WO2016208011A1 - Control device for water intake equipment for nuclear power plant and water intake equipment for nuclear power plant - Google Patents

Control device for water intake equipment for nuclear power plant and water intake equipment for nuclear power plant Download PDF

Info

Publication number
WO2016208011A1
WO2016208011A1 PCT/JP2015/068254 JP2015068254W WO2016208011A1 WO 2016208011 A1 WO2016208011 A1 WO 2016208011A1 JP 2015068254 W JP2015068254 W JP 2015068254W WO 2016208011 A1 WO2016208011 A1 WO 2016208011A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
intake
water intake
tank
nuclear power
Prior art date
Application number
PCT/JP2015/068254
Other languages
French (fr)
Japanese (ja)
Inventor
竹内 勝次
義典 今治
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to KR1020177036718A priority Critical patent/KR20180011201A/en
Priority to JP2017524505A priority patent/JP6462872B2/en
Priority to PCT/JP2015/068254 priority patent/WO2016208011A1/en
Priority to CN201580081085.3A priority patent/CN107710332B/en
Publication of WO2016208011A1 publication Critical patent/WO2016208011A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B9/00Water-power plants; Layout, construction or equipment, methods of, or apparatus for, making same
    • E02B9/02Water-ways
    • E02B9/04Free-flow canals or flumes; Intakes
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D1/00Details of nuclear power plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a water intake facility control device in a nuclear power plant for taking in cooling water used in the nuclear power plant, and a water intake facility in the nuclear power plant.
  • a nuclear power plant having a pressurized water reactor uses light water as a reactor coolant and a neutron moderator, and produces high-temperature and high-pressure water that does not boil throughout the reactor core.
  • Water primary coolant
  • this steam secondary coolant
  • This steam generator transfers the heat of the high-temperature and high-pressure primary coolant from the nuclear reactor to the secondary coolant, and generates steam here.
  • seawater and river water are used as cooling water.
  • seawater is taken in by a circulating water pump, supplied to a condenser in a turbine building, and steam (secondary coolant) discharged from the turbine is cooled.
  • seawater is taken in by a seawater pump and supplied to a reactor auxiliary coolant cooling device in the reactor building to cool the cooling water (primary coolant) discharged from the reactor containment vessel.
  • Patent Document 1 As a solution to such a problem, for example, there is one described in Patent Document 1 below.
  • the water intake facility of the nuclear power plant described in this patent document 1 is provided with a weir for preventing the outflow of seawater in the shared open water for intake during a tsunami at the seawater intake in the shared open water for intake. Is set lower than the suction port in the circulating water pump provided in the pump building, and the effective water source area of the seawater sucked by the suction port in the seawater pump is secured.
  • the present invention solves the above-described problems, and provides a water intake facility for a nuclear power plant that can supply cooling water to a predetermined cooling position by a pump by always securing an appropriate amount of cooling water in a water intake tank.
  • the purpose is to do.
  • a control apparatus for a water intake facility in a nuclear power plant comprises a water intake channel having one end communicating with a water intake source and a water intake channel open to the upper end connected to the other end of the water intake channel.
  • a water intake channel having one end communicating with a water intake source and a water intake channel open to the upper end connected to the other end of the water intake channel.
  • the water intake facility in a nuclear power plant comprising: a water tank; a water intake pump provided in the water intake tank; and a water flow blocking device for blocking water flow from the water intake tank to the water intake source side through the water intake path.
  • the water flow blocking device is activated when it is detected or estimated that the stored water amount is less than a predetermined stored water amount.
  • a water level meter for measuring the water level of the water intake tank is provided, and when the water level measured by the water level meter falls below a preset predetermined water level, It is characterized by operating the device.
  • the water level drops due to the outflow of water from the water intake tank, and when the water level measured by the water level gauge falls below the predetermined water level, the amount of water stored in the water intake tank is activated by operating the water flow blocking device.
  • the flowing water blocking device can be operated at an appropriate timing, and the reliability of the equipment can be improved.
  • a siphon part is provided in the intake channel, and an air supply device capable of supplying air is provided in the siphon part as the flowing water blocking device.
  • the air supply device is stopped and the siphon part is filled with water, so that water from the intake source can flow into the intake tank through the intake channel and the siphon part, and an appropriate amount of water is supplied to the intake tank. Cooling water is secured.
  • the water in the intake tank tries to flow out to the intake source side through the intake channel.
  • the air supply device is activated, air is supplied to the siphon unit, so that the siphon unit is Thus, the outflow of water from the water intake tank is prevented, and an appropriate amount of cooling water can always be secured in the water intake tank easily with a simple configuration.
  • the air supply device includes an air supply passage having one end opened and the other end communicating with the siphon portion, and an on-off valve provided in the air supply passage. It is characterized by having.
  • the air supply device is stopped and the on-off valve is closed, so that no air is supplied from the air supply passage to the siphon part, and the siphon part is filled with water.
  • Water can flow into the intake tank through the intake channel and the siphon unit, and an appropriate amount of cooling water is secured in the intake tank.
  • the air supply device is activated to open the on-off valve, so that air is supplied from the supply passage to the siphon unit. Therefore, the intake channel is divided into the intake source side and the intake tank side by the siphon part, the outflow of water from the intake tank is prevented, and an appropriate amount of cooling water can be easily secured in the intake tank at all times. it can.
  • the air supply device includes an air supply source, an air supply passage having one end connected to the air supply source and the other end communicating with the siphon portion. It is characterized by having.
  • the air supply source of the air supply device is stopped, air is not supplied from the supply passage to the siphon unit, and the siphon unit is filled with water. Can flow into the intake tank through the intake channel and the siphon part, and an appropriate amount of cooling water is secured in the intake tank.
  • the water in the intake tank tries to flow out to the intake source side through the intake channel.
  • the air supply source of the air supply device is activated, air is supplied from the supply passage to the siphon unit.
  • the intake channel is divided into the intake source side and the intake tank side by the siphon part, and the outflow of water from the intake tank is prevented, and an appropriate amount of cooling water can be easily secured in the intake tank at all times. .
  • an exhaust device capable of discharging air from the siphon part.
  • the intake channel is divided by the air into the intake source side and the intake tank side.
  • the intake channel is supported by the support shaft along the width direction of the intake channel and the support shaft along the width direction of the intake channel as the water flow blocking device.
  • a moving device for moving the blocking plate to a retreat position where the blocking plate is retracted upward from the intake channel and a blocking position where the blocking plate is submerged in the intake channel.
  • the blocking plate is moved to the retreat position where the blocking plate is retreated upward from the intake channel by the moving device, so that water from the intake source can flow into the intake tank through the intake channel, and an appropriate amount of cooling water is supplied to the intake tank. Is secured.
  • the water in the intake tank tries to flow out to the intake source side through the intake channel.At this time, the blocking plate moves to the blocking position where it has been submerged in the intake channel. Since the outflow of water from the water intake tank is prevented, an appropriate amount of cooling water can always be secured in the water intake tank easily with a simple configuration.
  • the lower end portion can be turned to the intake tank side.
  • the water intake pump cools the water in the water intake tank and a seawater pump that supplies the water in the water intake tank as a cooling water to a reactor auxiliary machine coolant cooling device.
  • the water blocking device is operated to ensure an appropriate amount of cooling water in the intake tank, and the seawater pump supplies the cooling water to the reactor auxiliary machine cooling water cooler. Can be supplied to. Moreover, since the operation of the nuclear reactor is stopped, it becomes unnecessary to supply cooling water to the condenser by a circulating water pump. As a result, the safety of the nuclear power plant can be ensured.
  • the water intake facility of the nuclear power plant is provided in the water intake channel having one end communicating with the water intake source, the water intake tank communicating with the other end of the water intake channel and opened upward, and the water intake tank. It has a water intake pump, a water flow blocking device for blocking water flow from the water intake tank through the water intake channel to the water intake source side, and a control device for water intake equipment in the nuclear power plant.
  • the water blocking device is activated and water outflow from the water intake tank through the water intake path to the water intake source is prevented.
  • the water flow blocking device is detected when it is detected or estimated that the water storage amount in the water intake tank is smaller than a predetermined water storage amount set in advance. Therefore, it is possible to supply cooling water to a predetermined cooling position by a water intake pump by always ensuring an appropriate amount of cooling water in the water intake tank.
  • FIG. 1 is a schematic diagram illustrating a water intake facility of the nuclear power plant according to the first embodiment.
  • FIG. 2 is a schematic diagram illustrating an operating state at the time of occurrence of a tsunami in a water intake facility of a nuclear power plant.
  • FIG. 3 is a flowchart showing a processing flow of the control device for the water intake equipment in the nuclear power plant according to the first embodiment.
  • FIG. 4 is a schematic configuration diagram illustrating a nuclear power plant.
  • FIG. 5 is a schematic diagram showing a cooling system using cooling water in a nuclear power plant.
  • FIG. 6 is a schematic diagram illustrating a water intake facility of the nuclear power plant according to the second embodiment.
  • FIG. 7 is a schematic diagram illustrating a water intake facility of the nuclear power plant according to the third embodiment.
  • FIG. 4 is a schematic configuration diagram showing a nuclear power plant
  • FIG. 5 is a schematic diagram showing a cooling system using cooling water in the nuclear power plant.
  • the nuclear reactor according to the first embodiment uses light water as a reactor coolant and a neutron moderator, and generates high-temperature and high-pressure water that does not boil over the entire core, and generates steam by heat exchange by sending this high-temperature and high-pressure water to a steam generator. And a pressurized water reactor (PWR) that generates power by sending this steam to a turbine generator.
  • PWR pressurized water reactor
  • the reactor containment vessel 11 stores therein the pressurized water reactor 12 and the steam generator 13, and this pressurized water.
  • the nuclear reactor 12 and the steam generator 13 are connected via pipes 14 and 15, a pressurizer 16 is provided in the pipe 14, and a primary cooling water pump 17 is provided in the pipe 15.
  • light water is used as the moderator and primary cooling water (cooling material), and the primary cooling system is maintained at a high pressure of about 150 to 160 atm by the pressurizer 16 in order to suppress boiling of the primary cooling water in the core. You are in control.
  • the pressurized water reactor 12 light water is heated as primary cooling water by low-enriched uranium or MOX as fuel (nuclear fuel), and the hot primary cooling water is maintained at a predetermined high pressure by the pressurizer 16. 14 to the steam generator 13.
  • the steam generator 13 heat exchange is performed between the high-temperature and high-pressure primary cooling water and the secondary cooling water, and the cooled primary cooling water is returned to the pressurized water reactor 12 through the pipe 15.
  • the steam generator 13 is connected to a steam turbine 19 through a pipe 18, and a main steam isolation valve 20 is provided in the pipe 18.
  • the steam turbine 19 includes a high-pressure turbine 21 and a low-pressure turbine 22, and a generator (power generation device) 23 is connected to the steam turbine 19.
  • a moisture separator / heater 24 is provided between the high-pressure turbine 21 and the low-pressure turbine 22, and a cooling water branch pipe 25 branched from the pipe 18 is connected to the moisture separator / heater 24,
  • the high pressure turbine 21 and the moisture separation heater 24 are connected by a low temperature reheat pipe 26, and the moisture separation heater 24 and the low pressure turbine 22 are connected by a high temperature reheat pipe 27.
  • Each low-pressure turbine 22 of the steam turbine 19 has a condenser 28, and steam is discharged from each low-pressure turbine 22.
  • the condenser 28 is connected to a turbine bypass pipe 30 having a bypass valve 29 from the pipe 18.
  • this condenser 28 is connected to a pipe 31, and is connected to a condensate pump 32, a ground condenser 33, a condensate demineralizer 34, a condensate booster pump 35, and a low-pressure feed water heater 36. Further, the piping 31 is connected to a deaerator 37 and is provided with a main feed water pump 38, a high-pressure feed water heater 39, and a main feed water control valve 40.
  • the pipe 18 is connected to one end of a main steam relief pipe 42 having a main steam relief valve 41 and one end of a main steam safety pipe 44 having a main steam safety valve 43. The end is open to the atmosphere.
  • a main steam relief pipe 42 having a main steam relief valve 41 and one end of a main steam safety pipe 44 having a main steam safety valve 43.
  • the end is open to the atmosphere.
  • one end of an auxiliary water supply pipe 45 is connected between the main water supply control valve 40 and the steam generator 13, and the auxiliary water supply pipe 45 is provided with a first auxiliary water supply pump 46.
  • a condensate tank 47 is connected to the other end.
  • the first auxiliary feed water pump 46 is driven by the rotation of the turbine by steam, and the cooling water branch pipe 48 branched from between the main steam safety pipe 44 and the main steam isolation valve 20 in the pipe 18 is the first. 1 extends to the auxiliary water supply pump 46, and an opening / closing valve 49 is provided in the cooling water branch pipe 48.
  • the steam generated by exchanging heat with the high-temperature and high-pressure primary cooling water in the steam generator 13 is sent to the steam turbine 19 (the high-pressure turbine 21 to the low-pressure turbine 22) through the pipe 18, and the steam is generated by the steam.
  • the turbine 19 is driven to generate power by the generator 23.
  • the steam from the steam generator 13 drives the high-pressure turbine 21, then the moisture contained in the steam is removed and heated by the moisture separator / heater 24, and then the low-pressure turbine 22 is driven.
  • the steam that has driven the steam turbine 19 is cooled by using the seawater in the condenser 28 to become condensate, and the ground condenser 33, the condensate demineralizer 34, the low pressure feed water heater 36, the deaerator 37, the high pressure It is returned to the steam generator 13 through a feed water heater 39 or the like.
  • the steam generator 13 is connected to the steam turbine 19 via pipes 18 and 31, and cooling water (steam) is circulated by the condensate pump 32, the condensate booster pump 35, the main feed water pump 38, and the like. Yes.
  • These various pumps 32, 35, 38, and the like are driven by power supply from a power supply device (plant AC power supply, external power supply, emergency diesel generator, emergency battery, all not shown).
  • a power supply device plant AC power supply, external power supply, emergency diesel generator, emergency battery, all not shown.
  • the steam (secondary cooling water) of the steam generator 13 is released from the pipe 18 to the atmosphere through the main steam relief pipe 42 and the main steam safety pipe 44 by opening the main steam relief valve 41 or the like. Then, the pressure in the steam generator 13 is reduced to cool. Further, the steam in the pipe 18 is supplied from the cooling water branch pipe 48 to the first auxiliary water supply pump 46, whereby the first auxiliary water supply pump 46 is driven and the condensate in the condensate tank 47 is supplied from the auxiliary water supply pipe 45. The steam generator 13 is supplied through a pipe 31 to cool the steam generator 13. During this time, the power supply device is restored.
  • the nuclear power plant described above is provided in the vicinity of a coast or a river.
  • Water intake equipment is installed on the coast or a river, and seawater or river water is used as cooling water.
  • the water intake facility 50 includes a water intake channel 51 and a water intake tank 52, and seawater can be stored in the water intake tank 52 from the sea as a water intake source as cooling water.
  • the intake tank 52 is provided with a seawater pump 53 and a circulating water pump 54 as intake pumps.
  • the seawater pump 53 and the circulating water pump 54 can take cooling water (seawater) of the water storage tank 52.
  • the seawater pump 53 is connected to a reactor auxiliary machine cooling water cooler 56 in a reactor building (not shown) via a water intake pipe 55, and the reactor auxiliary machine cooling water cooler 56 is connected via a drain pipe 57. It is connected to the discharge channel 58.
  • the reactor auxiliary machine cooling water cooler 56 cools the cooling water of the spent fuel pool 59 installed in the reactor containment vessel 11 (see FIG. 4), for example.
  • a cooling water circulation pipe 60 for circulating the cooling water is provided, and a pump 61 is provided in the cooling water circulation pipe 60. Therefore, the auxiliary reactor cooling water cooler 56 exchanges heat between the seawater taken by the seawater pump 53 and the cooling water (primary cooling water) of the spent fuel pool 59 circulating through the cooling water circulation pipe 60.
  • the primary cooling water can be cooled by the cooling water.
  • the seawater taken by the seawater pump 53 not only cools the cooling water in the spent fuel pool 59 by the reactor auxiliary machine cooling water cooler 56, but also an air conditioning refrigerator, an emergency diesel generator cooler, etc. It is used as cooling water for cooling. That is, the seawater taken by the seawater pump 53 is used to cool the primary cooling water in the reactor containment vessel 11.
  • the circulating water pump 54 is connected to a condenser 28 in a turbine building (not shown) via a water intake pipe 62, and the condenser 28 is connected to a water discharge path 58 via a drain pipe 63.
  • the condenser 28 cools the steam discharged from the low-pressure turbine 22. Therefore, the condenser 28 can perform heat exchange between the cooling water taken by the circulating water pump 54 and the steam (secondary cooling water) flowing therein, thereby cooling the secondary cooling water with the cooling water. .
  • a water flow blocking device is provided in the water intake channel 51 to block water flowing from the water intake tank 52 to the sea side through the water intake channel 51.
  • the water flow blocking device is activated. Like to do. Therefore, even when a pulling wave is generated, an appropriate amount of cooling water is always secured in the water intake tank 52, and at least the seawater pump 53 can take in the cooling water.
  • FIG. 1 is a schematic diagram illustrating a water intake facility of a nuclear power plant according to the first embodiment
  • FIG. 2 is a schematic diagram illustrating an operating state when a tsunami occurs in the water intake facility of the nuclear power plant
  • FIG. 3 is a first embodiment. It is a flowchart showing the flow of a process of the control apparatus of the water intake equipment in a nuclear power plant.
  • a water intake facility 50 of a nuclear power plant includes a water intake channel 51 having one end communicating with the sea as a water intake source, a water intake tank 52 that is connected to the other end of the water intake channel 51 and opens upward, and a water intake tank 52.
  • a seawater pump 53 and a circulating water pump 54 provided; a siphon portion (flow-flow blocking device) 71 provided in the intake channel 51; an air supply device (flow-flow blocking device) 72 capable of supplying air to the siphon portion 71; And a control device 73 for operating the air device 72.
  • the intake tank 52 can store a predetermined amount of cooling water and is open at the top.
  • the seawater pump 53 and the circulating water pump 54 can take the cooling water stored in the water intake tank 52, and the water intakes 53 a and 54 a extend to the vicinity of the bottom of the water intake tank 52.
  • the intake channel 51 is a pipe, one end of which is in communication with the sea, and the other end is connected to the side of the intake tank 52.
  • the siphon part 71 is a pipe having the same diameter as the pipe of the intake channel 51, and is provided in a substantially middle part of the intake channel 51.
  • the siphon portion 71 is composed of a first inclined portion 81 inclined upward toward the intake tank 52, an upper horizontal portion 82, and a second inclined portion 83 inclined downward toward the intake tank 52.
  • the passage area is almost the same as that of the intake channel 51.
  • the water intake tank 52 can store cooling water up to the normal water level L2 above the bottom surface height L1 of the upper horizontal part 82 in the siphon part 71, and the bottom surface height L1 of the upper horizontal part 82 is in the water intake tank 52. It is set to substantially the same height as the predetermined water level L3 set in advance.
  • the predetermined water level L3 is a water level that is higher than the lowest suction water level of the seawater pump 53 and the circulating water pump 54 and lower than the normal lowest water level that becomes lower due to ebb tide or the like. Further, in the event of an emergency in a nuclear power plant, the reactor is stopped and only the seawater pump 53 is driven to stop the circulating water pump 54. However, the seawater pump 53 can only operate in the intake tank 52 for a predetermined period (predetermined time). It is necessary to secure a predetermined water storage amount, and the predetermined water level L3 is a water level corresponding to the predetermined water storage amount.
  • the air supply device 72 is provided in the siphon unit 71 in the intake channel 51, and can supply air to the siphon unit 71.
  • the air supply device 72 includes an air supply passage 74 and an electromagnetic on-off valve 75.
  • One end portion (upper end portion) of the air supply passage 74 is open to the atmosphere, and the other end portion (lower end portion) communicates with the ceiling of the upper horizontal portion 82 in the siphon portion 71.
  • the supply passage 74 is provided with an electromagnetic open / close valve 75.
  • the water intake tank 52 is provided with a water level gauge 76 for measuring the water level of the stored cooling water.
  • the control device 73 is connected to an electromagnetic on-off valve 75 and a water level gauge 76, can open and close the electromagnetic on-off valve 75, and receives the coolant level in the water intake tank 52 measured by the water level gauge 76.
  • the control device 73 can open and close the electromagnetic on-off valve 73 based on the coolant level measured by the water level gauge 76.
  • the water storage amount of the water intake tank 52 decreases from a predetermined water storage amount, that is, when the water level of the cooling water in the water intake tank 52 measured by the water level gauge 76 decreases below the predetermined water level L3,
  • the electromagnetic on-off valve 75 in the air supply device 72 that functions as a blocking device is opened.
  • the air supply passage 74 is provided with an exhaust device 77 capable of discharging air from the siphon unit 71.
  • the exhaust device 77 includes an exhaust passage 78 and a vacuum pump 79.
  • One end of the exhaust passage 78 is open to the atmosphere, and the other end communicates with the ceiling of the upper horizontal portion 82 in the siphon portion 71.
  • the one end portions of the air supply passage 74 and the exhaust passage 78 are joined and connected to the siphon portion 71.
  • each end of the air supply passage 74 and the exhaust passage 78 may be independently connected to the siphon portion 71 independently.
  • the exhaust passage 78 is provided with a vacuum pump 79.
  • the control device 73 is connected to a vacuum pump 79 and can stop driving the vacuum pump 79.
  • the control device 73 is connected to an alarm (alarm device) 80 and can be operated as necessary.
  • the control device 73 activates the alarm 80 when the water level of the cooling water in the water intake tank 52 falls below the predetermined water level L3.
  • the storage amount (water level) of the intake tank 52 corresponds to the sea level as the intake source. That is, when the sea water level is higher than the bottom surface height L1 of the upper horizontal part 82 in the siphon part 71, seawater flows into the intake tank 52 through the siphon part 71 of the intake channel 51, and the water level of the intake tank 52 is higher than the predetermined water level L3. Get higher.
  • the control device 73 operates the exhaust device 77.
  • the vacuum pump 79 When the exhaust device 77 is activated, the vacuum pump 79 is activated, so that air present in the upper horizontal portion 82 in the siphon portion 71 is discharged to the outside through the exhaust passage 78, and the upper horizontal portion 82 of the siphon portion 71 is filled with seawater. Is done. Then, since there is no air in the siphon part 71, seawater always flows into the intake tank 52 through the siphon part 71 of the intake channel 51, and the water level of the intake tank 52 is maintained at the normal water level L2 higher than the predetermined water level L3.
  • step S11 the control device 73 determines whether or not the current water level L in the water intake tank 52 is lower than the predetermined water level L3. If it is determined that the cooling water level L in the water intake tank 52 is not lower than the predetermined water level L3 (No), the alarm 80 remains in the stopped state (OFF) in step S13, and in step S14.
  • the electromagnetic on-off valve 75 is kept closed.
  • step S15 the seawater pump 53 is driven (ON), and in step S16, the circulating water pump 54 is driven (ON).
  • the seawater pump 53 and the circulating water pump 54 can suck the cooling water (seawater) in the water intake tank 52 from each of the water intakes 53a and 54a.
  • the cooling position can be supplied. That is, the seawater pump 53 can supply the cooling water to the reactor auxiliary machine cooling water cooler 56 in the reactor building and cool the spent fuel pool 59.
  • the circulating water pump 54 can supply cooling water to the condenser 28 in the turbine building to cool the secondary cooling water.
  • the seawater is replenished to the water intake tank 52 through the water intake channel 51, so that the control device 73 confirms the amount of water in the water intake tank 52 in step S17. .
  • step S12 the control device 73 determines that the cooling water level L in the water intake tank 52 is lower than the predetermined water level L3 (Yes), and in step S18, activates the alarm 80 (ONF).
  • step S19 the air supply device 72 is operated to open the electromagnetic on-off valve 75. Then, as shown in FIG. 2, external air is supplied to the upper horizontal portion 82 of the siphon portion 71 through the air supply passage 74, and the siphon portion 71 is used as a weir because the upper horizontal portion 82 is filled with air. Function.
  • the siphon part 71 has the bottom surface height L1 of the upper horizontal part 82 set to substantially the same height as the predetermined water level L3 in the water intake tank 52, and an air layer exists in the upper horizontal part 82, The pulling wave does not act on the second inclined portion 83 side of the siphon portion 71, and the water intake tank 52 does not flow out of the cooling water beyond the predetermined water level L3.
  • step S20 control for stopping the nuclear reactor is executed, and in step S21, driving of the circulating water pump 54 is stopped (OFF). That is, in the nuclear reactor, the steam (secondary cooling water) of the steam generator 13 is released from the pipe 18 to the atmosphere through the main steam escape pipe 42 and the like by opening the main steam relief valve 41 and the pressure in the steam generator 13. Reduce the cooling. Further, the steam in the pipe 18 is supplied from the cooling water branch pipe 48 to the first auxiliary water supply pump 46, whereby the first auxiliary water supply pump 46 is driven and the condensate in the condensate tank 47 is supplied from the auxiliary water supply pipe 45. The steam generator 13 is supplied through the pipe 31 to cool the steam generator 13.
  • the driving of the circulating water pump 54 may be stopped. Only the seawater pump 53 sucks the cooling water (seawater) in the water intake tank 52 from the water intake 53a and supplies it to a predetermined cooling position. can do.
  • the control device 73 confirms securing of the amount of water in the water intake tank 52 only during a predetermined period.
  • the control device 73 closes the electromagnetic on-off valve 75 and drives the vacuum pump 79 to discharge the air remaining in the upper horizontal portion 82.
  • the upper horizontal part 82 of the siphon part 71 is filled with seawater. Then, the seawater pump 53 and the circulating water pump 54 can be operated again.
  • one end portion communicates with the sea as the water intake source, and the other end portion of the intake passage 51 communicates with the upper side.
  • 73 operates the water blocking device when the amount of water stored in the water intake tank 52 decreases below a predetermined amount of water stored in advance.
  • a water level meter 76 for measuring the water level in the water intake tank 52 is provided, and the control device 73 is based on a predetermined water level at which the water level measured by the water level gauge 76 is set in advance. Activate the water blocking device when lowered. Accordingly, when the pulling wave is generated, the water level is lowered by the outflow of the cooling water from the water intake tank 52. When the water level measured by the water level gauge 76 is lower than the predetermined water level, the water intake blocking device is operated to operate the water intake tank. The decrease in the amount of water stored in 52 can be detected easily and with high accuracy, the running water blocking device can be operated at an appropriate timing, and the reliability of the equipment can be improved.
  • a siphon portion 71 is provided in the intake passage 51, and an air supply device 72 capable of supplying air as a water flow blocking device is provided in the siphon portion 71. Therefore, normally, the air supply device 72 is stopped and the siphon part 71 is filled with water, so that seawater from the sea can flow into the intake tank 52 through the intake channel 51 and the siphon part 71, and the intake tank An appropriate amount of cooling water is secured in 52. At the time of the occurrence of the pulling wave, the cooling water in the intake tank 52 tends to flow out to the sea side through the intake path 51. At this time, since the air supply device 72 operates, this is caused by supplying air to the siphon unit 71.
  • the siphon portion 71 serves as a weir, and the outflow of the cooling water from the water intake tank 52 is prevented, so that an appropriate amount of cooling water can always be secured in the water intake tank 52 easily with a simple configuration.
  • an air supply passage 74 having one end opened and the other end communicating with the siphon portion 71, and the air supply passage 74 are provided as the air supply device 72.
  • the electromagnetic on-off valve 75 is provided as the air supply device 72. Therefore, normally, the air supply device 72 is stopped and the electromagnetic on-off valve 75 is closed, so that no air is supplied from the air supply passage 74 to the siphon unit 71, and the siphon unit 71 is filled with water. Therefore, seawater from the sea can flow into the intake tank 52 through the intake channel 51 and the siphon part 71, and an appropriate amount of cooling water is secured in the intake tank 52.
  • the water in the intake tank 52 tends to flow out to the sea side through the intake channel 51.
  • the air supply device 72 is activated to open the electromagnetic on-off valve 75. Is supplied to the siphon unit 71, and the intake channel 51 is divided into the sea side and the intake tank 52 side by the siphon unit 71, the outflow of water from the intake tank 52 is prevented, and the intake tank 52 is easily supplied to the intake unit 52. A proper amount of cooling water can always be secured.
  • an exhaust passage 78 and a vacuum pump 79 are provided as an exhaust device 77 that can discharge air from the siphon unit 71. Therefore, when the cooling water from the sea flows into the intake tank 52 through the intake channel 51, the internal air remains in the siphon unit 71. Therefore, the vacuum pump 77 is driven to drive the air gas exhaust passage remaining in the siphon unit 71. 78, the siphon part 71 can be filled with cooling water, the flow of the cooling water in the siphon part 71 can be optimized, and the seawater pump 53 and the circulating water pump 54 can properly take water from the intake tank 52. it can.
  • the seawater pump 53 that supplies the cooling water of the water intake tank 52 to the reactor auxiliary machine cooling water cooler 56, and the cooling water of the water intake tank 52 is the condenser.
  • the control device 73 activates the water flow blocking device and stops the operation of the nuclear reactor. Only 54 is stopped. Accordingly, an appropriate amount of cooling water is secured in the water intake tank 52 in an emergency, and the seawater pump 53 can supply the cooling water to the reactor auxiliary machine cooling water cooler 56 to cool it. Further, since the operation of the nuclear reactor is stopped, it becomes unnecessary to supply the cooling water to the condenser 28 by the circulating water pump 54. As a result, the safety of the nuclear power plant can be ensured.
  • the water intake facility of the nuclear power plant includes a water intake channel 51 whose one end communicates with the sea as a water intake source, and a water intake tank 52 that is connected to the other end of the water intake channel 51 and opens upward.
  • a seawater pump 53 and a circulating water pump 54 provided in the water intake tank 52, a siphon part (flow water blocking device) 71 provided in the water intake channel 51, and an air supply device (flow water blocking) capable of supplying air to the siphon part 71 Device) 72 and a control device 73 for operating the air supply device 72 are provided.
  • the air supply device 72 is activated, so that air is supplied to the siphon unit 71 and the siphon unit 71 becomes a weir.
  • the outflow of the cooling water from the water intake tank 52 is prevented, and the supply of the cooling water to the predetermined cooling position is continued by the seawater pump 53 by always securing an appropriate amount of cooling water in the water intake tank 52. Can do.
  • FIG. 6 is a schematic diagram illustrating a water intake facility of the nuclear power plant according to the second embodiment.
  • symbol is attached
  • a water intake facility 90 of a nuclear power plant is connected to an intake channel 51 having one end communicating with the sea as an intake source and the other end of the intake channel 51.
  • a water intake tank 52 that opens upward, a seawater pump 53 and a circulating water pump 54 provided in the water intake tank 52, a siphon part (flow water blocking device) 71 provided in the water intake path 51, and air can be supplied to the siphon part 71.
  • the air supply device 91 and a control device 73 that operates the air supply device 91 are provided.
  • the intake channel 51, the intake tank 52, the seawater pump 53, the circulating water pump 54, and the siphon unit 71 are the same as those in the first embodiment described above, and thus the description thereof is omitted.
  • the air supply device 91 is provided in the siphon unit 71 in the intake channel 51, and can supply air to the siphon unit 71.
  • the air supply device 91 includes an air supply passage 92 and an air supply device (air supply source) 93.
  • the other end of the air supply passage 92 communicates with the ceiling of the upper horizontal portion 82 in the siphon portion 71.
  • the air supply passage 92 is connected to an air supply device 93 at one end.
  • the air supply device 93 may be a fan, a blower, a compressor, an accumulator, or the like.
  • the control device 73 can stop the air supply device 93 based on the coolant level measured by the water level gauge 76. Specifically, when the water storage amount of the water intake tank 52 decreases from a predetermined water storage amount, that is, when the water level of the cooling water in the water intake tank 52 measured by the water level gauge 76 decreases below the predetermined water level L3, The air supply device 93 that functions as a blocking device is activated.
  • the control device 73 determines that the cooling water level L in the intake tank 52 is lower than the predetermined water level L3, activates the alarm 80, and activates the air supply device 91. Then, external air is forcibly supplied to the upper horizontal portion 82 of the siphon portion 71 through the air supply passage 92, and the siphon portion 71 functions as a weir because the upper horizontal portion 82 is filled with air.
  • the siphon part 71 has the bottom surface height L1 of the upper horizontal part 82 set to substantially the same height as the predetermined water level L3 in the water intake tank 52, and an air layer exists in the upper horizontal part 82,
  • the pulling wave does not act on the second inclined portion 83 side of the siphon portion 71, and the water intake tank 52 does not flow out of the cooling water beyond the predetermined water level L3.
  • control for stopping a nuclear reactor is performed, the drive of the circulating water pump 54 is stopped, only the seawater pump 53 act
  • one end portion communicates with the sea as the water intake source, and the other end portion of the water intake passage 51 communicates with the upper side.
  • An air supply device 91 and a control device 73 that operates the air supply device 91 are provided.
  • the control device 73 causes the air supply device to Since 91 operates, this siphon part 71 becomes a weir by supplying air to the siphon part 71, and the outflow of the cooling water from the intake tank 52 is prevented, and the intake tank 52 can be easily configured with a simple configuration. A proper amount of cooling water can always be secured.
  • the air supply passage 92 having the other end communicating with the siphon portion 71 and the air connected to one end of the air supply passage 92.
  • a supply device 93 is provided. Accordingly, when the amount of water stored in the water intake tank 52 is reduced below the predetermined amount of water stored, the air supply device 93 is activated to forcibly supply air from the air supply passage 92 to the siphon unit 71. It can function as a weir and can improve safety.
  • the siphon portion 71 is configured by the first inclined portion 81, the upper horizontal portion 82, and the second inclined portion 83, but is not limited to this configuration.
  • the siphon unit 71 may be composed of a first vertical part, an upper horizontal part, and a second vertical part, and the upper horizontal part or the whole may have a curved shape.
  • FIG. 7 is a schematic diagram illustrating a water intake facility of the nuclear power plant according to the third embodiment.
  • symbol is attached
  • a water intake facility 100 of a nuclear power plant is connected to a water intake channel 51 having one end communicating with the sea as a water intake source and the other end of the water intake channel 51.
  • a water intake tank 52 that opens upward, a seawater pump 53 and a circulating water pump 54 provided in the water intake tank 52, and a blocking plate that is rotatably supported along the width direction of the water intake path 51 provided in the water intake path 51.
  • a control device 103 for controlling the operation.
  • the intake channel 51, the intake tank 52, the seawater pump 53, and the circulating water pump 54 are the same as those in the first embodiment described above, and thus the description thereof is omitted.
  • the blocking plate 101 is a rectangular plate and is disposed along the width direction of the intake passage 51, and one end portion (upper end portion) in the height direction is supported by the support shaft 104 along the width direction of the intake passage 51. It is supported rotatably.
  • the moving device 102 can rotate the blocking plate 101 with the support shaft 104 as a fulcrum, and enters the intake channel 51 from the retreat position (solid line position in FIG. 7) where the blocking plate 101 is retracted upward from the water channel 51. It is possible to move to the flooded blocking position (the two-dot chain line position in FIG. 7). That is, the moving device 102 holds the other end portion (lower end portion) in the height direction of the blocking plate 101 at the retracted position (solid line position in FIG. 7), and the other end portion (lower end portion) of the blocking plate 101. Part) can be moved to the blocking position (two-dot chain line position in FIG. 7) by the weight of the blocking plate 101.
  • a stopper 105 is fixed to the bottom surface below the support position of the blocking plate 101.
  • the other end of the blocking plate 101 abuts against the stopper 105, so that the blocking plate 101 is held at the blocking position (the two-dot chain line position in FIG. 7).
  • the rotation to the intake tank 52 side is enabled.
  • the moving device 102 is not limited to this configuration, and may be a device that operates the blocking plate using a motor, a fluid pressure cylinder, or the like, for example.
  • the control device 103 can operate the moving device 102 based on the coolant level measured by the water level gauge 76. Specifically, the control device 103 moves the moving device when the water storage amount of the water intake tank 52 is decreased from a predetermined water storage amount, that is, when the water level of the cooling water in the water intake tank 52 measured by the water level gauge 76 is lower than the predetermined water level. By releasing the restraint of the blocking plate 101 held at the retracted position by 102, the blocking plate 101 is moved to the blocking position by its own weight.
  • the blocking plate 101 is held in the retracted position where it is retracted upward from the intake channel 51, and the seawater flows into the intake tank 52 through the intake channel 51 as shown by the solid line arrow in FIG.
  • the water level of the intake tank 52 is maintained.
  • the control device 103 determines that the coolant level in the water intake tank 52 is lower than the predetermined water level, and operates the moving device 102.
  • the blocking plate 101 is moved to the blocking position by its own weight when the restraint by the moving device 102 is released, and the blocking plate 101 functions as a weir to prevent the cooling water from flowing out of the water intake tank 52.
  • one end portion is connected to the sea as the water intake source, and the other end portion of the water intake passage 51 is connected to the upper side. Is opened by a water intake tank 52, a seawater pump 53 and a circulating water pump 54 provided in the water intake tank 52, and a support shaft 104 along the width direction of the water intake path 51 and along the width direction of the water intake path 51.
  • the blocking device 101 is moved upward from the intake channel 51 by the moving device 102 to the retracted position, and seawater can flow into the intake tank 52 through the intake channel 51. Cooling water is secured.
  • the water in the intake tank 52 tries to flow out to the sea side through the intake channel 51.
  • the blocking device 101 is moved to the blocking position where the blocking plate 101 is submerged in the intake channel 51 by the moving device 102. This blocking plate 101 prevents the outflow of water from the water intake tank 52, and an appropriate amount of cooling water can always be secured in the water intake tank 52 with a simple configuration.
  • the blocking plate 101 when the blocking plate 101 is in the blocking position immersed in the intake channel 51, the lower end portion cannot be rotated to the sea side, and to the water intake tank 52 side. It can be rotated. Accordingly, when a push wave is generated after the occurrence of the pulling wave, the seawater reaches the blocking plate 101 at the blocking position through the intake channel 51, and the lower end of the blocking plate 101 is rotated toward the intake tank 52 by this water flow. Therefore, seawater pushes up the blocking plate 101 and flows into the water intake tank 52, and the cooling water in the water intake tank 52 can be easily increased with a simple configuration.
  • the water level meter 76 for measuring the water level of the water intake tank 52 is provided, and the control devices 73 and 103 operate the water flow blocking device when the water level of the water intake tank 52 falls below a predetermined water level.
  • the control device may be configured to operate the water flow blocking device in response to an earthquake warning or a tsunami warning.
  • you may comprise a control apparatus so that a flowing water blocking apparatus may be operated according to the measurement result of a seismometer or a tsunami meter.
  • a detector for detecting the direction of water flow in the intake channel 51 is provided, and the control device may be configured to operate the water flow blocking device when a flow of water from the intake tank 52 toward the intake channel 51 occurs. Good.
  • the water intake facility of the nuclear power plant of the present invention is installed in the vicinity of the sea and seawater is used as cooling water, but the water intake facility of the nuclear power plant of the present invention is in the vicinity of a lake or a river. You may install and use water as cooling water.
  • control apparatus for the water intake facility of the nuclear power plant and the water intake facility of the nuclear power plant according to the present invention are applied to the pressurized water reactor.
  • the boiling water reactor BWR: Boiling Water
  • Reactor any reactor may be applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Plasma & Fusion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

Provided are a control device for water intake equipment for a nuclear power plant and water intake equipment for a nuclear power plant wherein ensuring a constantly appropriate amount of cooling water in a water intake tank makes it possible to provide cooling water to a prescribed cooling position using a pump. The water intake equipment is provided with: a water intake path 51 having one end in communication with the ocean, which serves as a water intake source; a water intake tank 52 that is in communication with the other end of the water intake path 51 and has an open upper part; an ocean water pump 53 and water circulation pump 54 that are provided to the water intake tank 52; and a water flow blocking device for blocking the flow of water from the water intake tank 52 through the water intake path 51 to the ocean side. The control device 73 causes the water flow blocking device to operate when the amount of water stored in the water intake tank 52 falls below a preset prescribed water storage amount.

Description

原子力発電プラントにおける取水設備の制御装置及び原子力発電プラントの取水設備Control device for water intake facility in nuclear power plant and water intake facility for nuclear power plant
 本発明は、原子力発電プラントで使用する冷却水を取り込むための原子力発電プラントにおける取水設備の制御装置、並びに原子力発電プラントの取水設備に関するものである。 The present invention relates to a water intake facility control device in a nuclear power plant for taking in cooling water used in the nuclear power plant, and a water intake facility in the nuclear power plant.
 例えば、加圧水型原子炉(PWR:Pressurized Water Reactor)を有する原子力発電プラントは、軽水を原子炉冷却材及び中性子減速材として使用し、原子炉の炉心全体にわたって沸騰しない高温高圧水とし、この高温高圧水(1次冷却材)を蒸気発生器に送って熱交換により蒸気を発生させ、この蒸気(2次冷却材)をタービン発電機へ送って発電するものである。この蒸気発生器は、原子炉からの高温高圧の1次冷却材の熱を2次冷却材に伝え、ここで水蒸気を発生させるものである。 For example, a nuclear power plant having a pressurized water reactor (PWR) uses light water as a reactor coolant and a neutron moderator, and produces high-temperature and high-pressure water that does not boil throughout the reactor core. Water (primary coolant) is sent to a steam generator to generate steam by heat exchange, and this steam (secondary coolant) is sent to a turbine generator to generate electricity. This steam generator transfers the heat of the high-temperature and high-pressure primary coolant from the nuclear reactor to the secondary coolant, and generates steam here.
 このような原子力発電プラントでは、海岸や河川の近傍に取水設備を設置し、海水や河川水を冷却水として使用している。例えば、循環水ポンプにより海水を取り込んでタービン建屋内の復水器へ供給し、タービンから排出された蒸気(2次冷却材)を冷却する。また、海水ポンプにより海水を取り込んで原子炉建屋内の原子炉補機冷却水冷却器へ供給し、原子炉格納容器から排出された冷却水(1次冷却材)を冷却する。 In such nuclear power plants, water intake facilities are installed near the coast and rivers, and seawater and river water are used as cooling water. For example, seawater is taken in by a circulating water pump, supplied to a condenser in a turbine building, and steam (secondary coolant) discharged from the turbine is cooled. Also, seawater is taken in by a seawater pump and supplied to a reactor auxiliary coolant cooling device in the reactor building to cool the cooling water (primary coolant) discharged from the reactor containment vessel.
 原子力発電プラントの取水設備は、常時、十分な冷却水量を確保することが重要であり、取水路における所定の水位を維持しなければならない。ところが、津波の発生時に、引き波により取水路の水位が低下してしまうおそれがある。即ち、津波は、沖合から海岸に近づいて海底が浅くなるにつれて波高が高くなり、海岸線で沖合の数倍に達する。そして、上陸した津波は、大きな水圧を伴って押し寄せた後、今度は海水を沖へ引きずり続ける引き波が作用する。このとき、取水路は、引き波により冷却水(海水)の水位が低下し、各種のポンプが冷却水を取水することができず、空気渦が発生して損傷するおそれがある。 It is important to always secure a sufficient amount of cooling water for the intake facilities of nuclear power plants, and a predetermined water level in the intake channel must be maintained. However, when a tsunami occurs, there is a risk that the water level in the intake channel will drop due to the pulling wave. In other words, the tsunami wave height increases as it approaches the coast from the offshore and the seabed becomes shallower, reaching several times offshore along the coastline. Then, after the landing tsunami rushes with a large water pressure, a pulling wave that continues to drag the seawater to the offshore acts. At this time, in the intake channel, the water level of the cooling water (seawater) is lowered by the pulling wave, and various pumps cannot take in the cooling water, and air vortex may be generated and damaged.
 このような問題を解決するものとして、例えば、下記特許文献1に記載されたものがある。この特許文献1に記載された原子力プラントの取水設備は、取水用共用開渠における海水取水口に、津波時における取水用共用開渠の海水の流出を防止するための堰を設け、堰の上端をポンプ建屋内に設けられた循環水ポンプにおける吸込口よりも下位に設定し、海水ポンプにおける吸込口により吸引する海水の有効水源エリアを確保するものである。 As a solution to such a problem, for example, there is one described in Patent Document 1 below. The water intake facility of the nuclear power plant described in this patent document 1 is provided with a weir for preventing the outflow of seawater in the shared open water for intake during a tsunami at the seawater intake in the shared open water for intake. Is set lower than the suction port in the circulating water pump provided in the pump building, and the effective water source area of the seawater sucked by the suction port in the seawater pump is secured.
特開平06-324190号公報Japanese Patent Laid-Open No. 06-324190
 従来の原子力プラントの取水設備のように、取水路(取水用共用開渠)に堰を設けると、引き波の発生時に、取水路からの冷却水の流出を防止することができるが、通常時には、堰を越流する流れが強く速度分布が大きく変わり、ポンプ吸い込み口で水柱渦が発生したり、また、取水路の圧力損失が大きくなる。 When weirs are provided in the intake channel (shared open channel for intake water) as in the case of conventional nuclear power plant intake facilities, it is possible to prevent cooling water from flowing out of the intake channel when a pulling wave occurs. The flow over the weir is strong and the velocity distribution changes greatly, and a water column vortex is generated at the pump suction port, and the pressure loss in the intake channel increases.
 本発明は、上述した課題を解決するものであり、取水槽に常時適正量の冷却水を確保することでポンプにより所定の冷却位置に冷却水を供給可能とする原子力発電プラントの取水設備を提供することを目的とする。 The present invention solves the above-described problems, and provides a water intake facility for a nuclear power plant that can supply cooling water to a predetermined cooling position by a pump by always securing an appropriate amount of cooling water in a water intake tank. The purpose is to do.
 上記の目的を達成するための本発明の原子力発電プラントにおける取水設備の制御装置は、一端部が取水源に連通する取水路と、前記取水路の他端部に連通されて上方が開放する取水槽と、前記取水槽に設けられる取水ポンプと、前記取水槽から前記取水路を経て前記取水源側への流水を阻止する流水阻止装置と、を有する原子力発電プラントにおける取水設備において、前記取水槽の貯水量が予め設定された所定貯水量より減少することを検出または推定したときに前記流水阻止装置を作動する、ことを特徴とするものである。 In order to achieve the above object, a control apparatus for a water intake facility in a nuclear power plant according to the present invention comprises a water intake channel having one end communicating with a water intake source and a water intake channel open to the upper end connected to the other end of the water intake channel. In the water intake facility in a nuclear power plant, comprising: a water tank; a water intake pump provided in the water intake tank; and a water flow blocking device for blocking water flow from the water intake tank to the water intake source side through the water intake path. The water flow blocking device is activated when it is detected or estimated that the stored water amount is less than a predetermined stored water amount.
 従って、取水源からの水が取水路を通して取水槽に流入するため、取水槽に十分な貯水量が確保され、取水ポンプは、この取水槽の水を取水して所定の冷却位置に供給することができる。そして、引き波の発生時、取水槽の水が取水路を通して取水源側に流出しようとするが、取水槽の貯水量が所定貯水量より減少すると流水阻止装置が作動し、取水槽から取水路を経て取水源側への水の流出が阻止される。その結果、取水槽に常時適正量の冷却水を確保することで、取水ポンプにより所定の冷却位置への冷却水の供給を継続することができる。 Therefore, since water from the water intake source flows into the water intake tank through the water intake channel, a sufficient amount of water is secured in the water intake tank, and the water intake pump takes water from the water intake tank and supplies it to a predetermined cooling position. Can do. Then, when a pulling wave occurs, the water in the intake tank tries to flow out to the intake source side through the intake path, but when the intake volume of the intake tank decreases from the predetermined storage volume, the flow-inhibiting device operates and the intake tank takes in the intake path. Through this, the outflow of water to the intake source side is prevented. As a result, by always securing an appropriate amount of cooling water in the intake tank, the supply of cooling water to a predetermined cooling position can be continued by the intake pump.
 本発明の原子力発電プラントにおける取水設備の制御装置では、前記取水槽の水位を計測する水位計が設けられ、前記水位計が計測した水位が予め設定された所定水位より低下したときに前記流水阻止装置を作動することを特徴としている。 In the control apparatus for water intake equipment in the nuclear power plant according to the present invention, a water level meter for measuring the water level of the water intake tank is provided, and when the water level measured by the water level meter falls below a preset predetermined water level, It is characterized by operating the device.
 従って、引き波の発生時に、取水槽からの水が流出することで水位が低下し、水位計が計測した水位が所定水位より低下すると、流水阻止装置を作動することで、取水槽における貯水量の減少を容易に、且つ、高精度に検出することができ、適正なタイミングで流水阻止装置を作動することができ、設備の信頼性を向上することができる。 Therefore, when a pulling wave occurs, the water level drops due to the outflow of water from the water intake tank, and when the water level measured by the water level gauge falls below the predetermined water level, the amount of water stored in the water intake tank is activated by operating the water flow blocking device. Can be detected easily and with high accuracy, the flowing water blocking device can be operated at an appropriate timing, and the reliability of the equipment can be improved.
 本発明の原子力発電プラントにおける取水設備の制御装置では、前記取水路にサイフォン部が設けられ、前記サイフォン部に前記流水阻止装置として空気を供給可能な給気装置が設けられることを特徴としている。 In the control apparatus for intake facilities in the nuclear power plant of the present invention, a siphon part is provided in the intake channel, and an air supply device capable of supplying air is provided in the siphon part as the flowing water blocking device.
 従って、通常時、給気装置が停止しており、サイフォン部が水で満たされているため、取水源からの水が取水路及びサイフォン部を通して取水槽に流入可能となり、取水槽に適正量の冷却水が確保される。引き波の発生時、取水槽の水が取水路を通して取水源側に流出しようとするが、このとき、給気装置が作動するため、サイフォン部に空気が供給されることでこのサイフォン部が堰となり、取水槽からの水の流出が阻止されることとなり、簡単な構成で容易に取水槽に常時適正量の冷却水を確保することができる。 Therefore, normally, the air supply device is stopped and the siphon part is filled with water, so that water from the intake source can flow into the intake tank through the intake channel and the siphon part, and an appropriate amount of water is supplied to the intake tank. Cooling water is secured. When a pulling wave occurs, the water in the intake tank tries to flow out to the intake source side through the intake channel. At this time, since the air supply device is activated, air is supplied to the siphon unit, so that the siphon unit is Thus, the outflow of water from the water intake tank is prevented, and an appropriate amount of cooling water can always be secured in the water intake tank easily with a simple configuration.
 本発明の原子力発電プラントにおける取水設備の制御装置では、前記給気装置は、一端部が開口して他端部が前記サイフォン部に連通する給気通路と、前記給気通路に設けられる開閉弁とを有することを特徴としている。 In the control apparatus for intake water in a nuclear power plant according to the present invention, the air supply device includes an air supply passage having one end opened and the other end communicating with the siphon portion, and an on-off valve provided in the air supply passage. It is characterized by having.
 従って、通常時、給気装置が停止して開閉弁が閉止しており、給気通路からサイフォン部へ給気されることはなく、サイフォン部が水で満たされているため、取水源からの水が取水路及びサイフォン部を通して取水槽に流入可能となり、取水槽に適正量の冷却水が確保される。引き波の発生時、取水槽の水が取水路を通して取水源側に流出しようとするが、このとき、給気装置が作動して開閉弁を開放するため、給気通路からサイフォン部へ給気され、取水路がサイフォン部により取水源側と取水槽側とに分断されることとなり、取水槽からの水の流出が阻止され、容易に取水槽に常時適正量の冷却水を確保することができる。 Therefore, normally, the air supply device is stopped and the on-off valve is closed, so that no air is supplied from the air supply passage to the siphon part, and the siphon part is filled with water. Water can flow into the intake tank through the intake channel and the siphon unit, and an appropriate amount of cooling water is secured in the intake tank. When a pulling wave occurs, the water in the intake tank tries to flow out to the intake source side through the intake channel. At this time, the air supply device is activated to open the on-off valve, so that air is supplied from the supply passage to the siphon unit. Therefore, the intake channel is divided into the intake source side and the intake tank side by the siphon part, the outflow of water from the intake tank is prevented, and an appropriate amount of cooling water can be easily secured in the intake tank at all times. it can.
 本発明の原子力発電プラントにおける取水設備の制御装置では、前記給気装置は、空気供給源と、一端部が前記空気供給源に連結されて他端部が前記サイフォン部に連通する給気通路とを有することを特徴としている。 In the control apparatus for intake facilities in the nuclear power plant according to the present invention, the air supply device includes an air supply source, an air supply passage having one end connected to the air supply source and the other end communicating with the siphon portion. It is characterized by having.
 従って、通常時、給気装置の空気供給源が停止しており、空気が給気通路からサイフォン部へ供給されることはなく、サイフォン部が水で満たされているため、取水源からの水が取水路及びサイフォン部を通して取水槽に流入可能となり、取水槽に適正量の冷却水が確保される。引き波の発生時、取水槽の水が取水路を通して取水源側に流出しようとするが、このとき、給気装置の空気供給源が作動するため、空気が給気通路からサイフォン部へ供給され、取水路がサイフォン部により取水源側と取水槽側とに分断されることとなり、取水槽からの水の流出が阻止され、容易に取水槽に常時適正量の冷却水を確保することができる。 Therefore, normally, the air supply source of the air supply device is stopped, air is not supplied from the supply passage to the siphon unit, and the siphon unit is filled with water. Can flow into the intake tank through the intake channel and the siphon part, and an appropriate amount of cooling water is secured in the intake tank. When a pulling wave occurs, the water in the intake tank tries to flow out to the intake source side through the intake channel. At this time, since the air supply source of the air supply device is activated, air is supplied from the supply passage to the siphon unit. The intake channel is divided into the intake source side and the intake tank side by the siphon part, and the outflow of water from the intake tank is prevented, and an appropriate amount of cooling water can be easily secured in the intake tank at all times. .
 本発明の原子力発電プラントにおける取水設備の制御装置では、前記サイフォン部から空気を排出可能な排気装置が設けられることを特徴としている。 In the control apparatus for water intake equipment in the nuclear power plant according to the present invention, an exhaust device capable of discharging air from the siphon part is provided.
 従って、サイフォン部に空気があると、取水路がこの空気により取水路が取水源側と取水槽側とに分断されることから、排気装置によりサイフォン部の空気を排出することで、このサイフォン部を水で満たすことができ、取水源からの水が取水路及びサイフォン部を通して取水槽に流入可能となり、取水槽に適正量の冷却水を確保することができる。 Therefore, if there is air in the siphon part, the intake channel is divided by the air into the intake source side and the intake tank side. Can be filled with water, and water from the water intake source can flow into the water intake tank through the water intake passage and the siphon part, and an appropriate amount of cooling water can be secured in the water intake tank.
 本発明の原子力発電プラントにおける取水設備の制御装置では、前記取水路に前記流水阻止装置として、前記取水路の幅方向に沿うと共に前記取水路の幅方向に沿う支持軸により回動自在に支持される阻止板と、前記阻止板を前記取水路から上方に退避した退避位置と前記取水路内に浸水した阻止位置とに移動する移動装置とが設けられることを特徴としている。 In the control apparatus for intake facilities in the nuclear power plant according to the present invention, the intake channel is supported by the support shaft along the width direction of the intake channel and the support shaft along the width direction of the intake channel as the water flow blocking device. And a moving device for moving the blocking plate to a retreat position where the blocking plate is retracted upward from the intake channel and a blocking position where the blocking plate is submerged in the intake channel.
 従って、通常時、移動装置により阻止板が取水路から上方に退避した退避位置に移動しており、取水源からの水が取水路を通して取水槽に流入可能となり、取水槽に適正量の冷却水が確保される。引き波の発生時、取水槽の水が取水路を通して取水源側に流出しようとするが、このとき、移動装置により阻止板が取水路内に浸水した阻止位置に移動するため、この阻止板により取水槽からの水の流出が阻止されることとなり、簡単な構成で容易に取水槽に常時適正量の冷却水を確保することができる。 Therefore, normally, the blocking plate is moved to the retreat position where the blocking plate is retreated upward from the intake channel by the moving device, so that water from the intake source can flow into the intake tank through the intake channel, and an appropriate amount of cooling water is supplied to the intake tank. Is secured. When a pulling wave occurs, the water in the intake tank tries to flow out to the intake source side through the intake channel.At this time, the blocking plate moves to the blocking position where it has been submerged in the intake channel. Since the outflow of water from the water intake tank is prevented, an appropriate amount of cooling water can always be secured in the water intake tank easily with a simple configuration.
 本発明の原子力発電プラントにおける取水設備の制御装置では、前記阻止板は、前記取水路内に浸水した阻止位置にあるとき、下端部が前記取水槽側へ回動可能であることを特徴としている。 In the control apparatus for intake facilities in the nuclear power plant according to the present invention, when the blocking plate is in the blocking position immersed in the intake channel, the lower end portion can be turned to the intake tank side. .
 従って、引き波の発生時後に押し波が発生すると、水が取水源から取水路を通して阻止位置にある阻止板に至るが、この阻止板は、この水流により下端部が取水槽側へ回動するため、水が阻止板を押し上げて取水槽に流入することとなり、簡単な構成で容易に取水槽の冷却水を増加させることができる。 Therefore, when a push wave is generated after the occurrence of the pulling wave, water reaches the blocking plate at the blocking position from the water intake source through the water intake channel, and the lower end of the blocking plate is rotated toward the water intake tank by the water flow. Therefore, water pushes up the blocking plate and flows into the water intake tank, and the cooling water in the water intake tank can be easily increased with a simple configuration.
 本発明の原子力発電プラントにおける取水設備の制御装置では、前記取水ポンプは、前記取水槽の水を冷却水として原子炉補機冷却水冷却器に供給する海水ポンプと、前記取水槽の水を冷却水として復水器に供給する循環水ポンプとを有し、前記取水槽の貯水量が前記所定貯水量より減少すると、前記流水阻止装置を作動し、原子炉の稼働を停止すると共に、前記循環水ポンプの駆動を停止することを特徴としている。 In the control apparatus of the water intake facility in the nuclear power plant according to the present invention, the water intake pump cools the water in the water intake tank and a seawater pump that supplies the water in the water intake tank as a cooling water to a reactor auxiliary machine coolant cooling device. A circulating water pump for supplying water to the condenser, and when the amount of water stored in the water intake tank is less than the predetermined amount of water stored, the water blocking device is activated to stop the operation of the nuclear reactor and the circulation It is characterized by stopping the drive of the water pump.
 従って、取水槽の貯水量が所定貯水量より減少すると、流水阻止装置を作動することで取水槽に適正量の冷却水が確保され、海水水ポンプにより冷却水を原子炉補機冷却水冷却器に供給することができる。また、原子炉の稼働が停止していることから、循環水ポンプによる復水器への冷却水の供給が不要となる。その結果、原子力発電プラントの安全性を確保することができる。 Therefore, when the amount of water stored in the intake tank is reduced below the predetermined amount, the water blocking device is operated to ensure an appropriate amount of cooling water in the intake tank, and the seawater pump supplies the cooling water to the reactor auxiliary machine cooling water cooler. Can be supplied to. Moreover, since the operation of the nuclear reactor is stopped, it becomes unnecessary to supply cooling water to the condenser by a circulating water pump. As a result, the safety of the nuclear power plant can be ensured.
 また、本発明の原子力発電プラントの取水設備は、一端部が取水源に連通する取水路と、前記取水路の他端部に連通されて上方が開放する取水槽と、前記取水槽に設けられる取水ポンプと、前記取水槽から取水路を経て前記取水源側への流水を阻止する流水阻止装置と、前記原子力発電プラントにおける取水設備の制御装置と、を有することを特徴とするものである。 Further, the water intake facility of the nuclear power plant according to the present invention is provided in the water intake channel having one end communicating with the water intake source, the water intake tank communicating with the other end of the water intake channel and opened upward, and the water intake tank. It has a water intake pump, a water flow blocking device for blocking water flow from the water intake tank through the water intake channel to the water intake source side, and a control device for water intake equipment in the nuclear power plant.
 従って、引き波の発生時に、取水槽の貯水量が所定貯水量より減少すると流水阻止装置が作動し、取水槽から取水路を経て取水源側への水の流出が阻止されるため、取水槽に常時適正量の冷却水を確保することで、取水ポンプにより所定の冷却位置への冷却水の供給を継続することができる。 Therefore, when the amount of water stored in the water intake tank decreases below the predetermined water storage capacity when the pulling wave occurs, the water blocking device is activated and water outflow from the water intake tank through the water intake path to the water intake source is prevented. By always ensuring an appropriate amount of cooling water, it is possible to continue supplying the cooling water to a predetermined cooling position by the intake pump.
 本発明の原子力発電プラントにおける取水設備の制御装置及び原子力発電プラントの取水設備によれば、取水槽の貯水量が予め設定された所定貯水量より減少することを検出または推定したときに流水阻止装置を作動するので、取水槽に常時適正量の冷却水を確保することで、取水ポンプにより所定の冷却位置に冷却水を供給することができる。 According to the control device for water intake equipment in the nuclear power plant and the water intake equipment of the nuclear power plant according to the present invention, the water flow blocking device is detected when it is detected or estimated that the water storage amount in the water intake tank is smaller than a predetermined water storage amount set in advance. Therefore, it is possible to supply cooling water to a predetermined cooling position by a water intake pump by always ensuring an appropriate amount of cooling water in the water intake tank.
図1は、第1実施形態の原子力発電プラントの取水設備を表す概略図である。FIG. 1 is a schematic diagram illustrating a water intake facility of the nuclear power plant according to the first embodiment. 図2は、原子力発電プラントの取水設備における津波発生時の作動状態を表す概略図である。FIG. 2 is a schematic diagram illustrating an operating state at the time of occurrence of a tsunami in a water intake facility of a nuclear power plant. 図3は、第1実施形態の原子力発電プラントにおける取水設備の制御装置の処理の流れを表すフローチャートである。FIG. 3 is a flowchart showing a processing flow of the control device for the water intake equipment in the nuclear power plant according to the first embodiment. 図4は、原子力発電プラントを表す概略構成図である。FIG. 4 is a schematic configuration diagram illustrating a nuclear power plant. 図5は、原子力発電プラントにおける冷却水を用いた冷却系統を表す概略図である。FIG. 5 is a schematic diagram showing a cooling system using cooling water in a nuclear power plant. 図6は、第2実施形態の原子力発電プラントの取水設備を表す概略図である。FIG. 6 is a schematic diagram illustrating a water intake facility of the nuclear power plant according to the second embodiment. 図7は、第3実施形態の原子力発電プラントの取水設備を表す概略図である。FIG. 7 is a schematic diagram illustrating a water intake facility of the nuclear power plant according to the third embodiment.
 以下に添付図面を参照して、本発明の原子力発電プラントにおける取水設備の制御装置及び原子力発電プラントの取水設備の好適な実施形態を詳細に説明する。なお、この実施形態により本発明が限定されるものではなく、また、実施形態が複数ある場合には、各実施形態を組み合わせて構成するものも含むものである。 Hereinafter, with reference to the attached drawings, a preferred embodiment of a water intake facility control apparatus and a nuclear power plant intake system in a nuclear power plant according to the present invention will be described in detail. In addition, this invention is not limited by this embodiment, and when there are two or more embodiments, what comprises combining each embodiment is also included.
[第1実施形態]
 図4は、原子力発電プラントを表す概略構成図、図5は、原子力発電プラントにおける冷却水を用いた冷却系統を表す概略図である。
[First Embodiment]
FIG. 4 is a schematic configuration diagram showing a nuclear power plant, and FIG. 5 is a schematic diagram showing a cooling system using cooling water in the nuclear power plant.
 第1実施形態の原子炉は、軽水を原子炉冷却材及び中性子減速材として使用し、炉心全体にわたって沸騰しない高温高圧水とし、この高温高圧水を蒸気発生器に送って熱交換により蒸気を発生させ、この蒸気をタービン発電機へ送って発電する加圧水型原子炉(PWR:Pressurized Water Reactor)である。 The nuclear reactor according to the first embodiment uses light water as a reactor coolant and a neutron moderator, and generates high-temperature and high-pressure water that does not boil over the entire core, and generates steam by heat exchange by sending this high-temperature and high-pressure water to a steam generator. And a pressurized water reactor (PWR) that generates power by sending this steam to a turbine generator.
 第1実施形態の加圧水型原子炉を有する原子力発電プラントにおいて、図4に示すように、原子炉格納容器11は、内部に加圧水型原子炉12及び蒸気発生器13が格納されており、この加圧水型原子炉12と蒸気発生器13とは配管14,15を介して連結されており、配管14に加圧器16が設けられ、配管15に一次冷却水ポンプ17が設けられている。この場合、減速材及び一次冷却水(冷却材)として軽水を用い、炉心部における一次冷却水の沸騰を抑制するために、一次冷却系統は加圧器16により150~160気圧程度の高圧状態を維持するように制御している。従って、加圧水型原子炉12にて、燃料(原子燃料)として低濃縮ウランまたはMOXにより一次冷却水として軽水が加熱され、高温の一次冷却水が加圧器16により所定の高圧に維持した状態で配管14を通して蒸気発生器13に送られる。この蒸気発生器13では、高温高圧の一次冷却水と二次冷却水との間で熱交換が行われ、冷やされた一次冷却水は配管15を通して加圧水型原子炉12に戻される。 In the nuclear power plant having the pressurized water reactor of the first embodiment, as shown in FIG. 4, the reactor containment vessel 11 stores therein the pressurized water reactor 12 and the steam generator 13, and this pressurized water. The nuclear reactor 12 and the steam generator 13 are connected via pipes 14 and 15, a pressurizer 16 is provided in the pipe 14, and a primary cooling water pump 17 is provided in the pipe 15. In this case, light water is used as the moderator and primary cooling water (cooling material), and the primary cooling system is maintained at a high pressure of about 150 to 160 atm by the pressurizer 16 in order to suppress boiling of the primary cooling water in the core. You are in control. Therefore, in the pressurized water reactor 12, light water is heated as primary cooling water by low-enriched uranium or MOX as fuel (nuclear fuel), and the hot primary cooling water is maintained at a predetermined high pressure by the pressurizer 16. 14 to the steam generator 13. In the steam generator 13, heat exchange is performed between the high-temperature and high-pressure primary cooling water and the secondary cooling water, and the cooled primary cooling water is returned to the pressurized water reactor 12 through the pipe 15.
 蒸気発生器13は、配管18を介して蒸気タービン19と連結されており、この配管18に主蒸気隔離弁20が設けられている。蒸気タービン19は、高圧タービン21と低圧タービン22を有すると共に、発電機(発電装置)23が接続されている。また、高圧タービン21と低圧タービン22との間には、湿分分離加熱器24が設けられており、配管18から分岐した冷却水分岐配管25が湿分分離加熱器24に連結される一方、高圧タービン21と湿分分離加熱器24は低温再熱管26により連結され、湿分分離加熱器24と低圧タービン22は高温再熱管27により連結されている。 The steam generator 13 is connected to a steam turbine 19 through a pipe 18, and a main steam isolation valve 20 is provided in the pipe 18. The steam turbine 19 includes a high-pressure turbine 21 and a low-pressure turbine 22, and a generator (power generation device) 23 is connected to the steam turbine 19. Further, a moisture separator / heater 24 is provided between the high-pressure turbine 21 and the low-pressure turbine 22, and a cooling water branch pipe 25 branched from the pipe 18 is connected to the moisture separator / heater 24, The high pressure turbine 21 and the moisture separation heater 24 are connected by a low temperature reheat pipe 26, and the moisture separation heater 24 and the low pressure turbine 22 are connected by a high temperature reheat pipe 27.
 蒸気タービン19の各低圧タービン22は、復水器28を有しており、各低圧タービン22から蒸気が排出される。また、この復水器28は、配管18からバイパス弁29を有するタービンバイパス配管30が接続されている。 Each low-pressure turbine 22 of the steam turbine 19 has a condenser 28, and steam is discharged from each low-pressure turbine 22. The condenser 28 is connected to a turbine bypass pipe 30 having a bypass valve 29 from the pipe 18.
 そして、この復水器28は、配管31が接続されており、復水ポンプ32、グランドコンデンサ33、復水脱塩装置34、復水ブースタポンプ35、低圧給水加熱器36が接続されている。また、配管31は、脱気器37が連結されると共に、主給水ポンプ38、高圧給水加熱器39、主給水制御弁40が設けられている。 And this condenser 28 is connected to a pipe 31, and is connected to a condensate pump 32, a ground condenser 33, a condensate demineralizer 34, a condensate booster pump 35, and a low-pressure feed water heater 36. Further, the piping 31 is connected to a deaerator 37 and is provided with a main feed water pump 38, a high-pressure feed water heater 39, and a main feed water control valve 40.
 また、配管18は、主蒸気逃がし弁41を有する主蒸気逃がし配管42の一端部と、主蒸気安全弁43を有する主蒸気安全配管44の一端部が接続されており、各配管42,44の他端部は大気に開放している。一方、配管31は、主給水制御弁40と蒸気発生器13との間に補助給水配管45の一端部が接続されており、この補助給水配管45は、第1補助給水ポンプ46が設けられると共に、他端部に復水タンク47が接続されている。この第1補助給水ポンプ46は、蒸気によりタービンが回転することで駆動するものであり、配管18における主蒸気安全配管44と主蒸気隔離弁20との間から分岐した冷却水分岐配管48が第1補助給水ポンプ46まで延設されており、この冷却水分岐配管48に開閉弁49が設けられている。 The pipe 18 is connected to one end of a main steam relief pipe 42 having a main steam relief valve 41 and one end of a main steam safety pipe 44 having a main steam safety valve 43. The end is open to the atmosphere. On the other hand, in the pipe 31, one end of an auxiliary water supply pipe 45 is connected between the main water supply control valve 40 and the steam generator 13, and the auxiliary water supply pipe 45 is provided with a first auxiliary water supply pump 46. A condensate tank 47 is connected to the other end. The first auxiliary feed water pump 46 is driven by the rotation of the turbine by steam, and the cooling water branch pipe 48 branched from between the main steam safety pipe 44 and the main steam isolation valve 20 in the pipe 18 is the first. 1 extends to the auxiliary water supply pump 46, and an opening / closing valve 49 is provided in the cooling water branch pipe 48.
 従って、蒸気発生器13にて、高温高圧の一次冷却水と熱交換を行って生成された蒸気は、配管18を通して蒸気タービン19(高圧タービン21から低圧タービン22)に送られ、この蒸気により蒸気タービン19を駆動して発電機23により発電を行う。このとき、蒸気発生器13からの蒸気は、高圧タービン21を駆動した後、湿分分離加熱器24で蒸気に含まれる湿分が除去されると共に加熱されてから低圧タービン22を駆動する。そして、蒸気タービン19を駆動した蒸気は、復水器28で海水を用いて冷却されて復水となり、グランドコンデンサ33、復水脱塩装置34、低圧給水加熱器36、脱気器37、高圧給水加熱器39などを通して蒸気発生器13に戻される。 Accordingly, the steam generated by exchanging heat with the high-temperature and high-pressure primary cooling water in the steam generator 13 is sent to the steam turbine 19 (the high-pressure turbine 21 to the low-pressure turbine 22) through the pipe 18, and the steam is generated by the steam. The turbine 19 is driven to generate power by the generator 23. At this time, the steam from the steam generator 13 drives the high-pressure turbine 21, then the moisture contained in the steam is removed and heated by the moisture separator / heater 24, and then the low-pressure turbine 22 is driven. Then, the steam that has driven the steam turbine 19 is cooled by using the seawater in the condenser 28 to become condensate, and the ground condenser 33, the condensate demineralizer 34, the low pressure feed water heater 36, the deaerator 37, the high pressure It is returned to the steam generator 13 through a feed water heater 39 or the like.
 そして、蒸気発生器13は、配管18,31を介して蒸気タービン19に連結されており、復水ポンプ32、復水ブースタポンプ35、主給水ポンプ38などにより冷却水(蒸気)が循環している。この各種ポンプ32,35,38などは、電源装置(プラント内交流電源、外部電源、非常用ディーゼル発電機、非常用バッテリ、いずれも図示略)からの給電により駆動するものであることから、津波や地震などによりこの電源装置の機能が喪失(原子炉及び蒸気発生器などのための全交流電源の喪失)したときには、これらを駆動して冷却水を循環することができず、加圧水型原子炉12や蒸気発生器13を冷却することが困難となる。 The steam generator 13 is connected to the steam turbine 19 via pipes 18 and 31, and cooling water (steam) is circulated by the condensate pump 32, the condensate booster pump 35, the main feed water pump 38, and the like. Yes. These various pumps 32, 35, 38, and the like are driven by power supply from a power supply device (plant AC power supply, external power supply, emergency diesel generator, emergency battery, all not shown). When the function of this power supply device is lost due to an earthquake or earthquake (loss of all AC power supply for reactors and steam generators, etc.), it is not possible to drive them to circulate the cooling water, and the pressurized water reactor It becomes difficult to cool 12 and the steam generator 13.
 そのため、電源装置が喪失したとき、主蒸気逃がし弁41の開放などで、蒸気発生器13の蒸気(二次冷却水)を配管18から主蒸気逃がし配管42や主蒸気安全配管44を通して大気に開放し、蒸気発生器13内の圧力を低下させて冷却している。また、配管18内の蒸気を冷却水分岐配管48から第1補助給水ポンプ46に供給することで、この第1補助給水ポンプ46を駆動し、復水タンク47の復水を補助給水配管45から配管31を通して蒸気発生器13に供給し、この蒸気発生器13を冷却している。そして、この間に電源装置の復旧を行っている。 Therefore, when the power supply device is lost, the steam (secondary cooling water) of the steam generator 13 is released from the pipe 18 to the atmosphere through the main steam relief pipe 42 and the main steam safety pipe 44 by opening the main steam relief valve 41 or the like. Then, the pressure in the steam generator 13 is reduced to cool. Further, the steam in the pipe 18 is supplied from the cooling water branch pipe 48 to the first auxiliary water supply pump 46, whereby the first auxiliary water supply pump 46 is driven and the condensate in the condensate tank 47 is supplied from the auxiliary water supply pipe 45. The steam generator 13 is supplied through a pipe 31 to cool the steam generator 13. During this time, the power supply device is restored.
 ところで、上述した原子力発電プラントは、海岸や河川の近傍に設けられており、この海岸や河川に取水設備を設置し、海水や河川水を冷却水として使用している。図5に示すように、取水設備50は、取水路51と取水槽52を有し、取水源としての海から海水を冷却水として取水槽52に貯留可能となっている。取水槽52は、取水ポンプとして、海水ポンプ53と循環水ポンプ54が設けられており、この海水ポンプ53と循環水ポンプ54は、貯水槽52の冷却水(海水)を取水することができる。 By the way, the nuclear power plant described above is provided in the vicinity of a coast or a river. Water intake equipment is installed on the coast or a river, and seawater or river water is used as cooling water. As shown in FIG. 5, the water intake facility 50 includes a water intake channel 51 and a water intake tank 52, and seawater can be stored in the water intake tank 52 from the sea as a water intake source as cooling water. The intake tank 52 is provided with a seawater pump 53 and a circulating water pump 54 as intake pumps. The seawater pump 53 and the circulating water pump 54 can take cooling water (seawater) of the water storage tank 52.
 海水ポンプ53は、取水管55を介して原子炉建屋(図示略)内の原子炉補機冷却水冷却器56に連結され、原子炉補機冷却水冷却器56は、排水管57を介して放水路58に連結されている。原子炉補機冷却水冷却器56は、例えば、原子炉格納容器11(図4参照)内に設置された使用済燃料プール59の冷却水を冷却するものであり、この使用済燃料プール59の冷却水を循環する冷却水循環配管60が配設され、冷却水循環配管60にポンプ61が設けられている。そのため、原子炉補機冷却水冷却器56は、海水ポンプ53が取水した海水と冷却水循環配管60を循環する使用済燃料プール59の冷却水(1次冷却水)との間で熱交換を行い、冷却水により1次冷却水を冷却することができる。なお、海水ポンプ53が取水した海水は、原子炉補機冷却水冷却器56により使用済燃料プール59の冷却水を冷却するだけでなく、空調用冷凍機や非常用ディーゼル発電機用冷却器などを冷却する冷却水として利用される。即ち、海水ポンプ53が取水した海水は、原子炉格納容器11内の1次冷却水を冷却するために使用される。 The seawater pump 53 is connected to a reactor auxiliary machine cooling water cooler 56 in a reactor building (not shown) via a water intake pipe 55, and the reactor auxiliary machine cooling water cooler 56 is connected via a drain pipe 57. It is connected to the discharge channel 58. The reactor auxiliary machine cooling water cooler 56 cools the cooling water of the spent fuel pool 59 installed in the reactor containment vessel 11 (see FIG. 4), for example. A cooling water circulation pipe 60 for circulating the cooling water is provided, and a pump 61 is provided in the cooling water circulation pipe 60. Therefore, the auxiliary reactor cooling water cooler 56 exchanges heat between the seawater taken by the seawater pump 53 and the cooling water (primary cooling water) of the spent fuel pool 59 circulating through the cooling water circulation pipe 60. The primary cooling water can be cooled by the cooling water. The seawater taken by the seawater pump 53 not only cools the cooling water in the spent fuel pool 59 by the reactor auxiliary machine cooling water cooler 56, but also an air conditioning refrigerator, an emergency diesel generator cooler, etc. It is used as cooling water for cooling. That is, the seawater taken by the seawater pump 53 is used to cool the primary cooling water in the reactor containment vessel 11.
 循環水ポンプ54は、取水管62を介してタービン建屋(図示略)内の復水器28に連結され、復水器28は、排水管63を介して放水路58に連結されている。復水器28は、前述したように、低圧タービン22から排出された蒸気を冷却するものである。そのため、復水器28は、循環水ポンプ54が取水した冷却水と内部を流れる蒸気(2次冷却水)との間で熱交換を行い、冷却水により2次冷却水を冷却することができる。 The circulating water pump 54 is connected to a condenser 28 in a turbine building (not shown) via a water intake pipe 62, and the condenser 28 is connected to a water discharge path 58 via a drain pipe 63. As described above, the condenser 28 cools the steam discharged from the low-pressure turbine 22. Therefore, the condenser 28 can perform heat exchange between the cooling water taken by the circulating water pump 54 and the steam (secondary cooling water) flowing therein, thereby cooling the secondary cooling water with the cooling water. .
 ところで、原子力発電プラントの取水設備50は、津波の発生時に、引き波により取水槽52の水が取水路51を通して海に逆流することから、取水槽52の水位が低下し、海水ポンプ53や循環水ポンプ54が適正量の冷却水を取水することができなくなるおそれがある。そのため、本実施形態では、取水路51に取水槽52から取水路51を経て海側への流水を阻止する流水阻止装置を設け、取水槽52の貯水量が減少すると、この流水阻止装置を作動するようにしている。そのため、引き波の発生時であっても、取水槽52に常時適正量の冷却水を確保し、少なくとも海水ポンプ53により冷却水を取水可能としている。 By the way, in the intake facility 50 of a nuclear power plant, when a tsunami occurs, the water in the intake tank 52 flows back to the sea through the intake path 51 due to a pulling wave, so that the water level in the intake tank 52 is lowered, and the seawater pump 53 and the circulation are made. There is a possibility that the water pump 54 cannot take an appropriate amount of cooling water. For this reason, in this embodiment, a water flow blocking device is provided in the water intake channel 51 to block water flowing from the water intake tank 52 to the sea side through the water intake channel 51. When the amount of water stored in the water intake tank 52 decreases, the water flow blocking device is activated. Like to do. Therefore, even when a pulling wave is generated, an appropriate amount of cooling water is always secured in the water intake tank 52, and at least the seawater pump 53 can take in the cooling water.
 ここで、原子力発電プラントの取水設備50について詳細に説明する。図1は、第1実施形態の原子力発電プラントの取水設備を表す概略図、図2は、原子力発電プラントの取水設備における津波発生時の作動状態を表す概略図、図3は、第1実施形態の原子力発電プラントにおける取水設備の制御装置の処理の流れを表すフローチャートである。 Here, the water intake facility 50 of the nuclear power plant will be described in detail. FIG. 1 is a schematic diagram illustrating a water intake facility of a nuclear power plant according to the first embodiment, FIG. 2 is a schematic diagram illustrating an operating state when a tsunami occurs in the water intake facility of the nuclear power plant, and FIG. 3 is a first embodiment. It is a flowchart showing the flow of a process of the control apparatus of the water intake equipment in a nuclear power plant.
 原子力発電プラントの取水設備50は、一端部が取水源としての海に連通する取水路51と、この取水路51の他端部に連結されて上方が開放する取水槽52と、取水槽52に設けられる海水ポンプ53及び循環水ポンプ54と、取水路51に設けられるサイフォン部(流水阻止装置)71と、このサイフォン部71に空気を供給可能な給気装置(流水阻止装置)72と、給気装置72を作動する制御装置73とを有している。 A water intake facility 50 of a nuclear power plant includes a water intake channel 51 having one end communicating with the sea as a water intake source, a water intake tank 52 that is connected to the other end of the water intake channel 51 and opens upward, and a water intake tank 52. A seawater pump 53 and a circulating water pump 54 provided; a siphon portion (flow-flow blocking device) 71 provided in the intake channel 51; an air supply device (flow-flow blocking device) 72 capable of supplying air to the siphon portion 71; And a control device 73 for operating the air device 72.
 取水槽52は、所定量の冷却水を貯留可能であり、上方が開放されている。海水ポンプ53及び循環水ポンプ54は、この取水槽52に貯留されている冷却水を取水可能であり、取水口53a,54aが取水槽52の底部の近傍まで延出されている。取水路51は、配管であって、一端部が海に連通し、他端部が取水槽52の側部に連結されている。 The intake tank 52 can store a predetermined amount of cooling water and is open at the top. The seawater pump 53 and the circulating water pump 54 can take the cooling water stored in the water intake tank 52, and the water intakes 53 a and 54 a extend to the vicinity of the bottom of the water intake tank 52. The intake channel 51 is a pipe, one end of which is in communication with the sea, and the other end is connected to the side of the intake tank 52.
 サイフォン部71は、取水路51の配管と同径の配管であって、この取水路51のほぼ中間部に設けられている。このサイフォン部71は、取水槽52に向けて上方に傾斜する第1傾斜部81と、上水平部82と、取水槽52に向けて下方に傾斜する第2傾斜部83とから構成されており、取水路51とほぼ同様の通路面積に設定されている。ここで、取水槽52は、サイフォン部71における上水平部82の底面高さL1より上方の通常水位L2まで冷却水を貯留可能であり、上水平部82の底面高さL1が取水槽52における予め設定された所定水位L3とほぼ同じ高さに設定されている。 The siphon part 71 is a pipe having the same diameter as the pipe of the intake channel 51, and is provided in a substantially middle part of the intake channel 51. The siphon portion 71 is composed of a first inclined portion 81 inclined upward toward the intake tank 52, an upper horizontal portion 82, and a second inclined portion 83 inclined downward toward the intake tank 52. The passage area is almost the same as that of the intake channel 51. Here, the water intake tank 52 can store cooling water up to the normal water level L2 above the bottom surface height L1 of the upper horizontal part 82 in the siphon part 71, and the bottom surface height L1 of the upper horizontal part 82 is in the water intake tank 52. It is set to substantially the same height as the predetermined water level L3 set in advance.
 所定水位L3とは、海水ポンプ53及び循環水ポンプ54の吸込最低水位より高く、且つ、引き潮などにより低くなる通常最低水位より低い水位である。また、原子力発電プラントの非常時には、原子炉を停止し、海水ポンプ53だけを駆動して循環水ポンプ54を停止するが、取水槽52には海水ポンプ53が所定期間(所定時間)だけ稼働できるだけの所定貯水量を確保する必要があり、所定水位L3は、この所定貯水量に対応した水位となっている。 The predetermined water level L3 is a water level that is higher than the lowest suction water level of the seawater pump 53 and the circulating water pump 54 and lower than the normal lowest water level that becomes lower due to ebb tide or the like. Further, in the event of an emergency in a nuclear power plant, the reactor is stopped and only the seawater pump 53 is driven to stop the circulating water pump 54. However, the seawater pump 53 can only operate in the intake tank 52 for a predetermined period (predetermined time). It is necessary to secure a predetermined water storage amount, and the predetermined water level L3 is a water level corresponding to the predetermined water storage amount.
 給気装置72は、取水路51におけるサイフォン部71に設けられ、このサイフォン部71に対して空気を供給可能である。この給気装置72は、給気通路74と電磁式開閉弁75とから構成されている。給気通路74は、一端部(上端部)が大気に開放され、他端部(下端部)がサイフォン部71における上水平部82の天井に連通している。この給気通路74は、電磁式開閉弁75が設けられている。 The air supply device 72 is provided in the siphon unit 71 in the intake channel 51, and can supply air to the siphon unit 71. The air supply device 72 includes an air supply passage 74 and an electromagnetic on-off valve 75. One end portion (upper end portion) of the air supply passage 74 is open to the atmosphere, and the other end portion (lower end portion) communicates with the ceiling of the upper horizontal portion 82 in the siphon portion 71. The supply passage 74 is provided with an electromagnetic open / close valve 75.
 取水槽52は、貯留している冷却水の水位を計測する水位計76が設けられている。制御装置73は、電磁式開閉弁75及び水位計76が接続されており、電磁式開閉弁75を開閉操作することができ、水位計76が計測した取水槽52における冷却水の水位が入力される。そして、制御装置73は、水位計76が計測した冷却水の水位に基づいて電磁式開閉弁73を開閉可能となっている。具体的に、制御装置73は、取水槽52の貯水量が所定貯水量より減少したとき、つまり、水位計76が計測した取水槽52における冷却水の水位が所定水位L3より低下したとき、流水阻止装置として機能する給気装置72における電磁式開閉弁75を開放する。 The water intake tank 52 is provided with a water level gauge 76 for measuring the water level of the stored cooling water. The control device 73 is connected to an electromagnetic on-off valve 75 and a water level gauge 76, can open and close the electromagnetic on-off valve 75, and receives the coolant level in the water intake tank 52 measured by the water level gauge 76. The The control device 73 can open and close the electromagnetic on-off valve 73 based on the coolant level measured by the water level gauge 76. Specifically, when the water storage amount of the water intake tank 52 decreases from a predetermined water storage amount, that is, when the water level of the cooling water in the water intake tank 52 measured by the water level gauge 76 decreases below the predetermined water level L3, The electromagnetic on-off valve 75 in the air supply device 72 that functions as a blocking device is opened.
 また、給気通路74は、サイフォン部71から空気を排出可能な排気装置77が設けられる。排気装置77は、排気通路78と真空ポンプ79とから構成されている。排気通路78は、一端部が大気に開放され、他端部がサイフォン部71における上水平部82の天井に連通している。本実施形態では、給気通路74と排気通路78の各一端部が合流してサイフォン部71に連結されている。但し、給気通路74と排気通路78の各一端部を独立して個々にサイフォン部71に連結してもよい。この排気通路78は、真空ポンプ79が設けられている。制御装置73は、真空ポンプ79が接続されており、この真空ポンプ79を駆動停止することができる。 Further, the air supply passage 74 is provided with an exhaust device 77 capable of discharging air from the siphon unit 71. The exhaust device 77 includes an exhaust passage 78 and a vacuum pump 79. One end of the exhaust passage 78 is open to the atmosphere, and the other end communicates with the ceiling of the upper horizontal portion 82 in the siphon portion 71. In the present embodiment, the one end portions of the air supply passage 74 and the exhaust passage 78 are joined and connected to the siphon portion 71. However, each end of the air supply passage 74 and the exhaust passage 78 may be independently connected to the siphon portion 71 independently. The exhaust passage 78 is provided with a vacuum pump 79. The control device 73 is connected to a vacuum pump 79 and can stop driving the vacuum pump 79.
 制御装置73は、アラーム(警報装置)80が接続されており、必要に応じて作動させることができる。制御装置73は、取水槽52における冷却水の水位が所定水位L3より低下したとき、アラーム80を作動させる。 The control device 73 is connected to an alarm (alarm device) 80 and can be operated as necessary. The control device 73 activates the alarm 80 when the water level of the cooling water in the water intake tank 52 falls below the predetermined water level L3.
 ここで、原子力発電プラントの取水設備50の作動について説明する。 Here, the operation of the water intake facility 50 of the nuclear power plant will be described.
 図1に示すように、取水路51は、サイフォン部71の空気が存在する場合、取水槽52の貯留量(水位)は、取水源としての海の水位に応じたものとなる。即ち、海の水位がサイフォン部71における上水平部82の底面高さL1より高いとき、海水が取水路51のサイフォン部71を通して取水槽52に流れ込み、取水槽52の水位は所定水位L3よりも高くなる。一方、海の水位がサイフォン部71における上水平部82の底面高さL1より低いとき、海水が取水路51のサイフォン部71を通して取水槽52に流れ込まず、取水槽52の水位は所定水位L3よりも低くなってしまう。そのため、制御装置73は、排気装置77を作動させる。 As shown in FIG. 1, in the intake channel 51, when the air of the siphon unit 71 is present, the storage amount (water level) of the intake tank 52 corresponds to the sea level as the intake source. That is, when the sea water level is higher than the bottom surface height L1 of the upper horizontal part 82 in the siphon part 71, seawater flows into the intake tank 52 through the siphon part 71 of the intake channel 51, and the water level of the intake tank 52 is higher than the predetermined water level L3. Get higher. On the other hand, when the sea water level is lower than the bottom surface height L1 of the upper horizontal part 82 in the siphon part 71, seawater does not flow into the intake tank 52 through the siphon part 71 of the intake channel 51, and the water level of the intake tank 52 is higher than the predetermined water level L3. Will also be low. Therefore, the control device 73 operates the exhaust device 77.
 排気装置77が作動すると、真空ポンプ79が作動することから、サイフォン部71における上水平部82に存在する空気が排気通路78を通して外部に排出され、サイフォン部71の上水平部82が海水で充満される。すると、サイフォン部71に空気がなくなることから、常時、海水が取水路51のサイフォン部71を通して取水槽52に流れ込むこととなり、取水槽52の水位は所定水位L3よりも高い通常水位L2に維持される。 When the exhaust device 77 is activated, the vacuum pump 79 is activated, so that air present in the upper horizontal portion 82 in the siphon portion 71 is discharged to the outside through the exhaust passage 78, and the upper horizontal portion 82 of the siphon portion 71 is filled with seawater. Is done. Then, since there is no air in the siphon part 71, seawater always flows into the intake tank 52 through the siphon part 71 of the intake channel 51, and the water level of the intake tank 52 is maintained at the normal water level L2 higher than the predetermined water level L3. The
 取水槽52の水位が通常水位L2に維持された状態で、図1及び図3に示すように、ステップS11にて、制御装置73は、水位計76が計測した取水槽52における冷却水の水位が常時入力されている。ステップS12にて、制御装置73は、取水槽52における現在の水位Lが所定水位L3より低いかどうかを判定している。ここで、取水槽52における冷却水の水位Lが所定水位L3より低くない(No)と判定されると、ステップS13にて、アラーム80を停止状態(OFF)のままとし、ステップS14にて、電磁式開閉弁75を閉止状態に維持する。そして、ステップS15にて、海水ポンプ53を駆動(ON)とし、ステップS16にて、循環水ポンプ54を駆動(ON)する。 In the state where the water level of the water intake tank 52 is maintained at the normal water level L2, as shown in FIGS. 1 and 3, the control device 73 controls the water level of the cooling water in the water intake tank 52 measured by the water level gauge 76 in step S11. Is always input. In step S12, the control device 73 determines whether or not the current water level L in the water intake tank 52 is lower than the predetermined water level L3. If it is determined that the cooling water level L in the water intake tank 52 is not lower than the predetermined water level L3 (No), the alarm 80 remains in the stopped state (OFF) in step S13, and in step S14. The electromagnetic on-off valve 75 is kept closed. In step S15, the seawater pump 53 is driven (ON), and in step S16, the circulating water pump 54 is driven (ON).
 そのため、海水ポンプ53及び循環水ポンプ54を作動すると、この海水ポンプ53及び循環水ポンプ54は、各取水口53a,54aから取水槽52の冷却水(海水)を吸入することができ、所定の冷却位置に供給することができる。即ち、海水ポンプ53は、原子炉建屋内の原子炉補機冷却水冷却器56に冷却水を供給し、使用済燃料プール59を冷却することができる。また、循環水ポンプ54は、タービン建屋内の復水器28に冷却水を供給し、2次冷却水を冷却することができる。ここで、取水槽52の冷却水が減少しても、海水が取水路51を通して取水槽52に補充されることから、ステップS17にて、制御装置73は、取水槽52の水量確保を確認する。 Therefore, when the seawater pump 53 and the circulating water pump 54 are actuated, the seawater pump 53 and the circulating water pump 54 can suck the cooling water (seawater) in the water intake tank 52 from each of the water intakes 53a and 54a. The cooling position can be supplied. That is, the seawater pump 53 can supply the cooling water to the reactor auxiliary machine cooling water cooler 56 in the reactor building and cool the spent fuel pool 59. The circulating water pump 54 can supply cooling water to the condenser 28 in the turbine building to cool the secondary cooling water. Here, even if the cooling water in the water intake tank 52 decreases, the seawater is replenished to the water intake tank 52 through the water intake channel 51, so that the control device 73 confirms the amount of water in the water intake tank 52 in step S17. .
 ここで、津波が発生し、取水設備50に引き波が作用すると、取水槽52の冷却水が取水路51(サイフォン部71)を通して海に流出するため、取水槽52に貯留されている冷却水の水位が低下してしまう。このとき、ステップS12にて、制御装置73は、取水槽52における冷却水の水位Lが所定水位L3より低い(Yes)と判定し、ステップS18にて、アラーム80を作動(ONF)させ、ステップS19にて、給気装置72を作動して電磁式開閉弁75を開放する。すると、図2に示すように、外部の空気が給気通路74を通してサイフォン部71の上水平部82に供給され、このサイフォン部71は、上水平部82に空気が充填されることから堰として機能する。 Here, when a tsunami occurs and a pulling wave acts on the water intake facility 50, the cooling water in the water intake tank 52 flows out to the sea through the water intake channel 51 (siphon part 71), so that the cooling water stored in the water intake tank 52 is stored. The water level will drop. At this time, in step S12, the control device 73 determines that the cooling water level L in the water intake tank 52 is lower than the predetermined water level L3 (Yes), and in step S18, activates the alarm 80 (ONF). In S19, the air supply device 72 is operated to open the electromagnetic on-off valve 75. Then, as shown in FIG. 2, external air is supplied to the upper horizontal portion 82 of the siphon portion 71 through the air supply passage 74, and the siphon portion 71 is used as a weir because the upper horizontal portion 82 is filled with air. Function.
 即ち、サイフォン部71は、上水平部82の底面高さL1が取水槽52における所定水位L3とほぼ同じ高さに設定され、且つ、上水平部82に空気層が存在していることから、引き波がサイフォン部71の第2傾斜部83側に作用することはなく、取水槽52は、所定水位L3を超えて冷却水が外部に流出されることはない。 That is, since the siphon part 71 has the bottom surface height L1 of the upper horizontal part 82 set to substantially the same height as the predetermined water level L3 in the water intake tank 52, and an air layer exists in the upper horizontal part 82, The pulling wave does not act on the second inclined portion 83 side of the siphon portion 71, and the water intake tank 52 does not flow out of the cooling water beyond the predetermined water level L3.
 そして、ステップS20にて、原子炉を停止させるための制御を実行し、ステップS21にて、循環水ポンプ54の駆動を停止(OFF)する。即ち、原子炉では、主蒸気逃がし弁41の開放などにより蒸気発生器13の蒸気(二次冷却水)を配管18から主蒸気逃がし配管42などを通して大気に開放し、蒸気発生器13内の圧力を低下させて冷却する。また、配管18内の蒸気を冷却水分岐配管48から第1補助給水ポンプ46に供給することで、この第1補助給水ポンプ46を駆動し、復水タンク47の復水を補助給水配管45から配管31を通して蒸気発生器13に供給し、この蒸気発生器13を冷却する。 Then, in step S20, control for stopping the nuclear reactor is executed, and in step S21, driving of the circulating water pump 54 is stopped (OFF). That is, in the nuclear reactor, the steam (secondary cooling water) of the steam generator 13 is released from the pipe 18 to the atmosphere through the main steam escape pipe 42 and the like by opening the main steam relief valve 41 and the pressure in the steam generator 13. Reduce the cooling. Further, the steam in the pipe 18 is supplied from the cooling water branch pipe 48 to the first auxiliary water supply pump 46, whereby the first auxiliary water supply pump 46 is driven and the condensate in the condensate tank 47 is supplied from the auxiliary water supply pipe 45. The steam generator 13 is supplied through the pipe 31 to cool the steam generator 13.
 原子炉を停止させることから、循環水ポンプ54の駆動を停止してもよく、海水ポンプ53だけは、取水口53aから取水槽52の冷却水(海水)を吸入し、所定の冷却位置に供給することができる。ここで、循環水ポンプ54を停止していることから、海水ポンプ53による取水槽52における冷却水の使用量は少なく、海水が取水路51を通して取水槽52に補充されなくても、ステップS17にて、制御装置73は、所定期間の間だけは取水槽52の水量確保を確認する。 Since the nuclear reactor is stopped, the driving of the circulating water pump 54 may be stopped. Only the seawater pump 53 sucks the cooling water (seawater) in the water intake tank 52 from the water intake 53a and supplies it to a predetermined cooling position. can do. Here, since the circulating water pump 54 is stopped, the amount of cooling water used in the intake tank 52 by the seawater pump 53 is small, and even if seawater is not replenished to the intake tank 52 through the intake path 51, the process returns to step S17. Thus, the control device 73 confirms securing of the amount of water in the water intake tank 52 only during a predetermined period.
 その後、取水設備50に対して引き波の影響がなくなったら、制御装置73は、電磁式開閉弁75を閉止し、真空ポンプ79を駆動して上水平部82に残留する空気を排出することで、サイフォン部71の上水平部82を海水で充満させる。すると、再び、海水ポンプ53及び循環水ポンプ54を作動することができる。 Thereafter, when the influence of the pulling wave on the water intake equipment 50 is eliminated, the control device 73 closes the electromagnetic on-off valve 75 and drives the vacuum pump 79 to discharge the air remaining in the upper horizontal portion 82. The upper horizontal part 82 of the siphon part 71 is filled with seawater. Then, the seawater pump 53 and the circulating water pump 54 can be operated again.
 このように第1実施形態の原子力発電プラントにおける取水設備の制御装置にあっては、一端部が取水源としての海に連通する取水路51と、取水路51の他端部に連通されて上方が開放する取水槽52と、取水槽52に設けられる海水ポンプ53及び循環水ポンプ54と、取水槽52から取水路51を経て海側への流水を阻止する流水阻止装置とを設け、制御装置73は、取水槽52の貯水量が予め設定された所定貯水量より減少すると流水阻止装置を作動する。 Thus, in the control apparatus of the water intake facility in the nuclear power plant according to the first embodiment, one end portion communicates with the sea as the water intake source, and the other end portion of the intake passage 51 communicates with the upper side. Is provided with a water intake tank 52 that is opened, a seawater pump 53 and a circulating water pump 54 provided in the water intake tank 52, and a water flow blocking device that blocks water flowing from the water intake tank 52 through the water intake path 51 to the sea side. 73 operates the water blocking device when the amount of water stored in the water intake tank 52 decreases below a predetermined amount of water stored in advance.
 従って、海からの海水が取水路51を通して取水槽52に流入するため、取水槽52に十分な貯水量が確保され、海水ポンプ53及び循環水ポンプ54は、この取水槽52の冷却水を取水して所定の冷却位置に供給することができる。そして、引き波の発生時、取水槽52の冷却水が取水路51を通して海側に流出しようとするが、取水槽52の貯水量が所定貯水量より減少すると流水阻止装置が作動し、取水槽52から取水路51を経て海側への水の流出が阻止される。その結果、取水槽52に常時適正量の冷却水を確保することで、海水ポンプ53により所定の冷却位置への冷却水の供給を継続することができる。 Accordingly, since seawater from the sea flows into the intake tank 52 through the intake channel 51, a sufficient water storage amount is secured in the intake tank 52, and the seawater pump 53 and the circulating water pump 54 take in the cooling water of the intake tank 52. Thus, it can be supplied to a predetermined cooling position. Then, when a pulling wave occurs, the cooling water in the intake tank 52 tends to flow out to the sea side through the intake path 51. However, when the amount of water stored in the intake tank 52 decreases below a predetermined amount, the water blocking device is activated, and the intake tank The outflow of water from 52 to the sea side through the intake 51 is prevented. As a result, by always securing an appropriate amount of cooling water in the water intake tank 52, it is possible to continue supplying cooling water to a predetermined cooling position by the seawater pump 53.
 第1実施形態の原子力発電プラントにおける取水設備の制御装置では、取水槽52の水位を計測する水位計76を設け、制御装置73は、水位計76が計測した水位が予め設定された所定水位より低下したときに流水阻止装置を作動する。従って、引き波の発生時に、取水槽52からの冷却水が流出することで水位が低下し、水位計76が計測した水位が所定水位より低下すると、流水阻止装置を作動することで、取水槽52における貯水量の減少を容易に、且つ、高精度に検出することができ、適正なタイミングで流水阻止装置を作動することができ、設備の信頼性を向上することができる。 In the control apparatus for the water intake facility in the nuclear power plant according to the first embodiment, a water level meter 76 for measuring the water level in the water intake tank 52 is provided, and the control device 73 is based on a predetermined water level at which the water level measured by the water level gauge 76 is set in advance. Activate the water blocking device when lowered. Accordingly, when the pulling wave is generated, the water level is lowered by the outflow of the cooling water from the water intake tank 52. When the water level measured by the water level gauge 76 is lower than the predetermined water level, the water intake blocking device is operated to operate the water intake tank. The decrease in the amount of water stored in 52 can be detected easily and with high accuracy, the running water blocking device can be operated at an appropriate timing, and the reliability of the equipment can be improved.
 第1実施形態の原子力発電プラントにおける取水設備の制御装置では、取水路51にサイフォン部71を設け、サイフォン部71に流水阻止装置として空気を供給可能な給気装置72を設けている。従って、通常時、給気装置72が停止しており、サイフォン部71が水で満たされているため、海からの海水が取水路51及びサイフォン部71を通して取水槽52に流入可能となり、取水槽52に適正量の冷却水が確保される。引き波の発生時、取水槽52の冷却水が取水路51を通して海側に流出しようとするが、このとき、給気装置72が作動するため、サイフォン部71に空気が供給されることでこのサイフォン部71が堰となり、取水槽52からの冷却水の流出が阻止されることとなり、簡単な構成で容易に取水槽52に常時適正量の冷却水を確保することができる。 In the control apparatus for water intake equipment in the nuclear power plant according to the first embodiment, a siphon portion 71 is provided in the intake passage 51, and an air supply device 72 capable of supplying air as a water flow blocking device is provided in the siphon portion 71. Therefore, normally, the air supply device 72 is stopped and the siphon part 71 is filled with water, so that seawater from the sea can flow into the intake tank 52 through the intake channel 51 and the siphon part 71, and the intake tank An appropriate amount of cooling water is secured in 52. At the time of the occurrence of the pulling wave, the cooling water in the intake tank 52 tends to flow out to the sea side through the intake path 51. At this time, since the air supply device 72 operates, this is caused by supplying air to the siphon unit 71. The siphon portion 71 serves as a weir, and the outflow of the cooling water from the water intake tank 52 is prevented, so that an appropriate amount of cooling water can always be secured in the water intake tank 52 easily with a simple configuration.
 第1実施形態の原子力発電プラントにおける取水設備の制御装置では、給気装置72として、一端部が開口して他端部がサイフォン部71に連通する給気通路74と、給気通路74に設けられる電磁式開閉弁75とを設けている。従って、通常時、給気装置72が停止して電磁式開閉弁75が閉止しており、給気通路74からサイフォン部71へ給気されることはなく、サイフォン部71が水で満たされているため、海からの海水が取水路51及びサイフォン部71を通して取水槽52に流入可能となり、取水槽52に適正量の冷却水が確保される。引き波の発生時、取水槽52の水が取水路51を通して海側に流出しようとするが、このとき、給気装置72が作動して電磁式開閉弁75を開放するため、給気通路74からサイフォン部71へ給気され、取水路51がサイフォン部71により海側と取水槽52側とに分断されることとなり、取水槽52からの水の流出が阻止され、容易に取水槽52に常時適正量の冷却水を確保することができる。 In the control apparatus for intake facilities in the nuclear power plant according to the first embodiment, as the air supply device 72, an air supply passage 74 having one end opened and the other end communicating with the siphon portion 71, and the air supply passage 74 are provided. The electromagnetic on-off valve 75 is provided. Therefore, normally, the air supply device 72 is stopped and the electromagnetic on-off valve 75 is closed, so that no air is supplied from the air supply passage 74 to the siphon unit 71, and the siphon unit 71 is filled with water. Therefore, seawater from the sea can flow into the intake tank 52 through the intake channel 51 and the siphon part 71, and an appropriate amount of cooling water is secured in the intake tank 52. At the time of the occurrence of the pulling wave, the water in the intake tank 52 tends to flow out to the sea side through the intake channel 51. At this time, the air supply device 72 is activated to open the electromagnetic on-off valve 75. Is supplied to the siphon unit 71, and the intake channel 51 is divided into the sea side and the intake tank 52 side by the siphon unit 71, the outflow of water from the intake tank 52 is prevented, and the intake tank 52 is easily supplied to the intake unit 52. A proper amount of cooling water can always be secured.
 第1実施形態の原子力発電プラントにおける取水設備の制御装置では、サイフォン部71から空気を排出可能な排気装置77として排気通路78及び真空ポンプ79を設けている。従って、海からの冷却水が取水路51を通して取水槽52に流入するとき、サイフォン部71に内部空気が残留するため、真空ポンプ77を駆動することで、サイフォン部71に残留する空気ガ排気通路78を通して排出され、サイフォン部71を冷却水で充満させることができ、サイフォン部71での冷却水の流動を適正化し、海水ポンプ53及び循環水ポンプ54が取水槽52から適正に取水することができる。 In the control apparatus for water intake equipment in the nuclear power plant according to the first embodiment, an exhaust passage 78 and a vacuum pump 79 are provided as an exhaust device 77 that can discharge air from the siphon unit 71. Therefore, when the cooling water from the sea flows into the intake tank 52 through the intake channel 51, the internal air remains in the siphon unit 71. Therefore, the vacuum pump 77 is driven to drive the air gas exhaust passage remaining in the siphon unit 71. 78, the siphon part 71 can be filled with cooling water, the flow of the cooling water in the siphon part 71 can be optimized, and the seawater pump 53 and the circulating water pump 54 can properly take water from the intake tank 52. it can.
 第1実施形態の原子力発電プラントにおける取水設備の制御装置では、取水槽52の冷却水を原子炉補機冷却水冷却器56に供給する海水ポンプ53と、取水槽52の冷却水を復水器28に供給する循環水ポンプ54とを設け、制御装置73は、取水槽52の貯水量が所定貯水量より減少すると、流水阻止装置を作動し、原子炉の稼働を停止すると共に、循環水ポンプ54だけを停止する。従って、非常時に、取水槽52に適正量の冷却水が確保され、海水水ポンプ53により冷却水を原子炉補機冷却水冷却器56に供給して冷却することができる。また、原子炉の稼働が停止していることから、循環水ポンプ54による復水器28への冷却水の供給が不要となる。その結果、原子力発電プラントの安全性を確保することができる。 In the control apparatus of the water intake facility in the nuclear power plant according to the first embodiment, the seawater pump 53 that supplies the cooling water of the water intake tank 52 to the reactor auxiliary machine cooling water cooler 56, and the cooling water of the water intake tank 52 is the condenser. When the water storage amount of the water intake tank 52 decreases below a predetermined water storage amount, the control device 73 activates the water flow blocking device and stops the operation of the nuclear reactor. Only 54 is stopped. Accordingly, an appropriate amount of cooling water is secured in the water intake tank 52 in an emergency, and the seawater pump 53 can supply the cooling water to the reactor auxiliary machine cooling water cooler 56 to cool it. Further, since the operation of the nuclear reactor is stopped, it becomes unnecessary to supply the cooling water to the condenser 28 by the circulating water pump 54. As a result, the safety of the nuclear power plant can be ensured.
 また、第1実施形態の原子力発電プラントの取水設備は、一端部が取水源としての海に連通する取水路51と、この取水路51の他端部に連結されて上方が開放する取水槽52と、取水槽52に設けられる海水ポンプ53及び循環水ポンプ54と、取水路51に設けられるサイフォン部(流水阻止装置)71と、このサイフォン部71に空気を供給可能な給気装置(流水阻止装置)72と、給気装置72を作動する制御装置73とを設けている。 In addition, the water intake facility of the nuclear power plant according to the first embodiment includes a water intake channel 51 whose one end communicates with the sea as a water intake source, and a water intake tank 52 that is connected to the other end of the water intake channel 51 and opens upward. A seawater pump 53 and a circulating water pump 54 provided in the water intake tank 52, a siphon part (flow water blocking device) 71 provided in the water intake channel 51, and an air supply device (flow water blocking) capable of supplying air to the siphon part 71 Device) 72 and a control device 73 for operating the air supply device 72 are provided.
 従って、引き波の発生時、取水槽52の貯水量が所定貯水量より減少すると、給気装置72が作動するため、サイフォン部71に空気が供給されることでこのサイフォン部71が堰となり、取水槽52からの冷却水の流出が阻止されることとなり、取水槽52に常時適正量の冷却水を確保することで、海水ポンプ53により所定の冷却位置への冷却水の供給を継続することができる。 Therefore, when the amount of water stored in the water intake tank 52 is reduced from the predetermined amount of water when a pulling wave occurs, the air supply device 72 is activated, so that air is supplied to the siphon unit 71 and the siphon unit 71 becomes a weir. The outflow of the cooling water from the water intake tank 52 is prevented, and the supply of the cooling water to the predetermined cooling position is continued by the seawater pump 53 by always securing an appropriate amount of cooling water in the water intake tank 52. Can do.
[第2実施形態]
 図6は、第2実施形態の原子力発電プラントの取水設備を表す概略図である。なお、上述した実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
[Second Embodiment]
FIG. 6 is a schematic diagram illustrating a water intake facility of the nuclear power plant according to the second embodiment. In addition, the same code | symbol is attached | subjected to the member which has the same function as embodiment mentioned above, and detailed description is abbreviate | omitted.
 第2実施形態において、図6に示すように、原子力発電プラントの取水設備90は、一端部が取水源としての海に連通する取水路51と、この取水路51の他端部に連結されて上方が開放する取水槽52と、取水槽52に設けられる海水ポンプ53及び循環水ポンプ54と、取水路51に設けられるサイフォン部(流水阻止装置)71と、このサイフォン部71に空気を供給可能な給気装置91と、給気装置91を作動する制御装置73とを有している。 In the second embodiment, as shown in FIG. 6, a water intake facility 90 of a nuclear power plant is connected to an intake channel 51 having one end communicating with the sea as an intake source and the other end of the intake channel 51. A water intake tank 52 that opens upward, a seawater pump 53 and a circulating water pump 54 provided in the water intake tank 52, a siphon part (flow water blocking device) 71 provided in the water intake path 51, and air can be supplied to the siphon part 71. The air supply device 91 and a control device 73 that operates the air supply device 91 are provided.
 ここで、取水路51、取水槽52、海水ポンプ53及び循環水ポンプ54、サイフォン部71については、上述した第1実施形態と同様であることから説明は省略する。 Here, the intake channel 51, the intake tank 52, the seawater pump 53, the circulating water pump 54, and the siphon unit 71 are the same as those in the first embodiment described above, and thus the description thereof is omitted.
 給気装置91は、取水路51におけるサイフォン部71に設けられ、このサイフォン部71に対して空気を供給可能である。この給気装置91は、給気通路92と空気供給装置(空気供給源)93とから構成されている。給気通路92は、他端部がサイフォン部71における上水平部82の天井に連通している。この給気通路92は、一端部に空気供給装置93に連結されている。この場合、空気供給装置93は、ファン、ブロア、圧縮機、アキュムレータなどを適用すればよい。 The air supply device 91 is provided in the siphon unit 71 in the intake channel 51, and can supply air to the siphon unit 71. The air supply device 91 includes an air supply passage 92 and an air supply device (air supply source) 93. The other end of the air supply passage 92 communicates with the ceiling of the upper horizontal portion 82 in the siphon portion 71. The air supply passage 92 is connected to an air supply device 93 at one end. In this case, the air supply device 93 may be a fan, a blower, a compressor, an accumulator, or the like.
 制御装置73は、水位計76が計測した冷却水の水位に基づいて空気供給装置93を作動停止可能となっている。具体的に、制御装置73は、取水槽52の貯水量が所定貯水量より減少したとき、つまり、水位計76が計測した取水槽52における冷却水の水位が所定水位L3より低下したとき、流水阻止装置として機能する空気供給装置93を作動する。 The control device 73 can stop the air supply device 93 based on the coolant level measured by the water level gauge 76. Specifically, when the water storage amount of the water intake tank 52 decreases from a predetermined water storage amount, that is, when the water level of the cooling water in the water intake tank 52 measured by the water level gauge 76 decreases below the predetermined water level L3, The air supply device 93 that functions as a blocking device is activated.
 そのため、海水は、図6の実線矢印に表すように、取水路51のサイフォン部71を通して取水槽52に流れ込むこととなり、取水槽52の水位は所定水位L3よりも高い通常水位L2に維持されている。この状態で、津波が発生し、取水設備90に引き波が作用すると、図6の点線矢印に表すように、取水槽52の冷却水が取水路51(サイフォン部71)を通して海に流出するため、取水槽52に貯留されている冷却水の水位が低下してしまう。このとき、制御装置73は、取水槽52における冷却水の水位Lが所定水位L3より低いと判定し、アラーム80を作動(ON)させ、給気装置91を作動させる。すると、外部の空気が給気通路92を通してサイフォン部71の上水平部82に強制的に供給され、このサイフォン部71は、上水平部82に空気が充填されることから堰として機能する。 Therefore, seawater flows into the intake tank 52 through the siphon part 71 of the intake channel 51, as shown by the solid arrow in FIG. 6, and the water level of the intake tank 52 is maintained at the normal water level L2 higher than the predetermined water level L3. Yes. In this state, when a tsunami occurs and a pulling wave acts on the water intake equipment 90, the cooling water in the water intake tank 52 flows out to the sea through the water intake channel 51 (siphon part 71) as shown by the dotted line arrow in FIG. And the water level of the cooling water stored in the intake tank 52 will fall. At this time, the control device 73 determines that the cooling water level L in the intake tank 52 is lower than the predetermined water level L3, activates the alarm 80, and activates the air supply device 91. Then, external air is forcibly supplied to the upper horizontal portion 82 of the siphon portion 71 through the air supply passage 92, and the siphon portion 71 functions as a weir because the upper horizontal portion 82 is filled with air.
 即ち、サイフォン部71は、上水平部82の底面高さL1が取水槽52における所定水位L3とほぼ同じ高さに設定され、且つ、上水平部82に空気層が存在していることから、引き波がサイフォン部71の第2傾斜部83側に作用することはなく、取水槽52は、所定水位L3を超えて冷却水が外部に流出されることはない。そして、原子炉を停止させるための制御を実行し、循環水ポンプ54の駆動を停止し、海水ポンプ53だけが作動し、冷却水を所定の冷却位置に供給することができる。 That is, since the siphon part 71 has the bottom surface height L1 of the upper horizontal part 82 set to substantially the same height as the predetermined water level L3 in the water intake tank 52, and an air layer exists in the upper horizontal part 82, The pulling wave does not act on the second inclined portion 83 side of the siphon portion 71, and the water intake tank 52 does not flow out of the cooling water beyond the predetermined water level L3. And control for stopping a nuclear reactor is performed, the drive of the circulating water pump 54 is stopped, only the seawater pump 53 act | operates, and a cooling water can be supplied to a predetermined cooling position.
 このように第2実施形態の原子力発電プラントにおける取水設備の制御装置にあっては、一端部が取水源としての海に連通する取水路51と、取水路51の他端部に連通されて上方が開放する取水槽52と、取水槽52に設けられる海水ポンプ53及び循環水ポンプ54と、取水路51に設けられるサイフォン部(流水阻止装置)71と、このサイフォン部71に空気を供給可能な給気装置91と、給気装置91を作動する制御装置73を設けている。 Thus, in the control apparatus of the water intake facility in the nuclear power plant according to the second embodiment, one end portion communicates with the sea as the water intake source, and the other end portion of the water intake passage 51 communicates with the upper side. Open water intake tank 52, seawater pump 53 and circulating water pump 54 provided in intake water tank 52, siphon part (flow water blocking device) 71 provided in intake water path 51, and air can be supplied to this siphon part 71. An air supply device 91 and a control device 73 that operates the air supply device 91 are provided.
 従って、引き波の発生時、取水槽52の冷却水が取水路51を通して海側に流出しようとするが、取水槽52の貯水量が所定貯水量より減少すると、制御装置73は、給気装置91が作動するため、サイフォン部71に空気が供給されることでこのサイフォン部71が堰となり、取水槽52からの冷却水の流出が阻止されることとなり、簡単な構成で容易に取水槽52に常時適正量の冷却水を確保することができる。 Therefore, when a pulling wave occurs, the cooling water in the intake tank 52 tends to flow out to the sea side through the intake path 51. However, when the amount of water stored in the intake tank 52 decreases below a predetermined amount, the control device 73 causes the air supply device to Since 91 operates, this siphon part 71 becomes a weir by supplying air to the siphon part 71, and the outflow of the cooling water from the intake tank 52 is prevented, and the intake tank 52 can be easily configured with a simple configuration. A proper amount of cooling water can always be secured.
 第2実施形態の原子力発電プラントにおける取水設備の制御装置では、給気装置91として、他端部がサイフォン部71に連通する給気通路92と、給気通路92の一端部に連結される空気供給装置93とを設けている。従って、取水槽52の貯水量が所定貯水量より減少すると、空気供給装置93が作動して空気を給気通路92からサイフォン部71に強制的に空気を供給するため、サイフォン部71を早期に堰として機能させることができ、安全性を向上することができる。 In the control apparatus for water intake equipment in the nuclear power plant according to the second embodiment, as the air supply device 91, the air supply passage 92 having the other end communicating with the siphon portion 71 and the air connected to one end of the air supply passage 92. A supply device 93 is provided. Accordingly, when the amount of water stored in the water intake tank 52 is reduced below the predetermined amount of water stored, the air supply device 93 is activated to forcibly supply air from the air supply passage 92 to the siphon unit 71. It can function as a weir and can improve safety.
 なお、上述した第1、第2実施形態では、サイフォン部71を第1傾斜部81と上水平部82と第2傾斜部83とから構成したが、この構成に限定されるものではない。例えば、サイフォン部71を第1鉛直部と上水平部と第2鉛直部とから構成してもよく、また、上水平部や全体を湾曲形状としてもよい。また、サイフォン部71における上水平部82における水平方向の幅を鉛直方向の高さより大きく設定してもよく、この場合、サイフォン部71の大型化を抑制することができる。 In the first and second embodiments described above, the siphon portion 71 is configured by the first inclined portion 81, the upper horizontal portion 82, and the second inclined portion 83, but is not limited to this configuration. For example, the siphon unit 71 may be composed of a first vertical part, an upper horizontal part, and a second vertical part, and the upper horizontal part or the whole may have a curved shape. Moreover, you may set the width | variety of the horizontal direction in the upper horizontal part 82 in the siphon part 71 larger than the height of a perpendicular direction, and the enlargement of the siphon part 71 can be suppressed in this case.
 また、上述した各実施形態にて、サイフォン部71の位置は、なるべく取水源側(海)に設けることが望ましい。 Moreover, in each embodiment mentioned above, it is desirable to provide the siphon part 71 on the intake source side (sea) as much as possible.
 [第3実施形態]
 図7は、第3実施形態の原子力発電プラントの取水設備を表す概略図である。なお、上述した実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
[Third Embodiment]
FIG. 7 is a schematic diagram illustrating a water intake facility of the nuclear power plant according to the third embodiment. In addition, the same code | symbol is attached | subjected to the member which has the same function as embodiment mentioned above, and detailed description is abbreviate | omitted.
 第3実施形態において、図7に示すように、原子力発電プラントの取水設備100は、一端部が取水源としての海に連通する取水路51と、この取水路51の他端部に連結されて上方が開放する取水槽52と、取水槽52に設けられる海水ポンプ53及び循環水ポンプ54と、取水路51に設けられる取水路51の幅方向に沿うと共に回動自在に支持される阻止板(流水阻止装置)101と、この阻止板101を取水路51から上方に退避した退避位置と取水路51内に浸水した阻止位置とに移動する移動装置(流水阻止装置)102と、移動装置102を作動制御する制御装置103とを有している。 In the third embodiment, as shown in FIG. 7, a water intake facility 100 of a nuclear power plant is connected to a water intake channel 51 having one end communicating with the sea as a water intake source and the other end of the water intake channel 51. A water intake tank 52 that opens upward, a seawater pump 53 and a circulating water pump 54 provided in the water intake tank 52, and a blocking plate that is rotatably supported along the width direction of the water intake path 51 provided in the water intake path 51. (Running water blocking device) 101, a moving device (running water blocking device) 102 that moves the blocking plate 101 to a retreat position in which the blocking plate 101 is retreated upward from the water channel 51, and a blocking position that is submerged in the water intake channel 51. And a control device 103 for controlling the operation.
 ここで、取水路51、取水槽52、海水ポンプ53及び循環水ポンプ54については、上述した第1実施形態と同様であることから説明は省略する。 Here, the intake channel 51, the intake tank 52, the seawater pump 53, and the circulating water pump 54 are the same as those in the first embodiment described above, and thus the description thereof is omitted.
 阻止板101は、矩形状をなす板であり、取水路51の幅方向に沿って配置されており、高さ方向の一端部(上端部)が取水路51の幅方向に沿う支持軸104により回動自在に支持されている。移動装置102は、この阻止板101を支持軸104を支点として回動することができ、阻止板101を取水路51から上方に退避した退避位置(図7の実線位置)から取水路51内に浸水した阻止位置(図7の二点鎖線位置)に移動することができる。即ち、移動装置102は、この阻止板101における高さ方向の他端部(下端部)を拘束することで退避位置(図7の実線位置)に保持し、阻止板101の他端部(下端部)の拘束を解除することで、阻止板101の自重により阻止位置(図7の二点鎖線位置)に移動することができる。 The blocking plate 101 is a rectangular plate and is disposed along the width direction of the intake passage 51, and one end portion (upper end portion) in the height direction is supported by the support shaft 104 along the width direction of the intake passage 51. It is supported rotatably. The moving device 102 can rotate the blocking plate 101 with the support shaft 104 as a fulcrum, and enters the intake channel 51 from the retreat position (solid line position in FIG. 7) where the blocking plate 101 is retracted upward from the water channel 51. It is possible to move to the flooded blocking position (the two-dot chain line position in FIG. 7). That is, the moving device 102 holds the other end portion (lower end portion) in the height direction of the blocking plate 101 at the retracted position (solid line position in FIG. 7), and the other end portion (lower end portion) of the blocking plate 101. Part) can be moved to the blocking position (two-dot chain line position in FIG. 7) by the weight of the blocking plate 101.
 取水路51は、阻止板101の支持位置の下方の底面にストッパ105が固定されている。阻止板101は、他端部がこのストッパ105に当接することで、阻止位置(図7の二点鎖線位置)に保持され、この阻止位置にあるとき、下端部が海側への回動が不能とされ、取水槽52側への回動が可能とされる。 In the intake channel 51, a stopper 105 is fixed to the bottom surface below the support position of the blocking plate 101. The other end of the blocking plate 101 abuts against the stopper 105, so that the blocking plate 101 is held at the blocking position (the two-dot chain line position in FIG. 7). The rotation to the intake tank 52 side is enabled.
 なお、移動装置102は、この構成に限定されるものではなく、例えば、モータや流体圧シリンダなどを用いて阻止板を作動するものであってもよい。 The moving device 102 is not limited to this configuration, and may be a device that operates the blocking plate using a motor, a fluid pressure cylinder, or the like, for example.
 制御装置103は、水位計76が計測した冷却水の水位に基づいて移動装置102を作動可能となっている。具体的に、制御装置103は、取水槽52の貯水量が所定貯水量より減少したとき、つまり、水位計76が計測した取水槽52における冷却水の水位が所定水位より低下したとき、移動装置102により退避位置に保持された阻止板101の拘束を解除することで、この阻止板101をその自重により阻止位置に移動する。 The control device 103 can operate the moving device 102 based on the coolant level measured by the water level gauge 76. Specifically, the control device 103 moves the moving device when the water storage amount of the water intake tank 52 is decreased from a predetermined water storage amount, that is, when the water level of the cooling water in the water intake tank 52 measured by the water level gauge 76 is lower than the predetermined water level. By releasing the restraint of the blocking plate 101 held at the retracted position by 102, the blocking plate 101 is moved to the blocking position by its own weight.
 そのため、通常時、阻止板101が取水路51から上方に退避した退避位置に保持されており、海水は、図7の実線矢印に表すように、取水路51を通して取水槽52に流れ込むこととなり、取水槽52の水位が維持されている。この状態で、津波が発生し、取水設備100に引き波が作用すると、図7の点線矢印に表すように、取水槽52の冷却水が取水路51を通して海に流出するため、取水槽52に貯留されている冷却水の水位が低下してしまう。このとき、制御装置103は、取水槽52における冷却水の水位が所定水位より低いと判定し、移動装置102を作動させる。すると、阻止板101は、移動装置102による拘束が解除されることで自重により阻止位置に移動し、阻止板101が堰として機能して取水槽52から冷却水の流出が阻止される。 Therefore, at the normal time, the blocking plate 101 is held in the retracted position where it is retracted upward from the intake channel 51, and the seawater flows into the intake tank 52 through the intake channel 51 as shown by the solid line arrow in FIG. The water level of the intake tank 52 is maintained. In this state, when a tsunami occurs and a pulling wave acts on the water intake facility 100, the cooling water in the water intake tank 52 flows out to the sea through the water intake channel 51 as shown by the dotted arrows in FIG. The water level of the stored cooling water will decrease. At this time, the control device 103 determines that the coolant level in the water intake tank 52 is lower than the predetermined water level, and operates the moving device 102. Then, the blocking plate 101 is moved to the blocking position by its own weight when the restraint by the moving device 102 is released, and the blocking plate 101 functions as a weir to prevent the cooling water from flowing out of the water intake tank 52.
 その後、取水設備50に対して押し波が発生すると、図7の実線矢印に表すように、海水が取水路51を通して阻止板101に作用すると、阻止板101が取水槽52側へ回動することから、海水が取水槽52に流れ込むこととなり、取水槽52の水位を上昇させることができる。 Thereafter, when a push wave is generated with respect to the water intake facility 50, as shown by the solid line arrow in FIG. 7, when seawater acts on the blocking plate 101 through the intake channel 51, the blocking plate 101 rotates toward the intake tank 52. Therefore, seawater flows into the intake tank 52, and the water level of the intake tank 52 can be raised.
 このように第3実施形態の原子力発電プラントにおける取水設備の制御装置にあっては、一端部が取水源としての海に連通する取水路51と、取水路51の他端部に連通されて上方が開放する取水槽52と、取水槽52に設けられる海水ポンプ53及び循環水ポンプ54と、取水路51の幅方向に沿うと共に取水路51の幅方向に沿う支持軸104により回動自在に支持される阻止板101と、阻止板101を取水路51から上方に退避した退避位置と取水路内に浸水した阻止位置とに移動する移動装置102と、移動装置102を作動する制御装置103とを設けている。 Thus, in the control apparatus of the water intake facility in the nuclear power plant of the third embodiment, one end portion is connected to the sea as the water intake source, and the other end portion of the water intake passage 51 is connected to the upper side. Is opened by a water intake tank 52, a seawater pump 53 and a circulating water pump 54 provided in the water intake tank 52, and a support shaft 104 along the width direction of the water intake path 51 and along the width direction of the water intake path 51. A blocking plate 101, a moving device 102 that moves the blocking plate 101 to a retreat position where the blocking plate 101 is retracted upward from the water channel 51, and a blocking device that is submerged in the water intake channel, and a control device 103 that operates the moving device 102. Provided.
 従って、通常時、移動装置102により阻止板101が取水路51から上方に退避した退避位置に移動しており、海水が取水路51を通して取水槽52に流入可能となり、取水槽52に適正量の冷却水が確保される。引き波の発生時、取水槽52の水が取水路51を通して海側に流出しようとするが、このとき、移動装置102により阻止板101が取水路51内に浸水した阻止位置に移動するため、この阻止板101により取水槽52からの水の流出が阻止されることとなり、簡単な構成で容易に取水槽52に常時適正量の冷却水を確保することができる。 Therefore, at the normal time, the blocking device 101 is moved upward from the intake channel 51 by the moving device 102 to the retracted position, and seawater can flow into the intake tank 52 through the intake channel 51. Cooling water is secured. At the time of the occurrence of the pulling wave, the water in the intake tank 52 tries to flow out to the sea side through the intake channel 51. At this time, the blocking device 101 is moved to the blocking position where the blocking plate 101 is submerged in the intake channel 51 by the moving device 102. This blocking plate 101 prevents the outflow of water from the water intake tank 52, and an appropriate amount of cooling water can always be secured in the water intake tank 52 with a simple configuration.
 第3実施形態の原子力発電プラントにおける取水設備の制御装置では、阻止板101は、取水路51内に浸水した阻止位置にあるとき、下端部が海側へ回動不能とし、取水槽52側へ回動可能としている。従って、引き波の発生時後に押し波が発生すると、海水が取水路51を通して阻止位置にある阻止板101に至るが、この阻止板101は、この水流により下端部が取水槽52側へ回動するため、海水が阻止板101を押し上げて取水槽52に流入することとなり、簡単な構成で容易に取水槽52の冷却水を増加させることができる。 In the control apparatus of the water intake facility in the nuclear power plant according to the third embodiment, when the blocking plate 101 is in the blocking position immersed in the intake channel 51, the lower end portion cannot be rotated to the sea side, and to the water intake tank 52 side. It can be rotated. Accordingly, when a push wave is generated after the occurrence of the pulling wave, the seawater reaches the blocking plate 101 at the blocking position through the intake channel 51, and the lower end of the blocking plate 101 is rotated toward the intake tank 52 by this water flow. Therefore, seawater pushes up the blocking plate 101 and flows into the water intake tank 52, and the cooling water in the water intake tank 52 can be easily increased with a simple configuration.
 なお、上述した実施形態では、取水槽52の水位を計測する水位計76を設け、制御装置73,103は、取水槽52の水位が所定水位より低下したときに流水阻止装置を作動するように構成したが、この構成に限定されるものではない。例えば、制御装置は、地震警報の発令や津波警報の発令に応じて流水阻止装置を作動するように構成してもよい。また、制御装置は、地震計や津波計の計測結果に応じて流水阻止装置を作動するように構成してもよい。更に、取水路51における水の流れ方向を検出する検出器を設け、制御装置は、取水槽52から取水路51側への水の流れが発生すると流水阻止装置を作動するように構成してもよい。 In the above-described embodiment, the water level meter 76 for measuring the water level of the water intake tank 52 is provided, and the control devices 73 and 103 operate the water flow blocking device when the water level of the water intake tank 52 falls below a predetermined water level. Although configured, the present invention is not limited to this configuration. For example, the control device may be configured to operate the water flow blocking device in response to an earthquake warning or a tsunami warning. Moreover, you may comprise a control apparatus so that a flowing water blocking apparatus may be operated according to the measurement result of a seismometer or a tsunami meter. Furthermore, a detector for detecting the direction of water flow in the intake channel 51 is provided, and the control device may be configured to operate the water flow blocking device when a flow of water from the intake tank 52 toward the intake channel 51 occurs. Good.
 なお、上述した実施形態では、本発明の原子力発電プラントの取水設備を海の近傍に設置し、海水を冷却水として使用したが、本発明の原子力発電プラントの取水設備を湖や河川の近傍に設置し、水を冷却水として使用してもよい。 In the above-described embodiment, the water intake facility of the nuclear power plant of the present invention is installed in the vicinity of the sea and seawater is used as cooling water, but the water intake facility of the nuclear power plant of the present invention is in the vicinity of a lake or a river. You may install and use water as cooling water.
 なお、上述した実施形態では、本発明の原子力発電プラントの取水設備の制御装置及び原子力発電プラントの取水設備を加圧水型原子炉に適用して説明したが、沸騰水型原子炉(BWR:Boiling Water Reactor)に適用することもでき、いずれの原子炉に適用してもよい。 In the above-described embodiment, the control apparatus for the water intake facility of the nuclear power plant and the water intake facility of the nuclear power plant according to the present invention are applied to the pressurized water reactor. However, the boiling water reactor (BWR: Boiling Water) is described. (Reactor), and any reactor may be applied.
 11 原子炉格納容器
 12 加圧水型原子炉
 13 蒸気発生器
 19 蒸気タービン
 23 発電機
 50,90,100 取水設備
 51 取水路
 52 取水槽
 53 海水ポンプ
 54 循環水ポンプ
 71 サイフォン部(流水阻止装置)
 72,91 給気装置(流水阻止装置)
 73,103 制御装置
 74,92 給気通路
 75 電磁式開閉弁
 76 水位計
 77 排気装置
 78 排気通路
 79 真空ポンプ
 80 アラーム
 93 空気供給装置
 101 阻止板(流水阻止装置)
 102 移動装置(流水阻止装置)
 104 支持軸
 105 ストッパ
DESCRIPTION OF SYMBOLS 11 Reactor containment vessel 12 Pressurized water reactor 13 Steam generator 19 Steam turbine 23 Generator 50, 90, 100 Intake equipment 51 Intake channel 52 Intake tank 53 Seawater pump 54 Circulating water pump 71 Siphon part (flow water blocking device)
72,91 Air supply device (flow water blocking device)
73,103 Control device 74,92 Air supply passage 75 Electromagnetic on-off valve 76 Water level meter 77 Exhaust device 78 Exhaust passage 79 Vacuum pump 80 Alarm 93 Air supply device 101 Blocking plate (flow water blocking device)
102 Moving device (running water blocking device)
104 Support shaft 105 Stopper

Claims (10)

  1.  一端部が取水源に連通する取水路と、
     前記取水路の他端部に連通されて上方が開放する取水槽と、
     前記取水槽に設けられる取水ポンプと、
     前記取水槽から前記取水路を経て前記取水源側への流水を阻止する流水阻止装置と、
     を有する原子力発電プラントにおける取水設備において、
     前記取水槽の貯水量が予め設定された所定貯水量より減少することを検出または推定したときに前記流水阻止装置を作動する、
     ことを特徴とする原子力発電プラントにおける取水設備の制御装置。
    An intake channel with one end communicating with an intake source;
    A water intake tank that communicates with the other end of the water intake passage and that opens upward;
    A water intake pump provided in the water intake tank;
    A water blocking device for blocking water flowing from the water intake tank to the water intake source via the water intake channel;
    In water intake facilities in nuclear power plants having
    Activating the water flow blocking device when detecting or estimating that the water storage amount of the water intake tank is less than a predetermined water storage amount set in advance,
    A control device for water intake equipment in a nuclear power plant.
  2.  前記取水槽の水位を計測する水位計が設けられ、前記水位計が計測した水位が予め設定された所定水位より低下したときに前記流水阻止装置を作動することを特徴とする請求項1に記載の原子力発電プラントにおける取水設備の制御装置。 The water flow meter is provided for measuring the water level of the water intake tank, and the water blocking device is operated when the water level measured by the water level meter is lower than a predetermined water level set in advance. Equipment for water intake equipment in nuclear power plants in Japan.
  3.  前記取水路にサイフォン部が設けられ、前記サイフォン部に前記流水阻止装置として空気を供給可能な給気装置が設けられることを特徴とする請求項1または請求項2に記載の原子力発電プラントにおける取水設備の制御装置。 The water intake in the nuclear power plant according to claim 1 or 2, wherein a siphon part is provided in the intake channel, and an air supply device capable of supplying air is provided in the siphon part as the water flow blocking device. Equipment control device.
  4.  前記給気装置は、一端部が開口して他端部が前記サイフォン部に連通する給気通路と、前記給気通路に設けられる開閉弁とを有することを特徴とする請求項3に記載の原子力発電プラントにおける取水設備の制御装置。 4. The air supply device according to claim 3, wherein the air supply device includes an air supply passage having one end opened and the other end communicating with the siphon portion, and an on-off valve provided in the air supply passage. Control equipment for water intake facilities in nuclear power plants.
  5.  前記給気装置は、空気供給源と、一端部が前記空気供給源に連結されて他端部が前記サイフォン部に連通する給気通路とを有することを特徴とする請求項3に記載の原子力発電プラントにおける取水設備の制御装置。 4. The nuclear power according to claim 3, wherein the air supply device includes an air supply source, and an air supply passage having one end connected to the air supply source and the other end communicating with the siphon unit. Control equipment for water intake equipment in power plants.
  6.  前記サイフォン部から空気を排出可能な排気装置が設けられることを特徴とする請求項3から請求項5のいずれか一項に記載の原子力発電プラントにおける取水設備の制御装置。 6. A control apparatus for water intake equipment in a nuclear power plant according to any one of claims 3 to 5, wherein an exhaust device capable of discharging air from the siphon unit is provided.
  7.  前記取水路に前記流水阻止装置として、前記取水路の幅方向に沿うと共に前記取水路の幅方向に沿う支持軸により回動自在に支持される阻止板と、前記阻止板を前記取水路から上方に退避した退避位置と前記取水路内に浸水した阻止位置とに移動する移動装置とが設けられることを特徴とする請求項1または請求項2に記載の原子力発電プラントにおける取水設備の制御装置。 As the water flow blocking device in the intake channel, a blocking plate that is rotatably supported by a support shaft along the width direction of the intake channel and along the width direction of the intake channel, and the blocking plate above the intake channel 3. The control apparatus for intake equipment in a nuclear power plant according to claim 1, further comprising a moving device that moves to a retracted position that is retracted to a stop position and a blocking position that is submerged in the intake path. 4.
  8.  前記阻止板は、前記取水路内に浸水した阻止位置にあるとき、下端部が前記取水槽側へ回動可能であることを特徴とする請求項7に記載の原子力発電プラントにおける取水設備の制御装置。 8. The control of water intake equipment in a nuclear power plant according to claim 7, wherein when the blocking plate is in a blocking position immersed in the intake channel, a lower end portion thereof can be turned to the intake tank side. apparatus.
  9.  前記取水ポンプは、前記取水槽の水を冷却水として原子炉補機冷却水冷却器に供給する海水ポンプと、前記取水槽の水を冷却水として復水器に供給する循環水ポンプとを有し、前記取水槽の貯水量が前記所定貯水量より減少すると、前記流水阻止装置を作動し、原子炉の稼働を停止すると共に、前記循環水ポンプの駆動を停止することを特徴とする請求項1から請求項8のいずれか一項に記載の原子力発電プラントにおける取水設備の制御装置。 The intake pump has a seawater pump that supplies water from the intake tank as cooling water to a reactor auxiliary coolant cooler, and a circulating water pump that supplies water from the intake tank as cooling water to a condenser. When the water storage amount of the water intake tank is smaller than the predetermined water storage amount, the water blocking device is operated to stop the operation of the nuclear reactor and stop the driving of the circulating water pump. The control apparatus of the intake equipment in the nuclear power plant as described in any one of Claims 1-8.
  10.  一端部が取水源に連通する取水路と、
     前記取水路の他端部に連通されて上方が開放する取水槽と、
     前記取水槽に設けられる取水ポンプと、
     前記取水槽から取水路を経て前記取水源側への流水を阻止する流水阻止装置と、
     請求項1から請求項9のいずれか一項の原子力発電プラントにおける取水設備の制御装置と、
     を有することを特徴とする原子力発電プラントの取水設備。
    An intake channel with one end communicating with an intake source;
    A water intake tank that communicates with the other end of the water intake passage and that opens upward;
    A water intake pump provided in the water intake tank;
    A water blocking device for blocking water flowing from the water intake tank to the water intake source through the water intake channel;
    A control device for water intake equipment in the nuclear power plant according to any one of claims 1 to 9,
    A water intake facility of a nuclear power plant characterized by comprising:
PCT/JP2015/068254 2015-06-24 2015-06-24 Control device for water intake equipment for nuclear power plant and water intake equipment for nuclear power plant WO2016208011A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177036718A KR20180011201A (en) 2015-06-24 2015-06-24 Intake plant of nuclear power plant
JP2017524505A JP6462872B2 (en) 2015-06-24 2015-06-24 Intake equipment for nuclear power plants
PCT/JP2015/068254 WO2016208011A1 (en) 2015-06-24 2015-06-24 Control device for water intake equipment for nuclear power plant and water intake equipment for nuclear power plant
CN201580081085.3A CN107710332B (en) 2015-06-24 2015-06-24 The control device of the intake equipment of nuclear power plant and the intake equipment of nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/068254 WO2016208011A1 (en) 2015-06-24 2015-06-24 Control device for water intake equipment for nuclear power plant and water intake equipment for nuclear power plant

Publications (1)

Publication Number Publication Date
WO2016208011A1 true WO2016208011A1 (en) 2016-12-29

Family

ID=57584962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068254 WO2016208011A1 (en) 2015-06-24 2015-06-24 Control device for water intake equipment for nuclear power plant and water intake equipment for nuclear power plant

Country Status (4)

Country Link
JP (1) JP6462872B2 (en)
KR (1) KR20180011201A (en)
CN (1) CN107710332B (en)
WO (1) WO2016208011A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110617173B (en) * 2019-10-12 2024-02-20 大连理工大学 Self-lifting box-type water taking bucket head of integrated suspension pendulum type wave energy power generation device and use method thereof
CN110968026A (en) * 2019-11-06 2020-04-07 光大生物能源(六安)有限公司 Water intaking engineering control system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60111089A (en) * 1983-11-21 1985-06-17 Hitachi Ltd Water distribution and apparatus thereof
JPH0519092A (en) * 1991-07-10 1993-01-26 Hitachi Ltd Water-intake structure of power plant
JPH06324190A (en) * 1993-03-17 1994-11-25 Hitachi Ltd Water intake equipment for nuclear power plant
JP2014153305A (en) * 2013-02-13 2014-08-25 Hitachi Ltd Nuclear power plant
JP2015132483A (en) * 2014-01-09 2015-07-23 三菱日立パワーシステムズ株式会社 Water intake facility and method in nuclear power plant
JP2015132484A (en) * 2014-01-09 2015-07-23 三菱日立パワーシステムズ株式会社 Water intake arrangement of nuclear power plant

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3143641B2 (en) * 1993-03-31 2001-03-07 関西電力株式会社 Cooling seawater discharge system for nuclear power plants
JP4644562B2 (en) * 2005-08-23 2011-03-02 中国電力株式会社 Water intake method in waterway
CN201514775U (en) * 2009-06-29 2010-06-23 中广核工程有限公司 Essential service water system for nuclear power plant
CN103578585A (en) * 2013-11-07 2014-02-12 中国核电工程有限公司 Emergency water supply system of nuclear power plant and emergency water supply method
JP2015168979A (en) * 2014-03-07 2015-09-28 中国電力株式会社 Water intake device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60111089A (en) * 1983-11-21 1985-06-17 Hitachi Ltd Water distribution and apparatus thereof
JPH0519092A (en) * 1991-07-10 1993-01-26 Hitachi Ltd Water-intake structure of power plant
JPH06324190A (en) * 1993-03-17 1994-11-25 Hitachi Ltd Water intake equipment for nuclear power plant
JP2014153305A (en) * 2013-02-13 2014-08-25 Hitachi Ltd Nuclear power plant
JP2015132483A (en) * 2014-01-09 2015-07-23 三菱日立パワーシステムズ株式会社 Water intake facility and method in nuclear power plant
JP2015132484A (en) * 2014-01-09 2015-07-23 三菱日立パワーシステムズ株式会社 Water intake arrangement of nuclear power plant

Also Published As

Publication number Publication date
KR20180011201A (en) 2018-01-31
CN107710332A (en) 2018-02-16
JPWO2016208011A1 (en) 2018-05-24
JP6462872B2 (en) 2019-01-30
CN107710332B (en) 2019-09-27

Similar Documents

Publication Publication Date Title
US8559583B1 (en) Passive cooling and depressurization system and pressurized water nuclear power plant
EP0389231B1 (en) Containment heat removal system
US10529457B2 (en) Defense in depth safety paradigm for nuclear reactor
CN103903659B (en) Floating nuclear power plant Heat Discharging System of Chinese
US9728281B2 (en) Auxiliary condenser system for decay heat removal in a nuclear reactor
JP2010085282A (en) Nuclear power plant of pressurized water type
JP6429585B2 (en) Nuclear power plant and operation method
JP6462872B2 (en) Intake equipment for nuclear power plants
JP6184878B2 (en) Intake equipment and method for nuclear power plant
KR101596304B1 (en) Flow control system of gravity injection system to steam generator for nuclear power plants
JP6242690B2 (en) Intake equipment for nuclear power plants
KR101278906B1 (en) Apparatus for preventing thermal shock having a condensate mixing storage tank on condensate return line
KR101742290B1 (en) Emergency cooling system for nuclear reactor
WO2015093059A1 (en) Reactor water injection system, nuclear facility, and pipeline of nuclear plant
JP6335660B2 (en) Turbine building flood prevention device
JP2013104729A (en) Nuclear reactor core cooling system and nuclear power plant facility equipped with the same
EP4187552A1 (en) System for utilizing unused heat-exchange water of passive auxiliary feedwater system, and reactor cooling control method utilizing unused heat-exchange water of passive auxiliary feedwater system
Matsunaga Sato et al.
JP2005172482A (en) Nuclear reactor water injection system
KR20230161212A (en) Passive Emergency Core Cooling System of Nuclear power Plant and Cooling Method using the same
Hinds MFN 06-196 Docket No. 52-010 June 26, 2006 US Nuclear Regulatory Commission Document Control Desk Washington, DC 20555-0001
JPS5919894A (en) Auxiliary cooling device of fast breeder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15896333

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177036718

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017524505

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15896333

Country of ref document: EP

Kind code of ref document: A1