WO2016208289A1 - 測定装置及び測定方法 - Google Patents

測定装置及び測定方法 Download PDF

Info

Publication number
WO2016208289A1
WO2016208289A1 PCT/JP2016/064137 JP2016064137W WO2016208289A1 WO 2016208289 A1 WO2016208289 A1 WO 2016208289A1 JP 2016064137 W JP2016064137 W JP 2016064137W WO 2016208289 A1 WO2016208289 A1 WO 2016208289A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
subject
depth
foot
dimensional
Prior art date
Application number
PCT/JP2016/064137
Other languages
English (en)
French (fr)
Inventor
尚志 野田
克幸 永井
友見 木下
宏紀 寺島
Original Assignee
Necソリューションイノベータ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necソリューションイノベータ株式会社 filed Critical Necソリューションイノベータ株式会社
Priority to US15/580,557 priority Critical patent/US10952648B2/en
Priority to EP16814060.6A priority patent/EP3315067A4/en
Priority to CN201680037595.5A priority patent/CN107708554A/zh
Priority to JP2017524727A priority patent/JP6482102B2/ja
Publication of WO2016208289A1 publication Critical patent/WO2016208289A1/ja
Priority to HK18106164.7A priority patent/HK1246621A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1126Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb using a particular sensing technique
    • A61B5/1128Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb using a particular sensing technique using image analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0077Devices for viewing the surface of the body, e.g. camera, magnifying lens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/112Gait analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1123Discriminating type of movement, e.g. walking or running
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • A61B5/7425Displaying combinations of multiple images regardless of image source, e.g. displaying a reference anatomical image with a live image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2576/00Medical imaging apparatus involving image processing or analysis
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing

Definitions

  • the present invention relates to a technique for analyzing walking motion.
  • ⁇ Analysis of walking motion is performed in various scenes and fields. For example, in order to prevent falls, walking motions are analyzed for elderly people and those with a motor function disorder. Also, in the physical therapy scene, a walking disorder is found by analyzing the walking motion, and a treatment method is determined.
  • a motion capture method there is a method for estimating the posture of a human body using three-dimensional information obtained from a three-dimensional sensor.
  • the three-dimensional information obtained from the three-dimensional sensor is information representing a three-dimensional space where the subject actually exists, and is formed by the two-dimensional information and the depth information.
  • the two-dimensional represented by the two-dimensional information is a plane of an image or an image obtained from a single visible light camera or the like, and the depth represented by the depth information is a three-dimensional such as an infrared sensor or a plurality of visible light cameras. The distance from the three-dimensional sensor obtained from the sensor is shown.
  • the three-dimensional position is specified from the two-dimensional position and the depth. According to the above-described method, the movement of a person can be converted into three-dimensional data without attaching a marker or a sensor to the human body.
  • human body posture estimation each part (head, hand, arm, leg, etc.) of a human limb is recognized from three-dimensional information, and the movement of each part is recorded.
  • Patent Document 1 proposes a method for measuring walking ability using a self-propelled device equipped with Kinect (registered trademark), which is a three-dimensional sensor.
  • Kinect registered trademark
  • skeleton data skeletal position data obtained from Kinect (registered trademark) is recorded while the self-propelled device runs so as to keep the distance from the subject constant, and the characteristics of the subject during walking are recorded.
  • Graphed Graphed.
  • the skeleton data used in the above proposed method has a problem in accuracy.
  • the three-dimensional position of the foot is obtained as skeleton data, but the foot information below the ankle has a certain size from the heel to the toe, so the position information obtained as skeleton data is also fixed with respect to the foot. It does not indicate the position of a particular part.
  • the above-described proposed method using such skeleton data leaves room for improvement in measurement accuracy.
  • the present invention has been made in view of such circumstances, and provides a technique for measuring a walking state with high accuracy.
  • the first aspect relates to a measuring device.
  • the measurement apparatus includes first acquisition means for acquiring depth information indicating the depth for each two-dimensional position, and measurement means for measuring the walking state of the subject using the depth information.
  • the second aspect relates to a measurement method executed by at least one computer.
  • the measurement method according to the second aspect includes obtaining depth information indicating the depth for each two-dimensional position, and measuring the walking state of the subject using the depth information.
  • Another aspect of the present invention may be a program that causes at least one computer to execute the method of the second aspect, or a computer-readable recording medium that records such a program. May be.
  • This recording medium includes a non-transitory tangible medium.
  • FIG. 1 is a diagram conceptually illustrating a hardware configuration example of a measurement apparatus 10 in the first embodiment.
  • the measurement apparatus 10 in the first embodiment is a so-called computer, and includes, for example, a CPU (Central Processing Unit) 1, a memory 2, an input / output interface (I / F) 3, a communication unit 4 and the like that are connected to each other via a bus.
  • a CPU Central Processing Unit
  • I / F input / output interface
  • the CPU 1 includes an application specific integrated circuit (ASIC), a DSP (Digital Signal Processor), a GPU (Graphics Processing Unit), and the like.
  • the memory 2 is a RAM (Random Access Memory), a ROM (Read Only Memory), or an auxiliary storage device (such as a hard disk).
  • the input / output I / F 3 can be connected to user interface devices such as the display device 5 and the input device 6.
  • the display device 5 is a device that displays a screen corresponding to drawing data processed by the CPU 1 or the like, such as an LCD (Liquid Crystal Display) or a CRT (Cathode Ray Tube) display.
  • the input device 6 is a device that receives an input of a user operation such as a keyboard and a mouse.
  • the display device 5 and the input device 6 may be integrated and realized as a touch panel.
  • the input device 6 may be a microphone unit that acquires sound.
  • Another output device such as a speaker unit may be connected to the input / output I / F 3.
  • the communication unit 4 communicates with other computers via a communication network (not shown) and exchanges signals with other devices such as printers.
  • the communication unit 4 is connected to the three-dimensional sensor 7 by USB (Universal Serial Bus) or the like.
  • USB Universal Serial Bus
  • the communication form between the communication unit 4 and the three-dimensional sensor 7 is not limited.
  • a portable recording medium or the like can be connected to the communication unit 4.
  • the 3D sensor 7 detects 3D information.
  • the three-dimensional sensor 7 is realized as a sensor in which a visible light camera and a depth sensor are integrated, such as a Kinect (registered trademark) or a 3D camera.
  • a depth sensor also called a distance image sensor, irradiates a subject with a near-infrared light pattern from a laser and captures the pattern with a camera that detects the near-infrared light. The distance to the person is calculated.
  • the three-dimensional sensor 7 can detect the three-dimensional position of the predetermined part of the subject in the field of view, the realization method is not limited.
  • the three-dimensional sensor 7 may be realized by a three-dimensional scanner method using a plurality of visible light cameras. In the following description, for the sake of easy understanding, it is assumed that the three-dimensional sensor 7 is a sensor in which a visible light camera and a depth sensor are integrated.
  • the hardware configuration of the measuring apparatus 10 is not limited to the example shown in FIG.
  • the measuring device 10 may include other hardware elements not shown.
  • the number of hardware elements is not limited to the example of FIG.
  • the measuring device 10 may have a plurality of CPUs 1.
  • FIG. 2 is a diagram conceptually illustrating a processing configuration example of the measurement apparatus 10 in the first embodiment.
  • the measurement apparatus 10 in the first embodiment includes a data acquisition unit 11, a detection unit 12, a determination unit 13, a setting unit 14, a measurement unit 15, a display processing unit 16, and the like.
  • Each of these processing modules is realized, for example, by executing a program stored in the memory 2 by the CPU 1. Further, the program may be installed from a portable recording medium such as a CD (Compact Disc) or a memory card or another computer on the network via the communication unit 4 and stored in the memory 2.
  • a portable recording medium such as a CD (Compact Disc) or a memory card or another computer on the network via the communication unit 4 and stored in the memory 2.
  • CD Compact Disc
  • the data acquisition unit 11 acquires a two-dimensional image frame and a depth image (distance image) frame from the three-dimensional sensor 7 at a predetermined cycle. Both frames may be acquired at the same period or may be acquired at different periods.
  • each frame is abbreviated as a two-dimensional image and a depth image.
  • a two-dimensional image is an image captured by a visible light camera.
  • the depth image is data obtained by a depth sensor, and is depth information of an area substantially the same as the imaging area of the two-dimensional image.
  • the depth image represents the depth by the value (pixel value) of each pixel. That is, the depth image can be expressed as depth information indicating the depth for each two-dimensional position.
  • the coordinate system of each image can be converted mutually.
  • the data acquisition unit 11 can also acquire the recorded two-dimensional image and depth image from another computer or a portable recording medium via the communication unit 4.
  • the measuring device 10 may not be connected to the three-dimensional sensor 7.
  • the subject is measured in a state of facing sideways with respect to the three-dimensional sensor 7.
  • a test subject's side surface is represented by the two-dimensional image and depth image which are acquired by the data acquisition part 11.
  • the detection unit 12 detects the foot of the subject from the depth image acquired from the data acquisition unit 11.
  • the whole leg below the ankle may be detected or a part including the toes to the heel may be used.
  • the detection unit 12 recognizes a depth image obtained in a state in which no subject is included as a background image, and recognizes a set of pixels that have a difference from the background image as a subject region.
  • the detection part 12 detects the widest part on the left and right of the depth image as a foot part at the lower end of the subject area.
  • the foot detection method by the detection unit 12 is not limited to such a method.
  • the detection unit 12 hits the position of the subject's foot in the depth image based on the skeleton data (skeleton data) of the subject's right foot or left foot obtained from the acquired two-dimensional image and depth image, You may detect a foot
  • the determining unit 13 determines the length of the foot detected by the detecting unit 12. Specifically, the determination unit 13 counts the number of pixels in the widest part on the left and right of the depth image in the foot detected by the detection unit 12. The widest part on the left and right of the depth image at the foot corresponds to a straight line or region from the toes to the heel.
  • the setting unit 14 acquires the coordinates of the scanning line in the two-dimensional coordinate system of the depth image based on the position of the foot detected by the detection unit 12.
  • “Scanning line” means an arrangement of pixels in the depth image acquired by the data acquisition unit 11 and scanned by the measurement unit 15 for depth.
  • the “scanning line” conceptually corresponds to the walking surface of the subject represented by the depth image.
  • the setting unit 14 uses a straight line obtained by extending a line segment indicating the length of the foot determined by the determination unit 13 as a scanning line, and acquires the position of the pixel on the scanning line as the coordinates of the scanning line.
  • the scanning line is set in the horizontal direction of the depth image.
  • the scanning line set in the depth image may not be a straight line, and may be a curved line, for example.
  • the measuring unit 15 measures the walking state of the subject using the depth of the coordinates (pixels) of the scanning line acquired by the setting unit 14.
  • One step can be recognized with high accuracy if the position of a fixed part in the grounded right foot or left foot can be specified each time the foot contacts the walking surface.
  • the processing speed is improved by measuring the walking state using the depth on the scanning line as compared to scanning all the depths.
  • the measurement unit 15 uses the depth information on the scanning line to identify the position of a predetermined location in the foot portion in a state where the subject's sole is in contact with the walking surface, and uses the identified position of the subject. Measure walking status.
  • the state in which the subject's sole is in contact with the walking surface corresponds to the state of the foot in the foot flat (FF) phase and mid stance (MS) phase in the walking motion.
  • gait movement is generally divided into a heel contact (HC) period, an FF period, an MS period, a heel off (HO) period, and a toe off (TO) period.
  • the state in which the sole is in contact with the walking surface can be detected by a state in which the line from the toe to the heel overlaps with the scanning line.
  • the measurement unit 15 detects a state in which the sole of the subject is in contact with the walking surface as follows.
  • the measuring unit 15 scans depth information in a predetermined direction along the scanning line to identify the position of a certain part of the foot that is in contact with the walking surface.
  • the measurement unit 15 calculates a difference in pixel value between the pixel on the scanning line in the acquired depth image and the pixel at the corresponding position in the depth image (background image) recognized as the background by the detection unit 12.
  • the position of a certain pixel is specified.
  • the measurement unit 15 determines whether or not the depth of the position of the identified part is the same as the depth of the position ahead of the foot portion determined by the determination unit 13 from the position of the specified part. To do.
  • the measurement unit 15 can detect a state in which the sole of the subject is in contact with the walking surface when both depths are the same based on the determination result.
  • “both depths are the same” may include not only the case where both depths completely match, but also the case where both depths approximate within a predetermined error.
  • the processing load is reduced by detecting the state where the subject's sole is in contact with the walking surface only at the depths of the two positions. However, the depths of three or more positions included in the region corresponding to the length of the foot may be compared.
  • FIG. 3 is a diagram illustrating an example of a depth image representing a foot portion in a state where the subject's sole is in contact with the walking surface.
  • the right-hand side FD of the subject's foot is represented in the depth image.
  • the measuring unit 15 scans the depth (pixel value) of the position (pixel) obtained as the coordinates of the scanning line SL from the right to the left of the depth image.
  • the measurement unit 15 first specifies a position SP indicating a depth different from the background image by this scanning.
  • the position SP indicates the position of the toe, as shown in FIG.
  • the measurement unit 15 specifies a position EP ahead of the foot length LEN (for example, 52 pixels) determined by the determination unit 13 from the position SP.
  • the position EP indicates the position of the heel.
  • the measurement unit 15 can detect a state in which the subject's sole is in contact with the walking surface when the depth (pixel value) of the position SP is the same as the depth (pixel value) of the position EP. In a state where only the heel or only the toe is in contact with the ground, that is, in a state where the sole is not in contact with the walking surface, both depths are different.
  • the measurement unit 15 specifies the position of the heel when the subject's sole is in contact with the walking surface.
  • the position of the heel is the position EP in the example of FIG.
  • the measurement part 15 may specify the position of a toe, and may specify the center position from a toe to a heel.
  • the measurement unit 15 relates to a predetermined position (for example, a heel) in the foot, and based on the plurality of positions specified as described above, any one or more of the measured value of the stride, the number of steps, and the measured value of the step Is calculated.
  • the actual distance between adjacent positions among the plurality of specified positions becomes an actual measurement value of the step length, and the number of steps can be calculated by the number of specified positions.
  • the step is the distance between the right foot and the left foot in the shoulder width direction (the direction orthogonal to the direction of travel), and the actual measured step distance is a comparison between the depth of the previous foot and the current foot depth ( Difference).
  • the walking state measured by the measurement unit 15 is not limited to these.
  • the measurement unit 15 can calculate the average stride by using the actual measurement value of the stride for each step, and can also calculate the fluctuation degree (variance) of the stride. Further, the measurement unit 15 can calculate the time difference between the specified positions by holding the time or the identification number of the frame of the depth image used for specifying the position. Using the time difference and the actual measurement value of the stride, the measurement unit 15 can also calculate the walking speed.
  • the measurement unit 15 calculates the actual stride value from the number of pixels between the positions on the depth image as follows.
  • the measurement unit 15 includes the number of pixels PX1 between the specified positions, the depth DPT at the specified positions, and the number of pixels PX2 that is half of the width (horizontal length) of the two-dimensional image, Using a half of the horizontal viewing angle (for example, 35 degrees) of the three-dimensional sensor 7 (such as a visible light camera that captures a two-dimensional image), the distance between steps in the world coordinate system (step length) by the following formula: Actual measured value) can be calculated.
  • World coordinate system distance (PX1, DPT, tan35) / PX2
  • the method for calculating the actual stride value is not limited to this formula.
  • PX2 may be the number of pixels that is half the width (length in the horizontal direction) of the depth image
  • the horizontal viewing angle may be the vertical viewing angle of the depth sensor.
  • PX1 may be the number of pixels on the two-dimensional image.
  • the display processing unit 16 sequentially displays the two-dimensional image acquired by the data acquisition unit 11 on the display device 5.
  • the display processing unit 16 specifies a region representing the subject in the two-dimensional image based on the region of the subject specified in the depth image. You may display the two-dimensional image which colored the test subject's area
  • the display processing unit 16 displays an image in which a linear image corresponding to the scanning line is superimposed on the two-dimensional image acquired by the data acquisition unit 11. You can also The overlapping position of the linear image in the two-dimensional image can be determined by conversion from the coordinate system of the depth image to the coordinate system of the two-dimensional image.
  • the linear image displayed superimposed on the two-dimensional image has a role of instructing the subject on the walking path for measurement. That is, the subject can easily grasp which position to walk by looking at the displayed linear image.
  • the display processing unit 16 may further superimpose one or more other linear images parallel to the linear image.
  • the display processing unit 16 displays an image in which a mark image that is specified by the measurement unit 15 and represents the position of a predetermined location in the foot is superimposed on the two-dimensional image acquired by the data acquisition unit 11 together with the linear image. You can also At this time, since the position specified by the measurement unit 15 is a position on the depth image, the display processing unit 16 converts the position into the coordinate system of the two-dimensional image, thereby determining the superimposed position of the mark image. decide.
  • FIG. 4 is a diagram showing a display example of a two-dimensional image in which a linear image and a mark image are superimposed.
  • the mark image is represented by a circle, and in addition to the linear image LP1 corresponding to the scanning line, a linear image LP2 parallel to the linear image LP1 is superimposed and displayed.
  • the display processing unit 16 may display information on the walking state measured by the measurement unit 15.
  • FIG. 5 is a diagram illustrating a display example of a two-dimensional image on which information on the measured walking state is further superimposed. In the example of FIG. 5, an actual measurement value and the number of steps calculated as the walking state information are displayed.
  • the display processing unit 16 may display the walking state information in a display area different from the two-dimensional image without superimposing the information on the walking state on the two-dimensional image.
  • FIGS. 6 and 7 are flowcharts showing an operation example of the measuring apparatus 10 in the first embodiment.
  • the measurement method in the first embodiment is executed by at least one computer such as the measurement apparatus 10.
  • Each processing step shown in FIGS. 6 and 7 is the same as the processing content of each processing module described above that the measurement apparatus 10 has, and therefore details of each processing step are omitted as appropriate.
  • FIG. 6 is a flowchart showing an operation example of the measurement apparatus 10 in the preparation stage.
  • the measuring device 10 sequentially displays the two-dimensional image acquired from the three-dimensional sensor 7 on the display device 5.
  • the measuring apparatus 10 first recognizes the background (S61). At this time, the subject needs to be outside the sensing area of the three-dimensional sensor 7.
  • the measuring apparatus 10 may display a screen including an instruction such as “Do not stand the subject in front of the three-dimensional sensor 7”.
  • the measurement apparatus 10 holds a depth image acquired from the three-dimensional sensor 7 and not including a subject as a background image.
  • the measurement apparatus 10 may display a screen including an instruction such as “Please test subject stand sideways in front of the three-dimensional sensor 7” after the completion of holding the background image.
  • the measuring apparatus 10 detects the foot of the subject from the difference between the background image held in (S61) and the acquired depth image (S62). .
  • the detection method of the foot from the detected foot and the depth image is as described above (detection unit 12).
  • the measuring apparatus 10 may color the region representing the subject in the displayed two-dimensional image. For example, the measuring apparatus 10 identifies the region of the subject from the depth image, identifies the region representing the subject in the two-dimensional image based on the identified region, and identifies the region based on the depth information of the subject. Color the affected area.
  • the measuring apparatus 10 determines the length of the foot detected in (S62) (S63).
  • the length determined here may be a length (for example, the number of pixels) in the depth image.
  • the method for determining the foot length is as described above (decision unit 13).
  • the measuring apparatus 10 acquires the coordinates of the scanning line in the coordinate system of the depth image based on the position of the foot detected in (S62) (S64).
  • the meaning of “scanning line” and the method for acquiring the coordinates of the scanning line are as described above (setting unit 14).
  • the scanning line is set in the horizontal direction of the depth image.
  • the measuring apparatus 10 converts the coordinates acquired in (S64) into the coordinate system of the two-dimensional image, thereby superimposing the linear image corresponding to the scanning line on the two-dimensional image, and the linear image on the two-dimensional image. Is displayed (S65).
  • the method for superimposing the linear image on the two-dimensional image is as described above (display processing unit 16).
  • another linear image parallel to the linear image may be further superimposed on the two-dimensional image.
  • the subject after the completion of the preparation stage, the subject once departs from the sensing area of the three-dimensional sensor 7. Then, when proceeding to the measurement stage, the subject walks along the linear image while viewing the display of the two-dimensional image on which the linear image is superimposed, and passes through the sensing region of the three-dimensional sensor 7. In the preparation stage, when the subject is standing at the end of the sensing area of the three-dimensional sensor 7, the subject may walk from the position toward the opposite end of the sensing area without deviating from the sensing area.
  • FIG. 7 is a flowchart illustrating an operation example of the measurement apparatus 10 in the measurement stage.
  • the measuring apparatus 10 performs the following operation on the two-dimensional image and depth image acquired from the three-dimensional sensor 7 at a certain period.
  • the measuring apparatus 10 scans pixels on the coordinates of the scanning line in the acquired depth image in a predetermined direction (S81).
  • the measuring apparatus 10 detects a pixel having a difference in pixel value between the pixel on the scanning line in the acquired depth image and the pixel at the corresponding position in the background image held in (S61) shown in FIG. S72).
  • the measuring apparatus 10 executes (S71) and subsequent steps on the newly acquired depth image.
  • the measurement apparatus 10 acquires the depth (pixel value) from the pixel from which the difference is detected (denoted as a detection pixel) (S73). Further, the measuring apparatus 10 acquires the depth (pixel value) from the detected pixel from the pixel ahead of the foot length determined in (S63) shown in FIG. 6 on the scanning line (S74). .
  • the measuring apparatus 10 determines whether the depth acquired in (S73) and the depth acquired in (S74) are the same (S75).
  • “the two depths are the same” may include not only the case where both depths completely match, but also the case where both depths approximate within a predetermined error.
  • the measuring apparatus 10 executes (S71) and subsequent steps on the newly acquired depth image.
  • both depths are not the same (S75; NO)
  • the measuring apparatus 10 specifies the position of the detection pixel (S76).
  • the specified position indicates a position in the depth image.
  • the measurement apparatus 10 displays an image in which the mark image representing the position specified in (S76) is superimposed on the two-dimensional image together with the linear image superimposed in (S65) shown in FIG. At this time, the measuring apparatus 10 determines the superimposed position of the mark image by converting the position in the depth image specified in (S76) into the coordinate system of the two-dimensional image.
  • the measuring apparatus 10 repeatedly performs such processing steps on each periodically acquired depth image until the measurement is completed (S78; NO).
  • the measurement end may be automatically determined when the position of (S76) is not specified for a predetermined time or longer.
  • the end of measurement may be determined based on user operation information obtained from the input device 6.
  • the measurement apparatus 10 calculates one or more of the measured value of the stride, the number of steps, and the measured value of the step based on the plurality of positions specified in (S76). (S79).
  • the method of calculating the actual measurement value of the stride, the number of steps, and the actual measurement value of the step is as described above (measurement unit 15).
  • the measuring apparatus 10 can sequentially execute the processing steps shown in FIG. 7 each time a two-dimensional image frame and a depth image (distance image) frame are acquired from the three-dimensional sensor 7.
  • the processing steps shown in FIG. 7 may be executed at an interval longer than the period in which each frame can be acquired.
  • the execution order of the processing steps in the measurement method of the present embodiment is not limited to the examples shown in FIGS.
  • the execution order of the processing steps can be changed within a range that does not hinder the contents.
  • the walking state of the subject can be measured using only the depth image.
  • the measurement method in the first embodiment may additionally use the position indicated by the skeleton data (skeleton data) in addition to the depth image.
  • skeleton data skeleton data
  • (S62) in FIG. 6 estimates the position of the subject's foot in the depth image based on the position indicated by the skeleton data, and the subject's foot is detected according to the depth distribution around the position. Also good.
  • the position of a predetermined location in the foot portion in the state where the subject's sole touches the walking surface is specified.
  • the walking state of the subject is measured using the specified position.
  • since the walking state of the subject is measured using the depth image obtained from the three-dimensional sensor 7, it is higher than the measurement based on the position of the skeleton obtained as the skeleton data.
  • the walking state can be measured with high accuracy.
  • a predetermined location in the foot such as a heel, a toe, or a center position of the foot is fixedly specified, and the walking state is measured based on the position of the fixed location specified fixedly. Because.
  • the processing speed can be increased.
  • the position of a certain part of the foot is specified, and the depth of the position of the specified part and the length of the foot determined in the preparation stage from the position of the specified part.
  • the depth of the position of the specified part and the length of the foot determined in the preparation stage from the position of the specified part.
  • the measuring device 10 may store the measured walking state in the memory 2 of the measuring device 10 without displaying it. Moreover, the measuring apparatus 10 may transmit the measured walking state to another computer, or may store it in a portable recording medium.
  • the measuring apparatus 10 may determine whether or not the subject is facing sideways with respect to the three-dimensional sensor 7 and may output a display instructing to face the sideways when not facing the sideways. .
  • the measurement device 10 causes the subject to input the length of the foot (actual foot size) using the input device 6, and the input foot actual size and the foot determined by the determination unit 13.
  • the actual size of the foot estimated from the length of the part is compared.
  • the measuring device 10 can determine that the two actually measured sizes are not facing sideways if they are different beyond a predetermined error range.
  • the method for calculating the actual foot size from the foot length determined by the determining unit 13 is the same as the method for calculating the actual stride value.
  • the coordinates of the scanning line in the depth image may be determined in advance.
  • the measuring apparatus 10 (measurement unit 15) holds the coordinates of the scanning line in advance, and measures the walking state of the subject using the held coordinates. Therefore, in this case, the setting unit 14 is not necessary.
  • the second embodiment may be a program that causes at least one computer to execute the measurement method, or may be a recording medium that can be read by the at least one computer that records such a program. .
  • FIG. 8 is a diagram conceptually illustrating a processing configuration example of the measurement apparatus according to the second embodiment.
  • the measurement apparatus 100 includes an acquisition unit 101 and a measurement unit 102.
  • the measurement apparatus 100 shown in FIG. 8 has, for example, the same hardware configuration as that of the above-described measurement apparatus 10 shown in FIG. 1, and a program is processed in the same manner as the measurement apparatus 10.
  • a processing module is realized.
  • the three-dimensional sensor 7, the display device 5, and the input device 6 may not be connected to the measuring device 100.
  • the acquisition unit 101 acquires depth information indicating the depth for each two-dimensional position.
  • a specific example of the depth information is the above-described depth image frame.
  • the depth information may be expressed in any format as long as the information indicates the depth for each two-dimensional position.
  • the acquisition unit 101 may acquire depth information from a depth sensor or a three-dimensional sensor 7 connected to the measurement apparatus 100, or may acquire recorded depth information from another computer or a portable recording medium. it can.
  • the measuring unit 102 measures the walking state of the subject using the depth information acquired by the acquiring unit 101.
  • the measurement unit 102 can measure the walking state by the following method although there is a problem in the processing speed as compared with the above-described embodiment.
  • the measurement unit 102 identifies a predetermined location in the subject's foot from the depth information, and detects a state where the predetermined location is in contact with the walking surface.
  • the measurement unit 102 can specify the region of the subject based on the difference from the background image, and can specify a predetermined location in the foot from the region of the subject.
  • the measuring unit 102 can detect a state where a predetermined portion of the foot is in contact with the walking surface from the shape and orientation (horizontal) of the foot.
  • the measuring unit 102 specifies the position of a predetermined location when the state is detected.
  • the measurement unit 102 can measure the walking state using the depth information by not only the method of the above-described embodiment but also other various methods.
  • the walking state measured by the measuring unit 102 may be an actual measured value of the stride or the number of steps, or both, as in the above-described embodiment, and other index values such as a walking speed and a fluctuation of the stride. Also good. Any index value may be used for the walking state as long as it is an index value calculated based on information specified regarding the walking of the subject using the depth information.
  • FIG. 9 is a flowchart showing an operation example of the measuring apparatus 100 in the second embodiment.
  • the measurement method in the second embodiment is executed by at least one computer such as the measurement apparatus 100.
  • each process shown in the figure is executed by each processing module included in the measurement apparatus 100.
  • the measurement method in the present embodiment acquires depth information indicating the depth for each two-dimensional position (S91), and measures the walking state of the subject using the depth information acquired in (S91) (S92). Including.
  • the contents of (S91) are as described for the acquisition unit 101, and the contents of (S92) are as described for the measurement unit 102.
  • the measuring device 100 stores the measured walking state.
  • the measuring apparatus 100 can display the measured walking state, transmit it to another computer, or store it in a portable recording medium.
  • the walking state of the subject is measured using the depth information, as with the above-described embodiment, more accurate than the measurement based on the position of the skeleton obtained as skeleton data.
  • the walking state can be measured.
  • First acquisition means for acquiring depth information indicating the depth for each two-dimensional position; Measuring means for measuring the walking state of the subject using the depth information;
  • a measuring apparatus comprising: 2.
  • a second acquisition means for acquiring a two-dimensional image;
  • Display processing means for displaying an image in which a linear image is superimposed on the acquired two-dimensional image;
  • the measuring means measures the walking state of the subject using depth information on a scanning line corresponding to the linear image; 1.
  • the measuring means uses the depth information on the scanning line to specify the position of a predetermined location in the foot portion in a state where the sole of the subject touches the walking surface, and uses the specified position of the subject.
  • the display processing means displays an image in which the mark image representing the specified position is superimposed on the acquired two-dimensional image together with the linear image.
  • the measuring means calculates one or more of an actual measured value of the stride, the number of steps, and a step based on the plurality of specified positions; 3. Or 4.
  • Detecting means for detecting the foot of the subject from the acquired depth information;
  • Setting means for acquiring the coordinates of the scanning line in a two-dimensional coordinate system indicated by the depth information based on the position of the detected foot;
  • the display processing means displays an image in which the linear image is superimposed on the two-dimensional image by converting the acquired coordinates of the scanning line into a coordinate system of the two-dimensional image. 2.
  • the measuring apparatus as described in any one of these.
  • Obtain depth information indicating the depth for each two-dimensional position Measure the walking state of the subject using the depth information
  • a measuring method including 8 Acquire a two-dimensional image, Displaying an image in which a linear image is superimposed on the acquired two-dimensional image; Further including The measurement is to measure the walking state of the subject using depth information on a scanning line corresponding to the linear image. 7). The measuring method as described in. 9.
  • the measurement is Using the depth information on the scanning line, specify the position of a predetermined location in the foot in a state where the sole of the subject is in contact with the walking surface, Measuring the walking state of the subject using the identified position; Including The display displays an image in which a mark image representing the specified position is superimposed on the acquired two-dimensional image together with the linear image. 8).
  • the measuring method as described in. 10.
  • the measurement includes calculating any one or more of an actual measured value of the step length, the number of steps, and a step based on the plurality of specified positions. 9. Or 10.

Abstract

測定装置は、二次元位置毎の深度を示す深度情報を取得する第一取得手段と、当該深度情報を用いて被験者の歩行状態を測定する測定手段と、を有する。

Description

測定装置及び測定方法
 本発明は、歩行動作の分析技術に関する。
 様々な場面及び分野で歩行動作の分析が行われている。例えば、転倒を防ぐために、高齢者や運動機能の疾患者を対象に歩行動作が分析される。また、理学療法の場面においても、歩行動作の分析により歩行障害を見つけ、治療方法が決定される。
 一方で、モーションキャプチャ技術や三次元センシング技術を用いて、人の動きを三次元で捉え、デジタルデータ化する様々なアプリケーションが存在する。モーションキャプチャの方式には、三次元センサから得られる三次元情報を用いて人体の姿勢推定を行う方式が存在する。三次元センサから得られる三次元情報は、被験者が実際に存在する三次元空間を表す情報であり、二次元情報及び深度情報により形成される。二次元情報で表される二次元は、単一の可視光カメラ等から得られる映像又は画像の平面であり、深度情報で表される深度は、赤外線センサや複数の可視光カメラ等の三次元センサから得られる、三次元センサからの距離を示す。三次元位置は、二次元位置と深度とから特定される。上述の方式によれば、人体にマーカやセンサを付すことなく、人の動きを三次元データ化することができる。人体の姿勢推定では、三次元情報から人の肢体の各部位(頭、手、腕、脚など)が認識され、各部位の動きが記録される。
 下記特許文献1では、三次元センサであるKinect(登録商標)を搭載した自走式装置を用いて、歩行能力を測定する手法が提案されている。この手法では、自走式装置が被験者との距離を一定に保つように走行しながら、Kinect(登録商標)から得られるスケルトンデータ(骨格の位置データ)が記録され、被験者の歩行時の特徴がグラフ化される。
安達宏幸ほか,"KINECT・自走ロボットを使用した歩行データの取得",信学技法,MICT2014-50,2014-10
 しかしながら、上述の提案手法で利用されるスケルトンデータは精度に問題がある。例えば、足の三次元位置がスケルトンデータとして得られるが、足首より下の足部は、踵からつま先まで或る程度の大きさがあるため、スケルトンデータとして得られる位置情報も足部に関し固定的な箇所の位置を示すわけではない。このようなスケルトンデータを用いた上述の提案手法では、測定精度に改善の余地を残す。
 本発明は、このような事情に鑑みてなされたものであり、高精度に歩行状態を測定する技術を提供する。
 本発明の各側面では、上述した課題を解決するために、それぞれ以下の構成を採用する。
 第1の側面は、測定装置に関する。第1の側面に係る測定装置は、二次元位置毎の深度を示す深度情報を取得する第一取得手段と、当該深度情報を用いて被験者の歩行状態を測定する測定手段と、を有する。
 第2の側面は、少なくとも一つのコンピュータにより実行される測定方法に関する。第2の側面に係る測定方法は、二次元位置毎の深度を示す深度情報を取得し、当該深度情報を用いて被験者の歩行状態を測定する、ことを含む。
 なお、本発明の他の側面としては、上記第2の側面の方法を少なくとも1つのコンピュータに実行させるプログラムであってもよいし、このようなプログラムを記録したコンピュータが読み取り可能な記録媒体であってもよい。この記録媒体は、非一時的な有形の媒体を含む。
 上記各側面によれば、高精度に歩行状態を測定する技術を提供することができる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
第一実施形態における測定装置のハードウェア構成例を概念的に示す図である。 第一実施形態における測定装置の処理構成例を概念的に示す図である。 被験者の足裏が歩行面に接地した状態における足部を表す深度画像の例を示す図である。 線状画像及びマーク画像が重畳された二次元画像の表示例を示す図である。 測定された歩行状態の情報が更に重畳された二次元画像の表示例を示す図である。 準備段階における測定装置の動作例を示すフローチャートである。 測定段階における測定装置の動作例を示すフローチャートである。 第二実施形態における測定装置の処理構成例を概念的に示す図である。 第二実施形態における測定装置の動作例を示すフローチャートである。
 以下、本発明の実施の形態について説明する。なお、以下に挙げる各実施形態はそれぞれ例示であり、本発明は以下の各実施形態の構成に限定されない。
[第一実施形態]
〔装置構成〕
 図1は、第一実施形態における測定装置10のハードウェア構成例を概念的に示す図である。第一実施形態における測定装置10は、いわゆるコンピュータであり、例えば、バスで相互に接続される、CPU(Central Processing Unit)1、メモリ2、入出力インタフェース(I/F)3、通信ユニット4等を有する。
 CPU1には、一般的なCPUに加えて、特定用途向け集積回路(ASIC)、DSP(Digital Signal Processor)、GPU(Graphics Processing Unit)等も含まれる。
 メモリ2は、RAM(Random Access Memory)、ROM(Read Only Memory)、補助記憶装置(ハードディスク等)である。
 入出力I/F3は、表示装置5、入力装置6等のユーザインタフェース装置と接続可能である。表示装置5は、LCD(Liquid Crystal Display)やCRT(Cathode Ray Tube)ディスプレイのような、CPU1等により処理された描画データに対応する画面を表示する装置である。入力装置6は、キーボード、マウス等のようなユーザ操作の入力を受け付ける装置である。表示装置5及び入力装置6は一体化され、タッチパネルとして実現されてもよい。また、入力装置6は、音声を取得するマイクロフォンユニットであってもよい。入出力I/F3には、スピーカユニット等のような他の出力装置が接続されてもよい。
 通信ユニット4は、他のコンピュータとの通信網(図示せず)を介した通信や、プリンタ等のような他の機器との信号のやりとり等を行う。通信ユニット4には、USB(Universal Serial Bus)等により三次元センサ7と接続される。但し、通信ユニット4と三次元センサ7との通信形態は制限されない。また、通信ユニット4には、可搬型記録媒体等も接続され得る。
 三次元センサ7は、三次元情報を検出する。三次元センサ7は、例えば、Kinect(登録商標)や3Dカメラのように、可視光カメラ及び深度センサが統合されたセンサとして実現される。深度センサは、距離画像センサとも呼ばれ、レーザから近赤外光のパターンを対象者に照射し、そのパターンを近赤外光を検知するカメラで撮像して得られる情報から距離画像センサから対象者までの距離が算出される。三次元センサ7は、視野内の被験者の所定部位の三次元位置を検出することができれば、その実現手法は制限されない。例えば、三次元センサ7は、複数の可視光カメラを用いる三次元スキャナ方式で実現されてもよい。以下の説明では、説明を分かり易くするために、三次元センサ7は、可視光カメラ及び深度センサが統合されたセンサであると仮定する。
 測定装置10のハードウェア構成は、図1に示される例に限定されない。測定装置10は、図示されていない他のハードウェア要素を含み得る。また、各ハードウェア要素の数も、図1の例に制限されない。例えば、測定装置10は、複数のCPU1を有していてもよい。
〔処理構成〕
 図2は、第一実施形態における測定装置10の処理構成例を概念的に示す図である。第一実施形態における測定装置10は、データ取得部11、検出部12、決定部13、設定部14、測定部15、表示処理部16等を有する。これら各処理モジュールは、例えば、CPU1によりメモリ2に格納されるプログラムが実行されることにより実現される。また、当該プログラムは、例えば、CD(Compact Disc)、メモリカード等のような可搬型記録媒体やネットワーク上の他のコンピュータから通信ユニット4を介してインストールされ、メモリ2に格納されてもよい。
 データ取得部11は、三次元センサ7から二次元画像のフレーム及び深度画像(距離画像)のフレームを所定周期で取得する。両フレームは、同じ周期で取得されてもよいし、異なる周期で取得されてもよい。以降、各フレームは、二次元画像及び深度画像と略称される。二次元画像は、可視光カメラにより撮像された画像である。深度画像は、深度センサにより得られるデータであり、当該二次元画像の撮像領域と略同一の領域の深度情報である。深度画像は、各画素の値(画素値)により深度を表す。即ち、深度画像は、二次元位置毎の深度を示す深度情報と表記することもできる。取得される二次元画像及び深度画像では、各画像の座標系が相互に変換可能である。但し、データ取得部11は、録画された二次元画像及び深度画像を他のコンピュータ又は可搬型記録媒体から通信ユニット4を介して取得することもできる。この場合には、測定装置10は、三次元センサ7に接続されていなくてもよい。
 本実施形態では、被験者は、三次元センサ7に対して真横を向いた状態で、測定される。これにより、データ取得部11により取得される二次元画像及び深度画像には、被験者の側面が表される。
 検出部12は、データ取得部11から取得された深度画像から被験者の足部を検出する。ここで検出される足部は、くるぶしより下の全体であってもよいし、つま先から踵までを含む一部であってもよい。例えば、検出部12は、被験者が含まれない状態で得られた深度画像を背景画像として認識し、その背景画像と差分が生じた画素の集合を被験者領域として認識する。検出部12は、その被験者領域の下端で、深度画像の左右に最も広い部分を足部として検出する。但し、検出部12による足部の検出方法はこのような手法に制限されない。例えば、検出部12は、取得された二次元画像及び深度画像から得られる被験者の右足又は左足のスケルトンデータ(骨格データ)に基づいて、深度画像内の被験者の足部の位置に当たりをつけ、その位置の周辺で同じ深度を示す領域から足部を検出してもよい。このようにすれば、背景画像を認識する必要はない。
 決定部13は、検出部12により検出された足部の長さを決定する。具体的には、決定部13は、検出部12により検出された足部における深度画像の左右に最も広い部分の画素数をカウントする。足部における深度画像の左右に最も広い部分は、つま先から踵までの直線又は領域に対応する。
 設定部14は、検出部12により検出された足部の位置に基づいて、深度画像の二次元座標系における走査線の座標を取得する。「走査線」とは、データ取得部11により取得された深度画像内の、測定部15が深度を走査する画素の並びを意味する。「走査線」は、概念的には、深度画像で表される被験者の歩行面に相当する。例えば、設定部14は、決定部13により決定された足部の長さを示す線分を延長した直線を走査線とし、その走査線上の画素の位置を走査線の座標として取得する。本実施形態では、上述のように、三次元センサ7に対して被験者は真横を向くため、走査線は、深度画像の水平方向に設定される。但し、深度画像に設定される走査線は、直線でなくてもよく、例えば、曲線であってもよい。
 測定部15は、設定部14により取得された走査線の座標(画素)の深度を用いて被験者の歩行状態を測定する。ここで、歩行状態を測定する上で、一歩を精度よく認識することは大変重要である。歩行面に足部が接地する度に、接地した右足部又は左足部内の固定的な部位の位置を特定することができれば、一歩を高精度に認識することができる。一方で、本実施形態では、上述のとおり、走査線上の深度を用いて歩行状態を測定することで、全ての深度を走査することに比べて、処理速度を向上させている。
 そこで、測定部15は、当該走査線上の深度情報を用いて、被験者の足裏が歩行面に接地した状態におけるその足部内の所定箇所の位置を特定し、特定された位置を用いて被験者の歩行状態を測定する。被験者の足裏が歩行面に接地した状態は、歩行動作におけるフットフラット(FF)期及びミッドスタンス(MS)期の足部の状態に相当する。歩行分析の分野では、一般的に、歩行動作が、ヒールコンタクト(HC)期、FF期、MS期、ヒールオフ(HO)期、及びトウオフ(TO)期に区分けされる。足裏が歩行面に接地した状態は、つま先から踵までのラインが走査線上に重なる状態により検出することができる。ところが、つま先のみ又は踵のみの接地状態は、走査線上の深度のみでは正確に検出することが難しい。走査線上の深度で示される足部の部位がつま先なのか、踵なのかを区別することが難しいからである。
 例えば、測定部15は、次のようにして、被験者の足裏が歩行面に接地した状態を検出する。測定部15は、走査線に沿った所定方向に深度情報を走査することにより、歩行面に接地した足部の或る部位の位置を特定する。具体的には、測定部15は、取得された深度画像における走査線上の画素と、検出部12により背景として認識された深度画像(背景画像)における対応する位置の画素とで画素値に差分のある画素の位置を特定する。測定部15は、その特定された部位の位置の深度と、その特定された部位の位置から決定部13により決定された足部の長さ分先の位置の深度とが同じか否かを判定する。測定部15は、この判定結果により両深度が同じである場合に、被験者の足裏が歩行面に接地した状態を検出することができる。ここで、「両深度が同じ」には、両深度が完全に一致する場合のみでなく、両深度が所定誤差内で近似する場合も含んでもよい。また、本実施形態では、2つの位置の深度のみで被験者の足裏が歩行面に接地した状態の検出を行うことで、処理負荷を軽減している。但し、足部の長さ分の領域に含まれる3つ以上の位置の深度を比較するようにしてもよい。
 図3は、被験者の足裏が歩行面に接地した状態における足部を表す深度画像の例を示す図である。図3の例では、深度画像には被験者の足部の右側面FDが表されている。図3の例において、測定部15は、走査線SLの座標として得られる位置(画素)の深度(画素値)を深度画像の右から左に走査していく。測定部15は、この走査により、背景画像と異なる深度を示す位置SPを最初に特定する。被験者の足裏が歩行面に接地した状態では、図3に示されるように、その位置SPはつま先の位置を示す。測定部15は、その位置SPから決定部13により決定された足部の長さLEN(例えば、52画素)分先の位置EPを特定する。被験者の足裏が歩行面に接地した状態では、その位置EPは踵の位置を示す。測定部15は、位置SPの深度(画素値)と位置EPの深度(画素値)とが同じ場合に、被験者の足裏が歩行面に接地した状態を検出することができる。踵のみ又はつま先のみが接地している状態、即ち足裏が歩行面に接地していない状態では、両深度は相違することになる。
 本実施形態では、測定部15は、被験者の足裏が歩行面に接地した状態における踵の位置を特定する。踵の位置は、図3の例では、位置EPである。但し、測定部15は、つま先の位置を特定してもよいし、つま先から踵までの中央の位置を特定してもよい。
 測定部15は、足部内の所定箇所(例えば、踵)に関し、上述のように特定された複数の位置に基づいて、歩幅の実測値、歩数、及び歩隔の実測値のいずれか一つ以上を算出する。特定された複数の位置の中で隣接する位置間の実距離が歩幅の実測値となり、特定された位置の数で歩数が算出できる。歩隔は、右足と左足との、肩幅方向(進行方向と直交する方向)の間隔であり、歩隔の実測値は、一歩前の足部の深度と現在の足部の深度との比較(差など)により算出することができる。但し、測定部15により測定される歩行状態は、これらに制限されない。例えば、測定部15は、一歩毎の歩幅の実測値を用いて、平均歩幅を算出することもできるし、歩幅の揺らぎ度(分散)を算出することもできる。更に、測定部15は、位置の特定に用いられた深度画像のフレームの時間又は識別番号を保持することにより、特定された位置間の時間差を算出することができる。この時間差及び歩幅の実測値を用いて、測定部15は、歩行速度を算出することもできる。
 ところで、足部内の所定箇所に関し特定された各位置は、深度画像上の位置を示すため、深度画像上の各位置間の距離は、世界座標系における距離、即ち、歩幅の実測値ではない。よって、測定部15は、深度画像上の各位置間の画素数から次のようにして歩幅の実測値を算出する。具体的には、測定部15は、特定された位置間の画素数PX1と、特定された位置の深度DPTと、二次元画像の幅(水平方向の長さ)の半分の画素数PX2と、三次元センサ7(二次元画像を撮像する可視光カメラ等)の水平視野角の半分(例えば、35度)とを用いて、次のような式により、世界座標系における位置間の距離(歩幅の実測値)を算出することができる。
 世界座標系の距離=(PX1・DPT・tan35)/PX2
 但し、歩幅の実測値の算出手法は、この式に限定されない。例えば、PX2は、深度画像の幅(水平方向の長さ)の半分の画素数とし、水平視野角は、深度センサの垂直視野角としてもよい。また、PX1は、二次元画像上における画素数としてもよい。
 表示処理部16は、データ取得部11により取得される二次元画像を表示装置5に逐次表示する。表示処理部16は、深度画像で被験者が検出された場合には、深度画像内で特定される被験者の領域に基づいて、二次元画像内の被験者を表す領域を特定し、二次元画像内の被験者の領域を深度情報で着色した二次元画像を表示してもよい。
 また、表示処理部16は、設定部14により走査線の座標が取得されると、データ取得部11により取得された二次元画像に、走査線に対応する線状画像が重畳された画像を表示することもできる。二次元画像における線状画像の重畳位置は、深度画像の座標系から二次元画像の座標系への変換により決定可能である。二次元画像に重畳されて表示される線状画像は、測定のための歩行路を被験者に指示する役目を持つ。即ち、被験者は、表示される線状画像を見ることで、どの位置を歩けばよいのか容易に把握することができる。表示処理部16は、走査線に対応する線状画像に加えて、その線状画像に平行な1以上の他の線状画像を更に重畳させてもよい。
 表示処理部16は、測定部15により特定された、足部内の所定箇所の位置を表すマーク画像が上記線状画像と共に、データ取得部11により取得された二次元画像に重畳された画像を表示することもできる。このとき、測定部15により特定された位置は、深度画像上の位置であるため、表示処理部16は、その位置を二次元画像の座標系に変換することで、当該マーク画像の重畳位置を決定する。
 図4は、線状画像及びマーク画像が重畳された二次元画像の表示例を示す図である。図4の例では、マーク画像が丸印で表され、走査線に対応する線状画像LP1に加えて、その線状画像LP1に平行な線状画像LP2が重畳表示されている。2本の線状画像LP1及びLP2を表示することで、被験者に歩行路をより容易に把握させることができる。
 更に、表示処理部16は、測定部15で測定された歩行状態の情報を表示してもよい。
 図5は、測定された歩行状態の情報が更に重畳された二次元画像の表示例を示す図である。図5の例では、歩行状態の情報として算出された歩幅の実測値及び歩数が表示されている。表示処理部16は、歩行状態の情報を二次元画像に重畳させず、二次元画像とは別の表示領域に表示してもよい。
〔動作例/測定方法〕
 以下、第一実施形態における測定方法について図6及び図7を用いて説明する。図6及び図7は、第一実施形態における測定装置10の動作例を示すフローチャートである。図6及び図7に示されるように、第一実施形態における測定方法は、測定装置10のような少なくとも一つのコンピュータにより実行される。図6及び図7に示される各処理工程は、測定装置10が有する上述の各処理モジュールの処理内容と同様であるため、各処理工程の詳細は、適宜省略される。
 第一実施形態における測定方法は、準備段階と測定段階とに区分けされる。
 図6は、準備段階における測定装置10の動作例を示すフローチャートである。図6に示される準備段階において、測定装置10は、三次元センサ7から取得される二次元画像を表示装置5に逐次表示している。
 測定装置10は、まず、背景を認識する(S61)。このとき、被験者は、三次元センサ7のセンシング領域外にいる必要がある。測定装置10は、「被験者は三次元センサ7の前に立たないでください」といった指示文を含む画面を表示してもよい。測定装置10は、三次元センサ7から取得される、被験者を含まない深度画像を背景画像として保持する。
 次に、被験者は、三次元センサ7のセンシング領域内に入り、三次元センサ7に対して真横を向き、立つ。このとき、測定装置10は、背景画像の保持の完了後に、「被験者は三次元センサ7の前に横を向いて立ってください」といった指示文を含む画面を表示してもよい。測定装置10は、被験者を含む深度画像を三次元センサ7から取得すると、(S61)で保持された背景画像とその取得された深度画像との差分から、被験者の足部を検出する(S62)。検出される足部及び深度画像からの足部の検出手法については、上述したとおりである(検出部12)。
 このとき、測定装置10は、表示される二次元画像における被験者を表す領域を着色をしてもよい。例えば、測定装置10は、深度画像から被験者の領域を特定し、この特定された領域に基づいて当該二次元画像内の被験者を表す領域を特定し、被験者の深度情報に基づいて、その特定された領域を着色する。
 続いて、測定装置10は、(S62)で検出された足部の長さを決定する(S63)。ここで決定される長さは、深度画像内における長さ(例えば、画素数)でよい。足部の長さの決定手法については、上述したとおりである(決定部13)。
 測定装置10は、(S62)で検出された足部の位置に基づいて、深度画像の座標系における走査線の座標を取得する(S64)。「走査線」の意味や走査線の座標の取得手法については、上述したとおりである(設定部14)。本実施形態では、上述のように、三次元センサ7に対して被験者は真横を向くため、走査線は、深度画像の水平方向に設定される。
 測定装置10は、(S64)で取得された座標を二次元画像の座標系に変換することにより、走査線に対応する線状画像を二次元画像に重畳して、二次元画像に線状画像が重畳された画像を表示する(S65)。二次元画像に対する線状画像の重畳手法については、上述したとおりである(表示処理部16)。二次元画像には、走査線と同一位置に設定される線状画像に加えて、その線状画像と並行な他の線状画像が更に重畳されてもよい。このような準備段階が終了すると、次に、測定段階に移行する。
 本実施形態では、準備段階の終了後に、被験者は、一度、三次元センサ7のセンシング領域から外れる。そして、測定段階に移行すると、被験者は、線状画像が重畳された二次元画像の表示を見ながら、その線状画像に沿って歩き、三次元センサ7のセンシング領域を通過する。準備段階において、被験者が、三次元センサ7のセンシング領域の端に立っていた場合には、当該センシング領域から外れることなく、その位置から当該センシング領域の逆端に向かって歩いてもよい。
 図7は、測定段階における測定装置10の動作例を示すフローチャートである。測定装置10は、三次元センサ7から或る周期で取得された二次元画像及び深度画像に関して、次のような動作を行う。
 測定装置10は、取得された深度画像における走査線の座標上の画素を所定方向に走査する(S81)。
 測定装置10は、取得された深度画像における走査線上の画素と、図6に示される(S61)で保持された背景画像における対応する位置の画素とで画素値に差分のある画素を検出する(S72)。測定装置10は、差分が検出されない場合(S72;NO)、新たに取得される深度画像に対して(S71)以降を実行する。
 測定装置10は、差分が検出された場合(S72;YES)、差分が検出された画素(検出画素と表記)から深度(画素値)を取得する(S73)。
 更に、測定装置10は、その検出画素から、当該走査線上の、図6に示される(S63)で決定された足部の長さ分先の画素から深度(画素値)を取得する(S74)。
 測定装置10は、(S73)で取得された深度と(S74)で取得された深度とが同一であるか否かを判定する(S75)。ここで、「2つの深度が同一」には、両深度が完全に一致する場合のみでなく、両深度が所定誤差内で近似する場合も含んでもよい。測定装置10は、両深度が同一ではない場合(S75;NO)、新たに取得される深度画像に対して(S71)以降を実行する。両深度が同一でない場合(S75;NO)は、被験者の足裏が歩行面に接地していない状態に相当する。
 測定装置10は、両深度が同一である場合(S75;YES)、検出画素の位置を特定する(S76)。特定される位置は、深度画像内の位置を示す。
 測定装置10は、図6に示される(S65)で重畳されている線状画像と共に、(S76)で特定された位置を表すマーク画像が二次元画像に重畳された画像を表示する。このとき、測定装置10は、(S76)で特定された深度画像内の位置を二次元画像の座標系に変換することで、当該マーク画像の重畳位置を決定する。
 測定装置10は、このような処理工程を、周期的に取得される各深度画像に対して、測定終了となるまで繰り返し実行する(S78;NO)。測定終了は、(S76)の位置の特定が所定時間以上実行されない場合に、自動的に決定されてもよい。また、入力装置6から得られるユーザ操作情報に基づいて、測定終了が決定されてもよい。
 測定装置10は、測定終了となると(S78;YES)、(S76)で特定された複数の位置に基づいて、歩幅の実測値、歩数、及び歩隔の実測値のいずれか一つ以上を算出する(S79)。歩幅の実測値、歩数、及び歩隔の実測値の算出手法については、上述したとおりである(測定部15)。
 測定装置10は、三次元センサ7からの二次元画像のフレーム及び深度画像(距離画像)のフレームが取得される度に、図7に示される処理工程を順次実行することができる。各フレームの取得可能な周期よりも長い間隔で、図7に示される処理工程が実行されてもよい。本実施形態の測定方法における各処理工程の実行順序は、図6及び図7に示される例に限定されない。各処理工程の実行順序は、内容的に支障のない範囲で変更することができる。
 図6及び図7に示される動作例によれば、深度画像のみを用いて、被験者の歩行状態を測定することができる。しかしながら、第一実施形態における測定方法は、深度画像に加えて、スケルトンデータ(骨格データ)が示す位置を補足的に利用してもよい。例えば、図6の(S62)は、スケルトンデータが示す位置に基づいて、深度画像内の被験者の足部の位置を推定し、その位置の周辺の深度分布に従って、被験者の足部が検出されてもよい。
〔第1実施形態の作用及び効果〕
 上述したように、第一実施形態では、準備段階で取得された走査線の座標の深度を用いて、被験者の足裏が歩行面に接地した状態におけるその足部内の所定箇所の位置が特定され、その特定された位置を用いて被験者の歩行状態が測定される。このように、第一実施形態では、三次元センサ7から得られる深度画像を用いて被験者の歩行状態が測定されるため、スケルトンデータとして得られる骨格の位置に基づく測定と比較して、より高精度に歩行状態を測定することができる。深度画像を解析することで、踵やつま先や足部の中央位置といった足部内の所定箇所を固定的に特定し、その固定的に特定される所定箇所の位置に基づいて歩行状態が測定されるからである。
 更に、第一実施形態では、走査線上の深度のみを走査することで、被験者の足裏が歩行面に接地した状態におけるその足部内の所定箇所の位置が特定されるため、深度画像で表される全ての深度を確認する場合に比べて、処理を高速化することができる。
 また、第一実施形態では、足部の或る部位の位置を特定し、特定された部位の位置の深度と、その特定された部位の位置から準備段階で決定された足部の長さ分先の位置の深度とが同じか否かを判定することで、被験者の足裏が歩行面に接地した状態が検出される。これにより、走査線上の深度の中で、背景との差分が検出される位置と、その画素から足部の長さ分先の位置との2つの深度を確認すればよいため、処理を高速化することができる。更に、その2つの深度が同一か否かの判定で被験者の足裏が歩行面に接地した状態が検出されるため、両足が重なった場合にも、足部内の所定箇所の位置を適切に特定することができ、ひいては、一歩を正確に検出することができる。
[変形例]
 測定装置10は、測定された歩行状態を表示せず、測定装置10のメモリ2に格納してもよい。また、測定装置10は、測定された歩行状態を他のコンピュータに送信してもよいし、可搬型記録媒体に格納してもよい。
 また、測定装置10は、三次元センサ7に対して被験者が真横を向いているか否かを判定し、真横を向いていない場合、真横を向くように指示する表示を出力するようにしてもよい。この場合、例えば、測定装置10は、被験者に足部の長さ(足の実測サイズ)を入力装置6を用いて入力させ、入力された足の実測サイズと、決定部13により決定される足部の長さから推定される足の実測サイズとを比較する。測定装置10は、両方の実測サイズが所定誤差の範囲を超えて異なる場合、真横を向いていないと判断することができる。決定部13により決定される足部の長さから足の実測サイズを算出する手法は、歩幅の実測値の算出手法と同様である。
 また、深度画像における走査線の座標は、予め決められていてもよい。この場合、測定装置10(測定部15)は、走査線の座標を予め保持し、この保持される座標を用いて、被験者の歩行状態を測定する。従って、この場合には、設定部14は不要となる。
[第二実施形態]
 以下、第二実施形態における測定装置及び測定方法について図8及び図9を用いて説明する。また、第二実施形態は、この測定方法を少なくとも1つのコンピュータに実行させるプログラムであってもよいし、このようなプログラムを記録した当該少なくとも1つのコンピュータが読み取り可能な記録媒体であってもよい。
 図8は、第二実施形態における測定装置の処理構成例を概念的に示す図である。図8に示されるように、測定装置100は、取得部101及び測定部102を有する。図8に示される測定装置100は、例えば、図1に示される上述の測定装置10と同様のハードウェア構成を有し、その測定装置10と同様にプログラムが処理されることで、上述の各処理モジュールが実現される。但し、測定装置100には、三次元センサ7、表示装置5及び入力装置6が接続されていなくてもよい。
 取得部101は、二次元位置毎の深度を示す深度情報を取得する。深度情報の具体例が上述の深度画像フレームである。但し、深度情報は、二次元位置毎の深度を示す情報であれば、どのような形式で表されていてもよい。取得部101は、測定装置100に接続されている深度センサ又は三次元センサ7から深度情報を取得してもよいし、記録された深度情報を他のコンピュータ又は可搬型記録媒体から取得することもできる。
 測定部102は、取得部101で取得された深度情報を用いて被験者の歩行状態を測定する。例えば、測定部102は、上述の実施形態と比較して、処理速度に問題があるものの、次のような手法で歩行状態を測定できる。測定部102は、当該深度情報から被験者の足部内の所定箇所を特定し、その所定箇所が歩行面に接地した状態を検出する。測定部102は、背景画像との差分により被験者の領域を特定でき、その被験者の領域から足部内の所定箇所を特定できる。更に、測定部102は、足部の形及び向き(水平)から、足部の所定箇所が歩行面に接地した状態を検出することができる。測定部102は、その状態が検出された際の所定箇所の位置を特定する。このように、測定部102は、上述の実施形態の手法のみならず、他の様々な手法により、深度情報を用いた歩行状態の測定を行うことができる。
 測定部102により測定される歩行状態は、上述の実施形態と同様に、歩幅の実測値又は歩数、若しくは両方であってもよいし、歩速、歩幅の揺らぎ等の他の指標値であってもよい。深度情報を用いて被験者の歩行に関し特定される情報に基づいて算出される指標値であれば、歩行状態はどのような指標値であってもよい。
 図9は、第二実施形態における測定装置100の動作例を示すフローチャートである。図9に示されるように、第二実施形態における測定方法は、測定装置100のような少なくとも1つのコンピュータにより実行される。例えば、図示される各工程は、測定装置100が有する各処理モジュールにより実行される。
 本実施形態における測定方法は、二次元位置毎の深度を示す深度情報を取得し(S91)、(S91)で取得された深度情報を用いて被験者の歩行状態を測定する(S92)、ことを含む。(S91)の内容は、取得部101について述べたとおりであり、(S92)の内容は、測定部102について述べたとおりである。
 測定装置100は、測定された歩行状態を格納する。測定装置100は、測定された歩行状態を表示することもできるし、他のコンピュータへ送信することもできるし、可搬型記録媒体へ格納することもできる。
 第二実施形態によれば、深度情報を用いて被験者の歩行状態が測定されるため、上述の実施形態と同様に、スケルトンデータとして得られる骨格の位置に基づく測定と比較して、より高精度に歩行状態を測定することができる。
 上述の各実施形態及び変形例は、内容が相反しない範囲で組み合わせることができる。
 上述の各実施形態及び変形例の一部又は全部は、以下のように特定され得る。但し、上述の内容が以下の記載に限定されるものではない。
1. 二次元位置毎の深度を示す深度情報を取得する第一取得手段と、
 前記深度情報を用いて被験者の歩行状態を測定する測定手段と、
 を備える測定装置。
2. 二次元画像を取得する第二取得手段と、
 前記取得される二次元画像に線状画像が重畳された画像を表示する表示処理手段と、
 を更に備え、
 前記測定手段は、前記線状画像に対応する走査線上の深度情報を用いて前記被験者の歩行状態を測定する、
 1.に記載の測定装置。
3. 前記測定手段は、前記走査線上の深度情報を用いて、前記被験者の足裏が歩行面に接地した状態におけるその足部内の所定箇所の位置を特定し、特定された位置を用いて前記被験者の歩行状態を測定し、
 前記表示処理手段は、前記特定された位置を表すマーク画像が前記線状画像と共に、前記取得される二次元画像に重畳された画像を表示する、
 2.に記載の測定装置。
4. 前記取得された深度情報から前記被験者の足部を検出する検出手段と、
 前記検出された足部の長さを決定する決定手段と、
 を更に備え、
 前記測定手段は、所定方向に前記走査線に沿って深度情報を走査することにより、前記歩行面に接地した足部の或る部位の位置を特定し、特定された部位の位置の深度と、その特定された部位の位置から前記決定された前記被験者の足部の長さ分先の位置の深度とが同じか否かを判定することで、前記被験者の足裏が前記歩行面に接地した状態を検出する、
 3.に記載の測定装置。
5. 前記測定手段は、前記特定された複数の位置に基づいて、歩幅の実測値、歩数、及び歩隔のいずれか一つ以上を算出する、
 3.又は4.に記載の測定装置。
6. 前記取得された深度情報から前記被験者の足部を検出する検出手段と、
 前記検出された足部の位置に基づいて、前記深度情報が示す二次元座標系における前記走査線の座標を取得する設定手段と、
 を更に備え、
 前記表示処理手段は、前記取得された前記走査線の座標を前記二次元画像の座標系に変換することにより、前記二次元画像に前記線状画像が重畳された画像を表示する、
 2.から5.のいずれか1つに記載の測定装置。
7. 少なくとも一つのコンピュータにより実行される測定方法において、
 二次元位置毎の深度を示す深度情報を取得し、
 前記深度情報を用いて被験者の歩行状態を測定する、
 ことを含む測定方法。
8. 二次元画像を取得し、
 前記取得される二次元画像に線状画像が重畳された画像を表示する、
 ことを更に含み、
 前記測定は、前記線状画像に対応する走査線上の深度情報を用いて前記被験者の歩行状態を測定する、
 7.に記載の測定方法。
9. 前記測定は、
  前記走査線上の深度情報を用いて、前記被験者の足裏が歩行面に接地した状態におけるその足部内の所定箇所の位置を特定し、
  前記特定された位置を用いて前記被験者の歩行状態を測定する、
 ことを含み、
 前記表示は、前記特定された位置を表すマーク画像が前記線状画像と共に、前記取得される二次元画像に重畳された画像を表示する、
 8.に記載の測定方法。
10. 前記取得された深度情報から前記被験者の足部を検出し、
 前記検出された足部の長さを決定する、
 ことを更に含み、
 前記位置の特定は、
  所定方向に前記走査線に沿って深度情報を走査することにより、前記歩行面に接地した足部の或る部位の位置を特定し、
  前記特定された部位の位置の深度と、その特定された部位の位置から前記決定された前記被験者の足部の長さ分先の位置の深度とが同じか否かを判定することで、前記被験者の足裏が前記歩行面に接地した状態を検出する、
 ことを含む、
 9.に記載の測定方法。
11. 前記測定は、前記特定された複数の位置に基づいて、歩幅の実測値、歩数、及び歩隔のいずれか一つ以上を算出することを含む、
 9.又は10.に記載の測定方法。
12. 前記取得された深度情報から前記被験者の足部を検出し、
 前記検出された足部の位置に基づいて、前記深度情報が示す二次元座標系における前記走査線の座標を取得する、
 ことを更に含み、
 前記表示は、前記取得された前記走査線の座標を前記二次元画像の座標系に変換することにより、前記二次元画像に前記線状画像が重畳された画像を表示する、
 8.から11.のいずれか1つに記載の測定方法。
13. 7.から12.のいずれか1つに記載の測定方法を少なくとも一つのコンピュータに実行させるプログラム。
 この出願は、2015年6月26日に出願された日本出願特願2015-129017号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (8)

  1.  二次元位置毎の深度を示す深度情報を取得する第一取得手段と、
     前記深度情報を用いて被験者の歩行状態を測定する測定手段と、
     を備える測定装置。
  2.  二次元画像を取得する第二取得手段と、
     前記取得される二次元画像に線状画像が重畳された画像を表示する表示処理手段と、
     を更に備え、
     前記測定手段は、前記線状画像に対応する走査線上の深度情報を用いて前記被験者の歩行状態を測定する、
     請求項1に記載の測定装置。
  3.  前記測定手段は、前記走査線上の深度情報を用いて、前記被験者の足裏が歩行面に接地した状態におけるその足部内の所定箇所の位置を特定し、特定された位置を用いて前記被験者の歩行状態を測定し、
     前記表示処理手段は、前記特定された位置を表すマーク画像が前記線状画像と共に、前記取得される二次元画像に重畳された画像を表示する、
     請求項2に記載の測定装置。
  4.  前記取得された深度情報から前記被験者の足部を検出する検出手段と、
     前記検出された足部の長さを決定する決定手段と、
     を更に備え、
     前記測定手段は、所定方向に前記走査線に沿って深度情報を走査することにより、前記歩行面に接地した足部の或る部位の位置を特定し、特定された部位の位置の深度と、その特定された部位の位置から前記決定された前記被験者の足部の長さ分先の位置の深度とが同じか否かを判定することで、前記被験者の足裏が前記歩行面に接地した状態を検出する、
     請求項3に記載の測定装置。
  5.  前記測定手段は、前記特定された複数の位置に基づいて、歩幅の実測値、歩数、及び歩隔のいずれか一つ以上を算出する、
     請求項3又は4に記載の測定装置。
  6.  前記取得された深度情報から前記被験者の足部を検出する検出手段と、
     前記検出された足部の位置に基づいて、前記深度情報が示す二次元座標系における前記走査線の座標を取得する設定手段と、
     を更に備え、
     前記表示処理手段は、前記取得された前記走査線の座標を前記二次元画像の座標系に変換することにより、前記二次元画像に前記線状画像が重畳された画像を表示する、
     請求項2から5のいずれか1項に記載の測定装置。
  7.  少なくとも一つのコンピュータにより実行される測定方法において、
     二次元位置毎の深度を示す深度情報を取得し、
     前記深度情報を用いて被験者の歩行状態を測定する、
     ことを含む測定方法。
  8.  請求項7に記載の測定方法を少なくとも一つのコンピュータに実行させるプログラム。
PCT/JP2016/064137 2015-06-26 2016-05-12 測定装置及び測定方法 WO2016208289A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/580,557 US10952648B2 (en) 2015-06-26 2016-05-12 Measurement device and measurement method
EP16814060.6A EP3315067A4 (en) 2015-06-26 2016-05-12 Measurement device and measurement method
CN201680037595.5A CN107708554A (zh) 2015-06-26 2016-05-12 测量装置和测量方法
JP2017524727A JP6482102B2 (ja) 2015-06-26 2016-05-12 測定装置及び測定方法
HK18106164.7A HK1246621A1 (zh) 2015-06-26 2018-05-11 測量裝置和測量方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-129017 2015-06-26
JP2015129017 2015-06-26

Publications (1)

Publication Number Publication Date
WO2016208289A1 true WO2016208289A1 (ja) 2016-12-29

Family

ID=57584999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064137 WO2016208289A1 (ja) 2015-06-26 2016-05-12 測定装置及び測定方法

Country Status (6)

Country Link
US (1) US10952648B2 (ja)
EP (1) EP3315067A4 (ja)
JP (1) JP6482102B2 (ja)
CN (1) CN107708554A (ja)
HK (1) HK1246621A1 (ja)
WO (1) WO2016208289A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109077731B (zh) * 2018-06-11 2022-06-14 上海大学 一种基于视觉的人体检测方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010026235A (ja) * 2008-07-18 2010-02-04 Panasonic Electric Works Co Ltd カメラアングル調整装置
JP2013002884A (ja) * 2011-06-14 2013-01-07 Honda Motor Co Ltd 測距装置
JP2015042241A (ja) * 2013-01-18 2015-03-05 株式会社東芝 動作情報処理装置及び方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4631676A (en) * 1983-05-25 1986-12-23 Hospital For Joint Diseases Or Computerized video gait and motion analysis system and method
JP2010172394A (ja) * 2009-01-27 2010-08-12 Panasonic Electric Works Co Ltd 歩行状態表示装置
WO2014115817A1 (ja) * 2013-01-23 2014-07-31 株式会社東芝 動作情報処理装置
JP6183906B2 (ja) * 2013-08-28 2017-08-23 日本電信電話株式会社 歩容推定装置とそのプログラム、転倒危険度算出装置とそのプログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010026235A (ja) * 2008-07-18 2010-02-04 Panasonic Electric Works Co Ltd カメラアングル調整装置
JP2013002884A (ja) * 2011-06-14 2013-01-07 Honda Motor Co Ltd 測距装置
JP2015042241A (ja) * 2013-01-18 2015-03-05 株式会社東芝 動作情報処理装置及び方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3315067A4 *

Also Published As

Publication number Publication date
HK1246621A1 (zh) 2018-09-14
EP3315067A4 (en) 2018-12-05
JP6482102B2 (ja) 2019-03-13
US20180168487A1 (en) 2018-06-21
EP3315067A1 (en) 2018-05-02
JPWO2016208289A1 (ja) 2018-03-15
CN107708554A (zh) 2018-02-16
US10952648B2 (en) 2021-03-23

Similar Documents

Publication Publication Date Title
CN107080540B (zh) 用于分析人的步态和姿势平衡的系统和方法
KR101118654B1 (ko) 모션캡쳐 기반의 자세분석을 통한 재활 장치 및 이에 따른 재활 방법
US9928411B2 (en) Image processing apparatus, image processing system, image processing method, and computer program product
US8565479B2 (en) Extraction of skeletons from 3D maps
CN105283129B (zh) 信息处理装置、信息处理方法
US10839544B2 (en) Information processing apparatus, information processing method, and non-transitory computer readable storage medium
WO2016208291A1 (ja) 測定装置及び測定方法
JP5613741B2 (ja) 画像処理装置、方法、及びプログラム
CN113474816A (zh) 弹性动态投影映射系统和方法
US9235895B2 (en) Method for estimating direction of person standing still
JP6482102B2 (ja) 測定装置及び測定方法
JP4628910B2 (ja) 長さ測定装置および身長測定装置
Mahyuddin et al. Development of an affordable system for 2D kinematics and dynamics analysis of human gait
Ye et al. Kinematics analysis multimedia system for rehabilitation
KR20160035497A (ko) 스켈레톤 추출정보를 이용한 동작분석 기반의 체형분석 시스템
TWI736148B (zh) 姿態檢測系統與方法
Barone et al. A markerless system based on smartphones and webcam for the measure of step length, width and duration on treadmill
US10796449B2 (en) Measurement device, measurement method, and computer readable recording medium
CA3200934A1 (en) Object three-dimensional localizations in images or videos
JP6465419B2 (ja) 測定装置及び測定方法
JP6780639B2 (ja) 画像解析装置、画像解析方法、及び、画像解析プログラム
JP6750193B2 (ja) 歩行周期の検出方法及び検出装置
US20230222833A1 (en) Image processing apparatus, image processing method, and storage medium
KR20100060622A (ko) 인체 자세 판별 시스템 및 그 방법
Barone et al. Integration of smartphones and webcam for the measure of spatio-temporal gait parameters

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814060

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017524727

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15580557

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016814060

Country of ref document: EP