WO2016207950A1 - シャント音解析装置、シャント音解析方法、コンピュータプログラム及び記録媒体 - Google Patents

シャント音解析装置、シャント音解析方法、コンピュータプログラム及び記録媒体 Download PDF

Info

Publication number
WO2016207950A1
WO2016207950A1 PCT/JP2015/067876 JP2015067876W WO2016207950A1 WO 2016207950 A1 WO2016207950 A1 WO 2016207950A1 JP 2015067876 W JP2015067876 W JP 2015067876W WO 2016207950 A1 WO2016207950 A1 WO 2016207950A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
shunt
shunt sound
magnitude
sound
Prior art date
Application number
PCT/JP2015/067876
Other languages
English (en)
French (fr)
Inventor
太郎 中島
祐介 曽我
真一 莪山
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2015/067876 priority Critical patent/WO2016207950A1/ja
Publication of WO2016207950A1 publication Critical patent/WO2016207950A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/06Transformation of speech into a non-audible representation, e.g. speech visualisation or speech processing for tactile aids
    • G10L21/10Transforming into visible information
    • G10L21/12Transforming into visible information by displaying time domain information
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/06Transformation of speech into a non-audible representation, e.g. speech visualisation or speech processing for tactile aids
    • G10L21/10Transforming into visible information
    • G10L21/14Transforming into visible information by displaying frequency domain information

Definitions

  • the present invention relates to a technical field of a shunt sound analysis device, a shunt sound analysis method, a computer program, and a recording medium that analyze a shunt sound acquired from a measurement subject.
  • Patent Document 1 describes a technique for presenting a degree of stenosis corresponding to a peak position of an envelope component from which a fine component has been removed by utilizing the fact that the position of a peak of frequency characteristics corresponds to the degree of stenosis.
  • the degree of stenosis of a blood vessel is determined using a high-frequency component of a shunt sound (that is, a component having a relatively high frequency).
  • a shunt sound that is, a component having a relatively high frequency.
  • the high-frequency component of the shunt sound is also generated by factors other than stenosis, such as a temporary thrombus and the influence of a venous valve.
  • the frequency characteristics of the shunt sound include not only high frequency components but also low frequency components.
  • the degree of stenosis may be erroneously determined. That is, the technique described in Patent Document 1 has a technical problem that the degree of stenosis of blood vessels cannot always be accurately determined.
  • the present invention provides a shunt sound analysis apparatus, a shunt sound analysis method, a computer program, and a recording medium that can suitably support a diagnosis of stenosis at a shunt formation site by analyzing a shunt sound acquired from a measurement subject. This is the issue.
  • a first shunt sound analyzing apparatus for solving the above-mentioned problem is based on acquisition means for acquiring shunt sound information relating to a shunt sound of a measurement subject's shunt formation site, and the first frequency based on the shunt sound information.
  • output means for outputting evaluation information related to the evaluation of the shunt sound based on the magnitude of the shunt sound of the second frequency.
  • a second shunt sound analyzing apparatus for solving the above-described problem includes an acquisition means for acquiring shunt sound information related to a shunt formation site of a person being measured, and the measurement subject's shunt sound information based on the shunt sound information.
  • Calculating means for calculating the magnitude of the shunt sound of the first frequency that varies depending on the degree of stenosis of the blood vessel, and the magnitude of the shunt sound of the second frequency that is a predetermined fixed value;
  • Output means for outputting evaluation information related to the evaluation of the shunt sound based on the magnitude of the shunt sound and the magnitude of the shunt sound of the second frequency.
  • a first shunt sound analysis method for solving the above problems includes an acquisition step of acquiring shunt sound information related to a shunt formation site of a measurement subject's shunt formation, and a first frequency based on the shunt sound information.
  • a second shunt sound analysis method for solving the above-described problem includes an acquisition step of acquiring shunt sound information related to a shunt formation site of a person being measured, and the measurement subject's shunt sound information based on the shunt sound information.
  • a first computer program for solving the above problems includes an acquisition step of acquiring shunt sound information related to a shunt formation site of a measurement subject and a shunt sound having a first frequency based on the shunt sound information.
  • a second computer program for solving the above-described problem includes an acquisition step of acquiring shunt sound information related to a shunt formation site of a measurement subject, and a blood vessel of the measurement subject based on the shunt sound information.
  • the recording medium for solving the above problem is recorded with the computer program described above.
  • the first shunt sound analyzer includes an acquisition unit that acquires shunt sound information related to a shunt formation site of the measurement subject, and the shunt of the first frequency based on the shunt sound information.
  • Calculating means for calculating the magnitude of the sound and the magnitude of the shunt sound at a second frequency that is lower than the first frequency; the magnitude of the shunt sound at the first frequency; and
  • Output means for outputting evaluation information related to the evaluation of the shunt sound based on the magnitude of the shunt sound of the second frequency.
  • shunt sound information related to the shunt sound is first acquired from the periphery of the measurement subject's shunt formation region by the acquisition means.
  • the “shunt sound” is a blood flow sound acquired in the vicinity of a shunt formation site for taking blood out of the body, and is a sound synchronized with the pulse of the measurement subject.
  • the acquisition of the shunt sound may be performed using various sensors, and the acquisition method is not particularly limited.
  • the “shunt sound information” is information including various parameters related to the shunt sound, and includes, for example, temporal changes such as volume and frequency.
  • the loudness of the shunt sound is a parameter indicating the loudness of the shunt sound for each frequency, and can be paraphrased as the strength, sound pressure, amplitude, etc. of the shunt sound.
  • the “first frequency” is a frequency at which the shunt sound tends to increase when the shunt formation site is constricted, and is set, for example, as a frequency near the frequency centroid calculated from the frequency characteristics of the shunt sound.
  • the “second frequency” is a frequency lower than the first frequency, and is set as a frequency at which a shunt sound is strongly generated, for example, at normal time (that is, when no constriction occurs).
  • These “first frequency” and “second frequency” may be set as frequency bands having a certain width, and in such a case, an overlapping portion may be generated in each band.
  • the evaluation information related to the evaluation of the shunt sound is output from the output means.
  • the output unit generates evaluation information based on the magnitude of the shunt sound of the first frequency and the magnitude of the shunt sound of the second frequency, and outputs the generated evaluation information to an external monitor or the like.
  • the “evaluation information” may be information indicating a result of evaluating the degree of stenosis at the shunt formation site or information for evaluating the degree of stenosis at the shunt formation site. More specifically, a numerical value or the like that directly indicates the degree of stenosis may be output as evaluation information, or one or more parameters for a doctor or the like to determine the degree of stenosis may be output as evaluation information. .
  • the evaluation information according to the present embodiment is output as information considering both the magnitude of the shunt sound of the first frequency and the magnitude of the shunt sound of the second frequency.
  • the evaluation information is output as a total shunt sound magnitude calculated by weighting the shunt sound magnitude of the first frequency and the shunt sound magnitude of the second frequency. According to such evaluation information, it is possible to evaluate not only the high frequency component of the shunt sound but also the low frequency component.
  • the evaluation information based only on the magnitude of the shunt sound of the first frequency at which the shunt sound becomes loud when the shunt formation site is constricted that is, the magnitude of the shunt sound of the second frequency is used. At least) it seems possible to determine the degree of stenosis at the shunt formation site.
  • the shunt sound of the first frequency is generated due to factors other than stenosis, such as a temporary thrombus and the influence of a venous valve. It has also been found that the shunt sound generated by factors other than stenosis is accompanied by a frequency component lower than the first frequency.
  • both the magnitude of the shunt sound of the first frequency (ie, the high frequency component) and the magnitude of the shunt sound of the second frequency (ie, the low frequency component) are considered.
  • the evaluated information is output. Therefore, the degree of stenosis can be evaluated more accurately than in the case where the degree of stenosis is to be evaluated using only the shunt sound of the first frequency.
  • the evaluation information output from the output means may include, as additional information, evaluation information based only on the magnitude of the shunt sound of the first frequency.
  • additional information evaluation information based only on the magnitude of the shunt sound of the first frequency.
  • the first shunt sound analyzer As described above, according to the first shunt sound analyzer according to the present embodiment, it is possible to suitably support stenosis diagnosis of a shunt formation site by outputting appropriate evaluation information.
  • the first frequency is near the frequency centroid calculated based on an envelope component of the frequency characteristic of the shunt sound extracted from the shunt sound information. Frequency.
  • the frequency characteristic of the shunt sound (for example, the characteristic indicated by the waveform indicating the magnitude of the shunt sound for each frequency) is extracted. Thereafter, the frequency centroid is calculated based on the extracted envelope component of the frequency characteristic.
  • the envelope component of the frequency characteristic can be obtained, for example, by performing inverse Fourier transform on a time-frequency waveform, cutting cefency of a predetermined order or higher, and then performing Fourier transform.
  • the frequency near the frequency centroid is set as the first frequency. That is, the first frequency is a value that varies according to the acquired shunt sound information (in other words, depending on the person to be measured).
  • the vicinity of the frequency centroid is a word for confirming that the frequency centroid and the first frequency do not have to coincide completely.
  • the first frequency is determined from the frequency centroid. It is set as a frequency within the range including the margin.
  • the first frequency is set as described above, a shunt sound generated by stenosis can be suitably obtained. Therefore, more appropriate evaluation information can be output.
  • the second frequency is a frequency determined according to the normal shunt sound.
  • the second frequency can be set as a fixed value in advance as a frequency lower than the first frequency
  • the magnitude of the shunt sound of the second frequency can be suitably calculated.
  • the “fixed value” means a value that does not change depending on the degree of stenosis at the shunt formation site or the subject, and does not mean a completely fixed value that cannot be changed at all. Therefore, it may be possible to finely adjust the second frequency which is a fixed value, for example, before the operation of the apparatus.
  • the calculation means is a ratio of the magnitude of the shunt sound at the first frequency and the magnitude of the shunt sound at the second frequency.
  • the output means outputs the evaluation information based on the ratio in addition to the magnitude of the shunt sound at the first frequency and the magnitude of the shunt sound at the second frequency.
  • each ratio (in other words, the shunt sound of the first frequency and , A ratio with the shunt sound of the second frequency).
  • the degree of stenosis at the shunt formation site can be evaluated from the above-described ratio. For example, if the ratio of the shunt sound of the second frequency that is the low frequency component is large, it can be evaluated that the degree of stenosis is relatively small, and if the ratio of the shunt sound of the first frequency that is the high frequency component is large, the degree of stenosis Can be evaluated as relatively large.
  • the second shunt sound analysis apparatus includes an acquisition unit that acquires shunt sound information related to a shunt formation site of a measurement subject's shunt, and a blood vessel of the measurement subject based on the shunt sound information.
  • Calculating means for calculating the magnitude of the shunt sound of the first frequency that varies according to the degree of stenosis and the magnitude of the shunt sound of the second frequency that is a predetermined fixed value;
  • Output means for outputting evaluation information related to the evaluation of the shunt sound based on the magnitude of the shunt sound and the magnitude of the shunt sound of the second frequency.
  • shunt sound information related to the shunt sound is first acquired from the periphery of the measurement subject's shunt formation region by the acquiring means.
  • an analysis process is executed in the calculation means, and the magnitude of the shunt sound of the first frequency and the magnitude of the shunt sound of the second frequency are respectively calculated.
  • the “first frequency” is a frequency that varies depending on the degree of stenosis of the blood vessel of the measurement subject, and is set, for example, as a frequency near the frequency centroid calculated from the frequency characteristics of the shunt sound.
  • the “second frequency” is a predetermined fixed value, and is set, for example, as a frequency at which a shunt sound is strong at normal times (when stenosis has not occurred).
  • the “fixed value” here means a value that does not change according to the degree of stenosis of the blood vessel of the person to be measured like the first frequency, and means a completely fixed value that cannot be changed at all. is not. Therefore, it may be possible to finely adjust the second frequency which is a fixed value, for example, before the operation of the apparatus.
  • the evaluation information related to the evaluation of the shunt sound is output from the output means.
  • the output unit generates evaluation information based on the magnitude of the shunt sound of the first frequency and the magnitude of the shunt sound of the second frequency, and outputs the generated evaluation information to an external monitor or the like. To do.
  • the evaluation information according to the present embodiment is output as information considering both the magnitude of the shunt sound of the first frequency and the magnitude of the shunt sound of the second frequency.
  • the evaluation information is output as a total shunt sound magnitude calculated by weighting the shunt sound magnitude of the first frequency and the shunt sound magnitude of the second frequency. According to such evaluation information, it is possible to evaluate not only the high frequency component of the shunt sound but also the low frequency component. Specifically, for example, the degree of stenosis can be evaluated more accurately than in the case where the degree of stenosis is to be evaluated using only the shunt sound of the first frequency.
  • the second shunt sound analyzer As described above, according to the second shunt sound analyzer according to the present embodiment, it is possible to suitably support the diagnosis of stenosis at the shunt formation site by outputting appropriate evaluation information.
  • the first shunt sound analysis method includes an acquisition step of acquiring shunt sound information related to a shunt formation site of a measurement subject, and the shunt having a first frequency based on the shunt sound information.
  • the magnitudes of the shunt sounds of the first frequency and the second frequency are determined in the same manner as the first shunt sound analysis apparatus according to the present embodiment described above. Evaluation information that is comprehensively considered is output. Therefore, it is possible to favorably support the diagnosis of stenosis at the shunt formation site.
  • the second shunt sound analysis method includes an acquisition step of acquiring shunt sound information related to a shunt formation site of the measurement subject, and a blood vessel of the measurement subject based on the shunt sound information.
  • the magnitudes of the shunt sounds of the first frequency and the second frequency are set as in the second shunt sound analysis apparatus according to the present embodiment described above. Evaluation information that is comprehensively considered is output. Therefore, it is possible to favorably support the diagnosis of stenosis at the shunt formation site.
  • the first computer program obtains shunt sound information related to the shunt sound of the shunt formation site of the measurement subject, and the shunt sound of the first frequency based on the shunt sound information.
  • the computer executes an output step of outputting evaluation information related to the evaluation of the shunt sound.
  • each step of the first shunt sound analysis method according to the present embodiment described above can be executed by a computer. Therefore, it is possible to favorably support the diagnosis of stenosis at the shunt formation site.
  • the second computer program includes an acquisition step of acquiring shunt sound information related to a shunt formation site of the measurement subject and a degree of stenosis of the blood vessel of the measurement subject based on the shunt sound information.
  • the second computer program according to the present embodiment it is possible to cause the computer to execute each step of the second shunt sound analysis method according to the present embodiment described above. Therefore, it is possible to favorably support the diagnosis of stenosis at the shunt formation site.
  • the recording medium according to the present embodiment records the first or second computer program described above.
  • the recording medium by executing the recorded computer program, it is possible to output evaluation information that comprehensively considers the magnitude of the shunt sound of the first frequency and the second frequency. Is possible. Therefore, it is possible to favorably support the diagnosis of stenosis at the shunt formation site.
  • FIG. 1 is a block diagram illustrating the overall configuration of the shunt sound analysis apparatus according to the embodiment.
  • the shunt sound analysis apparatus includes a shunt sound input unit 110, an audio signal analysis processing unit 120, a parameter calculation unit 130, an evaluation information calculation output unit 140, and a display unit 150. Configured.
  • the shunt sound input unit 110 is a specific example of “acquisition means”.
  • the shunt sound input from a vibration sensor or the like performs analog-digital conversion at a predetermined sampling frequency Fs, and outputs a shunt sound waveform.
  • the shunt sound waveform generated by the shunt sound input unit 110 is output to the audio signal analysis processing unit 120.
  • the audio signal analysis processing unit 120 performs various analysis processes (for example, short-time Fourier transform, logarithmic transformation, etc.) on the shunt sound waveform input from the shunt sound input unit 110, and outputs a time-frequency analysis waveform.
  • the analysis result by the audio signal analysis processing unit 120 is output to the parameter calculation unit 130.
  • the parameter calculation unit 130 is a specific example of “calculation unit”, and various calculation processes (for example, inverse Fourier transform, high-order quefrency cut, etc.) are performed on the time-frequency analysis waveform input from the audio signal analysis processing unit 120.
  • a time envelope characteristic waveform is obtained by performing Fourier transform or the like.
  • the parameter calculation unit 130 calculates the frequency center of gravity value, the low frequency component, and the high frequency component of the waveform from the time frequency analysis waveform and the time envelope characteristic waveform.
  • the parameter calculation unit 130 calculates a physical height value, an overall height value, and a high / low component balance value from the calculated frequency centroid value, low frequency component, and high frequency component.
  • the physical height value, the total height value, and the high / low component balance value calculated by the parameter calculation unit 130 are each output to the evaluation information calculation output unit 140.
  • the evaluation information calculation output unit 140 is a specific example of the “output unit”, and the degree of stenosis of the blood vessel of the measurement subject is determined using the output value of the parameter calculation unit 130 and the peak value or time average value of the output value. Calculate and output evaluation information for evaluation.
  • the evaluation information calculated by the evaluation information calculation output unit 140 is output to the display unit 150.
  • the display unit 150 is configured as a monitor, for example, and is configured to be able to visually present evaluation information input from the evaluation information calculation output unit 140 to a device user such as a doctor.
  • FIG. 2 is a waveform diagram showing an example of a shunt sound waveform.
  • FIG. 3 is a spectrogram showing an example of a time-frequency waveform.
  • the shunt sound waveform generated by the shunt sound input unit 110 is input to the audio signal analysis processing unit 120.
  • the shunt sound waveform is a waveform indicating the temporal variation of the amplitude of the voice acquired from the measurement subject's shunt sound part.
  • the audio signal analysis processing unit 120 performs N-point short-time Fourier transform and logarithmic transformation on the value X (n) of the time n of the shunt sound waveform in units of length N frames, and generates a time-frequency analysis waveform Plog. [N, k] is calculated.
  • the audio signal analysis processing unit 120 performs a short-time Fourier transform using the following formula (1).
  • the audio signal analysis processing unit 120 performs logarithmic conversion using the following mathematical formula (2).
  • w (k) is a window function of length N used when cutting out a frame.
  • the time-frequency analysis waveform Plog [n, k] calculated by the audio signal analysis processing unit 120 is a waveform showing the temporal variation of the sound pressure corresponding to each frequency.
  • FIG. 4 is a waveform diagram showing an example of a frequency waveform at time n
  • FIG. 5 is a waveform diagram showing an example of an envelope waveform at time n
  • FIG. 6 is a spectrogram showing an example of a time envelope characteristic waveform.
  • the frequency waveform at time n of the time-frequency analysis waveform Plog [n, k] is represented as a waveform indicating the sound pressure for each frequency.
  • the parameter calculation unit 130 performs various calculation processes on each frame of such a time-frequency analysis waveform Plog [n, k] to calculate an envelope waveform.
  • the parameter calculation unit 130 performs inverse Fourier transform of the time-frequency analysis waveform Plog [n, k] using the following mathematical formula (3).
  • the parameter calculation unit 130 cuts the cefency higher than the lift order using the following mathematical formula (4).
  • the optimum value of the order lift is a value determined according to the sampling frequency Fs and the frame length N, and the optimum value is set by a prior simulation or the like.
  • the parameter calculation unit 130 performs Fourier transform using the following formula (5) to calculate the time envelope characteristic waveform FEnv [n, k].
  • the envelope waveform at time n of the time envelope characteristic waveform FEnv [n, k] is represented as a waveform indicating the envelope characteristic of the frequency waveform.
  • the time envelope characteristic waveform FEnv [n, k] is a waveform showing the temporal variation of the envelope component of the sound pressure corresponding to each frequency.
  • FIG. 7 is a block diagram showing a specific configuration of the parameter calculation unit.
  • FIG. 8 is a waveform diagram showing the frequency centroid in the envelope waveform
  • FIG. 9 is a waveform diagram showing a high frequency component and a low frequency component in the frequency waveform.
  • the time envelope characteristic waveform FEnv [n, k] is input to the frequency centroid calculating unit 131 of the parameter calculating unit 130.
  • the frequency centroid calculating unit 131 calculates the frequency centroid value Fcentroid [n] of the time envelope characteristic waveform FEnv [n, k] using the following formula (6).
  • the frequency centroid value Fcentroid [n] calculated by the frequency centroid calculating unit 131 is output to the high frequency component calculating unit 133, the physical height calculating unit 134, and the total height calculating unit 135, respectively.
  • the frequency centroid value Fcentroid [n] is calculated as a value as indicated by a thick solid line in the envelope waveform at time n of the time envelope characteristic waveform FEnv [n, k], for example.
  • the time-frequency analysis waveform Plog [n, k] is input to the low-frequency component calculation unit 132 and the high-frequency component calculation unit 133 of the parameter calculation unit 130.
  • the low frequency component calculation unit 132 calculates the low frequency component Lpower [n] using the following formula (7).
  • the low frequency component Lpower [n] calculated by the low frequency component calculation unit 132 is output to the overall height calculation unit 135 and the high / low component balance calculation unit 136, respectively.
  • the high frequency component calculation unit 133 calculates the high frequency component FCpower [n] using the following mathematical formula (8).
  • the high frequency component FCpower [n] calculated by the high frequency component calculation unit 133 is output to the overall height calculation unit 135 and the high / low component balance calculation unit 136, respectively.
  • the low frequency component is calculated as a component of a predetermined low frequency band (specifically, a band assuming a normal shunt sound).
  • the center frequency Lcenter of the low frequency band is set in advance between 150 and 200 Hz, for example.
  • ⁇ defining the bandwidth of the low frequency band is set in advance between 50 and 100 Hz, for example.
  • the high-frequency component is calculated as a component in a high frequency band (specifically, a frequency band in which a shunt sound appears strongly at the time of stenosis) having the frequency centroid value Fcentroid [n] as the center frequency.
  • that defines the bandwidth of the high frequency band is set in advance between 50 and 100 Hz, for example, like ⁇ .
  • FIG. 10 is a time chart showing an example of the physical height value and the total height value.
  • FIG. 11 is a time chart showing an example of the high / low component balance value.
  • the physical height calculator 134 in the parameter calculator 130 calculates the physical height value FPhyHeight [n] from the frequency centroid value Fcentroid [n] calculated by the frequency centroid calculator 131. Specifically, the physical height calculator 134 calculates the physical height value FPhyHeight [n] using the following mathematical formula (9).
  • the total height calculator 134 in the parameter calculator 130 includes a frequency centroid value Fcentroid [n] calculated by the frequency centroid calculator 131, a low frequency component Lpower [n] calculated by the low frequency component calculator 132, and The total height value FTotalHeight [n] is calculated from the high frequency component FCpower [n] calculated by the high frequency component calculation unit 133. Specifically, the total height calculation unit 134 calculates the total height value FTotalHeight [n] using the following formula (10).
  • the total height value FTotalHeight [n] weights the magnitude of the shunt sound in the low frequency band assuming a normal shunt sound and the magnitude of the shunt sound in the high frequency band where the shunt sound at the time of constriction appears strongly by each component. This is the corrected parameter. That is, the overall height value FTTotalHeight [n] is not a parameter that considers only the high-frequency component like the physical height value FPhyHeight [n], but is a parameter that comprehensively considers both the high-frequency component and the low-frequency component. It is.
  • the physical height value FPhyHeight [n] and the total height value FTTotalHeight [n] are calculated as values that vary according to each frequency component.
  • the high / low component balance calculation unit 136 in the parameter calculation unit 130 includes the low frequency component Lpower [n] calculated by the low frequency component calculation unit 132 and the high frequency component FCpower [ n], the high / low component balance value FCtoLowRatio [n] is calculated. Specifically, the high / low component balance calculation unit 136 calculates the high / low component balance value FCtoLowRatio [n] using the following formula (11).
  • the high / low component balance value FCtoLowRatio [n] is a parameter indicating the ratio between the low frequency component Lpower [n] and the high frequency component FCpower [n], and the ratio of the low frequency component Lpower [n] is If it is large, it moves downward in the figure, and if the ratio of the high-frequency component FCpower [n] is large, it moves upward in the figure.
  • FIG. 12 is a comparison list showing the calculation results in the parameter calculation unit for each of a plurality of shunt sounds.
  • the shunt sound A is an example of a normal shunt sound.
  • the shunt sound A is a low and firm sound with a characteristic peak at a low frequency.
  • the physical height value FPhyHeight [n] and the overall height value FTTotalHeight [n] of the shunt sound A are both low and stable.
  • the high / low component balance value FCtoLowRatio [n] of the shunt sound A is stable on the side where the specific gravity of the low frequency component is high.
  • the stenosis occurs. Can be evaluated as not occurring (or having a very small degree of stenosis).
  • the shunt sound B is an example of a sound that has a higher component than a normal shunt sound but has a firm low range. As can be seen from the frequency waveform at time n, the characteristics of the shunt sound B are spread to a higher frequency than the shunt sound A.
  • the physical height value FPhyHeight [n] and the total height value FTTotalHeight [n] of the shunt sound B have a partially high component, but the height is generally low and stable.
  • the high / low component balance value FCtoLowRatio [n] of the shunt sound B has a portion where the specific gravity of the high frequency component is somewhat increased, but is generally stable on the side where the specific gravity of the low frequency component is high.
  • the shunt sound C is an example of a sound in which a component higher than a normal shunt sound is slightly noticeable. As can be seen from the frequency waveform at time n, the shunt sound C has a characteristic that extends to a higher frequency than the shunt sound A.
  • the total height value FTTotalHeight [n] of the shunt sound C is close to the physical height value FPhyHeight [n] compared to the shunt sound A and the shunt sound B.
  • FCtoLowRatio [n] of the shunt sound B the ratio of the high frequency component is close to the ratio of the low frequency component.
  • the shunt sound D is an example of a sound that has a higher component than a normal shunt sound and a lower bass sound. As can be seen from the frequency waveform at time n, the shunt sound D has a characteristic that extends to frequencies higher than any of the shunt sounds A to C.
  • the physical height value FPhyHeight [n] and the overall height value FTTotalHeight [n] of the shunt sound D are both generally high, and the physical height value FPhyHeight [n] and the overall height value FTTotalHeight [n]. The difference with] is also small.
  • the ratio of the high-frequency component is clearly larger than the ratio of the low-frequency component.
  • evaluation method described above is merely an example, and different evaluations may be performed based on the same calculation result.
  • the evaluation information calculation output unit 140 quantifies each of the physical height value FPhyHeight [n], the total height value FTTotalHeight [n], and the high / low component balance value FCtoLowRatio [n] calculated by the parameter calculation unit 130. Thus, it is output as evaluation information for evaluating the degree of stenosis (or indicating the degree of stenosis).
  • the evaluation information calculation output unit 140 normalizes and outputs each of the physical height value FPhyHeight [n] and the total height value FTTotalHeight [n] within a range of 150 Hz to 1 kHz. To do. Further, the evaluation information calculation output unit 140 calculates and outputs the peak value and the time average value for each of the physical height value FPhyHeight [n] and the total height value FTTotalHeight [n].
  • the evaluation information calculation output unit 140 normalizes and outputs the high / low component balance value FCtoLowRatio [n] to 0 to 100 in the range of ⁇ 10 dB to 10 dB. Further, the evaluation information calculation output unit 140 calculates and outputs a peak value and a time average value for the high / low component balance value FCtoLowRatio [n].
  • FIGS. 13 to 16 are plan views showing display examples on the display unit.
  • the display area 155 of the display unit 150 includes, for example, an average score of the total height value FTotalHeight [n] (that is, a normalized time average value) and an average score.
  • a numerical view is displayed.
  • the average score here is a parameter that can be evaluated as high possibility that stenosis has occurred when the average score is 40 or more.
  • the numerical view may be composed of, for example, a combination of keywords and fixed phrases that are stored in a database according to each numerical level.
  • the overall height is low” are displayed as a numerical view. In this case, for example, it is unlikely that stenosis has occurred, and it can be determined that there is no problem with dialysis on the day.
  • the overall height is very high” are displayed as a numerical view. In this case, for example, it is highly possible that stenosis has occurred, and it can be determined that a doctor needs to be contacted.
  • Such a relatively simple display mode is effective when it is difficult to determine how to hear the shunt sound during auscultation.
  • the display area 155 of the display unit 150 includes, for example, a physical height value FPhyHeight [n], a total height value FTTotalHeight [n], and a high / low component balance value FCtoLowRatio [n].
  • a physical height value FPhyHeight [n] a physical height value
  • FTTotalHeight [n] a total height value
  • FCtoLowRatio [n] a high / low component balance value
  • Each peak value and average score, and an analysis waveform may be displayed. If the evaluation information is displayed in detail in this way, a more accurate and detailed diagnosis (for example, diagnosis of whether the increase in score is caused by stenosis or the influence of other factors) can be performed.
  • the display unit 150 may perform display in a mode other than the display example described above. Moreover, it may be configured such that the user of the apparatus can appropriately select an appropriate display mode.
  • the shunt sound analysis apparatus As described above, according to the shunt sound analysis apparatus according to the present embodiment, appropriate evaluation information is output based on the acquired shunt sound information. Therefore, it is possible to favorably support the diagnosis of stenosis at the shunt formation site.
  • the present invention is not limited to the above-described embodiments, and can be appropriately changed without departing from the spirit or idea of the invention that can be read from the claims and the entire specification, and shunt sound analysis accompanying such changes is possible.
  • a device, a shunt sound analysis method, a computer program, and a recording medium are also included in the technical scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Linguistics (AREA)
  • Quality & Reliability (AREA)
  • Signal Processing (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Urology & Nephrology (AREA)
  • Emergency Medicine (AREA)
  • Vascular Medicine (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • External Artificial Organs (AREA)

Abstract

シャント音解析装置は、被測定者のシャント形成部位のシャント音に関するシャント音情報を取得する取得手段(110)と、シャント音情報に基づいて、第1の周波数のシャント音の大きさ、及び第1の周波数よりも低い周波数である第2の周波数のシャント音の大きさを夫々算出する算出手段(130)と、第1の周波数のシャント音の大きさ及び第2周波数のシャント音の大きさに基づいて、シャント音の評価に関連する評価情報を出力する出力手段(140)とを備える。これにより、シャント形成部位における狭窄診断を好適に支援することが可能である。

Description

シャント音解析装置、シャント音解析方法、コンピュータプログラム及び記録媒体
 本発明は、被測定者から取得したシャント音を解析するシャント音解析装置、シャント音解析方法、コンピュータプログラム及び記録媒体の技術分野に関する。
 この種の装置として、被測定者から取得したシャント音を解析して、シャント狭窄等に関する医師の診断を支援する装置が知られている。例えば特許文献1では、周波数特性の山の位置が狭窄度合いに対応することを利用して、微細成分を除去した包絡成分のピーク位置に応じた狭窄度合いを提示する技術が記載されている。
特開2010-29434号公報
 上述した特許文献1に記載されている技術では、シャント音の高周波成分(即ち、比較的高い周波数の成分)を利用して血管の狭窄度合いを判定している。しかしながら、シャント音の高周波成分は、一時的な血栓や、静脈弁の影響等、狭窄以外の要因でも発生することが知られている。このような場合には、吻合部から十分な血流量があることが多く、シャント音の周波数特性には、高周波成分だけでなく低周波成分も含まれる。このため、シャント音の高周波成分のみによる解析では、狭窄の度合いを誤って判定してしまう可能性がある。即ち、特許文献1に記載されている技術には、血管の狭窄度合いを必ずしも正確に判定できないという技術的問題点がある。
 本発明が解決しようとする課題には上記のようなものが一例として挙げられる。本発明は、被測定者から取得したシャント音を解析して、シャント形成部位の狭窄診断を好適に支援することが可能なシャント音解析装置、シャント音解析方法、コンピュータプログラム及び記録媒体を提供することを課題とする。
 上記課題を解決するための第1のシャント音解析装置は、被測定者のシャント形成部位のシャント音に関するシャント音情報を取得する取得手段と、前記シャント音情報に基づいて、第1の周波数の前記シャント音の大きさ、及び前記第1の周波数よりも低い周波数である第2の周波数の前記シャント音の大きさを夫々算出する算出手段と、前記第1の周波数の前記シャント音の大きさ及び前記第2周波数の前記シャント音の大きさに基づいて、前記シャント音の評価に関連する評価情報を出力する出力手段とを備える。
 上記課題を解決するための第2のシャント音解析装置は、被測定者のシャント形成部位のシャント音に関するシャント音情報を取得する取得手段と、前記シャント音情報に基づいて、前記被測定者の血管の狭窄度合いによって変動する第1の周波数の前記シャント音の大きさ、及び所定の固定値である第2の周波数の前記シャント音の大きさを夫々算出する算出手段と、前記第1の周波数の前記シャント音の大きさ及び前記第2周波数の前記シャント音の大きさに基づいて、前記シャント音の評価に関連する評価情報を出力する出力手段とを備える。
 上記課題を解決するための第1のシャント音解析方法は、被測定者のシャント形成部位のシャント音に関するシャント音情報を取得する取得工程と、前記シャント音情報に基づいて、第1の周波数の前記シャント音の大きさ、及び前記第1の周波数よりも低い周波数である第2の周波数の前記シャント音の大きさを夫々算出する算出工程と、前記第1の周波数の前記シャント音の大きさ及び前記第2周波数の前記シャント音の大きさに基づいて、前記シャント音の評価に関連する評価情報を出力する出力工程とを備える。
 上記課題を解決するための第2のシャント音解析方法は、被測定者のシャント形成部位のシャント音に関するシャント音情報を取得する取得工程と、前記シャント音情報に基づいて、前記被測定者の血管の狭窄度合いによって変動する第1の周波数の前記シャント音の大きさ、及び所定の固定値である第2の周波数の前記シャント音の大きさを夫々算出する算出工程と、前記第1の周波数の前記シャント音の大きさ及び前記第2周波数の前記シャント音の大きさに基づいて、前記シャント音の評価に関連する評価情報を出力する出力工程とを備える。
 上記課題を解決するための第1のコンピュータプログラムは、被測定者のシャント形成部位のシャント音に関するシャント音情報を取得する取得工程と、前記シャント音情報に基づいて、第1の周波数の前記シャント音の大きさ、及び前記第1の周波数よりも低い周波数である第2の周波数の前記シャント音の大きさを夫々算出する算出工程と、前記第1の周波数の前記シャント音の大きさ及び前記第2周波数の前記シャント音の大きさに基づいて、前記シャント音の評価に関連する評価情報を出力する出力工程とをコンピュータに実行させる。
 上記課題を解決するための第2のコンピュータプログラムは、被測定者のシャント形成部位のシャント音に関するシャント音情報を取得する取得工程と、前記シャント音情報に基づいて、前記被測定者の血管の狭窄度合いによって変動する第1の周波数の前記シャント音の大きさ、及び所定の固定値である第2の周波数の前記シャント音の大きさを夫々算出する算出工程と、前記第1の周波数の前記シャント音の大きさ及び前記第2周波数の前記シャント音の大きさに基づいて、前記シャント音の評価に関連する評価情報を出力する出力工程とをコンピュータに実行させる。
 上記課題を解決するための記録媒体は、上述したコンピュータプログラムが記録されている。
実施例に係るシャント音解析装置の全体構成を示すブロック図である。 シャント音波形の一例を示す波形図である。 時間周波数波形の一例を示すスペクトログラムである。 時刻nにおける周波数波形の一例を示す波形図である。 時刻nにおける包絡波形の一例を示す波形図である。 時間包絡特性波形の一例を示すスペクトログラムである。 パラメータ演算部の具体的な構成を示すブロック図である。 包絡波形における周波数重心を示す波形図である。 周波数波形における高周波成分及び低周波成分を示す波形図である。 物理的高さ値及び総合的高さ値の一例を示すタイムチャートである。 高低成分バランス値の一例を示すタイムチャートである。 パラメータ演算部における演算結果を複数のシャント音毎に示す比較一覧図である。 表示部における表示例を示す平面図(その1)である。 表示部における表示例を示す平面図(その2)である。 表示部における表示例を示す平面図(その3)である。 表示部における表示例を示す平面図(その4)である。
 <1>
 本実施形態に係る第1のシャント音解析装置は、被測定者のシャント形成部位のシャント音に関するシャント音情報を取得する取得手段と、前記シャント音情報に基づいて、第1の周波数の前記シャント音の大きさ、及び前記第1の周波数よりも低い周波数である第2の周波数の前記シャント音の大きさを夫々算出する算出手段と、前記第1の周波数の前記シャント音の大きさ及び前記第2周波数の前記シャント音の大きさに基づいて、前記シャント音の評価に関連する評価情報を出力する出力手段とを備える。
 本実施形態に係る第1のシャント音解析装置の動作時には、先ず取得手段により、被測定者のシャント形成部位周辺から、シャント音に関するシャント音情報が取得される。なお、ここでの「シャント音」とは、血液を体外に取り出すためのシャント形成部位周辺において取得される血流音であり、被測定者の脈拍に同期した音である。シャント音の取得は各種センサを用いて行えばよく、その取得方法が特に限定されるものではない。また「シャント音情報」とは、シャント音に関する各種パラメータを含む情報であって、例えば音量や周波数等の時間変化などを含んでいる。
 シャント音情報が取得されると、算出手段において解析処理が実行され、第1の周波数のシャント音の大きさと、第2の周波数のシャント音の大きさとが夫々算出される。なお、ここでの「シャント音の大きさ」とは、周波数ごとのシャント音の大きさを示すパラメータであり、シャント音の強さ、音圧、振幅等と言い換えることもできる。「第1の周波数」とは、シャント形成部位の狭窄時にシャント音が大きくなる傾向を示す周波数であり、例えばシャント音の周波数特性から算出された周波数重心近傍の周波数として設定される。また、「第2の周波数」とは、第1の周波数より低い周波数であり、例えば正常時(即ち、狭窄が発生していない場合)においてシャント音が強く出る周波数として設定される。これら「第1の周波数」及び「第2の周波数」は、ある程度の幅を有する周波数帯域として設定されてもよく、このような場合には互いの帯域に重複部分が生じていてもよい。
 第1の周波数及び第2の周波数のシャント音の大きさが算出されると、出力手段からシャント音の評価に関する評価情報が出力される。具体的には、出力手段は、第1の周波数のシャント音の大きさと、第2の周波数のシャント音の大きさとに基づいて評価情報を生成し、生成した評価情報を外部のモニタ等に出力する。なお、ここでの「評価情報」は、シャント形成部位の狭窄度合いを評価した結果を示す情報であってもよいし、シャント形成部位の狭窄度合いを評価するための情報であってもよい。より具体的には、狭窄度合いを直接的に示す数値等が評価情報として出力されてもよいし、医師等が狭窄度合いを判断するための一又は複数のパラメータが評価情報として出力されてもよい。
 本実施形態に係る評価情報は、上述したように、第1の周波数のシャント音の大きさと、第2の周波数のシャント音の大きさとの両方を考慮した情報として出力される。例えば評価情報は、第1の周波数のシャント音の大きさと、第2の周波数のシャント音の大きさとに重み付けをして算出される総合的なシャント音の大きさとして出力される。このような評価情報によれば、シャント音の高周波成分だけでなく低周波成分も考慮した評価が可能となる。
 ここで、シャント形成部位の狭窄時にシャント音が大きくなる第1の周波数のシャント音の大きさだけに基づいた評価情報であっても(即ち、第2の周波数のシャント音の大きさを利用せずとも)、シャント形成部位の狭窄度合いを判定することが可能であるように思える。しかしながら、本願発明者の研究するところによれば、第1の周波数のシャント音は、例えば一時的な血栓や、静脈弁の影響等、狭窄以外の要因でも発生することが判明している。そして、狭窄以外の要因で発生したシャント音は、第1の周波数よりも低い周波数成分を伴うことも判明している。また、血管壁の振動は伝搬するため、狭窄のみの典型的な音響特性を確保することは困難であり、特に狭窄部がシャント形成部位に近接する場合には、シャント形成部位から伝搬する低周波成分と、狭窄部から発生する高周波成分とが互いに干渉することも判明している。このため、第1の周波数のシャント音の大きさだけでは、適切な評価情報を得ることは難しい。
 しかるに本実施形態では、上述したように第1の周波数のシャント音の大きさ(即ち、高周波成分)と、第2の周波数のシャント音の大きさ(即ち、低周波成分)との両方を考慮した評価情報が出力される。よって、第1の周波数のシャント音のみを利用して狭窄度合いを評価しようとする場合と比べて、より正確に狭窄度合いを評価することができる。
 ちなみに、出力手段から出力される評価情報には、付加的な情報として、第1の周波数のシャント音の大きさのみに基づく評価情報等が含まれていても構わない。このような情報を利用すれば、例えば第1の周波数及び第2の周波数のシャント音の大きさを総合的に考慮した評価情報との比較によって、より正確な狭窄度合いの評価を行うことができる。
 以上説明したように、本実施形態に係る第1のシャント音解析装置によれば、適切な評価情報を出力することで、シャント形成部位の狭窄診断を好適に支援することが可能である。
 <2>
 本実施形態に係る第1のシャント音解析装置の一態様では、前記第1の周波数は、前記シャント音情報から抽出された前記シャント音の周波数特性の包絡成分に基づいて算出された周波数重心近傍の周波数である。
 この態様によれば、シャント音情報が取得されると、先ずシャント音の周波数特性(例えば、周波数ごとのシャント音の大きさを示す波形によって示される特性)が抽出される。その後に、抽出された周波数特性の包絡成分に基づいて周波数重心が算出される。なお、周波数特性の包絡成分は、例えば時間周波数波形を逆フーリエ変換し、所定の次数以上のケフレンシーをカットした後、フーリエ変換することで得られる。
 周波数重心が算出されると、周波数重心近傍の周波数が第1の周波数として設定される。即ち、第1の周波数は、取得されたシャント音情報によって(言い換えれば、被測定者によって)変動する値である。ちなみに、「周波数重心近傍」とは、周波数重心と第1の周波数とが完全に一致する必要がないことを確認的に規定するための文言であり、例えば第1の周波数は、周波数重心から所定のマージンを含めた範囲内の周波数として設定される。
 上述したように第1の周波数を設定すれば、狭窄によって発生するシャント音を好適に取得することができる。従って、より適切な評価情報を出力することが可能となる。
 <3>
 本実施形態に係る第1のシャント音解析装置の他の態様では、前記第2の周波数は、正常時の前記シャント音に応じて定まる周波数である。
 この態様によれば、第2の周波数を、第1の周波数よりも低い周波数として予め固定値として設定しておくことができるため、第2の周波数のシャント音の大きさを好適に算出できる。なお、ここでの「固定値」とは、シャント形成部位の狭窄度合いや被測定者によって変化しない値という意味であり、全く変動させることができない完全な固定値を意味するものではない。よって、例えば装置の動作前等において、固定値である第2の周波数を微調整することが可能とされてもよい。
 <4>
 本実施形態に係る第1のシャント音解析装置の他の態様では、前記算出手段は、前記第1の周波数の前記シャント音の大きさ及び前記第2の周波数の前記シャント音の大きさの比率を更に算出し、前記出力手段は、前記第1の周波数の前記シャント音の大きさ及び前記第2周波数の前記シャント音の大きさに加え、前記比率に基づいて、前記評価情報を出力する。
 この態様によれば、第1の周波数のシャント音の大きさ及び第2の周波数のシャント音の大きさが算出されると、その後に夫々の比率(言い換えれば、第1の周波数のシャント音と、第2の周波数のシャント音との割合)が算出される。
 本願発明者の研究するところによれば、上述した比率からも、シャント形成部位の狭窄度合いを評価できることが判明している。例えば、低周波成分である第2の周波数のシャント音の割合が大きければ、狭窄度合いは比較的小さいと評価できるし、高周波成分である第1の周波数のシャント音の割合が大きければ、狭窄度合いは比較的大きいと評価できる。
 以上のように、第1の周波数のシャント音の大きさ及び第2の周波数のシャント音の大きさの比率を利用すれば、より適切な評価情報を出力することが可能である。
 <5>
 本実施形態に係る第2のシャント音解析装置は、被測定者のシャント形成部位のシャント音に関するシャント音情報を取得する取得手段と、前記シャント音情報に基づいて、前記被測定者の血管の狭窄度合いによって変動する第1の周波数の前記シャント音の大きさ、及び所定の固定値である第2の周波数の前記シャント音の大きさを夫々算出する算出手段と、前記第1の周波数の前記シャント音の大きさ及び前記第2周波数の前記シャント音の大きさに基づいて、前記シャント音の評価に関連する評価情報を出力する出力手段とを備える。
 本実施形態に係る第2のシャント音解析装置の動作時には、先ず取得手段により、被測定者のシャント形成部位周辺から、シャント音に関するシャント音情報が取得される。シャント音情報が取得されると、算出手段において解析処理が実行され、第1の周波数のシャント音の大きさと、第2の周波数のシャント音の大きさとが夫々算出される。
 ここで特に、「第1の周波数」とは、被測定者の血管の狭窄度合いによって変動する周波数であり、例えばシャント音の周波数特性から算出された周波数重心近傍の周波数として設定される。また、「第2の周波数」とは、所定の固定値であり、例えば正常時(狭窄が発生していない場合)においてシャント音が強く出る周波数として設定される。なお、ここでの「固定値」とは、第1の周波数のように被測定者の血管の狭窄度合いによって変化しない値という意味であり、全く変動させることができない完全な固定値を意味するものではない。よって、例えば装置の動作前等において、固定値である第2の周波数を微調整することが可能とされてもよい。
 第1の周波数及び第2の周波数のシャント音の大きさが算出されると、出力手段からシャント音の評価に関する評価情報が出力される。具体的には、出力手段は、第1の周波数のシャント音の大きさと、第2の周波数のシャント音の大きさとに基づいて評価情報を生成し、生成した評価情報を外部のモニタ等に出力する。
 本実施形態に係る評価情報は、上述したように、第1の周波数のシャント音の大きさと、第2の周波数のシャント音の大きさとの両方を考慮した情報として出力される。例えば評価情報は、第1の周波数のシャント音の大きさと、第2の周波数のシャント音の大きさとに重み付けをして算出される総合的なシャント音の大きさとして出力される。このような評価情報によれば、シャント音の高周波成分だけでなく低周波成分も考慮した評価が可能となる。具体的には、例えば第1の周波数のシャント音のみを利用して狭窄度合いを評価しようとする場合と比べて、より正確に狭窄度合いを評価することができる。
 以上説明したように、本実施形態に係る第2のシャント音解析装置によれば、適切な評価情報を出力することで、シャント形成部位の狭窄診断を好適に支援することが可能である。
 <6>
 本実施形態に係る第1のシャント音解析方法は、被測定者のシャント形成部位のシャント音に関するシャント音情報を取得する取得工程と、前記シャント音情報に基づいて、第1の周波数の前記シャント音の大きさ、及び前記第1の周波数よりも低い周波数である第2の周波数の前記シャント音の大きさを夫々算出する算出工程と、前記第1の周波数の前記シャント音の大きさ及び前記第2周波数の前記シャント音の大きさに基づいて、前記シャント音の評価に関連する評価情報を出力する出力工程とを備える。
 本実施形態に係る第1のシャント音解析方法によれば、上述した本実施形態に係る第1のシャント音解析装置と同様に、第1の周波数及び第2の周波数のシャント音の大きさを総合的に考慮した評価情報が出力される。従って、シャント形成部位の狭窄診断を好適に支援することが可能である。
 <7>
 本実施形態に係る第2のシャント音解析方法は、被測定者のシャント形成部位のシャント音に関するシャント音情報を取得する取得工程と、前記シャント音情報に基づいて、前記被測定者の血管の狭窄度合いによって変動する第1の周波数の前記シャント音の大きさ、及び所定の固定値である第2の周波数の前記シャント音の大きさを夫々算出する算出工程と、前記第1の周波数の前記シャント音の大きさ及び前記第2周波数の前記シャント音の大きさに基づいて、前記シャント音の評価に関連する評価情報を出力する出力工程とを備える。
 本実施形態に係る第2のシャント音解析方法によれば、上述した本実施形態に係る第2のシャント音解析装置と同様に、第1の周波数及び第2の周波数のシャント音の大きさを総合的に考慮した評価情報が出力される。従って、シャント形成部位の狭窄診断を好適に支援することが可能である。
 <8>
 本実施形態に係る第1のコンピュータプログラムは、被測定者のシャント形成部位のシャント音に関するシャント音情報を取得する取得工程と、前記シャント音情報に基づいて、第1の周波数の前記シャント音の大きさ、及び前記第1の周波数よりも低い周波数である第2の周波数の前記シャント音の大きさを夫々算出する算出工程と、前記第1の周波数の前記シャント音の大きさ及び前記第2周波数の前記シャント音の大きさに基づいて、前記シャント音の評価に関連する評価情報を出力する出力工程とをコンピュータに実行させる。
 本実施形態に係る第1のコンピュータプログラムによれば、コンピュータに上述した本実施形態に係る第1のシャント音解析方法の各工程を実行させることができる。従って、シャント形成部位の狭窄診断を好適に支援することが可能である。
 <9>
 本実施形態に係る第2のコンピュータプログラムは、被測定者のシャント形成部位のシャント音に関するシャント音情報を取得する取得工程と、前記シャント音情報に基づいて、前記被測定者の血管の狭窄度合いによって変動する第1の周波数の前記シャント音の大きさ、及び所定の固定値である第2の周波数の前記シャント音の大きさを夫々算出する算出工程と、前記第1の周波数の前記シャント音の大きさ及び前記第2周波数の前記シャント音の大きさに基づいて、前記シャント音の評価に関連する評価情報を出力する出力工程とをコンピュータに実行させる。
 本実施形態に係る第2のコンピュータプログラムによれば、コンピュータに上述した本実施形態に係る第2のシャント音解析方法の各工程を実行させることができる。従って、シャント形成部位の狭窄診断を好適に支援することが可能である。
 <10>
 本実施形態に係る記録媒体は、上述した第1又は第2のコンピュータプログラムが記録されている。
 本実施形態に係る記録媒体によれば、記録されたコンピュータプログラムを実行させることで、第1の周波数及び第2の周波数のシャント音の大きさを総合的に考慮した評価情報を出力させることが可能である。従って、シャント形成部位の狭窄診断を好適に支援することが可能である。
 本実施形態に係るシャント音解析装置、シャント音解析方法、コンピュータプログラム及び記録媒体の作用及び他の利得については、以下に示す実施例において、より詳細に説明する。
 以下では、図面を参照してシャント音解析装置の実施例について詳細に説明する。
 <装置構成>
 先ず、図1を参照して、本実施例に係るシャント音解析装置の全体構成について説明する。ここに図1は、実施例に係るシャント音解析装置の全体構成を示すブロック図である。
 図1において、本実施例に係るシャント音解析装置は、シャント音入力部110と、音声信号解析処理部120と、パラメータ演算部130と、評価情報演算出力部140と、表示部150とを備えて構成されている。
 シャント音入力部110は、「取得手段」の一具体例であり、例えば振動センサ等から入力されたシャント音に対し、所定のサンプリング周波数Fsでアナログデジタル変換を行い、シャント音波形を出力する。シャント音入力部110で生成されたシャント音波形は、音声信号解析処理部120へと出力される構成となっている。
 音声信号解析処理部120は、シャント音入力部110から入力されたシャント音波形に対して各種解析処理(例えば、短時間フーリエ変換や対数変換等)を行い、時間周波数解析波形を出力する。音声信号解析処理部120による解析結果は、パラメータ演算部130に出力される構成となっている。
 パラメータ演算部130は、「算出手段」の一具体例であり、音声信号解析処理部120から入力された時間周波数解析波形に対して各種演算処理(例えば、逆フーリエ変換、高次ケフレンシーカット、フーリエ変換等)を行うことで、時間包絡特性波形を得る。またパラメータ演算部130は、時間周波数解析波形及び時間包絡特性波形から、波形の周波数重心値、低周波成分、及び高周波成分を算出する。更に、パラメータ演算部130は、算出された周波数重心値、低周波成分、及び高周波成分から、物理的高さ値、総合的高さ値、及び高低成分バランス値を算出する。パラメータ演算部130によって算出された物理的高さ値、総合的高さ値、及び高低成分バランス値は、評価情報演算出力部140に夫々出力される構成となっている。
 評価情報演算出力部140は、「出力手段」の一具体例であり、パラメータ演算部130の出力値、及び出力値のピーク値や時間平均値を用いて、被測定者の血管の狭窄度合いを評価するための評価情報を演算し出力する。評価情報演算出力部140によって演算された評価情報は、表示部150に出力される構成となっている。
 表示部150は、例えばモニタ等として構成されており、評価情報演算出力部140から入力された評価情報を、例えば医師等の装置使用者に視覚的に提示することが可能に構成されている。
 <動作説明>
 次に、本実施例に係るシャント音解析装置の具体的な動作について説明する。なお、以下では、本実施例に係るシャント音解析装置が有する各部位のうち、本実施例に特有な部位(具体的には、音声信号解析処理部120、パラメータ演算130、評価情報演算出力部140、及び表示部150)の動作について詳細に説明する。
 <音声信号解析処理部>
 先ず、図2及び図3を参照して、音声信号解析処理部120の動作について詳細に説明する。ここに図2は、シャント音波形の一例を示す波形図である。また図3は、時間周波数波形の一例を示すスペクトログラムである。
 図2に示すように、音声信号解析処理部120には、シャント音入力部110で生成されたシャント音波形が入力される。なお、シャント音波形)は、図を見ても分かるように、被測定者のシャント音形性部位から取得された音声の振幅について、その時間変動を示す波形である。
 音声信号解析処理部120は、シャント音波形の時刻nの値X(n)に対して、長さNフレーム単位で、Nポイント短時間フーリエ変換と、対数変換とを施し、時間周波数解析波形Plog[n,k]を算出する。
 具体的には、音声信号解析処理部120は、以下の数式(1)を用いて、短時間フーリエ変換を行う。
Figure JPOXMLDOC01-appb-M000001
 また音声信号解析処理部120は、以下の数式(2)を用いて、対数変換を行う。
Figure JPOXMLDOC01-appb-M000002
 なお、w(k)は、フレームを切り出す際に用いられる長さNの窓関数である。またkは、サンプリング周波数FsのN等分を単位とした周波数の位置(高さ)を表しており、k=0…N-1である。
 図3に示すように、音声信号解析処理部120によって演算された時間周波数解析波形Plog[n,k]は、各周波数に対応する音圧の時間変動を示す波形である。
 <パラメータ演算部>
 次に、図4から図12を参照して、パラメータ演算部130の動作について詳細に説明する。
 <包絡特性の演算>
 先ず、図4から図6を参照して、パラメータ演算部130による包絡特性の演算について詳細に説明する。ここに図4は、時刻nにおける周波数波形の一例を示す波形図であり、図5は時刻nにおける包絡波形の一例を示す波形図である。また図6は、時間包絡特性波形の一例を示すスペクトログラムである。
 図4に示すように、時間周波数解析波形Plog[n,k]の時刻nにおける周波数波形は、周波数毎の音圧を示す波形として表される。パラメータ演算部130は、このような時間周波数解析波形Plog[n,k]の各フレームに各種演算処理を行い、包絡波形を演算する。
 具体的には、パラメータ演算部130は、以下の数式(3)を用いて、時間周波数解析波形Plog[n,k]の逆フーリエ変換を行う。
Figure JPOXMLDOC01-appb-M000003
 次に、パラメータ演算部130は、以下の数式(4)を用いて、lift次以上のケフレンシーをカットする。
Figure JPOXMLDOC01-appb-M000004
 なお、次数liftの最適値は、サンプリング周波数Fsやフレーム長さNに応じて定まる値であり、事前のシミュレーション等により最適値が設定されている。
 次に、パラメータ演算部130は、以下の数式(5)を用いてフーリエ変換を行い、時間包絡特性波形FEnv[n,k]を演算する。
Figure JPOXMLDOC01-appb-M000005
 図5に示すように、時間包絡特性波形FEnv[n,k]の時刻nにおける包絡波形は、周波数波形の包絡特性を示す波形として表される。
 図6に示すように、時間包絡特性波形FEnv[n,k]は、各周波数に対応する音圧の包絡成分の時間変動を示す波形である。
 <周波数重心及び各種成分の演算>
 次に、図7から図9を参照して、パラメータ演算部130による周波数重心及び各種成分の演算について詳細に説明する。ここに図7は、パラメータ演算部の具体的な構成を示すブロック図である。また図8は、包絡波形における周波数重心を示す波形図であり、図9は、周波数波形における高周波成分及び低周波成分を示す波形図である。
 図7において、時間包絡特性波形FEnv[n,k]は、パラメータ演算部130の周波数重心演算部131に入力される。周波数重心演算部131は、以下の数式(6)を用いて、時間包絡特性波形FEnv[n,k]の周波数重心値Fcentroid[n]を算出する。
Figure JPOXMLDOC01-appb-M000006
 周波数重心演算部131で算出された周波数重心値Fcentroid[n]は、高周波成分演算部133、物理的高さ演算部134及び総合的高さ演算部135に夫々出力される。
 図8に示すように、周波数重心値Fcentroid[n]は、例えば時間包絡特性波形FEnv[n,k]の時刻nにおける包絡波形において、太実線で示されるような値として算出される。
 図7に戻り、時間周波数解析波形Plog[n,k]は、パラメータ演算部130の低周波成分演算部132及び高周波成分演算部133に入力される。低周波成分演算部132は、以下の数式(7)を用いて、低周波成分Lpower[n]を算出する。
Figure JPOXMLDOC01-appb-M000007
 低周波成分演算部132で算出された低周波成分Lpower[n]は、総合的高さ演算部135及び高低成分バランス演算部136に夫々出力される。
 一方、高周波成分演算部133は、以下の数式(8)を用いて、高周波成分FCpower[n]を算出する。
Figure JPOXMLDOC01-appb-M000008
 高周波成分演算部133で算出された高周波成分FCpower[n]は、総合的高さ演算部135及び高低成分バランス演算部136に夫々出力される。
 図9に示すように、低周波成分は、所定の低周波数帯域(具体的には、正常シャント音を想定した帯域)の成分として算出される。低周波帯域の中心周波数Lcenterは、例えば150~200Hzの間で事前に設定される。また、低周波数帯域の帯域幅を規定するαは、例えば50~100Hzの間で事前に設定される。
 一方、高周波成分は、周波数重心値Fcentroid[n]を中心周波数とする高周波数帯域(具体的には、狭窄時のシャント音が強く現れる周波数帯域)の成分として算出される。また、高周波数帯域の帯域幅を規定するβは、α同様に例えば50~100Hzの間で事前に設定される。
 <高さ値及びバランス値の演算>
 次に、図7、図10及び図11を参照して、パラメータ演算部130による高さ値及びバランス値の演算について詳細に説明する。ここに図10は、物理的高さ値及び総合的高さ値の一例を示すタイムチャートである。また図11は、高低成分バランス値の一例を示すタイムチャートである。
 図7において、パラメータ演算部130における物理的高さ演算部134は、周波数重心演算部131によって算出された周波数重心値Fcentroid[n]から、物理的高さ値FPhyHeight[n]を算出する。具体的には、物理的高さ演算部134は、以下の数式(9)を用いて、物理的高さ値FPhyHeight[n]を算出する。
Figure JPOXMLDOC01-appb-M000009
 パラメータ演算部130における総合的高さ演算部134は、周波数重心演算部131によって算出された周波数重心値Fcentroid[n]、低周波成分演算部132によって算出された低周波成分Lpower[n]、及び高周波成分演算部133によって算出された高周波成分FCpower[n]から、総合的高さ値FTotalHeight[n]を算出する。具体的には、総合的高さ演算部134は、以下の数式(10)を用いて、総合的高さ値FTotalHeight[n]を算出する。
Figure JPOXMLDOC01-appb-M000010
 総合的高さ値FTotalHeight[n]は、正常シャント音を想定した低周波数帯域のシャント音の大きさと、狭窄時のシャント音が強く現れる高周波数帯域のシャント音の大きさを、各成分で重み付けして補正したパラメータである。即ち、総合的高さ値FTotalHeight[n]は、物理的高さ値FPhyHeight[n]のように高周波成分のみを考慮したパラメータではなく、高周波成分及び低周波成分の両方を総合的に考慮したパラメータである。
 図10に示すように、物理的高さ値FPhyHeight[n]及び総合的高さ値FTotalHeight[n]は、各周波数成分に応じて変動する値として算出される。
 図7に戻り、パラメータ演算部130における高低成分バランス演算部136は、低周波成分演算部132によって算出された低周波成分Lpower[n]、及び高周波成分演算部133によって算出された高周波成分FCpower[n]から、高低成分バランス値FCtoLowRatio[n]を算出する。具体的には、高低成分バランス演算部136は、以下の数式(11)を用いて、高低成分バランス値FCtoLowRatio[n]を算出する。
Figure JPOXMLDOC01-appb-M000011
 図11に示すように、高低成分バランス値FCtoLowRatio[n]は、低周波成分Lpower[n]と高周波成分FCpower[n]との比率を示すパラメータであり、低周波成分Lpower[n]の割合が大きいと図中の下側に、高周波成分FCpower[n]の割合が大きいと図中の上側に移動する。
 <演算結果を用いた評価>
 次に、図12を参照して、上述した演算によって得られた各種パラメータを用いた狭窄度合いの評価方法について、具体的に説明する。ここに図12は、パラメータ演算部における演算結果を複数のシャント音毎に示す比較一覧図である。
 図12において、シャント音Aは、正常なシャント音の一例である。シャント音Aは、時刻nにおける周波数波形を見ても分かるように、低い周波数に特性の山が存在する低くしっかりした音である。シャント音Aの物理的高さ値FPhyHeight[n]及び総合的高さ値FTotalHeight[n]は、いずれも低く安定している。また、シャント音Aの高低成分バランス値FCtoLowRatio[n]は、低周波成分の比重が高い側で安定している。このように、物理的高さ値FPhyHeight[n]及び総合的高さ値FTotalHeight[n]が低く安定し、高低成分バランス値FCtoLowRatio[n]が低周波側で安定している場合には、狭窄は発生していない(或いは、極めて狭窄度合いが小さい)と評価することができる。
 シャント音Bは、正常なシャント音より高い成分があるが、低域がしっかりしている音の一例である。シャント音Bは、時刻nにおける周波数波形を見ても分かるように、シャント音Aと比べると高い周波数にまで特性が広がっている。シャント音Bの物理的高さ値FPhyHeight[n]及び総合的高さ値FTotalHeight[n]は、部分的に高い成分もあるが、高さは全体的に低く安定している。また、シャント音Bの高低成分バランス値FCtoLowRatio[n]は、高周波成分の比重が多少大きくなる部分もあるが、低周波成分の比重が高い側で概ね安定している。この結果、シャント音Bの演算結果からは、狭窄が発生している可能性はあるものの、その程度は小さく、十分な血流が得られていると評価できる。
 シャント音Cは、正常なシャント音より高い成分が少し目立ち始めている音の一例である。シャント音Cは、時刻nにおける周波数波形を見ても分かるように、シャント音Aと比べると高い周波数にまで特性が広がっている。シャント音Cの総合的高さ値FTotalHeight[n]は、シャント音Aやシャント音Bと比べて物理的高さ値FPhyHeight[n]に近い値となっている。また、シャント音Bの高低成分バランス値FCtoLowRatio[n]は、高周波成分の割合が、低周波成分の割合に近づいている。この結果、シャント音Cの演算結果からは、狭窄が発生している可能性が比較的高いと評価できる。
 シャント音Dは、正常なシャント音より高い成分が強く、且つ低音が弱い音の一例である。シャント音Dは、時刻nにおける周波数波形を見ても分かるように、シャント音AからCのどれよりも高い周波数にまで特性が広がっている。シャント音Dの物理的高さ値FPhyHeight[n]及び総合的高さ値FTotalHeight[n]は、いずれも全体的に高く、物理的高さ値FPhyHeight[n]と総合的高さ値FTotalHeight[n]との差も小さい。また、シャント音Dの高低成分バランス値FCtoLowRatio[n]は、明らかに高周波成分の割合が、低周波成分の割合よりも多くなっている。この結果、シャント音Dの演算結果からは、狭窄が発生している可能性が非常に高いと評価できる。
 なお、上述した評価方法はあくまで一例であり、同一の演算結果から異なる評価を行っても構わない。
 <評価情報演算出力部>
 次に、評価情報演算出力部140の動作について詳細に説明する。
 評価情報演算出力部140は、パラメータ演算部130で算出された物理的高さ値FPhyHeight[n]、総合的高さ値FTotalHeight[n]、及び高低成分バランス値FCtoLowRatio[n]の各々を数値化して、狭窄度合いを評価するための(或いは、狭窄度合いを示す)評価情報として出力する。
 具体的には、評価情報演算出力部140は、物理的高さ値FPhyHeight[n]及び総合的高さ値FTotalHeight[n]の各々を、150Hz~1kHzの範囲で0~100に正規化して出力する。また、評価情報演算出力部140は、物理的高さ値FPhyHeight[n]及び総合的高さ値FTotalHeight[n]の各々について、ピーク値及び時間平均値を演算して出力する。
 評価情報演算出力部140は、高低成分バランス値FCtoLowRatio[n]を、-10dB~10dBの範囲で0~100に正規化して出力する。また、評価情報演算出力部140は、高低成分バランス値FCtoLowRatio[n]について、ピーク値及び時間平均値を演算して出力する。
 <表示部>
 次に、図13から図16を参照して、表示部150の動作について詳細に説明する。ここに図13から図16は夫々、表示部における表示例を示す平面図である。
 図13及び図14に示すように、表示部150の表示領域155には、例えば総合的高さ値FTotalHeight[n]の平均スコア(即ち、正規化された時間平均値)と、平均スコアについての数値見解が表示される。なお、ここでの平均スコアは、40以上の場合に狭窄が発生している可能性が高いと評価できるようなパラメータとなっている。また、数値見解は、例えば各数値の段階に合わせてデータベース化されたキーワード及び定型文の組み合わせから構成されてもよい。
 具体的には、図13の例では、平均スコア“30”と、数値見解として“高い成分はあるが、低域も強い。総合的な高さは低め”という文字列が表示される。この場合、例えば狭窄が発生している可能性は低く、当日の透析に問題はなさそうだと判断できる。一方、図14の例では、平均スコア“65”と、数値見解として“高い成分が強く、かつ低域が弱い。総合的高さは非常に高い”という文字列が表示される。この場合、例えば狭窄が発生している可能性が高く、医師に連絡が必要であると判断できる。このような比較的簡易な表示態様は、聴診時などにおいてシャント音の聞こえ方に対する判断が難しい場合に有効である。
 図15及び図16に示すように、表示部150の表示領域155には、例えば物理的高さ値FPhyHeight[n]、総合的高さ値FTotalHeight[n]、及び高低成分バランス値FCtoLowRatio[n]の各々のピーク値及び平均スコア、並びに解析波形が表示されてもよい。このように評価情報を詳細に表示すれば、より正確で細かな診断(例えば、スコアの上昇が狭窄による影響なのか、或いは他の要因による影響なのかの診断)を行うことも可能となる。
 なお、表示部150は、上述した表示例以外の態様で表示を行っても構わない。また、装置の使用者が適切な表示態様を適宜選択できるように構成されてもよい。
 以上説明したように、本実施例に係るシャント音解析装置によれば、取得したシャント音情報に基づいて適切な評価情報が出力される。従って、シャント形成部位における狭窄診断を好適に支援することが可能である。
 本発明は、上述した実施形態に限られるものではなく、特許請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴うシャント音解析装置、シャント音解析方法、コンピュータプログラム及び記録媒体もまた本発明の技術的範囲に含まれるものである。
 110 シャント音入力部
 120 音声信号解析処理部
 130 パラメータ演算部
 131 周波数重心演算部
 132 低周波成分演算部
 133 高周波成分演算部
 134 物理的高さ演算部
 135 総合的高さ演算部
 136 高低成分バランス演算部
 140 評価情報演算出力部
 150 表示部
 155 表示領域
 Fcentroid[n] 周波数重心値
 Lpower[n] 低周波成分
 FCpower[n] 高周波成分
 FPhyHeight[n] 物理的高さ値
 FTotalHeight[n] 総合的高さ値
 FCtoLowRatio[n] 高低成分バランス値

Claims (10)

  1.  被測定者のシャント形成部位のシャント音に関するシャント音情報を取得する取得手段と、
     前記シャント音情報に基づいて、第1の周波数の前記シャント音の大きさ、及び前記第1の周波数よりも低い周波数である第2の周波数の前記シャント音の大きさを夫々算出する算出手段と、
     前記第1の周波数の前記シャント音の大きさ及び前記第2周波数の前記シャント音の大きさに基づいて、前記シャント音の評価に関連する評価情報を出力する出力手段と
     を備えることを特徴とするシャント音解析装置。
  2.  前記第1の周波数は、前記シャント音情報から抽出された前記シャント音の周波数特性の包絡成分に基づいて算出された周波数重心近傍の周波数であることを特徴とする請求項1に記載のシャント音解析装置。
  3.  前記第2の周波数は、正常時の前記シャント音に応じて定まる周波数であることを特徴とする請求項1又は2に記載のシャント音解析装置。
  4.  前記算出手段は、前記第1の周波数の前記シャント音の大きさ及び前記第2の周波数の前記シャント音の大きさの比率を更に算出し、
     前記出力手段は、前記第1の周波数の前記シャント音の大きさ及び前記第2周波数の前記シャント音の大きさに加え、前記比率に基づいて、前記評価情報を出力する
     ことを特徴とする請求項1から3のいずれか一項に記載のシャント音解析装置。
  5.  被測定者のシャント形成部位のシャント音に関するシャント音情報を取得する取得手段と、
     前記シャント音情報に基づいて、前記被測定者の血管の狭窄度合いによって変動する第1の周波数の前記シャント音の大きさ、及び所定の固定値である第2の周波数の前記シャント音の大きさを夫々算出する算出手段と、
     前記第1の周波数の前記シャント音の大きさ及び前記第2周波数の前記シャント音の大きさに基づいて、前記シャント音の評価に関連する評価情報を出力する出力手段と
     を備えることを特徴とするシャント音解析装置。
  6.  被測定者のシャント形成部位のシャント音に関するシャント音情報を取得する取得工程と、
     前記シャント音情報に基づいて、第1の周波数の前記シャント音の大きさ、及び前記第1の周波数よりも低い周波数である第2の周波数の前記シャント音の大きさを夫々算出する算出工程と、
     前記第1の周波数の前記シャント音の大きさ及び前記第2周波数の前記シャント音の大きさに基づいて、前記シャント音の評価に関連する評価情報を出力する出力工程と
     を備えることを特徴とするシャント音解析方法。
  7.  被測定者のシャント形成部位のシャント音に関するシャント音情報を取得する取得工程と、
     前記シャント音情報に基づいて、前記被測定者の血管の狭窄度合いによって変動する第1の周波数の前記シャント音の大きさ、及び所定の固定値である第2の周波数の前記シャント音の大きさを夫々算出する算出工程と、
     前記第1の周波数の前記シャント音の大きさ及び前記第2周波数の前記シャント音の大きさに基づいて、前記シャント音の評価に関連する評価情報を出力する出力工程と
     を備えることを特徴とするシャント音解析方法。
  8.  被測定者のシャント形成部位のシャント音に関するシャント音情報を取得する取得工程と、
     前記シャント音情報に基づいて、第1の周波数の前記シャント音の大きさ、及び前記第1の周波数よりも低い周波数である第2の周波数の前記シャント音の大きさを夫々算出する算出工程と、
     前記第1の周波数の前記シャント音の大きさ及び前記第2周波数の前記シャント音の大きさに基づいて、前記シャント音の評価に関連する評価情報を出力する出力工程と
     をコンピュータに実行させることを特徴とするコンピュータプログラム。
  9.  被測定者のシャント形成部位のシャント音に関するシャント音情報を取得する取得工程と、
     前記シャント音情報に基づいて、前記被測定者の血管の狭窄度合いによって変動する第1の周波数の前記シャント音の大きさ、及び所定の固定値である第2の周波数の前記シャント音の大きさを夫々算出する算出工程と、
     前記第1の周波数の前記シャント音の大きさ及び前記第2周波数の前記シャント音の大きさに基づいて、前記シャント音の評価に関連する評価情報を出力する出力工程と
     をコンピュータに実行させることを特徴とするコンピュータプログラム。
  10.  請求項8又は9に記載のコンピュータプログラムが記録されていることを特徴とする記録媒体。
PCT/JP2015/067876 2015-06-22 2015-06-22 シャント音解析装置、シャント音解析方法、コンピュータプログラム及び記録媒体 WO2016207950A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/067876 WO2016207950A1 (ja) 2015-06-22 2015-06-22 シャント音解析装置、シャント音解析方法、コンピュータプログラム及び記録媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/067876 WO2016207950A1 (ja) 2015-06-22 2015-06-22 シャント音解析装置、シャント音解析方法、コンピュータプログラム及び記録媒体

Publications (1)

Publication Number Publication Date
WO2016207950A1 true WO2016207950A1 (ja) 2016-12-29

Family

ID=57584860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067876 WO2016207950A1 (ja) 2015-06-22 2015-06-22 シャント音解析装置、シャント音解析方法、コンピュータプログラム及び記録媒体

Country Status (1)

Country Link
WO (1) WO2016207950A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108269587A (zh) * 2017-12-29 2018-07-10 诺仪器(中国)有限公司 光缆敲击信号显示方法及系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0756590A (ja) * 1993-08-19 1995-03-03 Sony Corp 音声合成装置、音声合成方法及び記録媒体

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0756590A (ja) * 1993-08-19 1995-03-03 Sony Corp 音声合成装置、音声合成方法及び記録媒体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOSHI NISHITANI: "An analysis of the relationship between shunt stenoses and frequency characteristics of shunt murmur", JOURNAL OF JAPANESE SOCIETY FOR DIALYSIS THERAPY, vol. 43, no. 3, 28 March 2010 (2010-03-28), pages 287 - 295, XP055340281 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108269587A (zh) * 2017-12-29 2018-07-10 诺仪器(中国)有限公司 光缆敲击信号显示方法及系统
CN108269587B (zh) * 2017-12-29 2021-10-29 一诺仪器(中国)有限公司 光缆敲击信号显示方法及系统

Similar Documents

Publication Publication Date Title
Manfredi et al. Smartphones offer new opportunities in clinical voice research
Šrámková et al. The softest sound levels of the human voice in normal subjects
US11116478B2 (en) Diagnosis of pathologies using infrasonic signatures
EP3526792B1 (en) Voice activity detection method and apparatus
EP3678553B1 (en) Diagnosis of pathologies using infrasonic signatures
WO2018155384A1 (ja) 検出装置
JP6467044B2 (ja) シャント音解析装置、シャント音解析方法、コンピュータプログラム及び記録媒体
JP5627440B2 (ja) 音響装置及びその制御方法、プログラム
WO2016207950A1 (ja) シャント音解析装置、シャント音解析方法、コンピュータプログラム及び記録媒体
JP5077847B2 (ja) 残響時間推定装置及び残響時間推定方法
Millette et al. Signal processing of heart signals for the quantification of non-deterministic events
Majerus et al. Bruit-enhancing phonoangiogram filter using sub-band autoregressive linear predictive coding
DK3232906T3 (en) HEARING TEST SYSTEM
JP6630149B2 (ja) 生体音解析装置及び生体音解析方法、並びにコンピュータプログラム及び記録媒体
JP6501917B2 (ja) 生体音解析装置及び生体音解析方法、並びにコンピュータプログラム及び記録媒体
WO2016139802A1 (ja) シャント音解析装置、シャント音解析方法、コンピュータプログラム及び記録媒体
JP2015188642A (ja) 呼吸音解析装置及び呼吸音解析方法、並びにコンピュータプログラム及び記録媒体
JP6298527B2 (ja) 生体音解析装置及び生体音解析方法、並びにコンピュータプログラム及び記録媒体
JP6298339B2 (ja) 呼吸音解析装置及び呼吸音解析方法、並びにコンピュータプログラム及び記録媒体
JP2019111347A (ja) シャント音解析装置、シャント音解析方法、コンピュータプログラム及び記録媒体
Verde et al. A noise-aware methodology for a mobile voice screening application
US11185251B2 (en) Biological sound analyzing apparatus, biological sound analyzing method, computer program, and recording medium
JPWO2019188768A1 (ja) シャント音解析装置及び方法、コンピュータプログラム並びに記憶媒体
JP2021015137A (ja) 情報処理装置、プログラム及び情報処理方法
JP7089648B2 (ja) 生体音解析装置、プログラム、及び生体音解析方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15896273

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15896273

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP