WO2016208014A1 - Management computer and method for switching system configuration - Google Patents

Management computer and method for switching system configuration Download PDF

Info

Publication number
WO2016208014A1
WO2016208014A1 PCT/JP2015/068261 JP2015068261W WO2016208014A1 WO 2016208014 A1 WO2016208014 A1 WO 2016208014A1 JP 2015068261 W JP2015068261 W JP 2015068261W WO 2016208014 A1 WO2016208014 A1 WO 2016208014A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
remote path
host
storage device
primary
Prior art date
Application number
PCT/JP2015/068261
Other languages
French (fr)
Japanese (ja)
Inventor
淳平 清時
義之 田畑
竹内 伸也
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/068261 priority Critical patent/WO2016208014A1/en
Publication of WO2016208014A1 publication Critical patent/WO2016208014A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers

Definitions

  • the present invention relates to a management computer and a system configuration switching method, and is suitably applied to a management computer and a system configuration switching method that automatically switch a remote path according to a load status of the remote path.
  • Patent Document 1 an environment for recognizing the environment of the host device and enabling access to a logical volume has been automatically constructed. Also, in a computer system that has an executing host device and a standby host device and has fault tolerance, if a failure occurs in one system, the system is switched to another system that was waiting and continues processing. (For example, Patent Document 2).
  • the host device can be switched from the primary system (execution system) to the secondary system (standby system) without changing the correspondence between the host apparatus and the logical volume.
  • the data is first transferred to the primary volume via the remote path from the secondary storage system connected to the secondary host to the primary storage system. After that, the data is written to the secondary volume forming a copy pair with the primary volume. This makes it possible to switch the host path from the primary system to the secondary system while maintaining the correspondence between the host apparatus and the logical volume without changing the volume configuration or setting.
  • the remote path is automatically switched when a failure occurs in a certain system, but the remote path is automatically switched even if one of the multiple remote paths becomes heavily loaded. There was a problem that resources could not be used effectively.
  • the present invention has been made in consideration of the above points.
  • a system configuration in which data is written via a remote path between storage apparatuses when any one of a plurality of remote paths becomes highly loaded, it is automatically performed.
  • a management computer capable of switching a remote path and a system configuration switching method are proposed.
  • a management computer that manages the performance of a storage system that makes data requested to be written by a host computer redundant in units of volumes in a primary storage device and a secondary storage device
  • the management computer refers to the data transfer amount, a memory for storing a data transfer amount of data transmitted / received between the host computer and the primary storage device or the secondary storage device.
  • a CPU and a network interface connected to the host computer, the primary storage device or the secondary storage device, and the primary storage device receives a data write request from the host computer, After writing data to the primary volume of the primary storage device, When data is transferred via a remote path and data is written to the secondary volume of the secondary storage device, the secondary storage device receives the data write request from the host computer.
  • the data is transferred via the second remote path and written to the secondary volume, and the management computer
  • the data transfer amounts of the first remote path and the second remote path are acquired, and the data transfer amount exceeds a predetermined threshold, the first remote path and the second remote path
  • a storage device to which data is written from the host computer is selected so that the data transfer amount is leveled. Computer is provided.
  • a management computer that manages the performance of a storage system that makes data requested to be written by a host computer redundant in units of volumes in a primary storage device and a secondary storage device
  • the management computer includes a memory for storing a data transfer amount of data transmitted / received between the host computer and the primary storage device or the secondary storage device, and the data A CPU that refers to the transfer amount; and a network interface that is connected to the host computer, the primary storage device, or the secondary storage device, and the host computer issues a data write request to the primary storage device.
  • the step of transferring the data via the first remote path and writing the data to the secondary volume of the secondary storage device, and the step of writing the data from the host computer to the secondary storage device When there is a write request, after the data transferred from the secondary storage device via the second remote path is written to the primary volume, the data is transferred via the second remote path.
  • the management computer obtaining the data transfer amount of the first remote path and the second remote path, and the management computer determining that the data transfer amount is a predetermined threshold value. So that the data transfer amount of the first remote path and the second remote path is leveled, Characterized in that it comprises the steps of selecting a data write destination storage device from strike computer, the system configuration switching method is provided.
  • the remote path in a system configuration in which data is written via a remote path between storage devices, when one of a plurality of remote paths becomes a heavy load, the remote path can be automatically switched and used. Effective resource utilization.
  • program is used as the subject.
  • the program performs processing determined by being executed by the processor using the memory and the communication port (communication control device)
  • the processor is used as the subject.
  • the explanation may be as follows. Further, the processing disclosed with the program as the subject may be processing performed by a computer such as a management server or an information processing apparatus. Further, part or all of the program may be realized by dedicated hardware.
  • Various programs may be installed in each computer by a program distribution server or a storage medium that can be read by the computer.
  • the program distribution server includes a CPU and storage resources, and the storage resources further store a distribution program and a program to be distributed.
  • the distribution program is executed by the CPU, the CPU of the program distribution server distributes the distribution target program to other computers.
  • the host device and the logical volume are Standby without waiting for the host system to take over work from the running system (hereinafter also referred to as the primary host system) that is executing the business, without changing the correspondence, in the event of a failure of the primary host system It is possible to switch to a system (hereinafter also referred to as a subordinate host device).
  • remote path is automatically switched when a failure occurs. If there is a failure in the primary host device, the master host device is switched to the secondary host device, and the synchronous remote copy described above is executed. That is, when the primary host device is switched to the secondary host device, the I / O from the secondary host device is transferred from the secondary storage device connected to the secondary host device to the primary storage device. The data is first written to the primary volume via the remote path, and then the data is written to the secondary volume that forms a copy pair with the primary volume. To achieve this, the remote path requires two directions, upstream and downstream, and I / O from the host device is performed from the primary volume chassis or from the secondary volume chassis. The direction of the remote path used differs depending on the
  • a plurality of remote paths for performing data transfer for remote copy between the primary storage device and the secondary storage device are configured.
  • the remote path is normally switched only when a failure occurs in a certain system.
  • the remote path is automatically set. It was not configured to switch, and resources could not be used efficiently. Therefore, in this embodiment, by effectively switching a plurality of remote paths, it is possible to effectively use resources by distributing the load of remote path performance while maintaining the switching function when a failure occurs. Yes.
  • a plurality of host devices constitute a cluster.
  • the business hosts 200A1 and 200B1, the business hosts 200A2 and 200B2, and the business hosts 200A3 and 200B3 constitute a cluster.
  • the business host 200A1 or 200A2 becomes the primary system and executes (active) the business
  • the business host 200B1 or B2 is a secondary business host that does not execute the business
  • the primary host device becomes a failure
  • the system is on standby (active standby) so that it can take over business.
  • the business host 200A3 is stopped due to a failure or the like, the business host 200B3 becomes active.
  • the primary volume and the secondary volume are connected to one business host, and I / O from the business host is switched from the primary volume housing to the secondary volume housing. May be applied.
  • the business host 200 and the storage system 300 that manages a plurality of volumes are connected to the management server 100 that manages the configuration of the computer system.
  • the hardware configuration and functional configuration of the computer system will be described later in detail.
  • the management server 100 is an example of the management computer of the present invention.
  • the management server 100 detects a remote path in which the port data transfer amount reaches the maximum value of the network bandwidth (STEP 01).
  • the port data transfer amount is a data transfer amount of data transferred from a port of one storage system 300 to a port of another storage system 300 via a remote path when the above-described synchronous copy is performed. .
  • the management server 100 acquires the GAD copy pair information of the volume using the remote path detected in STEP 01 (STEP 02). Then, the management server 100 requests switching that causes the business host using the copy pair acquired in STEP 02 to determine the master-slave relationship, and acquires the port data transfer amount of the remote path after switching (STEP 03).
  • the global-active device can switch the host path from the primary system to the secondary system while maintaining the correspondence between the host device and the logical volume without changing the volume configuration or changing the settings. Therefore, it is possible to easily switch the remote path shown in STEP03. Therefore, in this embodiment, the remote path is switched in STEP 03, and the remote path performance is determined to be appropriate in STEP 04, thereby switching to a cluster configuration that provides the optimum remote path performance while continuing the business operation. Is possible.
  • the computer system includes a management server 100, business hosts 200A1 to 200A3 (hereinafter also referred to as business host 200A), business hosts 200B1 to 200B3 (hereinafter referred to as business host 200B).
  • the storage system 300A and the storage system 300B may be collectively referred to as the business host 200A, and the storage system 300A and the storage system 300B may be collectively referred to as the storage system 300.
  • the management server 100 is mainly connected to the business host 200A, the business host 200B, the storage system 300A, and the storage system 300B to collect configuration information of each device, and the business hosts 200A and 200B. Or the cluster configuration of the business hosts 200A and 200B is changed.
  • the management server 100 mainly includes a CPU 101, a memory 102, an HDD 103, and an HBA 104.
  • the CPU 101 functions as an arithmetic processing unit, and controls the operation of the management server 100 according to programs, arithmetic parameters, and the like stored in the memory 102.
  • An HDD (Hard Disk Drive) 103 includes a storage medium, a recording device that records data on the storage medium, a reading device that reads data from the storage medium, a deletion device that deletes data recorded on the storage medium, and the like, and drives a hard disk Then, the program executed by the CPU 101 and various data are stored.
  • the HBA (Host Bus Adapter) 104 is a communication interface configured by a communication device or the like for connecting to the network, and is connected to the business host 200 or the storage system 300 to transmit / receive data.
  • the management server 100 also has an input / output device.
  • input / output devices include a display, a keyboard, and a pointer device, but other devices may be used.
  • a serial interface or an Ethernet interface is used as the input / output device, a display computer having a display or a keyboard or a pointer device is connected to the interface, and the display information is transmitted to the display computer.
  • the display computer may perform the display, or the input may be replaced by the input / output device by receiving the input.
  • a set of one or more computers that manage the storage system and display the display information of the present invention may be referred to as a management system.
  • the management server 100 displays display information
  • the management server 100 is a management system
  • a combination of the management server 100 and a display computer is also a management system.
  • a plurality of computers may realize processing equivalent to the management server 100.
  • the plurality of computers in the case where the display computer performs display, display is performed).
  • Management computer is the management system.
  • the management server 100 mainly executes a host configuration change command program 110, a leveled value calculation program 111, a cluster configuration host device failure detection program 112, and port data transfer as programs executed by the CPU 101.
  • the HDD 103 stores a database such as port data transfer amount time-series performance data 115 and host / storage device configuration information 116.
  • the host configuration change command program 110 sends a command to switch the cluster configuration of the business host 200 to the target business host 200.
  • the leveling value calculation program 111 calculates the leveling value of the remote path from the network bandwidth usage rate.
  • the network bandwidth usage rate is a value obtained by dividing the port data transfer amount by the network bandwidth and multiplying by 100, and what percentage of the network bandwidth, which is the maximum value of the transmission capacity, is used as the data transfer amount. It is a value indicating whether or not.
  • an absolute value obtained by subtracting 50% from the network usage rate is calculated for each remote path, and the sum of these values is used as the leveling value.
  • the performance of the remote path is not a problem when the port data transfer amount does not occupy a large range with respect to the network bandwidth, that is, when the network usage rate is large. Therefore, it is necessary to mitigate remote paths with a high network usage rate rather than a low network usage rate. Therefore, in the leveling in this embodiment, by selecting a combination in which the network usage rate of the remote path is close to 50%, the port data transfer amount of the remote path with a high network usage rate is suppressed, and each remote path Performance is leveled. The calculation of the leveling value will be described in detail later.
  • the cluster configuration host device failure detection program 112 collects cluster configuration failure information from the business host 200.
  • the port data transfer amount time series performance data collection program 113 collects the port data transfer amount from the port data transfer amount provision program 310 of the storage system 300.
  • the host / storage device configuration information collection program 114 acquires the configuration information of the business host 200 and the storage system 300 from the business host 200 and the storage system 300, respectively.
  • the cluster configuration switching program 117 determines whether or not the cluster configuration needs to be switched based on the collected port data transfer amount. If it is determined that the cluster configuration switching program 117 is necessary, the cluster configuration switching program 117 performs an instruction switching process for the cluster configuration host configuration change instruction program. Execute.
  • the business host 200 writes / reads data to / from the primary volume of the storage system. Further, in response to a cluster configuration change request from the management server 100, the cluster configuration is changed to the primary system or the secondary system.
  • the business host 200 mainly includes a CPU 201, a memory 202, an HDD 203, and an HBA 204.
  • the CPU 201 functions as an arithmetic processing unit, and controls the operation of the business host 200 according to programs, arithmetic parameters, and the like stored in the memory 202.
  • An HDD (Hard Disk Drive) 203 includes a storage medium, a recording device that records data on the storage medium, a reading device that reads data from the storage medium, and a deletion device that deletes data recorded on the storage medium, and drives a hard disk
  • the program executed by the CPU 201 and various data are stored.
  • An HBA (Host Bus Adapter) 204 is a communication interface configured by a communication device or the like for connecting to a network, and transmits / receives data by connecting to the management server 100 or the storage system 300.
  • the business host 200 mainly includes a host configuration information provision program 210 and a host configuration change program 211 as programs executed by the CPU 201.
  • the host configuration information provision program 210 provides configuration information of the business host 200 to the management server 100 in response to a request from the host / storage device configuration information collection program 114 of the management server 100.
  • the host configuration change program 211 switches the cluster configuration of the business host 200 in accordance with a command from the host configuration change command program 110 of the management server 100.
  • the business host 200 switches from the active mode to the active standby mode in accordance with a command from the management server 100 and switches to the secondary business host.
  • the business host 200 switches from the active standby mode to the active mode in accordance with a command from the management server 100 and switches to the primary business host.
  • the business host 200A1 and the business host 200B1 form a cluster
  • the business host 200A1 is connected to the storage system 300A via the HBA 204 of the business host 200A1
  • the business host 200B1 is connected to the storage system via the HBA 204 of the business host 200B1.
  • the business host 200A1 is switched to the business host 200B1 by switching the connection of the HBA 204. That is, the connection between the HBA 204 of the business host 200A1 and the storage system 300A is disconnected, and the storage system 300B is connected via the HBA 204 of the business host 200B1.
  • the port data transfer amount time series performance data 115 of the management server 100 includes port data transfer amount time series performance data information 151.
  • the host / storage apparatus configuration information 116 includes host information 161, storage information 162, copy pair information 163, remote path information 164, volume information 165, and port information 166.
  • the port data transfer amount time series performance data information 151 is information for managing the data transfer amount for each port in time series. As shown in FIG. 4, the time 1511, the port ID 1512, and the data transfer amount 1513 are associated with each other. Yes.
  • the time 1511 is the time when the data transfer amount is measured
  • the port ID 1512 is information for identifying the port
  • the data transfer amount 1513 is the measured data transfer amount. For example, in FIG. 4, it can be seen that the data transfer amount of the port ID “Port_1” is “40 Mbyte / sec” at the time “T1”.
  • the host information 161 is information for managing the configuration and operation of the business host 200, and as shown in FIG. 5, a host ID 1611, a cluster configuration host ID 1612, and an operation state 1613 are associated with each other.
  • the host ID 1611 is information for identifying the business host 200
  • the cluster configuration host ID 1612 is information for identifying the business host 200 constituting the cluster
  • the operating state 1613 is information indicating the operating state of the business host 200. , “Operating”, “standby” or “stop” are set.
  • the host ID “HostA1” and the host ID of the host constituting the cluster are “HostB1”, and “HostA1” is in the “operating” state.
  • the storage information 162 is information for managing the configuration of the storage system 300, and is associated with a storage system ID 1621, a volume ID 1622, and a port ID 1623 as shown in FIG.
  • the storage system ID 1621 is information for identifying the storage system 300
  • the volume ID 1622 is information for identifying a logical volume
  • the port ID 1623 is information for identifying a port. For example, in FIG. 6, it can be seen that the volume ID “Volume_1” of the storage system ID “StorageA” is accessed through the port ID “Port_1”.
  • the copy pair information 163 is information for managing a copy pair of a volume. As shown in FIG. 7, the copy pair information 163 is a copy pair ID 1631, a storage system (primary side) 1632, a storage system (secondary side) 1633, and a volume ID (primary side). 1634, volume ID (secondary side) 1635, copy type 1636, remote path ID (primary side) 1637, and remote path ID (secondary side) 1638 are associated with each other.
  • the copy pair ID 1631 is information for identifying a copy pair.
  • the storage system (primary side) 1632 indicates identification information of the primary storage system 300.
  • the storage system (secondary side) 1633 indicates identification information of the storage system 300 on the secondary side.
  • the volume ID (primary side) 1634 indicates the identification information of the primary side volume.
  • the volume ID (secondary side) 1635 indicates identification information of the secondary side volume.
  • the copy type 1636 indicates information on the copy type.
  • the remote path ID (primary side) 1637 indicates identification information of the primary side remote path.
  • the remote path ID (secondary side) 1638 of the remote side indicates identification information of the remote side remote path.
  • the copy pair ID “Pair_001” has a copy pair of “Storage_1” (primary side) “Volume_1” (primary side) and “StorageB” (secondary side) “Volume_5” (secondary side). It can be seen that the copy type is “GAD” (global-active device) and the copy is executed using the remote paths “Path1” (primary side) and “Path2” (secondary side).
  • the remote path information 164 is information for managing the configuration of the remote path, and as shown in FIG. 8, the remote path ID 1641, the primary storage system (primary side) 1642, the primary side port name (primary side) 1643, the secondary Side storage system (secondary side) 1644, secondary side port name (secondary side) 1645, and network bandwidth 1646 are associated with each other.
  • the remote path ID 1641 is information for identifying the remote path.
  • the primary storage system (primary side) 1642 indicates identification information of the primary storage system 300.
  • the primary side port name (primary side) 1643 indicates the identification information of the primary side port.
  • the identification information of the secondary side storage system (secondary side) 1644 and the secondary side storage system 300 is shown.
  • the secondary side port name (secondary side) 1645 indicates identification information of the secondary side port.
  • a network band 1646 indicates the network band of the remote path.
  • the remote path ID “Path1” connects “Port_1” (primary side) of “StorageA” (primary side) and “Port_4” (secondary side) of “StorageB” (secondary side), It can be seen that the network bandwidth of “Path1” is “100MB”.
  • the volume information 165 is information for managing the volume configuration, and is associated with a volume ID 1651, a storage system 1652, and an associated host ID 1653 as shown in FIG.
  • the volume ID 1651 is volume identification information.
  • the storage system 1652 is identification information of a storage system that provides the volume.
  • the related host ID 1653 is identification information of the business host 200 associated with the volume.
  • volume ID “Volume_1” is provided by “StorageA” and is associated with “Host_A1”.
  • the port information 166 is information managed by the port configuration, and is associated with a port ID 1661, a storage system 1662, and a port role 1663 as shown in FIG.
  • the port ID 1661 is information for identifying a port.
  • the storage system 1662 is identification information of the storage system 300 having the port.
  • the port role 1663 is information on a role assigned to the port, and for example, “RCU Target”, “Initiator”, and the like are set.
  • the port ID “Port_1” is provided in “StorageA”, and the port role of the port is “RCU Target”.
  • the storage system 300 interprets the command transmitted from the business host 200 and executes read / write into the storage area of the disk device.
  • information written in the primary volume is transmitted to the storage system 300 that manages the secondary volume.
  • the management server 100 is also provided with remote path configuration information in the global-active device, time-series data of the port data transfer amount, and the like.
  • the storage system 300 mainly includes a controller 301 and a disk 320 or a disk 330.
  • the controller 301 provides necessary information to the management server 100 in response to a command from the management server 100, or executes data read / write to the disk 320 or the disk 330 in response to a request from the business host 200. To do.
  • the storage system 300 includes a plurality of disks 320 or 330, and one RAID (Redundant Arrays of Independent Disks) group is configured by one or a plurality of hard disk drives, and physical storage provided by one RAID group.
  • RAID Redundant Arrays of Independent Disks
  • One or more logical volumes are defined on the area. Then, this logical volume is provided to the business host 200. The business host 200 can write and read data by sending a predetermined command to the logical volume.
  • the primary volume composed of the disk 320 managed by the primary storage system 300 is a volume on which the business host 200 reads and writes data, and the disk is managed by the secondary storage system 300.
  • the secondary volume configured from 330 is a volume from which the business host 200 reads data.
  • the data copy between the storage systems 300 is transferred via the remote path 401 or 402.
  • the remote path 401 and the remote path 402 require remote paths in the upstream and downstream directions.
  • the object of the present embodiment is to maintain an optimal cluster configuration so that the transfer amount of each remote path connecting between the enclosures of the storage system 300 is leveled.
  • the storage system 300 mainly includes a port data transfer amount providing program 310 and a storage device configuration information providing program 311 as programs executed by the controller 301.
  • the port data transfer amount providing program 310 provides configuration information of the storage system 300 to the management server 100 in response to a request from the host / storage device configuration information collection program 114 of the management server 100.
  • the storage device configuration information provision program 311 provides the configuration information of the storage system 300 to the management server 100 in response to a request from the port data transfer amount time series performance data collection program 113 of the management server 100.
  • FIGS. 11 and 12 are conceptual diagrams for explaining the system configuration switching process.
  • 13 to 16 are flowcharts showing details of the system configuration switching process.
  • FIG. 17 is a display example of performance data displayed on the display screen of the client terminal.
  • FIG. 11 a computer system having the cluster configuration shown in FIG. 11 will be described as an example.
  • four cluster configurations are formed by one management server 100 and eight business hosts 200.
  • the business host 200A1 and the business host 200B1 form a cluster
  • the business host 200A1 is associated with the volume 320 (P1) of the primary storage system 300A
  • the business host 200B1 is associated with the secondary storage system 300B.
  • a volume (S1) is associated.
  • the business host 200A2 and the business host 200B2 form a cluster
  • the business host 200A2 is associated with the volume 320 (P2) of the primary storage system 300A
  • the business host 200B2 is associated with the volume of the secondary storage system 300B (S2). ) Are associated.
  • the business host 200A3 and the business host 200B3 form a cluster, the business host 200A3 is associated with the volume 320 (P3) of the primary storage system 300A, and the business host 200B3 is associated with the volume of the secondary storage system 300B (S3). ) Is associated.
  • the business host 200A4 and the business host 200B4 form a cluster, the business host 200A4 is associated with the volume 320 (P4) of the primary storage system 300A, and the business host 200B4 is associated with the volume of the secondary storage system 300B (S4). ) Is associated.
  • the business host 200A1, the business host 200A2, the business host A3, and the business host A4 are in an operating state (active), and the business host 200B1, the business host 200B2, and the business host B4 are in a standby state (active standby), and the business host B3 Is assumed to be stopped due to a failure.
  • the storage system 300A and the storage system 300B copy data using three remote paths 401, 402, and 403.
  • the upper limit of the network bandwidth of each remote path is 100 MB / second.
  • the remote path 401 is an upstream remote path and is used for the business hosts 200A1 to 200A2.
  • the remote path 402 and the remote path 403 are downstream remote paths.
  • the remote path 402 is used for the business hosts 200B1 and B2. That is, it is used for data copying between copy pairs of the volume 320 (P1) and the volume 330 (S1), and between copy pairs of the volume 320 (P2) and the volume 330 (S2).
  • the remote path 403 is used for the business hosts 200B3 and B4. That is, it is used for data copying between copy pairs of the volume 320 (P3) and the volume 330 (S3) and between copy pairs of the volume 320 (P4) and the volume 330 (S4).
  • FIG. 12 shows a state in which the cluster configuration composed of the business host 200A1 and the business host 200B1 is reversed by the system configuration switching process described later. That is, the business host 200A1 in the operating state is switched to the standby state, and the business host 200B1 in the standby state is switched to the operating state.
  • the business host 200B1 becomes the primary system, and I / O from the business host 200B1 to the storage system 300B is forwarded from the secondary storage system 300B1 via the remote path 402. Is transferred to the storage system 300A1 on the side, and data is first written to the volume 320 (P1) on the primary side. Thereafter, the data is transferred from the primary storage system 300A1 to the storage system 300B1 via the remote path 402, and the data is written to the secondary volume 330 (S1).
  • P1 volume 320
  • S1 secondary volume 330
  • the port data transfer amount time-series performance data collection program 113 of the management server 100 receives the remote path used in the global-active device configuration from the port data transfer amount provision program 310 of the storage system 300.
  • the port data transfer amount is acquired (S101).
  • the port data transfer amount time-series performance data collection program 113 stores the port data transfer amount acquired in step S101 in the port data transfer amount time-series performance data information 151 (S102).
  • the cluster configuration switching program 117 executes the cluster configuration switching determination process based on the acquired and port data transfer amount (S103). Details of the cluster configuration switching determination processing in step S103 will be described with reference to FIG.
  • the cluster configuration switching program 117 determines whether the port data transfer amount has reached the network bandwidth (S201).
  • the threshold value of the port data transfer amount is set in advance by the user, in the determination process in step S201, the determination may be made based on the user setting value instead of the network band.
  • step S201 If it is determined in step S201 that the port data transfer amount has reached the network bandwidth, the cluster configuration switching program 117 acquires information on all copy pairs using the detected remote path ( S202). Then, the cluster configuration switching program 117 identifies the business host 200 whose cluster configuration is to be changed based on the copy pair information acquired in step S202, and uses the remote path whose port data transfer amount reaches the network bandwidth. All cluster configuration switching processing is executed (S203).
  • step S201 if it is determined in step S201 that there is no remote path whose port data transfer amount has reached the network bandwidth, the processing is terminated.
  • step S203 the cluster configuration switching process in step S203 will be described in detail.
  • the cluster configuration switching program 117 performs cluster configuration for all combinations of business hosts 200 using the specified remote path. The process which changes is performed.
  • the cluster configuration of the business host 200 is n
  • the business hosts constituting the cluster will be described as host 1, host 2,.
  • the process of steps S212 to S225 is repeated by changing the configuration of the host 1
  • the process of steps S213 to S221 is repeated by changing the configuration of the host 2
  • the configuration of the host n is changed.
  • the processes from S214 to S217 are repeated.
  • the cluster configuration cannot be switched, so the cluster configuration is not changed.
  • the cluster configuration switching program 117 acquires failure information of the cluster configuration of the host n (S214). If there is a failure in the cluster configuration target device of the host n, the cluster configuration cannot be switched. Therefore, the failure information of the cluster configuration is first acquired to determine whether the cluster configuration can be switched.
  • the cluster configuration switching program 117 determines whether there is a failure in the cluster configuration unit of the host n (S215). If it is determined in step S215 that there is no failure in the cluster configuration unit of host n, the cluster configuration of host n is reversed between operation and standby (S216). Then, a leveling value calculation process described later is executed (S217).
  • step S215 determines whether there is a failure in the cluster configuration unit of host n. If it is determined in step S215 that there is a failure in the cluster configuration unit of host n, the next step is executed without executing the processing in steps S215 and S216.
  • the cluster configuration switching program 117 acquires failure information of the cluster configuration of the host 2 (S218).
  • the cluster configuration switching program 117 determines whether there is a failure in the cluster configuration device of the host 2 (S219). If it is determined in step S219 that there is no failure in the cluster configuration unit of the host 2, the cluster configuration switching program 117 reverses the cluster configuration of the host 2 between operation and standby (S220). Then, the cluster configuration switching program 117 executes a leveling value calculation process described later (S221).
  • step S219 if it is determined in step S219 that the cluster configuration unit of host n has a failure, the cluster configuration switching program 117 executes the next step without executing the processing of step S220 and step S221.
  • the cluster configuration switching program 117 acquires failure information of the cluster configuration of the host 1 (S222).
  • the cluster configuration switching program 117 determines whether there is a failure in the cluster configuration unit of the host 1 (S223). If it is determined in step S219 that there is no failure in the cluster configuration unit of the host 2, the cluster configuration switching program 117 reverses the cluster configuration of the host 1 between operation and standby (S224). Then, the cluster configuration switching program 117 executes a leveling value calculation process to be described later (S225).
  • step S219 if it is determined in step S219 that the cluster configuration unit of host n has a failure, the cluster configuration switching program 117 executes the next step without executing the processing of step S220 and step S221.
  • step S217 the leveling value calculation program 111 executed in step S217, step S221 and step S225 will be described.
  • the leveling value calculation program 111 acquires the port data transfer amount of the remote path detected by the host n (S231). Subsequently, the leveling value calculation program 111 acquires the port data transfer amount of the remote path that is to be performed after the configuration change of the host n (S232).
  • the leveled value calculation program 111 acquires the network bandwidth of the remote path detected by the host n (S233). Subsequently, the leveled value calculation program 111 acquires the network bandwidth of the remote path used after the configuration change of the host n (S234).
  • the network standby acquired in step S233 and step S234 acquires the user setting value when the threshold value of the port data transfer amount is set in advance by the user.
  • the leveling value calculation program 111 calculates the network usage rate (%) before and after the configuration change by the following formula 1 (S235).
  • the leveling value calculation program 111 calculates an absolute value by subtracting 50% from the network usage rate calculated in step S235, and adds them together (S236).
  • the port data data transfer amount of the remote path 401 is 100 (MB / second) and the network bandwidth 100 (MB / second) has been detected in step S201.
  • step S202 information on all copy pairs using the remote path 401 is acquired.
  • the acquired copy pair information includes volume 320 (P1) and volume 330 (S1), volume 320 (P2) and 330 volume (S2), volume 320 (P3), volume 330 (S3), and volume 320. (P4) and volume 330 (S4).
  • the business host 200 whose cluster configuration is to be changed is determined based on the acquired copy pair information. That is, it is determined which of the cluster configurations of the business host 200 that uses the acquired copy pair is reversed.
  • the failure information of the cluster configuration machine of the business host 200 is acquired to determine whether the cluster configuration can be reversed. If the cluster configuration machine is faulty and cannot be operated, it is determined which cluster configuration is to be switched by excluding the cluster configuration. For example, in FIG. 12, since the business host 200B3 has a fault and is in a “stopped” state, the cluster configuration of the business host 200A3 is maintained without switching.
  • FIG. 12 shows a state in which the cluster configuration of the business host 200A1 is reversed.
  • the business host 200A1 is in a standby state (active standby)
  • the business host 200B1 is in an operating state (active)
  • the volume of the storage system 300B from the business host 200B1.
  • the I / O issued to 330 (S1) is written to the volume 320 (P1) of the storage system 300A via the remote path 402 (upward direction), and then via the remote path 402 (downward direction). , Written in the volume 330 (S1).
  • the upstream and downstream port data transfer amounts of the remote paths 401, 402, and 403 after switching the cluster configuration are acquired.
  • the port data transfer amount of the remote path 401 is 80 (MB / second)
  • the port data transfer amount of the remote path 402 is 20 (MB / second)
  • the port data transfer amount of the remote path 403 is 0 (MB). / Sec).
  • the network bandwidth usage rate is calculated from the acquired port data transfer amount and the network bandwidth. Assuming that the network bandwidth of the remote paths 401 to 403 is 100 (MB / second), the network bandwidth of each remote path is as follows.
  • the absolute value is calculated by subtracting 50% from the calculated network bandwidth usage rate, and these are added together to calculate the leveled value.
  • the absolute value of the remote path 401 is 30, the absolute value of the remote path 402 is 30, and the absolute value of the remote path 403 is 50, the following leveling value is calculated.
  • the above switching process is executed to calculate a leveling value.
  • the above processing is executed for seven combinations that are combinations of switching of the three cluster configurations.
  • a combination of cluster configurations having the lowest leveling value is selected from the calculated leveling values, and the cluster configuration is changed so as to maintain the cluster configuration.
  • the cluster configuration is changed to a leveling value 90 combination.
  • the main cluster configuration is maintained without changing the volume configuration or changing the settings while maintaining the correspondence between the business host 200 and the logical volume.
  • the system and subordinate system can be reversed. Therefore, as described above, for all cluster configurations that use remote paths whose port data transfer amount reaches the network bandwidth, switching is performed by reducing the load on the entire system, and all cluster configurations are combined. It is possible to estimate the performance of the remote path.
  • FIG. 17 is a display example 500 of performance data displayed on the display screen of the client terminal. From the display example 500, the user can confirm the port data transfer amount of the remote path used in the global-active device and the limit value of the network bandwidth.
  • the analysis target column 510 displays the copy group name where the remote path is used, the analysis organization, the primary storage system and the secondary storage system using the remote path.
  • the network column 520 displays the limit value of the network bandwidth of the remote path, the port data transfer amount of the remote path 00 and the remote path 01, the response time, etc. in a graph. The user can confirm the details of the performance of the current remote path with reference to the graph displayed in the network column 520.
  • the management server 100 acquires the port data transfer amount of the first remote path and the second remote path, and the port data transfer amount is a predetermined threshold (predetermined network bandwidth or user).
  • Storage system (storage) to which data is written from the business host 200 (host device) so that the port data transfer amounts of the first remote path and the second remote path are leveled Device) 300 is selected.
  • Management Server 110 Host Configuration Change Command Program 110 Leveling Value 111 Leveling Value Calculation Program 112 Cluster Configuration Host Device Failure Detection Program 113 Port Data Transfer Amount Time Series Performance Data Collection Program 114 Storage Device Configuration Information Collection Program 115 Port Data Transfer Amount Time series performance data 116 Storage device configuration information 117 Program 151 Port data transfer amount time series performance data information 161 Host information 162 Storage information 163 Copy pair information 164 Remote path information 165 Volume information 166 Port information 200 Business host 210 Host configuration information provision program 211 Host configuration change program 300 Storage system 310 Port data transfer amount providing program 311 Storage device Configuration information providing program

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

[Problem] To switch remote paths when one of a plurality of remote paths becomes highly loaded in a system configuration into which data is written via a remote path between storage devices. [Solution] When there is a data write request from a host computer, a primary storage device writes data to the primary volume of the primary storage device, and then transfers data via a first remote path and writes data to the secondary volume of a secondary storage device. When there is a data write request from the host computer, the secondary storage device writes, to the primary volume, data transferred via a second remote path from the secondary storage device, and then transfers data via the second remote path and writes to the secondary volume. A management computer selects a storage device to which data from the host computer is written so that the amounts of data transfer of the first remote path and second remote path are equalized.

Description

管理計算機及びシステム構成切り替え方法Management computer and system configuration switching method
 本発明は、管理計算機及びシステム構成切り替え方法に関し、リモートパスの負荷状況に応じて自動的にリモートパスを切り替える管理計算機及びシステム構成切り替え方法に適用して好適なるものである。 The present invention relates to a management computer and a system configuration switching method, and is suitably applied to a management computer and a system configuration switching method that automatically switch a remote path according to a load status of the remote path.
 従来から、ホスト装置とストレージシステムを備えた計算機システムにおいて、ホスト装置の環境を認識して、論理ボリュームへのアクセスを可能にするための環境を自動的に構築することが行われている(例えば、特許文献1)。また、実行系のホスト装置及び待機系のホスト装置を備え、障害許容性を有する計算機システムにおいて、ある系に障害が発生した場合に、待機していた別の系に切り替えて処理を続行することが行われている(例えば、特許文献2)。 Conventionally, in a computer system having a host device and a storage system, an environment for recognizing the environment of the host device and enabling access to a logical volume has been automatically constructed (for example, Patent Document 1). Also, in a computer system that has an executing host device and a standby host device and has fault tolerance, if a failure occurs in one system, the system is switched to another system that was waiting and continues processing. (For example, Patent Document 2).
 また、昨今では、正副2台のストレージ装置間でデータをボリューム単位に冗長化する技術が開示されている。この技術では、ホスト装置と論理ボリュームとの対応関係を変更することなく、ホスト装置を主系(実行系)から従系(待機系)に切り替えることができる。具体的には、ホスト装置が主系から従系に切り替わった場合でも、従系のホストに接続されている副ストレージ装置から正ストレージ装置へのリモートパスを経由して、先に正ボリュームにデータを書き込み、その後、当該正ボリュームとコピーペアを形成している副ボリュームにデータを書き込む。これにより、ボリュームの構成変更や設定変更を行うことなく、ホスト装置と論理ボリュームとの対応関係を維持したまま、主系から従系へホストパスの切り替えを行うことを可能としている。 In addition, recently, a technology for making data redundant in units of volumes between two primary and secondary storage devices has been disclosed. With this technology, the host device can be switched from the primary system (execution system) to the secondary system (standby system) without changing the correspondence between the host apparatus and the logical volume. Specifically, even when the host device is switched from the primary system to the secondary system, the data is first transferred to the primary volume via the remote path from the secondary storage system connected to the secondary host to the primary storage system. After that, the data is written to the secondary volume forming a copy pair with the primary volume. This makes it possible to switch the host path from the primary system to the secondary system while maintaining the correspondence between the host apparatus and the logical volume without changing the volume configuration or setting.
特許第5020601号明細書Japanese Patent No. 5020601 特開2006-189963号公報JP 2006-189963 A
 しかし、上記した技術では、ある系に障害が発生した場合に自動的にリモートパスの切り替えが行われるが、複数のリモートパスのいずれかが高負荷となっても自動的にリモートパスを切り替えることができず、リソースの有効利用を図れないという問題があった。 However, with the technology described above, the remote path is automatically switched when a failure occurs in a certain system, but the remote path is automatically switched even if one of the multiple remote paths becomes heavily loaded. There was a problem that resources could not be used effectively.
 本発明は以上の点を考慮してなされたもので、ストレージ装置間のリモートパスを経由してデータを書き込むシステム構成において、複数のリモートパスのいずれかが高負荷となった場合に、自動的にリモートパスを切り替えることが可能な管理計算機及びシステム構成切り替え方法を提案しようとするものである。 The present invention has been made in consideration of the above points. In a system configuration in which data is written via a remote path between storage apparatuses, when any one of a plurality of remote paths becomes highly loaded, it is automatically performed. A management computer capable of switching a remote path and a system configuration switching method are proposed.
 かかる課題を解決するために本発明においては、ホスト計算機から書き込み要求されたデータを、正側のストレージ装置と副側のストレージ装置とでボリューム単位に冗長化するストレージシステムの性能を管理する管理計算機であって、管理計算機は、前記ホスト計算機と、前記正側のストレージ装置または前記副側のストレージ装置との間を送受信するデータのデータ転送量を格納するメモリと、前記データ転送量を参照するCPUと、前記ホスト計算機、前記正側ストレージ装置または前記副側ストレージ装置と接続するネットワークインタフェースと、を有し、前記正側のストレージ装置は、前記ホスト計算機からデータの書き込み要求があった場合、前記正側のストレージ装置の正ボリュームにデータを書き込んだ後に、第1のリモートパスを経由してデータを転送し、前記副側のストレージ装置の副ボリュームにデータを書き込み、前記副側のストレージ装置は、前記ホスト計算機からデータの書き込み要求があった場合、前記副側のストレージ装置から第2のリモートパスを経由して転送されたデータを前記正ボリュームに書き込んだ後に、前記第2のリモートパスを経由してデータを転送し、前記副ボリュームに書き込み、前記管理計算機は、前記第1のリモートパス及び前記第2のリモートパスのデータ転送量を取得し、該データ転送量が所定の閾値を超えている場合に、前記第1のリモートパス及び前記第2のリモートパスのデータ転送量を平準化させるように、前記ホスト計算機からのデータ書き込み先のストレージ装置を選択することを特徴とする、管理計算機が提供される。 In order to solve this problem, in the present invention, a management computer that manages the performance of a storage system that makes data requested to be written by a host computer redundant in units of volumes in a primary storage device and a secondary storage device The management computer refers to the data transfer amount, a memory for storing a data transfer amount of data transmitted / received between the host computer and the primary storage device or the secondary storage device. A CPU and a network interface connected to the host computer, the primary storage device or the secondary storage device, and the primary storage device receives a data write request from the host computer, After writing data to the primary volume of the primary storage device, When data is transferred via a remote path and data is written to the secondary volume of the secondary storage device, the secondary storage device receives the data write request from the host computer. After the data transferred from the device via the second remote path is written to the primary volume, the data is transferred via the second remote path and written to the secondary volume, and the management computer When the data transfer amounts of the first remote path and the second remote path are acquired, and the data transfer amount exceeds a predetermined threshold, the first remote path and the second remote path A storage device to which data is written from the host computer is selected so that the data transfer amount is leveled. Computer is provided.
 かかる課題を解決するために本発明においては、ホスト計算機から書き込み要求されたデータを、正側のストレージ装置と副側のストレージ装置とでボリューム単位に冗長化するストレージシステムの性能を管理する管理計算機におけるシステム構成切り替え方法であって、管理計算機は、前記ホスト計算機と、前記正側のストレージ装置または前記副側のストレージ装置との間を送受信するデータのデータ転送量を格納するメモリと、前記データ転送量を参照するCPUと、前記ホスト計算機、前記正側ストレージ装置または前記副側ストレージ装置と接続するネットワークインタフェースと、を有し、前記ホスト計算機から前記正側のストレージ装置にデータの書き込み要求があった場合、前記正側のストレージ装置の正ボリュームにデータを書き込んだ後に、第1のリモートパスを経由してデータを転送し、前記副側のストレージ装置の副ボリュームにデータを書き込むステップと、前記ホスト計算機から前記副側のストレージ装置にデータの書き込み要求があった場合、前記副側のストレージ装置から第2のリモートパスを経由して転送されたデータを前記正ボリュームに書き込んだ後に、前記第2のリモートパスを経由してデータを転送し、前記副ボリュームに書き込むステップと、前記管理計算機が、前記第1のリモートパス及び前記第2のリモートパスのデータ転送量を取得するステップと、前記管理計算機が、前記データ転送量が所定の閾値を超えている場合に、前記第1のリモートパス及び前記第2のリモートパスのデータ転送量を平準化させるように、前記ホスト計算機からのデータ書き込み先のストレージ装置を選択するステップと、を含むことを特徴とする、システム構成切り替え方法が提供される。 In order to solve this problem, in the present invention, a management computer that manages the performance of a storage system that makes data requested to be written by a host computer redundant in units of volumes in a primary storage device and a secondary storage device The management computer includes a memory for storing a data transfer amount of data transmitted / received between the host computer and the primary storage device or the secondary storage device, and the data A CPU that refers to the transfer amount; and a network interface that is connected to the host computer, the primary storage device, or the secondary storage device, and the host computer issues a data write request to the primary storage device. If there is, the primary volume of the primary storage device After the data is written, the step of transferring the data via the first remote path and writing the data to the secondary volume of the secondary storage device, and the step of writing the data from the host computer to the secondary storage device When there is a write request, after the data transferred from the secondary storage device via the second remote path is written to the primary volume, the data is transferred via the second remote path. Writing to the secondary volume, the management computer obtaining the data transfer amount of the first remote path and the second remote path, and the management computer determining that the data transfer amount is a predetermined threshold value. So that the data transfer amount of the first remote path and the second remote path is leveled, Characterized in that it comprises the steps of selecting a data write destination storage device from strike computer, the system configuration switching method is provided.
 本発明によれば、ストレージ装置間のリモートパスを経由してデータを書き込むシステム構成において、複数のリモートパスのいずれかが高負荷となった場合に、自動的にリモートパスを切り替えて、使用可能なリソースの有効利用を図ることができる。 According to the present invention, in a system configuration in which data is written via a remote path between storage devices, when one of a plurality of remote paths becomes a heavy load, the remote path can be automatically switched and used. Effective resource utilization.
本発明の一実施形態に係る概要を説明する概念図である。It is a conceptual diagram explaining the outline | summary which concerns on one Embodiment of this invention. 同実施形態にかかる計算機システムの構成を説明する概略図である。It is the schematic explaining the structure of the computer system concerning the embodiment. 同実施形態にかかる管理サーバで管理されるデータベースの構成を示す概念図である。It is a conceptual diagram which shows the structure of the database managed by the management server concerning the embodiment. 同実施形態にかかるポートデータ転送量時系列性能データ情報の一例を示す図表である。It is a chart showing an example of port data transfer amount time-series performance data information according to the embodiment. 同実施形態にかかるホスト情報の一例を示す図表である。It is a chart showing an example of host information concerning the embodiment. 同実施形態にかかるストレージ情報の一例を示す図表である。It is a chart which shows an example of the storage information concerning the embodiment. 同実施形態にかかるコピーペア情報の一例を示す図表である。It is a chart showing an example of copy pair information according to the embodiment. 同実施形態にかかるリモートパス情報の一例を示す図表である。It is a chart which shows an example of the remote path information concerning the embodiment. 同実施形態にかかるボリューム情報の一例を示す図表である。It is a chart which shows an example of the volume information concerning the embodiment. 同実施形態にかかるポート情報の一例を示す図表である。It is a chart showing an example of port information concerning the embodiment. 同実施形態にかかるシステム構成切り替え処理を説明する概念図である。It is a conceptual diagram explaining the system configuration | structure switching process concerning the embodiment. 同実施形態にかかるシステム構成切り替え処理を説明する概念図である。It is a conceptual diagram explaining the system configuration | structure switching process concerning the embodiment. 同実施形態にかかるシステム構成切り替え処理の詳細を示すフローチャートである。It is a flowchart which shows the detail of the system configuration | structure switching process concerning the embodiment. 同実施形態にかかるシステム構成切り替え処理の詳細を示すフローチャートである。It is a flowchart which shows the detail of the system configuration | structure switching process concerning the embodiment. 同実施形態にかかるシステム構成切り替え処理の詳細を示すフローチャートである。It is a flowchart which shows the detail of the system configuration | structure switching process concerning the embodiment. 同実施形態にかかるシステム構成切り替え処理の詳細を示すフローチャートである。It is a flowchart which shows the detail of the system configuration | structure switching process concerning the embodiment. 同実施形態にかかる性能データの表示例を示す概念図である。It is a conceptual diagram which shows the example of a display of the performance data concerning the embodiment.
 以下図面について、本発明の一実施の形態を詳述する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
 なお、以後の説明では「aaaテーブル」、「aaaリスト」、「aaaDB」、「aaaキュー」等の表現にて本発明の情報を説明するが、これら情報は必ずしもテーブル、リスト、DB、キュー、等のデータ構造以外で表現されていてもよい。そのため、データ構造に依存しないことを示すために「aaaテーブル」、「aaaリスト」、「aaaDB」、「aaaキュー」等について「aaa情報」と呼ぶことがある。 In the following description, the information of the present invention will be described using expressions such as “aaa table”, “aaa list”, “aaaDB”, “aaa queue”, etc., but these information are not necessarily limited to tables, lists, DBs, queues, It may be expressed by other than the data structure. Therefore, “aaa table”, “aaa list”, “aaaDB”, “aaa queue”, etc. may be referred to as “aaa information” to indicate that they are not dependent on the data structure.
 さらに、各情報の内容を説明する際に、「識別情報」、「識別子」、「名」、「名前」、「ID」という表現を用いるが、これらについてはお互いに置換が可能である。 Furthermore, in describing the contents of each information, the expressions “identification information”, “identifier”, “name”, “name”, and “ID” are used, but these can be replaced with each other.
 以後の説明では「プログラム」を主語として説明を行う場合があるが、プログラムはプロセッサによって実行されることで定められた処理をメモリ及び通信ポート(通信制御デバイス)を用いながら行うため、プロセッサを主語とした説明としてもよい。また、プログラムを主語として開示された処理は管理サーバ等の計算機、情報処理装置が行う処理としてもよい。また、プログラムの一部または全ては専用ハードウェアによって実現されてもよい。 In the following description, there is a case where “program” is used as the subject. However, since the program performs processing determined by being executed by the processor using the memory and the communication port (communication control device), the processor is used as the subject. The explanation may be as follows. Further, the processing disclosed with the program as the subject may be processing performed by a computer such as a management server or an information processing apparatus. Further, part or all of the program may be realized by dedicated hardware.
 また、各種プログラムはプログラム配布サーバや、計算機が読み取り可能な記憶メディアによって各計算機にインストールされてもよい。この場合、プログラム配布サーバはCPUと記憶資源を含み、記憶資源はさらに配布プログラムと配布対象であるプログラムを記憶している。そして、配布プログラムをCPUが実行することで、プログラム配布サーバのCPUは配布対象のプログラムを他の計算機に配布する。 Various programs may be installed in each computer by a program distribution server or a storage medium that can be read by the computer. In this case, the program distribution server includes a CPU and storage resources, and the storage resources further store a distribution program and a program to be distributed. When the distribution program is executed by the CPU, the CPU of the program distribution server distributes the distribution target program to other computers.
(1)本実施の形態の概要
 まず、本実施の形態の概要について説明する。上記したように、正副2台のストレージ装置間でデータをボリューム単位に冗長化する技術(以下当該技術をglobal-active device、またはgadと称して説明する。)では、ホスト装置と論理ボリュームとの対応関係を変更することなく、ホスト装置を、業務を実行中の実行系(以下、主系のホスト装置とも称する)から、主系のホスト装置の障害時に業務を引き継げるように待機している待機系(以下従系のホスト装置とも称する)に切り替えることができる。
(1) Outline of the present embodiment First, the outline of the present embodiment will be described. As described above, in the technology for making data redundant between the primary and secondary storage devices in units of volumes (hereinafter, this technology is referred to as a global-active device or gad), the host device and the logical volume are Standby without waiting for the host system to take over work from the running system (hereinafter also referred to as the primary host system) that is executing the business, without changing the correspondence, in the event of a failure of the primary host system It is possible to switch to a system (hereinafter also referred to as a subordinate host device).
 通常、global-active deviceでは、障害時に自動的にリモートパスの切り替えが行われる。主系のホスト装置に障害があった場合には、従系のホスト装置に切り替えられて、上記した同期リモートコピーが実行される。すなわち、主系のホスト装置から従系のホスト装置に切り替わった場合に、従系のホスト装置からのI/Oは、従系のホスト装置に接続されている副ストレージ装置から正ストレージ装置へのリモートパスを経由して、先に正ボリュームにデータを書き込み、その後、当該正ボリュームとコピーペアを形成している副ボリュームにデータが書き込まれる。これを実現するためには、リモートパスは上り方向と下り方向の2方向が必要であり、ホスト装置からのI/Oが正ボリュームの筐体から行われるか、副ボリューム側の筐体から行われるかによって使用されるリモートパスの方向が異なる。 Normally, in global-active device, remote path is automatically switched when a failure occurs. If there is a failure in the primary host device, the master host device is switched to the secondary host device, and the synchronous remote copy described above is executed. That is, when the primary host device is switched to the secondary host device, the I / O from the secondary host device is transferred from the secondary storage device connected to the secondary host device to the primary storage device. The data is first written to the primary volume via the remote path, and then the data is written to the secondary volume that forms a copy pair with the primary volume. To achieve this, the remote path requires two directions, upstream and downstream, and I / O from the host device is performed from the primary volume chassis or from the secondary volume chassis. The direction of the remote path used differs depending on the
 また、ホスト装置が複数のクラスタで構成されている場合には、正ストレージ装置と副ストレージ装置との間でリモートコピーのためのデータ転送を行う複数のリモートパスが構成される。上記したように、通常は、ある系に障害が発生した場合にのみリモートパスの切り替えが行われているが、複数のリモートパスのいずれかが高負荷となった場合に自動的にリモートパスを切り替える構成とはなっておらず、リソースを効率的に利用することができなかった。そこで、本実施の形態では、複数のリモートパスを効果的に切り替えることにより、障害発生時の切り替え機能は維持したまま、リモートパス性能の負荷分散を行ってリソースの有効利用を図ることを可能としている。 In addition, when the host device is configured with a plurality of clusters, a plurality of remote paths for performing data transfer for remote copy between the primary storage device and the secondary storage device are configured. As described above, the remote path is normally switched only when a failure occurs in a certain system. However, when one of the multiple remote paths becomes heavily loaded, the remote path is automatically set. It was not configured to switch, and resources could not be used efficiently. Therefore, in this embodiment, by effectively switching a plurality of remote paths, it is possible to effectively use resources by distributing the load of remote path performance while maintaining the switching function when a failure occurs. Yes.
 具体的には、図1に示すように、本実施の形態にかかる計算機システムでは、複数のホスト装置(以下では、所定の業務を実行する業務ホストと称して説明する。)がクラスタを構成している。例えば、図1では、業務ホスト200A1と200B1、業務ホスト200A2と200B2、業務ホスト200A3と200B3でクラスタが構成されている。例えば、業務ホスト200A1または200A2が主系となり業務を実行(アクティブ)し、業務ホスト200B1またはB2が業務を実行していない従系の業務ホストであり、主系のホスト装置が障害となった場合に業務を引き継げるように待機(アクティブスタンバイ)している。また、業務ホスト200A3が障害等で停止している場合には、業務ホスト200B3がアクティブとなる。 Specifically, as shown in FIG. 1, in the computer system according to the present embodiment, a plurality of host devices (hereinafter referred to as business hosts that execute a predetermined business) constitute a cluster. ing. For example, in FIG. 1, the business hosts 200A1 and 200B1, the business hosts 200A2 and 200B2, and the business hosts 200A3 and 200B3 constitute a cluster. For example, when the business host 200A1 or 200A2 becomes the primary system and executes (active) the business, the business host 200B1 or B2 is a secondary business host that does not execute the business, and the primary host device becomes a failure The system is on standby (active standby) so that it can take over business. When the business host 200A3 is stopped due to a failure or the like, the business host 200B3 becomes active.
 なお、以下では、業務ホストがクラスタを構成している場合について説明するが、本実施の形態はかかる例に限定されない。例えば、1つの業務ホストに正ボリュームと副ボリュームとが接続され、業務ホストからのI/Oを正ボリュームの筐体から行うか、副ボリュームの筐体から行うかを切り替える構成に本実施の形態を適用してもよい。 In the following, a case where the business host configures a cluster will be described, but the present embodiment is not limited to such an example. For example, in this embodiment, the primary volume and the secondary volume are connected to one business host, and I / O from the business host is switched from the primary volume housing to the secondary volume housing. May be applied.
 図1を参照して、本実施の形態におけるリモートパス性能を最適化するためのリモートパスの切り替えについて説明する。上記した業務ホスト200及び複数のボリュームを管理するストレージシステム300は、計算機システムの構成を管理する管理サーバ100に接続されている。計算機システムのハードウェア構成及び機能構成については後で詳細に説明する。なお、管理サーバ100は、本発明の管理計算機の一例である。 Referring to FIG. 1, a description will be given of remote path switching for optimizing the remote path performance in the present embodiment. The business host 200 and the storage system 300 that manages a plurality of volumes are connected to the management server 100 that manages the configuration of the computer system. The hardware configuration and functional configuration of the computer system will be described later in detail. The management server 100 is an example of the management computer of the present invention.
 図1に示すように、まず、管理サーバ100が、ポートデータ転送量がネットワーク帯域の最大値に達しているリモートパスを検知する(STEP01)。ここで、ポートデータ転送量とは、上記した同期コピーが行われる際の、一ストレージシステム300のポートから他のストレージシステム300のポートへリモートパスを介して転送されるデータのデータ転送量である。 As shown in FIG. 1, first, the management server 100 detects a remote path in which the port data transfer amount reaches the maximum value of the network bandwidth (STEP 01). Here, the port data transfer amount is a data transfer amount of data transferred from a port of one storage system 300 to a port of another storage system 300 via a remote path when the above-described synchronous copy is performed. .
 続いて、管理サーバ100は、STEP01で検知したリモートパスを使用しているボリュームのGADコピーペアの情報を取得する(STEP02)。そして、管理サーバ100は、STEP02で取得したコピーペアを利用している業務ホストに主従関係を判定させる切り替えをリクエストして、切り替え後のリモートパスのポートデータ転送量を取得する(STEP03)。 Subsequently, the management server 100 acquires the GAD copy pair information of the volume using the remote path detected in STEP 01 (STEP 02). Then, the management server 100 requests switching that causes the business host using the copy pair acquired in STEP 02 to determine the master-slave relationship, and acquires the port data transfer amount of the remote path after switching (STEP 03).
 そして、STEP03で取得したポートデータ転送量をもとに、最適化された組み合わせのクラスタ構成を選択して、当該クラスタ構成を維持する(STEP04)。 Then, based on the port data transfer amount acquired in STEP 03, an optimized combination cluster configuration is selected and the cluster configuration is maintained (STEP 04).
 上記したように、global-active deviceでは、ボリュームの構成変更や設定変更を行うことなく、ホスト装置と論理ボリュームとの対応関係を維持したまま、主系から従系へホストパスの切り替えを行うことができるため、STEP03に示すリモートパスの切り替えを容易に行うことができる。したがって、本実施の形態では、STEP03でリモートパスの切り替えを行い、STEP04でリモートパス性能が適正化を判定することにより、業務運用を継続しながら、最適なリモートパス性能となるクラスタ構成に切り替えることが可能となる。 As described above, the global-active device can switch the host path from the primary system to the secondary system while maintaining the correspondence between the host device and the logical volume without changing the volume configuration or changing the settings. Therefore, it is possible to easily switch the remote path shown in STEP03. Therefore, in this embodiment, the remote path is switched in STEP 03, and the remote path performance is determined to be appropriate in STEP 04, thereby switching to a cluster configuration that provides the optimum remote path performance while continuing the business operation. Is possible.
(2)計算機システムの構成
 次に、図2を参照して、計算機システムの構成について説明する。図2に示すように、計算機システムは、管理サーバ100、業務ホスト200A1~200A3(以下業務ホスト200Aと称して説明する場合もある。)、業務ホスト200B1~200B3(以下業務ホスト200Bと称して説明する場合もある。)、ストレージシステム300A及びストレージシステム300Bから構成される。なお、以下では、業務ホスト200A及び業務ホスト200Bを業務ホスト200Aと総称し、ストレージシステム300A及びストレージシステム300Bをストレージシステム300と総称する場合もある。
(2) Configuration of Computer System Next, the configuration of the computer system will be described with reference to FIG. As shown in FIG. 2, the computer system includes a management server 100, business hosts 200A1 to 200A3 (hereinafter also referred to as business host 200A), business hosts 200B1 to 200B3 (hereinafter referred to as business host 200B). The storage system 300A and the storage system 300B. Hereinafter, the business host 200A and the business host 200B may be collectively referred to as the business host 200A, and the storage system 300A and the storage system 300B may be collectively referred to as the storage system 300.
(2-1)管理サーバの構成
 管理サーバ100は、主に、業務ホスト200A、業務ホスト200B、ストレージシステム300A及びストレージシステム300Bと接続して各装置の構成情報を収集し、業務ホスト200A及び200Bの障害を検知したり、業務ホスト200A及び200Bのクラスタ構成を変更したりする。
(2-1) Management Server Configuration The management server 100 is mainly connected to the business host 200A, the business host 200B, the storage system 300A, and the storage system 300B to collect configuration information of each device, and the business hosts 200A and 200B. Or the cluster configuration of the business hosts 200A and 200B is changed.
(2-1-1)ハードウェア構成
 管理サーバ100は、主に、CPU101、メモリ102、HDD103及びHBA104から構成される。
(2-1-1) Hardware Configuration The management server 100 mainly includes a CPU 101, a memory 102, an HDD 103, and an HBA 104.
 CPU101は、演算処理装置として機能し、メモリ102に記憶されているプログラムや演算パラメータ等にしたがって、管理サーバ100の動作を制御する。HDD(Hard Disk Drive)103は、記憶媒体、記憶媒体にデータを記録する記録装置、記憶媒体からデータを読み出す読出し装置および記憶媒体に記録されたデータを削除する削除装置などを含み、ハードディスクを駆動し、CPU101が実行するプログラムや各種データを格納する。 The CPU 101 functions as an arithmetic processing unit, and controls the operation of the management server 100 according to programs, arithmetic parameters, and the like stored in the memory 102. An HDD (Hard Disk Drive) 103 includes a storage medium, a recording device that records data on the storage medium, a reading device that reads data from the storage medium, a deletion device that deletes data recorded on the storage medium, and the like, and drives a hard disk Then, the program executed by the CPU 101 and various data are stored.
 HBA(Host Bus Adapter)104は、ネットワークに接続するための通信デバイス等で構成された通信インタフェースであり、業務ホスト200またはストレージシステム300と接続してデータの送受信を行う。 The HBA (Host Bus Adapter) 104 is a communication interface configured by a communication device or the like for connecting to the network, and is connected to the business host 200 or the storage system 300 to transmit / receive data.
 また、管理サーバ100は、入出力デバイスを有する。入出力デバイスの例としてはディスプレイとキーボードとポインタデバイスが考えられるが、これ以外のデバイスであってもよい。また、入出力デバイスの代替としてシリアルインターフェースやイーサーネットインターフェースを入出力デバイスとし、当該インタフェースにディスプレイ又はキーボード又はポインタデバイスを有する表示用計算機を接続し、表示用情報を表示用計算機に送信したり、入力用情報を表示用計算機から受信することで、表示用計算機で表示を行ったり、入力を受け付けることで入出力デバイスでの入力及び表示を代替してもよい。 The management server 100 also has an input / output device. Examples of input / output devices include a display, a keyboard, and a pointer device, but other devices may be used. Also, as an alternative to the input / output device, a serial interface or an Ethernet interface is used as the input / output device, a display computer having a display or a keyboard or a pointer device is connected to the interface, and the display information is transmitted to the display computer. By receiving the input information from the display computer, the display computer may perform the display, or the input may be replaced by the input / output device by receiving the input.
 以後、ストレージシステムを管理し、本願発明の表示用情報を表示する一つ以上の計算機の集合を管理システムと呼ぶことがある。管理サーバ100が表示用情報を表示する場合は管理サーバ100が管理システムである、また、管理サーバ100と表示用計算機の組み合わせも管理システムである。また、管理処理の高速化や高信頼化のために複数の計算機で管理サーバ100と同等の処理を実現してもよく、この場合は当該複数の計算機(表示を表示用計算機が行う場合は表示用計算機も含め)が管理システムである。 Hereinafter, a set of one or more computers that manage the storage system and display the display information of the present invention may be referred to as a management system. When the management server 100 displays display information, the management server 100 is a management system, and a combination of the management server 100 and a display computer is also a management system. Further, in order to increase the speed and reliability of management processing, a plurality of computers may realize processing equivalent to the management server 100. In this case, the plurality of computers (in the case where the display computer performs display, display is performed). Management computer) is the management system.
(2-1-2)機能構成
 管理サーバ100は、CPU101が実行するプログラムとして、主に、ホスト構成変更命令プログラム110、平準化値算出プログラム111、クラスタ構成ホスト装置障害検知プログラム112、ポートデータ転送量時系列性能データ収集プログラム113、ホスト・ストレージ装置構成情報収集プログラム114及びクラスタ構成切り替えプログラム117などを含む。また、HDD103には、ポートデータ転送量時系列性能データ115及びホスト・ストレージ装置構成情報116などのデータベースが記憶されている。
(2-1-2) Functional Configuration The management server 100 mainly executes a host configuration change command program 110, a leveled value calculation program 111, a cluster configuration host device failure detection program 112, and port data transfer as programs executed by the CPU 101. This includes a time-series performance data collection program 113, a host / storage device configuration information collection program 114, a cluster configuration switching program 117, and the like. The HDD 103 stores a database such as port data transfer amount time-series performance data 115 and host / storage device configuration information 116.
 ホスト構成変更命令プログラム110は、業務ホスト200のクラスタ構成を切り替える命令を対象となる業務ホスト200に行う。平準化値算出プログラム111は、ネットワーク帯域使用率からリモートパスの平準化値の計算を行う。ここで、ネットワーク帯域使用率とは、ポートデータ転送量をネットワーク帯域で除算して、100を乗算した値であり、伝送能力の最大値であるネットワーク帯域の何パーセントをデータ転送量に使用しているかを示す値である。 The host configuration change command program 110 sends a command to switch the cluster configuration of the business host 200 to the target business host 200. The leveling value calculation program 111 calculates the leveling value of the remote path from the network bandwidth usage rate. Here, the network bandwidth usage rate is a value obtained by dividing the port data transfer amount by the network bandwidth and multiplying by 100, and what percentage of the network bandwidth, which is the maximum value of the transmission capacity, is used as the data transfer amount. It is a value indicating whether or not.
 本実施の形態では、ネットワーク使用率から50%を減算した絶対値をリモートパスごとに算出し、それらを合計した値を平準化値としている。リモートパスの性能は、ネットワーク帯域に対してポートデータ転送量が大きな幅を占めていない場合、すなわち、ネットワーク使用率が大きい場合には問題とならない。したがって、ネットワーク使用率を低い状態にするよりも、ネットワーク使用率が高い状態のリモートパスを緩和する必要がある。そこで、本実施の形態における平準化では、リモートパスのネットワーク利用率が50%付近に近い組み合わせを選択することにより、ネットワーク使用率の高いリモートパスのポートデータ転送量を押さえて、各リモートパスの性能を平準にしている。平準化値の計算については後で詳細に説明する。 In this embodiment, an absolute value obtained by subtracting 50% from the network usage rate is calculated for each remote path, and the sum of these values is used as the leveling value. The performance of the remote path is not a problem when the port data transfer amount does not occupy a large range with respect to the network bandwidth, that is, when the network usage rate is large. Therefore, it is necessary to mitigate remote paths with a high network usage rate rather than a low network usage rate. Therefore, in the leveling in this embodiment, by selecting a combination in which the network usage rate of the remote path is close to 50%, the port data transfer amount of the remote path with a high network usage rate is suppressed, and each remote path Performance is leveled. The calculation of the leveling value will be described in detail later.
 クラスタ構成ホスト装置障害検知プログラム112は、クラスタ構成の障害情報を業務ホスト200から収集する。ポートデータ転送量時系列性能データ収集プログラム113は、ポートデータ転送量をストレージシステム300のポートデータ転送量提供プログラム310から収集する。ホスト・ストレージ装置構成情報収集プログラム114は、業務ホスト200及びストレージシステム300からそれぞれ業務ホスト200およびストレージシステム300の構成情報を取得する。クラスタ構成切り替えプログラム117は、収集されたポートデータ転送量から、クラスタ構成の切り替えが必要か否かを判断し、必要と判断された場合にクラスタ構成のホスト構成変更命令プログラムに指示の切り替え処理を実行する。 The cluster configuration host device failure detection program 112 collects cluster configuration failure information from the business host 200. The port data transfer amount time series performance data collection program 113 collects the port data transfer amount from the port data transfer amount provision program 310 of the storage system 300. The host / storage device configuration information collection program 114 acquires the configuration information of the business host 200 and the storage system 300 from the business host 200 and the storage system 300, respectively. The cluster configuration switching program 117 determines whether or not the cluster configuration needs to be switched based on the collected port data transfer amount. If it is determined that the cluster configuration switching program 117 is necessary, the cluster configuration switching program 117 performs an instruction switching process for the cluster configuration host configuration change instruction program. Execute.
(2-2)業務ホストの構成
 業務ホスト200は、ストレージシステムの正ボリュームに対してデータの書き込み/読み込みを行う。また、管理サーバ100からのクラスタ構成の変更要求に対して、クラスタ構成を主系または従系に変更する。
(2-2) Business Host Configuration The business host 200 writes / reads data to / from the primary volume of the storage system. Further, in response to a cluster configuration change request from the management server 100, the cluster configuration is changed to the primary system or the secondary system.
(2-2-1)ハードウェア構成
 業務ホスト200は、主に、CPU201、メモリ202、HDD203及びHBA204から構成される。
(2-2-1) Hardware Configuration The business host 200 mainly includes a CPU 201, a memory 202, an HDD 203, and an HBA 204.
 CPU201は、演算処理装置として機能し、メモリ202に記憶されているプログラムや演算パラメータ等にしたがって、業務ホスト200の動作を制御する。HDD(Hard Disk Drive)203は、記憶媒体、記憶媒体にデータを記録する記録装置、記憶媒体からデータを読み出す読出し装置および記憶媒体に記録されたデータを削除する削除装置などを含み、ハードディスクを駆動し、CPU201が実行するプログラムや各種データを格納する。 The CPU 201 functions as an arithmetic processing unit, and controls the operation of the business host 200 according to programs, arithmetic parameters, and the like stored in the memory 202. An HDD (Hard Disk Drive) 203 includes a storage medium, a recording device that records data on the storage medium, a reading device that reads data from the storage medium, and a deletion device that deletes data recorded on the storage medium, and drives a hard disk The program executed by the CPU 201 and various data are stored.
 HBA(Host Bus Adapter)204は、ネットワークに接続するための通信デバイス等で構成された通信インタフェースであり、管理サーバ100またはストレージシステム300と接続してデータの送受信を行う。 An HBA (Host Bus Adapter) 204 is a communication interface configured by a communication device or the like for connecting to a network, and transmits / receives data by connecting to the management server 100 or the storage system 300.
(2-2-2)機能構成
 業務ホスト200は、CPU201が実行するプログラムとして、主に、ホスト構成情報提供プログラム210及びホスト構成変更プログラム211などを含む。
(2-2-2) Functional Configuration The business host 200 mainly includes a host configuration information provision program 210 and a host configuration change program 211 as programs executed by the CPU 201.
 ホスト構成情報提供プログラム210は、管理サーバ100のホスト・ストレージ装置構成情報収集プログラム114からの要求に応じて、業務ホスト200の構成情報を管理サーバ100に提供する。 The host configuration information provision program 210 provides configuration information of the business host 200 to the management server 100 in response to a request from the host / storage device configuration information collection program 114 of the management server 100.
 ホスト構成変更プログラム211は、管理サーバ100のホスト構成変更命令プログラム110からの命令に応じて、業務ホスト200のクラスタ構成を切り替える。業務ホスト200は、自身が主系である場合に、管理サーバ100の命令に応じて、アクティブモードからアクティブスタンバイモードにして、従系の業務ホストに切り替える。また、業務ホスト200は、自身が従系である場合に、管理サーバ100の命令に応じて、アクティブスタンバイモードからアクティブモードにして、主系の業務ホストに切り替える。 The host configuration change program 211 switches the cluster configuration of the business host 200 in accordance with a command from the host configuration change command program 110 of the management server 100. When the business host 200 is the primary system, the business host 200 switches from the active mode to the active standby mode in accordance with a command from the management server 100 and switches to the secondary business host. Further, when the business host 200 is a secondary system, the business host 200 switches from the active standby mode to the active mode in accordance with a command from the management server 100 and switches to the primary business host.
 例えば、業務ホスト200A1と業務ホスト200B1とでクラスタが構成され、業務ホスト200A1が業務ホスト200A1のHBA204を介してストレージシステム300Aとが接続され、業務ホスト200B1が業務ホスト200B1のHBA204を介してストレージシステム300Bと接続されているとする。管理サーバ100のホスト構成変更命令プログラム110からクラスタ構成の切り替え命令があった場合には、HBA204の接続を切り替えることにより、業務ホスト200A1から業務ホスト200B1に切り替える。すなわち、業務ホスト200A1のHBA204とストレージシステム300Aとの接続を切断し、業務ホスト200B1のHBA204と介してストレージシステム300Bとを接続する。 For example, the business host 200A1 and the business host 200B1 form a cluster, the business host 200A1 is connected to the storage system 300A via the HBA 204 of the business host 200A1, and the business host 200B1 is connected to the storage system via the HBA 204 of the business host 200B1. Assume that it is connected to 300B. When there is a cluster configuration switching command from the host configuration change command program 110 of the management server 100, the business host 200A1 is switched to the business host 200B1 by switching the connection of the HBA 204. That is, the connection between the HBA 204 of the business host 200A1 and the storage system 300A is disconnected, and the storage system 300B is connected via the HBA 204 of the business host 200B1.
(2-2-3)データベース構成
 次に、図3~図10を参照して、管理サーバ100で管理されるデータベースの構成について説明する。図3に示すように、管理サーバ100のポートデータ転送量時系列性能データ115には、ポートデータ転送量時系列性能データ情報151が含まれる。また、ホスト・ストレージ装置構成情報116には、ホスト情報161、ストレージ情報162、コピーペア情報163、リモートパス情報164、ボリューム情報165及びポート情報166が含まれる。
(2-2-3) Database Configuration Next, a database configuration managed by the management server 100 will be described with reference to FIGS. As shown in FIG. 3, the port data transfer amount time series performance data 115 of the management server 100 includes port data transfer amount time series performance data information 151. The host / storage apparatus configuration information 116 includes host information 161, storage information 162, copy pair information 163, remote path information 164, volume information 165, and port information 166.
 ポートデータ転送量時系列性能データ情報151は、ポートごとのデータ転送量を時系列で管理する情報であって、図4に示すように、時間1511、ポートID1512及びデータ転送量1513が関連付けられている。時間1511は、データ転送量を計測した時間であり、ポートID1512は、ポートを識別する情報であり、データ転送量1513は、計測されたデータの転送量である。例えば、図4では、時間「T1」に、ポートID「Port_1」のデータ転送量が「40Mbyte/sec」であることがわかる。 The port data transfer amount time series performance data information 151 is information for managing the data transfer amount for each port in time series. As shown in FIG. 4, the time 1511, the port ID 1512, and the data transfer amount 1513 are associated with each other. Yes. The time 1511 is the time when the data transfer amount is measured, the port ID 1512 is information for identifying the port, and the data transfer amount 1513 is the measured data transfer amount. For example, in FIG. 4, it can be seen that the data transfer amount of the port ID “Port_1” is “40 Mbyte / sec” at the time “T1”.
 ホスト情報161は、業務ホスト200の構成や稼働を管理する情報であって、図5に示すように、ホストID1611、クラスタ構成ホストID1612及び稼働状態1613が関連付けられている。ホストID1611は、業務ホスト200を識別する情報であり、クラスタ構成ホストID1612は、クラスタを構成する業務ホスト200を識別する情報であり、稼働状態1613は、業務ホスト200の稼働状態を示す情報であり、「稼働」、「待機」または「停止」が設定される。例えば、図5では、ホストID「HostA1」とクラスタを構成するホストのホストIDは「HostB1」であり、「HostA1」が「稼働」状態であることがわかる。 The host information 161 is information for managing the configuration and operation of the business host 200, and as shown in FIG. 5, a host ID 1611, a cluster configuration host ID 1612, and an operation state 1613 are associated with each other. The host ID 1611 is information for identifying the business host 200, the cluster configuration host ID 1612 is information for identifying the business host 200 constituting the cluster, and the operating state 1613 is information indicating the operating state of the business host 200. , “Operating”, “standby” or “stop” are set. For example, in FIG. 5, it can be seen that the host ID “HostA1” and the host ID of the host constituting the cluster are “HostB1”, and “HostA1” is in the “operating” state.
 ストレージ情報162は、ストレージシステム300の構成を管理する情報であって、図6に示すように、ストレージシステムID1621、ボリュームID1622及びポートID1623が関連付けられている。ストレージシステムID1621は、ストレージシステム300を識別する情報であり、ボリュームID1622は、論理ボリュームを識別する情報であり、ポートID1623は、ポートを識別する情報である。例えば、図6では、ストレージシステムID「StorageA」のボリュームID「Volume_1」はポートID「Port_1」を介してアクセスされることがわかる。 The storage information 162 is information for managing the configuration of the storage system 300, and is associated with a storage system ID 1621, a volume ID 1622, and a port ID 1623 as shown in FIG. The storage system ID 1621 is information for identifying the storage system 300, the volume ID 1622 is information for identifying a logical volume, and the port ID 1623 is information for identifying a port. For example, in FIG. 6, it can be seen that the volume ID “Volume_1” of the storage system ID “StorageA” is accessed through the port ID “Port_1”.
 コピーペア情報163は、ボリュームのコピーペアを管理する情報であって、図7に示すように、コピーペアID1631、ストレージシステム(正側)1632、ストレージシステム(副側)1633、ボリュームID(正側)1634、ボリュームID(副側)1635、コピー種別1636、リモートパスID(正側)1637及びリモートパスID(副側)1638が関連付けられている。 The copy pair information 163 is information for managing a copy pair of a volume. As shown in FIG. 7, the copy pair information 163 is a copy pair ID 1631, a storage system (primary side) 1632, a storage system (secondary side) 1633, and a volume ID (primary side). 1634, volume ID (secondary side) 1635, copy type 1636, remote path ID (primary side) 1637, and remote path ID (secondary side) 1638 are associated with each other.
 コピーペアID1631は、コピーペアを識別する情報である。ストレージシステム(正側)1632は、正側のストレージシステム300の識別情報を示す。ストレージシステム(副側)1633は、副側のストレージシステム300の識別情報を示す。ボリュームID(正側)1634、正側のボリュームの識別情報を示す。ボリュームID(副側)1635は、副側のボリュームの識別情報を示す。コピー種別1636は、コピー種別の情報を示す。リモートパスID(正側)1637は、正側のリモートパスの識別情報を示す。のリモートパスID(副側)1638は、副側のリモートパスの識別情報を示す。 The copy pair ID 1631 is information for identifying a copy pair. The storage system (primary side) 1632 indicates identification information of the primary storage system 300. The storage system (secondary side) 1633 indicates identification information of the storage system 300 on the secondary side. The volume ID (primary side) 1634 indicates the identification information of the primary side volume. The volume ID (secondary side) 1635 indicates identification information of the secondary side volume. The copy type 1636 indicates information on the copy type. The remote path ID (primary side) 1637 indicates identification information of the primary side remote path. The remote path ID (secondary side) 1638 of the remote side indicates identification information of the remote side remote path.
 例えば、図7では、コピーペアID「Pair_001」は、「StorageA」(正側)の「Volume_1」(正側)と「StorageB」(副側)の「Volume_5」(副側)とでコピーペアが形成され、コピー種別は「GAD」(global-active device)で、リモートパス「Path1」(正側)及び「Path2」(副側)を利用してコピーが実行されることがわかる。 For example, in FIG. 7, the copy pair ID “Pair_001” has a copy pair of “Storage_1” (primary side) “Volume_1” (primary side) and “StorageB” (secondary side) “Volume_5” (secondary side). It can be seen that the copy type is “GAD” (global-active device) and the copy is executed using the remote paths “Path1” (primary side) and “Path2” (secondary side).
 リモートパス情報164は、リモートパスの構成を管理する情報であって、図8に示すように、リモートパスID1641、プライマリ側ストレージシステム(正側)1642、プライマリ側ポート名(正側)1643、セカンダリ側ストレージシステム(副側)1644、セカンダリ側ポート名(副側)1645及びネットワーク帯域1646が関連付けられている。 The remote path information 164 is information for managing the configuration of the remote path, and as shown in FIG. 8, the remote path ID 1641, the primary storage system (primary side) 1642, the primary side port name (primary side) 1643, the secondary Side storage system (secondary side) 1644, secondary side port name (secondary side) 1645, and network bandwidth 1646 are associated with each other.
 リモートパスID1641は、リモートパスを識別する情報である。プライマリ側ストレージシステム(正側)1642は、正側のストレージシステム300の識別情報を示す。プライマリ側ポート名(正側)1643、正側のポートの識別情報を示す。セカンダリ側ストレージシステム(副側)1644、副側のストレージシステム300の識別情報を示す。セカンダリ側ポート名(副側)1645は、副側のポートの識別情報を示す。ネットワーク帯域1646は、当該リモートパスのネットワーク帯域を示す。 The remote path ID 1641 is information for identifying the remote path. The primary storage system (primary side) 1642 indicates identification information of the primary storage system 300. The primary side port name (primary side) 1643 indicates the identification information of the primary side port. The identification information of the secondary side storage system (secondary side) 1644 and the secondary side storage system 300 is shown. The secondary side port name (secondary side) 1645 indicates identification information of the secondary side port. A network band 1646 indicates the network band of the remote path.
 例えば、図8では、リモートパスID「Path1」は、「StorageA」(正側)の「Port_1」(正側)と「StorageB」(副側)の「Port_4」(副側)とを接続し、「Path1」のネットワーク帯域は「100MB」であることがわかる。 For example, in FIG. 8, the remote path ID “Path1” connects “Port_1” (primary side) of “StorageA” (primary side) and “Port_4” (secondary side) of “StorageB” (secondary side), It can be seen that the network bandwidth of “Path1” is “100MB”.
 ボリューム情報165は、ボリュームの構成を管理する情報であって、図9に示すように、ボリュームID1651、ストレージシステム1652及び関連ホストID1653が関連付けられている。ボリュームID1651は、ボリュームの識別情報である。ストレージシステム1652は、当該ボリュームを提供するストレージシステムの識別情報である。関連ホストID1653は、当該ボリュームに関連付けられている業務ホスト200の識別情報である。 The volume information 165 is information for managing the volume configuration, and is associated with a volume ID 1651, a storage system 1652, and an associated host ID 1653 as shown in FIG. The volume ID 1651 is volume identification information. The storage system 1652 is identification information of a storage system that provides the volume. The related host ID 1653 is identification information of the business host 200 associated with the volume.
 例えば、図9では、ボリュームID「Volume_1」は、「StorageA」により提供され、「Host_A1」に関連付けられていることがわかる。 For example, in FIG. 9, it can be seen that the volume ID “Volume_1” is provided by “StorageA” and is associated with “Host_A1”.
 ポート情報166は、ポートの構成が管理する情報であって、図10に示すように、ポートID1661、ストレージシステム1662及びポートロール1663が関連付けられている。ポートID1661は、ポートを識別する情報である。ストレージシステム1662は、当該ポートを有するストレージシステム300の識別情報である。ポートロール1663は、ポートに割り振られる役割の情報であり、例えば「RCU Target」、「Initiator」などが設定される。 The port information 166 is information managed by the port configuration, and is associated with a port ID 1661, a storage system 1662, and a port role 1663 as shown in FIG. The port ID 1661 is information for identifying a port. The storage system 1662 is identification information of the storage system 300 having the port. The port role 1663 is information on a role assigned to the port, and for example, “RCU Target”, “Initiator”, and the like are set.
 例えば、図10では、ポートID「Port_1」は、「StorageA」に備えられ、当該ポートのポートロールは「RCU Target」であることがわかる。 For example, in FIG. 10, it can be seen that the port ID “Port_1” is provided in “StorageA”, and the port role of the port is “RCU Target”.
(2-3)ストレージシステムの構成
 図2に戻り、ストレージシステム300は、業務ホスト200から送信されたコマンドを解釈して、ディスク装置の記憶領域内へのリード/ライトを実行する。また、上記したglobal-active deviceにおいて、正ボリュームに書き込まれた情報を、副ボリュームを管理するストレージシステム300に送信する。また、管理サーバ100に、global-active deviceにおけるリモートパスの構成情報や、ポートデータ転送量の時系列データなどを提供する。
(2-3) Storage System Configuration Returning to FIG. 2, the storage system 300 interprets the command transmitted from the business host 200 and executes read / write into the storage area of the disk device. In the above-mentioned global-active device, information written in the primary volume is transmitted to the storage system 300 that manages the secondary volume. The management server 100 is also provided with remote path configuration information in the global-active device, time-series data of the port data transfer amount, and the like.
(2-3-1)ハードウェア構成
 ストレージシステム300は、主にコントローラ301及びディスク320またはディスク330を備える。コントローラ301は、管理サーバ100の命令に応じて、必要な情報を管理サーバ100に提供したり、業務ホスト200から要求に応じて、ディスク320またはディスク330へのデータのリード/ライトを実行したりする。
(2-3-1) Hardware Configuration The storage system 300 mainly includes a controller 301 and a disk 320 or a disk 330. The controller 301 provides necessary information to the management server 100 in response to a command from the management server 100, or executes data read / write to the disk 320 or the disk 330 in response to a request from the business host 200. To do.
 ストレージシステム300には、複数のディスク320または330が備えられ、1または複数のハードディスクドライブにより1つのRAID(Redundant Arrays of Independent Disks)グループが構成され、1つのRAIDグループにより提供される物理的な記憶領域上に1または複数の論理ボリュームが定義される。そして、この論理ボリュームが業務ホスト200に提供される。業務ホスト200は、論理ボリュームに対して所定のコマンドを送信することにより、データの書き込みや読み出しを行うことができる。 The storage system 300 includes a plurality of disks 320 or 330, and one RAID (Redundant Arrays of Independent Disks) group is configured by one or a plurality of hard disk drives, and physical storage provided by one RAID group. One or more logical volumes are defined on the area. Then, this logical volume is provided to the business host 200. The business host 200 can write and read data by sending a predetermined command to the logical volume.
 上記したように、global-active deviceでは、主系の業務ホスト200から従系の業務ホスト200に切り替わった場合に、従系の業務ホスト200からのI/Oは、従系の業務ホスト200に接続されている副側のストレージシステム300から正側のストレージシステム300へのリモートパスを経由して、先に正ボリュームにデータを書き込み、その後、当該正ボリュームとコピーペアを形成している副ボリュームにデータが書き込まれる。 As described above, in the global-active device, when the primary business host 200 is switched to the secondary business host 200, I / O from the secondary business host 200 is transferred to the secondary business host 200. Data is first written to the primary volume via the remote path from the connected secondary storage system 300 to the primary storage system 300, and then the secondary volume forms a copy pair with the primary volume. Data is written to
 したがって、global-active deviceでは、正側のストレージシステム300で管理されるディスク320から構成される正ボリュームは、業務ホスト200がデータを読み書きするボリュームとなり、副側のストレージシステム300で管理されるディスク330から構成される副ボリュームは、業務ホスト200がデータを読み込むボリュームとなる。 Therefore, in the global-active device, the primary volume composed of the disk 320 managed by the primary storage system 300 is a volume on which the business host 200 reads and writes data, and the disk is managed by the secondary storage system 300. The secondary volume configured from 330 is a volume from which the business host 200 reads data.
 また、ストレージシステム300間のデータコピーは、リモートパス401または402を介して転送される。本実施の形態にかかるglobal-active deviceを実現するためには、少なくとも、リモートパス401及びリモートパス402は、上り方向と下り方向のリモートパスが必要となる。本実施の形態では、ストレージシステム300の筐体間を接続する各リモートパスの転送量を平準化させるように、最適なクラスタ構成を維持することを目的としている。 Further, the data copy between the storage systems 300 is transferred via the remote path 401 or 402. In order to realize the global-active device according to the present embodiment, at least the remote path 401 and the remote path 402 require remote paths in the upstream and downstream directions. The object of the present embodiment is to maintain an optimal cluster configuration so that the transfer amount of each remote path connecting between the enclosures of the storage system 300 is leveled.
(2-3-2)機能構成
 ストレージシステム300は、コントローラ301が実行するプログラムとして、主に、ポートデータ転送量提供プログラム310及びストレージ装置構成情報提供プログラム311などを含む。
(2-3-2) Functional Configuration The storage system 300 mainly includes a port data transfer amount providing program 310 and a storage device configuration information providing program 311 as programs executed by the controller 301.
 ポートデータ転送量提供プログラム310は、管理サーバ100のホスト・ストレージ装置構成情報収集プログラム114の要求に応じて、ストレージシステム300の構成情報を管理サーバ100に提供する。 The port data transfer amount providing program 310 provides configuration information of the storage system 300 to the management server 100 in response to a request from the host / storage device configuration information collection program 114 of the management server 100.
 ストレージ装置構成情報提供プログラム311は、管理サーバ100のポートデータ転送量時系列性能データ収集プログラム113の要求に応じて、ストレージシステム300の構成情報を管理サーバ100に提供する。 The storage device configuration information provision program 311 provides the configuration information of the storage system 300 to the management server 100 in response to a request from the port data transfer amount time series performance data collection program 113 of the management server 100.
(3)システム構成切り替え処理の詳細
 次に、図11~図17を参照して、本実施の形態にかかるシステム構成切り替え処理の詳細について説明する。図11及び図12は、システム構成切り替え処理を説明する概念図である。図13~図16は、システム構成切り替え処理の詳細を示すフローチャートである。図17は、クライアント端末の表示画面に表示させる性能データの表示例である。
(3) Details of System Configuration Switching Process Next, details of the system configuration switching process according to the present embodiment will be described with reference to FIGS. 11 and 12 are conceptual diagrams for explaining the system configuration switching process. 13 to 16 are flowcharts showing details of the system configuration switching process. FIG. 17 is a display example of performance data displayed on the display screen of the client terminal.
 以下では、図11に示すクラスタ構成を有する計算機システムを例示して説明する。図11に示すように、1台の管理サーバ100と、8台の業務ホスト200により4つのクラスタ構成が形成される。 Hereinafter, a computer system having the cluster configuration shown in FIG. 11 will be described as an example. As shown in FIG. 11, four cluster configurations are formed by one management server 100 and eight business hosts 200.
 具体的には、業務ホスト200A1と業務ホスト200B1とでクラスタが構成され、業務ホスト200A1に正側のストレージシステム300Aのボリューム320(P1)が関連付けられ、業務ホスト200B1に副側のストレージシステム300Bのボリューム(S1)が関連付けられる。また、業務ホスト200A2と業務ホスト200B2とでクラスタが構成され、業務ホスト200A2に正側のストレージシステム300Aのボリューム320(P2)が関連付けられ、業務ホスト200B2に副側のストレージシステム300Bのボリューム(S2)が関連付けられる。また、業務ホスト200A3と業務ホスト200B3とでクラスタが構成され、業務ホスト200A3に正側のストレージシステム300Aのボリューム320(P3)が関連付けられ、業務ホスト200B3に副側のストレージシステム300Bのボリューム(S3)が関連付けられる。また、業務ホスト200A4と業務ホスト200B4とでクラスタが構成され、業務ホスト200A4に正側のストレージシステム300Aのボリューム320(P4)が関連付けられ、業務ホスト200B4に副側のストレージシステム300Bのボリューム(S4)が関連付けられる。 Specifically, the business host 200A1 and the business host 200B1 form a cluster, the business host 200A1 is associated with the volume 320 (P1) of the primary storage system 300A, and the business host 200B1 is associated with the secondary storage system 300B. A volume (S1) is associated. The business host 200A2 and the business host 200B2 form a cluster, the business host 200A2 is associated with the volume 320 (P2) of the primary storage system 300A, and the business host 200B2 is associated with the volume of the secondary storage system 300B (S2). ) Are associated. The business host 200A3 and the business host 200B3 form a cluster, the business host 200A3 is associated with the volume 320 (P3) of the primary storage system 300A, and the business host 200B3 is associated with the volume of the secondary storage system 300B (S3). ) Is associated. The business host 200A4 and the business host 200B4 form a cluster, the business host 200A4 is associated with the volume 320 (P4) of the primary storage system 300A, and the business host 200B4 is associated with the volume of the secondary storage system 300B (S4). ) Is associated.
 なお、業務ホスト200A1、業務ホスト200A2、業務ホストA3及び業務ホストA4は稼働状態(アクティブ)であり、業務ホスト200B1、業務ホスト200B2及び業務ホストB4は待機状態(アクティブスタンバイ)であり、業務ホストB3は障害のため停止している状態であるとする。 The business host 200A1, the business host 200A2, the business host A3, and the business host A4 are in an operating state (active), and the business host 200B1, the business host 200B2, and the business host B4 are in a standby state (active standby), and the business host B3 Is assumed to be stopped due to a failure.
 また、ストレージシステム300Aとストレージシステム300Bとは、リモートパス401、402及び403の3本のリモートパスを使用してデータがコピーされる。各リモートパスのネットワーク帯域の上限は100MB/秒である。リモートパス401は、上り方向のリモートパスであり、業務ホスト200A1~200A2に使用される。 Further, the storage system 300A and the storage system 300B copy data using three remote paths 401, 402, and 403. The upper limit of the network bandwidth of each remote path is 100 MB / second. The remote path 401 is an upstream remote path and is used for the business hosts 200A1 to 200A2.
 また、リモートパス402及びリモートパス403は下り方向のリモートパスである。リモートパス402は業務ホスト200B1及びB2に使用される。つまり、ボリューム320(P1)とボリューム330(S1)とのコピーペア間、ボリューム320(P2)とボリューム330(S2)とのコピーペア間でのデータコピーに使用される。リモートパス403は業務ホスト200B3及びB4に使用される。つまり、ボリューム320(P3)とボリューム330(S3)とのコピーペア間、ボリューム320(P4)とボリューム330(S4)とのコピーペア間でのデータコピーに使用される。 The remote path 402 and the remote path 403 are downstream remote paths. The remote path 402 is used for the business hosts 200B1 and B2. That is, it is used for data copying between copy pairs of the volume 320 (P1) and the volume 330 (S1), and between copy pairs of the volume 320 (P2) and the volume 330 (S2). The remote path 403 is used for the business hosts 200B3 and B4. That is, it is used for data copying between copy pairs of the volume 320 (P3) and the volume 330 (S3) and between copy pairs of the volume 320 (P4) and the volume 330 (S4).
 図12は、後述するシステム構成切り替え処理により、業務ホスト200A1と業務ホスト200B1とで構成されるクラスタ構成を逆転させた状態を示す。すなわち、稼働状態の業務ホスト200A1を待機状態に切り替え、待機状態の業務ホスト200B1を稼働状態に切り替えた状態である。 FIG. 12 shows a state in which the cluster configuration composed of the business host 200A1 and the business host 200B1 is reversed by the system configuration switching process described later. That is, the business host 200A1 in the operating state is switched to the standby state, and the business host 200B1 in the standby state is switched to the operating state.
 図12に示すようにクラスタ構成が切り替えられると、業務ホスト200B1が主系となり、業務ホスト200B1からストレージシステム300BへのI/Oは、副側のストレージシステム300B1からリモートパス402を経由して正側のストレージシステム300A1に転送され、先に正側のボリューム320(P1)にデータが書き込まれる。その後、リモートパス402を経由して、正側のストレージシステム300A1からストレージシステム300B1にデータが転送され、副側のボリューム330(S1)にデータが書き込まれる。 As shown in FIG. 12, when the cluster configuration is switched, the business host 200B1 becomes the primary system, and I / O from the business host 200B1 to the storage system 300B is forwarded from the secondary storage system 300B1 via the remote path 402. Is transferred to the storage system 300A1 on the side, and data is first written to the volume 320 (P1) on the primary side. Thereafter, the data is transferred from the primary storage system 300A1 to the storage system 300B1 via the remote path 402, and the data is written to the secondary volume 330 (S1).
 次に、図13~図16を参照して、管理サーバ100におけるシステム構成切り替え処理の詳細について説明する。図13に示すように、管理サーバ100のポートデータ転送量時系列性能データ収集プログラム113は、ストレージシステム300のポートデータ転送量提供プログラム310から、global-active device構成で使用しているリモートパスのポートデータ転送量を取得する(S101)。そして、ポートデータ転送量時系列性能データ収集プログラム113は、ステップS101で取得したポートデータ転送量をポートデータ転送量時系列性能データ情報151に格納する(S102)。 Next, details of the system configuration switching process in the management server 100 will be described with reference to FIGS. As shown in FIG. 13, the port data transfer amount time-series performance data collection program 113 of the management server 100 receives the remote path used in the global-active device configuration from the port data transfer amount provision program 310 of the storage system 300. The port data transfer amount is acquired (S101). Then, the port data transfer amount time-series performance data collection program 113 stores the port data transfer amount acquired in step S101 in the port data transfer amount time-series performance data information 151 (S102).
 そして、クラスタ構成切り替えプログラム117は、取得してポートデータ転送量をもとにクラスタ構成切り替え判断処理を実行する(S103)。ステップS103におけるクラスタ構成切り替え判断処理の詳細について、図14を参照して説明する。 The cluster configuration switching program 117 executes the cluster configuration switching determination process based on the acquired and port data transfer amount (S103). Details of the cluster configuration switching determination processing in step S103 will be described with reference to FIG.
 図14に示すように、クラスタ構成切り替えプログラム117は、ポートデータ転送量がネットワーク帯域に達しているかを判定する(S201)。予めユーザによりポートデータ転送量の閾値が設定されている場合には、ステップS201の判定処理において、ネットワーク帯域に代えて、当該ユーザ設定値をもとに判定してもよい。 As shown in FIG. 14, the cluster configuration switching program 117 determines whether the port data transfer amount has reached the network bandwidth (S201). When the threshold value of the port data transfer amount is set in advance by the user, in the determination process in step S201, the determination may be made based on the user setting value instead of the network band.
 ステップS201において、ポートデータ転送量が、ネットワーク帯域に達していると判定された場合には、クラスタ構成切り替えプログラム117は、検知したリモートパスを使用しているすべてのコピーペアの情報を取得する(S202)。そして、クラスタ構成切り替えプログラム117は、ステップS202で取得したコピーペアの情報をもとに、クラスタ構成を変更させる業務ホスト200を特定し、ポートデータ転送量がネットワーク帯域に達しているリモートパスを利用しているすべてのクラスタ構成の切り替え処理を実行する(S203)。 If it is determined in step S201 that the port data transfer amount has reached the network bandwidth, the cluster configuration switching program 117 acquires information on all copy pairs using the detected remote path ( S202). Then, the cluster configuration switching program 117 identifies the business host 200 whose cluster configuration is to be changed based on the copy pair information acquired in step S202, and uses the remote path whose port data transfer amount reaches the network bandwidth. All cluster configuration switching processing is executed (S203).
 一方、ステップS201において、ポートデータ転送量がネットワーク帯域に達しているリモートパスがないと判定された場合には、処理を終了する。 On the other hand, if it is determined in step S201 that there is no remote path whose port data transfer amount has reached the network bandwidth, the processing is terminated.
 次に、ステップS203におけるクラスタ構成の切り替え処理の詳細について説明する、図15に示すように、クラスタ構成切り替えプログラム117は、特定したリモートパスを利用している業務ホスト200のすべての組み合わせについてクラスタ構成を変化させる処理を実行させる。 Next, the cluster configuration switching process in step S203 will be described in detail. As shown in FIG. 15, the cluster configuration switching program 117 performs cluster configuration for all combinations of business hosts 200 using the specified remote path. The process which changes is performed.
 以下では業務ホスト200のクラスタ構成がn個の場合について説明し、クラスタを構成する業務ホストをホスト1、ホスト2、・・・ホストnとして説明する。この場合、ホスト1の構成を変化させてステップS212~ステップS225までの処理を繰り返し、ホスト2の構成を変化させてステップS213~ステップS221までの処理を繰り返し、ホストnの構成を変化させてステップS214~ステップS217までの処理を繰り返す。ただし、クラスタ構成を変更させるホストのクラスタ構成器に障害がある場合には、クラスタ構成を切り替えられないため、クラスタ構成の変更は行わない。 Hereinafter, a case where the cluster configuration of the business host 200 is n will be described, and the business hosts constituting the cluster will be described as host 1, host 2,. In this case, the process of steps S212 to S225 is repeated by changing the configuration of the host 1, the process of steps S213 to S221 is repeated by changing the configuration of the host 2, and the configuration of the host n is changed. The processes from S214 to S217 are repeated. However, if there is a failure in the cluster configurator of the host whose cluster configuration is to be changed, the cluster configuration cannot be switched, so the cluster configuration is not changed.
 クラスタ構成切り替えプログラム117は、ホストnのクラスタ構成の障害情報を取得する(S214)。ホストnのクラスタ構成対象の機器に障害があった場合には、クラスタ構成の切り替えを行うことができないため、まずクラスタ構成の障害情報を取得して、クラスタ構成を切り替えられるかを判断する。 The cluster configuration switching program 117 acquires failure information of the cluster configuration of the host n (S214). If there is a failure in the cluster configuration target device of the host n, the cluster configuration cannot be switched. Therefore, the failure information of the cluster configuration is first acquired to determine whether the cluster configuration can be switched.
 クラスタ構成切り替えプログラム117は、ホストnのクラスタ構成器に障害があるかを判定する(S215)。ステップS215において、ホストnのクラスタ構成器に障害がないと判定された場合には、ホストnのクラスタ構成を稼働と待機で逆転させる(S216)。そして、後述する平準化値算出処理を実行する(S217)。 The cluster configuration switching program 117 determines whether there is a failure in the cluster configuration unit of the host n (S215). If it is determined in step S215 that there is no failure in the cluster configuration unit of host n, the cluster configuration of host n is reversed between operation and standby (S216). Then, a leveling value calculation process described later is executed (S217).
 一方、ステップS215において、ホストnのクラスタ構成器に障害があると判定された場合には、ステップS215及びステップS216の処理を実行せずに次のステップを実行する。 On the other hand, if it is determined in step S215 that there is a failure in the cluster configuration unit of host n, the next step is executed without executing the processing in steps S215 and S216.
 続いて、クラスタ構成切り替えプログラム117は、ホスト2のクラスタ構成の障害情報を取得する(S218)。 Subsequently, the cluster configuration switching program 117 acquires failure information of the cluster configuration of the host 2 (S218).
 そして、クラスタ構成切り替えプログラム117は、ホスト2のクラスタ構成器に障害があるかを判定する(S219)。ステップS219において、ホスト2のクラスタ構成器に障害がないと判定された場合には、クラスタ構成切り替えプログラム117は、ホスト2のクラスタ構成を稼働と待機で逆転させる(S220)。そして、クラスタ構成切り替えプログラム117は、後述する平準化値算出処理を実行する(S221)。 Then, the cluster configuration switching program 117 determines whether there is a failure in the cluster configuration device of the host 2 (S219). If it is determined in step S219 that there is no failure in the cluster configuration unit of the host 2, the cluster configuration switching program 117 reverses the cluster configuration of the host 2 between operation and standby (S220). Then, the cluster configuration switching program 117 executes a leveling value calculation process described later (S221).
 一方、ステップS219において、ホストnのクラスタ構成器に障害があると判定された場合には、クラスタ構成切り替えプログラム117は、ステップS220及びステップS221の処理を実行せずに次のステップを実行する。 On the other hand, if it is determined in step S219 that the cluster configuration unit of host n has a failure, the cluster configuration switching program 117 executes the next step without executing the processing of step S220 and step S221.
 続いて、クラスタ構成切り替えプログラム117は、ホスト1のクラスタ構成の障害情報を取得する(S222)。 Subsequently, the cluster configuration switching program 117 acquires failure information of the cluster configuration of the host 1 (S222).
 そして、クラスタ構成切り替えプログラム117は、ホスト1のクラスタ構成器に障害があるかを判定する(S223)。ステップS219において、ホスト2のクラスタ構成器に障害がないと判定された場合には、クラスタ構成切り替えプログラム117は、ホスト1のクラスタ構成を稼働と待機で逆転させる(S224)。そして、クラスタ構成切り替えプログラム117は、後述する平準化値算出処理を実行する(S225)。 The cluster configuration switching program 117 determines whether there is a failure in the cluster configuration unit of the host 1 (S223). If it is determined in step S219 that there is no failure in the cluster configuration unit of the host 2, the cluster configuration switching program 117 reverses the cluster configuration of the host 1 between operation and standby (S224). Then, the cluster configuration switching program 117 executes a leveling value calculation process to be described later (S225).
 一方、ステップS219において、ホストnのクラスタ構成器に障害があると判定された場合には、クラスタ構成切り替えプログラム117は、ステップS220及びステップS221の処理を実行せずに次のステップを実行する。 On the other hand, if it is determined in step S219 that the cluster configuration unit of host n has a failure, the cluster configuration switching program 117 executes the next step without executing the processing of step S220 and step S221.
 次に、図16を参照して、ステップS217、ステップS221及びステップS225において実行される、平準化値算出プログラム111により実行される平準化値算出処理について説明する。 Next, with reference to FIG. 16, the leveling value calculation process executed by the leveling value calculation program 111 executed in step S217, step S221 and step S225 will be described.
 図16に示すように、平準化値算出プログラム111は、ホストnの検知したリモートパスのポートデータ転送量を取得する(S231)。続いて、平準化値算出プログラム111は、ホストnの構成変更後にしようしているリモートパスのポートデータ転送量を取得する(S232)。 As shown in FIG. 16, the leveling value calculation program 111 acquires the port data transfer amount of the remote path detected by the host n (S231). Subsequently, the leveling value calculation program 111 acquires the port data transfer amount of the remote path that is to be performed after the configuration change of the host n (S232).
 そして、平準化値算出プログラム111は、ホストnの検知したリモートパスのネットワーク帯域を取得する(S233)。続いて、平準化値算出プログラム111は、ホストnの構成変更後に使用しているリモートパスのネットワーク帯域を取得する(S234)。ステップS233及びステップS234において取得するネットワーク待機は、予めユーザによりポートデータ転送量の閾値が設定されている場合には、ユーザ設定値を取得する。 Then, the leveled value calculation program 111 acquires the network bandwidth of the remote path detected by the host n (S233). Subsequently, the leveled value calculation program 111 acquires the network bandwidth of the remote path used after the configuration change of the host n (S234). The network standby acquired in step S233 and step S234 acquires the user setting value when the threshold value of the port data transfer amount is set in advance by the user.
 そして、平準化値算出プログラム111は、以下の式1により、構成変更前後のネットワーク使用率(%)を計算する(S235)。 Then, the leveling value calculation program 111 calculates the network usage rate (%) before and after the configuration change by the following formula 1 (S235).
ポートデータ流出量/ネットワーク帯域(ユーザ設定値) ・・・(式1) Port data outflow / network bandwidth (user setting value) (Equation 1)
 そして、平準化値算出プログラム111は、ステップS235で算出したネットワーク使用率から50%を減算して絶対値を算出して、足し合わせる(S236)。 Then, the leveling value calculation program 111 calculates an absolute value by subtracting 50% from the network usage rate calculated in step S235, and adds them together (S236).
 例えば、図12において、リモートパス401のポートデータデータ転送量が100(MB/秒)であり、ネットワーク帯域100(MB/秒)に達しているとして上記ステップS201で検知されたとする。そして、上記ステップS202で、リモートパス401を使用しているすべてのコピーペア情報が取得される。図12で、取得されるコピーペア情報は、ボリューム320(P1)とボリューム330(S1)、ボリューム320(P2)と330ボリューム(S2)、ボリューム320(P3)とボリューム330(S3)、ボリューム320(P4)とボリューム330(S4)である。 For example, in FIG. 12, it is assumed that the port data data transfer amount of the remote path 401 is 100 (MB / second) and the network bandwidth 100 (MB / second) has been detected in step S201. In step S202, information on all copy pairs using the remote path 401 is acquired. In FIG. 12, the acquired copy pair information includes volume 320 (P1) and volume 330 (S1), volume 320 (P2) and 330 volume (S2), volume 320 (P3), volume 330 (S3), and volume 320. (P4) and volume 330 (S4).
 そして、取得したコピーペア情報をもとに、クラスタ構成を変更させる業務ホスト200を判断する。すなわち、取得したコピーペアを使用する業務ホスト200のクラスタ構成のうち、いずれのクラスタ構成を逆転させるかを判断する。 Then, the business host 200 whose cluster configuration is to be changed is determined based on the acquired copy pair information. That is, it is determined which of the cluster configurations of the business host 200 that uses the acquired copy pair is reversed.
 いずれのクラスタ構成を逆転させるかを判断する前に、業務ホスト200のクラスタ構成機の障害情報を取得して、クラスタ構成を逆転させることができるかを判断する。クラスタ構成機に障害があり稼働できない場合には、当該クラスタ構成を除外して、いずれのクラスタ構成を切り替えるかを判断する。例えば、図12では、業務ホスト200B3に障害があり「停止」状態となっているため、業務ホスト200A3のクラスタ構成は切り替えずに現在の状態を維持する。 Before determining which cluster configuration is to be reversed, the failure information of the cluster configuration machine of the business host 200 is acquired to determine whether the cluster configuration can be reversed. If the cluster configuration machine is faulty and cannot be operated, it is determined which cluster configuration is to be switched by excluding the cluster configuration. For example, in FIG. 12, since the business host 200B3 has a fault and is in a “stopped” state, the cluster configuration of the business host 200A3 is maintained without switching.
 次に、クラスタ構成機に障害の発生してない業務ホスト200A1のクラスタ構成を稼働と待機で逆転させる。図12は、業務ホスト200A1のクラスタ構成を逆転させた状態を示し、業務ホスト200A1が待機状態(アクティブスタンバイ)で、業務ホスト200B1が稼働状態(アクティブ)となり、業務ホスト200B1からストレージシステム300Bのボリューム330(S1)に出されたI/Oは、リモートパス402(上り方向)を経由してストレージシステム300Aのボリューム320(P1)に書き込まれ、その後、リモートパス402(下り方向)を経由して、ボリューム330(S1)に書き込まれる。 Next, the cluster configuration of the business host 200A1 in which no failure has occurred in the cluster configuration machine is reversed between operation and standby. FIG. 12 shows a state in which the cluster configuration of the business host 200A1 is reversed. The business host 200A1 is in a standby state (active standby), the business host 200B1 is in an operating state (active), and the volume of the storage system 300B from the business host 200B1. The I / O issued to 330 (S1) is written to the volume 320 (P1) of the storage system 300A via the remote path 402 (upward direction), and then via the remote path 402 (downward direction). , Written in the volume 330 (S1).
 そして、クラスタ構成を切り替えた後のリモートパス401、402及び403の上り方向及び下り方向の双方向のポートデータ転送量を取得する。図12では、例えば、リモートパス401のポートデータ転送量が80(MB/秒)、リモートパス402のポートデータ転送量が20(MB/秒)、リモートパス403のポートデータ転送量が0(MB/秒)であったとする。 Then, the upstream and downstream port data transfer amounts of the remote paths 401, 402, and 403 after switching the cluster configuration are acquired. In FIG. 12, for example, the port data transfer amount of the remote path 401 is 80 (MB / second), the port data transfer amount of the remote path 402 is 20 (MB / second), and the port data transfer amount of the remote path 403 is 0 (MB). / Sec).
 そして、上記式1を用いて、取得したポートデータ転送量及びネットワーク帯域から、ネットワーク帯域使用率を算出する。リモートパス401~403のネットワーク帯域が100(MB/秒)であるとすると、各リモートパスのネットワーク帯域は以下となる。 Then, using the above formula 1, the network bandwidth usage rate is calculated from the acquired port data transfer amount and the network bandwidth. Assuming that the network bandwidth of the remote paths 401 to 403 is 100 (MB / second), the network bandwidth of each remote path is as follows.
(リモートパス401のネットワーク帯域使用率)
=80(MB/秒)/100(MB/秒)=80%
(リモートパス402のネットワーク帯域使用率)
=20(MB/秒)/100(MB/秒)=20%
(リモートパス403のネットワーク帯域使用率)
=0(MB/秒)/100(MB/秒)=0%
(Network bandwidth usage rate of remote path 401)
= 80 (MB / sec) / 100 (MB / sec) = 80%
(Network bandwidth usage rate of remote path 402)
= 20 (MB / sec) / 100 (MB / sec) = 20%
(Network bandwidth usage rate of remote path 403)
= 0 (MB / sec) / 100 (MB / sec) = 0%
 そして、上記算出した各ネットワーク帯域使用率から50%を減算して絶対値を算出し、それらを足し合わせて平準化値を算出する。上記例では、リモートパス401の絶対値は30、リモートパス402の絶対値は30、リモートパス403の絶対値は50であるため、以下の平準化値が算出される。 Then, the absolute value is calculated by subtracting 50% from the calculated network bandwidth usage rate, and these are added together to calculate the leveled value. In the above example, since the absolute value of the remote path 401 is 30, the absolute value of the remote path 402 is 30, and the absolute value of the remote path 403 is 50, the following leveling value is calculated.
 平準化値=30+30+50=110 Leveled value = 30 + 30 + 50 = 110
 上記図15に示したように、すべてのクラスタ構成の切り替えの組み合わせについて(障害の発生しているクラスタ構成を除く)、上記切り替え処理を実行して平準化値を算出する。図12の例では、1つのクラスタ構成が除かれるため、3つのクラスタ構成の切り替えの組み合わせとなる7通りの組み合わせについて上記処理を実行する。そして、算出された平準化値のうち、平準化値が一番低いクラスタ構成の組み合わせを選択して、当該クラスタ構成を維持するようにクラスタ構成を変更する。例えば、図12の例で、上記した平準化値110より低い平準化値90が算出された場合には、平準化値90となるクラスタ構成の組み合わせに変更する。 As shown in FIG. 15 above, for all combinations of cluster configuration switching (except for the cluster configuration in which a failure has occurred), the above switching process is executed to calculate a leveling value. In the example of FIG. 12, since one cluster configuration is excluded, the above processing is executed for seven combinations that are combinations of switching of the three cluster configurations. Then, a combination of cluster configurations having the lowest leveling value is selected from the calculated leveling values, and the cluster configuration is changed so as to maintain the cluster configuration. For example, in the example of FIG. 12, when a leveling value 90 lower than the leveling value 110 described above is calculated, the cluster configuration is changed to a leveling value 90 combination.
 上記したように、global-active deviceにおいてクラスタ構成を変更する場合には、ボリュームの構成変更や設定変更を行うことなく、業務ホスト200と論理ボリュームとの対応関係を維持したまま、クラスタ構成の主系と従系を逆転させることができる。したがって、上記したように、ポートデータ転送量がネットワーク帯域に達しているリモートパスを利用しているすべてのクラスタ構成について、システム全体の負荷を低減させて切り替えを行い、すべてのクラスタ構成の組み合わせのリモートパスの性能を試算することが可能となる。 As described above, when changing the cluster configuration in the global-active device, the main cluster configuration is maintained without changing the volume configuration or changing the settings while maintaining the correspondence between the business host 200 and the logical volume. The system and subordinate system can be reversed. Therefore, as described above, for all cluster configurations that use remote paths whose port data transfer amount reaches the network bandwidth, switching is performed by reducing the load on the entire system, and all cluster configurations are combined. It is possible to estimate the performance of the remote path.
 図17は、クライアント端末の表示画面に表示される性能データの表示例500である。利用者は、当該表示例500により、global-active deviceで使用されるリモートパスのポートデータ転送量やネットワーク帯域の限界値を確認することができる。 FIG. 17 is a display example 500 of performance data displayed on the display screen of the client terminal. From the display example 500, the user can confirm the port data transfer amount of the remote path used in the global-active device and the limit value of the network bandwidth.
 図17の表示例500では、分析対象欄510により、リモートパスが使用されるコピーグループ名や、分析機関、リモートパスを使用する正ストレージシステム及び副ストレージシステムが表示される。 In the display example 500 of FIG. 17, the analysis target column 510 displays the copy group name where the remote path is used, the analysis organization, the primary storage system and the secondary storage system using the remote path.
 そして、ネットワーク欄520により、リモートパスのネットワーク帯域の限界値、リモートパス00及びリモートパス01のポートデータ転送量、レスポンスタイムなどがグラフ化されて表示される。利用者は、ネットワーク欄520に表示されたグラフを参照して、現在のリモートパスの性能の詳細について確認することができる。 Then, the network column 520 displays the limit value of the network bandwidth of the remote path, the port data transfer amount of the remote path 00 and the remote path 01, the response time, etc. in a graph. The user can confirm the details of the performance of the current remote path with reference to the graph displayed in the network column 520.
(4)本実施の形態の効果
 上記実施の形態によれば、業務ホスト(本発明のホスト装置)200から正側のストレージシステム(本発明のストレージ装置)300にデータの書き込み要求があった場合、正側のストレージシステム(ストレージ装置)の正ボリュームにデータを書き込んだ後に、第1のリモートパスを経由してデータを転送し、副側のストレージシステム(ストレージ装置)300の副ボリュームにデータを書き込み、業務ホスト(本発明のホスト装置)200から副側のストレージ装置にデータの書き込み要求があった場合、副側のストレージシステム300(ストレージ装置)から、第2のリモートパスを経由して転送されたデータを正ボリュームに書き込んだ後に、第2のリモートパスを経由してデータを転送し、副ボリュームに書き込むglobal-active deviceにおいて、管理サーバ100は、第1のリモートパス及び第2のリモートパスのポートデータ転送量を取得し、該ポートデータ転送量が所定の閾値(所定のネットワーク帯域またはユーザ設定値)を超えている場合に、第1のリモートパス及び第2のリモートパスのポートデータ転送量を平準化させるように、業務ホスト200(ホスト装置)からのデータ書き込み先のストレージシステム(ストレージ装置)300を選択する。
(4) Effects of this Embodiment According to the above embodiment, when a data write request is made from the business host (host device of the present invention) 200 to the primary storage system (storage device of the present invention) 300 After writing the data to the primary volume of the primary storage system (storage device), the data is transferred via the first remote path, and the data is transferred to the secondary volume of the secondary storage system (storage device) 300. When there is a data write request from the business host (host device of the present invention) 200 to the secondary storage device, the data is transferred from the secondary storage system 300 (storage device) via the second remote path. After the written data is written to the primary volume, the data is transferred via the second remote path to the secondary volume. In the global-active device that writes to the volume, the management server 100 acquires the port data transfer amount of the first remote path and the second remote path, and the port data transfer amount is a predetermined threshold (predetermined network bandwidth or user). Storage system (storage) to which data is written from the business host 200 (host device) so that the port data transfer amounts of the first remote path and the second remote path are leveled Device) 300 is selected.
 これにより、ストレージ装置間のリモートパスを経由してデータを書き込むシステム構成において、複数のリモートパスのいずれかが高負荷となった場合に、自動的にリモートパスを切り替えて、使用可能なリソースの有効利用を図ることができる。 As a result, in a system configuration in which data is written via a remote path between storage devices, if any of the multiple remote paths becomes heavily loaded, the remote path is automatically switched to ensure that the available resources Effective use can be achieved.
 100 管理サーバ
 110 ホスト構成変更命令プログラム
 110 平準化値
 111 平準化値算出プログラム
 112 クラスタ構成ホスト装置障害検知プログラム
 113 ポートデータ転送量時系列性能データ収集プログラム
 114 ストレージ装置構成情報収集プログラム
 115 ポートデータ転送量時系列性能データ
 116 ストレージ装置構成情報
 117 プログラム
 151 ポートデータ転送量時系列性能データ情報
 161 ホスト情報
 162 ストレージ情報
 163 コピーペア情報
 164 リモートパス情報
 165 ボリューム情報
 166 ポート情報
 200 業務ホスト
 210 ホスト構成情報提供プログラム
 211 ホスト構成変更プログラム
 300 ストレージシステム
 310 ポートデータ転送量提供プログラム
 311 ストレージ装置構成情報提供プログラム
 
100 Management Server 110 Host Configuration Change Command Program 110 Leveling Value 111 Leveling Value Calculation Program 112 Cluster Configuration Host Device Failure Detection Program 113 Port Data Transfer Amount Time Series Performance Data Collection Program 114 Storage Device Configuration Information Collection Program 115 Port Data Transfer Amount Time series performance data 116 Storage device configuration information 117 Program 151 Port data transfer amount time series performance data information 161 Host information 162 Storage information 163 Copy pair information 164 Remote path information 165 Volume information 166 Port information 200 Business host 210 Host configuration information provision program 211 Host configuration change program 300 Storage system 310 Port data transfer amount providing program 311 Storage device Configuration information providing program

Claims (10)

  1.  ホスト計算機から書き込み要求されたデータを、正側のストレージ装置と副側のストレージ装置とでボリューム単位に冗長化するストレージシステムの性能を管理する管理計算機であって、
     管理計算機は、
     前記ホスト計算機と、前記正側のストレージ装置または前記副側のストレージ装置との間を送受信するデータのデータ転送量を格納するメモリと、
     前記データ転送量を参照するCPUと、
     前記ホスト計算機、前記正側ストレージ装置または前記副側ストレージ装置と接続するネットワークインタフェースと、
     を有し、
     前記正側のストレージ装置は、前記ホスト計算機からデータの書き込み要求があった場合、前記正側のストレージ装置の正ボリュームにデータを書き込んだ後に、第1のリモートパスを経由してデータを転送し、前記副側のストレージ装置の副ボリュームにデータを書き込み、
     前記副側のストレージ装置は、前記ホスト計算機からデータの書き込み要求があった場合、前記副側のストレージ装置から第2のリモートパスを経由して転送されたデータを前記正ボリュームに書き込んだ後に、前記第2のリモートパスを経由してデータを転送し、前記副ボリュームに書き込み、
     前記管理計算機は、
     前記第1のリモートパス及び前記第2のリモートパスのデータ転送量を取得し、該データ転送量が所定の閾値を超えている場合に、前記第1のリモートパス及び前記第2のリモートパスのデータ転送量を平準化させるように、前記ホスト計算機からのデータ書き込み先のストレージ装置を選択する
     ことを特徴とする、管理計算機。
    A management computer that manages the performance of a storage system that makes the data requested to be written by the host computer redundant on a volume basis between the primary storage device and the secondary storage device,
    Management computer
    A memory for storing a data transfer amount of data transmitted / received between the host computer and the primary storage apparatus or the secondary storage apparatus;
    A CPU for referring to the data transfer amount;
    A network interface connected to the host computer, the primary storage apparatus or the secondary storage apparatus;
    Have
    When there is a data write request from the host computer, the primary storage device writes the data to the primary volume of the primary storage device and then transfers the data via the first remote path. Write data to the secondary volume of the storage device on the secondary side,
    When there is a data write request from the host computer, the secondary storage apparatus writes the data transferred from the secondary storage apparatus via the second remote path to the primary volume. Transfer data via the second remote path, write to the secondary volume,
    The management computer is
    When the data transfer amounts of the first remote path and the second remote path are acquired, and the data transfer amount exceeds a predetermined threshold, the first remote path and the second remote path A management computer, wherein a storage device to which data from the host computer is written is selected so as to level the data transfer amount.
  2.  前記所定の閾値は、ネットワーク帯域の限界値または予め設定された設定値である
     ことを特徴とする、請求項1に記載の管理計算機。
    The management computer according to claim 1, wherein the predetermined threshold is a limit value of a network bandwidth or a preset setting value.
  3.  前記ホスト計算機は、正側ホスト計算機と副側ホスト計算機とを対にしたクラスタ構成であり、
     前記正側ホスト計算機に前記正側ストレージ装置が接続され、前記副側ストレージ装置に前記副側ストレージ装置が接続され、
     前記正側ホストから前記正側ストレージに書き込みがあった場合、前記正側のストレージ装置の正ボリュームにデータを書き込んだ後に、前記第1のリモートパスを経由してデータを転送し、前記副側のストレージ装置の前記副ボリュームにデータを書き込み、
     前記副側ホストから前記副側ストレージに書き込みがあった場合、前記副側のストレージ装置から前記第2のリモートパスを経由して転送されたデータを前記正ボリュームに書き込んだ後に、前記第2のリモートパスを経由してデータを転送し、前記副ボリュームに書き込み、
     前記管理計算機は、
     前記第1のリモートパス及び前記第2のリモートパスのデータ転送量を取得し、該データ転送量が所定の閾値を超えている場合に、前記第1のリモートパス及び前記第2のリモートパスのデータ転送量を平準化させるように、クラスタ構成を切り替える
     ことを特徴とする、請求項1に記載の管理計算機。
    The host computer has a cluster configuration in which a primary host computer and a secondary host computer are paired,
    The primary storage device is connected to the primary host computer, the secondary storage device is connected to the secondary storage device,
    If there is a write from the primary host to the primary storage, after writing the data to the primary volume of the primary storage device, the data is transferred via the first remote path, and the secondary side Write data to the secondary volume of the storage device
    When there is a write from the secondary host to the secondary storage, after the data transferred from the secondary storage device via the second remote path is written to the primary volume, the second volume Transfer data via remote path, write to the secondary volume,
    The management computer is
    When the data transfer amounts of the first remote path and the second remote path are acquired, and the data transfer amount exceeds a predetermined threshold, the first remote path and the second remote path The management computer according to claim 1, wherein the cluster configuration is switched so that the data transfer amount is leveled.
  4.  前記ホスト計算機が複数の対となる前記正側ホスト計算機と前記副側ホスト計算機とを含む複数のクラスタで構成されている場合、
     前記管理計算機は、
     前記第1のリモートパス及び前記第2のリモートパスのデータ転送量を取得し、該データ転送量が所定の閾値を超えているリモートパスを使用するクラスタ構成を特定し、該クラスタ構成の切り替えを行って、データ転送量を取得する
     ことを特徴とする、請求項3に記載の管理計算機。
    When the host computer is composed of a plurality of clusters including a plurality of pairs of the primary host computer and the secondary host computer,
    The management computer is
    The data transfer amount of the first remote path and the second remote path is acquired, the cluster configuration using the remote path whose data transfer amount exceeds a predetermined threshold is specified, and the cluster configuration is switched. The management computer according to claim 3, wherein the management computer obtains a data transfer amount.
  5.  前記管理計算機は、
     前記クラスタ構成の切り替え後のデータ転送量をもとに、データ転送量が平準化となるクラスタ構成を選択する
     ことを特徴とする、請求項4に記載の管理計算機。
    The management computer is
    The management computer according to claim 4, wherein a cluster configuration in which the data transfer amount is leveled is selected based on the data transfer amount after the switching of the cluster configuration.
  6.  前記管理計算機は、
     複数のクラスタ構成の組み合わせのすべてについて、前記クラスタ構成の切り替え後のデータ転送量を取得し、前記データ転送量が平準化となるようにクラスタ構成を変更する
     ことを特徴とする、請求項5に記載の管理計算機。
    The management computer is
    6. The data transfer amount after switching the cluster configuration is obtained for all combinations of a plurality of cluster configurations, and the cluster configuration is changed so that the data transfer amount is leveled. The listed management computer.
  7.  前記管理計算機は、
     前記クラスタ構成の組み合わせのうち、前記データ転送量が平準化となるように、前記リモートパスの利用率が所定の値に近い前記クラスタ構成の組み合わせを選択する
     ことを特徴とする、請求項6に記載の管理計算機。
    The management computer is
    The combination of the cluster configurations is selected from among the combinations of the cluster configurations, so that the usage rate of the remote path is close to a predetermined value so that the data transfer amount is leveled. The listed management computer.
  8.  前記管理計算機は、
     複数のクラスタ構成のうち、前記正側ホスト計算機または前記副側ホスト計算機のいずれかが障害であるクラスタ構成は、前記クラスタ構成を変更する組み合わせから除外する
     ことを特徴とする、請求項7に記載の管理計算機。
    The management computer is
    The cluster configuration in which either the primary host computer or the secondary host computer has a failure among a plurality of cluster configurations is excluded from the combination that changes the cluster configuration. Management computer.
  9.  前記ホスト計算機と前記ストレージ装置とはホストバスアダプタで接続されており、
     前記管理計算機は、
     前記ホストバスアダプタの接続切り替えを指示して、前記ホスト計算機のクラスタ構成を変更する
     ことを特徴とする、請求項8に記載の管理計算機。
    The host computer and the storage device are connected by a host bus adapter,
    The management computer is
    The management computer according to claim 8, wherein the host computer is instructed to switch connection to change a cluster configuration of the host computer.
  10.  ホスト計算機から書き込み要求されたデータを、正側のストレージ装置と副側のストレージ装置とでボリューム単位に冗長化するストレージシステムの性能を管理する管理計算機におけるシステム構成切り替え方法であって、
     管理計算機は、前記ホスト計算機と、前記正側のストレージ装置または前記副側のストレージ装置との間を送受信するデータのデータ転送量を格納するメモリと、前記データ転送量を参照するCPUと、前記ホスト計算機、前記正側ストレージ装置または前記副側ストレージ装置と接続するネットワークインタフェースと、を有し、
     前記ホスト計算機から前記正側のストレージ装置にデータの書き込み要求があった場合、前記正側のストレージ装置の正ボリュームにデータを書き込んだ後に、第1のリモートパスを経由してデータを転送し、前記副側のストレージ装置の副ボリュームにデータを書き込むステップと、
     前記ホスト計算機から前記副側のストレージ装置にデータの書き込み要求があった場合、前記副側のストレージ装置から第2のリモートパスを経由して転送されたデータを前記正ボリュームに書き込んだ後に、前記第2のリモートパスを経由してデータを転送し、前記副ボリュームに書き込むステップと、
     前記管理計算機が、前記第1のリモートパス及び前記第2のリモートパスのデータ転送量を取得するステップと、
     前記管理計算機が、前記データ転送量が所定の閾値を超えている場合に、前記第1のリモートパス及び前記第2のリモートパスのデータ転送量を平準化させるように、前記ホスト計算機からのデータ書き込み先のストレージ装置を選択するステップと、
     を含むことを特徴とする、システム構成切り替え方法。
     
    A system configuration switching method in a management computer that manages the performance of a storage system that makes data requested to be written by a host computer redundant on a volume basis between a primary storage device and a secondary storage device,
    The management computer includes a memory that stores a data transfer amount of data transmitted and received between the host computer and the primary storage device or the secondary storage device, a CPU that refers to the data transfer amount, A host computer, a network interface connected to the primary storage apparatus or the secondary storage apparatus,
    If there is a data write request from the host computer to the primary storage device, after writing the data to the primary volume of the primary storage device, transfer the data via the first remote path, Writing data to the secondary volume of the secondary storage device;
    If there is a data write request from the host computer to the secondary storage device, the data transferred from the secondary storage device via the second remote path is written to the primary volume, and Transferring data via a second remote path and writing to the secondary volume;
    The management computer obtaining data transfer amounts of the first remote path and the second remote path;
    Data from the host computer is used so that the management computer equalizes the data transfer amounts of the first remote path and the second remote path when the data transfer amount exceeds a predetermined threshold. Selecting a storage device for writing; and
    A system configuration switching method.
PCT/JP2015/068261 2015-06-24 2015-06-24 Management computer and method for switching system configuration WO2016208014A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/068261 WO2016208014A1 (en) 2015-06-24 2015-06-24 Management computer and method for switching system configuration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/068261 WO2016208014A1 (en) 2015-06-24 2015-06-24 Management computer and method for switching system configuration

Publications (1)

Publication Number Publication Date
WO2016208014A1 true WO2016208014A1 (en) 2016-12-29

Family

ID=57584955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068261 WO2016208014A1 (en) 2015-06-24 2015-06-24 Management computer and method for switching system configuration

Country Status (1)

Country Link
WO (1) WO2016208014A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7518364B2 (en) 2020-08-27 2024-07-18 富士通株式会社 Information processing device and path control method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004145855A (en) * 2002-08-29 2004-05-20 Hitachi Ltd Storage device system and data replication method
JP2010026830A (en) * 2008-07-22 2010-02-04 Hitachi Ltd Data backup method for preventing load from being imposed on system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004145855A (en) * 2002-08-29 2004-05-20 Hitachi Ltd Storage device system and data replication method
JP2010026830A (en) * 2008-07-22 2010-02-04 Hitachi Ltd Data backup method for preventing load from being imposed on system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7518364B2 (en) 2020-08-27 2024-07-18 富士通株式会社 Information processing device and path control method

Similar Documents

Publication Publication Date Title
US9769259B2 (en) Network storage systems having clustered RAIDs for improved redundancy and load balancing
US8738975B2 (en) Runtime dynamic performance skew elimination
JP4842593B2 (en) Device control takeover method for storage virtualization apparatus
JP5159421B2 (en) Storage system and storage system management method using management device
CN109857445A (en) Storage system and control software layout method
US9794342B2 (en) Storage system and control method for storage system
US20130067162A1 (en) Methods and structure for load balancing of background tasks between storage controllers in a clustered storage environment
US20060218360A1 (en) Method, apparatus and program storage device for providing an optimized read methodology for synchronously mirrored virtual disk pairs
US8352766B2 (en) Power control of target secondary copy storage based on journal storage usage and accumulation speed rate
JP2004145855A (en) Storage device system and data replication method
US20060224854A1 (en) Storage system
CN108205573B (en) Data distributed storage method and system
JP2020154587A (en) Computer system and data management method
US7886186B2 (en) Storage system and management method for the same
JP7191059B2 (en) Storage systems and methods of analyzing storage systems
US20170206027A1 (en) Management system and management method of computer system
US20220350513A1 (en) Load balancing in a storage system
US7496724B2 (en) Load balancing in a mirrored storage system
US10552342B1 (en) Application level coordination for automated multi-tiering system in a federated environment
WO2016208014A1 (en) Management computer and method for switching system configuration
JP7549433B2 (en) RESOURCE CONFIGURATION ESTIMATION SYSTEM AND RESOURCE CONFIGURATION ESTIMATION METHOD
JP7348056B2 (en) storage system
US9423982B2 (en) Storage control apparatus, control method, and computer product
US11586516B2 (en) Storage system, storage device, and storage device management method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15896336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15896336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP