WO2016208168A1 - Call quality evaluation method, call quality evaluation device and call quality evaluation program - Google Patents

Call quality evaluation method, call quality evaluation device and call quality evaluation program Download PDF

Info

Publication number
WO2016208168A1
WO2016208168A1 PCT/JP2016/002926 JP2016002926W WO2016208168A1 WO 2016208168 A1 WO2016208168 A1 WO 2016208168A1 JP 2016002926 W JP2016002926 W JP 2016002926W WO 2016208168 A1 WO2016208168 A1 WO 2016208168A1
Authority
WO
WIPO (PCT)
Prior art keywords
call quality
deterioration
delay
value
call
Prior art date
Application number
PCT/JP2016/002926
Other languages
French (fr)
Japanese (ja)
Inventor
浩一 二瓶
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2016208168A1 publication Critical patent/WO2016208168A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/24Arrangements for testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M7/00Arrangements for interconnection between switching centres

Definitions

  • the present invention relates to a method for evaluating call quality of a voice call.
  • the subjective quality evaluation method is a method in which a subject is made to listen to a voice that is assumed to be an actual call and the subject is subjected to subjective evaluation. This method has a problem that many evaluators and dedicated evaluation facilities are required, and it takes time and cost, and there are variations in the environment and evaluation by the evaluators.
  • Non-Patent Document 1 is a method for estimating subjective quality according to a predetermined additive rule having a sound quality degradation amount such as codec type, delay, and packet loss rate in a database.
  • Non-Patent Document 2 is a method for estimating subjective quality by comparing an original voice and an evaluation target voice.
  • Non-Patent Document 3 is a method for estimating subjective quality only from received speech.
  • the method disclosed in Patent Document 1 is a quality evaluation method in a case where the assumption that the influence of the delay and sound quality deterioration assumed in the method disclosed in Patent Document 1 can be simply added is not satisfied.
  • a MOS value calculated by a technique such as PESQ described in Non-Patent Document 2 is converted into Ie and eff, which are sound quality deterioration amounts of R values that are call quality evaluation values.
  • PESQ refers to Perceptual evaluation of speech quality
  • MOS value refers to Mean Opinion Score value, and the same applies to the following.
  • the R value is calculated by adding the delay deterioration amount and the interaction amount, and converted to a MOS value using a relational expression between the R value and the MOS value.
  • R value refers to the value of a transmission rating factor defined in Non-Patent Document 1, and the same applies to the following.
  • the speech evaluation apparatus disclosed in Patent Document 2 calculates a speech quality evaluation value in a first evaluation period at a constant period, and a speech quality evaluation value in a second evaluation period longer than the first evaluation period is constant. It calculates with the period of.
  • the speech evaluation device disclosed in Patent Document 2 selects the evaluation value calculated by the first calculation unit or the evaluation value calculated by the second calculation unit, whichever is higher, and selects the selected evaluation value. Output.
  • the E-model a computational model for use in transmission planning”.
  • P.I. 862 Perceptual evaluation of speche quality (PESQ): An objective method for end-to-end special quality of the power of the power of the world.
  • ITU-T P.I. 563 Single-ended method for objective speech quality assessment in narrow-band telephony applications.
  • RFC3550 A Transport Protocol for Real-Time Applications.
  • Non-Patent Document 1 only the average subjective quality can be estimated by this method, and the influence of sound quality deterioration due to the occurrence of packet loss is not considered. For this reason, even if there is no problem in estimating the degree of call quality deterioration due to delay, the degree of call quality deterioration due to sound quality deterioration cannot be estimated with high accuracy.
  • Non-Patent Document 2 and Non-Patent Document 3 are incomplete as a call quality evaluation because delay is not considered.
  • the calculated MOS value is converted into Ie, eff, which is the sound quality deterioration amount of the R value, and is converted back to the MOS value after addition with other factors.
  • An error occurs during the conversion, but since the conversion is included twice, the error is large and the estimation accuracy decreases.
  • ITU-T G The average R value of 711 codec, 87.8, is used as a reference.
  • ITU-T refers to “International Telecommunication Union Telecommunication Standardization Sector”.
  • ITU-T refers to “International Telecommunication Union Telecommunication Standardization Sector”.
  • the present invention uses a method with few drawbacks to estimate the degree of call quality degradation due to delay and the degree of call quality degradation due to sound quality degradation, thereby making it possible to obtain a subjective experience quality of a voice call with higher accuracy.
  • the purpose is to provide quality evaluation methods.
  • the call quality evaluation method of the present invention includes a step of deriving a first degradation value representing call quality degradation due to a delay caused in a voice signal by transmission / reception processing via a certain network.
  • the call quality evaluation method of the present invention further includes a step of deriving a second deterioration value representing call quality deterioration due to sound quality deterioration caused in the voice signal by the transmission / reception processing.
  • the call quality evaluation method of the present invention further includes a step of outputting an element of an ordered set having an order relationship corresponding to the call quality, which is associated with the combination of the first and second deterioration values by surjective. .
  • the call quality estimation method and the like of the present invention uses a method that has few drawbacks for a method that estimates a call quality degradation due to delay and a value that represents a call quality degradation due to a sound quality degradation, so that Can be obtained with higher accuracy.
  • FIG. 1 is a conceptual diagram showing a processing flow of the call quality evaluation method of this embodiment.
  • a value representing call quality degradation due to delay is derived in a call system described later including a transmitter, a network (hereinafter, referred to as “NW”), and a receiver.
  • NW a network
  • S001 A specific example of a method for deriving a value representing call quality degradation due to delay will be described later (S001).
  • the process shown in FIG. 1 is a process for evaluating call quality in a call system such as that shown in FIG.
  • the call system 100 includes a transmitter 001, an NW002, and a receiver 003.
  • the audio signal Vin is input to the transmitter 001.
  • the audio signal Vin is a signal generated by, for example, converting audio by a microphone connected to the transmitter 001.
  • the audio signal Vin is transmitted from the transmitter 001 to the ITU-T G. It may be compressed by compression means represented by 711.
  • the audio signal Vin may be divided into packets in the transmitter 001. Due to the processing in the transmitter 001, sound quality deterioration and delay occur in the sound signal Vin, and the sound signal Vin becomes the sound signal Vin '.
  • the audio signal Vin ′ is input to the NW002.
  • the audio signal Vin ′ passes through the NW002, sound quality deterioration and delay such as data loss occur, and the audio signal Vin ′ becomes the audio signal Vin ′′.
  • the audio signal Vin ′′ is input to the receiver 003.
  • the audio signal Vin ′′ is received by the receiver 003 and is subjected to a predetermined process in the receiver 003. This processing is performed, for example, when the audio signal Vin ′′ is compressed by the transmitter 001 and the non-audio signal Vin ′′ is not processed. Compression processing and buffer processing for absorbing variations in delay that have occurred. Due to these processing in the receiver 003, sound quality deterioration and delay occur in the audio signal Vin ′′ and are output as the output signal Vout. The output signal Vout is typically output to a speaker connected to the receiver 003. [3. Estimating values representing call quality degradation due to delay] FIG. 3 is a conceptual diagram showing an example of a more detailed processing flow of the method for deriving a value representing deterioration in call quality due to delay, expressed in S001 of FIG.
  • the delay time D1 can be obtained, for example, by the difference between the time when a signal is input to the transmitter 001 and the signal is input to the transmitter 001 and the time when the signal is output from the transmitter.
  • Delay time D2 can be obtained, for example, by the difference between the time when a signal is input to NW002 and the signal is input to NW002 and the time when the signal is output from NW002. Therefore, if a signal is sent from the receiver 003 to the transmission / reception unit of the transmitter 001 through the NW002, and the signal is received from the transmission / reception unit of the transmitter 001 immediately to the receiver 003, the delay time D2 is obtained. be able to. This is because by measuring the difference between the time at which the transmitter 001 sends a signal and the time at which the receiver 003 receives the signal, the delay time for a round trip by the NW002 can be obtained. The delay time D2 for one way by NW002 may be half of the round trip. Alternatively, the transmitter 001 can determine the one-way delay time D2 in the NW002 by sending a signal storing the time when the transmitter 001 transmits to the receiver 003.
  • RTCP Real-time Transport Control Protocol.
  • Communication based on RTCP is performed by the receiver 003 via the NW002 to the transmitter 001, or by the transmitter 001 via the NW002 to the receiver 003.
  • the round-trip delay time (Round-Trip delay Time (RTT)) is obtained by communication based on RTCP, so it can be estimated that half of the RTT value is a one-way delay time generated when passing through the NW. .
  • the delay time D3 can be obtained as a value obtained by adding the delay in the buffering unit and a fixed value when the call system 100 is an IP telephone system using the VoIP technology. Since the delay in the buffering unit is a variable value, an accurate delay time D3 can be obtained by updating as necessary.
  • the transmitter 001 divides voice information into packets and then sends the information in packets to the receiver 003 through the NW002.
  • the receiver 003 receives audio information sent in units of packets and converts it into a continuous audio signal.
  • the timing at which the receiver 003 receives audio information is a discontinuous timing in packet units. For this reason, when the receiver 003 joins the received audio signals in real time, it becomes difficult to hear audio information in which there are many silent parts (sound breaks) that occur when the arrival of packets is delayed.
  • the buffering unit adjusts the delay time given to the received packet voice information, thereby suppressing the occurrence of silent parts and adjusting the connected voice information so that it can be easily heard. This is the part used for the call technology used. Since the buffering unit adjusts the voice information by giving a delay time to the received packet voice information, it always causes a delay.
  • the fixed value is a signal delay generated by the receiver 003 other than the delay by the buffering unit.
  • the fixed value is a short time signal such as a pulse signal input to the receiver 003, and the difference between the input time of the signal and the time when the output signal corresponding to the signal is output from the receiver 003 is measured. Can be obtained. This is because when a short-time signal such as a pulse signal is input, the delay in the buffering unit can be approximately zero.
  • a value representing call quality deterioration due to delay can be obtained by the procedure described in Non-Patent Document 1, using delay time D1 + D2 + D3, for example.
  • Is is calculated according to the procedure described in Section 7.3 “Simultaneous impulse factor, Is” of Non-Patent Document 1.
  • Is is a factor defined in Non-Patent Document 1.
  • Id is calculated according to the procedure described in Section 7.4 “Delay impermement factor, Id” of the same document.
  • Id is a factor defined in Non-Patent Document 1.
  • FIG. 4 is a conceptual diagram illustrating an example of a processing flow of a method for deriving a value representing speech quality degradation due to sound quality degradation.
  • a voice signal sample used to obtain a value representing call quality deterioration due to sound quality deterioration is acquired (S201).
  • Non-Patent Document 3 a procedure for calculating a value representing call quality degradation due to sound quality degradation is disclosed in Non-Patent Document 3, and can be performed by that procedure. .
  • FIG. 5 is a conceptual diagram showing an example of a processing flow of a method for deriving a value representing call quality deterioration due to sound quality deterioration to which the procedure disclosed in Non-Patent Document 3 is applied.
  • an audio signal sample that conforms to the conditions disclosed in Section 6 “Requirements on speech signals to be assessed” of Non-Patent Document 3 is created (S301).
  • the receiver 003 is a smartphone using Android as an OS
  • AudioTrack which is an API for reproducing an audio signal
  • the MOS value is calculated according to the procedure disclosed in item 7 and thereafter of the document (S302).
  • This MOS value is a value that represents call quality deterioration due to sound quality deterioration.
  • the value representing the call quality deterioration due to the sound quality deterioration can be performed by the procedure disclosed in Non-Patent Document 2.
  • FIG. 6 is a conceptual diagram showing an example of a processing flow of a method for deriving a value representing call quality deterioration due to sound quality deterioration to which the procedure disclosed in Non-Patent Document 2 is applied.
  • the audio signal Vin input to the transmitter 001 is recorded as an audio file (S401).
  • the audio signal Vin is a signal immediately after the sound is converted into a signal by the microphone.
  • the transmitter or the like converts the audio signal Vin into an audio file and sends it to the processing unit in the audio file state (S402).
  • the transmitter or the like may be a transmitter or an operator.
  • the processing unit may be included in the transmitter 001, the receiver 003, or may be configured not to be included in the transmitter 001 and the receiver 003. If the transmitter 001 does not include the processing unit, the audio signal Vin file is sent to the processing unit via the Internet, for example.
  • the audio signal Vin is sent to the receiver 003 through the NW002 as described in the explanation of FIG.
  • the receiver 003 records the output signal Vout immediately before being output (S403).
  • the receiver 003 outputs the output signal Vout (S404).
  • the transmitter or the like converts the recorded output signal Vout into an audio file and sends it to the processing unit in the audio file state (S405).
  • the transmitter or the like may be a transmitter or an operator.
  • the processing unit when the processing unit is connected to the receiver 003 via the Internet, the file of the output signal Vout is sent to the processing unit via the Internet.
  • Non-Patent Document 2 using the audio signal Vin reproduced from the file in which the audio signal Vin is recorded and the output signal Vout reproduced from the file in which the output signal Vout is recorded.
  • the MOS value is calculated by the method described above (S406).
  • This MOS value is a value representing speech quality degradation due to sound quality degradation. [5. The sum of the value representing the speech quality degradation due to delay and the value representing the speech quality degradation due to sound quality degradation] Since the calculation method differs between the value representing the speech quality degradation due to delay and the value representing the speech quality degradation due to the sound quality degradation obtained by the above-described method, they are usually not values that can be evaluated on the same scale. Therefore, if these values are added together as they are, the combined value of these values is not a value that can be grasped by a certain scale, and thus the call quality is not estimated with high accuracy.
  • At least one of the two values representing the call quality deterioration is converted and then summed up so that the values representing the two call quality deteriorations having different calculation methods can be evaluated based on the same standard. Is more preferable.
  • FIG. 7 is a conceptual diagram showing an example of a processing flow for adding values representing call quality deterioration.
  • At least one of the two values representing the call quality deterioration is set so that the value representing the call quality deterioration due to the delay and the value representing the call quality deterioration due to the sound quality deterioration can be assumed to be evaluated based on the same standard. Is converted (S501).
  • the R value is a value representing the call quality obtained by the method disclosed in Non-Patent Document 1.
  • the MOS value is a value representing the call quality obtained by the method disclosed in Non-Patent Document 2 or Non-Patent Document 3. Accordingly, when the value representing the call quality degradation due to delay is obtained by the procedure disclosed in Non-Patent Document 1, and the value representing the call quality degradation caused by sound quality degradation is obtained by the procedure disclosed in Non-Patent Document 3, this relationship is used. The above conversion can be performed.
  • the conversion may be conversion that matches the decrease amount of the MOS value with the decrease amount of the R value, or conversion that matches the decrease amount of the R value with the decrease amount of the MOS value. Furthermore, as long as the conversion satisfies the relationship between the R value and the MOS value, the conversion of the MOS value decrease amount and the R value decrease amount to a third value that is neither the MOS value nor the R value is possible. I do not care.
  • FIG. 8 is a conceptual diagram showing a configuration example of the call evaluation device 200 of the present embodiment.
  • Non-Patent Document 1 is used to calculate a value representing call quality degradation due to delay
  • the method disclosed in Non-Patent Document 3 is used to calculate a value representing sound quality degradation. It is an example of composition for using each.
  • the transmitter, the NW, and the receiver constitute an IP telephone system using VoIP technology.
  • the call quality evaluation apparatus 200 includes a delay deterioration deriving unit 220, a sound quality deterioration deriving unit 23a, a conversion adjusting unit 240, and a quality expression deriving unit 250. These connections are as shown in the figure. Here, when different configurations are connected by a line in the same figure, it means that the configurations are connected, and “connection” means that signals can be exchanged. Is the same.
  • the receiver 203 is not included in the call quality evaluation apparatus 200, and includes a receiving unit 211, a decoding unit 212, a buffering unit 213, and an output unit 214. These connections are as shown in FIG.
  • the receiving unit 211 is connected to the NW 202.
  • the NW 202 is connected to the transmitter 201.
  • the reception unit 211 can receive the audio signal Vin ′′ sent from the transmitter 201.
  • the audio signal Vin ′′ is subjected to a coding process by the transmitter 201 with respect to the audio signal Vin and is a packet. Assume that the signal is divided every time.
  • the audio signal Vin ′′ received by the receiving unit 211 is sent to the decoding unit 212.
  • the decoding unit 212 performs a decoding process on the transmitted audio signal.
  • the decoding process is a process for converting a compressed signal into an uncompressed signal, for example. Since this process is a process normally used in a mobile phone or the like, detailed description thereof is omitted.
  • the decoded signal is sent to the buffering unit 213.
  • the buffering unit 213 performs a process of joining the signals divided from the packet unit transmitted from the decoding unit 212 with a delay for each packet unit. Since this process is a process normally used in a mobile phone or the like, detailed description thereof is omitted.
  • the joined signal is sent to the output unit 214.
  • the buffering unit 213 may be divided into a plurality of parts.
  • the operation system may have a buffer immediately before the output unit 214.
  • the buffering unit 213 is configured as shown in the conceptual diagram of FIG. That is, the buffering unit 213 includes a part 213a including a jitter buffer 213aa and a part 213b including an output buffer 213ba.
  • a portion 213 a including the jitter buffer 213 aa is connected to the decoding unit 212, and a portion 213 b including the output unit buffer 213 ba is connected to the output unit 214.
  • the output unit 214 outputs the signal sent from the buffering unit 213 as an output signal Vout to a speaker (not shown) connected to the communication evaluation apparatus 200 and the sound quality deterioration deriving unit 23a.
  • the delay degradation derivation unit 220 includes an NW delay measurement unit 221, a buffer delay measurement unit 222, a fixed value input unit 223, a transmitter delay input unit 224, and a delay degradation calculation unit 225. Connections between these components are as shown in FIG.
  • the NW delay measurement unit 221 is connected to the NW 202 and can communicate with the transmitter 201.
  • the NW delay measurement unit 221 obtains the delay time D2 in the NW 202 by the method described in the description of S102 in FIG.
  • the NW delay measurement unit 221 sends the delay time D2 in the NW 202 to the delay deterioration calculation unit 225.
  • the buffer delay measuring unit 222 is connected to the buffering unit 213.
  • the buffer delay measurement unit 222 can communicate with the buffering unit 213 based on an API by a program provided in the middleware, for example. In that case, the delay time of the delay generated in the buffering unit 213 by this communication can be obtained.
  • the buffer delay measuring unit 222 can obtain a delay time of a delay generated in the buffering unit 213 by sending a signal to the input unit of the buffering unit 213 and sending a signal after passing through the buffering unit 213. It can. This is because the delay time is the difference between the time when the buffer delay measurement unit 222 sends the signal and the time when the buffer delay measurement unit 222 receives the signal.
  • the buffer delay measurement unit 222 can communicate with the buffering unit 213 based on an API by a program provided in the middleware, for example. In that case, the delay time of the delay generated in the buffering unit 213 by this communication can be obtained.
  • the buffer delay measurement unit 222 may be connected to the respective parts and communicate independently with the respective parts.
  • the buffering unit 213 has the configuration shown in FIG. 9, the buffering unit 213 and the buffer delay measurement unit 222 can be connected as shown in FIG.
  • the buffer delay measuring unit 222 is connected to the jitter buffer 213aa and the output unit buffer 213ba, and can perform independent communication with each of the jitter buffer 213aa and the output unit buffer 213ba.
  • the buffer delay measuring unit 222 communicates with the jitter buffer 213aa based on the first API by the first program provided in the middleware, for example. Thereby, the buffer delay measuring unit 222 can obtain the delay time generated in the jitter buffer 213aa.
  • the buffer delay measuring unit 222 communicates with the output unit buffer 213ba based on the second API, for example, by a second program provided in the middleware. Thereby, the buffer delay measuring unit 222 can obtain the delay time generated in the output unit buffer 213ba.
  • the buffer delay measuring unit 222 can add up the delay time generated in the jitter buffer 213aa and the delay time generated in the output buffer 213ba to obtain the delay time in the entire buffering unit 213.
  • the buffer delay measuring unit 222 sends the delay time in the buffering unit 213 to the delay deterioration calculating unit 225.
  • the fixed value input unit 223 sends the input fixed value of the delay time generated in the receiver 203 to the delay deterioration calculation unit 225.
  • the fixed value of the delay time generated in the receiver 203 is as described in the description of S103 in FIG.
  • a value obtained by adding the fixed value of the delay time generated in the receiver 203 and the delay time in the buffering unit 213 is the delay time D3 in the receiver 203.
  • the transmitter delay input unit 224 sends the input delay time D1 in the transmitter 201 to the delay degradation calculation unit 225.
  • the delay time D1 in the transmitter 201 is as described in the description of S101 in FIG.
  • the delay deterioration calculating unit 225 adds the delay time D2 in the NW 202, the delay time D3 in the receiver 203, and the delay time D1 in the transmitter 201 to obtain the delay time D1 + D2 + D3.
  • the delay time D2 in the NW 202 is sent from the NW delay measurement unit 221 and the delay time D1 in the transmitter 201 is sent from the transmitter delay input unit 224, respectively.
  • the delay time D3 in the receiver 203 is a total value of the delay times sent from the buffer delay measurement unit 222 and the fixed value input unit 223, respectively.
  • the delay deterioration calculation unit 225 obtains a decrease amount of the R value, which is a value representing call quality deterioration due to delay, from the delay time D1 + D2 + D3 by the method described in the description of S105 in FIG.
  • the calculated decrease amount of the R value is sent to the conversion adjustment unit 240.
  • the sound quality degradation deriving unit 23a uses the input output signal Vout to obtain a reduction amount of the MOS value, which is a value representing the speech quality degradation due to the sound quality degradation, by the method described in FIG.
  • the obtained reduction amount of the MOS value is sent to the conversion adjustment unit 240.
  • the conversion adjustment unit 240 is assumed to be able to compare the amount of decrease in the R value sent from the delay degradation calculation unit 225 and the amount of reduction in the MOS value sent from the sound quality degradation deriving unit 23a on the same basis. Process to convert to. This process is performed by the method described in S301 of FIG. The value representing the speech quality degradation due to the delay and the value representing the speech quality degradation due to the sound quality degradation after processing are sent to the quality expression deriving unit 250.
  • the quality expression deriving unit 250 adds the transmitted value representing the call quality degradation due to delay and the value representing the call quality degradation due to the sound quality degradation, and creates information including the summed value representing the call quality degradation.
  • the information may be a value representing the summed call quality degradation, or may be information obtained by processing a value representing the summed call quality degradation.
  • the signal Ve including the information is output to a display, a printer, and other devices connected to the communication evaluation apparatus 200.
  • FIG. 11 is a conceptual diagram showing another configuration example of the communication evaluation apparatus 200 of the present embodiment.
  • Non-Patent Document 1 is used to calculate a value representing speech quality degradation due to delay
  • the method disclosed in Non-Patent Document 2 is used to calculate a value representing sound quality degradation. It is an example of composition for using each.
  • the transmitter, the NW, and the receiver constitute an IP telephone system using VoIP technology.
  • the description of the configuration other than the sound quality deterioration deriving unit 23b is the case where the sound quality deterioration deriving unit 23a is replaced by the sound quality deterioration deriving unit 23b in the description of FIG. In the following, the sound quality deterioration deriving unit 23b will be described.
  • the sound quality degradation deriving unit 23b includes an output signal file creation unit 231, an audio file input unit 232, and a sound quality degradation calculation unit 233.
  • the output signal file creation unit 231 converts the output signal Vout sent from the output unit 214 into an audio file and records it.
  • the converted audio file is sent to the sound quality deterioration calculation unit 233.
  • the audio file input unit 232 sends the audio file of the input audio signal Vin to the sound quality deterioration calculation unit 233.
  • the description of the audio file of the audio signal Vin is as described for S401 and S402 in FIG.
  • the sound quality degradation calculation unit 233 reproduces the audio file of the output signal Vout sent from the output signal file creation unit 231 and the audio file of the audio signal Vin sent from the audio file input unit 232. Then, the amount of decrease in the MOS value, which is a value representing the speech quality degradation due to the sound quality degradation, is calculated for the output signal Vout by the method described in S406 of FIG. [effect]
  • Several methods, including Non-Patent Documents 1 to 4 are disclosed as currently known call quality estimation methods. In these methods, various methods are disclosed for each of a method for obtaining a value representing speech quality degradation due to delay and a method for obtaining a value representing speech quality degradation due to quality degradation.
  • none of the methods disclosed therein can accurately determine both a value representing speech quality degradation due to delay and a value representing speech quality degradation due to sound quality degradation.
  • the call quality evaluation method according to the present embodiment is the same as the call quality evaluation method according to the present embodiment, in which a value indicating call quality degradation in a call system is expressed as a value indicating call quality deterioration due to delay and a call quality due to sound quality deterioration. A value representing deterioration is obtained and obtained by adding together. Therefore, it is possible to select a method with few defects from various options as a method for evaluating a value representing speech quality degradation due to delay and a value representing speech quality degradation due to sound quality degradation.
  • the value representing the call quality degradation in the call system is the sum of the value representing the call quality degradation due to delay and the value representing the call quality degradation due to the sound quality degradation.
  • the output target does not necessarily need to be the sum of the two values, but the element of the ordered set having the order relationship corresponding to the call quality associated with the combination of the two values. If it is.
  • the elements of the ordered set in this case do not necessarily have to be values. For example, a person (including those operated by a person) such as color, shape, pattern, brightness, sound, vibration, smell, temperature, and the like. Anything can be recognized.
  • FIG. 12 is a conceptual diagram showing the processing flow of the minimum call quality evaluation method of the present invention.
  • the method derives a first degradation value representing speech quality degradation due to a delay caused in a voice signal by transmission / reception processing via a certain network (S601).
  • the method further derives a second degradation value representing speech quality degradation due to speech quality degradation caused to the voice signal by the transmission / reception process (S602).
  • the method further outputs an element of an ordered set having an order relationship corresponding to the call quality, which is associated with the combination of the first and second deterioration values by surjective (S603).
  • the minimum call quality evaluation method of the present invention has the effects described in [Effects of the Invention] with the above configuration.
  • the transmitter / receiver process transmits a second audio signal, which is an audio signal obtained by performing a first process on the input first audio signal, to the receiver through the network, the network, An output signal that is an audio signal that receives the third audio signal that is the audio signal that has reached the receiver through the network with respect to the second audio signal, and has performed a second process on the third audio signal.
  • a second audio signal which is an audio signal obtained by performing a first process on the input first audio signal
  • An output signal that is an audio signal that receives the third audio signal that is the audio signal that has reached the receiver through the network with respect to the second audio signal, and has performed a second process on the third audio signal.
  • the first degradation value is described in the supplementary note A2 or the supplementary note 3, wherein a first delay time which is a delay time of the output signal with respect to the first audio signal is obtained and calculated by the first delay time. Call quality evaluation method.
  • Appendix A5 A second delay time that is a delay time of the second audio signal with respect to the first audio signal, and a third delay time that is a delay time of the third audio signal with respect to the second audio signal. And a fourth delay time that is a delay time of the output signal with respect to the third audio signal, and the first delay time is determined as the second delay time and the third delay time.
  • the call quality evaluation method described in appendix A4 which is obtained by adding the fourth delay time.
  • the first deterioration value is set as ITU-T G.I. 107 “The E-model: a computational model for use in Call quality evaluation described in appendix A3 or A5, which is obtained by summing Is obtained by equation (7-8) and Id obtained by equation (7-18) described in “transmission planning” Method. (Appendix A7) The obtained first deterioration value is expressed as ITU-T G.I. 107 “The E-model: a computational model for use in "transmission planning", the relationship described in the equation B (B-4) in the formula B or FIG. The call quality evaluation method described in appendix A6, which is converted into a mean opinion score using the relationship described in 2.
  • the step of calculating the first degradation value of the system includes the step of obtaining the second delay time by communication through the network with the transmitter by the receiver.
  • the second deterioration value is set to ITU-TP. 563 “Single-ended method for objective speech” The call quality evaluation method described in appendix A9, which is performed according to the procedure described in “quality assessment in near-band telephony applications”.
  • Appendix A12 The call quality evaluation method according to appendix A11, wherein the first audio signal is a signal obtained by reproducing an audio file in which the first audio signal is recorded.
  • any of the first deterioration value, the second deterioration value, and both the first deterioration value and the value representing the call quality deterioration due to the sound quality deterioration are converted into values that can be compared with each other by correcting the first deterioration value, and the sum is calculated after the conversion.
  • a delay degradation derivation unit for deriving a first degradation value representing a speech quality degradation due to a delay caused in a voice signal by transmission / reception processing via a network
  • a sound quality deterioration deriving unit for deriving a second deterioration value representing a call quality deterioration due to sound quality deterioration generated in the voice signal by the transmission / reception processing
  • a call quality deriving unit that outputs an element of an ordered set having an order relationship corresponding to the call quality associated with the combination of the first and second deterioration values by surjective;
  • a call quality evaluation apparatus comprising:
  • Appendix B2 The call quality evaluation apparatus according to appendix B1, wherein the element is a total value of the first deterioration value and the second deterioration value.
  • the transmitter / receiver process transmits a second audio signal, which is an audio signal obtained by performing a first process on the input first audio signal, to the receiver through the network, the network, An output signal that is an audio signal that receives the third audio signal that is the audio signal that has reached the receiver through the network with respect to the second audio signal, and has performed a second process on the third audio signal.
  • the call quality evaluation apparatus according to Supplementary Note 1 or Supplementary Note 2, which is a transmission / reception process performed in the receiver.
  • Appendix B4 A first delay time deriving unit that obtains a first delay time that is a delay time of the output signal with respect to the first audio signal; and a first delay time based on the first delay.
  • the first delay time deriving unit includes a second delay time deriving unit that obtains a second delay time that is a delay time of the third audio signal with respect to the second audio signal, and uses the second delay time to The call quality evaluation apparatus according to appendix B4, which derives a delay time.
  • Appendix B6 The call quality evaluation apparatus according to appendix B5, wherein the second delay time deriving unit obtains the second delay time by performing communication with the transmitter through the network.
  • the first delay time deriving unit includes a third delay time deriving unit for obtaining a third delay time which is a delay time of the output signal with respect to the third audio signal, and the first delay time is calculated from the third delay time.
  • the call quality evaluation apparatus described in any one of Supplementary Notes B4 to B6.
  • the third delay time deriving unit is generated in the buffer.
  • the speech quality evaluation apparatus according to attachment B7 further comprising a fourth delay time deriving unit that derives a buffer delay time that is a delay time, and obtaining the third delay time from the buffer delay time.
  • the sound quality degradation deriving unit derives a value representing speech quality degradation due to the sound quality degradation from the output signal input from the receiver to the sound quality degradation deriving unit, according to any one of appendices B2 to B13 The described call quality evaluation device.
  • the sound quality degradation deriving unit sets a value representing speech quality degradation due to the delay, ITU-TP 563 “Single-ended method for objective speech quality assessment in The call quality evaluation apparatus according to appendix B14, which is derived by the procedure described in “narrow-band telephony applications”.
  • the first sound signal input to the sound quality deterioration deriving unit is input to the sound quality deterioration deriving unit as an audio file including the first sound signal input to the sound quality deterioration deriving unit.
  • the sound quality degradation deriving unit obtains a value representing the speech quality degradation due to the delay as an ITU-TP.
  • PESQ Perceptual evaluation of speech quality
  • Appendix B20 Before the summation, at least one of a value representing call quality degradation due to the delay and a value representing call quality degradation due to the sound quality degradation, a value representing the call quality degradation due to the delay and a call quality degradation due to the sound quality degradation. And a conversion adjustment unit for converting the value representing the value that can be compared with a value that can be compared with the same standard, and the sum is a value representing the speech quality deterioration due to the delay and the sound quality after the conversion
  • the call quality evaluation apparatus according to any one of appendices B3 to B19, which is a sum of values representing call quality deterioration due to deterioration.
  • (Appendix C1) A process of deriving a first degradation value representing a speech quality degradation due to a delay caused in a voice signal by a transmission / reception process via a network; A process of deriving a second degradation value representing speech quality degradation due to degradation of sound quality caused in the audio signal by the transmission / reception processing; A process of outputting an element of an ordered set having an order relation corresponding to a call quality, which is associated with the combination of the first and second deterioration values by surjective; A call quality evaluation program for causing a computer to execute a process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Telephonic Communication Services (AREA)

Abstract

The present invention addresses the problem of, when estimating call quality deterioration, obtaining the subjective quality of experience of a voice call with higher accuracy by using a method with few drawbacks as each of methods for estimating call quality deteriorations due to delay and sound quality deterioration, respectively. To solve this problem, a first deterioration value indicating call quality deterioration due to delay caused in a voice signal by transmission/reception processing via a network is derived, and a second deterioration value indicating call quality deterioration due to sound quality deterioration caused in the voice signal by the transmission/reception processing is derived. Further, an element of an ordered set having an order relation corresponding to call quality is outputted, the element being associated with a combination of the first and second deterioration values by surjection.

Description

通話品質評価方法、通話品質評価装置及び通話品質評価プログラムCall quality evaluation method, call quality evaluation apparatus, and call quality evaluation program
 本発明は、音声による通話の通話品質を評価する方法に関する。 The present invention relates to a method for evaluating call quality of a voice call.
 通話品質を評価する方法としては、主観品質評価法と客観品質評価法がある。 There are a subjective quality evaluation method and an objective quality evaluation method as methods for evaluating call quality.
 主観品質評価方法は、被験者に実際の通話を想定した音声を聴かせ、被験者に主観的な評価を行わせる方法である。同方法は、多くの評価者や専用の評価設備が必要で時間、コスト共に掛かり環境や評価者による評価のばらつきがあるという課題がある。 The subjective quality evaluation method is a method in which a subject is made to listen to a voice that is assumed to be an actual call and the subject is subjected to subjective evaluation. This method has a problem that many evaluators and dedicated evaluation facilities are required, and it takes time and cost, and there are variations in the environment and evaluation by the evaluators.
 そのため、物理的特徴量から主観評価値を推定する客観品質評価法が開発されている。客観品質評価法としては、非特許文献1乃至3、及び特許文献1に開示された方法が知られている。 Therefore, an objective quality evaluation method has been developed to estimate the subjective evaluation value from physical features. As objective quality evaluation methods, methods disclosed in Non-Patent Documents 1 to 3 and Patent Document 1 are known.
 非特許文献1に開示された方法は、コーデック種別、遅延、パケットロス率などの音質低下量をデータベースに持ち、あらかじめ決められた相加則により主観品質を推定する方法である。 The method disclosed in Non-Patent Document 1 is a method for estimating subjective quality according to a predetermined additive rule having a sound quality degradation amount such as codec type, delay, and packet loss rate in a database.
 非特許文献2に開示された方法は、原音声と評価対象音声とを比較することで、主観品質を推定する方法である。 The method disclosed in Non-Patent Document 2 is a method for estimating subjective quality by comparing an original voice and an evaluation target voice.
 非特許文献3に開示された方法は、受信音声のみから主観品質を推定する方法である。 The method disclosed in Non-Patent Document 3 is a method for estimating subjective quality only from received speech.
 特許文献1に開示された方法は、特許文献1に開示された方法が前提としている遅延と音質劣化の影響が単純に加算できるという仮定が成立しない場合の品質評価方法である。同方法においては、非特許文献2に記載されたPESQ等の手法により算出したMOS値を通話品質評価値であるR値の音質劣化量であるIe、effに変換する。ここで、PESQはPerceptual evaluation of speech qualityをいい、MOS値はMean Opinion Score値をいい、以下においても同じである。そして、遅延劣化量と交互作用量とを加算することで、R値を算出し、R値とMOS値の関係式を用いてMOS値に変換している。ここで、「R値」は、非特許文献1において定義されたa transmission rating factorの値をいい、以下においても同じである。 The method disclosed in Patent Document 1 is a quality evaluation method in a case where the assumption that the influence of the delay and sound quality deterioration assumed in the method disclosed in Patent Document 1 can be simply added is not satisfied. In this method, a MOS value calculated by a technique such as PESQ described in Non-Patent Document 2 is converted into Ie and eff, which are sound quality deterioration amounts of R values that are call quality evaluation values. Here, PESQ refers to Perceptual evaluation of speech quality, MOS value refers to Mean Opinion Score value, and the same applies to the following. Then, the R value is calculated by adding the delay deterioration amount and the interaction amount, and converted to a MOS value using a relational expression between the R value and the MOS value. Here, “R value” refers to the value of a transmission rating factor defined in Non-Patent Document 1, and the same applies to the following.
 一方、特許文献2が開示する音声評価装置は、第1評価期間における音声品質の評価値を一定の周期で算出し、第1評価期間よりも長い第2評価期間における音声品質の評価値を一定の周期で算出する。そして、特許文献2が開示する音声評価装置は、第1算出部によって算出された評価値、又は第2算出部によって算出された評価値のいずれか高い方を選択するとともに、選択した評価値を出力する。 On the other hand, the speech evaluation apparatus disclosed in Patent Document 2 calculates a speech quality evaluation value in a first evaluation period at a constant period, and a speech quality evaluation value in a second evaluation period longer than the first evaluation period is constant. It calculates with the period of. The speech evaluation device disclosed in Patent Document 2 selects the evaluation value calculated by the first calculation unit or the evaluation value calculated by the second calculation unit, whichever is higher, and selects the selected evaluation value. Output.
特開2004-222257号公報JP 2004-222257 A 特開2009-033683号公報JP 2009-033683 A
 しかしながら、非特許文献1に開示された方法は、同方法により推定できるのが平均的な主観品質のみであり、パケットロスの発生部分による音質劣化の影響が考慮されていない。このため、遅延による通話品質劣化度合いの推定は特に問題がないにしても、音質劣化による通話品質劣化度合いは高精度に推定することができない。 However, in the method disclosed in Non-Patent Document 1, only the average subjective quality can be estimated by this method, and the influence of sound quality deterioration due to the occurrence of packet loss is not considered. For this reason, even if there is no problem in estimating the degree of call quality deterioration due to delay, the degree of call quality deterioration due to sound quality deterioration cannot be estimated with high accuracy.
 また、非特許文献2及び非特許文献3に開示された方法は、遅延が考慮されていないために通話品質評価としては不完全である。 Further, the methods disclosed in Non-Patent Document 2 and Non-Patent Document 3 are incomplete as a call quality evaluation because delay is not considered.
 また、特許文献1に開示された方法においては、算出したMOS値をR値の音質劣化量であるIe,effに変換し、他の要因と加算後にMOS値に再変換している。変換の際には誤差が生じるが、その変換が2回も入っているために誤差が大きく、推定精度が低下する。さらに、MOS値からIe,effへの変換の際に、ITU-T G.711コーデックの平均的なR値である87.8を基準として使っている。「ITU-T」は、「International Telecommunication Union Telecommunication Standardization Sector」をいう。ここで、入力音源によってR値は変化することが知られており、平均的なR値を用いることによる誤差がさらに付加される。 Further, in the method disclosed in Patent Document 1, the calculated MOS value is converted into Ie, eff, which is the sound quality deterioration amount of the R value, and is converted back to the MOS value after addition with other factors. An error occurs during the conversion, but since the conversion is included twice, the error is large and the estimation accuracy decreases. Furthermore, when converting MOS values to Ie, eff, ITU-T G. The average R value of 711 codec, 87.8, is used as a reference. “ITU-T” refers to “International Telecommunication Union Telecommunication Standardization Sector”. Here, it is known that the R value varies depending on the input sound source, and an error due to the use of an average R value is further added.
 本発明は、遅延による通話品質劣化度合い及び音質劣化による通話品質劣化度合いを推定する方法に欠点が少ない方法を用いることにより、音声通話の主観的な体感品質をより高精度に求めることができる通話品質評価方法等を提供することを目的とする。 The present invention uses a method with few drawbacks to estimate the degree of call quality degradation due to delay and the degree of call quality degradation due to sound quality degradation, thereby making it possible to obtain a subjective experience quality of a voice call with higher accuracy. The purpose is to provide quality evaluation methods.
 本発明の通話品質評価方法は、あるネットワークを介しての送受信処理により音声信号に生じた遅延による通話品質劣化を表す第一の劣化値を導出するステップを含む。本発明の通話品質評価方法は、さらに、前記送受信処理により前記音声信号に生じた音質劣化による通話品質劣化を表す第二の劣化値を導出するステップを含む。本発明の通話品質評価方法は、さらに、全射により前記第一及び第二の劣化値の組み合わせに対応づけられた、通話品質に対応する順序関係を有する順序集合の要素を出力するステップを含む。 The call quality evaluation method of the present invention includes a step of deriving a first degradation value representing call quality degradation due to a delay caused in a voice signal by transmission / reception processing via a certain network. The call quality evaluation method of the present invention further includes a step of deriving a second deterioration value representing call quality deterioration due to sound quality deterioration caused in the voice signal by the transmission / reception processing. The call quality evaluation method of the present invention further includes a step of outputting an element of an ordered set having an order relationship corresponding to the call quality, which is associated with the combination of the first and second deterioration values by surjective. .
 本発明の通話品質推定方法等は、遅延による通話品質劣化を表わす値及び音質劣化による通話品質劣化を表わす値を推定する方法に欠点が少ない方法を用いることにより、音声通話の主観的な体感品質をより高精度に求めることができる。 The call quality estimation method and the like of the present invention uses a method that has few drawbacks for a method that estimates a call quality degradation due to delay and a value that represents a call quality degradation due to a sound quality degradation, so that Can be obtained with higher accuracy.
本実施形態の通話品質評価方法の処理フローを表わす概念図である。It is a conceptual diagram showing the processing flow of the call quality evaluation method of this embodiment. 本実施形態の通話品質評価方法による処理対象の通話システムの構成を表わす概念図である。It is a conceptual diagram showing the structure of the call system of the process target by the call quality evaluation method of this embodiment. 遅延による通話品質劣化を表わす値の導出方法の処理フローの例を表わす概念図である。It is a conceptual diagram showing the example of the processing flow of the derivation | leading-out method of the value showing call quality degradation by delay. 音質劣化による通話品質劣化を表わす値の導出方法の処理フローの例を表わす概念図である。It is a conceptual diagram showing the example of the processing flow of the derivation | leading-out method of the value showing the speech quality degradation by sound quality degradation. 音質劣化による通話品質劣化を表わす値の導出方法の処理フローの例を表わす概念図である。It is a conceptual diagram showing the example of the processing flow of the derivation | leading-out method of the value showing the speech quality degradation by sound quality degradation. 音質劣化による通話品質劣化を表わす値の導出方法の処理フローの例を表わす概念図である。It is a conceptual diagram showing the example of the processing flow of the derivation | leading-out method of the value showing the speech quality degradation by sound quality degradation. 通話品質劣化を表わす値を合算する処理フローの例を表わす概念図である。It is a conceptual diagram showing the example of the processing flow which adds together the value showing call quality degradation. 本実施形態の通話評価装置の構成例を表わす概念図である。It is a conceptual diagram showing the structural example of the telephone call evaluation apparatus of this embodiment. バッファリング部の構成例を表わす概念図である。It is a conceptual diagram showing the structural example of a buffering part. バッファリング部とバッファ遅延測定部との接続関係の例を表わす概念図である。It is a conceptual diagram showing the example of the connection relation of a buffering part and a buffer delay measurement part. 本実施形態の通信評価装置の他の構成例を表わす概念図である。It is a conceptual diagram showing the other structural example of the communication evaluation apparatus of this embodiment. 本発明の最小限の通話品質評価方法の処理フローを表わす概念図である。It is a conceptual diagram showing the processing flow of the minimum call quality evaluation method of this invention.
<通話品質評価方法>
 最初に、本発明の通話品質評価方法に関する実施形態について説明する。
[1.処理フローの全体像]
 図1は、本実施形態の通話品質評価方法の処理フローを表わす概念図である。
<Call quality evaluation method>
First, an embodiment relating to the call quality evaluation method of the present invention will be described.
[1. Overall view of processing flow]
FIG. 1 is a conceptual diagram showing a processing flow of the call quality evaluation method of this embodiment.
 まず、送信機と、ネットワーク(以下において、「NW」と表わす。)と、受信機とを備える後述の通話システムにおいて、遅延による通話品質劣化を表わす値を導出する。遅延による通話品質劣化を表わす値の導出方法の具体例は後述する(S001)。 First, a value representing call quality degradation due to delay is derived in a call system described later including a transmitter, a network (hereinafter, referred to as “NW”), and a receiver. A specific example of a method for deriving a value representing call quality degradation due to delay will be described later (S001).
 次に、前記音質劣化による通話品質劣化を表わす値を導出する。音質劣化による通話品質劣化を表わす値の導出方法の具体例は後述する(S002)。 Next, a value representing the call quality deterioration due to the sound quality deterioration is derived. A specific example of a method for deriving a value representing speech quality degradation due to sound quality degradation will be described later (S002).
 そして、前記遅延による通話品質劣化を表わす値と、前記音質劣化による通話品質劣化を表わす値を合算する。合算方法の具体例は後述する(S003)。
[2.処理対象の通話システムの構成]
 図1に表わした処理は、図2に例を表わしたような通話システムにおいて、通話品質を評価する処理である。
Then, the value representing the speech quality degradation due to the delay and the value representing the speech quality degradation due to the sound quality degradation are added together. A specific example of the summing method will be described later (S003).
[2. Configuration of processing call system]
The process shown in FIG. 1 is a process for evaluating call quality in a call system such as that shown in FIG.
 通話システム100は、送信機001と、NW002と、受信機003とを備える。 The call system 100 includes a transmitter 001, an NW002, and a receiver 003.
 送信機001へは音声信号Vinが入力される。音声信号Vinは、例えば送信機001に接続されたマイクロフォンにより、音声が変換されることにより生成された信号である。音声信号Vinは、送信機001において、ITU-T G.711に代表される圧縮手段により圧縮されてもよい。音声信号Vinは、送信機001においてパケット単位に分割されてもよい。送信機001内部における処理により、音声信号Vinに、音質劣化と遅延が発生し、音声信号Vinは音声信号Vin’になる。音声信号Vin’はNW002に入力される。 The audio signal Vin is input to the transmitter 001. The audio signal Vin is a signal generated by, for example, converting audio by a microphone connected to the transmitter 001. The audio signal Vin is transmitted from the transmitter 001 to the ITU-T G. It may be compressed by compression means represented by 711. The audio signal Vin may be divided into packets in the transmitter 001. Due to the processing in the transmitter 001, sound quality deterioration and delay occur in the sound signal Vin, and the sound signal Vin becomes the sound signal Vin '. The audio signal Vin ′ is input to the NW002.
 音声信号Vin’には、NW002を通過する際に、データの欠落等の音質劣化と遅延が発生し、音声信号Vin’は音声信号Vin”になる。音声信号Vin”は受信機003に入力される。 When the audio signal Vin ′ passes through the NW002, sound quality deterioration and delay such as data loss occur, and the audio signal Vin ′ becomes the audio signal Vin ″. The audio signal Vin ″ is input to the receiver 003. The
 音声信号Vin”は、受信機003により受信され、受信機003において所定の処理を受ける。その処理は、例えば、音声信号Vin”が送信機001において圧縮された場合における、音声信号Vin”の非圧縮化処理や、発生した遅延のばらつきを吸収するためのバッファ処理である。受信機003におけるこれらの処理により、音声信号Vin”に音質劣化及び遅延が生じ、出力信号Voutとして出力される。出力信号Voutは、典型的には、受信機003に接続されたスピーカに出力される。
[3.遅延による通話品質劣化を表わす値の推定]
 図3は、図1のS001に表わした、遅延による通話品質劣化を表わす値の導出方法の、より詳細な処理フローの例を表わす概念図である。
The audio signal Vin ″ is received by the receiver 003 and is subjected to a predetermined process in the receiver 003. This processing is performed, for example, when the audio signal Vin ″ is compressed by the transmitter 001 and the non-audio signal Vin ″ is not processed. Compression processing and buffer processing for absorbing variations in delay that have occurred. Due to these processing in the receiver 003, sound quality deterioration and delay occur in the audio signal Vin ″ and are output as the output signal Vout. The output signal Vout is typically output to a speaker connected to the receiver 003.
[3. Estimating values representing call quality degradation due to delay]
FIG. 3 is a conceptual diagram showing an example of a more detailed processing flow of the method for deriving a value representing deterioration in call quality due to delay, expressed in S001 of FIG.
 最初に、送信機001において発生する遅延時間D1を求める(S101)。 First, a delay time D1 generated in the transmitter 001 is obtained (S101).
 遅延時間D1は、例えば、送信機001に信号を入力し、送信機001に信号が入力された時刻と、送信機から信号が出力された時刻との差により求めることができる。 The delay time D1 can be obtained, for example, by the difference between the time when a signal is input to the transmitter 001 and the signal is input to the transmitter 001 and the time when the signal is output from the transmitter.
 次に、NW002において発生する遅延時間D2を求める(S102)。 Next, a delay time D2 generated in NW002 is obtained (S102).
 遅延時間D2は、例えば、NW002に信号を入力し、NW002に信号が入力された時刻と、NW002から信号が出力された時刻との差により求めることができる。従い、受信機003からNW002を通じて送信機001の送受信部に信号を送り、その信号を受けて送信機001の送受信部から受信機003に対してすぐに信号を送らせれば、遅延時間D2を求めることができる。送信機001が信号を送った時刻と、受信機003が信号を受け取った時刻の差を測定することにより、NW002による往復分の遅延時間を求めることができるからである。NW002による片道分の遅延時間D2は、往復分の半分としてもよい。または、送信機001が受信機003に対し、送信機001が送信する際の時刻を格納した信号を送ることにより、受信機003はNW002における片道分の遅延時間D2を求めることもできる。 Delay time D2 can be obtained, for example, by the difference between the time when a signal is input to NW002 and the signal is input to NW002 and the time when the signal is output from NW002. Therefore, if a signal is sent from the receiver 003 to the transmission / reception unit of the transmitter 001 through the NW002, and the signal is received from the transmission / reception unit of the transmitter 001 immediately to the receiver 003, the delay time D2 is obtained. be able to. This is because by measuring the difference between the time at which the transmitter 001 sends a signal and the time at which the receiver 003 receives the signal, the delay time for a round trip by the NW002 can be obtained. The delay time D2 for one way by NW002 may be half of the round trip. Alternatively, the transmitter 001 can determine the one-way delay time D2 in the NW002 by sending a signal storing the time when the transmitter 001 transmits to the receiver 003.
 通話システム100がVoIP技術を利用したIP電話のシステムである場合には、遅延時間D2は、受信機により送信機との間で行われるRTCPに基づく通信により求めることができる。RTCPについては、非特許文献4の第6節において規定されている。ここで、「VoIP」はVoice over Internet Protocol、「IP」はInternet Protocolをいう。また、「RTCP」はReal-time Transport Control Protocolをいう。これらは、以下においても同じである。RTCPに基づく通信は、受信機003が、NW002を経由して、送信機001に対して行うか、あるいは、送信機001が、NW002を経由して、受信機003に対して行う。周知のように、RTCPに基づく通信により往復遅延時間(Round-Trip delay Time(RTT))が求まるので、RTTの値の半分の値がNWを経由する際に発生する片道の遅延時間と推定できる。 When the call system 100 is an IP telephone system using the VoIP technology, the delay time D2 can be obtained by communication based on RTCP performed between the receiver and the transmitter. RTCP is defined in Section 6 of Non-Patent Document 4. Here, “VoIP” means Voice over Internet Protocol, and “IP” means Internet Protocol. “RTCP” refers to Real-time Transport Control Protocol. These are the same in the following. Communication based on RTCP is performed by the receiver 003 via the NW002 to the transmitter 001, or by the transmitter 001 via the NW002 to the receiver 003. As is well known, the round-trip delay time (Round-Trip delay Time (RTT)) is obtained by communication based on RTCP, so it can be estimated that half of the RTT value is a one-way delay time generated when passing through the NW. .
 次に、受信機003における遅延時間D3を求める(S103)。 Next, the delay time D3 in the receiver 003 is obtained (S103).
 遅延時間D3は、通話システム100がVoIP技術を利用したIP電話のシステムである場合には、バッファリング部における遅延と固定値とを加算した値として求めることができる。バッファリング部における遅延は可変値であるので、必要に応じて更新することで正確な遅延時間D3を求めることができる。 The delay time D3 can be obtained as a value obtained by adding the delay in the buffering unit and a fixed value when the call system 100 is an IP telephone system using the VoIP technology. Since the delay in the buffering unit is a variable value, an accurate delay time D3 can be obtained by updating as necessary.
 VoIP技術を利用したIP電話のシステムにおいては、送信機001は、パケット単位に音声情報を分割してから、NW002を通じて、受信機003にパケット単位の情報を送付する。受信機003はパケット単位で送られた音声情報を受け取り、連続した音声信号に変換する。受信機003が音声情報を受け取るタイミングはパケット単位の不連続なタイミングである。そのため、受信機003が、受け取った音声信号をリアルタイムにつなぎ合わせると、パケットの到着が遅延した場合に生ずる無音部(音切れ)が多数存在する聴きにくい音声情報となる。 In the IP telephone system using the VoIP technology, the transmitter 001 divides voice information into packets and then sends the information in packets to the receiver 003 through the NW002. The receiver 003 receives audio information sent in units of packets and converts it into a continuous audio signal. The timing at which the receiver 003 receives audio information is a discontinuous timing in packet units. For this reason, when the receiver 003 joins the received audio signals in real time, it becomes difficult to hear audio information in which there are many silent parts (sound breaks) that occur when the arrival of packets is delayed.
 バッファリング部は、受け取ったパケット音声情報に与える遅延時間を調整することにより、無音部の発生を抑え、つなぎ合わせた音声情報が聴きやすい音声情報になるように整える、IP電話等のパケット通信を用いた通話技術に用いられる部分である。バッファリング部は、受け取ったパケット音声情報に遅延時間を与えることにより音声情報を整えるものなので、必ず遅延を生じさせる。 The buffering unit adjusts the delay time given to the received packet voice information, thereby suppressing the occurrence of silent parts and adjusting the connected voice information so that it can be easily heard. This is the part used for the call technology used. Since the buffering unit adjusts the voice information by giving a delay time to the received packet voice information, it always causes a delay.
 固定値は、バッファリング部による遅延以外の、受信機003で発生する信号の遅延である。固定値は、パルス状の信号等の短い時間の信号を受信機003に入力し、その信号の入力時刻と、その信号に対応する出力信号が受信機003から出力される時刻との差を測定することにより求めることができる。そのようなパルス状の信号等の短い時間の信号を入力した場合には、バッファリング部における遅延を近似的にゼロにすることができるためである。 The fixed value is a signal delay generated by the receiver 003 other than the delay by the buffering unit. The fixed value is a short time signal such as a pulse signal input to the receiver 003, and the difference between the input time of the signal and the time when the output signal corresponding to the signal is output from the receiver 003 is measured. Can be obtained. This is because when a short-time signal such as a pulse signal is input, the delay in the buffering unit can be approximately zero.
 次に、通話システム100全体の遅延時間D1+D2+D3を求める(S104)。 Next, the delay time D1 + D2 + D3 of the entire call system 100 is obtained (S104).
 そして、通話システム100全体の遅延時間D1+D2+D3から、通話システム100全体の遅延による通話品質劣化を表わす値を計算する(S105)。 Then, from the delay time D1 + D2 + D3 of the entire call system 100, a value representing call quality deterioration due to the delay of the entire call system 100 is calculated (S105).
 遅延による通話品質劣化を表わす値は、例えば、遅延時間D1+D2+D3を用いて、非特許文献1に記載された手順により、求めることができる。 A value representing call quality deterioration due to delay can be obtained by the procedure described in Non-Patent Document 1, using delay time D1 + D2 + D3, for example.
 まず、非特許文献1の7.3項「Simultaneous impairment factor, Is」に記載された手順によりIsを算出する。ここで、Isは非特許文献1において定義されたfactorである。 First, Is is calculated according to the procedure described in Section 7.3 “Simultaneous impulse factor, Is” of Non-Patent Document 1. Here, Is is a factor defined in Non-Patent Document 1.
 次に、同文献の7.4項「Delay impairment factor, Id」に記載された手順によりIdを算出する。ここで、Idは非特許文献1において定義されたfactorである。 Next, Id is calculated according to the procedure described in Section 7.4 “Delay impermement factor, Id” of the same document. Here, Id is a factor defined in Non-Patent Document 1.
 そして、IsとIdとを合算した値Is+Idは、R値の低下量、すなわち遅延による通話品質劣化を表わす値である。
[4.音質劣化による通話品質劣化を表わす値の導出]
 図4は、音質劣化による通話品質劣化を表わす値の導出方法の処理フローの例を表わす概念図である。
A value Is + Id obtained by adding Is and Id is a value representing a decrease amount of the R value, that is, a speech quality deterioration due to a delay.
[4. Derivation of a value that represents speech quality degradation due to sound quality degradation]
FIG. 4 is a conceptual diagram illustrating an example of a processing flow of a method for deriving a value representing speech quality degradation due to sound quality degradation.
 まず、音質劣化による通話品質劣化を表わす値を求めるために用いる音声信号サンプルを取得する(S201)。 First, a voice signal sample used to obtain a value representing call quality deterioration due to sound quality deterioration is acquired (S201).
 そして、S201で作成した音声信号サンプルを用いて、音質劣化による通話品質劣化を表わす値を算出する(S202)。 Then, using the voice signal sample created in S201, a value representing call quality degradation due to sound quality degradation is calculated (S202).
 通話システム100がVoIP技術を利用したIP電話のシステムである場合には、音質劣化による通話品質劣化を表わす値の算出手順が非特許文献3に開示されているので、その手順により行うことができる。 When the call system 100 is an IP telephone system using the VoIP technology, a procedure for calculating a value representing call quality degradation due to sound quality degradation is disclosed in Non-Patent Document 3, and can be performed by that procedure. .
 図5は、非特許文献3に開示された手順を適用した音質劣化による通話品質劣化を表わす値の導出方法の処理フローの例を表わす概念図である。 FIG. 5 is a conceptual diagram showing an example of a processing flow of a method for deriving a value representing call quality deterioration due to sound quality deterioration to which the procedure disclosed in Non-Patent Document 3 is applied.
 まず、非特許文献3の6項「Requirements on speech signals to be assessed」に開示された条件に適合した音声信号サンプルを作成する(S301)。受信機003が、アンドロイドをOSに用いたスマートフォンである場合には、音声信号を再生するためのAPIであるAudioTrackに入力する音声信号を取得し、音声信号サンプルとする。 First, an audio signal sample that conforms to the conditions disclosed in Section 6 “Requirements on speech signals to be assessed” of Non-Patent Document 3 is created (S301). When the receiver 003 is a smartphone using Android as an OS, an audio signal input to AudioTrack, which is an API for reproducing an audio signal, is acquired and used as an audio signal sample.
 そして、S201で作成した音声信号サンプルを用いて、同文献の7項以降に開示された手順により、MOS値を算出する(S302)。 Then, using the audio signal sample created in S201, the MOS value is calculated according to the procedure disclosed in item 7 and thereafter of the document (S302).
 このMOS値が、音質劣化による通話品質劣化を表わす値である。 This MOS value is a value that represents call quality deterioration due to sound quality deterioration.
 通話システム100がVoIP技術を利用したIP電話のシステムである場合は、音質劣化による通話品質劣化を表わす値は非特許文献2に開示された手順により行うこともできる。 When the call system 100 is an IP telephone system using the VoIP technology, the value representing the call quality deterioration due to the sound quality deterioration can be performed by the procedure disclosed in Non-Patent Document 2.
 図6は、非特許文献2に開示された手順を適用した音質劣化による通話品質劣化を表わす値の導出方法の処理フローの例を表わす概念図である。 FIG. 6 is a conceptual diagram showing an example of a processing flow of a method for deriving a value representing call quality deterioration due to sound quality deterioration to which the procedure disclosed in Non-Patent Document 2 is applied.
 まず、送信機001に入力された音声信号Vinを音声ファイルとして記録する(S401)。ここで、音声信号Vinは、マイクにより音声を信号に変換した直後の信号である。 First, the audio signal Vin input to the transmitter 001 is recorded as an audio file (S401). Here, the audio signal Vin is a signal immediately after the sound is converted into a signal by the microphone.
 送信機等は、音声信号Vinを音声ファイルにし、音声ファイルの状態で、処理部に送る(S402)。この場合の送信機等は、送信機であってもよいし、作業者であっても構わない。また、前記処理部は、送信機001が備えていても、受信機003が備えていても、或いは、送信機001及び受信機003が備えない構成であっても構わない。前記処理部を送信機001が備えない場合は、音声信号Vinのファイルを例えばインターネットを通じて前記処理部に送る。音声信号Vinは、図2の説明において説明したように、NW002を通じて、受信機003に送られる。 The transmitter or the like converts the audio signal Vin into an audio file and sends it to the processing unit in the audio file state (S402). In this case, the transmitter or the like may be a transmitter or an operator. The processing unit may be included in the transmitter 001, the receiver 003, or may be configured not to be included in the transmitter 001 and the receiver 003. If the transmitter 001 does not include the processing unit, the audio signal Vin file is sent to the processing unit via the Internet, for example. The audio signal Vin is sent to the receiver 003 through the NW002 as described in the explanation of FIG.
 受信機003は、出力される直前の出力信号Voutを記録する(S403)。 The receiver 003 records the output signal Vout immediately before being output (S403).
 受信機003は出力信号Voutを出力する(S404)。 The receiver 003 outputs the output signal Vout (S404).
 送信機等は、記録された出力信号Voutを音声ファイルにし、音声ファイルの状態で、前記処理部に送る(S405)。この場合の送信機等は、送信機であってもよいし、作業者であっても構わない。 The transmitter or the like converts the recorded output signal Vout into an audio file and sends it to the processing unit in the audio file state (S405). In this case, the transmitter or the like may be a transmitter or an operator.
 例えば、前記処理部が受信機003にインターネットにより接続されている場合は、出力信号Voutのファイルは、インターネットを通じて前記処理部に送られる。 For example, when the processing unit is connected to the receiver 003 via the Internet, the file of the output signal Vout is sent to the processing unit via the Internet.
 次に、前記処理部は、音声信号Vinの記録されたファイルから再生した音声信号Vin、及び、出力信号Voutの記録されたファイルから再生した出力信号Voutを用いて、非特許文献2に開示された方法によりMOS値を算出する(S406)。 Next, the processing unit is disclosed in Non-Patent Document 2 using the audio signal Vin reproduced from the file in which the audio signal Vin is recorded and the output signal Vout reproduced from the file in which the output signal Vout is recorded. The MOS value is calculated by the method described above (S406).
 このMOS値が、音質劣化による通話品質劣化を表わす値である。
[5.遅延による通話品質劣化を表わす値と音質劣化による通話品質劣化を表わす値との合算]
 上述の方法により求めた、遅延による通話品質劣化を表わす値と音質劣化による通話品質劣化を表わす値とは、その算定方法が異なっているため、通常は、同じ尺度により評価できる値ではない。そのため、これらの値をそのまま合算すると、これらの値の合算値は一定の尺度により把握できる値ではなくなるため、通話品質を高精度に推定した値にはならない。
This MOS value is a value representing speech quality degradation due to sound quality degradation.
[5. The sum of the value representing the speech quality degradation due to delay and the value representing the speech quality degradation due to sound quality degradation]
Since the calculation method differs between the value representing the speech quality degradation due to delay and the value representing the speech quality degradation due to the sound quality degradation obtained by the above-described method, they are usually not values that can be evaluated on the same scale. Therefore, if these values are added together as they are, the combined value of these values is not a value that can be grasped by a certain scale, and thus the call quality is not estimated with high accuracy.
 そのため、算定方法が異なる2つの通話品質劣化を表わす値が、同じ基準により評価できる値になるように、これら2つの通話品質劣化を表わす値のうちの少なくとも一方を変換し、その後に合算することがより好ましい。 For this reason, at least one of the two values representing the call quality deterioration is converted and then summed up so that the values representing the two call quality deteriorations having different calculation methods can be evaluated based on the same standard. Is more preferable.
 図7は、通話品質劣化を表わす値を合算する処理フローの例を表わす概念図である。 FIG. 7 is a conceptual diagram showing an example of a processing flow for adding values representing call quality deterioration.
 まず、遅延による通話品質劣化を表わす値と音質劣化による通話品質劣化を表わす値とが同じ基準により評価できることが想定される値になるように、2つの通話品質劣化を表わす値のうちの少なくとも一方を変換する(S501)。 First, at least one of the two values representing the call quality deterioration is set so that the value representing the call quality deterioration due to the delay and the value representing the call quality deterioration due to the sound quality deterioration can be assumed to be evaluated based on the same standard. Is converted (S501).
 ここで、非特許文献1のAnnex Bに、R値とMOS値との関係が開示されている。R値は、非特許文献1に開示された方法により求めた通話品質を表わす値である。また、MOS値は、非特許文献2又は非特許文献3において開示された方法により求めた通話品質を表わす値である。従い、遅延による通話品質劣化を表わす値を非特許文献1に開示された手順、音質劣化による通話品質劣化を表わす値を非特許文献3に開示された手順により求めた場合は、この関係を用いて上記変換を行うことができる。この場合において、上記変換は、MOS値の低下量をR値の低下量に合わせる変換でも、R値の低下量をMOS値の低下量に合わせる変換であっても構わない。さらには、上記R値とMOS値との関係を満たす変換であれば、MOS値の低下量とR値の低下量を、MOS値でもR値でもない第三の値にする変換であっても構わない。 Here, the relationship between the R value and the MOS value is disclosed in Annex B of Non-Patent Document 1. The R value is a value representing the call quality obtained by the method disclosed in Non-Patent Document 1. The MOS value is a value representing the call quality obtained by the method disclosed in Non-Patent Document 2 or Non-Patent Document 3. Accordingly, when the value representing the call quality degradation due to delay is obtained by the procedure disclosed in Non-Patent Document 1, and the value representing the call quality degradation caused by sound quality degradation is obtained by the procedure disclosed in Non-Patent Document 3, this relationship is used. The above conversion can be performed. In this case, the conversion may be conversion that matches the decrease amount of the MOS value with the decrease amount of the R value, or conversion that matches the decrease amount of the R value with the decrease amount of the MOS value. Furthermore, as long as the conversion satisfies the relationship between the R value and the MOS value, the conversion of the MOS value decrease amount and the R value decrease amount to a third value that is neither the MOS value nor the R value is possible. I do not care.
 次に、S501における変換を行った後の、遅延による通話品質劣化を表わす値と音質劣化による通話品質劣化を表わす値とを合算して、通話システム100における通話品質劣化を表わす値を求める(S502)。
<通話品質評価装置>
 次に、上述の通話品質評価方法を適用しうる通話品質評価装置についての実施形態について説明する。
Next, after the conversion in S501, the value representing the speech quality degradation due to delay and the value representing the speech quality degradation due to the speech quality degradation are added together to obtain a value representing the speech quality degradation in the speech system 100 (S502). ).
<Call quality evaluation device>
Next, an embodiment of a call quality evaluation apparatus to which the above call quality evaluation method can be applied will be described.
 図8は、本実施形態の通話評価装置200の構成例を表わす概念図である。 FIG. 8 is a conceptual diagram showing a configuration example of the call evaluation device 200 of the present embodiment.
 同図に表わした構成例は、遅延による通話品質劣化を表わす値の算出に非特許文献1に開示された方法を、音質劣化を表わす値の算出に非特許文献3に開示された方法を、それぞれ用いるための構成例である。なお、同図に表わした構成では、送信機、NW及び受信機は、VoIP技術を利用したIP電話のシステムを構成することを前提としている。 In the configuration example shown in the figure, the method disclosed in Non-Patent Document 1 is used to calculate a value representing call quality degradation due to delay, and the method disclosed in Non-Patent Document 3 is used to calculate a value representing sound quality degradation. It is an example of composition for using each. In the configuration shown in the figure, it is assumed that the transmitter, the NW, and the receiver constitute an IP telephone system using VoIP technology.
 通話品質評価装置200は、遅延劣化導出部220と、音質劣化導出部23aと、換算調整部240と、品質表現導出部250とを備える。これらの接続については同図に示した通りである。ここで、同図において異なる構成が線で結ばれていることはそれらの構成間で接続がされていることを意味し、また、「接続」は信号の授受ができることをいい、これらは以下においても同じである。 The call quality evaluation apparatus 200 includes a delay deterioration deriving unit 220, a sound quality deterioration deriving unit 23a, a conversion adjusting unit 240, and a quality expression deriving unit 250. These connections are as shown in the figure. Here, when different configurations are connected by a line in the same figure, it means that the configurations are connected, and “connection” means that signals can be exchanged. Is the same.
 また、受信機203は、通話品質評価装置200には含まれず、受信部211と、デコード部212と、バッファリング部213と、出力部214とを備える。これらの接続は同図に示した通りである。 Further, the receiver 203 is not included in the call quality evaluation apparatus 200, and includes a receiving unit 211, a decoding unit 212, a buffering unit 213, and an output unit 214. These connections are as shown in FIG.
 受信部211は、NW202と接続されている。NW202は送信機201に接続されている。これにより、受信部211は送信機201が送る音声信号Vin”を受信することが可能である。なお、音声信号Vin”は、音声信号Vinに対して送信機201によりコーディング処理が行われるとともにパケットごとに分割された信号を想定している。 The receiving unit 211 is connected to the NW 202. The NW 202 is connected to the transmitter 201. As a result, the reception unit 211 can receive the audio signal Vin ″ sent from the transmitter 201. The audio signal Vin ″ is subjected to a coding process by the transmitter 201 with respect to the audio signal Vin and is a packet. Assume that the signal is divided every time.
 受信部211が受信した音声信号Vin”はデコード部212に送られる。 The audio signal Vin ″ received by the receiving unit 211 is sent to the decoding unit 212.
 デコード部212は、送られた音声信号に対してデコード処理を行う。デコード処理は、例えば圧縮された信号を非圧縮の信号に変換する処理である。本処理は携帯電話等において通常使われている処理であるので、その詳細な説明は省略する。デコード処理がされた信号はバッファリング部213に送られる。 The decoding unit 212 performs a decoding process on the transmitted audio signal. The decoding process is a process for converting a compressed signal into an uncompressed signal, for example. Since this process is a process normally used in a mobile phone or the like, detailed description thereof is omitted. The decoded signal is sent to the buffering unit 213.
 バッファリング部213は、デコード部212から送られたパケット単位ごとに分割された信号に対し、パケット単位ごとに遅延を与えて、つなぎ合わせる処理を行う。本処理は携帯電話等において通常使われている処理であるので、その詳細な説明は省略する。つなぎ合わせた信号は出力部214に送られる。 The buffering unit 213 performs a process of joining the signals divided from the packet unit transmitted from the decoding unit 212 with a delay for each packet unit. Since this process is a process normally used in a mobile phone or the like, detailed description thereof is omitted. The joined signal is sent to the output unit 214.
 バッファリング部213は、複数の部分に分かれている場合もある。例えば、オペレーションシステムは出力部214の直前にバッファを保有している場合がある。この場合には、アプリケーションプログラムが用意したジッタバッファと合わせて、バッファリング部213は図9に概念図を表わしたような構成になる。すなわち、バッファリング部213は、ジッタバッファ213aaを備える部分213aと、出力部バッファ213baを備える部分213bとを備える。ジッタバッファ213aaを備える部分213aはデコード部212に、出力部バッファ213baを備える部分213bは出力部214に、それぞれ接続されている。 The buffering unit 213 may be divided into a plurality of parts. For example, the operation system may have a buffer immediately before the output unit 214. In this case, together with the jitter buffer prepared by the application program, the buffering unit 213 is configured as shown in the conceptual diagram of FIG. That is, the buffering unit 213 includes a part 213a including a jitter buffer 213aa and a part 213b including an output buffer 213ba. A portion 213 a including the jitter buffer 213 aa is connected to the decoding unit 212, and a portion 213 b including the output unit buffer 213 ba is connected to the output unit 214.
 出力部214は、バッファリング部213から送られた信号を、出力信号Voutとして、通信評価装置200に接続された図示しないスピーカ等、及び、音質劣化導出部23aに対して、出力する。 The output unit 214 outputs the signal sent from the buffering unit 213 as an output signal Vout to a speaker (not shown) connected to the communication evaluation apparatus 200 and the sound quality deterioration deriving unit 23a.
 次に、遅延劣化導出部220について説明する。 Next, the delay deterioration deriving unit 220 will be described.
 遅延劣化導出部220は、NW遅延測定部221と、バッファ遅延測定部222と、固定値入力部223と、送信機遅延入力部224と、遅延劣化算出部225とを備える。これらの構成間の接続は同図に示した通りである。 The delay degradation derivation unit 220 includes an NW delay measurement unit 221, a buffer delay measurement unit 222, a fixed value input unit 223, a transmitter delay input unit 224, and a delay degradation calculation unit 225. Connections between these components are as shown in FIG.
 NW遅延測定部221は、NW202と接続されており、送信機201との間で通信を行うことが可能である。NW遅延測定部221は、図3のS102についての説明において説明した方法により、NW202における遅延時間D2を求める。NW遅延測定部221は、NW202における遅延時間D2を、遅延劣化算出部225に送る。 The NW delay measurement unit 221 is connected to the NW 202 and can communicate with the transmitter 201. The NW delay measurement unit 221 obtains the delay time D2 in the NW 202 by the method described in the description of S102 in FIG. The NW delay measurement unit 221 sends the delay time D2 in the NW 202 to the delay deterioration calculation unit 225.
 バッファ遅延測定部222は、バッファリング部213と接続されている。 The buffer delay measuring unit 222 is connected to the buffering unit 213.
 バッファ遅延測定部222が、バッファリング部213との間で、例えばミドルウェアに設けたプログラムによるAPIに基づく通信を行うことができるようにしたとする。その場合には、この通信によりバッファリング部213において生じる遅延の遅延時間を求めることができる。 Suppose that the buffer delay measurement unit 222 can communicate with the buffering unit 213 based on an API by a program provided in the middleware, for example. In that case, the delay time of the delay generated in the buffering unit 213 by this communication can be obtained.
 あるいは、バッファ遅延測定部222は、バッファリング部213の入力部に信号を送り、バッファリング部213を通過後の信号を送らせることにより、バッファリング部213において生じる遅延の遅延時間を求めることができる。バッファ遅延測定部222が信号を送った時刻とバッファ遅延測定部222が信号を受け取った時刻の差が上記遅延時間になるためである。 Alternatively, the buffer delay measuring unit 222 can obtain a delay time of a delay generated in the buffering unit 213 by sending a signal to the input unit of the buffering unit 213 and sending a signal after passing through the buffering unit 213. it can. This is because the delay time is the difference between the time when the buffer delay measurement unit 222 sends the signal and the time when the buffer delay measurement unit 222 receives the signal.
 バッファ遅延測定部222が、バッファリング部213との間で、例えばミドルウェアに設けたプログラムによるAPIに基づく通信を行うことができるようにしたとする。その場合には、この通信によりバッファリング部213において生じる遅延の遅延時間を求めることができる。 Suppose that the buffer delay measurement unit 222 can communicate with the buffering unit 213 based on an API by a program provided in the middleware, for example. In that case, the delay time of the delay generated in the buffering unit 213 by this communication can be obtained.
 前述のように、バッファリング部213が複数の部分に分かれている場合には、バッファ遅延測定部222は、そのそれぞれの部分と接続され、そのそれぞれの部分と独立の通信を行っても構わない。 As described above, when the buffering unit 213 is divided into a plurality of parts, the buffer delay measurement unit 222 may be connected to the respective parts and communicate independently with the respective parts. .
 例えば、バッファリング部213が図9に表わした構成の場合には、バッファリング部213とバッファ遅延測定部222は、図10に表わしたような接続関係にすることができる。同図に表わした例では、バッファ遅延測定部222は、ジッタバッファ213aa及び出力部バッファ213baに接続されており、ジッタバッファ213aa及び出力部バッファ213baのそれぞれと独立した通信を行うことができる。 For example, when the buffering unit 213 has the configuration shown in FIG. 9, the buffering unit 213 and the buffer delay measurement unit 222 can be connected as shown in FIG. In the example shown in the figure, the buffer delay measuring unit 222 is connected to the jitter buffer 213aa and the output unit buffer 213ba, and can perform independent communication with each of the jitter buffer 213aa and the output unit buffer 213ba.
 バッファ遅延測定部222は、ジッタバッファ213aaとの間では、例えばミドルウェアに設けた第一のプログラムによる第一のAPIに基づく通信を行う。これにより、バッファ遅延測定部222は、ジッタバッファ213aaにおいて生じる遅延時間を求めることができる。 The buffer delay measuring unit 222 communicates with the jitter buffer 213aa based on the first API by the first program provided in the middleware, for example. Thereby, the buffer delay measuring unit 222 can obtain the delay time generated in the jitter buffer 213aa.
 バッファ遅延測定部222は、出力部バッファ213baとの間では、例えばミドルウェアに設けた第二のプログラムによる、第二のAPIに基づく通信を行う。これにより、バッファ遅延測定部222は、出力部バッファ213baにおいて生じた遅延時間を求めることができる。 The buffer delay measuring unit 222 communicates with the output unit buffer 213ba based on the second API, for example, by a second program provided in the middleware. Thereby, the buffer delay measuring unit 222 can obtain the delay time generated in the output unit buffer 213ba.
 そして、バッファ遅延測定部222は、ジッタバッファ213aaにおいて生じる遅延時間と、出力部バッファ213baにおいて生じる遅延時間とを合算し、バッファリング部213全体における遅延時間を求めることができる。 The buffer delay measuring unit 222 can add up the delay time generated in the jitter buffer 213aa and the delay time generated in the output buffer 213ba to obtain the delay time in the entire buffering unit 213.
 バッファ遅延測定部222は、バッファリング部213における遅延時間を、遅延劣化算出部225に送る。 The buffer delay measuring unit 222 sends the delay time in the buffering unit 213 to the delay deterioration calculating unit 225.
 固定値入力部223は、入力された、受信機203において発生する遅延時間の固定値を、遅延劣化算出部225に送る。受信機203において発生する遅延時間の固定値については、図3のS103についての説明において説明した通りである。 The fixed value input unit 223 sends the input fixed value of the delay time generated in the receiver 203 to the delay deterioration calculation unit 225. The fixed value of the delay time generated in the receiver 203 is as described in the description of S103 in FIG.
 なお、この受信機203において発生する遅延時間の固定値と、前述のバッファリング部213における遅延時間とを合算した値が、受信機203における遅延時間D3である。 Note that a value obtained by adding the fixed value of the delay time generated in the receiver 203 and the delay time in the buffering unit 213 is the delay time D3 in the receiver 203.
 送信機遅延入力部224は、入力された、送信機201における遅延時間D1を、遅延劣化算出部225に送る。送信機201における遅延時間D1については、図3のS101の説明において説明した通りである。 The transmitter delay input unit 224 sends the input delay time D1 in the transmitter 201 to the delay degradation calculation unit 225. The delay time D1 in the transmitter 201 is as described in the description of S101 in FIG.
 遅延劣化算出部225は、NW202における遅延時間D2と、受信機203における遅延時間D3と、送信機201における遅延時間D1とを合算し、遅延時間D1+D2+D3を求める。ここで、NW202における遅延時間D2はNW遅延測定部221から、送信機201における遅延時間D1は送信機遅延入力部224から、それぞれ、送られたものである。また、受信機203における遅延時間D3はバッファ遅延測定部222及び固定値入力部223からそれぞれ送られた遅延時間の合算値である。 The delay deterioration calculating unit 225 adds the delay time D2 in the NW 202, the delay time D3 in the receiver 203, and the delay time D1 in the transmitter 201 to obtain the delay time D1 + D2 + D3. Here, the delay time D2 in the NW 202 is sent from the NW delay measurement unit 221 and the delay time D1 in the transmitter 201 is sent from the transmitter delay input unit 224, respectively. The delay time D3 in the receiver 203 is a total value of the delay times sent from the buffer delay measurement unit 222 and the fixed value input unit 223, respectively.
 そして、遅延劣化算出部225は、遅延時間D1+D2+D3から、図3のS105における説明において説明した方法により、遅延による通話品質劣化を表わす値であるR値の低下量を求める。求めたR値の低下量は換算調整部240に送られる。 Then, the delay deterioration calculation unit 225 obtains a decrease amount of the R value, which is a value representing call quality deterioration due to delay, from the delay time D1 + D2 + D3 by the method described in the description of S105 in FIG. The calculated decrease amount of the R value is sent to the conversion adjustment unit 240.
 次に、音質劣化導出部23aについて説明する。 Next, the sound quality deterioration deriving unit 23a will be described.
 音質劣化導出部23aは、入力された出力信号Voutを用いて、図5において説明した方法により、音質劣化による通話品質劣化を表わす値であるのMOS値の低下量を求める。求めたMOS値の低下量は換算調整部240に送られる。 The sound quality degradation deriving unit 23a uses the input output signal Vout to obtain a reduction amount of the MOS value, which is a value representing the speech quality degradation due to the sound quality degradation, by the method described in FIG. The obtained reduction amount of the MOS value is sent to the conversion adjustment unit 240.
 換算調整部240は、遅延劣化算出部225はから送られたR値の低下量と、音質劣化導出部23aから送られたMOS値の低下量とを、同じ基準で比較できることが想定される値に変換する処理を行う。同処理は、図7のS301において説明した方法により行う。処理後の、遅延による通話品質劣化を表わす値と音質劣化による通話品質劣化を表わす値は、品質表現導出部250に送られる。 The conversion adjustment unit 240 is assumed to be able to compare the amount of decrease in the R value sent from the delay degradation calculation unit 225 and the amount of reduction in the MOS value sent from the sound quality degradation deriving unit 23a on the same basis. Process to convert to. This process is performed by the method described in S301 of FIG. The value representing the speech quality degradation due to the delay and the value representing the speech quality degradation due to the sound quality degradation after processing are sent to the quality expression deriving unit 250.
 品質表現導出部250は、送られた、遅延による通話品質劣化を表わす値と、音質劣化による通話品質劣化を表わす値とを合算し、合算した通話品質劣化を表わす値を含む情報を作成する。その情報は、合算した通話品質劣化を表わす値そのものでも良いし、合算した通話品質劣化を表わす値を加工することにより得られた情報であってもよい。その情報を含む信号Veは、通信評価装置200に接続されたディスプレイ、プリンタ、その他機器等に出力される。 The quality expression deriving unit 250 adds the transmitted value representing the call quality degradation due to delay and the value representing the call quality degradation due to the sound quality degradation, and creates information including the summed value representing the call quality degradation. The information may be a value representing the summed call quality degradation, or may be information obtained by processing a value representing the summed call quality degradation. The signal Ve including the information is output to a display, a printer, and other devices connected to the communication evaluation apparatus 200.
 図11は、本実施形態の通信評価装置200の他の構成例を表わす概念図である。 FIG. 11 is a conceptual diagram showing another configuration example of the communication evaluation apparatus 200 of the present embodiment.
 同図に表わした構成例は、遅延による通話品質劣化を表わす値の算出に非特許文献1に開示された方法を、音質劣化を表わす値の算出に非特許文献2に開示された方法を、それぞれ用いるための構成例である。なお、同図に表わした構成では、送信機、NW及び受信機は、VoIP技術を利用したIP電話のシステムを構成することを前提としている。 In the configuration example shown in the figure, the method disclosed in Non-Patent Document 1 is used to calculate a value representing speech quality degradation due to delay, and the method disclosed in Non-Patent Document 2 is used to calculate a value representing sound quality degradation. It is an example of composition for using each. In the configuration shown in the figure, it is assumed that the transmitter, the NW, and the receiver constitute an IP telephone system using VoIP technology.
 同図についての説明において、音質劣化導出部23b以外の構成についての説明は、図8における説明において、音質劣化導出部23aを音質劣化導出部23bにより置き換えた場合の説明になる。以下においては、音質劣化導出部23bについて説明する。 In the description of the figure, the description of the configuration other than the sound quality deterioration deriving unit 23b is the case where the sound quality deterioration deriving unit 23a is replaced by the sound quality deterioration deriving unit 23b in the description of FIG. In the following, the sound quality deterioration deriving unit 23b will be described.
 音質劣化導出部23bは、出力信号ファイル作成部231と、音声ファイル入力部232と、音質劣化算出部233とを備える。 The sound quality degradation deriving unit 23b includes an output signal file creation unit 231, an audio file input unit 232, and a sound quality degradation calculation unit 233.
 出力信号ファイル作成部231は、出力部214から送られた出力信号Voutを音声ファイルに変換し、記録する。変換後の音声ファイルは音質劣化算出部233に送られる。 The output signal file creation unit 231 converts the output signal Vout sent from the output unit 214 into an audio file and records it. The converted audio file is sent to the sound quality deterioration calculation unit 233.
 音声ファイル入力部232は、入力された音声信号Vinの音声ファイルを音質劣化算出部233に送る。音声信号Vinの音声ファイルの説明は、図6におけるS401及びS402についての説明の通りである。 The audio file input unit 232 sends the audio file of the input audio signal Vin to the sound quality deterioration calculation unit 233. The description of the audio file of the audio signal Vin is as described for S401 and S402 in FIG.
 音質劣化算出部233は、出力信号ファイル作成部231から送られた出力信号Voutの音声ファイル、及び音声ファイル入力部232から送られた音声信号Vinの音声ファイルを再生する。そして、図6のS406について説明した方法により、出力信号Voutについて音質劣化による通話品質劣化を表わす値であるMOS値の低下量を算出する。
[効果]
 現在知られている通話品質推定方法には、非特許文献1乃至4を始めとしていくつかの方法が開示されている。それらには、遅延による通話品質劣化を表わす値を求める方法、および質劣化による通話品質劣化を表わす値を求める方法、のそれぞれについても種々の方法が開示されている。しかしながら、それらに開示された方法には、遅延による通話品質劣化を表わす値と音質劣化による通話品質劣化を表わす値との両方を高精度に求めることができるものはない。ただし、遅延による通話品質劣化を表わす値と音質劣化による通話品質劣化を表わす値のそれぞれについてはある程度高精度に求めることができると方法もあると考えられる。
The sound quality degradation calculation unit 233 reproduces the audio file of the output signal Vout sent from the output signal file creation unit 231 and the audio file of the audio signal Vin sent from the audio file input unit 232. Then, the amount of decrease in the MOS value, which is a value representing the speech quality degradation due to the sound quality degradation, is calculated for the output signal Vout by the method described in S406 of FIG.
[effect]
Several methods, including Non-Patent Documents 1 to 4, are disclosed as currently known call quality estimation methods. In these methods, various methods are disclosed for each of a method for obtaining a value representing speech quality degradation due to delay and a method for obtaining a value representing speech quality degradation due to quality degradation. However, none of the methods disclosed therein can accurately determine both a value representing speech quality degradation due to delay and a value representing speech quality degradation due to sound quality degradation. However, it can be considered that there is a method that can be obtained with a certain degree of accuracy with respect to each of the value representing the speech quality degradation due to delay and the value representing the speech quality degradation due to sound quality degradation.
 ここで、本実施形態の通話品質評価方法等は、本実施形態の通話品質評価方法等は、通話システムにおける通話品質劣化を表わす値を、遅延による通話品質劣化を表わす値と音質劣化による通話品質劣化を表わす値とを求め、合算することにより求める。そのため、遅延による通話品質劣化を表わす値を評価する方法、及び、音質劣化による通話品質劣化を表わす値として、それぞれ、種々の選択肢の中から欠点の少ない方法を選択することができる。そして、遅延による通話品質劣化を表わす値を評価する方法、及び、音質劣化による通話品質劣化を表わす値として、それぞれに欠点の少ない方法を選択することにより、音声通話の主観的な体感品質をより高精度に求めることができる。 Here, the call quality evaluation method according to the present embodiment is the same as the call quality evaluation method according to the present embodiment, in which a value indicating call quality degradation in a call system is expressed as a value indicating call quality deterioration due to delay and a call quality due to sound quality deterioration. A value representing deterioration is obtained and obtained by adding together. Therefore, it is possible to select a method with few defects from various options as a method for evaluating a value representing speech quality degradation due to delay and a value representing speech quality degradation due to sound quality degradation. Then, by selecting a method that evaluates a value representing call quality degradation due to delay, and a method that has less drawbacks as a value representing call quality degradation due to sound quality degradation, the subjective experience quality of a voice call is further improved. It can be obtained with high accuracy.
 なお、ここまでの説明においては、理解容易性を考慮し、通話システムにおける通話品質劣化を表わす値を、遅延による通話品質劣化を表わす値と音質劣化による通話品質劣化を表わす値との合算値を求め出力する場合を例に説明した。しかしながら、出力する対象は、必ずしも、前記二つの値の合算値である必要はなく、前記二つの値の組み合わせに対応づけられた、通話品質に対応する順序関係を有する順序集合の要素を求めるものであればよい。また、この場合の順序集合の要素は、必ずしも値である必要はなく、例えば、色、形、模様、明度、音、振動、におい、温度等の人(人が操作するものを含む。)が認識できるものであれば構わない。 In the description so far, considering the ease of understanding, the value representing the call quality degradation in the call system is the sum of the value representing the call quality degradation due to delay and the value representing the call quality degradation due to the sound quality degradation. The case of obtaining and outputting was explained as an example. However, the output target does not necessarily need to be the sum of the two values, but the element of the ordered set having the order relationship corresponding to the call quality associated with the combination of the two values. If it is. In addition, the elements of the ordered set in this case do not necessarily have to be values. For example, a person (including those operated by a person) such as color, shape, pattern, brightness, sound, vibration, smell, temperature, and the like. Anything can be recognized.
 次に、本発明の最小限の通話品質評価方法について説明する。図12は本発明の最小限の通話品質評価方法の処理フローを表わす概念図である。 Next, the minimum call quality evaluation method of the present invention will be described. FIG. 12 is a conceptual diagram showing the processing flow of the minimum call quality evaluation method of the present invention.
 同方法は、あるネットワークを介しての送受信処理により音声信号に生じた遅延による通話品質劣化を表す第一の劣化値を導出する(S601)。同方法は、さらに、前記送受信処理により前記音声信号に生じた音質劣化による通話品質劣化を表す第二の劣化値を導出する(S602)。同方法は、さらに、全射により前記第一及び第二の劣化値の組み合わせに対応づけられた、通話品質に対応する順序関係を有する順序集合の要素を出力する(S603)。 The method derives a first degradation value representing speech quality degradation due to a delay caused in a voice signal by transmission / reception processing via a certain network (S601). The method further derives a second degradation value representing speech quality degradation due to speech quality degradation caused to the voice signal by the transmission / reception process (S602). The method further outputs an element of an ordered set having an order relationship corresponding to the call quality, which is associated with the combination of the first and second deterioration values by surjective (S603).
 本発明の最小限の通話品質評価方法は、上記構成により、[発明の効果]において説明した効果を奏する。 The minimum call quality evaluation method of the present invention has the effects described in [Effects of the Invention] with the above configuration.
 また、上記の実施形態の一部又は全部は、以下の付記のようにも記述され得るが、以下には限られない。 Further, a part or all of the above embodiment can be described as in the following supplementary notes, but is not limited thereto.
 (付記A1)
 あるネットワークを介しての送受信処理により音声信号に生じた遅延による通話品質劣化を表す第一の劣化値を導出するステップと、
 前記送受信処理により前記音声信号に生じた音質劣化による通話品質劣化を表す第二の劣化値を導出するステップと、
 全射により前記第一及び第二の劣化値の組み合わせに対応づけられた、通話品質に対応する順序関係を有する順序集合の要素を出力するステップと、
 を含む、通話品質評価方法。
(Appendix A1)
Deriving a first degradation value representing speech quality degradation due to a delay caused in a voice signal by transmission / reception processing via a network;
Deriving a second degradation value representing speech quality degradation due to speech quality degradation caused to the voice signal by the transmission / reception processing;
Outputting an element of an ordered set having an order relationship corresponding to call quality, which is associated with the combination of the first and second deterioration values by surjective;
Including call quality evaluation method.
 (付記A2)
 前記要素が、前記第一の劣化値と、前記第二の劣化値との合算値である、付記A1に記載された通話品質評価方法。
(Appendix A2)
The call quality evaluation method according to attachment A1, wherein the element is a total value of the first deterioration value and the second deterioration value.
 (付記A3)
 前記送受信処理が、入力された第一の音声信号に対して第一の処理を行った音声信号である第二の音声信号を前記ネットワークを通じて受信機に送信する送信機と、前記ネットワークと、前記第二の音声信号についての前記ネットワークを通じて前記受信機に到達した音声信号である第三の音声信号を受信し、前記第三の音声信号に対し第二の処理を行った音声信号である出力信号を出力する受信機と、において行われる送受信処理である、付記A1又は付記A2に記載された通話品質評価方法。
(Appendix A3)
The transmitter / receiver process transmits a second audio signal, which is an audio signal obtained by performing a first process on the input first audio signal, to the receiver through the network, the network, An output signal that is an audio signal that receives the third audio signal that is the audio signal that has reached the receiver through the network with respect to the second audio signal, and has performed a second process on the third audio signal. The call quality evaluation method described in Supplementary Note A1 or Supplementary Note A2, which is a transmission / reception process performed in the receiver.
 (付記A4)
 前記第一の劣化値を、前記出力信号の前記第一の音声信号に対する遅延の時間である第一の遅延時間を求め、前記第一の遅延時間により算出する、付記A2又は付記3に記載された通話品質評価方法。
(Appendix A4)
The first degradation value is described in the supplementary note A2 or the supplementary note 3, wherein a first delay time which is a delay time of the output signal with respect to the first audio signal is obtained and calculated by the first delay time. Call quality evaluation method.
 (付記A5)
 前記第二の音声信号の前記第一の音声信号に対する遅延の時間である第二の遅延時間と、前記第三の音声信号の前記第二の音声信号に対する遅延の時間である第三の遅延時間と、前記出力信号の前記第三の音声信号に対する遅延の時間である第四の遅延時間とを求め、前記第一の遅延時間を、前記第二の遅延時間と、前記第三の遅延時間と、前記第四の遅延時間とを合算することにより求める、付記A4に記載された通話品質評価方法。
(Appendix A5)
A second delay time that is a delay time of the second audio signal with respect to the first audio signal, and a third delay time that is a delay time of the third audio signal with respect to the second audio signal. And a fourth delay time that is a delay time of the output signal with respect to the third audio signal, and the first delay time is determined as the second delay time and the third delay time. The call quality evaluation method described in appendix A4, which is obtained by adding the fourth delay time.
 (付記A6)
 前記第一の劣化値を、ITU-T G.107 「The E-model: a computational model for use in
transmission planning」に記載された、(7-8)式により求めたIsと、(7-18)式により求めたIdと、を合算することにより求める、付記A3又はA5に記載された通話品質評価方法。
(付記A7)
 求めた前記第一の劣化値を、ITU-T G.107 「The E-model: a computational model for use in
transmission planning」の、Annex Bの(B-4)式に記載された関係又はFigure B.2に記載された関係を用いて、Mean Opinion Scoreに変換する、付記A6に記載された通話品質評価方法。
(Appendix A6)
The first deterioration value is set as ITU-T G.I. 107 “The E-model: a computational model for use in
Call quality evaluation described in appendix A3 or A5, which is obtained by summing Is obtained by equation (7-8) and Id obtained by equation (7-18) described in “transmission planning” Method.
(Appendix A7)
The obtained first deterioration value is expressed as ITU-T G.I. 107 “The E-model: a computational model for use in
"transmission planning", the relationship described in the equation B (B-4) in the formula B or FIG. The call quality evaluation method described in appendix A6, which is converted into a mean opinion score using the relationship described in 2.
 (付記A8)
 前記システムの第一の劣化値を算出するステップが、前記第二の遅延時間を、前記受信機による、前記送信機との前記ネットワークを通じた通信により求めるステップを含む、付記A4乃至付記A7のうちのいずれか一に記載された通話品質評価方法。
(Appendix A8)
Of the supplementary notes A4 to A7, the step of calculating the first degradation value of the system includes the step of obtaining the second delay time by communication through the network with the transmitter by the receiver. The call quality evaluation method described in any one of the above.
 (付記A9)
 前記第二の劣化値を、前記出力信号から求める、付記A2乃至付記A8のうちのいずれか一に記載された通話品質評価方法。
(Appendix A9)
The call quality evaluation method according to any one of supplementary notes A2 to A8, wherein the second deterioration value is obtained from the output signal.
 (付記A10)
 前記第二の劣化値を、ITU-T P.563 「Single-ended method for objective speech
quality assessment in narrow-band telephony applications」に記載された手順により行う、付記A9に記載された通話品質評価方法。
(Appendix A10)
The second deterioration value is set to ITU-TP. 563 “Single-ended method for objective speech”
The call quality evaluation method described in appendix A9, which is performed according to the procedure described in “quality assessment in near-band telephony applications”.
 (付記A11)
 前記第二の劣化値を、前記出力信号と前記第一の音声信号とから求める、付記A2乃至付記A10のうちのいずれか一に記載された通話品質評価方法。
(Appendix A11)
The call quality evaluation method according to any one of supplementary notes A2 to A10, wherein the second deterioration value is obtained from the output signal and the first voice signal.
 (付記A12)
 前記第一の音声信号が、前記第一の音声信号を記録した音声ファイルを再生した信号である、付記A11に記載された通話品質評価方法。
(Appendix A12)
The call quality evaluation method according to appendix A11, wherein the first audio signal is a signal obtained by reproducing an audio file in which the first audio signal is recorded.
 (付記A13)
 前記音声ファイルがインターネットを通じて送られた音声ファイルである、付記A12に記載された通話品質評価方法。
(Appendix A13)
The call quality evaluation method according to appendix A12, wherein the voice file is a voice file transmitted over the Internet.
 (付記A14)
 前記第二の劣化値を、ITU-T P.862
「Perceptual evaluation of speech quality
(PESQ): An objective method for
end-to-end speech quality assessment of
narrow-band telephone networks and
speech codecs」に記載された手順により行う、付記A11乃至付記A13のうちのいずれか一に記載された通話品質評価方法。
(Appendix A14)
The second deterioration value is set to ITU-TP. 862
"Perceptual evaluation of speech quality
(PESQ): An objective method for
end-to-end speech quality assessment of
narrow-band telephony networks and
The call quality evaluation method according to any one of Supplementary Note A11 to Supplementary Note A13, which is performed according to the procedure described in "Speech codes".
 (付記A15)前記合算の前に、前記第一の劣化値、前記第二の劣化値、及び、前記第一の劣化値及び前記音質劣化による通話品質劣化を表わす値の両方、のうちのいずれか一を補正することにより、前記第一の劣化値と前記第二の劣化値とを同じ基準で比較できることが想定される値への変換を行うステップをさらに備え、前記合算が前記変換後の前記第一の劣化値と前記第二の劣化値との合算である、付記A3乃至付記A14のうちのいずれか一に記載された通話品質評価方法。 (Supplementary Note A15) Before the addition, any of the first deterioration value, the second deterioration value, and both the first deterioration value and the value representing the call quality deterioration due to the sound quality deterioration The first deterioration value and the second deterioration value are converted into values that can be compared with each other by correcting the first deterioration value, and the sum is calculated after the conversion. The call quality evaluation method according to any one of supplementary notes A3 to A14, which is a sum of the first degradation value and the second degradation value.
 (付記B1)
 あるネットワークを介しての送受信処理により音声信号に生じた遅延による通話品質劣化を表す第一の劣化値を導出する遅延劣化導出部と、
 前記送受信処理により前記音声信号に生じた音質劣化による通話品質劣化を表す第二の劣化値を導出する音質劣化導出部と、
 全射により前記第一及び第二の劣化値の組み合わせに対応づけられた、通話品質に対応する順序関係を有する順序集合の要素を出力する通話品質導出部と、
 を備える、通話品質評価装置。
(Appendix B1)
A delay degradation derivation unit for deriving a first degradation value representing a speech quality degradation due to a delay caused in a voice signal by transmission / reception processing via a network;
A sound quality deterioration deriving unit for deriving a second deterioration value representing a call quality deterioration due to sound quality deterioration generated in the voice signal by the transmission / reception processing;
A call quality deriving unit that outputs an element of an ordered set having an order relationship corresponding to the call quality associated with the combination of the first and second deterioration values by surjective;
A call quality evaluation apparatus comprising:
 (付記B2)
 前記要素が、前記第一の劣化値と、前記第二の劣化値との合算値である、付記B1に記載された通話品質評価装置。
(Appendix B2)
The call quality evaluation apparatus according to appendix B1, wherein the element is a total value of the first deterioration value and the second deterioration value.
 (付記B3)
 前記送受信処理が、入力された第一の音声信号に対して第一の処理を行った音声信号である第二の音声信号を前記ネットワークを通じて受信機に送信する送信機と、前記ネットワークと、前記第二の音声信号についての前記ネットワークを通じて前記受信機に到達した音声信号である第三の音声信号を受信し、前記第三の音声信号に対し第二の処理を行った音声信号である出力信号を出力する受信機と、において行われる送受信処理である、付記1又は付記2に記載された通話品質評価装置。
(Appendix B3)
The transmitter / receiver process transmits a second audio signal, which is an audio signal obtained by performing a first process on the input first audio signal, to the receiver through the network, the network, An output signal that is an audio signal that receives the third audio signal that is the audio signal that has reached the receiver through the network with respect to the second audio signal, and has performed a second process on the third audio signal. The call quality evaluation apparatus according to Supplementary Note 1 or Supplementary Note 2, which is a transmission / reception process performed in the receiver.
 (付記B4)
 前記遅延劣化導出部が前記出力信号の前記第一の音声信号に対する遅延の時間である第一の遅延時間を求める第一遅延時間導出部と、前記第一の遅延時間から前記第一の遅延による通話品質劣化を表わす値を導出する、遅延劣化導出部とを備える、付記B2に記載された通話品質評価装置。
(Appendix B4)
A first delay time deriving unit that obtains a first delay time that is a delay time of the output signal with respect to the first audio signal; and a first delay time based on the first delay. The call quality evaluation apparatus according to appendix B2, further comprising a delay deterioration deriving unit for deriving a value representing call quality deterioration.
 (付記B5)
 前記第一遅延時間導出部が、第三の音声信号の第二の音声信号に対する遅延の時間である第二遅延時間を求める第二遅延時間導出部を備え、第二遅延時間を用いて第一遅延時間を導出する、付記B4に記載された通話品質評価装置。
(Appendix B5)
The first delay time deriving unit includes a second delay time deriving unit that obtains a second delay time that is a delay time of the third audio signal with respect to the second audio signal, and uses the second delay time to The call quality evaluation apparatus according to appendix B4, which derives a delay time.
 (付記B6)
 前記第二遅延時間導出部が、前記送信機と、前記ネットワークを通じた通信を行うことにより、前記第二遅延時間を求める、付記B5に記載された通話品質評価装置。
(Appendix B6)
The call quality evaluation apparatus according to appendix B5, wherein the second delay time deriving unit obtains the second delay time by performing communication with the transmitter through the network.
 (付記B7)
 前記第一遅延時間導出部が、出力信号の第三の音声信号に対する遅延の時間である第三遅延時間を求める第三遅延時間導出部を備え、前記第三遅延時間から前記第一遅延時間を求める、付記B4乃至B6のうちのいずれか一に記載された通話品質評価装置。
(Appendix B7)
The first delay time deriving unit includes a third delay time deriving unit for obtaining a third delay time which is a delay time of the output signal with respect to the third audio signal, and the first delay time is calculated from the third delay time. The call quality evaluation apparatus described in any one of Supplementary Notes B4 to B6.
 (付記B8)
 前記第三の音声信号がパケット信号であり、前記受信機が第三の音声信号におけるパケット間で生じる遅延のばらつきを抑えるバッファを備える場合において、前記第三遅延時間導出部が、前記バッファにおいて生じる遅延の時間であるバッファ遅延時間を導出する第四遅延時間導出部を備え、前記バッファ遅延時間から前記第三遅延時間を求める、付記B7に記載された通話品質評価装置。
(Appendix B8)
In the case where the third audio signal is a packet signal and the receiver includes a buffer that suppresses delay variation between packets in the third audio signal, the third delay time deriving unit is generated in the buffer. The speech quality evaluation apparatus according to attachment B7, further comprising a fourth delay time deriving unit that derives a buffer delay time that is a delay time, and obtaining the third delay time from the buffer delay time.
 (付記B9)
 前記第三遅延時間導出部が前記受信部と通信を行うことにより、前記バッファ遅延時間を導出する、付記B7に記載された通話品質評価装置。
(Appendix B9)
The call quality evaluation apparatus according to attachment B7, wherein the third delay time deriving unit derives the buffer delay time by communicating with the receiving unit.
 (付記B10)
 前記第四遅延時間導出部が前記受信部と通信を行うことにより、前記バッファ遅延時間を導出する、付記B9に記載された通話品質評価装置。
(Appendix B10)
The call quality evaluation device according to attachment B9, wherein the fourth delay time deriving unit derives the buffer delay time by communicating with the receiving unit.
 (付記B11)
 前記第三遅延時間導出部が前記受信部における前記バッファを含む部分と通信を行うことにより、前記バッファ遅延時間を導出する、付記B10に記載された通話品質評価装置。
(Appendix B11)
The call quality evaluation device according to attachment B10, wherein the third delay time deriving unit derives the buffer delay time by communicating with a part including the buffer in the receiving unit.
 (付記B12)
 前記第四遅延時間導出部が前記受信部における前記バッファを含む部分と通信を行うことにより、前記バッファ遅延時間を導出する、付記B11に記載された通話品質評価装置。
(Appendix B12)
The speech quality evaluation apparatus according to attachment B11, wherein the fourth delay time deriving unit derives the buffer delay time by communicating with a part including the buffer in the receiving unit.
 (付記B13)
 第一の遅延による、前記遅延による音声品質劣化を表わす値を、
ITU-T G.107 「The E-model: a
computational model for use in
transmission planning」に記載された手順により導出する、付記B4乃至B12のうちのいずれか一に記載された通話品質評価装置。
(Appendix B13)
A value representing voice quality degradation due to the delay due to the first delay,
ITU-T G. 107 “The E-model: a
computational model for use in
The call quality evaluation apparatus according to any one of supplementary notes B4 to B12, which is derived by the procedure described in “transmission planning”.
 (付記B14)
 前記音質劣化導出部が、前記受信機から前記音質劣化導出部に入力される前記出力信号により、前記音質劣化による通話品質劣化を表わす値を導出する、付記B2乃至B13のうちのいずれか一に記載された通話品質評価装置。
(Appendix B14)
The sound quality degradation deriving unit derives a value representing speech quality degradation due to the sound quality degradation from the output signal input from the receiver to the sound quality degradation deriving unit, according to any one of appendices B2 to B13 The described call quality evaluation device.
 (付記B15)
 前記音質劣化導出部が、前記遅延による通話品質劣化を表わす値を、
ITU-T P.563 「Single-ended method for
objective speech quality assessment in
narrow-band telephony applications」に記載された手順により導出する、付記B14に記載された通話品質評価装置。
(Appendix B15)
The sound quality degradation deriving unit sets a value representing speech quality degradation due to the delay,
ITU-TP 563 “Single-ended method for
objective speech quality assessment in
The call quality evaluation apparatus according to appendix B14, which is derived by the procedure described in “narrow-band telephony applications”.
 (付記B16)
 前記音質劣化導出部が、前記受信機から前記音質劣化導出部に入力される前記出力信号と、前記音質劣化導出部に入力される前記第一の音声信号と、により導出する、付記B2乃至B13のうちのいずれか一に記載された通話品質評価装置。
(Appendix B16)
Additional notes B2 to B13, wherein the sound quality deterioration deriving unit derives from the output signal input from the receiver to the sound quality deterioration deriving unit and the first audio signal input to the sound quality deterioration deriving unit. A call quality evaluation apparatus described in any one of the above.
 (付記B17)
 前記音質劣化導出部に入力される前記第一の音声信号が、前記音質劣化導出部に入力された、前記第一の音声信号を含む音声ファイルとして前記音質劣化導出部に入力される、付記16に記載された通話品質評価装置。
(Appendix B17)
Item 16. The first sound signal input to the sound quality deterioration deriving unit is input to the sound quality deterioration deriving unit as an audio file including the first sound signal input to the sound quality deterioration deriving unit. Call quality evaluation device described in 1.
 (付記B18)
 前記第一の音声信号を含む音声ファイルが、インターネットを通じて、前記音質劣化導出部に入力される、付記17に記載された通話品質評価装置。
(Appendix B18)
The call quality evaluation apparatus according to appendix 17, wherein an audio file including the first audio signal is input to the sound quality degradation deriving unit via the Internet.
 (付記B19)
 前記音質劣化導出部が、前記遅延による通話品質劣化を表わす値を、ITU-T P.862 「Perceptual evaluation of speech
quality (PESQ): An objective method for
end-to-end speech quality assessment of
narrow-band telephone networks and
speech codecs」に記載された手順により導出する、付記B16乃至付記B18のうちのいずれか一に記載された通話品質評価装置。
(Appendix B19)
The sound quality degradation deriving unit obtains a value representing the speech quality degradation due to the delay as an ITU-TP. 862 “Perceptual evaluation of speech”
quality (PESQ): An objective method for
end-to-end speech quality assessment of
narrow-band telephony networks and
The speech quality evaluation apparatus according to any one of Supplementary Note B16 to Supplementary Note B18, which is derived by the procedure described in "Speech codes".
 (付記B20)
 前記合算の前に、前記遅延による通話品質劣化を表わす値と前記音質劣化による通話品質劣化を表わす値のうちの少なくとも一について、前記遅延による通話品質劣化を表わす値と前記音質劣化による通話品質劣化を表わす値とを同じ基準で比較することができることが想定される値へ変換を行う換算調整部をさらに備え、前記合算が、前記変換後の、前記遅延による通話品質劣化を表わす値と前記音質劣化による通話品質劣化を表わす値とについての合算である、付記B3乃至B19に記載された通話品質評価装置。
(Appendix B20)
Before the summation, at least one of a value representing call quality degradation due to the delay and a value representing call quality degradation due to the sound quality degradation, a value representing the call quality degradation due to the delay and a call quality degradation due to the sound quality degradation. And a conversion adjustment unit for converting the value representing the value that can be compared with a value that can be compared with the same standard, and the sum is a value representing the speech quality deterioration due to the delay and the sound quality after the conversion The call quality evaluation apparatus according to any one of appendices B3 to B19, which is a sum of values representing call quality deterioration due to deterioration.
 (付記C1)
 あるネットワークを介しての送受信処理により音声信号に生じた遅延による通話品質劣化を表す第一の劣化値を導出する処理と、
 前記送受信処理により前記音声信号に生じた音質劣化による通話品質劣化を表す第二の劣化値を導出する処理と、
 全射により前記第一及び第二の劣化値の組み合わせに対応づけられた、通話品質に対応する順序関係を有する順序集合の要素を出力する処理と、
 を含む、処理をコンピュータに実行させる通話品質評価プログラム。
(Appendix C1)
A process of deriving a first degradation value representing a speech quality degradation due to a delay caused in a voice signal by a transmission / reception process via a network;
A process of deriving a second degradation value representing speech quality degradation due to degradation of sound quality caused in the audio signal by the transmission / reception processing;
A process of outputting an element of an ordered set having an order relation corresponding to a call quality, which is associated with the combination of the first and second deterioration values by surjective;
A call quality evaluation program for causing a computer to execute a process.
 以上、上述した実施形態を模範的な例として本発明を説明した。しかしながら、本発明は、上述した実施形態には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。 The present invention has been described above using the above-described embodiment as an exemplary example. However, the present invention is not limited to the above-described embodiment. That is, the present invention can apply various modes that can be understood by those skilled in the art within the scope of the present invention.
 この出願は、2015年6月24日に出願された日本出願特願2015-126085を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2015-126085 filed on June 24, 2015, the entire disclosure of which is incorporated herein.
 001、201  送信機
 002、202  NW
 100  通話システム
 200  通話品質評価装置
 003、203  受信機
 211  受信部
 212  デコード部
 213  バッファリング部
 213a  ジッタバッファを含む部分
 213aa  ジッタバッファ
 213b  出力部バッファを含む部分
 213ba  出力部バッファ
 214  出力部
 220  遅延劣化導出部
 221  NW遅延測定部
 222  バッファ遅延測定部
 223  固定値入力部
 224  送信機遅延入力部
 225  遅延劣化算出部
 23a、23b  音質劣化導出部
 231  出力信号ファイル作成部
 232  音声ファイル入力部
 233  音質劣化算出部
 240  換算調整部
 250  品質表現導出部
001, 201 Transmitter 002, 202 NW
DESCRIPTION OF SYMBOLS 100 Call system 200 Call quality evaluation apparatus 003, 203 Receiver 211 Reception part 212 Decoding part 213 Buffering part 213a Part including a jitter buffer 213aa Jitter buffer 213b Part including an output part buffer 213ba Output part buffer 214 Output part 220 Derivation of delay deterioration Unit 221 NW delay measurement unit 222 buffer delay measurement unit 223 fixed value input unit 224 transmitter delay input unit 225 delay degradation calculation unit 23a, 23b sound quality degradation derivation unit 231 output signal file creation unit 232 audio file input unit 233 sound quality degradation calculation unit 240 Conversion adjustment unit 250 Quality expression deriving unit

Claims (10)

  1.  あるネットワークを介しての送受信処理により音声信号に生じた遅延による通話品質劣化を表す第一の劣化値を導出し、
     前記送受信処理により前記音声信号に生じた音質劣化による通話品質劣化を表す第二の劣化値を導出し、
     全射により前記第一及び第二の劣化値の組み合わせに対応づけられた、通話品質に対応する順序関係を有する順序集合の要素を出力する、
     通話品質評価方法。
    Deriving the first degradation value representing the degradation of call quality due to the delay caused to the voice signal by the transmission / reception processing via a certain network,
    Deriving a second degradation value representing speech quality degradation due to speech quality degradation caused to the voice signal by the transmission / reception processing,
    Outputting an element of an ordered set having an order relationship corresponding to a call quality, which is associated with the combination of the first and second deterioration values by surjective;
    Call quality evaluation method.
  2.  前記要素が、前記第一の劣化値と、前記第二の劣化値との合算値である、請求項1に記載された通話品質評価方法。 The call quality evaluation method according to claim 1, wherein the element is a total value of the first deterioration value and the second deterioration value.
  3.  前記送受信処理が、入力された第一の音声信号に対して第一の処理を行った音声信号である第二の音声信号を前記ネットワークを通じて受信機に送信する送信機と、前記ネットワークと、前記第二の音声信号についての前記ネットワークを通じて前記受信機に到達した音声信号である第三の音声信号を受信し、前記第三の音声信号に対し第二の処理を行った音声信号である出力信号を出力する受信機と、において行われる送受信処理である、請求項1又は請求項2に記載された通話品質評価方法。 The transmitter / receiver process transmits a second audio signal, which is an audio signal obtained by performing a first process on the input first audio signal, to the receiver through the network, the network, An output signal that is an audio signal that receives the third audio signal that is the audio signal that has reached the receiver through the network with respect to the second audio signal, and has performed a second process on the third audio signal. The call quality evaluation method according to claim 1 or 2, which is a transmission / reception process performed in a receiver that outputs a message.
  4.  前記第一の劣化値を、ITU-T G.107 「The E-model: a computational model for use in
    transmission planning」に記載された、(7-8)式により求めたIsと、(7-18)式により求めたIdと、を合算することにより求める、請求項3に記載された通話品質評価方法。
    The first deterioration value is set as ITU-T G.I. 107 “The E-model: a computational model for use in
    4. The call quality evaluation method according to claim 3, wherein the call quality evaluation method is obtained by summing Is obtained by the equation (7-8) and Id obtained by the equation (7-18) described in “transmission planning”. .
  5.  求めた前記第一の劣化値を、ITU-T G.107 「The E-model: a computational model for use in
    transmission planning」の、Annex Bの(B-4)式に記載された関係又はFigure B.2に記載された関係を用いて、Mean Opinion Scoreに変換する、請求項4に記載された通話品質評価方法。
    The obtained first deterioration value is expressed as ITU-T G.I. 107 “The E-model: a computational model for use in
    "transmission planning", the relationship described in the equation B (B-4) in the formula B or FIG. 5. The call quality evaluation method according to claim 4, wherein conversion to Mean Opinion Score is performed using the relationship described in 2.
  6.  前記音質劣化による通話品質劣化を表わす値を、前記出力信号から求める、請求項2乃至請求項5のうちのいずれか一に記載された通話品質評価方法。 The call quality evaluation method according to any one of claims 2 to 5, wherein a value representing call quality deterioration due to the sound quality deterioration is obtained from the output signal.
  7.  前記第二の劣化値を、ITU-T P.563 「Single-ended method for objective speech
    quality assessment in narrow-band telephony applications」に記載された手順により行う、請求項6に記載された通話品質評価方法。
    The second deterioration value is set to ITU-TP. 563 “Single-ended method for objective speech”
    The call quality evaluation method according to claim 6, wherein the call quality evaluation method is performed according to a procedure described in “quality assessment in near-band telephony applications”.
  8.  前記音質劣化による通話品質劣化を表わす値を、前記出力信号と前記第一の音声信号とから求める、請求項2乃至請求項7のうちのいずれか一に記載された通話品質評価方法。 The call quality evaluation method according to any one of claims 2 to 7, wherein a value representing call quality deterioration due to the sound quality deterioration is obtained from the output signal and the first voice signal.
  9.  前記第一の音声信号が、前記第一の音声信号を記録した音声ファイルを再生した信号である、請求項8に記載された通話品質評価方法。 The call quality evaluation method according to claim 8, wherein the first audio signal is a signal obtained by reproducing an audio file in which the first audio signal is recorded.
  10.  前記合算の前に、前記遅延による通話品質劣化を表わす値、前記音質劣化による通話品質劣化を表わす値、及び、前記遅延による通話品質劣化を表わす値及び前記音質劣化による通話品質劣化を表わす値の両方、のうちのいずれか一を補正することにより、前記遅延による通話品質劣化を表わす値と前記音質劣化による通話品質劣化を表わす値とを同じ基準で比較できることが想定される値への変換を行い、前記合算が前記変換後の前記遅延による通話品質劣化を表わす値と前記音質劣化による通話品質劣化を表わす値との合算である、請求項2乃至請求項9のうちのいずれか一に記載された通話品質評価方法。 Prior to the summation, a value representing call quality degradation due to delay, a value representing call quality degradation due to sound quality degradation, a value representing call quality degradation due to delay and a value representing call quality degradation due to sound quality degradation By correcting either one of the two values, the value representing the call quality deterioration due to the delay and the value representing the call quality deterioration due to the sound quality deterioration are converted into values assumed to be comparable on the same basis. 10. The method according to claim 2, wherein the sum is a sum of a value representing speech quality degradation due to the delay after the conversion and a value representing speech quality degradation due to the sound quality degradation. Call quality evaluation method.
PCT/JP2016/002926 2015-06-24 2016-06-17 Call quality evaluation method, call quality evaluation device and call quality evaluation program WO2016208168A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015126085 2015-06-24
JP2015-126085 2015-06-24

Publications (1)

Publication Number Publication Date
WO2016208168A1 true WO2016208168A1 (en) 2016-12-29

Family

ID=57585505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002926 WO2016208168A1 (en) 2015-06-24 2016-06-17 Call quality evaluation method, call quality evaluation device and call quality evaluation program

Country Status (1)

Country Link
WO (1) WO2016208168A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007013674A (en) * 2005-06-30 2007-01-18 Ntt Docomo Inc Comprehensive speech communication quality evaluating device and comprehensive speech communication quality evaluating method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007013674A (en) * 2005-06-30 2007-01-18 Ntt Docomo Inc Comprehensive speech communication quality evaluating device and comprehensive speech communication quality evaluating method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"G.107 (02/14)The E-model: a computational model for use in transmission planning", ITU-T KIKAKU BUNSHO (SERIES G) G.107, February 2014 (2014-02-01), XP055341340, Retrieved from the Internet <URL:https://www.itu.int/ rec/dologin_pub.asp?lang=e&id=T-REC-G.107-2014 02-S!!PDF-E&type=items> [retrieved on 20160719] *
"P.563 (05/04)Single-ended method for objective speech quality assessment in narrow-band telephony applications This Recommendation includes an electronic attachment containing an ANSI-C reference implementation and conformance testing data", ITU-T KIKAKU BUNSHO (SERIES P) P.563, May 2004 (2004-05-01), XP055341343, Retrieved from the Internet <URL:https://www.itu.int/rec/dologin _pub.asp?lang=e&id=T-REC-P.563-200405-I!!SOFT- ZST-E&type=items> [retrieved on 20160719] *

Similar Documents

Publication Publication Date Title
US9584655B2 (en) Monitoring voice over internet protocol (VolP) quality during an ongoing call
Assem et al. Monitoring VoIP call quality using improved simplified E-model
US9232049B2 (en) Quality of experience determination for multi-party VoIP conference calls that account for focus degradation effects
US20020193999A1 (en) Measuring speech quality over a communications network
US9866610B2 (en) Methods, systems, and computer readable media for selecting a codec pair based on network conditions
US10504536B2 (en) Audio quality in real-time communications over a network
JPWO2009150932A1 (en) Audio quality estimation method, audio quality estimation apparatus and program
US11343301B2 (en) Managing jitter buffer length for improved audio quality
KR100738162B1 (en) Method for measuring interactive speech quality in VoIP network
Paulsen et al. Influence of the jitter buffer on the quality of service VoIP
WO2016208168A1 (en) Call quality evaluation method, call quality evaluation device and call quality evaluation program
KR101199448B1 (en) APPARATUS, METHOD AND RECORDING DEVICE FOR PREDICTION VoIP BASED SPEECH TRANSMISSION QUALITY USING EXTENDED E-MODEL
Zhang et al. Perceived QoS assessment for Voip networks
Côté et al. Speech communication
JP5952252B2 (en) Call quality estimation method, call quality estimation device, and program
US9485352B2 (en) Method for measuring processing delays of voice-over IP devices
Beuran et al. User-perceived quality assessment for VoIP applications
Neves et al. Quality model for monitoring QoE in VoIP services
JP4327685B2 (en) User experience quality monitoring method, user experience quality monitoring apparatus, estimation model generation method, and estimation model generation apparatus
JP2004222257A (en) Total call quality estimating method and apparatus, program for executing method, and recording medium thereof
WO2021047763A1 (en) Transmission of a representation of a speech signal
Han et al. Accuracy analysis on call quality assessments in voice over IP
Luksa et al. Sound quality assessment in VOIP environment
Bayley et al. Call quality monitoring for VoIP
JP2016139848A (en) Voice quality estimation device, method and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16813940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16813940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP