WO2016206487A1 - 一种反馈控制电路和光电探测装置的输出信号控制方法 - Google Patents

一种反馈控制电路和光电探测装置的输出信号控制方法 Download PDF

Info

Publication number
WO2016206487A1
WO2016206487A1 PCT/CN2016/081600 CN2016081600W WO2016206487A1 WO 2016206487 A1 WO2016206487 A1 WO 2016206487A1 CN 2016081600 W CN2016081600 W CN 2016081600W WO 2016206487 A1 WO2016206487 A1 WO 2016206487A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
dac
voa
signal
feedback control
Prior art date
Application number
PCT/CN2016/081600
Other languages
English (en)
French (fr)
Inventor
杨俊�
王滔
余涛
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016206487A1 publication Critical patent/WO2016206487A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver

Definitions

  • This document relates to, but is not limited to, the field of optical fiber communication technologies, and in particular, to a feedback control circuit and an output signal control method of the photoelectric detecting device.
  • the transmission medium using optical fiber in the communication device has large transmission capacity, long transmission distance, low transmission loss, strong anti-radiation and anti-interference ability, and is easier.
  • optical fiber communication products include photodetectors, including photo-diodes (PD) and Trans-Impedance Amplifier (TIA), in particular, optoelectronics.
  • PD photo-diodes
  • TIA Trans-Impedance Amplifier
  • the detector can convert the optical signal received from the optical communication system into an electrical signal, and perform the low-noise amplification of the electrical signal with a certain intensity, thereby realizing the conversion of the optical signal into an electrical signal, thereby further amplifying the electrical signal.
  • Embodiments of the present invention provide a feedback control circuit and an output signal control method of the photodetection device, which can improve the stability of an output signal of the photodetection device.
  • an embodiment of the present invention provides a feedback control circuit, including: a photodetection device, an adjustable optical attenuator VOA connected to an input end of the photodetection device, and the photoelectric a feedback control device connected to an output end of the detecting device; the VOA is configured to perform energy attenuation on the input optical signal, and transmit the attenuated optical signal to the photodetecting device; the photodetecting device Provided that the received attenuated optical signal is converted into an electrical signal; an output of the feedback control device is coupled to an input of the VOA, and the feedback control device is configured to be in accordance with the photodetecting device The output electrical signal generates a first control signal and transmits the first control signal to the VOA such that the VOA adjusts an amount of attenuation of the VOA according to the first control signal.
  • the photodetection device comprises a photodiode PD, and the PD operates in an output current mode;
  • the feedback control device includes a modulus that is sequentially connected to an output of the PD a converter ADC, a central processing unit CPU, and a digital to analog converter DAC, an output of the DAC being coupled to an input of the VOA;
  • the feedback control device is configured to acquire, by the ADC, a response current of the PD output in real time, compare an ADC value generated according to the response current with a target value preset in the CPU, and When the ADC value is less than the target value, outputting a second control signal to control the DAC to decrease an output voltage of the DAC, and when the ADC value is greater than the target value, outputting a second control signal to control the DAC to increase the An output voltage of the DAC, and transmitting the first control signal to the VOA through the DAC, such that the VOA decreases the VOA according to the first control signal when the DAC decreases an output voltage of the DAC
  • the amount of attenuation increases the amount of attenuation of the VOA as the DAC increases the output voltage of the DAC.
  • the photodetecting device includes a PD and a mirror current source, and the PD operates in a sink mode;
  • the mirror current source includes a first output and a second output. The first output is connected to an input of the PD, and the second output is connected to an input of the feedback control device;
  • the mirror current source is configured to output, by the first output end and the second output end, an electrical signal of the same magnitude to the PD and the feedback control device, so that the feedback control device is specifically configured according to the An electrical signal output by the mirror current source generates the first control signal and transmits the first control signal to the VOA such that the VOA adjusts an attenuation amount of the VOA according to the first control signal.
  • the feedback control device includes the mirror current
  • the second output of the source is sequentially connected to the ADC, the CPU and the DAC, and the output of the DAC is connected to the input of the VOA;
  • the feedback control device is configured to acquire, by the ADC, real-time acquisition of a mirror current output by the mirror current source through the second output terminal, and an ADC value generated according to the mirror current and a preset in the CPU
  • the target value is compared, and when the ADC value is less than the target value, outputting a second control signal to control the DAC to reduce an output voltage of the DAC, and when the ADC value is greater than the target value, outputting a second Controlling the DAC to increase an output voltage of the DAC and transmitting the first control signal to the VOA through the DAC such that the VOA reduces the DAC at the DAC according to the first control signal
  • the amount of attenuation of the VOA is reduced when the voltage is output, and the amount of attenuation of the VOA is increased when the DAC increases the output voltage of the DAC.
  • the photodetecting device further includes a transimpedance amplifier TIA, an input end of the TIA is connected to an output end of the PD, and the TIA is configured to perform a response current of the PD to the TIA. Amplify and output the amplified voltage signal.
  • a transimpedance amplifier TIA an input end of the TIA is connected to an output end of the PD, and the TIA is configured to perform a response current of the PD to the TIA. Amplify and output the amplified voltage signal.
  • the PD is a P-I-N type photodiode PIN or an avalanche photodiode APD.
  • an embodiment of the present invention provides a method for controlling an output signal of a photodetecting device, including:
  • the photodetecting device converts the optical signal transmitted by the VOA into an electrical signal, and transmits the electrical signal to a feedback control device connected to an output end of the photodetecting device;
  • the feedback control device generates a first control signal according to an electrical signal output by the photodetection device, and transmits the first control signal to the VOA, wherein an output of the feedback control device and the VOA The input terminals are connected;
  • the VOA adjusts an attenuation amount of the VOA according to the first control signal.
  • the photodetecting device comprises a photodiode PD, and the PD operates in an output current mode
  • the feedback control device comprising a modulus that is sequentially connected to an output of the PD a converter ADC, a central processing unit CPU and a digital to analog converter DAC, an output of the DAC being coupled to an input of the VOA; the feedback control device being responsive to the light
  • the electrical signal output by the electrical detection device generates a first control signal and transmits the first control signal to the VOA, including:
  • the ADC collects the response current of the PD output in real time, and transmits an ADC value generated according to the response current to the CPU;
  • the CPU compares an ADC value transmitted by the ADC with a target value preset in the CPU, and outputs an output voltage of the DAC to the DAC when the ADC value is less than the target value a second control signal, when the ADC value is greater than the target value, outputting a second control signal that increases an output voltage of the DAC to the DAC;
  • the DAC controls the DAC to reduce or increase an output voltage of the DAC according to the second control signal, and transmits the first control signal to the VOA, the first control signal is used to indicate the VOA
  • the DAC reduces the amount of attenuation of the VOA when the output voltage of the DAC is reduced, and increases the amount of attenuation of the VOA when the DAC increases the output voltage of the DAC.
  • the photodetecting device comprises a PD and a mirror current source, and the PD operates in a current sinking mode, the mirrored current source comprising a first output and a second output, The first output is connected to an input end of the PD, and the second output is connected to an input end of the feedback control device; the feedback control device generates a first one according to an electrical signal output by the photodetection device Controlling the signal and transmitting the first control signal to the VOA includes:
  • the feedback control device generates a first control signal according to the electrical signal output by the mirror current source through the second output terminal, and transmits the first control signal to the VOA, wherein the mirror current source
  • An electrical signal transmitted to the PD through the first output is the same size as an electrical signal transmitted by the mirrored current source to the feedback control device via the second output.
  • the feedback control device includes an ADC, a CPU and a DAC sequentially connected to a second output of the mirror current source, the output of the DAC being connected to the input of the VOA
  • the feedback control device generates a first control signal according to the electrical signal transmitted by the mirror current source through the second output end, and transmits the first control signal to the VOA, including:
  • the ADC collects a mirror current output by the mirror current source through the second output terminal, and transmits an ADC value generated according to the mirror current to the CPU;
  • the CPU compares an ADC value transmitted by the ADC with a target value preset in the CPU, and outputs an output voltage of the DAC to the DAC when the ADC value is less than the target value a second control signal, when the ADC value is greater than the target value, outputting a second control signal that increases an output voltage of the DAC to the DAC;
  • the DAC controls the DAC to reduce or increase an output voltage of the DAC according to the second control signal, and transmits the first control signal to the VOA, the first control signal is used to indicate the VOA
  • the DAC reduces the amount of attenuation of the VOA when the output voltage of the DAC is reduced, and increases the amount of attenuation of the VOA when the DAC increases the output voltage of the DAC.
  • the photodetecting device further includes a transimpedance amplifier TIA, and an input end of the TIA is connected to an output end of the PD, the method further includes:
  • the TIA amplifies a response current transmitted by the PD to the TIA, and outputs an amplified voltage signal.
  • the PD is a P-I-N type photodiode PIN or an avalanche photodiode APD.
  • the feedback control circuit and the output signal control method of the photoelectric detecting device provided by the embodiments of the present invention provide an attenuated optical signal to the photodetecting device through the VOA, and pass the feedback control device after the photodetecting device converts the optical signal into an electrical signal. Detecting an output electrical signal of the photodetecting device to generate a first control signal for adjusting an attenuation amount of the VOA, so that the VOA adjusts the intensity of the optical signal transmitted to the photodetecting device according to the first control signal, thereby realizing adjustment
  • the manner of inputting the optical signal adjusts the magnitude of the output electrical signal of the photodetecting device, and the size of the output electrical signal can be adjusted to keep it within a preset range.
  • the feedback control circuit provided by the embodiment of the present invention solves the problem of using photoelectric detection.
  • the influence of the change of the intensity of the input optical signal on the output electrical signal is large, and the stability of the output signal of the photodetecting device is poor, and the photoelectric detecting device is improved.
  • the stability of the output signal is improved.
  • FIG. 1 is a schematic structural diagram of a feedback control circuit according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of another feedback control circuit according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of still another feedback control circuit according to an embodiment of the present disclosure.
  • FIG. 4 is a flowchart of a method for controlling an output signal of a photodetection device according to an embodiment of the present invention
  • FIG. 5 is a flowchart of another method for controlling an output signal of a photodetecting device according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of still another method for controlling an output signal of a photodetection device according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a feedback control circuit according to an embodiment of the present invention.
  • the feedback control circuit method provided in this embodiment is suitable for use in the case of controlling the output signal of the photoelectric control device.
  • the feedback control circuit provided in this embodiment includes: a photodetecting device 110 , and a variable optical attenuator (VOA) 120 connected to an input end of the photo detecting device 110 .
  • the VOA 120 is configured to perform energy attenuation on the input optical signal, and transmit the attenuated optical signal to the photodetecting device 110.
  • the photodetecting device 110 is configured to convert the attenuated optical signal into an electrical signal.
  • the feedback control circuit further includes: a feedback control device 130 connected to the output end of the photodetection device 110, the output of the feedback control device 130 is connected to the input end of the VOA 120, and the feedback control device 130 is arranged to output according to the photodetection device 110
  • the electrical signal generates a first control signal and transmits the first control signal to the VOA 120 to cause the VOA 120 to adjust the amount of attenuation of the VOA 120 in accordance with the first control signal.
  • the closed loop structure formed by the VOA 120, the photodetecting device 110, and the feedback control device 130 can detect the electrical signal output by the photodetecting device 110 through the feedback control device 130, thereby outputting an electrical signal at the photodetecting device 110.
  • the feedback control device 130 outputs a first control signal to the VOA 120, the first control signal is used to instruct the VOA 120 to adjust its own attenuation amount, and the attenuation amount of the VOA 120 directly affects the transmission to the light.
  • the size of the optical signal of the electrical detection device 110 affects the magnitude of the electrical signal output by the photodetection device 110.
  • the photodetection device 110 in this embodiment may include a PD and a TIA, and the PD may be a PIN photodiode (abbreviated as PIN) or an Avalanche Photo Diode (APD).
  • PIN PIN photodiode
  • APD Avalanche Photo Diode
  • the input end of the TIA is connected to the output end of the PD, and the photodetecting device 110 in this embodiment is specifically: PIN-TIA or APD-TIA, and the working principle is: when the PD receives the optical signal provided by the VOA 120, The pn junction in the PD is reverse-biased, the photo-generated carrier drifts under the action of the electric field, and generates a response current; the response current is amplified by the TIA and outputs a voltage signal, thereby realizing the conversion of the optical signal into an electrical signal.
  • the function of initially amplifying the electrical signal that is, the PD in the PIN-TIA or APD-TIA can output a response current, and the TIA can output the amplified voltage signal.
  • the feedback control circuit provided by the embodiment provides the attenuated optical signal to the photodetecting device through the VOA, and after the photoelectric detecting device converts the optical signal into an electrical signal, the output electrical signal of the photodetecting device is performed by the feedback control device. Detecting, generating a first control signal for adjusting the amount of attenuation of the VOA, such that the VOA adjusts the intensity of the optical signal transmitted to the photodetecting device according to the first control signal, and realizing adjusting the photodetecting device by adjusting the input optical signal.
  • the size of the output electrical signal can be adjusted to keep the output electrical signal within a preset range; the feedback control circuit provided in this embodiment solves the process of converting the optical signal into an electrical signal by using the photodetector
  • the influence of the change in the intensity of the input optical signal on the output electrical signal is large, resulting in a problem of poor stability of the output signal of the photodetecting device.
  • FIG. 2 is a schematic structural diagram of another feedback control circuit according to an embodiment of the present invention.
  • the photodetection device 110 in this embodiment is shown in FIG.
  • the PD 111 is, for example, an APD or a PIN.
  • the feedback control device 130 includes an analog-to-digital converter (Analog to Digital Converter, ADC for short) 131 and a central processing unit (Central Processing Unit, referred to as: The CPU) 132 and a digital to analog converter (DAC) 133, the output of which is connected to the input of the VOA 120.
  • ADC Analog to Digital Converter
  • DAC digital to analog converter
  • the feedback control device 130 in this embodiment is configured to collect the response current of the PD 111 output through the ADC 131, compare the ADC value generated according to the response current with the target value preset in the CPU 132, and the ADC value is less than At the target value, the output second control signal controls the DAC 133 to decrease the output voltage of the DAC.
  • the output second control signal controls the DAC 133 to increase the output voltage of the DAC, and transmits the first control signal to the VOA 120 through the DAC 133 to
  • the VOA 120 is caused to reduce the attenuation amount of the VOA 120 when the DAC 133 decreases the output voltage of the DAC according to the first control signal, and increases the attenuation amount of the VOA when the DAC 133 increases the output voltage of the DAC.
  • an optical signal is generated by the light source and input into the VOA 120.
  • the VOA 120 performs energy attenuation on the optical signal according to the initial attenuation value, and simultaneously inputs the attenuated optical signal into the APD or PIN, APD or PIN.
  • the photoelectric signal converts the optical signal into a response current.
  • the response current is transmitted to the ADC 131, and the ADC 131 converts the collected response current into a digital signal, that is, an ADC value, and
  • the ADC value is reported to the CPU 132, so that the ADC value acquired by the CPU 132 is compared with a target value preset in the CPU 132 program; specifically, when the ADC value is smaller than the target value, the CPU 132 outputs to the DAC 133 for controlling the DAC 133 to decrease the DAC 133.
  • the second control signal of the output voltage reduces the attenuation of the VOA 120, so that the optical signal output by the VOA 120 increases, and the response current of the APD or PIN increases synchronously; in another case, when the ADC value is greater than the target At the time of the value, the CPU 132 outputs a second control signal for controlling the DAC 133 to increase the output voltage of the DAC 133 to the DAC 133, thereby increasing the attenuation amount of the VOA 120, thereby causing the VOA 120 to output. The signal is reduced, and the response current of the APD or the PIN is synchronously reduced.
  • the feedback control device 130 continuously adjusts the attenuation of the VOA 120 through the output voltage fed back by the DAC 133, and finally stabilizes the ADC value in the CPU 132. Within the range of the target value, at this time, the response current of the APD or PIN output is also kept within a stable range.
  • the photodetection device 110 in this embodiment may further include a TIA 112, and the photodetection device 110 is specifically a PIN-TIA or APD-TIA, and the response current outputted at the APD or the PIN is maintained in a stable range.
  • the differential output amplitude of the TIA 112 is also maintained in a stable state.
  • FIG. 3 is a schematic structural diagram of still another feedback control circuit according to an embodiment of the present invention.
  • the PD 111 in the photodetection device 110 in this embodiment is, for example, an APD or a PIN, and further includes a mirror current source 113.
  • the mirror current source 113 includes a first output terminal I out1 and a second output terminal I out2 .
  • the first output terminal I out1 is connected to the input end of the PD 111
  • the second output terminal I out2 is connected to the input end of the feedback control device 130 .
  • the mirror current source in the embodiment is for outputting the same size electrical signal to the PD 111 and the feedback control device 130 through the first output terminal I out1 and the second output terminal I out2 such that the feedback control device 130 outputs the electricity according to the mirror current source 113.
  • the signal generates a first control signal and transmits the first control signal to the VOA 120 to cause the VOA 120 to adjust the amount of attenuation of the VOA 120 in accordance with the first control signal.
  • the PD 111 since the PD 111 operates in the current sinking mode and cannot directly transmit the response current outputted by the PD 111 to the feedback control device 130, it is necessary to generate two equal current signals through the mirror current source 113, one of which The current signal is used as the input electrical signal of the PD 111, and the other current signal, that is, the mirror current is used as the input electrical signal of the feedback control device 130.
  • the magnitude of the electrical signal outputted by the PD 111 can be reflected by the magnitude of the image current, that is, the feedback control device
  • the first control signal generated by the image current for adjusting the attenuation amount of the VOA 120 is actually for adjusting the output electrical signal of the PD 111; the input of the mirror current source 113 may be a constant power supply voltage.
  • the structure of the feedback control device 130 in this embodiment is similar to that of the embodiment shown in FIG. 2, and includes the ADC 131, the CPU 132, and the DAC 133, except that the ADC 131, the CPU 132, and the DAC 133 in this embodiment are sequentially connected to the mirror current source 113.
  • the second output terminal I out2 , the output of the DAC 133 is also connected to the input of the VOA 120.
  • the feedback control device 130 in this embodiment is specifically configured to acquire the mirror current output by the mirror current source 113 through the second output terminal I out2 through the ADC 131, and the ADC value generated according to the mirror current is preset in the CPU 132.
  • the target value is compared, and when the ADC value is less than the target value, the output second control signal controls the DAC 133 to decrease the output voltage of the DAC 133.
  • the output second control signal controls the DAC 133 to increase the output voltage of the DAC
  • the first control signal is transmitted to the VOA 120 through the DAC 133 such that the VOA 120 reduces the attenuation amount of the VOA 120 when the DAC 133 decreases the output voltage of the DAC according to the first control signal, and increases the attenuation amount of the VOA 120 when the DAC 133 increases the output voltage of the DAC.
  • the target value may be analyzed and determined by a person skilled in the art according to the design requirements of the actual circuit and the range of the attenuation amount. The analysis and determination methods are conventional techniques of those skilled in the art, and are not described herein again.
  • the manner of adjusting the output electrical signal of the PD 111 by the feedback control device 130 is similar to that of the embodiment shown in FIG. 2, except that the mirror current output by the mirror current source 113 is substituted for the response current of the PD 111 output.
  • the electrical signal received by the ADC 131 is specifically the above-mentioned mirror current, and the specific implementation manner of the feedback control device 130 for outputting the first control signal according to the mirror current, and the beneficial effects achieved are the same as those of the foregoing embodiment, and thus are not described herein again.
  • the photodetection device 110 in this embodiment may also include the TIA 112, and the photodetection device 110 is specifically a PIN-TIA or an APD-TIA, and the response current outputted at the APD or the PIN is kept within a stable range. In this case, the differential output amplitude of the TIA112 is also kept in a stable state.
  • the feedback control circuit provided by the above embodiment of the present invention can adjust the feedback voltage by the feedback control device, and can ensure that the optical power of the light source in the input VOA is controlled within the attenuation range of the VOA, and the PIN-TIA can be effectively maintained and controlled.
  • the response current and voltage signals output by the APD-TIA are maintained in a stable range.
  • FIG. 4 is a flowchart of a method for controlling an output signal of a photodetecting device according to an embodiment of the present invention.
  • the method may be implemented by a feedback control circuit.
  • the method for controlling the output signal of the photodetection device by the feedback control circuit in this embodiment includes:
  • the photoelectric detecting device converts the optical signal transmitted by the VOA into an electrical signal, and converts the electrical signal It is transmitted to a feedback control device connected to the output of the photodetecting device.
  • the feedback control device generates a first control signal according to the electrical signal output by the photodetection device, and transmits the first control signal to the VOA, and the output end of the feedback control device is connected to the input end of the VOA.
  • the VOA adjusts the attenuation amount of the VOA according to the first control signal.
  • the photodetecting device in this embodiment may include a PD and a TIA
  • the PD may also be a PIN or an APD
  • the input end of the TIA is connected to the output end of the PD, that is, the photodetecting device in this embodiment.
  • it is PIN-TIA or APD-TIA.
  • the output signal control method of the photodetection device provided by the embodiment of the present invention can be performed by the feedback control circuit provided by the embodiment shown in FIG. 1 , and each step of the method of the embodiment of the present invention and the feedback control circuit provided by the embodiment of the present invention
  • the functions of the devices correspond to each other, and the implementation principles and technical effects are similar, and are not described here.
  • the PD in the photodetection device can operate, for example, in an output current mode, that is, in Source mode.
  • the PD in the photodetecting device in this embodiment may also be an APD or a PIN, and the feedback control device is specifically It includes an ADC, a CPU, and a DAC that are sequentially connected to the output of the PD, and the output of the DAC is connected to the input of the VOA.
  • the feedback control device is specifically It includes an ADC, a CPU, and a DAC that are sequentially connected to the output of the PD, and the output of the DAC is connected to the input of the VOA.
  • S130 in this embodiment may include: S1301, the ADC collects the response current of the PD output in real time, and transmits the ADC value generated according to the response current to the CPU; S1302, the CPU will ADC The transmitted ADC value is compared with a preset target value in the CPU, and when the ADC value is smaller than the target value, a second control signal for reducing the output voltage of the DAC is output to the DAC, and when the ADC value is greater than the target value, the output to the DAC is increased.
  • the DAC controls the DAC to reduce or increase the output voltage of the DAC according to the second control signal, and transmits a first control signal to the VOA, the first control signal is used to indicate that the DAC reduces the DAC
  • the output voltage reduces the amount of attenuation of the VOA, and the DAC increases the attenuation of the VOA when it increases the output voltage of the DAC.
  • the photodetection device in this embodiment may also include a TIA, and the photodetection device is PIN-TIA or APD-TIA, and the response current of the APD or PIN output is kept within a stable range. Next, the differential output amplitude of the TIA is also maintained in a stable state.
  • the output signal control method of the photodetection device provided by the embodiment of the present invention can be performed by the feedback control circuit provided by the embodiment shown in FIG. 2 of the present invention, and the steps of the method and the devices in the feedback control circuit provided by the embodiment of the present invention are The function is corresponding, and the implementation principle and technical effect are similar, and will not be described here.
  • FIG. 6 is a flowchart of still another method for controlling an output signal of a photodetecting device according to an embodiment of the present invention.
  • the PD in the photodetecting device in this embodiment is, for example, an APD or a PIN, and further includes a mirror image.
  • a current source, the mirror current source comprising a first output connected to the input of the PD and a second output connected to the input of the feedback control.
  • S130 in this embodiment may be replaced by: the feedback control device generates a first control signal according to the electrical signal output by the mirror current source through the second output terminal, and the first control signal is generated.
  • the control signal is transmitted to the VOA, wherein the electrical signal transmitted by the mirrored current source to the PD through the first output is the same as the electrical signal transmitted by the mirrored current source to the feedback control device through the second output.
  • the feedback control device also includes an ADC, a CPU, and a DAC.
  • the ADC, the CPU, and the DAC in this embodiment are sequentially connected to the second output of the mirror current source, and the output of the DAC is also connected. Go to the input of the VOA.
  • S130 in this embodiment specifically includes: S1311, the ADC collects the mirror current output by the mirror current source through the second output terminal, and transmits the ADC value generated according to the mirror current to the CPU; S1312, the CPU transmits the ADC The ADC value is compared with a preset target value in the CPU, and when the ADC value is smaller than the target value, a second control signal for reducing the output voltage of the DAC is output to the DAC, and when the ADC value is greater than the target value, the output is increased to the DAC.
  • the DAC controls the DAC to reduce or increase the output voltage of the DAC according to the second control signal, and transmits a first control signal to the VOA, the first control signal is used to indicate that the VOA DAC is reduced
  • the output voltage of the DAC reduces the amount of VOA attenuation, and the DAC increases the attenuation of the VOA when it increases the output voltage of the DAC.
  • the photodetection device in this embodiment may also include a TIA, and the photodetection device includes a PIN-TIA or an APD-TIA, and when the response current of the APD or PIN output is kept within a stable range, The differential output amplitude of the TIA is also maintained in a stable state.
  • the output signal control method of the photodetection device provided by the embodiment of the present invention can be performed by the feedback control circuit provided by the embodiment shown in FIG. 3 of the present invention, and the steps of the method are compared with the embodiment of the present invention.
  • the function of each device in the feedback control circuit is corresponding, and the implementation principle and technical effect are similar, and details are not described herein again.
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the output signal control method of the photoelectric detecting device.
  • the above technical solution improves the stability of the output signal of the photodetecting device and improves the working performance of the photodetector.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

一种反馈控制电路和光电探测装置的输出信号控制方法。包括:光电探测装置,与光电探测装置的输入端相连接的可调式光衰减器(VOA),及与光电探测装置的输出端相连接的反馈控制装置,VOA设置为对输入的光信号进行能量衰减,并将衰减后的光信号传输至光电探测装置中;与光电探测装置的输出端相连接的反馈控制装置,反馈控制装置的输出端连接到VOA的输入端,反馈控制装置设置为根据光电探测装置输出的电信号生成第一控制信号,并将第一控制信号传输至VOA。本发明实施例,提高了光电探测装置的输出信号的稳定性,提升了光电探测器的性能。

Description

一种反馈控制电路和光电探测装置的输出信号控制方法 技术领域
本文涉及但不限于光纤通信技术领域,尤其涉及一种反馈控制电路和光电探测装置的输出信号控制方法。
背景技术
随着光纤通信技术的发展,相比传统的同轴双绞线,利用光纤在通信设备中做传输介质具有传输容量大、传输距离远、传输损耗低、抗辐射抗干扰能力强,并且更加容易进行高度集成化和智能化的设备组网等优势。
目前的光纤通信市场的发展速度较快,其业务范围也逐步扩充,例如电信等网络通信都已采用光纤传输替换同轴双绞线,光纤通信技术带来的市场利润和市场需求也随之提高,在未来的信息网络中将会带来较大的影响。通常使用的光纤通信产品包括光电探测器,光电探测器中包括光电二级管(Photo-Diode,简称为:PD)和跨阻放大器(Trans-Impedance Amplifier,简称为:TIA),具体地,光电探测器可以将从光通信系统中接收到的光信号转换成电信号,并将该电信号进行一定强度的低噪声放大,从而实现将光信号转换成电信号,进而将电信号进行初步放大的功能。
然而,在采用光电探测器将光信号转换成电信号的过程中,由于输入光信号强度的变化对输出电信号的影响较大,会导致光电探测器的输出信号的稳定性差,影响了光电探测器的工作性能。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种反馈控制电路和光电探测装置的输出信号控制方法,能够提高光电探测装置的输出信号的稳定性。
第一方面,本发明实施例提供一种反馈控制电路,包括:光电探测装置、与所述光电探测装置的输入端相连接的可调式光衰减器VOA及与所述光电 探测装置的输出端相连接的反馈控制装置;所述VOA设置为,对输入的光信号进行能量衰减,并将所述衰减后的光信号传输至所述光电探测装置中;所述光电探测装置设置为,将接收到的所述衰减后的光信号转换成电信号;所述反馈控制装置的输出端连接到所述VOA的输入端,所述反馈控制装置设置为,根据所述光电探测装置输出的电信号生成第一控制信号,并将所述第一控制信号传输至所述VOA,以使所述VOA根据所述第一控制信号调整所述VOA的衰减量。
在第一方面的可选实施方式中,所述光电探测装置包括光电二极管PD,并且所述PD工作在输出电流模式下;所述反馈控制装置包括与所述PD的输出端依次连接的模数转换器ADC、中央处理器CPU和数模转换器DAC,所述DAC的输出端连接到所述VOA的输入端;
所述反馈控制装置是设置为,通过所述ADC实时采集所述PD输出的响应电流,将根据所述响应电流生成的ADC值与所述CPU中预置的目标值进行对比,并在所述ADC值小于所述目标值时,输出第二控制信号控制所述DAC减小所述DAC的输出电压,所述ADC值大于所述目标值时,输出第二控制信号控制所述DAC增加所述DAC的输出电压,并通过所述DAC向所述VOA传输所述第一控制信号,以使所VOA根据所述第一控制信号在DAC减小所述DAC的输出电压时减小所述VOA的衰减量,在DAC增大所述DAC的输出电压时增加所述VOA的衰减量。
在第一方面的可选实施方式中,所述光电探测装置包括PD和镜像电流源,并且所述PD工作在吸电流模式下;所述镜像电流源包括第一输出端和第二输出端,所述第一输出端连接到所述PD的输入端,所述第二输出端连接到所述反馈控制装置的输入端;
所述镜像电流源设置为,通过所述第一输出端和所述第二输出端向所述PD和所述反馈控制装置输出大小相同的电信号,以使所述反馈控制装置具体根据所述镜像电流源输出的电信号生成所述第一控制信号,并将所述第一控制信号传输给所述VOA,以使所述VOA根据所述第一控制信号调整所述VOA的衰减量。
根据第一方面的可选实施方式,所述反馈控制装置包括与所述镜像电流 源的第二输出端依次连接的ADC、CPU和DAC,所述DAC的输出端连接到所述VOA的输入端;
所述反馈控制装置是设置为,通过所述ADC实时采集所述镜像电流源通过所述第二输出端输出的镜像电流,将根据所述镜像电流生成的ADC值与所述CPU中预置的目标值进行对比,并在所述ADC值小于所述目标值时,输出第二控制信号控制所述DAC减小所述DAC的输出电压,所述ADC值大于所述目标值时,输出第二控制信号控制所述DAC增加所述DAC的输出电压,并通过所述DAC向所述VOA传输所述第一控制信号,以使所VOA根据所述第一控制信号在DAC减小所述DAC的输出电压时减小所述VOA的衰减量,在DAC增大所述DAC的输出电压时增加所述VOA的衰减量。
可选的,所述光电探测装置还包括跨阻放大器TIA,所述TIA的输入端连接到所述PD的输出端,所述TIA设置为,对所述PD传输至所述TIA的响应电流进行放大,并输出放大后的电压信号。
可选的,所述PD为P-I-N型光电二极管PIN或雪崩光电二极管APD。
第二方面,本发明实施例提供一种光电探测装置的输出信号控制方法,包括:
通过与光电探测装置的输入端相连接的可调式光衰减器VOA向光电探测装置传输衰减后的光信号;
所述光电探测装置将所述VOA传输的光信号转换成电信号,并将所述电信号传输至与所述光电探测装置的输出端相连接的反馈控制装置;
所述反馈控制装置根据所述光电探测装置输出的电信号生成第一控制信号,并将所述第一控制信号传输至所述VOA,其中,所述反馈控制装置的输出端与所述VOA的输入端相连接;
所述VOA根据所述第一控制信号调整所述VOA的衰减量。
在第二方面的可选实施方式中,所述光电探测装置包括光电二极管PD,并且所述PD工作在输出电流模式下,所述反馈控制装置包括与所述PD的输出端依次连接的模数转换器ADC、中央处理器CPU和数模转换器DAC,所述DAC的输出端连接到所述VOA的输入端;所述反馈控制装置根据所述光 电探测装置输出的电信号生成第一控制信号,并将所述第一控制信号传输至所述VOA,包括:
所述ADC实时采集所述PD输出的响应电流,并将根据所述响应电流生成的ADC值传输至所述CPU;
所述CPU将所述ADC传输的ADC值与所述CPU中预置的目标值进行对比,并在所述ADC值小于所述目标值时,向所述DAC输出减小所述DAC的输出电压的第二控制信号,所述ADC值大于所述目标值时,向所述DAC输出增加所述DAC的输出电压的第二控制信号;
所述DAC根据所述第二控制信号控制所述DAC减小或增加所述DAC的输出电压,并向所述VOA传输所述第一控制信号,所述第一控制信号用于指示所述VOA DAC减小所述DAC的输出电压时减小所述VOA的衰减量,DAC增大所述DAC的输出电压时增加所述VOA的衰减量。
在第二方面的可选实施方式中,所述光电探测装置包括PD和镜像电流源,并且所述PD工作在吸电流模式下,所述镜像电流源包括第一输出端和第二输出端,所述第一输出端连接到所述PD的输入端,所述第二输出端连接到所述反馈控制装置的输入端;所述反馈控制装置根据所述光电探测装置输出的电信号生成第一控制信号,并将所述第一控制信号传输至所述VOA,包括:
所述反馈控制装置具体根据所述镜像电流源通过所述第二输出端输出的电信号生成第一控制信号,并将所述第一控制信号传输至所述VOA,其中,所述镜像电流源通过所述第一输出端传输至所述PD的电信号与所述镜像电流源通过所述第二输出端传输至所述反馈控制装置的电信号的大小相同。
根据第二方面的可选实施方式,所述反馈控制装置包括与所述镜像电流源的第二输出端依次连接的ADC、CPU和DAC,所述DAC的输出端连接到所述VOA的输入端;所述反馈控制装置具体根据所述镜像电流源通过所述第二输出端传输的电信号生成第一控制信号,并将所述第一控制信号传输至所述VOA,包括:
所述ADC实时采集所述镜像电流源通过所述第二输出端输出的镜像电流,并将根据所述镜像电流生成的ADC值传输至所述CPU;
所述CPU将所述ADC传输的ADC值与所述CPU中预置的目标值进行对比,并在所述ADC值小于所述目标值时,向所述DAC输出减小所述DAC的输出电压的第二控制信号,所述ADC值大于所述目标值时,向所述DAC输出增加所述DAC的输出电压的第二控制信号;
所述DAC根据所述第二控制信号控制所述DAC减小或增加所述DAC的输出电压,并向所述VOA传输所述第一控制信号,所述第一控制信号用于指示所述VOA DAC减小所述DAC的输出电压时减小所述VOA的衰减量,DAC增大所述DAC的输出电压时增加所述VOA的衰减量。
可选的,所述光电探测装置还包括跨阻放大器TIA,所述TIA的输入端连接到所述PD的输出端,所述方法还包括:
所述TIA对所述PD传输至所述TIA的响应电流进行放大,并输出放大后的电压信号。
可选的,所述PD为P-I-N型光电二极管PIN或雪崩光电二极管APD。
本发明实施例提供的反馈控制电路和光电探测装置的输出信号控制方法,通过VOA向光电探测装置提供衰减后的光信号,并在光电探测装置将光信号转换成电信号后,通过反馈控制装置对光电探测装置的输出电信号进行检测,生成用于调节VOA的衰减量的第一控制信号,从而使得VOA根据该第一控制信号调节传输给光电探测装置的光信号的强度,实现了通过调节输入光信号的方式调整光电探测装置的输出电信号的大小,可以调节该输出电信号的大小以使其保持在预设的范围内;本发明实施例提供的反馈控制电路解决了在采用光电探测器将光信号转换成电信号的过程中,由于输入光信号强度的变化对输出电信号的影响较大,而导致光电探测装置的输出信号的稳定性较差的问题,提高了光电探测装置的输出信号的稳定性。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明实施例提供的一种反馈控制电路的结构示意图;
图2为本发明实施例提供的另一种反馈控制电路的结构示意图;
图3为本发明实施例提供的又一种反馈控制电路的结构示意图;
图4为本发明实施例提供的一种控制光电探测装置输出信号的方法的流程图;
图5为本发明实施例提供的另一种光电探测装置的输出信号控制方法的流程图;
图6为本发明实施例提供的又一种光电探测装置的输出信号控制方法的流程图。
本发明的实施方式
下文中将结合附图对本申请的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
图1为本发明实施例提供的一种反馈控制电路的结构示意图。本实施例提供的反馈控制电路方法适用于对光电控制装置的输出信号进行控制的情况中。如图1所示,本实施例提供的反馈控制电路包括:光电探测装置110,与该光电探测装置110的输入端相连接的可调式光衰减器(Variable Optical Attenuator,简称为:VOA)120,该VOA120设置为对输入的光信号进行能量衰减,并将衰减后的光信号传输至光电探测装置110中,该光电探测装置110设置为将衰减后的光信号转换成电信号;本实施例提供的反馈控制电路还包括:与光电探测装置110的输出端相连接的反馈控制装置130,该反馈控制装置130的输出端连接到VOA120的输入端,反馈控制装置130设置为根据光电探测装置110输出的电信号生成第一控制信号,并将第一控制信号传输至VOA120,以使VOA120根据第一控制信号调整VOA120的衰减量。
在本实施例中,通过VOA120、光电探测装置110和反馈控制装置130形成的闭环结构,可以通过反馈控制装置130检测光电探测装置110输出的电信号,从而在该光电探测装置110的输出电信号不符合预置的范围时,由该反馈控制装置130向VOA120输出第一控制信号,该第一控制信号用于指示VOA120调节其自身的衰减量,由于VOA120的衰减量直接影响传输至光 电探测装置110的光信号的大小,从而会影响该光电探测装置110输出的电信号的大小。
需要说明的是,本实施例中的光电探测装置110可以包括PD和TIA,该PD可以为P-I-N型光电二极管(简称为:PIN)或者为雪崩光电二极管(Avalanche Photo Diode,简称为:APD),并且TIA的输入端连接到PD的输出端,则本实施例中的光电探测装置110具体为:PIN-TIA或者APD-TIA,其工作原理是:PD接收到由VOA120提供的光信号时,由于PD中的p-n结处于反向偏置,光生载流子在电场的作用下产生漂移,并产生响应电流;该响应电流通过TIA放大并输出电压信号,这样就实现了光信号转换成电信号进而将电信号初步放大的功能;即PIN-TIA或者APD-TIA中的PD可以输出响应电流,TIA可以输出放大后的电压信号。
在相关技术中,采用光电探测器,例如上述PIN-TIA或者APD-TIA,将光信号转换成电信号的过程中,由于输入光信号的强度可能是变化的,并且不易控制,因此,该光电探测器的PD输出的响应电流的大小也是变化的,PD输出的响应电流进一步作为TIA的输入,在该响应电流的大小不稳定的情况下,TIA输出的电压信号的幅度也是变化的,从而导致现有技术中的光电探测器的输出信号的稳定性较差。
本实施例提供的反馈控制电路,通过VOA向光电探测装置提供衰减后的光信号,并在该光电探测装置将光信号转换成电信号后,通过反馈控制装置对光电探测装置的输出电信号进行检测,生成用于调节VOA的衰减量的第一控制信号,从而使得VOA根据该第一控制信号调节传输给光电探测装置的光信号的强度,实现了通过调节输入光信号的方式调整光电探测装置的输出电信号的大小,可以调节该输出电信号的大小以使其保持在预设的范围内;本实施例提供的反馈控制电路解决了在采用光电探测器将光信号转换成电信号的过程中,由于输入光信号强度的变化对输出电信号的影响较大,而导致光电探测装置的输出信号的稳定性较差的问题。
上述实施例在实现时,可选地,光电探测装置110中的PD例如可以工作在输出电流模式下,即源(Source)模式下。如图2所示,为本发明实施例提供的另一种反馈控制电路的结构示意图,本实施例中的光电探测装置110 中的PD111例如为APD或PIN,反馈控制装置130包括与PD111的输出端依次连接的模数转换器(Analog to Digital Converter,简称为:ADC)131、中央处理器(Central Processing Unit,简称为:CPU)132和数模转换器(Digital to Analog Converter,简称为:DAC)133,该DAC133的输出端连接到VOA120的输入端。
相应地,本实施例中的反馈控制装置130,是设置为通过ADC131实时采集PD111输出的响应电流,将根据响应电流生成的ADC值与CPU132中预置的目标值进行对比,并在ADC值小于目标值时,输出第二控制信号控制DAC133减小DAC的输出电压,ADC值大于目标值时,输出第二控制信号控制DAC133增加DAC的输出电压,并通过DAC133向VOA120传输第一控制信号,以使所VOA120根据第一控制信号在DAC133减小DAC的输出电压时减小VOA120的衰减量,在DAC133增大DAC的输出电压时增加VOA的衰减量。
在本实施例中,由光源产生一路光信号,输入到VOA120中,VOA120根据其初始衰减值对这一路光信号进行能量衰减,同时将衰减后的光信号输入到APD或PIN中,APD或PIN由光电效应将光信号转化为响应电流,为了保持响应电流维持在预设的目标值,将该响应电流传输至ADC131中,ADC131将采集得到的响应电流转换为数字信号,即ADC值,并将该ADC值上报给CPU132,从而由CPU132获取的ADC值与CPU132程序中预置的目标值进行比对;具体地,当该ADC值小于目标值时,CPU132向DAC133输出用于控制DAC133减小DAC133输出电压的第二控制信号,则使VOA120的衰减量减少,从而使得VOA120输出的光信号增大,进而APD或PIN的响应电流同步增大;在另一种情况中,当该ADC值大于目标值时,CPU132向DAC133输出用于控制DAC133增加DAC133输出电压的第二控制信号,则使VOA120的衰减量增加,从而使得VOA120输出的光信号减小,进而APD或PIN的响应电流同步减小;采用上述调节方式,反馈控制装置130通过DAC133反馈的输出电压不断的对VOA120的衰减量进行调节,最终使得ADC值稳定在CPU132中预置的目标值的范围内,此时,APD或PIN输出的响应电流同样保持在稳定的范围内。
与上述实施例类似地,本实施例中的光电探测装置110还可以包括TIA112,则该光电探测装置110具体为PIN-TIA或APD-TIA,在APD或PIN输出的响应电流保持在稳定的范围内的情况下,该TIA112的差分输出幅度同样保持在稳定的状态下。
在图1所示实施例的另一种可能的实现方式中,光电探测装置110中的PD111还可以工作在吸电流模式下,即Sink模式下。如图3所示,为本发明实施例提供的又一种反馈控制电路的结构示意图,本实施例中的光电探测装置110中的PD111例如为APD或PIN,并且还包括一镜像电流源113,该镜像电流源113包括第一输出端Iout1和第二输出端Iout2,第一输出端Iout1连接到PD111的输入端,第二输出端Iout2连接到反馈控制装置130的输入端,本实施例中的镜像电流源用于通过第一输出端Iout1和第二输出端Iout2向PD111和反馈控制装置130输出大小相同的电信号,使得反馈控制装置130根据镜像电流源113输出的电信号生成第一控制信号,并将第一控制信号传输给VOA120,以使VOA120根据第一控制信号调整VOA120的衰减量。
在本实施例中,由于PD111工作在吸电流模式下,不能直接将该PD111输出的响应电流传输至反馈控制装置130中,则需要通过镜像电流源113产生两路等值的电流信号,其中一路电流信号作为PD111的输入电信号,另一路电流信号,即镜像电流作为反馈控制装置130的输入电信号,因此,可以通过该镜像电流的大小反应出PD111输出的电信号的大小,即反馈控制装置130根据该镜像电流生成的用于调整VOA120的衰减量的第一控制信号,实际上是为了对PD111的输出电信号进行调节;该镜像电流源113的输入可以为一恒定的电源电压。
本实施例中的反馈控制装置130的结构与图2所示实施例类似地,同样包括ADC131、CPU132和DAC133,不同的是,本实施例中的ADC131、CPU132和DAC133依次连接到镜像电流源113的第二输出端Iout2,DAC133的输出端同样连接到VOA120的输入端。相应地,本实施例中的反馈控制装置130,具体用于通过ADC131实时采集镜像电流源113通过第二输出端Iout2输出的镜像电流,将根据该镜像电流生成的ADC值与CPU132中预置的目标值进行对比,并在ADC值小于目标值时,输出第二控制信号控制DAC133减小 DAC133的输出电压,ADC值大于目标值时,输出第二控制信号控制DAC133增加DAC的输出电压,并通过DAC133向VOA120传输第一控制信号,以使所VOA120根据第一控制信号在DAC133减小DAC的输出电压时减小VOA120的衰减量,在DAC133增大DAC的输出电压时增加VOA120的衰减量。这里,目标值可以根据实际电路的设计需求、衰减量的范围,由本领域技术人员进行分析和确定,分析和确定方法为本领域技术人员的惯用技术手段,在此不再赘述。
需要说明的是,本实施例通过反馈控制装置130对PD111的输出电信号的调整方式与图2所示实施例类似,不同之处在于通过镜像电流源113输出的镜像电流替代PD111输出的响应电流,ADC131接收到的电信号具体为上述镜像电流,反馈控制装置130根据镜像电流输出第一控制信号的具体实现方式,以及实现的有益效果均与上述实施例相同,故在此不再赘述。
需要说明的是,本实施例中的光电探测装置110同样可以包括TIA112,则该光电探测装置110具体为PIN-TIA或APD-TIA,在APD或PIN输出的响应电流保持在稳定的范围内的情况下,该TIA112的差分输出幅度同样保持在稳定的状态下。
本发明上述实施例提供的反馈控制电路通过反馈控制装置调节反馈电压的方式,可以保证只要将输入VOA中光源的光功率控制在VOA的衰减量程内,都能有效的保持与控制PIN-TIA或APD-TIA输出的响应电流和电压信号维持在稳定的范围内。另外,还可以克服由于PD自身因外界温度变化而产生的温度漂移、增益变化等对其输出的响应电流的影响,进一步提高光电探测装置输出信号的稳定性。
图4为本发明实施例提供的一种控制光电探测装置输出信号的方法的流程图。本实施例提供的方法适用于对光电控制装置的输出信号进行控制的情况中,该方法可以由反馈控制电路实现,本实施例通过反馈控制电路执行光电探测装置的输出信号控制方法的包括:
S110,通过与光电探测装置的输入端相连接的VOA向该光电探测装置传输衰减后的光信号。
S120,光电探测装置将VOA传输的光信号转换成电信号,并将电信号 传输至与该光电探测装置的输出端相连接的反馈控制装置。
S130,反馈控制装置根据光电探测装置输出的电信号生成第一控制信号,并将该第一控制信号传输至VOA,该反馈控制装置的输出端与VOA的输入端相连接。
S140,VOA根据第一控制信号调整VOA的衰减量。
需要说明的是,本实施例中的光电探测装置可以包括PD和TIA,该PD同样可以为PIN或者为APD,并且TIA的输入端连接到PD的输出端,即本实施例中的光电探测装置具体为PIN-TIA或者为APD-TIA。
本发明实施例提供的光电探测装置的输出信号控制方法可以由图1所示实施例提供的反馈控制电路执行,本发明实施例方法的每一步骤与本发明实施例提供的反馈控制电路中的各装置的功能对应,其实现原理和技术效果类似,此处不再赘述。
上述实施例在实现时,可选地,光电探测装置中的PD例如可以工作在输出电流模式下,即Source模式下。如图5所示,为本发明实施例提供的另一种光电探测装置的输出信号控制方法的流程图,本实施例中的光电探测装置中的PD同样可以为APD或PIN,反馈控制装置具体包括与PD的输出端依次连接的ADC、CPU和DAC,该DAC的输出端连接到VOA的输入端。在上述图4所示实施例的基础上,本实施例中的S130可以包括:S1301,ADC实时采集PD输出的响应电流,并将根据响应电流生成的ADC值传输至CPU;S1302,CPU将ADC传输的ADC值与CPU中预置的目标值进行对比,并在ADC值小于目标值时,向DAC输出减小DAC的输出电压的第二控制信号,ADC值大于目标值时,向DAC输出增加DAC的输出电压的第二控制信号;S1303,DAC根据第二控制信号控制DAC减小或增加DAC的输出电压,并向VOA传输第一控制信号,该第一控制信号用于指示DAC减小DAC的输出电压时减小VOA的衰减量,DAC增大DAC的输出电压时增加VOA的衰减量。
与上述实施例类似地,本实施例中的光电探测装置同样可以包括TIA,则该光电探测装置为PIN-TIA或APD-TIA,在APD或PIN输出的响应电流保持在稳定的范围内的情况下,该TIA的差分输出幅度同样保持在稳定的状态下。
本发明实施例提供的光电探测装置的输出信号控制方法可以由本发明图2所示实施例提供的反馈控制电路执行,该方法的各步骤与本发明实施例提供的反馈控制电路中的各装置的功能对应,其实现原理和技术效果类似,此处不再赘述。
在图4所示实施例的另一种可能的实现方式中,光电探测装置中的PD还可以工作在吸电流模式下,即Sink模式下。如图6所示,为本发明实施例提供的又一种光电探测装置的输出信号控制方法的流程图,本实施例中的光电探测装置中的PD例如为APD或PIN,并且还包括一镜像电流源,该镜像电流源包括第一输出端和第二输出端,第一输出端连接到PD的输入端,第二输出端连接到反馈控制装置的输入端。在上述图4所示实施例的基础上,本实施例中的S130可以替换为:反馈控制装置具体根据镜像电流源通过第二输出端输出的电信号生成第一控制信号,并将该第一控制信号传输至VOA,其中,该镜像电流源通过第一输出端传输至PD的电信号与镜像电流源通过第二输出端传输至反馈控制装置的电信号的大小相同。
本实施例在实现时,反馈控制装置同样包括ADC、CPU和DAC,不同的是,本实施例中的ADC、CPU和DAC依次连接到镜像电流源的第二输出端,DAC的输出端同样连接到VOA的输入端。相应地,本实施例中的S130具体包括:S1311,ADC实时采集镜像电流源通过第二输出端输出的镜像电流,并将根据镜像电流生成的ADC值传输至CPU;S1312,CPU将ADC传输的ADC值与CPU中预置的目标值进行对比,并在ADC值小于目标值时,向DAC输出减小DAC的输出电压的第二控制信号,ADC值大于目标值时,向DAC输出增加所述DAC的输出电压的第二控制信号;S1313,DAC根据第二控制信号控制DAC减小或增加DAC的输出电压,并向VOA传输第一控制信号,该第一控制信号用于指示VOA DAC减小DAC的输出电压时减小VOA的衰减量,DAC增大DAC的输出电压时增加VOA的衰减量。
需要说明的是,本实施例中的光电探测装置同样可以包括TIA,则该光电探测装置包括PIN-TIA或APD-TIA,在APD或PIN输出的响应电流保持在稳定的范围内的情况下,该TIA的差分输出幅度同样保持在稳定的状态下。
本发明实施例提供的光电探测装置的输出信号控制方法可以由本发明图3所示实施例提供的反馈控制电路执行,该方法的各步骤与本发明实施例提 供的反馈控制电路中的各装置的功能对应,其实现原理和技术效果类似,此处不再赘述。
本发明实施例还提供一种计算机存储介质,计算机存储介质中存储有计算机可执行指令,计算机可执行指令用于执行上述光电探测装置的输出信号控制方法。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件(例如处理器)完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的每个模块/单元可以采用硬件的形式实现,例如通过集成电路来实现其相应功能,也可以采用软件功能模块的形式实现,例如通过处理器执行存储于存储器中的程序/指令来实现其相应功能。本发明不限制于任何特定形式的硬件和软件的结合。”
虽然本申请所揭露的实施方式如上,但所述的内容仅为便于理解本申请而采用的实施方式,并非用以限定本申请,如本发明实施方式中的具体的实现方法。任何本申请所属领域内的技术人员,在不脱离本申请所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本申请的专利保护范围,仍须以所附的权利要求书所界定的范围为准。
工业实用性
上述技术方案提高了光电探测装置的输出信号的稳定性,提升了光电探测器的工作性能。

Claims (12)

  1. 一种反馈控制电路,所述反馈控制电路包括:光电探测装置、与所述光电探测装置的输入端相连接的可调式光衰减器VOA及与所述光电探测装置的输出端相连接的反馈控制装置;
    所述VOA设置为,对输入的光信号进行能量衰减,并将所述衰减后的光信号传输至所述光电探测装置中;
    所述光电探测装置设置为,将接收到的所述衰减后的光信号转换成电信号;
    所述反馈控制装置的输出端连接到所述VOA的输入端,所述反馈控制装置设置为,根据所述光电探测装置输出的电信号生成第一控制信号,并将所述第一控制信号传输至所述VOA,以使所述VOA根据所述第一控制信号调整所述VOA的衰减量。
  2. 根据权利要求1所述的反馈控制电路,其中,所述光电探测装置包括光电二极管PD,并且所述PD工作在输出电流模式下;所述反馈控制装置包括与所述PD的输出端依次连接的模数转换器ADC、中央处理器CPU和数模转换器DAC,所述DAC的输出端连接到所述VOA的输入端;
    所述反馈控制装置是设置为,通过所述ADC实时采集所述PD输出的响应电流,将根据所述响应电流生成的ADC值与所述CPU中预置的目标值进行对比,并在所述ADC值小于所述目标值时,输出第二控制信号控制所述DAC减小所述DAC的输出电压,所述ADC值大于所述目标值时,输出第二控制信号控制所述DAC增加所述DAC的输出电压,并通过所述DAC向所述VOA传输所述第一控制信号,以使所VOA根据所述第一控制信号在DAC减小所述DAC的输出电压时减小所述VOA的衰减量,在DAC增大所述DAC的输出电压时增加所述VOA的衰减量。
  3. 根据权利要求1所述的反馈控制电路,其中,所述光电探测装置包括PD和镜像电流源,并且所述PD工作在吸电流模式下;所述镜像电流源包括第一输出端和第二输出端,所述第一输出端连接到所述PD的输入端,所述第二输出端连接到所述反馈控制装置的输入端;
    所述镜像电流源设置为,通过所述第一输出端和所述第二输出端向所述PD和所述反馈控制装置输出大小相同的电信号,以使所述反馈控制装置根据所述镜像电流源输出的电信号生成所述第一控制信号,并将所述第一控制信号传输给所述VOA,以使所述VOA根据所述第一控制信号调整所述VOA的衰减量。
  4. 根据权利要求3所述的反馈控制电路,其中,所述反馈控制装置包括与所述镜像电流源的第二输出端依次连接的ADC、CPU和DAC,所述DAC的输出端连接到所述VOA的输入端;
    所述反馈控制装置是设置为,通过所述ADC实时采集所述镜像电流源通过所述第二输出端输出的镜像电流,将根据所述镜像电流生成的ADC值与所述CPU中预置的目标值进行对比,并在所述ADC值小于所述目标值时,输出第二控制信号控制所述DAC减小所述DAC的输出电压,所述ADC值大于所述目标值时,输出第二控制信号控制所述DAC增加所述DAC的输出电压,并通过所述DAC向所述VOA传输所述第一控制信号,以使所VOA根据所述第一控制信号在DAC减小所述DAC的输出电压时减小所述VOA的衰减量,在DAC增大所述DAC的输出电压时增加所述VOA的衰减量。
  5. 根据权利要求1~4中任一项所述的反馈控制电路,所述光电探测装置还包括跨阻放大器TIA,所述TIA的输入端连接到所述PD的输出端,所述TIA设置为,对所述PD传输至所述TIA的响应电流进行放大,并输出放大后的电压信号。
  6. 根据权利要求1~4中任一项所述的反馈控制电路,其中,所述PD为P-I-N型光电二极管PIN或雪崩光电二极管APD。
  7. 一种光电探测装置的输出信号控制方法,所述输出信号控制方法包括:
    通过与光电探测装置的输入端相连接的可调式光衰减器VOA向光电探测装置传输衰减后的光信号;
    所述光电探测装置将所述VOA传输的光信号转换成电信号,并将所述电信号传输至与所述光电探测装置的输出端相连接的反馈控制装置;
    所述反馈控制装置根据所述光电探测装置输出的电信号生成第一控制信 号,并将所述第一控制信号传输至所述VOA,其中,所述反馈控制装置的输出端与所述VOA的输入端相连接;
    所述VOA根据所述第一控制信号调整所述VOA的衰减量。
  8. 根据权利要求7所述的光电探测装置的输出信号控制方法,其中,所述光电探测装置包括光电二极管PD,并且所述PD工作在输出电流模式下,所述反馈控制装置包括与所述PD的输出端依次连接的模数转换器ADC、中央处理器CPU和数模转换器DAC,所述DAC的输出端连接到所述VOA的输入端;所述反馈控制装置根据所述光电探测装置输出的电信号生成第一控制信号,并将所述第一控制信号传输至所述VOA,包括:
    所述ADC实时采集所述PD输出的响应电流,并将根据所述响应电流生成的ADC值传输至所述CPU;
    所述CPU将所述ADC传输的ADC值与所述CPU中预置的目标值进行对比,并在所述ADC值小于所述目标值时,向所述DAC输出减小所述DAC的输出电压的第二控制信号,所述ADC值大于所述目标值时,向所述DAC输出增加所述DAC的输出电压的第二控制信号;
    所述DAC根据所述第二控制信号控制所述DAC减小或增加所述DAC的输出电压,并向所述VOA传输所述第一控制信号,所述第一控制信号用于指示所述VOA DAC减小所述DAC的输出电压时减小所述VOA的衰减量,DAC增大所述DAC的输出电压时增加所述VOA的衰减量。
  9. 根据权利要求7所述的光电探测装置的输出信号控制方法,其中,所述光电探测装置包括PD和镜像电流源,并且所述PD工作在吸电流模式下,所述镜像电流源包括第一输出端和第二输出端,所述第一输出端连接到所述PD的输入端,所述第二输出端连接到所述反馈控制装置的输入端;所述反馈控制装置根据所述光电探测装置输出的电信号生成第一控制信号,并将所述第一控制信号传输至所述VOA,包括:
    所述反馈控制装置具体根据所述镜像电流源通过所述第二输出端输出的电信号生成第一控制信号,并将所述第一控制信号传输至所述VOA,其中,所述镜像电流源通过所述第一输出端传输至所述PD的电信号与所述镜像电 流源通过所述第二输出端传输至所述反馈控制装置的电信号的大小相同。
  10. 根据权利要求9所述的光电探测装置的输出信号控制方法,其中,所述反馈控制装置包括与所述镜像电流源的第二输出端依次连接的ADC、CPU和DAC,所述DAC的输出端连接到所述VOA的输入端;所述反馈控制装置具体根据所述镜像电流源通过所述第二输出端传输的电信号生成第一控制信号,并将所述第一控制信号传输至所述VOA,包括:
    所述ADC实时采集所述镜像电流源通过所述第二输出端输出的镜像电流,并将根据所述镜像电流生成的ADC值传输至所述CPU;
    所述CPU将所述ADC传输的ADC值与所述CPU中预置的目标值进行对比,并在所述ADC值小于所述目标值时,向所述DAC输出减小所述DAC的输出电压的第二控制信号,所述ADC值大于所述目标值时,向所述DAC输出增加所述DAC的输出电压的第二控制信号;
    所述DAC根据所述第二控制信号控制所述DAC减小或增加所述DAC的输出电压,并向所述VOA传输所述第一控制信号,所述第一控制信号用于指示所述VOA DAC减小所述DAC的输出电压时减小所述VOA的衰减量,DAC增大所述DAC的输出电压时增加所述VOA的衰减量。
  11. 根据权利要求7~10中任一项所述的光电探测装置的输出信号控制方法,所述光电探测装置还包括跨阻放大器TIA,所述TIA的输入端连接到所述PD的输出端,所述方法还包括:
    所述TIA对所述PD传输至所述TIA的响应电流进行放大,并输出放大后的电压信号。
  12. 根据权利要求7~10中任一项所述的光电探测装置的输出信号控制方法,其中,所述PD为P-I-N型光电二极管PIN或雪崩光电二极管APD。
PCT/CN2016/081600 2015-06-25 2016-05-10 一种反馈控制电路和光电探测装置的输出信号控制方法 WO2016206487A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510358037.6 2015-06-25
CN201510358037.6A CN107026694A (zh) 2015-06-25 2015-06-25 一种反馈控制电路和光电探测装置的输出信号控制方法

Publications (1)

Publication Number Publication Date
WO2016206487A1 true WO2016206487A1 (zh) 2016-12-29

Family

ID=57584695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/081600 WO2016206487A1 (zh) 2015-06-25 2016-05-10 一种反馈控制电路和光电探测装置的输出信号控制方法

Country Status (2)

Country Link
CN (1) CN107026694A (zh)
WO (1) WO2016206487A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113324650A (zh) * 2020-10-28 2021-08-31 浙江大学 一种光照强度自适应光学接收端
CN116488730A (zh) * 2023-06-25 2023-07-25 广东电网有限责任公司广州供电局 光信号功率控制的光纤传输系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201215954Y (zh) * 2008-07-14 2009-04-01 深圳新飞通光电子技术有限公司 一种数字光接收器的光功率检测监控电路
US20090242772A1 (en) * 2008-03-29 2009-10-01 Alliance Fiber Optic Products, Inc. Motor Driven Variable Optical Attenuator with IR Sensor Closed-loop Control
CN202168083U (zh) * 2011-07-17 2012-03-14 湖北久之洋红外系统有限公司 一种大动态范围光电探测接收装置
CN202257801U (zh) * 2011-09-23 2012-05-30 无锡科晟光子科技有限公司 光纤传感系统连续光波自适应大动态范围信号处理模块

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090242772A1 (en) * 2008-03-29 2009-10-01 Alliance Fiber Optic Products, Inc. Motor Driven Variable Optical Attenuator with IR Sensor Closed-loop Control
CN201215954Y (zh) * 2008-07-14 2009-04-01 深圳新飞通光电子技术有限公司 一种数字光接收器的光功率检测监控电路
CN202168083U (zh) * 2011-07-17 2012-03-14 湖北久之洋红外系统有限公司 一种大动态范围光电探测接收装置
CN202257801U (zh) * 2011-09-23 2012-05-30 无锡科晟光子科技有限公司 光纤传感系统连续光波自适应大动态范围信号处理模块

Also Published As

Publication number Publication date
CN107026694A (zh) 2017-08-08

Similar Documents

Publication Publication Date Title
US11770192B2 (en) Wavelength locking optical module, device, and wavelength locking method
WO2017215481A1 (zh) 一种光功率检测方法、装置、设备及光模块
JP7234295B2 (ja) 光受信装置
Huang et al. Breakthrough of 25Gb/s germanium on silicon avalanche photodiode
EP3680633A1 (en) Optical power detection device and apparatus
WO2016206487A1 (zh) 一种反馈控制电路和光电探测装置的输出信号控制方法
WO2016187826A1 (zh) 一种光接收机和基于光接收机的光信号调节方法
WO2011082006A2 (en) High dynamic range apd optical receiver for analog applications
Kowalczyk et al. Influence of reverse bias on the LEDs properties used as photo-detectors in VLC systems
US20180006756A1 (en) Optical receiver, optical transceiver, and optical signal reception control method
CN201577092U (zh) 无源光网络发射接收装置
TW201421926A (zh) 用於提升光接收器靈敏度之檢光裝置
Zhou et al. Waveguide integrated pin-photodiode array with high power and high linearity
Loquai et al. High-Speed, Large-Area POF Receivers for Fiber Characterization and Data Transmission $\geq $10-Gb/s Based on MSM-Photodetectors
JP5938007B2 (ja) 光受信装置及び光受信方法
JP2014165644A (ja) 光受信器および光受信方法
CN207968495U (zh) 一种远距离传输的100g小型化光模块
CN114172585B (zh) 探测装置及激光通信系统
Youn et al. A 12.5-Gb/s SiGe BiCMOS optical receiver with a monolithically integrated 850-nm avalanche photodetector
Nguyen et al. Hybrid silicon DQPSK receiver
CN202159163U (zh) 温度控制型低功耗10G 80km SFP+光模块
JP2024060711A (ja) 受光回路
JPH03296309A (ja) 光受信回路
CN214583654U (zh) 一种提高光电二极管动态范围的装置
CN202721699U (zh) 一种自适应的双偏振相干四相相移键控接收机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16813603

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16813603

Country of ref document: EP

Kind code of ref document: A1