準オリフィス(22)と、
     吸入口(201)または吐出口(202)の一方が大気と連通する大気通路(24)に連通し、他方が前記圧力通路に連通し、前記圧力通路を減圧または加圧可能なポンプ(20)と、
     前記ポンプの駆動により変化する前記圧力通路と前記大気通路との差圧に応じて動作し、前記圧力通路に通じる第2連通路(28)の前記圧力通路以外への連通を遮断すると共に前記大気通路と前記タンク通路とを連通する状態と、前記大気通路における前記ポンプおよび大気以外への連通を遮断すると共に前記第2連通路と前記タンク通路とを連通する状態とを切り替え可能な切替弁(30、70)と、
     を備える検査装置。
    An inspection device for detecting evaporative fuel leakage in a fuel tank (8),
    A pressure sensor (21);
    A reference orifice (22) provided in a first communication passage (27) communicating with a pressure passage (26) provided with the pressure sensor and a tank passage (25) communicating with the fuel tank;
    One of the suction port (201) and the discharge port (202) communicates with the atmospheric passage (24) communicating with the atmosphere, the other communicates with the pressure passage, and the pump (20) capable of depressurizing or pressurizing the pressure passage When,
    It operates according to the differential pressure between the pressure passage and the atmospheric passage that changes as the pump is driven, shuts off the communication of the second communication passage (28) leading to the pressure passage to other than the pressure passage, and the atmosphere. A switching valve capable of switching between a state in which the passage is communicated with the tank passage and a state in which the passage in the atmospheric passage is disconnected from the pump and the atmosphere and the second passage and the tank passage are communicated. 30, 70)
    An inspection apparatus comprising:
  2.  前記切替弁は、
     圧力室(32)、大気圧室(33)およびタンク圧室(34)が形成されたハウジング(31)と、
     前記圧力通路と前記圧力室とを連通する圧力導入ポート(35)と、
     前記大気通路と前記大気圧室とを連通する大気ポート(36)と、
     前記タンク通路と前記タンク圧室とを連通するタンクポート(37)と、
     前記第2連通路と前記タンク圧室とを連通する通気ポート(38)と、
     前記圧力室と前記大気圧室との差圧に応じて動作する弁部材(40、90)と、
     を有する請求項1に記載の検査装置。
    The switching valve is
    A housing (31) in which a pressure chamber (32), an atmospheric pressure chamber (33) and a tank pressure chamber (34) are formed;
    A pressure introduction port (35) communicating the pressure passage and the pressure chamber;
    An atmospheric port (36) communicating the atmospheric passage with the atmospheric pressure chamber;
    A tank port (37) communicating the tank passage and the tank pressure chamber;
    A vent port (38) communicating the second communication path and the tank pressure chamber;
    A valve member (40, 90) that operates in accordance with a differential pressure between the pressure chamber and the atmospheric pressure chamber;
    The inspection apparatus according to claim 1.
  3.  前記弁部材は、前記圧力通路に通じる前記第2連通路の前記圧力通路以外への連通を遮断すると共に前記大気通路と前記タンク通路とを連通する第1位置と、前記大気通路における前記ポンプおよび大気以外への連通を遮断すると共に前記第2連通路と前記タンク通路とを連通する第2位置とを移動可能であり、
     前記弁部材が前記第2位置から前記第1位置に移動するときの前記圧力室と前記大気圧室との差圧の絶対値は、前記弁部材が前記第1位置から前記第2位置に移動するときの前記圧力室と前記大気圧室との差圧の絶対値より小さい請求項2に記載の検査装置。
    The valve member shuts off the communication of the second communication path that communicates with the pressure passage to other than the pressure passage, and communicates the atmospheric passage with the tank passage, the pump in the atmospheric passage, It is possible to move between a second position that cuts off communication to the atmosphere other than the atmosphere and communicates the second communication passage and the tank passage;
    The absolute value of the differential pressure between the pressure chamber and the atmospheric pressure chamber when the valve member moves from the second position to the first position is the valve member moves from the first position to the second position. The inspection apparatus according to claim 2, wherein the absolute value of the differential pressure between the pressure chamber and the atmospheric pressure chamber is smaller.
  4.  前記弁部材は、
     前記圧力室と前記大気圧室とを仕切り、前記圧力室と前記大気圧室との差圧を受けて動作するダイアフラム(42、92)と、
     第1シート面(45)が前記通気ポートに設けられた第1弁座(381、382)に着座および離座し、第2シート面(46)が前記タンク圧室と前記大気圧室との間に設けられた第2弁座(331、332)に着座および離座し、前記ダイアフラムと共に動作する弁体(43、901、902)と、
     を有し、
     前記弁体は、前記第2弁座に着座したときに前記大気圧室側に露出する第2受圧面(42、904)が前記第1弁座に着座したときに前記通気ポート側に露出する第1受圧面(41、903)より小さい請求項3に記載の検査装置。
    The valve member is
    A diaphragm (42, 92) that divides the pressure chamber and the atmospheric pressure chamber and operates by receiving a differential pressure between the pressure chamber and the atmospheric pressure chamber;
    The first seat surface (45) is seated and separated from the first valve seat (381, 382) provided in the vent port, and the second seat surface (46) is formed between the tank pressure chamber and the atmospheric pressure chamber. A valve body (43, 901, 902) seated and separated from a second valve seat (331, 332) provided therebetween, and operating together with the diaphragm;
    Have
    When the valve body is seated on the second valve seat, the second pressure receiving surface (42, 904) exposed to the atmospheric pressure chamber side is exposed to the vent port side when seated on the first valve seat. The inspection apparatus according to claim 3, which is smaller than the first pressure receiving surface (41, 903).
  5.  前記ポンプを低速回転したときに前記基準オリフィスが設けられた前記第1連通路のみを通過する気圧を第1基準圧(Pref1)とし、前記ポンプを高速回転したときに前記第1連通路および前記第2連通路を通過する気圧を第2基準圧(Pref2)とすると、
     前記弁部材が前記第1位置から前記第2位置に移動するときの前記圧力通路と前記大気通路との差圧の絶対値は、前記第1基準圧の絶対値または前記第1基準圧に基づいて設定された漏れ判断の閾値(T)の絶対値より大きく、且つ、前記第2基準圧の絶対値より小さく設定され、
     前記弁部材が前記第2位置から前記第1位置に移動するときの前記圧力通路と前記大気通路との差圧の絶対値は、前記第1基準圧の絶対値または前記漏れ判断の閾値の絶対値より小さく、且つ、0より大きく設定されている請求項3または4のいずれか一項に記載の検査装置。
    When the pump is rotated at a low speed, the atmospheric pressure that passes through only the first communication path provided with the reference orifice is defined as a first reference pressure (Pref1), and when the pump is rotated at a high speed, the first communication path and the If the atmospheric pressure passing through the second communication path is the second reference pressure (Pref2),
    The absolute value of the differential pressure between the pressure passage and the atmospheric passage when the valve member moves from the first position to the second position is based on the absolute value of the first reference pressure or the first reference pressure. Greater than the absolute value of the threshold value (T) for leak judgment set in the above and smaller than the absolute value of the second reference pressure,
    The absolute value of the differential pressure between the pressure passage and the atmospheric passage when the valve member moves from the second position to the first position is the absolute value of the first reference pressure or the absolute value of the threshold value for the leak determination. The inspection apparatus according to claim 3, wherein the inspection apparatus is set to be smaller than the value and larger than 0.
  6.  前記圧力通路は、前記圧力導入ポートに連通している側から順に前記ポンプの前記吸入口または前記吐出口、前記切替弁と前記圧力通路とを連通する前記第2連通路、前記第1連通路に連通しており、
     前記圧力通路の前記第2連通路に接続している部位(P261)から前記圧力導入ポートに接続している部位(P264)までの間に設けられた通気オリフィス(23)をさらに備える請求項2~5のいずれか一項に記載の検査装置。
    The pressure passage includes, in order from the side communicating with the pressure introduction port, the suction port or the discharge port of the pump, the second communication passage that communicates the switching valve and the pressure passage, and the first communication passage. Communicated with
    The vent orifice (23) provided between the site | part (P261) connected to the said 2nd communicating path of the said pressure channel from the site | part (P264) connected to the said pressure introduction port is further provided. The inspection apparatus according to any one of 1 to 5.
  7.  前記圧力通路は、前記圧力導入ポートに連通している側から順に前記ポンプの前記吸入口または前記吐出口、前記切替弁と前記圧力通路とを連通する前記第2連通路、前記第1連通路に連通しており、
     前記圧力通路の前記第2連通路に接続している部位(P261)から前記ポンプの前記吸入口または前記吐出口に接続している部位(P262)までの間に設けられる逆止弁(60、80)をさらに備える請求項2~6のいずれか一項に記載の検査装置。
    The pressure passage includes, in order from the side communicating with the pressure introduction port, the suction port or the discharge port of the pump, the second communication passage that communicates the switching valve and the pressure passage, and the first communication passage. Communicated with
    A check valve (60, 60) provided between a portion (P261) connected to the second communication passage of the pressure passage to a portion (P262) connected to the suction port or the discharge port of the pump. 80) The inspection apparatus according to any one of claims 2 to 6, further comprising: 80).
  8.  前記逆止弁は、ノーマルオープン式であって、前記ポンプが前記圧力通路を減圧するとき、前記圧力通路の前記第2連通路に接続する側の前記逆止弁のポート(611)における圧力が前記圧力通路の前記ポンプの前記吸入口または前記吐出口に接続する側の前記逆止弁のポート(612)における圧力に比べ所定値以上大きくなるとき閉弁する請求項7に記載の検査装置。 The check valve is a normally open type, and when the pump depressurizes the pressure passage, the pressure at the port (611) of the check valve on the side connected to the second communication passage of the pressure passage is 8. The inspection device according to claim 7, wherein the inspection device is closed when the pressure passage becomes larger than a pressure at a port (612) of the check valve on the side connected to the suction port or the discharge port of the pump in the pressure passage.
  9.  前記逆止弁は、ノーマルクローズ式であって、前記ポンプが前記圧力通路を加圧するとき、前記圧力通路の前記ポンプの前記吸入口または前記吐出口に接続する側の前記逆止弁のポート(812)における圧力が前記圧力通路の前記第2連通路に接続する側の前記逆止弁のポート(811)における圧力に比べ所定値以上大きくなるとき開弁する請求項7に記載の検査装置。 The check valve is a normally closed type, and when the pump pressurizes the pressure passage, the check valve port on the side of the pressure passage connected to the suction port or the discharge port of the pump ( The inspection apparatus according to claim 7, wherein the valve is opened when the pressure in 812) is greater than a predetermined value compared to the pressure in the port (811) of the check valve on the side connected to the second communication path of the pressure path.
  10.  前記切替弁と前記圧力通路とを連通する前記第2連通路に設けられた通気オリフィス(23)をさらに備える請求項2~9のいずれか一項に記載の検査装置。 The inspection apparatus according to any one of claims 2 to 9, further comprising a ventilation orifice (23) provided in the second communication path that connects the switching valve and the pressure path.
  11.  圧力センサ(21)と、
     前記圧力センサが設けられた圧力通路(26)と燃料タンク(8)に連通するタンク通路(25)とを連通する第1連通路(27)に設けられた基準オリフィス(22)と、
     吸入口(201)または吐出口(202)の一方が大気と連通する大気通路(24)に連通し、他方が前記圧力通路に連通し、前記圧力通路を減圧または加圧可能なポンプ(20)と、
     前記ポンプの駆動により変化する前記圧力通路と前記大気通路との差圧に応じて動作し、前記圧力通路に通じる第2連通路(28)の前記圧力通路以外への連通を遮断すると共に前記大気通路と前記タンク通路とを連通する状態と、前記大気通路における前記ポンプおよび大気以外への連通を遮断すると共に前記第2連通路と前記タンク通路とを連通する状態とを切り替え可能な切替弁(30、70)と、
     を備える検査装置を用いた蒸発燃料漏れの検査方法において、
     前記切替弁が前記圧力通路に通じる前記第2連通路の前記圧力通路以外への連通を遮断すると共に前記大気通路と前記タンク通路とを連通した状態で、前記ポンプを低速回転させ、前記圧力センサが検出した圧力を第1基準圧として記憶する第1基準圧検出工程(S2-S4)と、
     前記ポンプを低速回転から高速回転に切り替えて前記切替弁を動作させ、前記切替弁が前記大気通路の前記ポンプおよび大気以外への連通を遮断すると共に前記第2連通路と前記タンク通路とを連通した状態で、前記タンク通路を減圧するタンク減圧工程(S5-S8)と、
     前記タンク減圧工程と同じ前記切替弁の状態で、前記ポンプを低速回転させ、前記圧力センサが検出した圧力をシステム圧として記憶するシステム圧検出工程(S9-S11)と、
     前記第1基準圧と前記システム圧とを比較し、前記第1基準圧の絶対値より前記システム圧の絶対値が小さいとき、または、前記システム圧と前記第1基準圧との差の絶対値が所定の閾値より小さいとき、前記燃料タンクの蒸発燃料漏れが基準値よりも大きいと判定し、
     前記第1基準圧の絶対値より前記システム圧の絶対値が大きく、かつ、前記システム圧と前記第1基準圧との差の絶対値が所定の閾値より大きいとき、前記燃料タンクの蒸発燃料漏れが前記基準値よりも小さいと判定する判定工程(S12-S14)と、
     を含む検査方法。
    A pressure sensor (21);
    A reference orifice (22) provided in a first communication passage (27) communicating with a pressure passage (26) provided with the pressure sensor and a tank passage (25) communicating with the fuel tank (8);
    One of the suction port (201) and the discharge port (202) communicates with the atmospheric passage (24) communicating with the atmosphere, the other communicates with the pressure passage, and the pump (20) capable of depressurizing or pressurizing the pressure passage When,
    It operates according to the differential pressure between the pressure passage and the atmospheric passage that changes as the pump is driven, shuts off the communication of the second communication passage (28) leading to the pressure passage to other than the pressure passage, and the atmosphere. A switching valve capable of switching between a state in which the passage is communicated with the tank passage and a state in which the passage in the atmospheric passage is disconnected from the pump and the atmosphere and the second passage and the tank passage are communicated. 30, 70)
    In the method for inspecting evaporative fuel leakage using an inspection apparatus comprising:
    The pressure sensor is configured to rotate the pump at a low speed with the switching valve blocking communication of the second communication path communicating with the pressure path to other than the pressure path and in communication with the atmosphere path and the tank path. A first reference pressure detecting step (S2-S4) for storing the detected pressure as a first reference pressure;
    The pump is switched from a low speed rotation to a high speed rotation to operate the switching valve, and the switching valve blocks the communication of the atmospheric passage to other than the pump and the atmosphere and communicates the second communication passage and the tank passage. A tank depressurization step (S5-S8) for depressurizing the tank passage in the
    A system pressure detecting step (S9-S11) for storing the pressure detected by the pressure sensor as a system pressure by rotating the pump at a low speed in the same switching valve state as the tank depressurizing step;
    The first reference pressure and the system pressure are compared, and the absolute value of the system pressure is smaller than the absolute value of the first reference pressure, or the absolute value of the difference between the system pressure and the first reference pressure Is smaller than a predetermined threshold, it is determined that the fuel vapor leakage of the fuel tank is larger than a reference value,
    When the absolute value of the system pressure is greater than the absolute value of the first reference pressure and the absolute value of the difference between the system pressure and the first reference pressure is greater than a predetermined threshold value, the fuel tank leaks evaporative fuel A determination step (S12-S14) for determining that is smaller than the reference value;
    Including inspection methods.
  12.  前記判定工程を小径判定工程とし、前記基準値を小径基準値とし、前記小径基準値よりも大きい前記基準値を大径基準値とし、
     前記ポンプを高速回転したときに前記第1連通路および前記第2連通路を通過する気圧を第2基準圧とすると、
     前記タンク減圧工程において、前記圧力センサが検出した圧力の絶対値が前記第2基準圧の絶対値と同一またはそれより小さい状態が所定時間継続したとき、前記燃料タンクの蒸発燃料漏れが前記大径基準値よりも大きいと判定する大径判定工程(S20-S22)をさらに含む請求項11に記載の検査方法。

     
    The determination step is a small diameter determination step, the reference value is a small diameter reference value, the reference value larger than the small diameter reference value is a large diameter reference value,
    When the atmospheric pressure passing through the first communication path and the second communication path when the pump is rotated at a high speed is the second reference pressure,
    In the tank depressurization step, when the absolute value of the pressure detected by the pressure sensor is equal to or smaller than the absolute value of the second reference pressure for a predetermined time, the fuel tank evaporative fuel leaks The inspection method according to claim 11, further comprising a large diameter determination step (S20-S22) for determining that the value is larger than the reference value.

PCT/JP2016/067864 2015-06-22 2016-06-16 Inspection apparatus and inspection method WO2016208475A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/738,241 US10156208B2 (en) 2015-06-22 2016-06-16 Inspection apparatus and inspection method
DE112016002801.6T DE112016002801B4 (en) 2015-06-22 2016-06-16 Test device and test method
CN201680036116.8A CN107709747B (en) 2015-06-22 2016-06-16 Check device and inspection method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-124921 2015-06-22
JP2015124921 2015-06-22
JP2016-111892 2016-06-03
JP2016111892A JP6358287B2 (en) 2015-06-22 2016-06-03 Inspection apparatus and inspection method

Publications (1)

Publication Number Publication Date
WO2016208475A1 true WO2016208475A1 (en) 2016-12-29

Family

ID=57584879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067864 WO2016208475A1 (en) 2015-06-22 2016-06-16 Inspection apparatus and inspection method

Country Status (1)

Country Link
WO (1) WO2016208475A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220138A (en) * 2005-01-12 2006-08-24 Denso Corp Vaporized fuel leakage inspection system
JP2007198267A (en) * 2006-01-26 2007-08-09 Denso Corp Evaporated fuel treating device
JP2007211655A (en) * 2006-02-08 2007-08-23 Toyota Motor Corp Evaporated-fuel treatment device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220138A (en) * 2005-01-12 2006-08-24 Denso Corp Vaporized fuel leakage inspection system
JP2007198267A (en) * 2006-01-26 2007-08-09 Denso Corp Evaporated fuel treating device
JP2007211655A (en) * 2006-02-08 2007-08-23 Toyota Motor Corp Evaporated-fuel treatment device

Similar Documents

Publication Publication Date Title
US6993957B2 (en) Leak check device for evaporated fuel purging system
US6964193B2 (en) Leak check device for evaporated fuel purge system
US7383826B2 (en) Fuel vapor treatment apparatus, system having the same, method for operating the same
US7231813B2 (en) Leak detector for evaporated fuel
US7004013B2 (en) Evaporative emission leak detection system with brushless motor
US9399970B2 (en) Combination pressure- and vacuum-based EVAP leak detection method
JP6536476B2 (en) EVAPOLAKE CHECK SYSTEM, AND EVAPOLAKE CHECK METHOD USING THE SAME
JP2007071146A (en) Leakage inspecting device of evaporative fuel
JP6358287B2 (en) Inspection apparatus and inspection method
JP4164866B2 (en) Fuel vapor leak inspection module
US8770013B2 (en) Evaporation leak check system
WO2016208475A1 (en) Inspection apparatus and inspection method
JP6308266B2 (en) Abnormality diagnosis device for evaporative fuel treatment system
JP4622948B2 (en) Leak inspection device
JP4211057B2 (en) Fuel vapor leak inspection module
JP2007107502A (en) Evaporating fuel leak inspection device
JP2007127065A (en) Electric pump control device and leak diagnosis device for evaporated fuel treatment system
US9046060B2 (en) Fuel vapor leakage sensing apparatus and fuel vapor leakage sensing method using the same
JP4816631B2 (en) Fuel vapor leak inspection module
JP2007239639A (en) Evaporated fuel leakage examination module
JP2007170200A (en) Evaporated fuel treatment device
JP4164867B2 (en) Fuel vapor leak inspection module
JP2007138841A (en) Evaporated fuel-leak inspection device
JP2006170074A (en) Evaporated fuel treatment device
JP4164868B2 (en) Fuel vapor leak inspection module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814246

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016002801

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16814246

Country of ref document: EP

Kind code of ref document: A1