WO2016204385A1 - Method and apparatus for detecting vibration information of electric railway vehicle - Google Patents

Method and apparatus for detecting vibration information of electric railway vehicle Download PDF

Info

Publication number
WO2016204385A1
WO2016204385A1 PCT/KR2016/002816 KR2016002816W WO2016204385A1 WO 2016204385 A1 WO2016204385 A1 WO 2016204385A1 KR 2016002816 W KR2016002816 W KR 2016002816W WO 2016204385 A1 WO2016204385 A1 WO 2016204385A1
Authority
WO
WIPO (PCT)
Prior art keywords
pantograph
detecting
image
template
input image
Prior art date
Application number
PCT/KR2016/002816
Other languages
French (fr)
Korean (ko)
Inventor
박영
이기원
조용현
권삼영
박철민
Original Assignee
한국철도기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150084395A external-priority patent/KR101707995B1/en
Priority claimed from KR1020160007124A external-priority patent/KR101787011B1/en
Application filed by 한국철도기술연구원 filed Critical 한국철도기술연구원
Priority to CN201680035120.2A priority Critical patent/CN107743577B/en
Publication of WO2016204385A1 publication Critical patent/WO2016204385A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M1/00Power supply lines for contact with collector on vehicle
    • B60M1/12Trolley lines; Accessories therefor
    • B60M1/28Manufacturing or repairing trolley lines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • G06T7/74Determining position or orientation of objects or cameras using feature-based methods involving reference images or patches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence

Definitions

  • the present invention relates to a method and apparatus for detecting vibration information of a pantograph-based electric railway vehicle.
  • the pantograph is a core facility of an electric rail vehicle that supplies electric energy to a vehicle by contacting a catenary.
  • the pantograph is mechanically in contact with the tramline that supplies the electric energy during operation, thereby causing abrasion and vibration, and in non-contact, an arc phenomenon in which the electric energy is discharged is generated.
  • the abnormal vibration is caused by various causes such as an abnormality of the pantograph or an overspeed, a line anomaly, and cause an arc phenomenon by causing non-contact between the pantograph and the tramline.
  • the abnormal vibration causes the tram line to be fatigued, thereby causing fatigue of the tram line-related parts, causing damage to the tram line and the related parts.
  • the tramline is a facility for stably supplying electricity to the railway body, and it is necessary to detect the deformation and damage of the tramline due to the vehicle or external factors and maintain the optimal state according to the regulations of the electric railway facilities.
  • the horizontal distance from the trajectory center of the tram line is called the deviation, and if the deviation of the tram line is too large, the current collector will leave the tank line and cause an accident. Therefore, the deviation of the tramline is prescribed with a certain limit, and the deviation of the tramline is usually within 250 mm from the center of the track perpendicular to the trajectory.
  • the current collector needs to be distributed on the effective surface to collect current to evenly wear the pantograph.
  • the catenary is composed of a catenary in direct contact with the electric vehicle, a support supporting the same, a feeder, and a return line. The catenary is the part that supplies electric vehicles. Since the high voltage is always flowing, the performance should be excellent. Dynamic deviation, which indicates the alignment of contact points between trains and tram lines on electric railways, is one of the criteria for determining whether a train can be supplied with a stable current and is one of the important criteria for evaluating the safety performance of a train.
  • Korean Patent Publication No. 2014-0111712 (Pantron Graph Measuring Method and Pantograph Measuring Apparatus) acquires an image of a marker installed on a pantograph from a line sensor, generates a construction image from the acquired image, and performs image processing.
  • a method of estimating the position of the height of the tramline by measuring the position of the pantograph.
  • a sensor for monitoring vibration such as an accelerometer is attached to the pantograph and insulated therefrom, and then measured through the sensor to detect vibration of the pantograph.
  • the pantograph transmits electric energy to the vehicle, high voltage and high current are always applied, which makes it difficult to attach a sensor for vibration detection.
  • Korean Patent No. 1058179 name of the invention: Pantograph Defect Monitoring System
  • Pantograph Defect Monitoring System which is a prior art, uses a reference image to remove a noise of an image obtained from a camera.
  • Japanese Patent No. 5534058 discloses a wear measurement apparatus and a method for obtaining a wear measurement value of an electric vehicle in consideration of an inclination angle of a pantograph.
  • the present invention uses a general camera capable of acquiring continuous images to increase the accuracy of dynamic deviation measurement by detecting the position of the pantograph and the position of the tramline without being affected by the brightness conditions. To provide a method.
  • a method for detecting vibration information of a pantograph-based electric railway vehicle including: determining a pantograph template; Comparing the pantograph template with the input image acquired by the camera and detecting the pantograph; And detecting vibration information of the pantograph based on the detected positional change of the pantograph according to the comparison of each frame of the input image and the pantograph template.
  • the vibration information detection apparatus for a pantograph-based electric railway vehicle is a communication module for receiving the image captured by the pantograph, a memory for storing the vibration detection program of the pantograph and executing the vibration detection program of the pantograph
  • the processor includes a processor, the processor determines a pantograph template according to the execution of the program, compares the pantograph template and the input image acquired by the camera, detects the pantograph, and detects the pantograph template by comparing each frame of the input image with the pantograph template. The vibration information of the pantograph is detected based on the changed position of the pantograph.
  • the cause of the abnormality can be determined during operation of the electric railway vehicle because the abnormality of the current collector plate of the pantograph, the abnormality of the line, or the abnormality caused by the change of the tension of the electric cable line is different according to the inherent frequency. After the operation, it is easy to check the suspected parts if necessary.
  • FIG. 1A is a block diagram of a method for detecting a dynamic deviation of a catenary vehicle that is not affected by a change in brightness according to a first embodiment of the present invention.
  • FIG. 1B is a block diagram illustrating detailed steps constituting step S10 in FIG. 1A.
  • FIG. 2 shows an apparatus for detecting a dynamic deviation of a tram line according to a first embodiment of the present invention.
  • FIG 3 illustrates a process of calculating a feature vector and classifying a reference image into classes based on the feature vector, according to the first embodiment of the present invention.
  • FIG. 4 is a diagram showing a reference image divided by class according to the first embodiment of the present invention.
  • FIG. 5 is a view illustrating a process of updating and resetting a classified class according to the first embodiment of the present invention.
  • FIG. 6 illustrates a case where a feature vector acquired according to the first embodiment of the present invention is different for each class.
  • FIG. 7 illustrates a state in which the detection unit detects the pantograph from the pantograph template according to the first embodiment of the present invention.
  • FIG. 8 is a diagram illustrating a method of detecting a catenary due to a fusion of a Hough transform and a binarization according to a first embodiment of the present invention.
  • FIG. 9A shows a correctly detected pantograph image according to the first embodiment of the present invention.
  • FIG 9B illustrates an incorrectly detected pantograph image according to the first embodiment of the present invention.
  • FIG. 10A illustrates a process of detecting a contact surface and a center point by using an attachment marker according to a first embodiment of the present invention.
  • FIG. 10B shows a marker for attachment according to the first embodiment of the present invention.
  • FIG. 11 is a configuration diagram of a vibration detection apparatus of a pantograph of an electric railway vehicle according to a second embodiment of the present invention.
  • FIG. 12 is a diagram for describing a method of detecting a pantograph for each image frame according to the second embodiment of the present invention.
  • FIG. 13 is a diagram for describing a method of measuring an angle between a horizontal line and a current collector plate in a detected pantograph according to a second embodiment of the present invention.
  • FIG. 14 is a diagram for describing a method of calculating a vibration frequency of a pantograph based on an angle according to a second embodiment of the present invention.
  • 15A and 15B are views for explaining a method of calculating the vibration intensity of the pantograph based on the magnitude of the angle according to the second embodiment of the present invention.
  • FIG. 16 is a view for explaining a method of measuring left and right displacements of a horizontal line and a current collector plate according to a second embodiment of the present invention.
  • FIG. 17 is a diagram for describing a method of calculating a frequency based on an average value of left and right displacements according to a second embodiment of the present invention.
  • FIG. 18 is a flowchart illustrating a vibration detection method of a pantograph of an electric railway vehicle according to a second embodiment of the present invention.
  • the present invention determines the pantograph template, compares the pantograph template and the input image acquired by the camera to detect the pantograph, and based on the positional change of the pantograph according to the comparison of each frame and pantograph template of the input image, the vibration of the pantograph.
  • a method and apparatus for detecting vibration information of a pantograph-based electric railway vehicle for detecting information is a method and apparatus for detecting vibration information of a pantograph-based electric railway vehicle for detecting information.
  • the first embodiment relates to a method for detecting a dynamic deviation of a catenary.
  • an image is acquired through a measuring camera and a sensor disposed at an upper railroad, and the acquired image is analyzed to analyze the acquired image.
  • the present invention relates to a method for detecting a dynamic deviation between a vehicle and a vehicle line.
  • the second embodiment relates to a method for detecting a pantograph by comparing a pantograph template with an image photographed by a camera disposed on an upper railroad, and detecting pantograph vibration of an electric railway vehicle using an image processing technique.
  • FIG. 1A and 1B are block diagrams showing the overall steps in order according to the first embodiment of the present invention
  • FIG. 2 shows an apparatus 1 for detecting a dynamic deviation of a tram line according to the first embodiment of the present invention.
  • the apparatus for detecting a dynamic deviation of the tramline 1 includes a training unit 10, a detection unit 30, and a contact intersection calculation unit 50.
  • the apparatus for detecting the dynamic deviation of the tramline 1 may detect the dynamic deviation of the pantograph 70 and the tramline 90 of the input image by comparing the brightness of the reference image.
  • the training unit 10 may acquire a plurality of reference images by dividing similar types with different brightness conditions and obtaining an optimal feature vector 101.
  • the training unit 10 may previously determine a pantograph template 80 representing a reference image to be contrasted by comparing the feature vector generated from the selected reference image with the feature vector acquired from the input image.
  • the detector 30 may detect the pantograph 70 and the tramline 90 existing in the background image from the pantograph template 80.
  • the contact intersection calculation unit 50 detects the contact surface 709 and the center point 707 from the pantograph template 80, and uses the contact surface 709 and the center point 707 to dynamically adjust the vehicle line 90 and the pantograph 70. The deviation can be calculated.
  • the apparatus for detecting the dynamic deviation of the tram line 1 may detect the dynamic deviation of the input image without interference with brightness.
  • the training unit 10 may be defined by matching different brightness conditions to a predetermined number of reference images 80 according to the acquisition conditions of the image.
  • the training unit 10 may calculate the feature vector 101 by digitizing brightness, variance, correlation, etc. of the reference image, and classify the reference image 80 into a class 103 based on the feature vector 101.
  • the training unit 10 may acquire a plurality of similar images for defining the reference image 80 by using a camera and a sensor installed on the vehicle, and the obtained images may have different degrees of light, exposure value of the lens, and focus. Can be. For example, when sunlight is reflected onto the pantograph 70, the image of the pantograph 70 having a high brightness is obtained, and the pantograph 70 may appear relatively dark in a clouded state.
  • the training unit 10 collects reference images for each defined type, and needs to condition the class 103 in a situation where the feature vector 101 is different from the same reference image. It is a Vector Machine (SVM).
  • SVM Vector Machine
  • the support vector machine may store the feature information of the quantifiable image, such as the average of the brightness of the reference image 80, the contrast ratio, etc. in the form of the feature vector 101.
  • the feature vector 101 stores quantifiable information in a vector form, and the stored information may be different depending on lightness conditions.
  • the training unit 10 may minimize an error in classifying the class 103 using the support vector machine.
  • the training unit 10 may perform a linear classification process for performing training to classify the reference image.
  • the training unit 10 may extract a feature from a reference image including a plurality of pantographs 70 and a chariot line 90 obtained under various brightness conditions and digitize it according to the brightness conditions.
  • the training unit 10 may provide a numerical brightness condition and may provide information for the detection unit 30 to determine the pantograph template 80 according to the numerical value.
  • the training unit 10 may quantify and store the average of the brightness, the brightness of the tramline 90, and the contrast ratio with the pantograph 70 in the reference image as the feature vector 101.
  • the feature vector 101 may be digitized to represent one reference image, and the training unit 10 may classify the reference image for each class 103 with reference to the feature vector 101.
  • the support vector machine calculates a brightness condition from the reference image, stores it as the feature vector 101, and classifies the reference image for each class 103 with reference to the stored feature vector 101.
  • the support vector machine may classify a plurality of reference images measured by the camera into classes 103 such as a bright section, a dark section, a tunnel section, and a background interference.
  • classes 103 such as a bright section, a dark section, a tunnel section, and a background interference.
  • the present invention is not limited thereto, and the class 103 may be divided and set according to the brightness condition.
  • the training unit 10 may repeat the above classification process whenever reference images are acquired. Since the training unit 10 may classify the class 103 through the feature vector 101, the process of calculating the feature vector 101 is important.
  • FIG. 5 is a view showing a process of resetting the class 103 according to the first embodiment of the present invention.
  • the updated feature vector 101 is calculated.
  • the process of resetting the class 103 is performed.
  • a difference in average brightness between classes 103 is obtained, and when half or more of the difference is set as the reset threshold 105, and the brightness difference of the current image exceeds the corresponding reset threshold 105, Reset class 103.
  • FIG. 6 shows a simplified two-dimensional example of the feature vector 101 for each class 103 according to the first embodiment of the present invention.
  • a two-dimensional feature vector 101 is formed.
  • the training unit 10 of the present invention can set a decision boundary for which class 103 the feature vector 101 of the class 103 corresponds to using a support vector machine algorithm.
  • the method for obtaining the crystal boundary of the feature vector 101 for the class 103 is not limited to the support vector machine.
  • the training unit 10 selects a class 103 such as a normal situation, a tunnel situation, a background interference situation, an arc occurrence situation, etc. to collect a reference image; Constructing a feature vector 101 by quantifying features such as brightness, correlation, and dispersion for each zone of the input image; A reset step for updating the class 103; Comparing the feature vector of the input image with the feature vector 101 of the current class to determine a class 103 most suitable for the input image; The method may include setting a pantograph template 80 corresponding to the determined class 103.
  • the detector 30 detects the position of the pantograph 70 by using the reference pantograph image 80 determined by the training unit 10, and calculates the dynamic deviation of the tramline 90 based on the position of the pantograph.
  • the detector 30 may detect the pantograph 70 from the pantograph template 80 determined by the training unit 10.
  • the detector 30 may extract the pantograph 70 from the pantograph template 80 by using Equation 1 below.
  • I is an input image
  • T is a pantograph template image
  • w is an input vector
  • X is a coordinate in a pantograph template image
  • p is a linear transformation parameter of the input vector.
  • the detector 30 may determine an optimal pantograph template 80 through the identification process and perform a linear transformation w (x, p) of the input image.
  • the detector 30 may obtain a point having the highest similarity in the pantograph template 80 through this operation.
  • FIG. 8 illustrates the detection of the tramline 90 according to the fusion of Hough transform, which is a method of detecting a straight line, and binarization, which is a method of distinguishing a background from a foreground, according to a first embodiment of the present invention.
  • the detector 30 performs binarization of an input image; And limiting brightness, height, width, area, and angle of the tramline 90, and comparing the binarized value with the pantograph template 80.
  • the detector 30 may use a template matching technique that extracts the brightness of the input image and compares it with the pantograph template 80 using [Equation 1].
  • FIG. 9A shows an accurately detected pantograph 70 image according to the first embodiment of the present invention.
  • 9B illustrates an incorrectly detected pantograph 70 image according to the first embodiment of the present invention.
  • the detector 30 may detect the actual position and the detected position to be almost identical. In this case, it is possible to accurately calculate the dynamic deviation of the tramline 90.
  • the detector 30 may detect the actual position and the detected position differently, and incorrectly calculate the dynamic deviation. Therefore, it can be seen that the reference pantograph template 80 must be set correctly in order to find the correct pantograph 70 and the catenary line 90.
  • the contact intersection calculator 50 may calculate the dynamic deflection of the tramline 90 using the detected pantograph 70 and the tramline 90.
  • the contact intersection calculation unit 50 detects a contact surface 709 corresponding to a horizontal plane in which the detected tramline 90 and the pantograph 70 contact each other; Detecting a center point 707 of the pantograph 70 from the contact surface 709; And obtaining an intersection point of the catenary line 90 and the contact surface 709.
  • the contact intersection calculator 50 may calculate a dynamic deviation of the intersection from the center point 707.
  • the detecting of the contact surface 709 by the contact intersection calculator 50 may include: obtaining a straight line of the pantograph 70 using a Hough transform from an input image; And estimating a point where the straight line rises to contact the catenary line 90 as the contact surface 709. That is, since the pantograph 70 is in close contact with the chariot line 90 suspended in the air using pneumatic pressure, if the horizontal plane of the pantograph 70 and the chariot line 90 intersect through the binarization image, the actual contact point and Similar data can be obtained. In this case, a gap may occur between the pantograph 70 and the tramline 90 due to vibration. However, since the gap is very weak, the gap may be included in the error range even if approximated.
  • the contact intersection calculator 50 may detect the contact surface 709, the center point 707, and the intersection point, and calculate a dynamic deviation of the tramline 90 by calculating the distance from the center point 707 to the intersection point.
  • a proportional expression using the length of the pantograph 70 at the detected intersection point, an accurate value may be measured by converting the detected distance in pixels by mm.
  • the measurement may be performed by using the dynamic deviation detection apparatus 1 of the tank line, but there is also a method of simplifying the pattern graph detection by using the attachment marker.
  • 10A illustrates a process of detecting the contact surface 709 and the center point 707 by using the attaching marker according to the first embodiment of the present invention.
  • 10B shows a marker for attachment according to the first embodiment of the present invention.
  • a separate marker such as FIG. 10B may be attached to the pantograph 70.
  • the method of detecting the pantograph 70 and the detection of the contact surface 709 can be simplified. While the detection unit 30 must find a detection area corresponding to the image size of the pantograph 70 in the entire image as described above, when the marker is attached, only the portion to which the marker is attached needs to be detected, thereby greatly reducing the amount of computation.
  • the detecting of the contact surface 709 by the detector 30 may include: obtaining a straight line from a marker attached to an upper end of the pantograph 70; And estimating a point of contact with the catenary line 90 by raising the straight line as the contact surface 709.
  • the detecting of the center point 707 by the detector 30 may include extracting a marker attached in the middle from a marker attached to the upper end of the pantograph 70 in a straight line; And estimating a point at which the marker attached in the middle is located as the center point 707, thereby reducing the amount of computation.
  • the first marker 701 may be attached to the left side of the pantograph 70
  • the second marker 703 may be attached to the middle
  • the third marker 705 may be attached to the right side.
  • the detection unit 30 may estimate, as the contact surface 709, the position at which the contact is made by linearly following the three detected points when detecting three horizontally placed markers.
  • the detector 30 may estimate a place where the marker located in the middle is the center point 707. Therefore, the amount of computation can be reduced by simplifying the procedure of estimating the contact surface 709 and the center point 707 by extracting the marker.
  • FIG. 11 is a block diagram illustrating a vibration detection apparatus of a pantograph of an electric railway vehicle according to a second embodiment of the present invention
  • FIG. 12 is a diagram illustrating a method of detecting a pantograph for each image frame according to a second embodiment of the present invention
  • FIG. 13 is a diagram for describing a method of measuring an angle between a horizontal line and a current collector plate in a detected pantograph according to a second embodiment of the present invention
  • FIG. 14 is a second embodiment of the present invention.
  • 15A and 15B illustrate a method of calculating the vibration intensity of the pantograph based on the magnitude of the angle according to the second embodiment of the present invention. It is a figure for demonstrating.
  • the vibration detecting apparatus 11 of the pantograph of an electric railway vehicle may include a communication module 100, a memory 200, and a processor 300.
  • the communication module 100 receives a captured image of the pantograph.
  • the communication module 100 receives a photographed image of the pantograph through data communication with a camera photographing an image of the pantograph.
  • the camera may be located on the upper portion of the electric railway vehicle so as to secure the image of the pantograph.
  • Such a camera may be arranged as a high speed or general camera, and the higher the resolution, the more accurately the pantograph may be detected.
  • the memory 200 stores the vibration detection program of the pantograph.
  • the memory 200 refers to a flash memory that maintains stored information even when power is not supplied, a nonvolatile storage device such as an SSD, and a DRAM and an SRAM volatile storage device requiring power to maintain stored information.
  • the processor 300 executes the vibration detection program of the pantograph.
  • the processor 300 may detect the pantograph for each image frame by comparing the pantograph template and the captured image of the pantograph received through the communication module according to the execution of the program.
  • a pantograph template includes a plurality of pantograph templates having different brightness and contrast ratios in order to accurately detect pantographs from photographed images of pantographs in which brightness of an image may be different depending on light intensity, lens exposure value, and focus. This can be specified in advance.
  • the pantograph template having the highest similarity among the plurality of pantograph templates to the pantograph photographed image in which the brightness of the image is variously photographed according to weather, tunnel conditions, obstacles, etc., the pantograph can be accurately detected for each image frame.
  • the processor 300 matches the pantograph template having the highest similarity among the plurality of pantograph templates to the pantograph photographed image, thereby accurately detecting the pantograph 310 for each image frame. can do.
  • the processor 300 detects the center point 325 of the current collector plate on the detected pantograph 310 according to the execution of the program, and the horizontal line 330 extending from the center point 325.
  • the angle between the extension lines 320 of the current collector plate may be measured, and the vibration frequency of the pantograph may be calculated based on the angle calculated for each frame.
  • the processor 300 may detect a straight line corresponding to the current collector through Hough transform of the captured image. In other words, the processor 300 may obtain a straight line corresponding to the pantograph 310 through Hough transform for each frame of the captured image. In this case, the straight line corresponding to the current collector plate may be detected by estimating the straight line of the upper end of the pantograph 310 obtained through the Hough transform as the current collector plate.
  • the processor 300 may include a current collector plate extending from the center point 325 of the current collector plate and the center point 325 of the current collector plate in the detected current collector plate.
  • the horizontal line 330 and the extension line 320 of the current collector plate may be detected.
  • the processor 300 may measure an angle between the horizontal line 330 intersecting at the center point 325 and the extension line 320. In this case, an angle between the horizontal line 330 and the extension line 320 may be calculated for each frame of the captured image.
  • the processor 300 may calculate the vibration frequency of the pantograph based on the angle calculated for each frame.
  • the vibration frequency may be calculated based on a value obtained by dividing the number of pantograph frames in which the measured angle is zero-crossed by the total pantograph frames (frames per second).
  • the processor 300 measures the angle between the horizontal line 330 measured in each frame of the captured image received through the communication module 100 and the extension line 320 of the collector plate in the order of the image frame number. By arranging as is, it is possible to detect the point where the measured angle crosses zero. In addition, the processor 300 may calculate the zero crossing frame number at which the zero crossing point is detected among the total number of frames (frames per second) and the number of frames per second of the image photographed for one second. The processor 300 may calculate the frequency obtained by dividing the calculated number of zero crossing frames by two and the number of frames per second.
  • the processor 300 may calculate the vibration intensity of the pantograph based on the magnitude of the angle.
  • the processor 300 changes the amount of change in the angle between the horizontal line 330 measured in each frame of the captured image received through the communication module 100 and the extension line 320 of the collector plate.
  • the waveform of the vibration intensity can be detected by arranging the image frame numbers in order.
  • a method of calculating the vibration intensity from the magnitude of the angle may be performed.
  • the processor 300 may detect the pantograph 310 separated from the background for each image frame. In this case, only the pantograph 310 may be detected through a binarization imaging technique which is generally used to separate the background of the image.
  • the bottom line 320a of the current collector plate extending from the bottom surface of the current collector plate is detected based on the center point 325 of the current collector plate, and the current collector plate inclination is detected at the bottom line 320a of the current collector plate.
  • the vibration intensity reference line 330a parallel to the horizontal line 330 of the current collector plate can be detected.
  • the processor 300 may measure left and right displacements of the bottom line 320a and the vibration intensity reference line 330a of the current collector plate.
  • the current collector plate is a rigid body with almost no bending, and thus, when the left side is raised, the right side is lowered, and thus the size of the vertical displacement of the left and right sides of the current collector plate may be the same.
  • the vibration intensity can be calculated by the difference between the left displacement and the right displacement of the current collector plate.
  • the left and right reference of the current collector plate may be obtained by a template matching technique, but is not limited thereto.
  • the processor 300 may calculate the difference between the left and right reference of the current collector plate in mm unit by using the ratio information per image pixel mm, and the left displacement in mm unit calculated for each image frame. The difference between and the right displacement can be converted into the vibration intensity in mm.
  • FIG. 16 is a view for explaining a method of measuring left and right displacements of a horizontal line and a current collector plate according to a second embodiment of the present invention
  • FIG. 17 is an average value of left and right displacements according to a second embodiment of the present invention. It is a figure for demonstrating the method of calculating a frequency based on.
  • the processor 300 detects the center point 325 of the current collector plate in the detected pantograph 310 for each image frame, and the horizontal line 330 extending from the center point 325 and the extension line of the current collector plate. Left and right displacements of 320 can be measured.
  • the processor 300 includes a horizontal line 330 and a collector of a current collector plate extending from the center point 325 of the current collector plate and the center point 325 of the current collector plate in the detected current collector plate.
  • the extension line 320 of the front plate may be detected.
  • the processor 300 may measure left and right displacements of the horizontal line 330 intersecting at the center point 325 and the extension line 320 of the current collector plate. In this case, the left and right displacements of the horizontal line 330 and the extension line 320 may be calculated for each frame of the captured image.
  • the processor 300 may calculate the vibration frequency of the pantograph 310 based on the displacement calculated for each frame.
  • the vibration frequency may be calculated based on the average value of each of the left and right displacements measured.
  • the processor 300 may measure left and right displacements and right and left displacements of the current collector plate for each frame of one second of the captured image received through the communication module 100. In addition, the processor 300 may calculate a frequency by using a Fourier transform on each of the average vertical displacements of the left and right sides thus measured.
  • the fast Fourier determines that the sampling rate is determined by the image acquisition frequency.
  • the frequency can be calculated by reflecting the conversion algorithm.
  • FIGS. 11 to 17 are flowchart illustrating a vibration detection method of a pantograph of an electric railway vehicle according to a second embodiment of the present invention.
  • a description of a configuration that performs the same function among the components illustrated in FIGS. 11 to 17 will be omitted.
  • a pantograph is detected for each image frame by comparing a pantograph template with an image photographed by a camera (S110).
  • the center point of the current collector plate is detected on the detected pantograph, and the angle between the horizontal line extending from the center point and the extension line of the current collector plate is measured (S120).
  • the vibration frequency of the pantograph is calculated based on the angle calculated for each frame (S130).
  • the pantograph may be detected for each image frame by comparing the pantograph template with the image captured by the camera.
  • the camera since the camera is disposed on the upper portion of the electric railway vehicle and photographs an image of the pantograph provided on the upper portion of the electric railway vehicle, the brightness of the captured image may be different according to an external environment. That is, the pantograph image may be photographed differently according to weather conditions, tunnel conditions, obstacles, and the like. Accordingly, in order to accurately detect the pantograph despite the condition of the image appearing differently from frame to frame, a plurality of pantograph templates having various brightness and contrast ratios may be specified in advance. Therefore, when detecting the pantograph for each frame, a pantograph with high accuracy can be detected by matching the pantograph photographed image with the pantograph template having the highest similarity of brightness and contrast ratio among the plurality of pantograph templates.
  • a straight line corresponding to the current collector may be detected through Hough transformation of the photographed image.
  • a straight line corresponding to the pantograph may be obtained from the pantograph detected for each image frame using Hough transform. Subsequently, the straight line corresponding to the collector plate can be detected by estimating the straight line at the upper end of the pantograph as the collector plate.
  • Measuring the angle (S120) may detect the center point of the straight line of the current collector plate detected through the Hough transform. The horizontal line extending from the detected center point can then be detected. Next, the angle between the horizontal line crossing at the center point and the extension line of the collector plate can be measured.
  • the frequency may be calculated based on a value obtained by dividing the number of pantograph frames in which the measured angle is zero-crossed by the total pantograph frames (frames per second).
  • the vibration frequency (S130) when the angles between the horizontal line measured in each frame of the image taken for one second and the current collector are arranged in the order of the image frame number, the point at which the measured angle is zero-crossed is detected. Can be. Subsequently, a zero crossing frame number at which a zero crossing point is detected among the total number of frames (frames per second) and the number of frames per second of the image photographed for one second may be calculated. Next, the frequency may be calculated based on a value obtained by dividing the number of zero crossing frames by two by the total number of frames (frames per second) of the captured image for one second.
  • the vibration intensity of the pantograph may be calculated based on the magnitude of the angle.
  • the calculating of the vibration intensity may detect the waveform of the vibration intensity by arranging the amount of change in the angle between the horizontal line measured in each frame of the image taken for one second and the current collector in the order of the image frame number.
  • the vibration intensity can be calculated by such a waveform.
  • the vibration frequency of the pantograph may also be calculated by the left displacement and the right displacement calculated for each frame.
  • the vibration frequency of the pantograph may be calculated based on the displacement calculated for each frame.
  • the extension line of the current collector plate and the center point of the current collector plate detected through Hough transformation may be detected for each frame of the captured image.
  • the horizontal line extending from the detected center point can then be detected.
  • the left and right displacements of the horizontal line and the collector plate intersecting at the center point can be measured.
  • the frequency may be calculated based on the average value of each of the left and right displacements thus measured.
  • a frequency may be calculated by using a Fourier transform on each of the average vertical displacements of the left and right sides measured for each frame of the captured image.
  • the apparatus for detecting vibration information of a pantograph-based electric railway vehicle described above may also be implemented in the form of a recording medium including instructions executable by a computer, such as a program module executed by a computer.
  • Computer readable media can be any available media that can be accessed by a computer and includes both volatile and nonvolatile media, removable and non-removable media.
  • Computer readable media may include both computer storage media and communication media.
  • Computer storage media includes both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data.
  • Communication media typically includes computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave, or other transmission mechanism, and includes any information delivery media.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

A pantograph-based vibration information detection method for an electric railway vehicle according to an embodiment of the present invention comprises the steps of: determining a pantograph template; comparing the pantograph template with an input image obtained using a camera, and detecting a pantograph; and detecting vibration information of the pantograph based on changes in the position of the pantograph that is detected by comparing the pantograph template with each frame of the input image.

Description

전기철도차량의 진동 정보 검출 방법 및 장치Method and apparatus for detecting vibration information of electric railway vehicle
본 발명은 팬터그래프 기반의 전기철도차량의 진동 정보 검출 방법 및 장치에 대한 것이다.The present invention relates to a method and apparatus for detecting vibration information of a pantograph-based electric railway vehicle.
일반적으로, 팬터그래프는 전차선과 접촉하여 차량에 전기에너지를 공급하는 전기철도차량의 핵심 설비이다. 팬터그래프는 전기에너지를 공급하는 전차선과 운행 중 기계적으로 접촉됨으로써, 마모 및 진동이 발생되며, 비 접촉시에는 전기에너지가 방전되는 아크 현상이 발생된다. 특히, 이상 진동은 팬터그래프의 이상 또는 과속도, 선로 이상 등 다양한 원인에 의해 나타나며, 팬터그래프와 전차선간의 비 접촉을 일으켜 아크 현상을 발생시킨다. 또한, 이상 진동은 전차선에 피로를 주게 되고, 이로 인해 전차선로 관련 부품의 피로를 유발하여 전차선로 및 관련 부품의 손상을 유발시킨다.In general, the pantograph is a core facility of an electric rail vehicle that supplies electric energy to a vehicle by contacting a catenary. The pantograph is mechanically in contact with the tramline that supplies the electric energy during operation, thereby causing abrasion and vibration, and in non-contact, an arc phenomenon in which the electric energy is discharged is generated. In particular, the abnormal vibration is caused by various causes such as an abnormality of the pantograph or an overspeed, a line anomaly, and cause an arc phenomenon by causing non-contact between the pantograph and the tramline. In addition, the abnormal vibration causes the tram line to be fatigued, thereby causing fatigue of the tram line-related parts, causing damage to the tram line and the related parts.
전차선은 철도 차체에 전기를 안정적으로 공급하기 위한 시설물로서, 차량이나 외부요인에 의한 전차선의 변형 및 파손을 감지하여 전기철도 시설물 규정에 따라 최적의 상태로 유지해야 할 필요성이 있다.The tramline is a facility for stably supplying electricity to the railway body, and it is necessary to detect the deformation and damage of the tramline due to the vehicle or external factors and maintain the optimal state according to the regulations of the electric railway facilities.
전차선의 궤도 중심면에서 수평거리를 편위라고 하는데, 전차선의 편위가 너무 크면 집전장치가 전차선을 벗어나 사고를 일으키게 된다. 따라서, 전차선의 편위는 일정한 한계를 두고 그 값이 규정되어 있는데, 통상 전차선의 편위는 궤도에 수직한 궤도 중심면에서 250 mm 이내로 하고 있다. 통상 전차선은 직선로에서도 집전장치는 팬터그래프의 마모를 고르게 하기 위하여 유효면에 분산하여 집전할 필요가 있기 때문에 그 시설에 대하여 궤도 중심에서 좌우 편위를 주고 있다. 이러한 전차선은 전기차량에 직접 접촉하는 전차선과 이를 지지하는 지지물, 급전선 및 귀선 등으로 구성된다. 전차선은 전기차량에 전력을 공급해주는 부분으로 고압전류가 항상 흐르고 있기 때문에 그 성능이 뛰어나야 한다. 전기 철도에서 열차와 전차선 간의 접촉점의 정렬상태를 나타내는 동적 편위는 열차가 안정적으로 전류를 공급 받을 수 있는지 판단할 수 있는 기준의 하나로 열차의 안전 성능을 평가하기 위한 중요한 기준 중 하나이다.The horizontal distance from the trajectory center of the tram line is called the deviation, and if the deviation of the tram line is too large, the current collector will leave the tank line and cause an accident. Therefore, the deviation of the tramline is prescribed with a certain limit, and the deviation of the tramline is usually within 250 mm from the center of the track perpendicular to the trajectory. Normally, even in a straight line, the current collector needs to be distributed on the effective surface to collect current to evenly wear the pantograph. The catenary is composed of a catenary in direct contact with the electric vehicle, a support supporting the same, a feeder, and a return line. The catenary is the part that supplies electric vehicles. Since the high voltage is always flowing, the performance should be excellent. Dynamic deviation, which indicates the alignment of contact points between trains and tram lines on electric railways, is one of the criteria for determining whether a train can be supplied with a stable current and is one of the important criteria for evaluating the safety performance of a train.
이와 관련된 종래 문헌으로, 한국공개특허 제2014-0111712(팬터그래프 측정 방식 및 팬터그래프 측정 장치)는 라인 센서로부터 팬터그래프에 설치된 마커의 영상을 취득하고, 취득된 영상으로부터 시공 화상을 생성하며, 화상처리를 통한 팬터그래프의 위치를 측정하여 전차선의 높이에 대한 위치를 추정하는 방식을 개시하고 있다.In the related literature, Korean Patent Publication No. 2014-0111712 (Pantron Graph Measuring Method and Pantograph Measuring Apparatus) acquires an image of a marker installed on a pantograph from a line sensor, generates a construction image from the acquired image, and performs image processing. Disclosed is a method of estimating the position of the height of the tramline by measuring the position of the pantograph.
그러나 종래의 영상처리 기반의 팬터그래프 계측 방법은 레이저 센서를 사용하여 팬터그래프의 위치만을 계측하기 때문에 전차선의 동적 편위는 획득하기 불가하다.However, in the conventional image processing-based pantograph measuring method, since the position of the pantograph is measured only by using a laser sensor, the dynamic deviation of the front line cannot be obtained.
더불어, 이상 진동을 감지하는 방법으로 종래에는 가속도계 등 진동을 감시하는 센서를 팬터그래프에 붙이고 이를 절연한 후, 센서를 통해 측정함으로써 팬터그래프의 진동을 검출하는 방법이 있다. 그러나, 팬터그래프는 전기에너지를 차량에 전달하게 되므로 항시 고전압, 고전류가 통전되고 있어 진동 감지를 위한 센서 부착에 어려움이 있다. In addition, as a method of detecting abnormal vibration, conventionally, a sensor for monitoring vibration such as an accelerometer is attached to the pantograph and insulated therefrom, and then measured through the sensor to detect vibration of the pantograph. However, since the pantograph transmits electric energy to the vehicle, high voltage and high current are always applied, which makes it difficult to attach a sensor for vibration detection.
또한, 팬터그래프와 전차선의 접촉 지점을 모니터링하는 방법으로 비디오를 팬터그래프와 전차선의 접촉 지점을 모니터링할 수 있도록 차량 상부에 설치하여 이를 육안으로 확인하는 방법이 있다. 그러나, 육안으로 판별하기 때문에 정확도 및 정량적인 값을 도출하는데 어려움이 있다. In addition, as a method of monitoring the contact point between the pantograph and the tramline, there is a method of visually confirming the video by installing the upper part of the vehicle so as to monitor the contact point between the pantograph and the tramline. However, it is difficult to derive accuracy and quantitative values because of visual discrimination.
이러한 팬터그래프와 전차선의 접촉 상태를 모니터링하는 방법과 관련하여, 선행기술인 한국등록특허 제1058179 호 (발명의 명칭: 팬터그래프 결함 감시 시스템)는 카메라에서 획득된 이미지의 잡음을 제거한 팬터그래프의 현재이미지를 기준이미지와 비교하여 결함여부를 판정하는 기술에 대해 개시하고 있다. 또한, 선행기술인 일본등록특허 제5534058 호 (발명의 명칭: 마모 측정 장치 및 그 방법)는 팬터그래프의 경사각도를 고려해 전차선의 마모 측정치를 얻을 수 있는 마모 측정 장치 및 그 방법에 대해 개시하고 있다. Regarding the method for monitoring the contact state between the pantograph and the catenary, Korean Patent No. 1058179 (name of the invention: Pantograph Defect Monitoring System), which is a prior art, uses a reference image to remove a noise of an image obtained from a camera. Compared with the present invention, a technique for determining whether a defect is present is disclosed. In addition, Japanese Patent No. 5534058 (Invention: Wear Measurement Apparatus and Method) discloses a wear measurement apparatus and a method for obtaining a wear measurement value of an electric vehicle in consideration of an inclination angle of a pantograph.
본 발명은 전술한 문제점을 해결하기 위하여, 본 발명은 연속 영상을 획득하는 것이 가능한 일반 카메라를 사용하여 명도 조건에 영향을 받지 않고 팬터그래프의 위치 및 전차선의 위치를 검출하여 동적 편위 계측의 정확도를 높이는 방법을 제공하고자 한다.In order to solve the above-mentioned problems, the present invention uses a general camera capable of acquiring continuous images to increase the accuracy of dynamic deviation measurement by detecting the position of the pantograph and the position of the tramline without being affected by the brightness conditions. To provide a method.
또한, 촬영한 영상과 팬터그래프 템플릿을 비교하여 팬터그래프를 검출하고, 이미지 프로세싱 기법을 이용하여 전기철도차량의 팬터그래프 진동 검출 방법 및 장치를 제공하는데 그 목적이 있다.It is also an object of the present invention to provide a method and apparatus for detecting pantograph vibration by comparing a photographed image with a pantograph template and using an image processing technique.
다만, 본 실시예가 이루고자 하는 기술적 과제는 상기된 바와 같은 기술적 과제들로 한정되지 않으며, 또 다른 기술적 과제들이 더 존재할 수 있다.However, the technical problem to be achieved by the present embodiment is not limited to the technical problems as described above, and further technical problems may exist.
상기와 같은 기술적 과제를 달성하기 위한 본 발명의 일 실시예에 따른 팬터그래프 기반의 전기철도차량의 진동 정보 검출 방법은 팬터그래프 템플릿을 결정하는 단계; 팬터그래프 템플릿과 카메라로 획득한 입력 영상을 비교하여, 팬터그래프를 검출하는 단계; 및 입력 영상의 각 프레임과 팬터그래프 템플릿의 비교에 따라 검출된 팬터그래프의 위치 변화를 기초로 팬터그래프의 진동 정보를 검출하는 단계를 포함한다.According to an aspect of the present invention, there is provided a method for detecting vibration information of a pantograph-based electric railway vehicle, including: determining a pantograph template; Comparing the pantograph template with the input image acquired by the camera and detecting the pantograph; And detecting vibration information of the pantograph based on the detected positional change of the pantograph according to the comparison of each frame of the input image and the pantograph template.
또한, 본 발명의 일 실시예에 따른 팬터그래프 기반의 전기철도차량의 진동 정보 검출 장치는 팬터그래프의 촬영 영상을 수신하는 통신모듈, 팬터그래프의 진동 검출 프로그램을 저장하는 메모리 및 팬터그래프의 진동 검출 프로그램을 실행하는 프로세서를 포함하되, 프로세서는 프로그램의 실행에 따라, 팬터그래프 템플릿을 결정하고, 팬터그래프 템플릿과 카메라로 획득한 입력 영상을 비교하여, 팬터그래프를 검출하고, 입력 영상의 각 프레임과 팬터그래프 템플릿의 비교에 따라 검출된 팬터그래프의 위치 변화를 기초로 팬터그래프의 진동 정보를 검출한다.In addition, the vibration information detection apparatus for a pantograph-based electric railway vehicle according to an embodiment of the present invention is a communication module for receiving the image captured by the pantograph, a memory for storing the vibration detection program of the pantograph and executing the vibration detection program of the pantograph The processor includes a processor, the processor determines a pantograph template according to the execution of the program, compares the pantograph template and the input image acquired by the camera, detects the pantograph, and detects the pantograph template by comparing each frame of the input image with the pantograph template. The vibration information of the pantograph is detected based on the changed position of the pantograph.
전술한 본 발명의 과제 해결 수단 중 어느 하나에 의하면, 영상의 명도를 균일하게 맞추는 별도의 조명 장치를 필요로 하지 않고, 동적 편위를 정확하게 검출하는 이점이 있다. 또한, 팬터그래프의 검출 영역을 축소하기 위한 마커를 활용하여, 연산량을 감소시키는 이점이 있다.According to any one of the problem solving means of the present invention described above, there is an advantage of detecting the dynamic deviation accurately without the need of a separate illumination device that uniformly adjusts the brightness of the image. In addition, there is an advantage of reducing the amount of calculation by utilizing a marker for reducing the detection area of the pantograph.
또한, 본 발명의 일 실시예의 경우, 기존의 비디오 모니터링 방법에 이미지 프로세싱 기법을 사용하여 팬터그래프의 진동을 검출함으로써, 추가적인 장비 설치에 드는 비용을 저감하여 경제성이 매우 높다. In addition, in one embodiment of the present invention, by detecting the vibration of the pantograph using an image processing technique in the existing video monitoring method, it is very economical by reducing the cost of installing additional equipment.
더불어, 본 발명의 일 실시예의 경우, 고유의 주파수에 따라 팬터그래프의 집전판의 이상, 선로의 이상 또는 전차선의 장력의 변화에 의한 이상 등이 상이함으로써, 전기철도차량 운행 중에 이상 원인 판별이 가능하고, 운행 후 필요시 의심 되는 부분의 점검을 용이하게 할 수 있다.In addition, according to an embodiment of the present invention, the cause of the abnormality can be determined during operation of the electric railway vehicle because the abnormality of the current collector plate of the pantograph, the abnormality of the line, or the abnormality caused by the change of the tension of the electric cable line is different according to the inherent frequency. After the operation, it is easy to check the suspected parts if necessary.
도 1a는 본 발명의 제 1실시예에 따른 명도 변화에 영향을 받지 않는 전차선의 동적 편위 검출 방법의 블록도이다.FIG. 1A is a block diagram of a method for detecting a dynamic deviation of a catenary vehicle that is not affected by a change in brightness according to a first embodiment of the present invention.
도 1b는 도 1a에서 S10단계를 구성하는 세부단계를 나타내는 블록도이다.FIG. 1B is a block diagram illustrating detailed steps constituting step S10 in FIG. 1A.
도 2는 본 발명의 제1실시예에 따른 전차선의 동적 편위 검출 장치를 나타낸다.2 shows an apparatus for detecting a dynamic deviation of a tram line according to a first embodiment of the present invention.
도 3은 본 발명의 제1실시예에 따른 특징 벡터를 산출하는 과정과 특징 벡터를 기준으로 기준 영상을 클래스로 구분하는 단계를 나타낸다.3 illustrates a process of calculating a feature vector and classifying a reference image into classes based on the feature vector, according to the first embodiment of the present invention.
도 4는 본 발명의 제1실시예에 따른 기준 영상을 클래스 별로 나누어 나타낸 모습이다.4 is a diagram showing a reference image divided by class according to the first embodiment of the present invention.
도 5는 본 발명의 제1실시예에 따라 구분된 클래스를 갱신하여 다시 설정하는 과정을 나타내는 모습이다.5 is a view illustrating a process of updating and resetting a classified class according to the first embodiment of the present invention.
도 6은 본 발명의 제1실시예에 따라 획득한 특징 벡터가 클래스 별로 상이한 경우를 나타낸다.6 illustrates a case where a feature vector acquired according to the first embodiment of the present invention is different for each class.
도 7은 본 발명의 제1실시예에 따른 검출부가 팬터그래프 템플릿에서 팬터그래프를 검출하는 모습을 나타낸다.7 illustrates a state in which the detection unit detects the pantograph from the pantograph template according to the first embodiment of the present invention.
도 8은 본 발명의 제1실시예에 따른 허프 변환 및 이진화의 융합에 따른 전차선을 검출하는 모습을 나타낸다.FIG. 8 is a diagram illustrating a method of detecting a catenary due to a fusion of a Hough transform and a binarization according to a first embodiment of the present invention.
도 9a는 본 발명의 제1실시예에 따른 정확하게 검출된 팬터그래프 영상을 나타낸다.9A shows a correctly detected pantograph image according to the first embodiment of the present invention.
도 9b는 본 발명의 제1실시예에 따른 부정확하게 검출된 팬터그래프 영상을 나타낸다.9B illustrates an incorrectly detected pantograph image according to the first embodiment of the present invention.
도 10a는 본 발명의 제1실시예에 따른 부착용 마커를 이용하여 접촉면과 중심점을 검출하는 과정을 나타낸다.10A illustrates a process of detecting a contact surface and a center point by using an attachment marker according to a first embodiment of the present invention.
도 10b는 본 발명의 제1실시예에 따른 부착용 마커를 나타낸다.10B shows a marker for attachment according to the first embodiment of the present invention.
도 11은 본 발명의 제2 실시예에 따른 전기철도차량의 팬터그래프의 진동 검출 장치의 구성도이다.11 is a configuration diagram of a vibration detection apparatus of a pantograph of an electric railway vehicle according to a second embodiment of the present invention.
도 12는 본 발명의 제2실시예에 따른 각 영상 프레임별로 팬터그래프를 검출하는 방법을 설명하기 위한 도면이다.12 is a diagram for describing a method of detecting a pantograph for each image frame according to the second embodiment of the present invention.
도 13은 본 발명의 제2실시예에 따른 검출된 팬터그래프에서 수평선과 집전판의 사이의 각도를 측정하는 방법을 설명하기 위한 도면이다.FIG. 13 is a diagram for describing a method of measuring an angle between a horizontal line and a current collector plate in a detected pantograph according to a second embodiment of the present invention.
도 14는 본 발명의 제2실시예에 따른 각도에 기초하여 팬터그래프의 진동 주파수를 산출하는 방법을 설명하기 위한 도면이다.14 is a diagram for describing a method of calculating a vibration frequency of a pantograph based on an angle according to a second embodiment of the present invention.
도 15a 및 도15b는 본 발명의 제2실시예에 따른 각도의 크기에 기초하여 팬터그래프의 진동 강도를 산출하는 방법을 설명하기 위한 도면이다.15A and 15B are views for explaining a method of calculating the vibration intensity of the pantograph based on the magnitude of the angle according to the second embodiment of the present invention.
도 16은 본 발명의 제2실시예에 따른 수평선과 집전판의 좌측 및 우측 변위를 측정하는 방법을 설명하기 위한 도면이다.FIG. 16 is a view for explaining a method of measuring left and right displacements of a horizontal line and a current collector plate according to a second embodiment of the present invention.
도 17은 본 발명의 제2실시예에 따른 좌측 및 우측 변위의 평균값에 기초하여 주파수를 산출하는 방법을 설명하기 위한 도면이다.FIG. 17 is a diagram for describing a method of calculating a frequency based on an average value of left and right displacements according to a second embodiment of the present invention.
도 18은 본 발명의 제2실시예에 따른 전기철도차량의 팬터그래프의 진동 검출 방법을 설명하기 위한 순서도이다.18 is a flowchart illustrating a vibration detection method of a pantograph of an electric railway vehicle according to a second embodiment of the present invention.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like parts throughout the specification.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미하며, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Throughout the specification, when a part is "connected" to another part, this includes not only "directly connected" but also "electrically connected" with another element in between. . In addition, when a part is said to "include" a certain component, which means that it may further include other components, except to exclude other components, unless specifically stated otherwise, one or more other features It is to be understood that the present disclosure does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, parts, or combinations thereof.
본 발명은 팬터그래프 템플릿을 결정하고, 팬터그래프 템플릿과 카메라로 획득한 입력 영상을 비교하여 팬터그래프를 검출하고, 입력 영상의 각 프레임과 팬터그래프 템플릿의 비교에 따라 검출된 팬터그래프의 위치 변화를 기초로 팬터그래프의 진동 정보를 검출하는 팬터그래프 기반의 전기철도차량의 진동 정보 검출 방법 및 장치에 관한 것이다.The present invention determines the pantograph template, compares the pantograph template and the input image acquired by the camera to detect the pantograph, and based on the positional change of the pantograph according to the comparison of each frame and pantograph template of the input image, the vibration of the pantograph. A method and apparatus for detecting vibration information of a pantograph-based electric railway vehicle for detecting information.
본 발명은 2 개의 실시예로 나뉜다. 먼저, 제 1 실시예는 전차선의 동적 편위를 검출하는 방법에 관한 것으로서, 특히 철도 상단에 배치된 계측용 카메라 및 센서를 통해 영상을 획득하고, 획득된 영상을 분석하여, 팬터그래프의 진동 정보로서 팬터그래프와 전차선 간의 동적 편위를 검출하는 방법에 관한 것이다. 다음으로, 제 2 실시예는 철도 상단에 배치된 카메라로 촬영한 영상과 팬터그래프 템플릿을 비교하여 팬터그래프를 검출하고, 이미지 프로세싱 기법을 이용하여 전기철도차량의 팬터그래프 진동을 검출하는 방법에 관한 것이다.The invention is divided into two embodiments. First, the first embodiment relates to a method for detecting a dynamic deviation of a catenary. In particular, an image is acquired through a measuring camera and a sensor disposed at an upper railroad, and the acquired image is analyzed to analyze the acquired image. The present invention relates to a method for detecting a dynamic deviation between a vehicle and a vehicle line. Next, the second embodiment relates to a method for detecting a pantograph by comparing a pantograph template with an image photographed by a camera disposed on an upper railroad, and detecting pantograph vibration of an electric railway vehicle using an image processing technique.
이하에서는 제 1 실시예에 대하여 설명하고자 한다.Hereinafter, the first embodiment will be described.
도 1a 및 도 1b는 본 발명의 제 1 실시예에 따른 전체 단계를 순서대로 나타낸 블록도이며, 도 2는 본 발명의 제 1 실시예에 따른 전차선의 동적 편위 검출 장치(1)를 나타낸다. 도 2를 참조하면 전차선의 동적 편위 검출 장치(1)는 훈련부(10), 검출부(30), 접촉 교점 계산부(50)로 구성된다. 전차선의 동적 편위 검출 장치(1)는 기준 영상의 명도와 비교하여 입력 영상의 팬터그래프(70)와 전차선(90)의 동적 편위를 검출할 수 있다. 훈련부(10)는 다수의 기준 영상을 명도 조건을 달리하며 유사한 종류끼리 구분하여획득하고, 최적의 특징 벡터(101)를 획득할 수 있다. 훈련부(10)는 선택된 기준 영상으로부터 발생하는 특징 벡터와 입력 영상에서 획득한 특징 벡터를 비교하여 대비할 기준 영상을 나타내는 팬터그래프 템플릿(80)을 사전에 결정할 수 있다. 검출부(30)는 팬터그래프 템플릿(80)으로부터 배경영상속에 존재하는 팬터그래프(70)와 전차선(90)을 검출할 수 있다. 접촉 교점 계산부(50)는 팬터그래프 템플릿(80)으로부터 접촉면(709)과 중심점(707)을 검출하고, 접촉면(709)과 중심점(707)을 이용하여 전차선(90)과 팬터그래프(70)의 동적 편위를 계산할 수 있다. 전차선의 동적 편위 검출 장치(1)는 입력 영상의 동적 편위를 명도에 간섭받지 않고 검출할 수 있다.1A and 1B are block diagrams showing the overall steps in order according to the first embodiment of the present invention, and FIG. 2 shows an apparatus 1 for detecting a dynamic deviation of a tram line according to the first embodiment of the present invention. Referring to FIG. 2, the apparatus for detecting a dynamic deviation of the tramline 1 includes a training unit 10, a detection unit 30, and a contact intersection calculation unit 50. The apparatus for detecting the dynamic deviation of the tramline 1 may detect the dynamic deviation of the pantograph 70 and the tramline 90 of the input image by comparing the brightness of the reference image. The training unit 10 may acquire a plurality of reference images by dividing similar types with different brightness conditions and obtaining an optimal feature vector 101. The training unit 10 may previously determine a pantograph template 80 representing a reference image to be contrasted by comparing the feature vector generated from the selected reference image with the feature vector acquired from the input image. The detector 30 may detect the pantograph 70 and the tramline 90 existing in the background image from the pantograph template 80. The contact intersection calculation unit 50 detects the contact surface 709 and the center point 707 from the pantograph template 80, and uses the contact surface 709 and the center point 707 to dynamically adjust the vehicle line 90 and the pantograph 70. The deviation can be calculated. The apparatus for detecting the dynamic deviation of the tram line 1 may detect the dynamic deviation of the input image without interference with brightness.
훈련부(10)는 영상의 획득조건에 따라 상이한 명도 조건을 일정한 수의 기준영상(80)에 매칭시켜 정의 할 수 있다. 훈련부(10)는 기준 영상의 명도, 분산, 상관 등을 수치화하여 특징 벡터(101)를 산출하고, 특징 벡터(101)를 기준으로 기준 영상(80)을 클래스(103)로 구분할 수 있다. 훈련부(10)는 차상에 설치된 카메라 및 센서를 이용하여 기준 영상(80)을 정의하기 위한 다수의 유사한 영상을 획득할 수 있고, 획득된 영상들은 빛의 정도, 렌즈의 노출값, 초점 등이 다르게 나타날 수 있다. 예를 들면, 태양광이 팬터그래프(70)에 반사되면 명도가 높은 팬터그래프(70) 영상이 획득되며, 구름이 낀 상황에서는 상대적으로 팬터그래프(70)가 어둡게 나타날 수 있다. 이 경우, 팬터그래프(70)의 검출 성능을 크게 떨어뜨릴 가능성이 있게 되므로 이렇게 획득한 팬터그래프 영상이 크게 상이한 경우를 정의하여 대하여 기준 영상(80)을 종류별로 수집하는 과정이 먼저 수행되어야 한다. 훈련부(10)에서는 정의된 종류별로 기준 영상을 수집하고, 같은 종류의 기준 영상에서도 특징벡터(101)가 차이가 나는 상황에서 클래스(103)를 구분 지을 조건이 필요하며, 이러한 역할을 하는 것이 서포트벡터머신(SVM : Support Vector Machine)이다. 서포트벡터머신은 기준 영상(80)의 명도의 평균, 대조비 등과 같은 수치화 가능한 영상의 특징 정보들을 특징 벡터(101) 형태로 저장할 수 있다. 특징 벡터(101)는 수치화 가능한 정보들을 벡터 형태로 저장하고, 저장된 정보들은 대체로 명도 조건에 따라 상이할 수 있다.The training unit 10 may be defined by matching different brightness conditions to a predetermined number of reference images 80 according to the acquisition conditions of the image. The training unit 10 may calculate the feature vector 101 by digitizing brightness, variance, correlation, etc. of the reference image, and classify the reference image 80 into a class 103 based on the feature vector 101. The training unit 10 may acquire a plurality of similar images for defining the reference image 80 by using a camera and a sensor installed on the vehicle, and the obtained images may have different degrees of light, exposure value of the lens, and focus. Can be. For example, when sunlight is reflected onto the pantograph 70, the image of the pantograph 70 having a high brightness is obtained, and the pantograph 70 may appear relatively dark in a clouded state. In this case, since there is a possibility that the detection performance of the pantograph 70 is greatly reduced, the process of collecting the reference image 80 for each type must be performed first by defining a case where the obtained pantograph image is significantly different. The training unit 10 collects reference images for each defined type, and needs to condition the class 103 in a situation where the feature vector 101 is different from the same reference image. It is a Vector Machine (SVM). The support vector machine may store the feature information of the quantifiable image, such as the average of the brightness of the reference image 80, the contrast ratio, etc. in the form of the feature vector 101. The feature vector 101 stores quantifiable information in a vector form, and the stored information may be different depending on lightness conditions.
도 3은 본 발명의 제 1실시예에 따른 특징 벡터(101)를 산출하는 과정과 특징 벡터(101)를 기준으로 기준 영상을 클래스(103)로 구분하는 단계를 나타낸다. 도 3을 참조하면 훈련부(10)는 서포트벡터머신을 이용하여 클래스(103)를 분류하는 오차를 최소화할 수 있다. 훈련부(10)는 기준 영상을 분류하는 훈련을 수행하는 선형 분류 과정을 수행할 수 있다. 훈련부(10)는 다양한 명도 조건에서 획득된 다수의 팬터그래프(70)와 전차선(90)이 담긴 기준 영상으로부터 특징을 추출하여 명도 조건에 따라 수치화할 수 있다. 훈련부(10)는 수치화된 명도 조건을 제공하고, 검출부(30)에서 이러한 수치에 따른 팬터그래프 템플릿(80)을 결정할 수 있도록 정보를 제공할 수 있다.3 illustrates a process of calculating the feature vector 101 and classifying a reference image into a class 103 based on the feature vector 101. Referring to FIG. 3, the training unit 10 may minimize an error in classifying the class 103 using the support vector machine. The training unit 10 may perform a linear classification process for performing training to classify the reference image. The training unit 10 may extract a feature from a reference image including a plurality of pantographs 70 and a chariot line 90 obtained under various brightness conditions and digitize it according to the brightness conditions. The training unit 10 may provide a numerical brightness condition and may provide information for the detection unit 30 to determine the pantograph template 80 according to the numerical value.
훈련부(10)는 기준 영상에서 명도의 평균, 전차선(90)의 명도 및 팬터그래프(70)와의 대조비를 수치화하여 특징 벡터(101)로 저장할 수 있다. 특징 벡터(101)는 하나의 기준 영상을 나타낼 수 있도록 수치화될 수 있는데, 훈련부(10)는 특징 벡터(101)를 참조하여 기준 영상을 클래스(103)별로 구분할 수 있다.The training unit 10 may quantify and store the average of the brightness, the brightness of the tramline 90, and the contrast ratio with the pantograph 70 in the reference image as the feature vector 101. The feature vector 101 may be digitized to represent one reference image, and the training unit 10 may classify the reference image for each class 103 with reference to the feature vector 101.
도 4는 본 발명의 제 1 실시예에 따른 기준 영상을 클래스(103)별로 나누어 나타낸 모습이다. 도 4를 참조하면 서포트벡터머신은 기준 영상에서 명도 조건을 산출하여 특징 벡터(101)로 저장하고, 저장된 특징 벡터(101)를 참조하여, 클래스(103) 별로 기준 영상을 구분할 수 있다. 서포트벡터머신은 카메라에서 측정된 다수의 기준 영상을 밝은 경우, 어두운 경우, 터널 구간, 배경 간섭 등의 클래스(103)로 구분할 수 있다. 다만 이에 한정되는 것은 아니고, 클래스(103)는 명도 조건에 따라 세분화시켜 설정할 수 있다. 훈련부(10)는 기준 영상들이 획득될 때마다 위의 구분 과정을 반복 수행할 수 있다. 훈련부(10)는 특징 벡터(101)를 통해 클래스(103)를 구분할 수 있으므로, 특징 벡터(101)를 산출하는 과정이 중요하다.4 is a diagram illustrating a reference image divided by class 103 according to a first embodiment of the present invention. Referring to FIG. 4, the support vector machine calculates a brightness condition from the reference image, stores it as the feature vector 101, and classifies the reference image for each class 103 with reference to the stored feature vector 101. The support vector machine may classify a plurality of reference images measured by the camera into classes 103 such as a bright section, a dark section, a tunnel section, and a background interference. However, the present invention is not limited thereto, and the class 103 may be divided and set according to the brightness condition. The training unit 10 may repeat the above classification process whenever reference images are acquired. Since the training unit 10 may classify the class 103 through the feature vector 101, the process of calculating the feature vector 101 is important.
도 5는 본 발명의 제 1 실시예에 따른 클래스(103)를 재설정하는 과정을 나타내는 모습이다. 도 5를 참조하면 갱신된 특징 벡터(101) 중 팬터그래프 구역(104)의 평균 명도와 클래스(103)의 평균 명도의 차이값이 설정값을 초과하는 경우, 갱신된 특징 벡터(101)를 계산하여 클래스(103)를 재설정하는 과정을 거치도록 한다. 본 발명의 실시예에서는 클래스(103)들 간의 평균 명도의 차를 구하고 이 차이의 절반 또는 그 이상을 재설정 임계치(105)로 설정하고 현재 영상의 명도차이가 해당 재설정 임계치(105)를 넘을 경우에 클래스(103)를 재설정한다.5 is a view showing a process of resetting the class 103 according to the first embodiment of the present invention. Referring to FIG. 5, when the difference between the average brightness of the pantograph region 104 and the average brightness of the class 103 of the updated feature vectors 101 exceeds a set value, the updated feature vector 101 is calculated. The process of resetting the class 103 is performed. In an embodiment of the present invention, a difference in average brightness between classes 103 is obtained, and when half or more of the difference is set as the reset threshold 105, and the brightness difference of the current image exceeds the corresponding reset threshold 105, Reset class 103.
도 6은 본 발명의 제 1 실시예에 따른 클래스(103)별 특징 벡터(101)에 대한 간소화된 2차원 예시를 나타낸 것이다. 터널 내부에서 획득된 영상과 맑은 하늘을 배경으로한 정상 상황 영상 각각에서 팬터그래프 구역(104)과 팬터그래프 하부 구역의 평균 명도를 도식화하게 되면 2차원의 특징 벡터(101)를 구성한다.6 shows a simplified two-dimensional example of the feature vector 101 for each class 103 according to the first embodiment of the present invention. When the average brightness of the pantograph region 104 and the pantograph lower region is plotted in each of the image acquired inside the tunnel and the normal situation image against the clear sky, a two-dimensional feature vector 101 is formed.
본 발명의 훈련부(10)는 서포트벡터머신 (Support Vector Machine) 알고리즘을 사용하여 클래스(103)의 특징벡터(101)가 어떤 클래스(103)에 해당하는 지에 대한 결정 경계를 설정하는 것이 가능하다. 다만, 본 발명에서는 클래스(103)에 대한 특징벡터(101)의 결정 경계를 구하는 방법을 서포트벡터머신으로 한정짓지 않는다.The training unit 10 of the present invention can set a decision boundary for which class 103 the feature vector 101 of the class 103 corresponds to using a support vector machine algorithm. However, in the present invention, the method for obtaining the crystal boundary of the feature vector 101 for the class 103 is not limited to the support vector machine.
훈련부(10)는 구분이 필요한 정상 상황, 터널 상황, 배경 간섭 상황, 아크 발생 상황 등의 클래스(103)를 선정하여 기준 영상을 수집하는 단계; 입력 영상의 구역별 명도, 상관, 분산 등의 특징을 수치화하여 특징 벡터(101)를 구성하는 단계; 클래스(103)를 갱신하기 위한 재설정 단계; 입력 영상의 특징 벡터와 현재 클래스의 특징 벡터(101)를 비교하여, 입력 영상에 가장 적합한 클래스(103)를 결정하는 단계; 결정된 클래스(103)에 대응되는 팬터그래프 템플릿(80)을 설정하는 단계를 포함할 수 있다. 검출부(30)에서는 훈련부(10)에서 결정된 기준 팬터그래프 영상(80)을 이용하여 팬터그래프(70)의 위치를 파악하며 팬터그래프의 위치를 기준으로 전차선(90)의 동적 편위의 계산이 가능하다.The training unit 10 selects a class 103 such as a normal situation, a tunnel situation, a background interference situation, an arc occurrence situation, etc. to collect a reference image; Constructing a feature vector 101 by quantifying features such as brightness, correlation, and dispersion for each zone of the input image; A reset step for updating the class 103; Comparing the feature vector of the input image with the feature vector 101 of the current class to determine a class 103 most suitable for the input image; The method may include setting a pantograph template 80 corresponding to the determined class 103. The detector 30 detects the position of the pantograph 70 by using the reference pantograph image 80 determined by the training unit 10, and calculates the dynamic deviation of the tramline 90 based on the position of the pantograph.
도 7은 본 발명의 제 1 실시예에 따른 검출부(30)가 팬터그래프 템플릿(80)에서 팬터그래프(70)를 검출하는 모습을 나타낸다. 도 7을 참조하면 검출부(30)는 훈련부(10)에서 결정된 팬터그래프 템플릿(80)으로부터 팬터그래프(70)를 검출할 수 있다. 검출부(30)는 하기 [수학식1]을 이용하여 팬터그래프 템플릿(80)으로부터 팬터그래프(70)를 추출할 수 있다.7 illustrates a state in which the detection unit 30 according to the first embodiment of the present invention detects the pantograph 70 from the pantograph template 80. Referring to FIG. 7, the detector 30 may detect the pantograph 70 from the pantograph template 80 determined by the training unit 10. The detector 30 may extract the pantograph 70 from the pantograph template 80 by using Equation 1 below.
Figure PCTKR2016002816-appb-M000001
Figure PCTKR2016002816-appb-M000001
여기서, I: 입력 영상, T: 팬터그래프 템플릿 영상, w : 입력 벡터, X : 팬터그래프 템플릿 영상 내의 좌표, p: 입력 벡터의 선형 변환 파라미터이다.Here, I is an input image, T is a pantograph template image, w is an input vector, X is a coordinate in a pantograph template image, and p is a linear transformation parameter of the input vector.
검출부(30)는 식별 과정을 통해 최적의 팬터그래프 템플릿(80)을 결정하고 입력 영상의 선형 변환 w(x,p)를 수행할 수 있다. 검출부(30)는 본 연산을 통하여 팬터그래프 템플릿(80)에서 유사도가 가장 높은 지점을 획득할 수 있다.The detector 30 may determine an optimal pantograph template 80 through the identification process and perform a linear transformation w (x, p) of the input image. The detector 30 may obtain a point having the highest similarity in the pantograph template 80 through this operation.
도 8은 본 발명의 제 1 실시예에 따른 직선을 검출하는 방법인 허프 변환 및 배경과 전경을 구분하는 방법인 이진화의 융합에 따른 전차선(90)을 검출하는 모습을 나타낸 것이다. 도 8을 참조하면, 검출부(30)는 입력 영상을 이진화를 수행하는 단계; 및 전차선(90)의 명도, 높이, 너비, 면적 및 각도를 제한하고, 이진화 된 값을 팬터그래프 템플릿(80)과 비교하는 단계를 포함할 수 있다. 검출부(30)는 팬터그래프(70)와 전차선(90)을 검출하는 경우, 입력 영상의 명도를 추출하여 [수학식 1]을 이용하여 팬터그래프 템플릿(80)과 비교하는 템플릿 매칭 기법을 활용할 수 있다.FIG. 8 illustrates the detection of the tramline 90 according to the fusion of Hough transform, which is a method of detecting a straight line, and binarization, which is a method of distinguishing a background from a foreground, according to a first embodiment of the present invention. Referring to FIG. 8, the detector 30 performs binarization of an input image; And limiting brightness, height, width, area, and angle of the tramline 90, and comparing the binarized value with the pantograph template 80. When detecting the pantograph 70 and the tramline 90, the detector 30 may use a template matching technique that extracts the brightness of the input image and compares it with the pantograph template 80 using [Equation 1].
도 9a는 본 발명의 제 1 실시예에 따른 정확하게 검출된 팬터그래프(70) 영상을 나타낸다. 도 9b는 본 발명의 제 1 실시예에 따른 부정확하게 검출된 팬터그래프(70) 영상을 나타낸다. 도 9a를 참조하면, 검출부(30)는 명도 조건이 비슷한 경우에는 실제 위치와 검출된 위치를 거의 일치하게 검출할 수 있다. 이경우, 정확하게 전차선(90)의 동적 편위를 계산하는 것이 가능하다. 도 9b를 참조하면, 검출부(30)는 명도 조건이 맞지 않을 경우에는 실제 위치와 검출된 위치를 다르게 검출하게 되고, 부정확하게 동적 편위를 계산하게 될 수 있다. 따라서 정확한 팬터그래프(70)와 전차선(90)을 찾기 위해서는 기준 팬터그래프 템플릿(80)을 정확하게 설정해야 한다는 것을 알 수 있다.9A shows an accurately detected pantograph 70 image according to the first embodiment of the present invention. 9B illustrates an incorrectly detected pantograph 70 image according to the first embodiment of the present invention. Referring to FIG. 9A, when the brightness conditions are similar, the detector 30 may detect the actual position and the detected position to be almost identical. In this case, it is possible to accurately calculate the dynamic deviation of the tramline 90. Referring to FIG. 9B, when the brightness condition is not met, the detector 30 may detect the actual position and the detected position differently, and incorrectly calculate the dynamic deviation. Therefore, it can be seen that the reference pantograph template 80 must be set correctly in order to find the correct pantograph 70 and the catenary line 90.
접촉 교점 계산부(50)는 검출된 팬터그래프(70)와 전차선(90)을 이용하여 전차선(90)의 동적 편위를 계산할 수 있다. 접촉 교점 계산부(50)는 검출된 전차선(90)과 팬터그래프(70)가 접촉하는 수평면에 해당하는 접촉면(709)을 검출하는 단계; 접촉면(709)으로부터 팬터그래프(70)의 중심점(707)을 검출하는 단계; 및 전차선(90)과 접촉면(709)의 교점을 구하는 단계를 포함할 수 있다. 접촉 교점 계산부(50)는 중심점(707)으로부터 교점의 동적 편위를 계산할 수 있다.The contact intersection calculator 50 may calculate the dynamic deflection of the tramline 90 using the detected pantograph 70 and the tramline 90. The contact intersection calculation unit 50 detects a contact surface 709 corresponding to a horizontal plane in which the detected tramline 90 and the pantograph 70 contact each other; Detecting a center point 707 of the pantograph 70 from the contact surface 709; And obtaining an intersection point of the catenary line 90 and the contact surface 709. The contact intersection calculator 50 may calculate a dynamic deviation of the intersection from the center point 707.
접촉 교점 계산부(50)에서 접촉면(709)을 검출하는 단계는, 입력 영상으로부터 허프 변환을 이용하여 팬터그래프(70)의 직선을 획득하는 단계; 및 직선이 상승하여 전차선(90)과 접촉하는 지점을 접촉면(709)으로 추정하는 단계를 포함할 수 있다. 즉, 팬터그래프(70)는 공압을 이용하여 공중에 매달려 있는 전차선(90)에 밀착하게 되므로, 이진화 영상을 통해 팬터그래프(70)의 수평면과 전차선(90)이 교차하는 지점을 찾는다면 실제 접촉 지점과 유사한 데이터를 얻을 수 있다. 이 경우, 진동에 의한 팬터그래프(70)와 전차선(90) 사이에 간격이 발생할 수 있으나, 이 간격의 차이는 매우 미약하기 때문에 근사화를 해도 오차범위 내에 포함될 수 있다. 따라서 접촉 교점 계산부(50)는 접촉면(709), 중심점(707) 및 교점을 검출하고, 중심점(707)으로부터 교점까지의 거리를 계산하여 전차선(90)의 동적 편위를 계산할 수 있다. 검출된 교점에서 팬터그래프(70)의 길이를 이용한 비례식을 대입하여 픽셀단위로 검출된 거리를 mm단위로 환산하여 정확한 값을 측정할 수 있다. The detecting of the contact surface 709 by the contact intersection calculator 50 may include: obtaining a straight line of the pantograph 70 using a Hough transform from an input image; And estimating a point where the straight line rises to contact the catenary line 90 as the contact surface 709. That is, since the pantograph 70 is in close contact with the chariot line 90 suspended in the air using pneumatic pressure, if the horizontal plane of the pantograph 70 and the chariot line 90 intersect through the binarization image, the actual contact point and Similar data can be obtained. In this case, a gap may occur between the pantograph 70 and the tramline 90 due to vibration. However, since the gap is very weak, the gap may be included in the error range even if approximated. Therefore, the contact intersection calculator 50 may detect the contact surface 709, the center point 707, and the intersection point, and calculate a dynamic deviation of the tramline 90 by calculating the distance from the center point 707 to the intersection point. By substituting a proportional expression using the length of the pantograph 70 at the detected intersection point, an accurate value may be measured by converting the detected distance in pixels by mm.
위와 같이 전차선의 동적 편위 검출 장치(1)를 활용한 측정을 할 수 도 있으나, 부착 마커를 활용하여 패터그래프 검출을 간소화하는 방법도 있다.As described above, the measurement may be performed by using the dynamic deviation detection apparatus 1 of the tank line, but there is also a method of simplifying the pattern graph detection by using the attachment marker.
도 10a는 본 발명의 제 1 실시예에 따른 부착용 마커를 이용하여 접촉면(709)과 중심점(707)을 검출하는 과정을 나타낸다. 도 10b는 본 발명의 제 1 실시예에 따른 부착용 마커를 나타낸다. 도 10a를 참조하면, 팬터그래프(70)에 도 10b와 같은 별도의 마커를 부착할 수 있다. 이 경우, 팬터그래프(70)의 검출 및 접촉면(709) 검출 방법을 간소화 시킬 수 있다. 검출부(30)는 상기와 같이 영상 전체에서 팬터그래프(70) 영상 크기에 해당하는 검출 영역을 찾아야 하는 반면, 마커를 부착하는 경우 마커가 부착된 부분만 검출하면 되므로, 연산량을 대폭 줄이는 것이 가능하다.10A illustrates a process of detecting the contact surface 709 and the center point 707 by using the attaching marker according to the first embodiment of the present invention. 10B shows a marker for attachment according to the first embodiment of the present invention. Referring to FIG. 10A, a separate marker such as FIG. 10B may be attached to the pantograph 70. In this case, the method of detecting the pantograph 70 and the detection of the contact surface 709 can be simplified. While the detection unit 30 must find a detection area corresponding to the image size of the pantograph 70 in the entire image as described above, when the marker is attached, only the portion to which the marker is attached needs to be detected, thereby greatly reducing the amount of computation.
검출부(30)에서 접촉면(709)을 검출하는 단계는, 팬터그래프(70)의 상단에 부착된 마커로부터 직선을 획득하는 단계; 및 직선을 상승시켜 전차선(90)과 접촉하는 지점을 접촉면(709)으로 추정하는 단계를 포함할 수 있다. 검출부(30)에서 중심점(707)을 검출하는 단계는, 팬터그래프(70)의 상단에 직선으로 부착된 마커 중에서 중간에 부착된 마커를 추출하는 단계; 및 중간에 부착된 마커가 위치한 지점을 중심점(707)으로 추정하는 단계를 포함하며, 이를 통해 연산량을 감소시킬 수 있다.The detecting of the contact surface 709 by the detector 30 may include: obtaining a straight line from a marker attached to an upper end of the pantograph 70; And estimating a point of contact with the catenary line 90 by raising the straight line as the contact surface 709. The detecting of the center point 707 by the detector 30 may include extracting a marker attached in the middle from a marker attached to the upper end of the pantograph 70 in a straight line; And estimating a point at which the marker attached in the middle is located as the center point 707, thereby reducing the amount of computation.
본 발명의 실시예에서는 팬터그래프(70)에 마커를 3개 부착하였다. 제1마커(701)는 팬터그래프(70)의 왼쪽에, 제2마커(703)는 중간에, 제3마커(705)는 오른쪽에 부착할 수 있다. 검출부(30)는 수평으로 설치된 3개의 마커를 각각 검출할 경우에 검출된 3개의 지점을 직선으로 이어서 접촉이 이루어지는 위치를 접촉면(709)으로 추정할 수 있다. 검출부(30)는 중간에 위치한 마커가 있는 곳을 중심점(707)으로 추정할 수 있다. 따라서 마커의 추출로 접촉면(709)과 중심점(707)을 추정하는 절차를 간소화하여 연산량을 감소시킬 수 있다.In the embodiment of the present invention, three markers are attached to the pantograph 70. The first marker 701 may be attached to the left side of the pantograph 70, the second marker 703 may be attached to the middle, and the third marker 705 may be attached to the right side. The detection unit 30 may estimate, as the contact surface 709, the position at which the contact is made by linearly following the three detected points when detecting three horizontally placed markers. The detector 30 may estimate a place where the marker located in the middle is the center point 707. Therefore, the amount of computation can be reduced by simplifying the procedure of estimating the contact surface 709 and the center point 707 by extracting the marker.
이하에서는 제 2 실시예에 대하여 설명하고자 한다.Hereinafter, the second embodiment will be described.
도 11은 본 발명의 제 2 실시예에 따른 전기철도차량의 팬터그래프의 진동 검출 장치의 구성도이고, 도 12는 본 발명의 제 2 실시예에 따른 각 영상 프레임별로 팬터그래프를 검출하는 방법을 설명하기 위한 도면이고, 도 13은 본 발명의 제 2 실시예에 따른 검출된 팬터그래프에서 수평선과 집전판의 사이의 각도를 측정하는 방법을 설명하기 위한 도면이고, 도 14는 본 발명의 제 2 실시예에 따른 각도에 기초하여 팬터그래프의 진동 주파수를 산출하는 방법을 설명하기 위한 도면이고, 도 15a 및 도15b는 본 발명의 제 2 실시예에 따른 각도의 크기에 기초하여 팬터그래프의 진동 강도를 산출하는 방법을 설명하기 위한 도면이다.FIG. 11 is a block diagram illustrating a vibration detection apparatus of a pantograph of an electric railway vehicle according to a second embodiment of the present invention, and FIG. 12 is a diagram illustrating a method of detecting a pantograph for each image frame according to a second embodiment of the present invention. FIG. 13 is a diagram for describing a method of measuring an angle between a horizontal line and a current collector plate in a detected pantograph according to a second embodiment of the present invention, and FIG. 14 is a second embodiment of the present invention. 15A and 15B illustrate a method of calculating the vibration intensity of the pantograph based on the magnitude of the angle according to the second embodiment of the present invention. It is a figure for demonstrating.
도11을 참조하면, 전기철도차량의 팬터그래프의 진동 검출 장치(11)는 통신모듈(100), 메모리(200) 및 프로세서(300)를 포함할 수 있다.Referring to FIG. 11, the vibration detecting apparatus 11 of the pantograph of an electric railway vehicle may include a communication module 100, a memory 200, and a processor 300.
통신모듈(100)은 팬터그래프의 촬영 영상을 수신한다.The communication module 100 receives a captured image of the pantograph.
통신모듈(100)은 팬터그래프의 영상을 촬영하는 카메라와 데이터 통신을 통해, 팬터그래프의 촬영 영상을 수신한다. 이때, 카메라는 팬터그래프의 영상을 확보할 수 있도록 전기철도차량의 상부에 위치할 수 있다. 이러한 카메라는 고속 또는 일반 카메라로 배치될 수 있으며, 해상도가 높을수록 팬터그래프를 정밀하게 검출할 수 있다.The communication module 100 receives a photographed image of the pantograph through data communication with a camera photographing an image of the pantograph. At this time, the camera may be located on the upper portion of the electric railway vehicle so as to secure the image of the pantograph. Such a camera may be arranged as a high speed or general camera, and the higher the resolution, the more accurately the pantograph may be detected.
메모리(200)는 팬터그래프의 진동 검출 프로그램을 저장한다.The memory 200 stores the vibration detection program of the pantograph.
여기서, 메모리(200)는 전원이 공급되지 않아도 저장된 정보를 계속 유지하는 플래쉬 메모리, SSD와 같은 비휘발성 저장장치 및 저장된 정보를 유지하기 위하여 전력이 필요한 DRAM, SRAM휘발성 저장장치를 통칭하는 것이다.Here, the memory 200 refers to a flash memory that maintains stored information even when power is not supplied, a nonvolatile storage device such as an SSD, and a DRAM and an SRAM volatile storage device requiring power to maintain stored information.
프로세서(300)는 팬터그래프의 진동 검출 프로그램을 실행한다.The processor 300 executes the vibration detection program of the pantograph.
프로세서(300)는 프로그램의 실행에 따라, 팬터그래프 템플릿과 통신모듈을 통해 수신한 팬터그래프의 촬영 영상을 비교하여, 각 영상 프레임별로 팬터그래프를 검출할 수 있다.The processor 300 may detect the pantograph for each image frame by comparing the pantograph template and the captured image of the pantograph received through the communication module according to the execution of the program.
도 12를 참조하면, 팬터그래프 템플릿은 빛의 강도, 렌즈의 노출값 및 초점 등에 따라 영상의 밝기가 상이하게 나타날 수 있는 팬터그래프의 촬영 영상으로부터 팬터그래프를 정확하게 검출하기 위하여, 명도와 대조비가 다른 복수의 팬터그래프 템플릿이 사전에 지정될 수 있다. Referring to FIG. 12, a pantograph template includes a plurality of pantograph templates having different brightness and contrast ratios in order to accurately detect pantographs from photographed images of pantographs in which brightness of an image may be different depending on light intensity, lens exposure value, and focus. This can be specified in advance.
이로 인해, 날씨, 터널 상황, 장애물 여부 등에 따라 영상의 밝기가 다양하게 촬영되는 팬터그래프 촬영 영상에 복수의 팬터그래프 템플릿 중 유사도가 가장 높은 팬터그래프 템플릿을 매칭함으로써, 영상 프레임별로 정확하게 팬터그래프를 검출할 수 있다.Accordingly, by matching the pantograph template having the highest similarity among the plurality of pantograph templates to the pantograph photographed image in which the brightness of the image is variously photographed according to weather, tunnel conditions, obstacles, etc., the pantograph can be accurately detected for each image frame.
예시적으로, 도 3의 (a)에 도시된 바와 같이, 프로세서(300)는 팬터그래프 촬영 영상에 복수의 팬터그래프 템플릿 중 유사도가 가장 높은 팬터그래프 템플릿을 매칭함으로써, 영상 프레임별로 정확하게 팬터그래프(310)를 검출할 수 있다. For example, as illustrated in FIG. 3A, the processor 300 matches the pantograph template having the highest similarity among the plurality of pantograph templates to the pantograph photographed image, thereby accurately detecting the pantograph 310 for each image frame. can do.
도 13 및 도 14를 참조하면, 프로세서(300)는 프로그램의 실행에 따라, 검출된 팬터그래프(310)에서 집전판의 중심점(325)을 검출하고, 중심점(325)으로부터 연장되는 수평선(330)과 집전판의 연장선(320) 사이의 각도를 측정하고, 각 프레임별로 산출된 각도에 기초하여 팬터그래프의 진동 주파수를 산출할 수 있다. Referring to FIGS. 13 and 14, the processor 300 detects the center point 325 of the current collector plate on the detected pantograph 310 according to the execution of the program, and the horizontal line 330 extending from the center point 325. The angle between the extension lines 320 of the current collector plate may be measured, and the vibration frequency of the pantograph may be calculated based on the angle calculated for each frame.
프로세서(300)는 촬영된 영상을 허프 변환을 통해 집전판에 대응하는 직선을 검출할 수 있다. 다시 말해서, 프로세서(300)는 촬영된 영상의 각 프레임 별로 허프 변환을 통하여 팬터그래프(310)에 대응하는 직선을 획득할 수 있다. 이때, 허프 변환을 통해 획득한 팬터그래프(310)의 상단의 직선을 집전판으로 추정함으로써, 집전판에 대응하는 직선을 검출할 수 있다. The processor 300 may detect a straight line corresponding to the current collector through Hough transform of the captured image. In other words, the processor 300 may obtain a straight line corresponding to the pantograph 310 through Hough transform for each frame of the captured image. In this case, the straight line corresponding to the current collector plate may be detected by estimating the straight line of the upper end of the pantograph 310 obtained through the Hough transform as the current collector plate.
예시적으로, 도 13의 (b) 및 (c)에 도시된 바와 같이, 프로세서(300)는 검출된 집전판에서 집전판의 중심점(325)과 집전판의 중심점(325)으로부터 연장되는 집전판의 수평선(330) 및 집전판의 연장선(320)을 검출할 수 있다.For example, as illustrated in FIGS. 13B and 13C, the processor 300 may include a current collector plate extending from the center point 325 of the current collector plate and the center point 325 of the current collector plate in the detected current collector plate. The horizontal line 330 and the extension line 320 of the current collector plate may be detected.
이어서, 프로세서(300)는 중심점(325)에서 교차하는 수평선(330)과 연장선(320)의 사이의 각도를 측정할 수 있다. 이때, 이러한 수평선(330)과 연장선(320)의 사이의 각도는 촬영된 영상의 각 프레임별로 각각 산출될 수 있다.Subsequently, the processor 300 may measure an angle between the horizontal line 330 intersecting at the center point 325 and the extension line 320. In this case, an angle between the horizontal line 330 and the extension line 320 may be calculated for each frame of the captured image.
도 14를 참조하면, 프로세서(300)는 각 프레임별로 산출된 각도에 기초하여 팬터그래프의 진동 주파수를 산출할 수 있다. 여기서, 진동 주파수는 측정된 각도가 제로 크로싱되는 팬터그래프 프레임수를 전체 팬터그래프 프레임수(초당 프레임수)로 나눈값에 기초하여 산출될 수 있다.Referring to FIG. 14, the processor 300 may calculate the vibration frequency of the pantograph based on the angle calculated for each frame. Here, the vibration frequency may be calculated based on a value obtained by dividing the number of pantograph frames in which the measured angle is zero-crossed by the total pantograph frames (frames per second).
도 14에 도시된 바와 같이, 프로세서(300)는 통신모듈(100)을 통해 수신한 촬영 영상의 각 프레임에서 측정된 수평선(330)과 집전판의 연장선(320) 사이의 각도를 영상 프레임 번호 순서대로 나열하여, 측정된 각도가 제로 크로싱되는 지점을 검출할 수 있다. 또한, 프로세서(300)는 1초 동안 촬영된 영상의 전체 프레임수(초당 프레임수)와 초당 프레임수 중에서 각도가 제로 크로싱된 지점이 검출되는 제로 크로싱 프레임 수를 산출할 수 있다. 프로세서(300)는 산출된 제로 크로싱 프레임 수를 2로 나눈값을 초당 프레임수로 나눈값을 주파수로 산출할 수 있다.As shown in FIG. 14, the processor 300 measures the angle between the horizontal line 330 measured in each frame of the captured image received through the communication module 100 and the extension line 320 of the collector plate in the order of the image frame number. By arranging as is, it is possible to detect the point where the measured angle crosses zero. In addition, the processor 300 may calculate the zero crossing frame number at which the zero crossing point is detected among the total number of frames (frames per second) and the number of frames per second of the image photographed for one second. The processor 300 may calculate the frequency obtained by dividing the calculated number of zero crossing frames by two and the number of frames per second.
도 15a 및 도15b를 참조하면, 프로세서(300)는 각도의 크기에 기초하여 팬터그래프의 진동 강도를 산출할 수 있다.15A and 15B, the processor 300 may calculate the vibration intensity of the pantograph based on the magnitude of the angle.
도15a에 도시된 바와 같이, 프로세서(300)는 통신모듈(100)을 통해 수신한 촬영 영상의 각 프레임에서 측정된 수평선(330)과 집전판의 연장선(320) 사이의 각도의 크기의 변화량을 영상 프레임 번호 순서대로 나열하여 진동 강도의 파형을 검출할 수 있다. As shown in FIG. 15A, the processor 300 changes the amount of change in the angle between the horizontal line 330 measured in each frame of the captured image received through the communication module 100 and the extension line 320 of the collector plate. The waveform of the vibration intensity can be detected by arranging the image frame numbers in order.
예시적으로, 도 15b를 참조하여 각도의 크기로부터 진동 강도를 산출하는 방법을 설명하면, 프로세서(300)는 각각의 영상 프레임 별로 배경으로부터 분리된 팬터그래프(310)를 검출할 수 있다. 이때, 일반적으로 영상의 배경을 분리하는데 이용되는 이진화(binarization) 영상 기법을 통해 팬터그래프(310)만 검출할 수 있다. 이어서, 집전판의 중심점(325)을 기준으로 집전판의 하단면에서 연장되는 집전판의 하단선(320a)을 검출하고, 검출된 집전판의 하단선(320a)에서 집전판 기울기(도 13에 도시된 집전판 각도)만큼 회전시킴으로써, 집전판의 수평선(330)과 평행하는 진동 강도 기준선(330a)을 검출할 수 있다. 또한, 프로세서(300)는 집전판의 하단선(320a)과 진동 강도 기준선(330a)의 좌측 변위 및 우측 변위를 측정할 수 있다. 여기서, 집전판은 휘어짐이 거의 없는 강체로서 좌측이 올라가는 경우 우측은 내려가기 때문에 집전판의 좌측 및 우측의 상하 변위의 크기는 동일할 수 있다.For example, referring to FIG. 15B, a method of calculating the vibration intensity from the magnitude of the angle may be performed. The processor 300 may detect the pantograph 310 separated from the background for each image frame. In this case, only the pantograph 310 may be detected through a binarization imaging technique which is generally used to separate the background of the image. Subsequently, the bottom line 320a of the current collector plate extending from the bottom surface of the current collector plate is detected based on the center point 325 of the current collector plate, and the current collector plate inclination is detected at the bottom line 320a of the current collector plate. By rotating by the illustrated current collector plate angle), the vibration intensity reference line 330a parallel to the horizontal line 330 of the current collector plate can be detected. In addition, the processor 300 may measure left and right displacements of the bottom line 320a and the vibration intensity reference line 330a of the current collector plate. Here, the current collector plate is a rigid body with almost no bending, and thus, when the left side is raised, the right side is lowered, and thus the size of the vertical displacement of the left and right sides of the current collector plate may be the same.
따라서, 도 15b에 도시된 바와 같이, 진동 강도는 집전판의 좌측 변위와 우측 변위 간의 차이에 의해 산출될 수 있다. 이때, 집전판의 좌측 및 우측 의 기준은 템플릿 매칭 기법 등으로 획득할 수 있으나, 이에 한정되는 것은 아니다. 또한, 프로세서(300)는 각각의 영상 화소(mm)당 비율정보를 이용하여 집전판의 좌측 및 우측 기준 간의 차이를 mm 단위로 산출할 수 있고, 각각의 영상 프레임 별로 산출된 mm 단위의 좌측 변위와 우측 변위 간의 차이를 mm 단위의 진동 강도로 변환할 수 있다.Thus, as shown in FIG. 15B, the vibration intensity can be calculated by the difference between the left displacement and the right displacement of the current collector plate. At this time, the left and right reference of the current collector plate may be obtained by a template matching technique, but is not limited thereto. In addition, the processor 300 may calculate the difference between the left and right reference of the current collector plate in mm unit by using the ratio information per image pixel mm, and the left displacement in mm unit calculated for each image frame. The difference between and the right displacement can be converted into the vibration intensity in mm.
한편, 이하에서는 각 프레임별로 산출된 좌측 및 우측 변위에 기초하여 팬터그래프의 진동 주파수를 산출하는 방법을 설명하고자 한다.Meanwhile, a method of calculating the vibration frequency of the pantograph based on the left and right displacements calculated for each frame will be described below.
도 16은 본 발명의 제 2 실시예에 따른 수평선과 집전판의 좌측 및 우측 변위를 측정하는 방법을 설명하기 위한 도면이고, 도 17은 본 발명의 제 2 실시예에 따른 좌측 및 우측 변위의 평균값에 기초하여 주파수를 산출하는 방법을 설명하기 위한 도면이다.FIG. 16 is a view for explaining a method of measuring left and right displacements of a horizontal line and a current collector plate according to a second embodiment of the present invention, and FIG. 17 is an average value of left and right displacements according to a second embodiment of the present invention. It is a figure for demonstrating the method of calculating a frequency based on.
도 16을 참조하면, 프로세서(300)는 각 영상 프레임별로, 검출된 팬터그래프(310)에서 집전판의 중심점(325)을 검출하고, 중심점(325)으로부터 연장되는 수평선(330)과 집전판의 연장선(320)의 좌측 및 우측 변위를 측정할 수 있다. Referring to FIG. 16, the processor 300 detects the center point 325 of the current collector plate in the detected pantograph 310 for each image frame, and the horizontal line 330 extending from the center point 325 and the extension line of the current collector plate. Left and right displacements of 320 can be measured.
예시적으로, 도 16 및 도 17을 참조하면, 프로세서(300)는 검출된 집전판에서 집전판의 중심점(325)과 집전판의 중심점(325)으로부터 연장되는 집전판의 수평선(330) 및 집전판의 연장선(320)을 검출할 수 있다. 또한, 프로세서(300)는 중심점(325)에서 교차하는 수평선(330)과 집전판의 연장선(320)의 좌측 변위 및 우측 변위를 측정할 수 있다. 이때, 이러한 수평선(330)과 연장선(320)의 좌측 변위 및 우측 변위는 촬영된 영상의 각 프레임별로 각각 산출될 수 있다.For example, referring to FIGS. 16 and 17, the processor 300 includes a horizontal line 330 and a collector of a current collector plate extending from the center point 325 of the current collector plate and the center point 325 of the current collector plate in the detected current collector plate. The extension line 320 of the front plate may be detected. In addition, the processor 300 may measure left and right displacements of the horizontal line 330 intersecting at the center point 325 and the extension line 320 of the current collector plate. In this case, the left and right displacements of the horizontal line 330 and the extension line 320 may be calculated for each frame of the captured image.
도 17을 참조하면, 프로세서(300)는 각 프레임별로 산출된 변위에 기초하여 팬터그래프(310)의 진동 주파수를 산출할 수 있다. 여기서, 진동 주파수는 측정된 각 좌측 및 우측 변위의 평균값에 기초하여 산출될 수 있다.Referring to FIG. 17, the processor 300 may calculate the vibration frequency of the pantograph 310 based on the displacement calculated for each frame. Here, the vibration frequency may be calculated based on the average value of each of the left and right displacements measured.
도 17에 도시된 바와 같이, 프로세서(300)는 통신모듈(100)을 통해 수신한 촬영 영상의 1초 동안의 각 프레임별로 집전판의 좌측 상하 변위 및 우측 상하 변위를 측정할 수 있다. 또한, 프로세서(300)는 이렇게 측정된 좌측 및 우측의 각각의 평균 상하 변위에 푸리에 변환을 이용하여 주파수를 산출할 수 있다. As illustrated in FIG. 17, the processor 300 may measure left and right displacements and right and left displacements of the current collector plate for each frame of one second of the captured image received through the communication module 100. In addition, the processor 300 may calculate a frequency by using a Fourier transform on each of the average vertical displacements of the left and right sides thus measured.
예시적으로, 획득한 신호를 주파수 성분 및 해당 성분의 강도로 변환해주는 고속 푸리에 변환(Fast Fourier Transform, FFT) 알고리즘을 이용하여 주파수를 산출하는 경우, 영상획득빈도로 샘플링율이 결정되는 것을 고속 푸리에 변환 알고리즘에 반영하여 주파수를 산출할 수 있다. For example, when a frequency is calculated using a Fast Fourier Transform (FFT) algorithm that converts an acquired signal into a frequency component and an intensity of a corresponding component, the fast Fourier determines that the sampling rate is determined by the image acquisition frequency. The frequency can be calculated by reflecting the conversion algorithm.
도 18은 본 발명의 제 2 실시예에 따른 전기철도차량의 팬터그래프의 진동 검출 방법을 설명하기 위한 순서도이다. 이하에서는 상술한 도 11 내지 도17에 도시된 구성 중 동일한 기능을 수행하는 구성의 경우 설명을 생략하기로 한다.18 is a flowchart illustrating a vibration detection method of a pantograph of an electric railway vehicle according to a second embodiment of the present invention. Hereinafter, a description of a configuration that performs the same function among the components illustrated in FIGS. 11 to 17 will be omitted.
우선, 팬터그래프 템플릿과 카메라로 촬영된 영상을 비교하여, 각 영상 프레임별로 팬터그래프를 검출한다(S110).First, a pantograph is detected for each image frame by comparing a pantograph template with an image photographed by a camera (S110).
이어서, 각 영상 프레임별로, 검출된 팬터그래프에서 집전판의 중심점을 검출하고, 중심점으로부터 연장되는 수평선과 집전판의 연장선 사이의 각도를 측정한다(S120).Subsequently, for each image frame, the center point of the current collector plate is detected on the detected pantograph, and the angle between the horizontal line extending from the center point and the extension line of the current collector plate is measured (S120).
다음으로, 각 프레임별로 산출된 각도에 기초하여 팬터그래프의 진동 주파수를 산출한다(S130).Next, the vibration frequency of the pantograph is calculated based on the angle calculated for each frame (S130).
팬터그래프를 검출하는 단계(S110)는 팬터그래프 템플릿과 카메라로 촬영된 영상을 비교하여 각 영상 프레임별로 팬터그래프를 검출할 수 있다. 예시적으로, 카메라는 전기철도차량의 상부에 배치되어 전기철도차량의 상부에 구비된 팬터그래프의 영상을 촬영하기 때문에 외부 환경에 따라 촬영된 영상의 밝기가 상이할 수 있다. 즉, 이러한 팬터그래프 영상은 날씨, 터널 상황, 장애물 여부 등에 따라 영상의 밝기가 다르게 촬영될 수 있다. 따라서, 프레임별로 상이하게 나타나는 영상의 조건에도 불구하고, 팬터그래프를 정확하게 검출하기 위하여, 다양한 명도 및 대조비를 갖는 복수의 팬터그래프 템플릿이 사전에 지정될 수 있다. 이로 인해, 프레임별로 팬터그래프를 검출할 경우, 팬터그래프 촬영 영상과 복수의 팬터그래프 템플릿 중 명도 및 대조비의 유사도가 가장 높은 팬터그래프 템플릿을 매칭함으로써, 정확도가 높은 팬터그래프를 검출할 수 있다.In the detecting of the pantograph (S110), the pantograph may be detected for each image frame by comparing the pantograph template with the image captured by the camera. For example, since the camera is disposed on the upper portion of the electric railway vehicle and photographs an image of the pantograph provided on the upper portion of the electric railway vehicle, the brightness of the captured image may be different according to an external environment. That is, the pantograph image may be photographed differently according to weather conditions, tunnel conditions, obstacles, and the like. Accordingly, in order to accurately detect the pantograph despite the condition of the image appearing differently from frame to frame, a plurality of pantograph templates having various brightness and contrast ratios may be specified in advance. Therefore, when detecting the pantograph for each frame, a pantograph with high accuracy can be detected by matching the pantograph photographed image with the pantograph template having the highest similarity of brightness and contrast ratio among the plurality of pantograph templates.
팬터그래프를 검출하는 단계(S110)는 촬영된 영상을 허프 변환을 통해 집전판에 대응하는 직선을 검출할 수 있다.In the detecting of the pantograph (S110), a straight line corresponding to the current collector may be detected through Hough transformation of the photographed image.
예시적으로, 팬터그래프를 검출하는 단계(S110)는 각 영상 프레임별로 검출된 팬터그래프를 허프 변환을 이용하여 팬터그래프에 대응하는 직선을 획득할 수 있다. 이어서, 팬터그래프의 상단의 직선을 집전판으로 추정함으로써, 집전판에 대응하는 직선을 검출할 수 있다.For example, in the detecting of the pantograph (S110), a straight line corresponding to the pantograph may be obtained from the pantograph detected for each image frame using Hough transform. Subsequently, the straight line corresponding to the collector plate can be detected by estimating the straight line at the upper end of the pantograph as the collector plate.
각도를 측정하는 단계(S120)는 허프 변환을 통해 검출된 집전판의 직선의 중심점을 검출할 수 있다. 이어서, 검출된 중심점으로부터 연장되는 수평선을 검출할 수 있다. 다음으로, 중심점에서 교차하는 수평선과 집전판의 연장선 사이의 각도를 측정할 수 있다. Measuring the angle (S120) may detect the center point of the straight line of the current collector plate detected through the Hough transform. The horizontal line extending from the detected center point can then be detected. Next, the angle between the horizontal line crossing at the center point and the extension line of the collector plate can be measured.
진동 주파수를 산출하는 단계(S130)는 측정된 각도가 제로 크로싱되는 팬터그래프 프레임수를 전체 팬터그래프 프레임수(초당 프레임수)로 나눈값에 기초하여 주파수를 산출할 수 있다.In the calculating of the vibration frequency (S130), the frequency may be calculated based on a value obtained by dividing the number of pantograph frames in which the measured angle is zero-crossed by the total pantograph frames (frames per second).
진동 주파수를 산출하는 단계(S130)는 1초 동안 촬영된 영상의 각 프레임에서 측정된 수평선과 집전판의 사이의 각도를 영상 프레임 번호 순서대로 나열하면, 측정된 각도가 제로 크로싱되는 지점을 검출할 수 있다. 이어서, 1초 동안 촬영된 영상의 전체 프레임수(초당 프레임수)와 초당 프레임수 중에서 각도가 제로 크로싱된 지점이 검출되는 제로 크로싱 프레임 수를 산출할 수 있다. 다음으로, 이러한 제로 크로싱 프레임 수를 2로 나눈값을 1초 동안 촬영된 영상의 전체 프레임수(초당 프레임수)로 나눈값에 기초하여 주파수를 산출할 수 있다.In the calculating of the vibration frequency (S130), when the angles between the horizontal line measured in each frame of the image taken for one second and the current collector are arranged in the order of the image frame number, the point at which the measured angle is zero-crossed is detected. Can be. Subsequently, a zero crossing frame number at which a zero crossing point is detected among the total number of frames (frames per second) and the number of frames per second of the image photographed for one second may be calculated. Next, the frequency may be calculated based on a value obtained by dividing the number of zero crossing frames by two by the total number of frames (frames per second) of the captured image for one second.
진동 주파수를 산출하는 단계(S130) 이후에는 각도의 크기에 기초하여 팬터그래프의 진동 강도를 산출할 수 있다.After calculating the vibration frequency (S130), the vibration intensity of the pantograph may be calculated based on the magnitude of the angle.
진동 강도를 산출하는 단계는 1초 동안 촬영된 영상의 각 프레임에서 측정된 수평선과 집전판의 사이의 각도의 크기의 변화량을 영상 프레임 번호 순서대로 나열하면 진동 강도의 파형을 검출할 수 있다. 이러한, 파형에 의해 진동 강도를 산출할 수 있다.The calculating of the vibration intensity may detect the waveform of the vibration intensity by arranging the amount of change in the angle between the horizontal line measured in each frame of the image taken for one second and the current collector in the order of the image frame number. The vibration intensity can be calculated by such a waveform.
또한, 진동 주파수를 산출하는 단계(S130)는 각 프레임별로 산출된 좌측 변위 및 우측 변위에 의해서도 팬터그래프의 진동 주파수가 산출될 수 있다.In operation S130, the vibration frequency of the pantograph may also be calculated by the left displacement and the right displacement calculated for each frame.
진동 주파수를 산출하는 단계(S130) 이전에, 각 영상 프레임별로, 검출된 팬터그래프에서 집전판의 중심점을 검출하고, 중심점으로부터 연장되는 수평선과 집전판의 연장선의 좌측 및 우측 변위를 측정하고, 진동 주파수를 산출하는 단계(S130)에서, 각 프레임별로 산출된 변위에 기초하여 팬터그래프의 진동 주파수를 산출할 수 있다.Before calculating the vibration frequency (S130), for each image frame, the center point of the collector plate is detected on the detected pantograph, the horizontal line extending from the center point and the left and right displacements of the extension line of the collector plate are measured, and the vibration frequency In operation S130, the vibration frequency of the pantograph may be calculated based on the displacement calculated for each frame.
예시적으로, 진동 주파수를 산출하는 단계(S130) 이전에, 촬영된 영상의 각 프레임별로 허프 변환을 통해 검출된 집전판의 연장선과 집전판의 중심점을 검출할 수 있다. 이어서, 검출된 중심점으로부터 연장되는 수평선을 검출할 수 있다. 다음으로, 중심점에서 교차하는 수평선과 집전판의 좌측 및 우측 변위를 측정할 수 있다.For example, before the step of calculating the vibration frequency (S130), the extension line of the current collector plate and the center point of the current collector plate detected through Hough transformation may be detected for each frame of the captured image. The horizontal line extending from the detected center point can then be detected. Next, the left and right displacements of the horizontal line and the collector plate intersecting at the center point can be measured.
진동 주파수를 산출하는 단계(S130)는 이렇게 측정된 각 좌측 및 우측 변위의 평균값에 기초하여 주파수를 산출할 수 있다.In the calculating of the vibration frequency (S130), the frequency may be calculated based on the average value of each of the left and right displacements thus measured.
예시적으로, 진동 주파수를 산출하는 단계(S130)는 촬영된 영상의 각 프레임별로 측정된 좌측 및 우측의 각각의 평균 상하 변위에 푸리에 변환을 이용하여 주파수를 산출할 수 있다. For example, in the calculating of the vibration frequency (S130), a frequency may be calculated by using a Fourier transform on each of the average vertical displacements of the left and right sides measured for each frame of the captured image.
상기에 설명된 팬터그래프 기반의 전기철도차량의 진동 정보 검출 장치는 컴퓨터에 의해 실행되는 프로그램 모듈과 같은 컴퓨터에 의해 실행 가능한 명령어를 포함하는 기록 매체의 형태로도 구현될 수 있다. 컴퓨터 판독 가능 매체는 컴퓨터에 의해 액세스될 수 있는 임의의 가용 매체일 수 있고, 휘발성 및 비휘발성 매체, 분리형 및 비분리형 매체를 모두 포함한다. 또한, 컴퓨터 판독가능 매체는 컴퓨터 저장 매체 및 통신 매체를 모두 포함할 수 있다. 컴퓨터 저장 매체는 컴퓨터 판독가능 명령어, 데이터 구조, 프로그램 모듈 또는 기타 데이터와 같은 정보의 저장을 위한 임의의 방법 또는 기술로 구현된 휘발성 및 비휘발성, 분리형 및 비분리형 매체를 모두 포함한다. 통신 매체는 전형적으로 컴퓨터 판독가능 명령어, 데이터 구조, 프로그램 모듈, 또는 반송파와 같은 변조된 데이터 신호의 기타 데이터, 또는 기타 전송 메커니즘을 포함하며, 임의의 정보 전달 매체를 포함한다.The apparatus for detecting vibration information of a pantograph-based electric railway vehicle described above may also be implemented in the form of a recording medium including instructions executable by a computer, such as a program module executed by a computer. Computer readable media can be any available media that can be accessed by a computer and includes both volatile and nonvolatile media, removable and non-removable media. In addition, computer readable media may include both computer storage media and communication media. Computer storage media includes both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. Communication media typically includes computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave, or other transmission mechanism, and includes any information delivery media.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The foregoing description of the present invention is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is shown by the following claims rather than the above description, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be construed as being included in the scope of the present invention. do.

Claims (18)

  1. 전기철도차량의 진동 정보 검출 방법에 있어서,In the vibration information detection method of an electric railway vehicle,
    팬터그래프 템플릿을 결정하는 단계;Determining a pantograph template;
    상기 팬터그래프 템플릿과 카메라로 획득한 입력 영상을 비교하여, 팬터그래프를 검출하는 단계; 및Detecting a pantograph by comparing the pantograph template with an input image acquired by the camera; And
    상기 입력 영상의 각 프레임과 상기 팬터그래프 템플릿의 비교에 따라 검출된 팬터그래프의 위치 변화를 기초로 상기 팬터그래프의 진동 정보를 검출하는 단계를 포함하는 전기철도차량의 진동 정보 검출 방법.And detecting vibration information of the pantograph based on a change in the position of the pantograph according to the comparison of each frame of the input image and the pantograph template.
  2. 제1항에 있어서,The method of claim 1,
    상기 팬터그래프 템플릿을 결정하는 단계는Determining the pantograph template
    기준 영상을 명도 조건을 달리하며 획득하고, 상기 명도 조건에 매칭시켜 상기 기준 영상을 설정하는 단계; 및Acquiring a reference image with different brightness conditions and setting the reference image by matching the brightness condition; And
    상기 설정된 기준 영상에서, 상기 입력 영상과 비교하여 대비할 기준 영상을 나타내는 팬터그래프 템플릿을 결정하는 단계;을 포함하고,Determining a pantograph template representing a reference image to be contrasted with the input image in the set reference image;
    상기 팬터그래프를 검출하는 단계는,Detecting the pantograph,
    상기 팬터그래프 템플릿으로부터 상기 팬터그래프와 상기 전차선을 검출하는 단계를 포함하고,Detecting the pantograph and the catenary line from the pantograph template;
    상기 팬터그래프의 진동정보를 검출하는 단계는,Detecting vibration information of the pantograph,
    상기 전차선과 상기 팬터그래프의 동적 편위를 계산하는 단계를 포함하는 것인 전기철도차량의 진동 정보 검출 방법.Comprising the step of calculating the dynamic deviation of the tram line and the pantograph.
  3. 제2항에 있어서,The method of claim 2,
    상기 기준 영상을 설정하는 단계는,Setting the reference image,
    상기 기준 영상을 정상 상황, 배경 간섭 상황, 아크 상황, 터널 상황 등 상이한 클래스에 대하여 클래스 별로 수집하는 단계를 포함하는 것인 전기철도차량의 진동 정보 검출 방법.And collecting the reference image for each class of a different class such as a normal situation, a background interference situation, an arc situation, a tunnel situation, and the like.
  4. 제3항에 있어서,The method of claim 3,
    상기 입력 영상의 차이로 상기 클래스의 갱신이 필요한 경우,When the update of the class is necessary due to the difference of the input image
    상기 입력 영상의 팬터그래프 구역과 클래스의 평균 명도를 비교하여 상기 입력 영상에서 팬터그래프의 검출의 기준이 되는 팬터그래프 템플릿을 재설정하는 것을 포함하는 것인 전기철도차량의 진동 정보 검출 방법.And comparing the pantograph region of the input image with the average brightness of the class and resetting a pantograph template which is a reference for detecting the pantograph in the input image.
  5. 제2항 내지 제4항 중 어느 하나의 항에 있어서,The method according to any one of claims 2 to 4,
    상기 팬터그래프 템플릿을 결정하는 단계는,Determining the pantograph template,
    상기 입력 영상의 구역별 명도, 분산, 상관 특징을 수치화하여 상기 입력 영상의 특징 벡터를 산출하는 단계; 및Calculating a feature vector of the input image by digitizing brightness, variance, and correlation features of each region of the input image; And
    상기 입력 영상의 특징 벡터와 상기 팬터그래프 템플릿의 특징 벡터를 비교하여, 상기 입력 영상의 특징 벡터와 동일 또는 가장 유사한 상기 팬터그래프 템플릿의 특징 벡터를 찾아서 대상 클래스 및 대상 팬터그래프 템플릿을 결정하는 단계를 포함하는 것인 전기철도차량의 진동 정보 검출 방법.Comparing a feature vector of the input image with a feature vector of the pantograph template to find a feature vector of the pantograph template that is the same as or most similar to the feature vector of the input image to determine a target class and a target pantograph template; Vibration information detection method of an electric railway vehicle.
  6. 제2항 내지 제4항 중 어느 하나의 항에 있어서,The method according to any one of claims 2 to 4,
    상기 팬터그래프와 상기 전차선을 검출하는 단계는, 상기 전차선을 검출하기 위하여,The detecting of the pantograph and the catenary line may include:
    상기 입력 영상을 디지털화하는 영상의 이진화와 허프 변환을 동시에 수행하는 단계; 및Simultaneously performing binarization and Hough transform of the image digitizing the input image; And
    상기 전차선의 명도, 높이, 너비, 면적 및 각도를 설정하고, 상기 이진화된 값을 상기 팬터그래프 템플릿과 비교하는 단계를 포함하는 것인 전기철도차량의 진동 정보 검출 방법.And setting the brightness, height, width, area, and angle of the tramline, and comparing the binarized value with the pantograph template.
  7. 제6항에 있어서,The method of claim 6,
    상기 팬터그래프와 상기 전차선을 검출하는 단계는, 상기 팬터그래프를 검출하기 위하여,Detecting the pantograph and the tramline, in order to detect the pantograph,
    상기 입력 영상의 명도 수치를 추출하여 상기 팬터그래프 템플릿과 비교하는 템플릿 매칭 기법을 활용하는 것인 전기철도차량의 진동 정보 검출 방법.And a template matching technique for extracting brightness values of the input image and comparing them with the pantograph template.
  8. 제2항 내지 제4항 중 어느 하나의 항에 있어서,The method according to any one of claims 2 to 4,
    상기 동적 편위를 계산하는 단계는,The step of calculating the dynamic deviation,
    상기 전차선과 상기 팬터그래프가 접촉하는 수평면에 해당하는 접촉면을 검출하는 단계;Detecting a contact surface corresponding to a horizontal plane in which the tank line is in contact with the pantograph;
    상기 접촉면으로부터 상기 팬터그래프의 중심점을 검출하는 단계; 및Detecting a center point of the pantograph from the contact surface; And
    상기 전차선과 상기 접촉면의 교점을 구하는 단계를 포함하고,Obtaining an intersection point of the tank line and the contact surface;
    상기 중심점으로부터 상기 교점의 동적 편위를 계산하는 것인 전기철도차량의 진동 정보 검출 방법.The vibration information detection method of the electric railway vehicle which calculates the dynamic deviation of the said intersection from the said center point.
  9. 제8항에 있어서,The method of claim 8,
    상기 접촉면을 검출하는 단계는,Detecting the contact surface,
    상기 입력 영상으로부터 허프 변환을 이용하여 상기 팬터그래프와 전차선 간의 접촉면에 해당하는 직선을 획득하는 단계; 및Obtaining a straight line corresponding to the contact surface between the pantograph and the catenary using a Hough transform from the input image; And
    상기 직선을 상승시켜 상기 전차선과 접촉하는 지점을 접촉면으로 추정하는 단계를 포함하는 것인 전기철도차량의 진동 정보 검출 방법.And estimating a point of contact with the tramline by raising the straight line as a contact surface.
  10. 제8항 또는 제9항에 있어서,The method according to claim 8 or 9,
    상기 접촉면을 검출하는 단계는,Detecting the contact surface,
    상기 팬터그래프의 상단에 직선으로 부착된 복수의 마커를 검출하여 상기 직선을 획득하는 단계; 및Obtaining a straight line by detecting a plurality of markers attached to a top of the pantograph in a straight line; And
    상기 직선이 상승하여 상기 전차선과 접촉하는 지점을 접촉면으로 추정하는 단계를 포함하는 것인 전기철도차량의 진동 정보 검출 방법.And estimating a point where the straight line rises to contact the tram line as a contact surface.
  11. 제10항에 있어서,The method of claim 10,
    상기 중심점을 검출하는 단계는,Detecting the center point,
    상기 팬터그래프의 상단에 직선으로 배열된 복수의 마커 중에서 중간에 부착된 마커의 위치를 추출하는 단계; 및Extracting a position of a marker attached in the middle of the plurality of markers arranged in a straight line on the top of the pantograph; And
    상기 중간에 부착된 마커가 위치한 지점을 상기 중심점으로 추정하는 단계를 포함하는 것인 전기철도차량의 진동 정보 검출 방법.And estimating a point at which the marker attached to the middle is located as the center point.
  12. 제1항에 있어서,The method of claim 1,
    상기 팬터그래프를 검출하는 단계는,Detecting the pantograph,
    상기 팬터그래프 템플릿과 상기 입력 영상을 비교하여, 각 영상 프레임별로 팬터그래프를 검출하는 단계를 포함하며, Comparing the pantograph template and the input image, detecting the pantograph for each image frame,
    상기 팬터그래프의 진동 정보를 검출하는 단계는, Detecting vibration information of the pantograph,
    상기 각 영상 프레임별로, 상기 검출된 팬터그래프에서 집전판의 중심점을 검출하고, 상기 중심점으로부터 연장되는 수평선과 상기 집전판의 연장선 사이의 각도를 측정하는 단계; 및Detecting a center point of a current collector plate on the detected pantograph for each image frame, and measuring an angle between a horizontal line extending from the center point and an extension line of the current collector plate; And
    상기 각 프레임별로 산출된 각도에 기초하여 상기 팬터그래프의 진동 주파수를 산출하는 단계를 포함하는 것인 전기철도차량의 진동 정보 검출 방법.And calculating the vibration frequency of the pantograph based on the angle calculated for each frame.
  13. 제12항에 있어서,The method of claim 12,
    상기 팬터그래프의 진동 정보를 검출하는 단계는, 상기 각도의 크기에 기초하여 상기 팬터그래프의 진동 강도를 산출하는 단계를 더 포함하는 것인 전기철도차량의 진동 정보 검출 방법.The detecting of the vibration information of the pantograph may further include calculating a vibration intensity of the pantograph based on the magnitude of the angle.
  14. 제12항에 있어서,The method of claim 12,
    상기 팬터그래프를 검출하는 단계는,Detecting the pantograph,
    상기 획득된 영상을 허프 변환을 통해 상기 집전판에 대응하는 직선을 검출하는 단계를 포함하는 것인 전기철도차량의 진동 정보 검출 방법.And detecting a straight line corresponding to the current collector plate through a Hough transform of the obtained image.
  15. 제12항에 있어서,The method of claim 12,
    상기 진동 주파수를 산출하는 단계는,The step of calculating the vibration frequency,
    상기 측정된 각도가 제로 크로싱되는 팬터그래프 프레임수를 전체 팬터그래프 프레임수로 나눈값에 기초하여 상기 주파수를 산출하는 것인 전기철도차량의 진동 정보 검출 방법.And calculating the frequency based on a value obtained by dividing the number of pantograph frames by which the measured angle is zero-crossed by the number of pantograph frames.
  16. 제12항에 있어서,The method of claim 12,
    상기 진동 주파수를 산출하는 단계 이전에,Prior to calculating the vibration frequency,
    상기 각 영상 프레임별로, 상기 검출된 팬터그래프에서 집전판의 중심점을 검출하고, 상기 중심점으로부터 연장되는 수평선과 상기 집전판의 연장선의 좌측 및 우측 변위를 측정하는 단계를 포함하고, Detecting a center point of a current collector plate in the detected pantograph for each image frame, and measuring left and right displacements of a horizontal line extending from the center point and an extension line of the current collector plate;
    상기 진동 주파수를 산출하는 단계에서, Calculating the vibration frequency,
    상기 각 프레임별로 산출된 변위에 기초하여 상기 팬터그래프의 진동 주파수를 산출하는 것인 전기철도차량의 진동 정보 검출 방법.And calculating the vibration frequency of the pantograph based on the displacement calculated for each frame.
  17. 제16항에 있어서,The method of claim 16,
    상기 진동 주파수를 산출하는 단계는,The step of calculating the vibration frequency,
    상기 측정된 각 좌측 및 우측 변위의 평균값에 기초하여 상기 주파수를 산출하는 것인 전기철도차량의 진동 정보 검출 방법.And calculating the frequency based on the average value of the measured left and right displacements.
  18. 전기철도차량의 진동 정보 검출 장치에 있어서,In the vibration information detecting apparatus of an electric railway vehicle,
    팬터그래프의 촬영 영상을 수신하는 통신모듈,Communication module for receiving a pantograph image,
    팬터그래프의 진동 정보 검출 프로그램을 저장하는 메모리 및Memory for storing the vibration information detection program of the pantograph
    상기 팬터그래프의 진동 정보 검출 프로그램을 실행하는 프로세서를 포함하되,Including a processor for executing the vibration information detection program of the pantograph,
    상기 프로세서는 상기 프로그램의 실행에 따라, 팬터그래프 템플릿을 결정하고, 상기 팬터그래프 템플릿과 카메라로 획득한 입력 영상을 비교하여, 상기 팬터그래프를 검출하고, 상기 입력 영상의 각 프레임과 상기 팬터그래프 템플릿의 비교에 따라 검출된 팬터그래프의 위치 변화를 기초로 상기 팬터그래프의 진동 정보를 검출하는 것인 전기철도차량의 진동 정보 검출 장치.The processor determines a pantograph template according to the execution of the program, compares the pantograph template with the input image acquired by the camera, detects the pantograph, and compares each frame of the input image with the pantograph template. And vibration information of the pantograph is detected based on the detected change in the position of the pantograph.
PCT/KR2016/002816 2015-06-15 2016-03-21 Method and apparatus for detecting vibration information of electric railway vehicle WO2016204385A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680035120.2A CN107743577B (en) 2015-06-15 2016-03-21 Method and apparatus for detecting vibration information of electric railway vehicle

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0084395 2015-06-15
KR1020150084395A KR101707995B1 (en) 2015-06-15 2015-06-15 A method of robust to the brightness change for detecting a dynamic declination of catenary
KR1020160007124A KR101787011B1 (en) 2016-01-20 2016-01-20 Method and apparatus for detecting vibration of pantograph in electrical railway
KR10-2016-0007124 2016-01-20

Publications (1)

Publication Number Publication Date
WO2016204385A1 true WO2016204385A1 (en) 2016-12-22

Family

ID=57546172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/002816 WO2016204385A1 (en) 2015-06-15 2016-03-21 Method and apparatus for detecting vibration information of electric railway vehicle

Country Status (2)

Country Link
CN (1) CN107743577B (en)
WO (1) WO2016204385A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110059631A (en) * 2019-04-19 2019-07-26 中铁第一勘察设计院集团有限公司 The contactless monitoring defect identification method of contact net
CN112146605A (en) * 2020-09-21 2020-12-29 北京运达华开科技有限公司 Method and system for measuring pull-out value of contact network
WO2021036633A1 (en) * 2019-04-26 2021-03-04 深圳市豪视智能科技有限公司 Vibration detection method and related product
CN113076949A (en) * 2021-03-31 2021-07-06 成都唐源电气股份有限公司 Method and system for quickly positioning parts of contact net
CN114812903A (en) * 2022-05-20 2022-07-29 无锡铁安轨道交通科技有限公司 Bow net pressure 360-degree dynamic detection system for motor car

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109141255A (en) * 2018-10-18 2019-01-04 北京华开领航科技有限责任公司 A kind of bow net monitoring method
CN109443811B (en) * 2018-11-19 2021-03-26 中国科学院力学研究所 Method for measuring pantograph mode in non-contact mode
CN111006609A (en) * 2019-12-24 2020-04-14 中铁电气化局集团有限公司 Pantograph maximum operation curve detection device
CN112284256B (en) * 2020-11-17 2022-06-10 深圳市道通科技股份有限公司 Method and system for measuring plane abrasion of workpiece
CN113256723B (en) * 2021-06-29 2023-03-21 西南交通大学 Automatic detection method for pantograph lifting time and pantograph head displacement curve
CN114013343B (en) * 2021-10-27 2023-05-09 中铁第五勘察设计院集团有限公司 Design method, device and processing equipment of railway traction network system
CN114067106B (en) * 2022-01-12 2022-04-15 西南交通大学 Inter-frame contrast-based pantograph deformation detection method and equipment and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192394A (en) * 2008-02-15 2009-08-27 Meidensha Corp Crossover determination device
KR20110024334A (en) * 2009-09-02 2011-03-09 한국철도기술연구원 Measuring apparatus for uplift amount and oscillation of contact line and method thereof
KR20130034322A (en) * 2011-09-28 2013-04-05 한국철도공사 Measuring system for height and stagger and wear of catenary using machine vision
KR20130067870A (en) * 2011-12-14 2013-06-25 한국철도기술연구원 Method of measuring a dynamic displacement of pantograph and trolley wire
KR20140111712A (en) * 2012-02-29 2014-09-19 메이덴샤 코포레이션 Pantograph measurement method, and pantograph measurement device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4001806B2 (en) * 2002-12-06 2007-10-31 財団法人鉄道総合技術研究所 Identification method and apparatus for non-contact measurement of vibration characteristics of structure
JP2010176156A (en) * 2009-01-27 2010-08-12 Meidensha Corp Pantograph imaging device by image processing
CN101922915B (en) * 2009-06-15 2012-11-14 湖南科创信息技术股份有限公司 Contact network key position dynamic offset detection method and device thereof
CN101650179A (en) * 2009-09-14 2010-02-17 中南大学 Detection method and system of offset of contact net
CN203116843U (en) * 2013-01-05 2013-08-07 西南交通大学 Contact system vibration measuring device
CN103557788B (en) * 2013-10-15 2015-10-14 西南交通大学 A kind of high ferro contact net connects geometric parameter and detects non-contact compensation and Kalman filtering modification method
CN105718902B (en) * 2016-01-25 2019-03-15 成都国铁电气设备有限公司 OCS and pantograph stagger transfinites defect identification method and system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192394A (en) * 2008-02-15 2009-08-27 Meidensha Corp Crossover determination device
KR20110024334A (en) * 2009-09-02 2011-03-09 한국철도기술연구원 Measuring apparatus for uplift amount and oscillation of contact line and method thereof
KR20130034322A (en) * 2011-09-28 2013-04-05 한국철도공사 Measuring system for height and stagger and wear of catenary using machine vision
KR20130067870A (en) * 2011-12-14 2013-06-25 한국철도기술연구원 Method of measuring a dynamic displacement of pantograph and trolley wire
KR20140111712A (en) * 2012-02-29 2014-09-19 메이덴샤 코포레이션 Pantograph measurement method, and pantograph measurement device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110059631A (en) * 2019-04-19 2019-07-26 中铁第一勘察设计院集团有限公司 The contactless monitoring defect identification method of contact net
CN110059631B (en) * 2019-04-19 2020-04-03 中铁第一勘察设计院集团有限公司 Contact net non-contact type monitoring defect identification method
WO2021036633A1 (en) * 2019-04-26 2021-03-04 深圳市豪视智能科技有限公司 Vibration detection method and related product
CN112146605A (en) * 2020-09-21 2020-12-29 北京运达华开科技有限公司 Method and system for measuring pull-out value of contact network
CN112146605B (en) * 2020-09-21 2021-05-25 北京运达华开科技有限公司 Method and system for measuring pull-out value of contact network
CN113076949A (en) * 2021-03-31 2021-07-06 成都唐源电气股份有限公司 Method and system for quickly positioning parts of contact net
CN114812903A (en) * 2022-05-20 2022-07-29 无锡铁安轨道交通科技有限公司 Bow net pressure 360-degree dynamic detection system for motor car

Also Published As

Publication number Publication date
CN107743577B (en) 2020-06-09
CN107743577A (en) 2018-02-27

Similar Documents

Publication Publication Date Title
WO2016204385A1 (en) Method and apparatus for detecting vibration information of electric railway vehicle
CN105158257B (en) Slide plate measurement method and device
WO2014058248A1 (en) Image monitoring apparatus for estimating gradient of singleton, and method therefor
CN104567684A (en) Contact network geometrical parameter detection method and device
WO2017116134A1 (en) Radar and image-fusion vehicle enforcement system
WO2017188572A1 (en) Hinged cantilever deformation inspection system
CN107703513B (en) Non-contact net relative position detection method based on image processing
CN107428261B (en) Lifting hook detection device based on image processing
WO2013125753A1 (en) Absolute position detection system
EP3936369B1 (en) Pantograph displacement measuring device, and trolley-wire hard-spot detection method
KR20110062211A (en) Measuring apparatus for height and stagger of trolley line using line scan camera and method thereof
JP5151845B2 (en) Apparatus and method for measuring vertical acceleration of pantograph by image processing
CN105718902A (en) Contact net pantograph stagger value overrun defect recognition method and system
CN113011283A (en) Non-contact type rail sleeper relative displacement real-time measurement method based on video
CN109186469B (en) Bow net dynamic monitoring system
CN111452840A (en) Railway steel rail crawling displacement detection method based on monocular vision measurement technology
KR20130067870A (en) Method of measuring a dynamic displacement of pantograph and trolley wire
CN113639685A (en) Displacement detection method, device, equipment and storage medium
WO2014058165A1 (en) Image monitoring apparatus for estimating size of singleton, and method therefor
WO2012015156A2 (en) Environment-independent traffic detection system using thermal infrared rays
JP3882683B2 (en) Trolley wire position measuring device
KR101707995B1 (en) A method of robust to the brightness change for detecting a dynamic declination of catenary
KR101106935B1 (en) Measuring Apparatus for uplift amount and oscillation of contact line and Method thereof
CN111076750B (en) Device and method for detecting looseness of catenary dropper wire clamp
KR101787011B1 (en) Method and apparatus for detecting vibration of pantograph in electrical railway

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16811798

Country of ref document: EP

Kind code of ref document: A1