WO2016207979A1 - Semiconductor device, and semiconductor device manufacturing method - Google Patents

Semiconductor device, and semiconductor device manufacturing method Download PDF

Info

Publication number
WO2016207979A1
WO2016207979A1 PCT/JP2015/068070 JP2015068070W WO2016207979A1 WO 2016207979 A1 WO2016207979 A1 WO 2016207979A1 JP 2015068070 W JP2015068070 W JP 2015068070W WO 2016207979 A1 WO2016207979 A1 WO 2016207979A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor device
optical member
groove
inner lead
metal film
Prior art date
Application number
PCT/JP2015/068070
Other languages
French (fr)
Japanese (ja)
Inventor
智史 乾
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2017524318A priority Critical patent/JPWO2016207979A1/en
Priority to PCT/JP2015/068070 priority patent/WO2016207979A1/en
Publication of WO2016207979A1 publication Critical patent/WO2016207979A1/en

Links

Images

Definitions

  • the present invention relates to a semiconductor device and a method of manufacturing the semiconductor device.
  • an endoscope is widely used for various examinations in the medical field and the industrial field.
  • medical endoscopes do not cut the subject by inserting a flexible insertion portion having a solid-state imaging device at the tip and having an elongated shape into the subject such as a patient.
  • it is widely used because it can acquire an in-vivo image in a body cavity and can perform a treatment treatment by projecting a treatment tool from the tip of the insertion portion as needed.
  • the imaging device used in such an endoscope covers the light receiving surface of the CCD chip with a cover glass and connects the inner lead of the TAB tape to the electrode provided on the outer peripheral edge portion of the light receiving surface.
  • a chip is connected to an electronic component or an external information processing device (see, for example, Patent Document 1).
  • a dummy electrode is disposed between a plurality of electrodes used for transmitting a signal or the like as a technique for reducing the positional deviation between the electrode and the inner lead to prevent the occurrence of a short circuit or the like.
  • a technique has been proposed for preventing misalignment by connecting dummy wires (see, for example, Patent Document 2).
  • Patent Document 2 requires an installation space for the use of the dummy wiring and / or the dummy electrode, which hinders the miniaturization of the semiconductor element and the semiconductor device using the same. Have.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a semiconductor device capable of improving the reliability of a connection portion while achieving downsizing, and a method of manufacturing the semiconductor device.
  • a semiconductor device includes an element portion formed in the central portion of the main surface and a plurality of electrode pads formed around the element portion.
  • a flexible printed circuit board having a semiconductor chip having a plurality of inner leads connected respectively to the plurality of electrode pads via bumps, and an element portion of the semiconductor chip and sealing the electrode pads and the inner side
  • an optical member having a positioning portion of the inner lead in which at least one groove portion for receiving a connection portion with the lead is formed.
  • the semiconductor device according to the present invention is characterized in that, in the above-mentioned invention, the groove portions are formed at the same intervals as the pitch intervals of the electrode pads and in the same number as the number of the electrode pads.
  • the semiconductor device according to the present invention is characterized in that in the above-mentioned invention, the height of the positioning portion is the sum of the thickness of the inner lead after connection and the height of the bump.
  • the positioning portion is characterized in that a gap is formed on the side of the connection surface with the semiconductor chip.
  • a method of manufacturing a semiconductor device is the method of manufacturing a semiconductor device according to any one of the above, wherein a bonding step of bonding a semiconductor chip and an optical member, a side surface of the optical member Including an alignment step of inserting an inner lead into the formed groove and aligning the electrode pad and the inner lead, and a connection step of connecting the electrode pad and the inner lead via a bump. It features.
  • a film forming step of forming a metal film and a photoresist on a thin film to be a material of the optical member, and the groove portion in the metal film A patterning step of patterning the shape of the groove, a groove forming step of etching the optical member using the patterned metal film as a mask to form the groove, and a singulation step of removing the metal film and singulating And D. an optical member manufacturing process.
  • the electrode pad and the inner lead can be accurately positioned without using a dummy wiring and / or a dummy electrode, it is possible to provide a semiconductor device excellent in the reliability of the connection while achieving miniaturization. be able to.
  • FIG. 1 is a view schematically showing an entire configuration of an endoscope system according to a first embodiment of the present invention.
  • FIG. 2 is a side view of the imaging unit used in the endoscope of FIG.
  • FIG. 3 is a front view of the imaging unit shown in FIG.
  • FIG. 4 is a partially enlarged side view of the connection portion of the imaging unit of FIG.
  • FIG. 5 is a cross-sectional view of the imaging unit of FIG. 3 taken along line AA.
  • FIG. 6 is a diagram for explaining a method of manufacturing an optical member.
  • FIG. 7 is a partially enlarged view of the surface of the glass wafer after metal film etching.
  • FIG. 8 is a front view of an imaging unit according to a modification of the first embodiment.
  • FIG. 1 is a view schematically showing an entire configuration of an endoscope system according to a first embodiment of the present invention.
  • FIG. 2 is a side view of the imaging unit used in the endoscope of FIG.
  • FIG. 3 is
  • FIG. 9 is a partially enlarged side view of the imaging unit according to the second embodiment.
  • FIG. 10 is a cross-sectional view of the imaging unit of FIG.
  • FIG. 11 is a partially enlarged side view of the imaging unit according to the third embodiment.
  • FIG. 12 is a cross-sectional view of the imaging unit of FIG.
  • an endoscope provided with a semiconductor device that functions as an imaging unit will be described as a mode for carrying out the present invention (hereinafter, referred to as “embodiment”). Further, the present invention is not limited by the embodiment. Furthermore, in the description of the drawings, the same parts are given the same reference numerals. Furthermore, it should be noted that the drawings are schematic, and the relationship between the thickness and width of each member, the ratio of each member, and the like are different from reality. In addition, among the drawings, there are included parts having different dimensions and ratios.
  • FIG. 1 is a view schematically showing an entire configuration of an endoscope system according to a first embodiment of the present invention.
  • the endoscope system 1 includes an endoscope 2, a universal cord 5, a connector 6, a light source device 7, a processor (control device) 8, and a display device 9.
  • the endoscope 2 takes an in-vivo image of the subject by inserting the insertion unit 3 into the subject, and outputs an imaging signal.
  • the cable inside the universal cord 5 is extended to the tip of the insertion portion 3 of the endoscope 2 and connected to an imaging unit provided at the tip 3 b of the insertion portion 3.
  • the connector 6 is provided at the base end of the universal cord 5, connected to the light source device 7 and the processor 8, and a predetermined signal is output as an imaging signal (output signal) output from the imaging unit of the distal end 3b connected to the universal cord 5. While performing processing, the imaging signal is analog-to-digital converted (A / D conversion) and output as an image signal.
  • the light source device 7 is configured using, for example, a white LED.
  • the pulsed white light that the light source device 7 lights up becomes illumination light that is emitted toward the subject from the tip of the insertion portion 3 of the endoscope 2 via the connector 6 and the universal cord 5.
  • the processor 8 performs predetermined image processing on the image signal output from the connector 6 and controls the entire endoscope system 1.
  • the display device 9 displays the image signal processed by the processor 8.
  • the proximal end side of the insertion portion 3 of the endoscope 2 is connected to the operation unit 4 provided with various buttons and knobs for operating the endoscope function.
  • the operation unit 4 is provided with a treatment tool insertion port 4a for inserting treatment tools such as a forceps, an electric knife, and a test probe into a body cavity of a subject.
  • the insertion portion 3 includes a distal end portion 3b provided with an imaging unit, a vertically bendable curved portion 3a continuously provided on the base end side of the distal end portion 3b, and a proximal end side of the curved portion 3a. And a flexible tube portion 3c.
  • the bending portion 3a is bent in the vertical direction by the operation of a bending operation knob provided on the operation portion 4, and can be bendable in, for example, upper and lower two directions along with the pulling and relaxing of the bending wire inserted into the insertion portion 3. It has become.
  • the endoscope 2 is provided with a light guide for transmitting the illumination light from the light source device 7, and an illumination window is disposed at the emission end of the illumination light by the light guide.
  • the illumination window is provided at the distal end 3b of the insertion portion 3, and the illumination light is emitted toward the subject.
  • FIG. 2 is a side view of the imaging unit used in the endoscope of FIG.
  • FIG. 3 is a front view of the imaging unit shown in FIG.
  • FIG. 4 is a partially enlarged side view of the connection portion of the imaging unit of FIG.
  • FIG. 5 is a cross-sectional view of the imaging unit of FIG. 3 taken along line AA.
  • the imaging unit 100 includes an imaging element 10 having a light receiving unit 11 formed in the central portion of the main surface, an optical member 20 for sealing the light receiving unit 11, and a flexible printed circuit 30.
  • the optical member side of the imaging unit 100 is referred to as the front side, and the side on which a signal cable described later is disposed is referred to as the proximal side.
  • the imaging element 10 includes five electrode pads 12 around the light receiving unit 11 which is an element unit formed in the central portion of the main surface. Bumps 13 made of gold (Au), solder or the like are formed on the electrode pads 12.
  • the optical member 20 is made of a material such as glass or a resin having an optical characteristic similar to that of glass, and is bonded to the imaging device 10 by an adhesive.
  • Grooves 21 that define the positions of the electrode pads 12 and the inner leads are formed on the side surfaces of the optical member 20.
  • the grooves 21 are formed so as to penetrate from the front surface side to the back surface side of the optical member 20, and are formed in the same number as the number of the electrode pads 12 at the same pitch intervals of the electrode pads 12.
  • the side surface of the optical member 20 on which the groove 21 is formed functions as a positioning portion 23 for the bump 13 and the inner lead 32 on the electrode pad 12.
  • the flexible printed board 30 (hereinafter referred to as “FPC board”) has an insulating base 31 and a wiring layer (not shown) formed inside the base 31, and the wiring layer is the base 31. To form the inner leads 32.
  • the FPC board 30 extends from the imaging element 10 in the optical axis direction, and a laminated board 40 having a plurality of conductor layers is connected to the surface of the extended FPC board 30.
  • An electronic component 50 constituting a drive circuit of the imaging device 10 is mounted on the laminated substrate 40, and a via (not shown) for electrically connecting a plurality of conductive layers is formed in the laminated substrate 40. .
  • the conductor 61 of the cable 60 is connected to the base end side of the laminated substrate 40. Note that electronic components other than the electronic components that constitute the drive circuit of the imaging device 10 may be mounted on the laminated substrate 40.
  • the diameter of the electrode pad 12 of the imaging device 10 used in the endoscope 2 is 30 to 100 ⁇ m
  • the distance between the electrode pads 12 is 20 to 100 ⁇ m
  • the pitch between the electrode pads 12 is 50 to 200 ⁇ m.
  • the diameter of the bumps 13 disposed on the electrode pads 12 is 25 to 100 ⁇ m
  • the height of the bumps 13 is 15 to 30 ⁇ m.
  • the inner lead 32 connected to the electrode pad 12 through the bump 13 has a width of 25 to 100 ⁇ m and a thickness of about 15 to 25 ⁇ m in accordance with the diameter of the bump 13.
  • the width r1 of the groove 13 which is the positioning portion 23 of the bump 13 and the inner lead 32 on the electrode pad 12 is preferably formed in accordance with the size of the bump 13 and the inner lead 32, and the diameter of the bump 13 or the inner Preferably, it is about 110 to 120% of the width of the lead 32.
  • the length r2 of the groove 21 is preferably at least 50% or more of the diameter of the bump 13. By setting the length r2 to 80 to 120%, accurate positioning can be performed, and enlargement of the imaging unit 100 is suppressed. it can.
  • the height r3 of the groove 21 is preferably equal to or less than the sum of the thickness of the inner lead 32 after connection and the height of the bump 13.
  • the imaging unit 100 positions and connects the optical member 20 so that the electrode pad 12 in which the bump 13 is formed in the groove 21 is disposed on the imaging element 10 in which the bump 13 is formed on the electrode pad 12. Then, the inner lead 32 of the FPC board 30 is inserted into the groove portion 21 for positioning, and heat and pressure are applied from above the inner lead 32 with a heat tool to connect the inner lead 32 with the electrode pad 12 by the bump 13.
  • the sum of the thickness of the inner leads 32 before connection and the height of the bumps 13 takes into account the decrease in height of the bumps 13 due to melting at the time of connection It is preferable to make the height of the groove 21 higher than the height r3.
  • the connection between the inner leads and the bumps may be by an ultrasonic connection method using an ultrasonic tool.
  • the bump 13 may be formed on the electrode pad 12 and then connected to the inner lead 32.
  • the connection portion between the electrode pad 12 and the inner lead 32 may be sealed with a sealing resin.
  • a sealing resin it is preferable to use a colored sealing resin which does not transmit light, in order to prevent oblique incidence of light from the groove 21 to the light receiving portion 11.
  • a light shielding paint it is preferable to apply a light shielding paint in the groove 21.
  • the optical member 20 can also be processed and shaped by a dicing blade, a laser or the like, but manufacturing by a semiconductor process is preferable in terms of cost and accuracy.
  • the semiconductor process manufacture of the optical member 20 will be described with reference to the drawings.
  • FIG. 6 is a diagram for explaining a method of manufacturing an optical member.
  • FIG. 6 shows a cross section of the glass wafer 25 which is a material of the optical member 20.
  • a partial cross section of the glass wafer 25 is shown enlarged.
  • a metal film 26 such as gold or aluminum is formed on the surface of the glass wafer 25.
  • the metal film 26 is formed by evaporation, sputtering or the like.
  • a photoresist is applied on the metal film 26 to form a resist layer 27 (see FIG. 6A).
  • FIG. 7 is a partially enlarged view of the surface of the glass wafer 25 after the etching of the metal film 26 (after removing the resist layer 27). In FIG. 7, dotted lines show the final shape of the optical member 20. As shown in FIG. 7, the portion corresponding to the groove 21 of the metal film 26 is removed by etching.
  • the glass wafer 25 is etched using the metal film 26 in which the shape of the groove 21 is patterned by etching as a mask (see FIG. 6D).
  • the groove 21 is formed in the glass wafer 25 by this etching.
  • an optical member can be manufactured with high accuracy.
  • the glass wafer 25 is singulated by dicing to obtain the optical member 20 (see FIG. 6F).
  • the resist layer 27 may be directly formed on the surface of the glass wafer 25 without forming the metal film 26, and the groove 21 may be formed by photolithography.
  • the metal film 26 and the glass wafer 25 may be etched by either wet etching or dry etching.
  • the imaging unit 100 can be manufactured by bonding to the imaging device 10, but the glass wafer 25 is bonded to the silicon wafer of the imaging device 10 in the wafer state before being separated.
  • the groove 21 may be formed in the glass wafer 25 according to the above process, and the silicon wafer and the glass wafer 25 may be simultaneously separated.
  • the imaging unit 100 according to the first embodiment can be easily positioned with the electrode pad 12 by inserting the inner lead 32 of the FPC board 30 into the groove 21 of the optical member 20. Further, since the inner lead 32 is positioned by the groove portion 21, the possibility of a short circuit due to the positional deviation of the inner lead 32 can be reduced. Furthermore, since the groove 21 functions as a dam, when the inner lead 32 and the electrode pad 12 are connected, the occurrence of a short circuit or the like due to the outflow of the bump 13 can be prevented. Furthermore, since the dummy electrode and the dummy wiring are not used, the imaging unit 100 can be miniaturized.
  • the imaging unit has been described as an example of the semiconductor device, but the semiconductor device of the present invention is not limited to the imaging unit, and is also applicable to semiconductor devices using optical members such as MEMS devices. It is possible.
  • FIG. 8 is a front view of an imaging unit according to a modification of the first embodiment.
  • one groove 21A is formed in the positioning portion 23A.
  • the width r1 'of the groove 21A is large enough to accommodate all the bumps 13 and the inner leads 32.
  • the width of the inner lead 32 is about the same as the diameter of the bump 13, and the width r1 'of the groove 21A is adjusted to the length r4 of the outermost side of the diameter of the bump 13 or the width of the inner lead 32, whichever is larger. By forming it, alignment can be easily performed.
  • FIG. 9 is a partially enlarged side view of the imaging unit according to the second embodiment.
  • FIG. 10 is a cross-sectional view of the imaging unit of FIG. The cross-sectional view of FIG. 10 is a cross section at the same position as the cross section AA of the imaging unit 100 of FIG.
  • the positioning portion 23B of the optical member 20B is provided with a recess 22 on the connection surface side with the imaging device 10, and a gap is formed between the recess 22 and the imaging device 10.
  • the imaging device 10 and the optical member 20B are bonded by an adhesive, leakage of the adhesive may occur in the groove 21B depending on the amount of adhesive used and the heating and pressing conditions at the time of bonding. .
  • the imaging device 10 and the optical member 20B are joined by an adhesive, and the concave portion 22 is formed in the optical member 20B even when the adhesive leaks to the positioning portion 23B side.
  • the height r5 of the recess 22 is preferably suitably changed according to the thickness of the adhesive used for bonding the imaging device 10 and the optical member 20B, but is at least 1 ⁇ m or more and 50% of the height r3 of the groove 21B. It is preferably less than 30%, preferably less than 30%.
  • FIG. 11 is a partially enlarged side view of the imaging unit according to the third embodiment.
  • FIG. 12 is a cross-sectional view of the imaging unit of FIG. The cross-sectional view of FIG. 12 is a cross-section at the same position as the AA cross section of the imaging unit 100 of FIG.
  • the height r3 of the positioning portion 23C of the optical member 20C is smaller than the height r6 of the optical member 20C on the light receiving portion 11 of the imaging device 10.
  • the height r3 of the positioning portion 23C is determined according to the height of the bump 13 used and the thickness of the inner lead 32, but the height r6 of the optical member 20C on the light receiving portion 11 is necessary according to the optical characteristics The height should be determined in accordance with the material used for the optical member 20C.
  • the height r6 of the optical member 20C on the light receiving portion 11 is higher than the height r3 of the positioning portion 23C, but if necessary, the height r6 of the optical member 20C on the light receiving portion 11 is It may be lower than the height r3 of the positioning portion 23C.

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Wire Bonding (AREA)
  • Endoscopes (AREA)

Abstract

Provided are: a semiconductor device wherein reliability of a connecting section can be improved, while reducing dimensions; and a method for manufacturing the semiconductor device. An image pickup unit 100 of the present invention is characterized by being provided with: an image pickup element 10, which has a light receiving section 11 formed at a main surface center section, and a plurality of electrode pads 12 formed around the light receiving section 11; a flexible printed board 30 having a plurality of inner leads 32 respectively connected to the electrode pads 12 via bumps 13; and an optical member 20, which seals the light receiving section 11 of the image pickup element 10, and which has an alignment section for the inner leads 32, said alignment section having at least one groove section 21 that is formed in a side surface for the purpose of housing a connecting section that connects the electrode pads 12 and the inner leads 32 to each other.

Description

半導体装置、および半導体装置の製造方法Semiconductor device and method of manufacturing semiconductor device
 本発明は、半導体装置、および半導体装置の製造方法に関する。 The present invention relates to a semiconductor device and a method of manufacturing the semiconductor device.
 従来、医療分野および工業分野において、各種検査のために内視鏡が広く用いられている。このうち、医療用の内視鏡は、患者等の被検体内に、先端に固体撮像素子が設けられた細長形状をなす可撓性の挿入部を挿入することによって、被検体を切開せずとも体腔内の体内画像を取得でき、さらに、必要に応じて挿入部先端から処置具を突出させて治療処置を行うことができるため、広く用いられている。 Conventionally, an endoscope is widely used for various examinations in the medical field and the industrial field. Among these, medical endoscopes do not cut the subject by inserting a flexible insertion portion having a solid-state imaging device at the tip and having an elongated shape into the subject such as a patient. In any case, it is widely used because it can acquire an in-vivo image in a body cavity and can perform a treatment treatment by projecting a treatment tool from the tip of the insertion portion as needed.
 このような内視鏡で使用される撮像装置は、一般に、CCDチップの受光面をカバーガラスで覆い、受光面の外周縁部に設けられた電極にTABテープのインナーリードを接続して、CCDチップと電子部品や外部の情報処理装置とを接続する(例えば、特許文献1参照)。 In general, the imaging device used in such an endoscope covers the light receiving surface of the CCD chip with a cover glass and connects the inner lead of the TAB tape to the electrode provided on the outer peripheral edge portion of the light receiving surface. A chip is connected to an electronic component or an external information processing device (see, for example, Patent Document 1).
 近年、被検体の負担を軽減するために内視鏡の挿入先端部の細径化が求められており、CCDチップの小型化も検討されている。CCDチップを小型化する場合、外周縁部に設けられる電極間距離も狭くなるため、電極とインナーリードとの位置ずれにより、ショート等が発生するおそれが高くなる。 In recent years, in order to reduce the burden on the subject, it is required to reduce the diameter of the insertion tip of the endoscope, and the miniaturization of the CCD chip is also being studied. When the size of the CCD chip is reduced, the distance between the electrodes provided at the outer peripheral edge is also narrowed, so there is a high possibility that a short circuit or the like may occur due to the positional deviation between the electrodes and the inner leads.
 これに対し、電極とインナーリードとの位置ずれを低減して、ショート等の発生を防止する技術として、信号等の伝送に使用する複数の電極の間にダミー電極を配置し、このダミー電極にダミー配線を接続することにより位置ずれを防止する技術が提案されている(例えば、特許文献2参照)。 On the other hand, a dummy electrode is disposed between a plurality of electrodes used for transmitting a signal or the like as a technique for reducing the positional deviation between the electrode and the inner lead to prevent the occurrence of a short circuit or the like. A technique has been proposed for preventing misalignment by connecting dummy wires (see, for example, Patent Document 2).
特開平11-76152号公報Japanese Patent Application Laid-Open No. 11-76152 特開2013-239654号公報Unexamined-Japanese-Patent No. 2013-239654
 しかしながら、特許文献2に記載の技術では、ダミー配線および/またはダミー電極の使用のための設置スペースが必要となるため、半導体素子およびこれを用いた半導体装置の小型化が阻害されるという問題を有している。 However, the technique described in Patent Document 2 requires an installation space for the use of the dummy wiring and / or the dummy electrode, which hinders the miniaturization of the semiconductor element and the semiconductor device using the same. Have.
 本発明は、上記に鑑みてなされたものであって、小型化を図りながら、接続部の信頼性を向上しうる半導体装置、および半導体装置の製造方法を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a semiconductor device capable of improving the reliability of a connection portion while achieving downsizing, and a method of manufacturing the semiconductor device.
 上述した課題を解決し、目的を達成するために、本発明にかかる半導体装置は、主面中央部に形成された素子部と、前記素子部の周囲に形成された複数の電極パッドと、を有する半導体チップと、前記複数の電極パッドにバンプを介してそれぞれ接続される複数のインナーリードを有するフレキシブルプリント基板と、前記半導体チップの素子部を封止するとともに、側面に前記電極パッドと前記インナーリードとの接続部を収容する溝部が少なくとも1つ形成された前記インナーリードの位置決め部を有する光学部材と、を備えることを特徴とする。 In order to solve the problems described above and achieve the object, a semiconductor device according to the present invention includes an element portion formed in the central portion of the main surface and a plurality of electrode pads formed around the element portion. A flexible printed circuit board having a semiconductor chip having a plurality of inner leads connected respectively to the plurality of electrode pads via bumps, and an element portion of the semiconductor chip and sealing the electrode pads and the inner side And an optical member having a positioning portion of the inner lead in which at least one groove portion for receiving a connection portion with the lead is formed.
 また、本発明にかかる半導体装置は、上記発明において、前記溝部は、前記電極パッドのピッチ間隔と同間隔で、前記電極パッドの個数と同数形成されることを特徴とする。 The semiconductor device according to the present invention is characterized in that, in the above-mentioned invention, the groove portions are formed at the same intervals as the pitch intervals of the electrode pads and in the same number as the number of the electrode pads.
 また、本発明にかかる半導体装置は、上記発明において、前記位置決め部の高さは、接続後の前記インナーリードの厚みと前記バンプの高さとの和であることを特徴とする。 The semiconductor device according to the present invention is characterized in that in the above-mentioned invention, the height of the positioning portion is the sum of the thickness of the inner lead after connection and the height of the bump.
 また、本発明にかかる半導体装置は、上記発明において、前記位置決め部は、前記半導体チップとの接続面側に隙間が形成されることを特徴とする。 In the semiconductor device according to the present invention as set forth in the invention described above, the positioning portion is characterized in that a gap is formed on the side of the connection surface with the semiconductor chip.
 また、本発明にかかる半導体装置の製造方法は、上記のいずれか一つに記載の半導体装置の製造方法であって、半導体チップと光学部材とを接合する接合工程と、前記光学部材の側面に形成された溝部にインナーリードを挿入して、電極パッドと前記インナーリードを位置合わせする位置合わせ工程と、前記電極パッドと前記インナーリードとをバンプを介して接続する接続工程と、を含むことを特徴とする。 A method of manufacturing a semiconductor device according to the present invention is the method of manufacturing a semiconductor device according to any one of the above, wherein a bonding step of bonding a semiconductor chip and an optical member, a side surface of the optical member Including an alignment step of inserting an inner lead into the formed groove and aligning the electrode pad and the inner lead, and a connection step of connecting the electrode pad and the inner lead via a bump. It features.
 また、本発明にかかる半導体装置の製造方法は、上記発明において、前記光学部材の材料となる薄膜上に金属膜およびフォトレジストを成膜する成膜工程と、フォトリソグラフィにより前記金属膜に前記溝部の形状をパターニングするパターニング工程と、パターニングされた前記金属膜をマスクとして前記光学部材をエッチングして前記溝部を形成する溝部形成工程と、前記金属膜を除去し、個片化する個片化工程と、を含む光学部材製造工程をさらに有することを特徴とする。 In the method of manufacturing a semiconductor device according to the present invention, in the above-mentioned invention, a film forming step of forming a metal film and a photoresist on a thin film to be a material of the optical member, and the groove portion in the metal film A patterning step of patterning the shape of the groove, a groove forming step of etching the optical member using the patterned metal film as a mask to form the groove, and a singulation step of removing the metal film and singulating And D. an optical member manufacturing process.
 本発明によれば、ダミー配線および/またはダミー電極を使用することなく、電極パッドとインナーリードとを精度よく位置決めできるので、小型化を図りながら、接続部の信頼性に優れる半導体装置を提供することができる。 According to the present invention, since the electrode pad and the inner lead can be accurately positioned without using a dummy wiring and / or a dummy electrode, it is possible to provide a semiconductor device excellent in the reliability of the connection while achieving miniaturization. be able to.
図1は、本発明の実施の形態1にかかる内視鏡システムの全体構成を模式的に示す図である。FIG. 1 is a view schematically showing an entire configuration of an endoscope system according to a first embodiment of the present invention. 図2は、図1の内視鏡で使用される撮像ユニットの側面図である。FIG. 2 is a side view of the imaging unit used in the endoscope of FIG. 図3は、図2に示す撮像ユニットの前面図である。FIG. 3 is a front view of the imaging unit shown in FIG. 図4は、図2の撮像ユニットの接続部の一部拡大側面図である。FIG. 4 is a partially enlarged side view of the connection portion of the imaging unit of FIG. 図5は、図3の撮像ユニットのA-A線断面図である。FIG. 5 is a cross-sectional view of the imaging unit of FIG. 3 taken along line AA. 図6は、光学部材の製造方法を説明する図である。FIG. 6 is a diagram for explaining a method of manufacturing an optical member. 図7は、金属膜エッチング後のガラスウエハ表面の一部拡大図である。FIG. 7 is a partially enlarged view of the surface of the glass wafer after metal film etching. 図8は、実施の形態1の変形例にかかる撮像ユニットの前面図である。FIG. 8 is a front view of an imaging unit according to a modification of the first embodiment. 図9は、実施の形態2にかかる撮像ユニットの一部拡大側面図である。FIG. 9 is a partially enlarged side view of the imaging unit according to the second embodiment. 図10は、図9の撮像ユニットの断面図である。FIG. 10 is a cross-sectional view of the imaging unit of FIG. 図11は、実施の形態3にかかる撮像ユニットの一部拡大側面図である。FIG. 11 is a partially enlarged side view of the imaging unit according to the third embodiment. 図12は、図11の撮像ユニットの断面図である。FIG. 12 is a cross-sectional view of the imaging unit of FIG.
 以下の説明では、本発明を実施するための形態(以下、「実施の形態」という)として、撮像ユニットとして機能する半導体装置を備えた内視鏡について説明する。また、この実施の形態により、この発明が限定されるものではない。さらに、図面の記載において、同一部分には同一の符号を付している。さらにまた、図面は、模式的なものであり、各部材の厚みと幅との関係、各部材の比率等は、現実と異なることに留意する必要がある。また、図面の相互間においても、互いの寸法や比率が異なる部分が含まれている。 In the following description, an endoscope provided with a semiconductor device that functions as an imaging unit will be described as a mode for carrying out the present invention (hereinafter, referred to as “embodiment”). Further, the present invention is not limited by the embodiment. Furthermore, in the description of the drawings, the same parts are given the same reference numerals. Furthermore, it should be noted that the drawings are schematic, and the relationship between the thickness and width of each member, the ratio of each member, and the like are different from reality. In addition, among the drawings, there are included parts having different dimensions and ratios.
(実施の形態1)
 図1は、本発明の実施の形態1にかかる内視鏡システムの全体構成を模式的に示す図である。図1に示すように、内視鏡システム1は、内視鏡2と、ユニバーサルコード5と、コネクタ6と、光源装置7と、プロセッサ(制御装置)8と、表示装置9とを備える。
Embodiment 1
FIG. 1 is a view schematically showing an entire configuration of an endoscope system according to a first embodiment of the present invention. As shown in FIG. 1, the endoscope system 1 includes an endoscope 2, a universal cord 5, a connector 6, a light source device 7, a processor (control device) 8, and a display device 9.
 内視鏡2は、挿入部3を被検体内に挿入することによって、被検体の体内画像を撮像し撮像信号を出力する。ユニバーサルコード5内部のケーブルは、内視鏡2の挿入部3の先端まで延伸され、挿入部3の先端部3bに設けられる撮像ユニットに接続する。 The endoscope 2 takes an in-vivo image of the subject by inserting the insertion unit 3 into the subject, and outputs an imaging signal. The cable inside the universal cord 5 is extended to the tip of the insertion portion 3 of the endoscope 2 and connected to an imaging unit provided at the tip 3 b of the insertion portion 3.
 コネクタ6は、ユニバーサルコード5の基端に設けられて、光源装置7及びプロセッサ8に接続され、ユニバーサルコード5と接続する先端部3bの撮像ユニットが出力する撮像信号(出力信号)に所定の信号処理を施すとともに、撮像信号をアナログデジタル変換(A/D変換)して画像信号として出力する。 The connector 6 is provided at the base end of the universal cord 5, connected to the light source device 7 and the processor 8, and a predetermined signal is output as an imaging signal (output signal) output from the imaging unit of the distal end 3b connected to the universal cord 5. While performing processing, the imaging signal is analog-to-digital converted (A / D conversion) and output as an image signal.
 光源装置7は、例えば、白色LEDを用いて構成される。光源装置7が点灯するパルス状の白色光は、コネクタ6、ユニバーサルコード5を経由して内視鏡2の挿入部3の先端から被写体へ向けて照射する照明光となる。 The light source device 7 is configured using, for example, a white LED. The pulsed white light that the light source device 7 lights up becomes illumination light that is emitted toward the subject from the tip of the insertion portion 3 of the endoscope 2 via the connector 6 and the universal cord 5.
 プロセッサ8は、コネクタ6から出力される画像信号に所定の画像処理を施すとともに、内視鏡システム1全体を制御する。表示装置9は、プロセッサ8が処理を施した画像信号を表示する。 The processor 8 performs predetermined image processing on the image signal output from the connector 6 and controls the entire endoscope system 1. The display device 9 displays the image signal processed by the processor 8.
 内視鏡2の挿入部3の基端側には、内視鏡機能を操作する各種ボタン類やノブ類が設けられた操作部4が接続される。操作部4には、被検体の体腔内に生体鉗子、電気メスおよび検査プローブ等の処置具を挿入する処置具挿入口4aが設けられる。 The proximal end side of the insertion portion 3 of the endoscope 2 is connected to the operation unit 4 provided with various buttons and knobs for operating the endoscope function. The operation unit 4 is provided with a treatment tool insertion port 4a for inserting treatment tools such as a forceps, an electric knife, and a test probe into a body cavity of a subject.
 挿入部3は、撮像ユニットが設けられる先端部3bと、先端部3bの基端側に連設された上下方向に湾曲自在な湾曲部3aと、この湾曲部3aの基端側に連設された可撓管部3cとを備える。湾曲部3aは、操作部4に設けられた湾曲操作用ノブの操作によって上下方向に湾曲し、挿入部3内部に挿通された湾曲ワイヤの牽引弛緩にともない、たとえば上下の2方向に湾曲自在となっている。 The insertion portion 3 includes a distal end portion 3b provided with an imaging unit, a vertically bendable curved portion 3a continuously provided on the base end side of the distal end portion 3b, and a proximal end side of the curved portion 3a. And a flexible tube portion 3c. The bending portion 3a is bent in the vertical direction by the operation of a bending operation knob provided on the operation portion 4, and can be bendable in, for example, upper and lower two directions along with the pulling and relaxing of the bending wire inserted into the insertion portion 3. It has become.
 内視鏡2には、光源装置7からの照明光を伝送するライトガイドが配設され、ライトガイドによる照明光の出射端に照明窓が配置される。この照明窓は、挿入部3の先端部3bに設けられており、照明光が被検体に向けて照射される。 The endoscope 2 is provided with a light guide for transmitting the illumination light from the light source device 7, and an illumination window is disposed at the emission end of the illumination light by the light guide. The illumination window is provided at the distal end 3b of the insertion portion 3, and the illumination light is emitted toward the subject.
 次に、内視鏡2の先端部3bに設けられた撮像ユニットについて説明する。図2は、図1の内視鏡で使用される撮像ユニットの側面図である。図3は、図2に示す撮像ユニットの前面図である。図4は、図2の撮像ユニットの接続部の一部拡大側面図である。図5は、図3の撮像ユニットのA-A線断面図である。 Next, an imaging unit provided at the distal end 3b of the endoscope 2 will be described. FIG. 2 is a side view of the imaging unit used in the endoscope of FIG. FIG. 3 is a front view of the imaging unit shown in FIG. FIG. 4 is a partially enlarged side view of the connection portion of the imaging unit of FIG. FIG. 5 is a cross-sectional view of the imaging unit of FIG. 3 taken along line AA.
 撮像ユニット100は、主面中央部に形成された受光部11を有する撮像素子10と、受光部11を封止する光学部材20と、フレキシブルプリント基板30と、を備える。本明細書において、撮像ユニット100の光学部材側を前面側といい、後述する信号ケーブルが配置される側を基端側という。 The imaging unit 100 includes an imaging element 10 having a light receiving unit 11 formed in the central portion of the main surface, an optical member 20 for sealing the light receiving unit 11, and a flexible printed circuit 30. In the present specification, the optical member side of the imaging unit 100 is referred to as the front side, and the side on which a signal cable described later is disposed is referred to as the proximal side.
 撮像素子10は、主面中央部に形成された素子部である受光部11の周囲に、5つの電極パッド12を備える。電極パッド12上には金(Au)、はんだ等からなるバンプ13が形成されている。 The imaging element 10 includes five electrode pads 12 around the light receiving unit 11 which is an element unit formed in the central portion of the main surface. Bumps 13 made of gold (Au), solder or the like are formed on the electrode pads 12.
 光学部材20は、ガラスや、ガラスと同程度の光学特性を備えた樹脂等の材料からなり、接着剤により撮像素子10と接着されている。光学部材20の側面には、電極パッド12とインナーリードの位置を規定する溝部21が形成されている。溝部21は、光学部材20の前面側から裏面側に貫通するように形成され、電極パッド12のピッチ間隔と同間隔で、電極パッド12の個数と同数形成されている。光学部材20の溝部21が形成される側の側面は、電極パッド12上へのバンプ13およびインナーリード32の位置決め部23として機能する。 The optical member 20 is made of a material such as glass or a resin having an optical characteristic similar to that of glass, and is bonded to the imaging device 10 by an adhesive. Grooves 21 that define the positions of the electrode pads 12 and the inner leads are formed on the side surfaces of the optical member 20. The grooves 21 are formed so as to penetrate from the front surface side to the back surface side of the optical member 20, and are formed in the same number as the number of the electrode pads 12 at the same pitch intervals of the electrode pads 12. The side surface of the optical member 20 on which the groove 21 is formed functions as a positioning portion 23 for the bump 13 and the inner lead 32 on the electrode pad 12.
 フレキシブルプリント基板30(以下、「FPC基板」という)は、絶縁性の基材31と、基材31の内部に形成される配線層(図示しない)と、を有し、配線層が基材31から露出してインナーリード32を形成する。FPC基板30は、撮像素子10から光軸方向に延出し、延出したFPC基板30表面には複数の導体層を有する積層基板40が接続されている。積層基板40には、撮像素子10の駆動回路を構成する電子部品50が実装され、積層基板40の内部には、複数の導体層間を電気的に導通させるビア(図示しない)が形成されている。また、積層基板40の基端側には、ケーブル60の導体61が接続される。なお、積層基板40には、撮像素子10の駆動回路を構成する電子部品以外の電子部品が実装されてもよい。 The flexible printed board 30 (hereinafter referred to as “FPC board”) has an insulating base 31 and a wiring layer (not shown) formed inside the base 31, and the wiring layer is the base 31. To form the inner leads 32. The FPC board 30 extends from the imaging element 10 in the optical axis direction, and a laminated board 40 having a plurality of conductor layers is connected to the surface of the extended FPC board 30. An electronic component 50 constituting a drive circuit of the imaging device 10 is mounted on the laminated substrate 40, and a via (not shown) for electrically connecting a plurality of conductive layers is formed in the laminated substrate 40. . The conductor 61 of the cable 60 is connected to the base end side of the laminated substrate 40. Note that electronic components other than the electronic components that constitute the drive circuit of the imaging device 10 may be mounted on the laminated substrate 40.
 一般に、内視鏡2に使用される撮像素子10の電極パッド12の径は30~100μm、電極パッド12間の距離は20~100μm、電極パッド12間のピッチは50~200μmに形成されている。また、電極パッド12上に配置されるバンプ13の径は25~100μm、バンプ13の高さは15~30μmである。バンプ13を介して電極パッド12と接続されるインナーリード32の幅は、バンプ13の径に合わせて25~100μm、厚みは15~25μm程度である。電極パッド12上へのバンプ13およびインナーリード32の位置決め部23である溝部21の幅r1は、バンプ13およびインナーリード32の大きさに合わせて形成することが好ましく、バンプ13の径、またはインナーリード32の幅の110~120%程度とすることが好ましい。また、溝部21の長さr2は、少なくともバンプ13の径の50%以上であることが好ましく、80~120%の長さとすることにより、精度よく位置決めできるとともに、撮像ユニット100の大型化を抑制できる。溝部21の高さr3は、接続後のインナーリード32の厚みとバンプ13の高さの和以下とすることが好ましい。 Generally, the diameter of the electrode pad 12 of the imaging device 10 used in the endoscope 2 is 30 to 100 μm, the distance between the electrode pads 12 is 20 to 100 μm, and the pitch between the electrode pads 12 is 50 to 200 μm. . The diameter of the bumps 13 disposed on the electrode pads 12 is 25 to 100 μm, and the height of the bumps 13 is 15 to 30 μm. The inner lead 32 connected to the electrode pad 12 through the bump 13 has a width of 25 to 100 μm and a thickness of about 15 to 25 μm in accordance with the diameter of the bump 13. The width r1 of the groove 13 which is the positioning portion 23 of the bump 13 and the inner lead 32 on the electrode pad 12 is preferably formed in accordance with the size of the bump 13 and the inner lead 32, and the diameter of the bump 13 or the inner Preferably, it is about 110 to 120% of the width of the lead 32. The length r2 of the groove 21 is preferably at least 50% or more of the diameter of the bump 13. By setting the length r2 to 80 to 120%, accurate positioning can be performed, and enlargement of the imaging unit 100 is suppressed. it can. The height r3 of the groove 21 is preferably equal to or less than the sum of the thickness of the inner lead 32 after connection and the height of the bump 13.
 撮像ユニット100は、電極パッド12上にバンプ13を形成した撮像素子10上に、溝部21内にバンプ13を形成した電極パッド12が配置されるよう光学部材20を位置決めして接続する。次いで、FPC基板30のインナーリード32を溝部21に挿入することにより位置決めし、インナーリード32の上部からヒートツールで加熱・加圧して、インナーリード32をバンプ13により電極パッド12と接続する。ヒートツールで、5本のインナーリード32を一括接続するためには、接続前のインナーリード32の厚みとバンプ13の高さの和は、接続時の溶融によるバンプ13の高さの低下を考慮し、溝部21の高さr3より高くすることが好ましいが、インナーリード32を個別に接続する場合はこの限りではない。なお、インナーリードとバンプの接続は、超音波ツールを用いた超音波による接続方式でも良い。また、撮像ユニット100は、撮像素子10と光学部材20とを接続した後、電極パッド12上にバンプ13を形成し、その後、インナーリード32と接続してもよい。 The imaging unit 100 positions and connects the optical member 20 so that the electrode pad 12 in which the bump 13 is formed in the groove 21 is disposed on the imaging element 10 in which the bump 13 is formed on the electrode pad 12. Then, the inner lead 32 of the FPC board 30 is inserted into the groove portion 21 for positioning, and heat and pressure are applied from above the inner lead 32 with a heat tool to connect the inner lead 32 with the electrode pad 12 by the bump 13. In order to collectively connect the five inner leads 32 with a heat tool, the sum of the thickness of the inner leads 32 before connection and the height of the bumps 13 takes into account the decrease in height of the bumps 13 due to melting at the time of connection It is preferable to make the height of the groove 21 higher than the height r3. However, this is not the case when the inner leads 32 are individually connected. The connection between the inner leads and the bumps may be by an ultrasonic connection method using an ultrasonic tool. In addition, after the imaging unit 100 connects the imaging element 10 and the optical member 20, the bump 13 may be formed on the electrode pad 12 and then connected to the inner lead 32.
 電極パッド12とインナーリード32との接続部は、封止樹脂で封入してもよい。封止樹脂は、溝部21からの受光部11への光の斜入射を防止するために、光を透過しない着色した封止樹脂を使用することが好ましい。封止樹脂を使用せず、溝部21からの受光部11への斜入射を防止するためには、溝部21内に遮光性塗料を塗布することが好ましい。 The connection portion between the electrode pad 12 and the inner lead 32 may be sealed with a sealing resin. As the sealing resin, it is preferable to use a colored sealing resin which does not transmit light, in order to prevent oblique incidence of light from the groove 21 to the light receiving portion 11. In order to prevent oblique incidence on the light receiving portion 11 from the groove 21 without using a sealing resin, it is preferable to apply a light shielding paint in the groove 21.
 光学部材20は、ダイシングブレードやレーザー等により加工、成形することもできるが、半導体プロセスにより製造する方が、コストおよび精度の面で好ましい。光学部材20の半導体プロセスによる製造を、図面を参照して説明する。図6は、光学部材の製造方法を説明する図である。図6は、光学部材20の材料となるガラスウエハ25の断面を示すものであるが、発明の理解のために、ガラスウエハ25の一部断面を拡大して示している。 The optical member 20 can also be processed and shaped by a dicing blade, a laser or the like, but manufacturing by a semiconductor process is preferable in terms of cost and accuracy. The semiconductor process manufacture of the optical member 20 will be described with reference to the drawings. FIG. 6 is a diagram for explaining a method of manufacturing an optical member. FIG. 6 shows a cross section of the glass wafer 25 which is a material of the optical member 20. However, for the purpose of understanding the invention, a partial cross section of the glass wafer 25 is shown enlarged.
 まず、ガラスウエハ25の表面に金や、アルミニウムなどの金属膜26を形成する。金属膜26は、蒸着やスパッタリング等により成膜する。続いて、金属膜26上にフォトレジストを塗布して、レジスト層27を成膜する(図6(a)参照)。 First, a metal film 26 such as gold or aluminum is formed on the surface of the glass wafer 25. The metal film 26 is formed by evaporation, sputtering or the like. Subsequently, a photoresist is applied on the metal film 26 to form a resist layer 27 (see FIG. 6A).
 マスクを介してレジスト層27を露光、現像して、レジスト層27に光学部材20の溝部21の形状をパターンニングした後、金属膜26をエッチングする(図6(b)参照)。金属膜26のエッチング後、レジスト層27は除去される(図6(c)参照)。図7は、金属膜26のエッチング後のガラスウエハ25の表面の一部拡大図である(レジスト層27除去後)。図7において、点線は最終的な光学部材20の形状を示すものである。図7に示すように、金属膜26の溝部21に対応する部分が、エッチングにより除去されている。 The resist layer 27 is exposed and developed through a mask, and after patterning the shape of the groove portion 21 of the optical member 20 in the resist layer 27, the metal film 26 is etched (see FIG. 6B). After the metal film 26 is etched, the resist layer 27 is removed (see FIG. 6C). FIG. 7 is a partially enlarged view of the surface of the glass wafer 25 after the etching of the metal film 26 (after removing the resist layer 27). In FIG. 7, dotted lines show the final shape of the optical member 20. As shown in FIG. 7, the portion corresponding to the groove 21 of the metal film 26 is removed by etching.
 エッチングにより溝部21の形状がパターニングされた金属膜26をマスクとして、ガラスウエハ25をエッチングする(図6(d)参照)。このエッチングによりガラスウエハ25に溝部21が形成される。フォトリソグラフィにより溝部21を形成することにより、精度よく光学部材を製造することができる。 The glass wafer 25 is etched using the metal film 26 in which the shape of the groove 21 is patterned by etching as a mask (see FIG. 6D). The groove 21 is formed in the glass wafer 25 by this etching. By forming the groove 21 by photolithography, an optical member can be manufactured with high accuracy.
 溝部21を形成したガラスウエハ25から金属膜26を除去した後(図6(e)参照)、ダイシングによりガラスウエハ25を個片化して光学部材20が得られる(図6(f)参照)。ガラスウエハ25をエッチングして溝部21を形成する際、金属膜26を形成せずに、ガラスウエハ25表面に直接レジスト層27を形成してフォトリソグラフィにより溝部21を形成することもできるが、ガラスウエハ25の厚さを考慮すると、金属膜26を形成してマスクとすることが好ましい。また、金属膜26およびガラスウエハ25のエッチングは、ウエットエッチングとドライエッチングのいずれにより行ってもよい。 After removing the metal film 26 from the glass wafer 25 in which the groove 21 is formed (see FIG. 6E), the glass wafer 25 is singulated by dicing to obtain the optical member 20 (see FIG. 6F). When forming the groove 21 by etching the glass wafer 25, the resist layer 27 may be directly formed on the surface of the glass wafer 25 without forming the metal film 26, and the groove 21 may be formed by photolithography. In consideration of the thickness of the wafer 25, it is preferable to form the metal film 26 as a mask. The metal film 26 and the glass wafer 25 may be etched by either wet etching or dry etching.
 なお、上記の工程により光学部材20を製造した後、撮像素子10と接着して撮像ユニット100を製造できるが、個片化される前のウエハ状態の撮像素子10のシリコンウエハにガラスウエハ25を接着した後、上記の工程により、ガラスウエハ25に溝部21を形成し、シリコンウエハとガラスウエハ25とを同時に個片化してもよい。 After the optical member 20 is manufactured by the above-described process, the imaging unit 100 can be manufactured by bonding to the imaging device 10, but the glass wafer 25 is bonded to the silicon wafer of the imaging device 10 in the wafer state before being separated. After bonding, the groove 21 may be formed in the glass wafer 25 according to the above process, and the silicon wafer and the glass wafer 25 may be simultaneously separated.
 実施の形態1にかかる撮像ユニット100は、FPC基板30のインナーリード32を光学部材20の溝部21に挿入することにより、電極パッド12と容易に位置決めできる。また、溝部21によりインナーリード32が位置決めされるため、インナーリード32の位置ずれによるショートのおそれを低減できる。さらに、溝部21がダムの機能を果たすため、インナーリード32と電極パッド12との接続の際、バンプ13の流れ出しによるショート等の発生を防止できる。さらにまた、ダミー電極やダミー配線を使用しないため、撮像ユニット100の小型化を図ることができる。 The imaging unit 100 according to the first embodiment can be easily positioned with the electrode pad 12 by inserting the inner lead 32 of the FPC board 30 into the groove 21 of the optical member 20. Further, since the inner lead 32 is positioned by the groove portion 21, the possibility of a short circuit due to the positional deviation of the inner lead 32 can be reduced. Furthermore, since the groove 21 functions as a dam, when the inner lead 32 and the electrode pad 12 are connected, the occurrence of a short circuit or the like due to the outflow of the bump 13 can be prevented. Furthermore, since the dummy electrode and the dummy wiring are not used, the imaging unit 100 can be miniaturized.
 上記の実施の形態1では、半導体装置として撮像ユニットを例として説明したが、本発明の半導体装置は撮像ユニットに限定されるものではなく、MEMSデバイス等の光学部材を使用する半導体装置にも適用可能である。 In the first embodiment described above, the imaging unit has been described as an example of the semiconductor device, but the semiconductor device of the present invention is not limited to the imaging unit, and is also applicable to semiconductor devices using optical members such as MEMS devices. It is possible.
 なお、上記の実施の形態1では、光学部材20の位置決め部23に電極パッド12と同数の溝部21を形成し、インナーリード32を溝部21にそれぞれ挿入して位置決めを行うが、インナーリード32を電極パッドに位置決めが可能であれば、溝部は1つであってもよい。図8は、本実施の形態1の変形例にかかる撮像ユニットの前面図である。 In the first embodiment described above, the grooves 21 equal in number to the electrode pads 12 are formed in the positioning portion 23 of the optical member 20, and the inner leads 32 are inserted into the grooves 21 for positioning. The groove may be single as long as the electrode pad can be positioned. FIG. 8 is a front view of an imaging unit according to a modification of the first embodiment.
 本実施の形態1の変形例にかかる撮像ユニット100Aにおいて、位置決め部23Aには1つの溝部21Aが形成されている。溝部21Aの幅r1’は、すべてのバンプ13およびインナーリード32を収容できる大きさである。インナーリード32の幅は、バンプ13の径と同程度であり、バンプ13の径またはインナーリード32の幅のいずれか大きい方の最外側面の長さr4に合わせて溝部21Aの幅r1’を形成することにより、位置合わせを容易に行うことができる。 In the imaging unit 100A according to the modification of the first embodiment, one groove 21A is formed in the positioning portion 23A. The width r1 'of the groove 21A is large enough to accommodate all the bumps 13 and the inner leads 32. The width of the inner lead 32 is about the same as the diameter of the bump 13, and the width r1 'of the groove 21A is adjusted to the length r4 of the outermost side of the diameter of the bump 13 or the width of the inner lead 32, whichever is larger. By forming it, alignment can be easily performed.
 また、溝部を1つのみ形成する場合、本変形例のようにすべてのバンプ13およびインナーリード32を収容する大きさにするほか、端部の各1つのバンプ13およびインナーリード32、または、中央部の各1つのバンプ13およびインナーリード32を収容する大きさの溝部としてもよい。 When only one groove is formed, the size is made to accommodate all the bumps 13 and the inner leads 32 as in this modification, and each bump 13 and the inner leads 32 at the end or the center It may be a groove having a size to accommodate each one of the bumps 13 and the inner lead 32 of the portion.
(実施の形態2)
 実施の形態2にかかる撮像ユニットにおいて、光学部材の位置決め部は、撮像素子との接続面側に凹部が設けられている。図9は、本実施の形態2にかかる撮像ユニットの一部拡大側面図である。図10は、図9の撮像ユニットの断面図である。図10の断面図は、図3の撮像ユニット100のA-A断面と同位置での断面である。
Second Embodiment
In the imaging unit according to the second embodiment, the positioning portion of the optical member is provided with a recess on the side of the connection surface with the imaging device. FIG. 9 is a partially enlarged side view of the imaging unit according to the second embodiment. FIG. 10 is a cross-sectional view of the imaging unit of FIG. The cross-sectional view of FIG. 10 is a cross section at the same position as the cross section AA of the imaging unit 100 of FIG.
 実施の形態2にかかる撮像ユニット100Bにおいて、光学部材20Bの位置決め部23Bは、撮像素子10との接続面側に凹部22が設けられ、撮像素子10との間に隙間が形成されている。撮像素子10と光学部材20Bとは接着剤により接合されているが、使用する接着剤量と、接合時の加熱、加圧条件により、溝部21B内に接着剤の漏れ出しが発生する場合がある。電極パッド12上にバンプ13を形成する前に撮像素子10と光学部材20Bとを接着剤により接合し、接着剤が位置決め部23B側に漏れ出した場合でも、光学部材20Bに凹部22を形成することにより、凹部22に接着剤が流れ出し、電極パッド12上に接着剤が流れ出すことがなく、接続の信頼性を向上することができる。凹部22の高さr5は、撮像素子10と光学部材20Bとの接合に使用する接着剤の厚さにより適宜変更することが好ましいが、少なくとも1μm以上であり、溝部21Bの高さr3の50%未満、好ましくは30%以下とすることが好ましい。 In the imaging unit 100B according to the second embodiment, the positioning portion 23B of the optical member 20B is provided with a recess 22 on the connection surface side with the imaging device 10, and a gap is formed between the recess 22 and the imaging device 10. Although the imaging device 10 and the optical member 20B are bonded by an adhesive, leakage of the adhesive may occur in the groove 21B depending on the amount of adhesive used and the heating and pressing conditions at the time of bonding. . Before the bumps 13 are formed on the electrode pads 12, the imaging device 10 and the optical member 20B are joined by an adhesive, and the concave portion 22 is formed in the optical member 20B even when the adhesive leaks to the positioning portion 23B side. As a result, the adhesive does not flow into the recess 22 and does not flow onto the electrode pad 12, and the connection reliability can be improved. The height r5 of the recess 22 is preferably suitably changed according to the thickness of the adhesive used for bonding the imaging device 10 and the optical member 20B, but is at least 1 μm or more and 50% of the height r3 of the groove 21B. It is preferably less than 30%, preferably less than 30%.
(実施の形態3)
 実施の形態3にかかる撮像ユニットにおいて、光学部材の位置決め部の高さは、受光部上の光学部材の高さより低く形成されている。図11は、本実施の形態3にかかる撮像ユニットの一部拡大側面図である。図12は、図11の撮像ユニットの断面図である。図12の断面図は、図3の撮像ユニット100のA-A断面と同位置での断面である。
Third Embodiment
In the imaging unit according to the third embodiment, the height of the positioning portion of the optical member is formed lower than the height of the optical member on the light receiving portion. FIG. 11 is a partially enlarged side view of the imaging unit according to the third embodiment. FIG. 12 is a cross-sectional view of the imaging unit of FIG. The cross-sectional view of FIG. 12 is a cross-section at the same position as the AA cross section of the imaging unit 100 of FIG.
 実施の形態3にかかる撮像ユニット100Cにおいて、光学部材20Cの位置決め部23Cの高さr3は、撮像素子10の受光部11上の光学部材20Cの高さr6より低く形成されている。位置決め部23Cの高さr3は、使用するバンプ13の高さとインナーリード32の厚さに応じて決定されるが、受光部11上の光学部材20Cの高さr6は、光学特性に応じて必要な高さとすることが求められるため、光学部材20Cに使用する材料に応じて高さを決定すればよい。実施の形態3では、受光部11上の光学部材20Cの高さr6は、位置決め部23Cの高さr3より高いが、必要に応じて、受光部11上の光学部材20Cの高さr6を、位置決め部23Cの高さr3より低くしてもよい。 In the imaging unit 100C according to the third embodiment, the height r3 of the positioning portion 23C of the optical member 20C is smaller than the height r6 of the optical member 20C on the light receiving portion 11 of the imaging device 10. The height r3 of the positioning portion 23C is determined according to the height of the bump 13 used and the thickness of the inner lead 32, but the height r6 of the optical member 20C on the light receiving portion 11 is necessary according to the optical characteristics The height should be determined in accordance with the material used for the optical member 20C. In the third embodiment, the height r6 of the optical member 20C on the light receiving portion 11 is higher than the height r3 of the positioning portion 23C, but if necessary, the height r6 of the optical member 20C on the light receiving portion 11 is It may be lower than the height r3 of the positioning portion 23C.
 1 内視鏡システム
 2 内視鏡
 3 挿入部
 3a 湾曲部
 3b 先端部
 3c 可撓管部
 4 操作部
 4a 処置具挿入口
 5 ユニバーサルコード
 6 コネクタ
 7 光源装置
 8 プロセッサ
 9 表示装置
 10 撮像素子
 11 受光部
 12 電極パッド
 13 バンプ
 20、20A、20B、20C 光学部材
 21、21A、21B 溝部
 22 凹部
 23、23A、23B、23C 位置決め部
 25 ガラスウエハ
 26 金属膜
 27 レジスト層
 30 フレキシブルプリント基板
 31 基材
 32 インナーリード
 40 積層基板
 50 電子部品
 60 ケーブル
 61 導体
 100、100A、100B、100C 撮像ユニット
DESCRIPTION OF SYMBOLS 1 endoscope system 2 endoscope 3 insertion part 3a curved part 3b tip part 3c flexible tube part 4 operation part 4a treatment tool insertion port 5 universal cord 6 connector 7 light source device 8 processor 9 display device 10 imaging element 11 light receiving part 12 electrode pad 13 bump 20, 20A, 20B, 20C optical member 21, 21A, 21B groove 22 concave portion 23, 23A, 23B, 23C positioning portion 25 glass wafer 26 metal film 27 resist layer 30 flexible printed board 31 base 32 inner lead 40 laminated substrate 50 electronic component 60 cable 61 conductor 100, 100A, 100B, 100C imaging unit

Claims (6)

  1.  主面中央部に形成された素子部と、前記素子部の周囲に形成された複数の電極パッドと、を有する半導体チップと、
     前記複数の電極パッドにバンプを介してそれぞれ接続される複数のインナーリードを有するフレキシブルプリント基板と、
     前記半導体チップの素子部を封止するとともに、側面に前記電極パッドと前記インナーリードとの接続部を収容する溝部が少なくとも1つ形成された前記インナーリードの位置決め部を有する光学部材と、
     を備えることを特徴とする半導体装置。
    A semiconductor chip having an element portion formed in the central portion of the main surface and a plurality of electrode pads formed around the element portion;
    A flexible printed circuit board having a plurality of inner leads respectively connected to the plurality of electrode pads via bumps;
    An optical member having a positioning portion of the inner lead, in which the element portion of the semiconductor chip is sealed, and at least one groove portion for housing the connection portion between the electrode pad and the inner lead is formed on the side surface.
    A semiconductor device comprising:
  2.  前記溝部は、前記電極パッドのピッチ間隔と同間隔で、前記電極パッドの個数と同数形成されることを特徴とする請求項1に記載の半導体装置。 2. The semiconductor device according to claim 1, wherein the groove portions are formed at the same intervals as the pitch intervals of the electrode pads and the same number as the number of the electrode pads.
  3.  前記位置決め部の高さは、接続後の前記インナーリードの厚みと前記バンプの高さとの和であることを特徴とする請求項1または2に記載の半導体装置。 The semiconductor device according to claim 1, wherein a height of the positioning portion is a sum of a thickness of the inner lead after connection and a height of the bump.
  4.  前記位置決め部は、前記半導体チップとの接続面側に隙間が形成されることを特徴とする請求項1~3のいずれか一つに記載の半導体装置。 The semiconductor device according to any one of claims 1 to 3, wherein the positioning portion has a gap formed on the side of the connection surface with the semiconductor chip.
  5.  請求項1~4のいずれか一つに記載の半導体装置の製造方法であって、
     前記半導体チップと前記光学部材とを接合する接合工程と、
     前記光学部材の側面に形成された溝部にインナーリードを挿入して、電極パッドと前記インナーリードを位置合わせする位置合わせ工程と、
     前記電極パッドと前記インナーリードとをバンプを介して接続する接続工程と、
     を含むことを特徴とする半導体装置の製造方法。
    A method of manufacturing a semiconductor device according to any one of claims 1 to 4, wherein
    A bonding step of bonding the semiconductor chip and the optical member;
    Aligning the electrode pad and the inner lead by inserting an inner lead into a groove formed on the side surface of the optical member;
    A connection step of connecting the electrode pad and the inner lead via a bump;
    A method of manufacturing a semiconductor device, comprising:
  6.  前記光学部材の材料となる薄膜上に金属膜およびフォトレジストを成膜する成膜工程と、
     フォトリソグラフィにより前記金属膜に前記溝部の形状をパターニングするパターニング工程と、
     パターニングされた前記金属膜をマスクとして前記光学部材をエッチングして前記溝部を形成する溝部形成工程と、
     前記金属膜を除去し、個片化する個片化工程と、を含む光学部材製造工程をさらに有することを特徴とする請求項5に記載の半導体装置の製造方法。
    Forming a metal film and a photoresist on a thin film to be a material of the optical member;
    A patterning step of patterning the shape of the groove in the metal film by photolithography;
    A groove forming step of etching the optical member using the patterned metal film as a mask to form the groove;
    6. The method of manufacturing a semiconductor device according to claim 5, further comprising: an optical member manufacturing step including the step of separating the metal film and separating the metal film.
PCT/JP2015/068070 2015-06-23 2015-06-23 Semiconductor device, and semiconductor device manufacturing method WO2016207979A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017524318A JPWO2016207979A1 (en) 2015-06-23 2015-06-23 Semiconductor device and manufacturing method of semiconductor device
PCT/JP2015/068070 WO2016207979A1 (en) 2015-06-23 2015-06-23 Semiconductor device, and semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/068070 WO2016207979A1 (en) 2015-06-23 2015-06-23 Semiconductor device, and semiconductor device manufacturing method

Publications (1)

Publication Number Publication Date
WO2016207979A1 true WO2016207979A1 (en) 2016-12-29

Family

ID=57584945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068070 WO2016207979A1 (en) 2015-06-23 2015-06-23 Semiconductor device, and semiconductor device manufacturing method

Country Status (2)

Country Link
JP (1) JPWO2016207979A1 (en)
WO (1) WO2016207979A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06113214A (en) * 1992-09-28 1994-04-22 Olympus Optical Co Ltd Solid-state image pickup device
JP2015066300A (en) * 2013-09-30 2015-04-13 オリンパス株式会社 Imaging unit and endoscope apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06113214A (en) * 1992-09-28 1994-04-22 Olympus Optical Co Ltd Solid-state image pickup device
JP2015066300A (en) * 2013-09-30 2015-04-13 オリンパス株式会社 Imaging unit and endoscope apparatus

Also Published As

Publication number Publication date
JPWO2016207979A1 (en) 2018-04-12

Similar Documents

Publication Publication Date Title
US10574866B2 (en) Imaging unit and endoscope apparatus
US10653306B2 (en) Electronic circuit unit, imaging unit, and endoscope
CN109068967B (en) Electronic circuit unit, imaging module, and endoscope
US20170255001A1 (en) Imaging unit, endoscope, and method of manufacturing imaging unit
US20200059576A1 (en) Endoscope, image pickup apparatus and endoscope manufacturing method
US10426324B2 (en) Imaging apparatus including an image sensor chip mount assembly
US10734355B2 (en) Electronic circuit board, laminated board, and method of manufacturing electronic circuit board
WO2017130371A1 (en) Image pickup device and endoscope
WO2016207979A1 (en) Semiconductor device, and semiconductor device manufacturing method
US10085627B2 (en) Image pickup apparatus and endoscope
EP3369359A1 (en) Imaging device and endoscope
WO2017187621A1 (en) Cable connection structure, imaging device, and endoscope
WO2017072862A1 (en) Image pickup unit and endoscope
US20170360284A1 (en) Endoscope device
US20210250473A1 (en) Image pickup apparatus, endoscope and method for manufacturing image pickup apparatus
WO2017158722A1 (en) Image pickup device, endoscope, and method for manufacturing image pickup device
JP2006141884A (en) Imaging apparatus for electronic endoscope
US11287641B2 (en) Image pickup apparatus, endoscope, and method for manufacturing image pickup apparatus
WO2020105119A1 (en) Endoscopic imaging device and endoscope
JP2022179301A (en) Endoscope imaging apparatus and endoscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15896301

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017524318

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15896301

Country of ref document: EP

Kind code of ref document: A1