WO2016204225A1 - Solid-state imaging device, method of driving solid-state image capturing device, and electronic instrument - Google Patents

Solid-state imaging device, method of driving solid-state image capturing device, and electronic instrument Download PDF

Info

Publication number
WO2016204225A1
WO2016204225A1 PCT/JP2016/067932 JP2016067932W WO2016204225A1 WO 2016204225 A1 WO2016204225 A1 WO 2016204225A1 JP 2016067932 W JP2016067932 W JP 2016067932W WO 2016204225 A1 WO2016204225 A1 WO 2016204225A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
solid
gate
imaging device
pulse
Prior art date
Application number
PCT/JP2016/067932
Other languages
French (fr)
Japanese (ja)
Inventor
道男 山村
盛 一也
田中 俊介
Original Assignee
ブリルニクスインク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブリルニクスインク filed Critical ブリルニクスインク
Priority to JP2017525292A priority Critical patent/JPWO2016204225A1/en
Publication of WO2016204225A1 publication Critical patent/WO2016204225A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/62Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/63Noise processing, e.g. detecting, correcting, reducing or removing noise applied to dark current
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors

Definitions

  • the present invention relates to a solid-state imaging device, a driving method for the solid-state imaging device, and an electronic apparatus.
  • CMOS Complementary Metal Oxide Semiconductor
  • image sensor solid-state imaging device
  • CMOS image sensors are widely applied as a part of various electronic devices such as digital cameras, video cameras, surveillance cameras, medical endoscopes, personal computers (PCs), and mobile terminal devices (mobile devices) such as mobile phones. Yes.
  • the CMOS image sensor has an FD amplifier having a photodiode (photoelectric conversion element) and a floating diffusion layer (FD: Floating Diffusion) for each pixel, and the readout selects one row in the pixel array.
  • FD floating diffusion layer
  • a column parallel output type in which these are simultaneously read in the column output direction is the mainstream.
  • Each pixel of the CMOS image sensor has, for example, a transfer transistor as a transfer gate, a reset transistor as a reset gate, a source follower transistor as a source follower gate (amplification gate), and a selection gate for one photodiode.
  • the configuration includes four elements of the selection transistor as active elements (see, for example, Patent Document 1).
  • Each pixel may be provided with an overflow gate (overflow transistor) for discharging overflow charges overflowing from the photodiode during the photodiode accumulation period.
  • the transfer transistor is connected between the photodiode and the floating diffusion FD as an output node.
  • the transfer transistor is held in a non-conducting state during the charge accumulation period of the photodiode, and a drive signal is applied to the gate and held in the conducting state during a transfer period in which the accumulated charge of the photodiode is transferred to the floating diffusion.
  • the charge photoelectrically converted by the diode is transferred to the floating diffusion FD.
  • the reset transistor is connected between the power supply line and the floating diffusion FD.
  • the reset transistor resets the potential of the floating diffusion FD to the potential of the power supply line when a reset signal is given to its gate.
  • a gate of a source follower transistor is connected to the floating diffusion FD.
  • the source follower transistor is connected to the vertical signal line via the selection transistor, and constitutes a constant current source and a source follower of the load circuit outside the pixel portion. Then, a control signal (address signal or select signal) is supplied to the gate of the selection transistor, and the selection transistor is turned on.
  • the selection transistor When the selection transistor is turned on, the source follower transistor amplifies the potential of the floating diffusion FD and outputs a voltage corresponding to the potential to the vertical signal line.
  • the voltage output from each pixel through the vertical signal line is output to a column parallel processing unit as a pixel signal readout circuit.
  • a buried photo diode (BPD) is widely used as a photodiode (PD). Since surface levels due to dangling bonds and other defects exist on the surface of the substrate on which the photodiode (PD) is formed, a large amount of charge (dark current) is generated due to thermal energy, and a correct signal may not be read out. .
  • the embedded photodiode (BPD) it is possible to reduce mixing of dark current into the signal by embedding the charge storage portion of the photodiode (PD) in the substrate.
  • the sensitivity of the photodiode (PD) can be changed by changing the exposure time, for example.
  • the transfer transistor or the overflow transistor having a function of transferring charge is held in a non-conductive state, but the excess charge at the time of accumulation. Is always depleted in order to discharge the light, and there is a disadvantage that dark current increases.
  • a solid-state imaging device includes a photoelectric conversion element that accumulates charges generated by photoelectric conversion during an accumulation period, and at least one charge transfer gate unit that can transfer charges accumulated in the photoelectric conversion element And a state control unit that controls so that at least the state under the gate of the charge transfer gate unit is accumulating and the state of not accumulating at least during the accumulation period.
  • a second aspect of the present invention includes a photoelectric conversion element that accumulates charges generated by photoelectric conversion during an accumulation period, and at least one charge transfer gate unit that can transfer the charges accumulated in the photoelectric conversion element.
  • control is performed so that at least the state below the gate of the charge transfer gate unit is accumulated and the state is not accumulated at least in the accumulation period.
  • An electronic apparatus includes a solid-state imaging device and an optical system that forms a subject image on the solid-state imaging device, and the solid-state imaging device is generated by photoelectric conversion during an accumulation period.
  • a state control unit that performs control so that a state that is being performed and a state that is not being accumulated are mixed.
  • dark current can be suppressed without impairing the function of discharging surplus charge during storage.
  • FIG. 1 is a block diagram illustrating a configuration example of a solid-state imaging apparatus according to the first embodiment of the present invention.
  • FIG. 2A and FIG. 2B are diagrams illustrating operation timings of the shutter scan and the readout scan during the normal pixel readout operation in the present embodiment.
  • FIG. 3 is a circuit diagram illustrating an example of a pixel according to the first embodiment.
  • FIG. 4 is a diagram schematically showing a cross section of the embedded photodiode, the transfer transistor, and the floating diffusion in the pixel according to the first embodiment.
  • FIG. 5 is a diagram for explaining the behavior of electrons and holes in the GR center at the Si / insulating layer interface.
  • FIGS. 6A to 6C are diagrams showing a configuration example of the column signal processing circuit in the readout circuit according to the present embodiment.
  • FIG. 7A and FIG. 7B are diagrams for explaining the read operation according to the first embodiment.
  • FIGS. 8A to 8C are diagrams showing the relationship between the state of the depletion region in the gate bias to the gate electrode of the transfer transistor and the suppression state of dark current, blooming, and saturation.
  • 9A to 9C show the case where a transfer gate pulse is applied to the gate electrode of the transfer transistor, the case where an intermediate voltage is applied, and the case where a pulse is applied to a substrate or the like, dark current, It is a figure which shows the relationship with the suppression state of blooming and saturation by potential transition.
  • FIG. 1 shows the relationship with the suppression state of blooming and saturation by potential transition.
  • FIG. 10 is a diagram illustrating that blooming is suppressed by pulsing in the photoelectric conversion characteristics.
  • FIG. 11 is a diagram for explaining that an overflow function via a buried channel under a gate electrode can be easily realized in accordance with pulsing in the first embodiment.
  • FIG. 12A and FIG. 12B illustrate a read operation including control for mixing the accumulating state and the non-accumulating state by the state control unit according to the second embodiment of the present invention.
  • FIGS. 13A and 13B illustrate a read operation including a control for mixing the accumulating state and the non-accumulating state by the state control unit according to the third embodiment of the present invention.
  • FIG. FIG. 14 is a circuit diagram illustrating an example of a pixel according to the fourth embodiment.
  • FIGS. 15A and 15B illustrate a read operation including a control for mixing the accumulating state and the non-accumulating state by the state control unit 70 according to the fourth embodiment of the present invention. It is a figure for doing.
  • FIGS. 16A and 16B illustrate a read operation including a control for mixing the accumulating state and the non-accumulating state by the state control unit according to the fifth embodiment of the present invention.
  • FIG. FIGS. 17A and 17B illustrate a read operation including a control for mixing the accumulating state and the non-accumulating state by the state control unit according to the sixth embodiment of the present invention.
  • FIG. FIG. 18 is a circuit diagram illustrating an example of a pixel according to the seventh embodiment.
  • FIG. 19B illustrate a read operation including a control for mixing the accumulating state and the non-accumulating state by the state control unit according to the seventh embodiment of the present invention.
  • FIG. FIG. 20 is a circuit diagram illustrating an example of a pixel according to the eighth embodiment.
  • FIGS. 21A and 21B illustrate a read operation including a control for mixing an accumulating state and an unaccumulated state by the state control unit according to the eighth embodiment of the present invention.
  • FIG. FIG. 22 is a circuit diagram illustrating an example of a pixel according to the ninth embodiment.
  • FIG. 23 (A) and FIG. 23 (B) explain a read operation including a control for mixing the accumulating state and the non-accumulating state by the state control unit according to the ninth embodiment of the present invention.
  • FIG. 24 is a circuit diagram illustrating an example of a pixel according to the tenth embodiment.
  • FIGS. 25A and 25B illustrate a read operation including a control for mixing the accumulating state and the non-accumulating state by the state control unit according to the tenth embodiment of the present invention.
  • FIG. FIG. 26 is a diagram illustrating an example of a configuration of an electronic apparatus to which the solid-state imaging device according to the embodiment of the present invention is applied.
  • SYMBOLS 10 Solid-state imaging device, 20 ... Pixel part, 30 ... Vertical scanning circuit, 40 ... Horizontal scanning circuit, 50 ... Read-out circuit, 60 ... Timing control circuit, 70 ... State controller 80 ... Reading unit 100 ... Electronic device 110 ... CMOS image sensor 120 ... Optical system 130 ... Signal processing circuit (PRC)
  • PRC Signal processing circuit
  • FIG. 1 is a block diagram illustrating a configuration example of a solid-state imaging apparatus according to the first embodiment of the present invention.
  • the solid-state imaging device 10 is configured by, for example, a CMOS image sensor.
  • the solid-state imaging device 10 includes a pixel unit 20 as an imaging unit, a vertical scanning circuit (row scanning circuit) 30, a readout circuit (column readout circuit) 40, and a horizontal scanning circuit (column scanning circuit) 50. , And a timing control circuit 60 as main components.
  • the state control unit 70 includes the vertical scanning circuit 30 and the timing control circuit 60.
  • the vertical scanning circuit 30, the readout circuit 40, and the timing control circuit 60 constitute a pixel signal readout unit 80.
  • the solid-state imaging device 10 includes the pixel unit 20 so that dark current can be suppressed without impairing the function of discharging surplus charges during accumulation.
  • the state under the gate of the transfer transistor (or overflow gate) as a charge transfer gate part capable of transferring the charge accumulated in the photoelectric conversion element (photodiode) of the arranged pixel is the state during the accumulation period (exposure period).
  • the control unit 70 performs control so that an accumulating state and an unaccumulated state are mixed.
  • the state control unit 70 applies a pulse, which is an intermittent (or periodic) voltage signal, to the gate electrode of the transfer transistor, for example, so that the accumulated state and the unaccumulated state are mixed. To do.
  • the state control unit 70 suppresses depletion under the gate electrode by applying a pulse.
  • FIG. 2A and FIG. 2B are diagrams illustrating operation timings of the shutter scan and the readout scan during the normal pixel readout operation in the present embodiment.
  • 2A shows the relationship between the shutter scan, the exposure period, and the readout scan
  • FIG. 2B shows specific operation timings of the shutter scan and readout scan.
  • a shutter scan is performed by driving by the readout unit 80, and then a readout scan is performed, but an accumulation state and an unaccumulation state by the state control unit 70 are mixed.
  • the control is performed during the accumulation period (exposure period) EXP of the shutter scan period PSHT.
  • the reading unit 80 performs the first reading in which the reset voltage Vrst is read in the first reading period PRD1 following the reset period PR, and the first reading period following the reset period PR in one reading scan period PRDO.
  • the second read period PRD2 after the transfer period PT performed after PRD1 the second read that reads the signal voltage Vsig corresponding to the accumulated charge of the photoelectric conversion element can be performed.
  • a plurality of pixels including photodiodes (photoelectric conversion elements) and in-pixel amplifiers are arranged in a two-dimensional matrix (matrix) of N rows ⁇ M columns.
  • FIG. 3 is a circuit diagram illustrating an example of a pixel according to the first embodiment.
  • the pixel PXL includes, for example, a photodiode (PD) that is a photoelectric conversion element.
  • a photodiode (PD) that is a photoelectric conversion element.
  • a transfer transistor TG-Tr as a charge transfer gate portion
  • a reset transistor RST-Tr as a reset element
  • a source follower transistor SF-Tr as a source follower element
  • a selection transistor SEL as a selection element
  • a buried photo diode (BPD) is used as the photodiode PD. Since surface levels due to dangling bonds and other defects exist on the surface of the substrate on which the photodiode PD is formed, a large amount of charge (dark current) is generated due to thermal energy, and a correct signal may not be read out.
  • BPD embedded photodiode
  • the photodiode PD generates and accumulates signal charges (electrons here) in an amount corresponding to the amount of incident light.
  • signal charges electron here
  • each transistor is an n-type transistor
  • the signal charge may be a hole or each transistor may be a p-type transistor.
  • This embodiment is also effective when a plurality of photodiodes share each transistor or when a three-transistor (3Tr) pixel that does not have a selection transistor is employed.
  • the transfer transistor TG-Tr is connected between the photodiode PD and a floating diffusion FD (floating diffusion layer), and is controlled through a control line TG. Under the control of the state control unit 70, the transfer transistor TG-Tr becomes conductive when the control line TG is selected during a high level H of a predetermined level LV (eg, power supply voltage level), for example, during a read scan. Charges (electrons) photoelectrically converted and stored by the PD are transferred to the floating diffusion FD.
  • a predetermined level LV eg, power supply voltage level
  • the transfer transistor TG-Tr is, for example, an accumulation period (exposure period) EXP during the shutter scan period PSHT under the control of the state control unit 70.
  • a transfer gate pulse PLST which is an intermittent (or periodic) voltage signal set to an intermediate level LM lower than a predetermined level is applied to the control line TG.
  • the transfer transistor TG-Tr is controlled so that the accumulation state and the non-accumulation state are mixed under the gate electrode by applying the pulse PLST to the gate electrode. In other words, in the transfer transistor TG-Tr, depletion under the gate electrode is suppressed by applying the pulse PLST to the gate electrode.
  • the level of the transfer gate pulse PLST can be adjusted by the state control unit 70.
  • FIG. 4 is a diagram schematically showing a cross section of the embedded photodiode, the transfer transistor, and the floating diffusion in the pixel according to the first embodiment.
  • the embedded photodiode BPD is formed with a first conductivity type p + layer 201 as a seal layer and a second conductivity type n ⁇ layer 202 as a charge storage portion from the surface side.
  • Reference numeral 203 denotes a p ⁇ region
  • 204 denotes an n + layer that forms the floating diffusion FD.
  • An n + layer 204 is formed on the side of the photodiode PD with a p-region 203 having a predetermined width, and a gate electrode (GT) of the transfer transistor TG-Tr is formed on the p-region 203 having a predetermined width via a gate oxide film.
  • GT gate electrode
  • the transfer transistor TG-Tr has a potential profile (potential profile) under the gate electrode 205 when a pulse PLST, which is an arbitrary voltage, is applied to the gate electrode during the accumulation period (exposure period) EXP. It may be an embedded type.
  • the potential profile under the gate electrode can be controlled by a pulse that is a voltage signal applied to the minimum point.
  • a so-called transfer electrode portion under the gate electrode of the transfer transistor TG-Tr may be formed by a buried channel.
  • the transfer transistor TG-Tr applies a pulse PLST having an arbitrary voltage level to the gate electrode during the accumulation period (exposure period) EXP, so that majority carriers are transferred to the Si / insulating layer interface under the gate electrode 205. It can be collected and buried in a generation recombination center (GR center) at the Si / insulating layer interface.
  • GR center generation recombination center
  • FIG. 5 is a diagram for explaining the behavior of electrons and holes in the GR center at the Si / insulating layer interface.
  • the holes are recombined or occupied by generated holes or electrons.
  • EXP accumulation period
  • the reset transistor RST-Tr is connected between the power supply line VRst and the floating diffusion FD, and is controlled through the control line RST.
  • the reset transistor RST-Tr may be connected between the power supply line VDD and the floating diffusion FD, and may be configured to be controlled through the control line RST.
  • the reset transistor RST-Tr becomes conductive when the control line RST is selected during the period of the read scan, for example, during the read scan, and the floating diffusion FD is set to the potential of the power supply line VRst (or VDD). Reset to.
  • the reset transistor RST-Tr is set to a predetermined level LV on the control line RST, for example, during the accumulation period (exposure period) EXP during the shutter scan period PSHT under the control of the state control unit 70.
  • the reset gate pulse PLSR which is an intermittent (or periodic) voltage signal, is applied.
  • depletion under the gate electrode is suppressed by applying a pulse PLSR to the gate electrode.
  • the reset gate pulse PLSR is a pulse signal in phase with the transfer gate pulse PLST, and its level is a predetermined level (power supply voltage level) LV, which is higher than the level of the transfer gate pulse PLST (intermediate level LM).
  • the source follower transistor SF-Tr and the selection transistor SEL-Tr are connected in series between the power supply line VDD and the vertical signal line LSGN.
  • a floating diffusion FD is connected to the gate of the source follower transistor SF-Tr, and the selection transistor SEL-Tr is controlled through a control line SEL.
  • the source follower transistor SF-Tr is connected to the column output signal line LSGN via the selection transistor SEL-Tr, and constitutes a source follower with a load circuit connected to the output signal line LSGN outside the pixel unit 20.
  • the selection transistor SEL-Tr is selected during the period when the control line SEL is at the H level and becomes conductive.
  • the source follower transistor SF-Tr outputs the column output read voltage (signal) VSL (PIXOUT), which is obtained by converting the charge of the floating diffusion FD into a voltage signal with a gain corresponding to the amount of charge (potential), to the vertical signal line LSGN.
  • VSL column output read voltage
  • the gates of the transfer transistor TG-Tr, the reset transistor RST-Tr, and the selection transistor SEL-Tr are connected in units of rows. Is called.
  • each control line SEL, RST, TG is represented as one row scanning control line.
  • the vertical scanning circuit 30 drives the pixels through the row scanning control lines in the shutter row and the readout row in accordance with the control of the timing control circuit 60. In addition, the vertical scanning circuit 30 outputs a row selection signal of a row address of a read row that reads out the signal and a shutter row that resets the charge accumulated in the photodiode PD in accordance with the address signal.
  • a shutter scan is performed by driving by the vertical scanning circuit 30 of the readout unit 80, and then a readout scan is performed.
  • FIG. 2A and FIG. 2B show the operation timing of the shutter scan and the readout scan during the normal pixel readout operation in the present embodiment.
  • the control line SEL for controlling the on (conducting) and off (non-conducting) of the selection transistor SEL-Tr is set to L level during the shutter scan period PSHT, and the selection transistor SEL-Tr is held in the non-conducting state and read.
  • the selection transistor SEL-Tr is set in the conductive state by being set to the H level.
  • the control line TG is set to the H level for a predetermined period while the control line RST is at the H level, and the photodiode PD and the floating diffusion FD are passed through the reset transistor RST-Tr and the transfer transistor TG-Tr. Is reset.
  • the transfer is an intermittent (or periodic) voltage signal that is set to the intermediate level LM lower than the predetermined level LV on the control line TG.
  • a gate pulse PLST is applied.
  • the transfer transistor TG-Tr is controlled so that the accumulation state and the non-accumulation state are mixed under the gate electrode by applying the pulse PLST to the gate electrode.
  • the reset transistor RST-Tr is intermittently set to a predetermined level LV on the control line RST under the control of the state control unit 70, for example, in the accumulation period (exposure period) EXP in the shutter scan period PSHT.
  • a reset gate pulse PLSR which is a (or periodic) voltage signal, is applied.
  • the control line RST is set to H level
  • the floating diffusion FD is reset through the reset transistor RST-Tr
  • the pixel read voltage is in the reset state in the first read period PRD1 after the reset period PR.
  • the reset voltage Vrst is read out.
  • the control line TG is set to H level for a predetermined period, and the charge stored in the photodiode PD is transferred to the floating diffusion FD through the transfer transistor TG-Tr.
  • a signal voltage Vsig which is a pixel readout voltage corresponding to the accumulated electrons (charges), is read out.
  • the readout circuit 40 includes a plurality of column signal processing circuits (not shown) arranged corresponding to the respective column outputs of the pixel unit 20, and may be configured to allow column parallel processing by the plurality of column signal processing circuits. Good.
  • the readout circuit 40 can be configured to include a correlated double sampling (CDS) circuit, an ADC (analog / digital converter; AD converter), an amplifier (AMP), a sample hold (S / H) circuit, and the like. It is.
  • CDS correlated double sampling
  • ADC analog / digital converter
  • AMP amplifier
  • S / H sample hold
  • the readout circuit 40 may include an ADC 41 that converts the readout signal VSL output from each column of the pixel unit 20 into a digital signal, for example, as illustrated in FIG.
  • an amplifier (AMP) 42 that amplifies the readout signal VSL output from each column of the pixel unit 20 may be arranged.
  • the read circuit 40 may include a sample hold (S / H) circuit 43 that samples and holds the read signal VSL output from each column of the pixel unit 20.
  • the horizontal scanning circuit 50 scans a signal processed by a plurality of column signal processing circuits such as ADC of the reading circuit 40, transfers it in the horizontal direction, and outputs it to a signal processing circuit (not shown).
  • the timing control circuit 60 generates timing signals necessary for signal processing of the pixel unit 20, the vertical scanning circuit 30, the readout circuit 40, the horizontal scanning circuit 50, and the like.
  • the state control unit 70 sets the state under the gate electrode 205 of the transfer transistor TG-Tr during the accumulation period (exposure period) EXP in the shutter scan period PSHT and the transfer gate of the intermediate level LM to the gate electrode 205.
  • the application pulse PLST By applying the application pulse PLST, control is performed so that the accumulation state and the non-accumulation state are mixed.
  • the state control unit 70 applies the pulse PLST to the gate electrode of the transfer transistor TG-Tr, thereby suppressing the depletion under the gate electrode and impairing the function of discharging excess charge during accumulation. No dark current is suppressed.
  • the state control unit 70 intermittently sets the gate electrode of the reset transistor RST-Tr and the control line RST at a predetermined level LV during the accumulation period (exposure period) EXP during the shutter scan period PSHT.
  • a reset gate pulse PLSR which is a target (or periodic) voltage signal, is applied. This suppresses depletion in the vicinity of the transfer transistor TG-Tr and further suppresses dark current.
  • FIG. 7A and FIG. 7B are diagrams for explaining the read operation according to the first embodiment.
  • FIG. 7A shows an equivalent circuit of a pixel
  • FIG. 7B shows an operation waveform.
  • the control line SEL for controlling on (conductive) and off (non-conductive) of the selection transistor SEL-Tr is set to L level, and the selection transistor SEL-Tr is held in a non-conductive state.
  • the control line TG is set to H level for a predetermined period while the control line RST is at H level, and the photodiode PD and the floating diffusion FD are passed through the reset transistor RST-Tr and the transfer transistor TG-Tr. Is reset.
  • the transfer gate pulse PLST set to the intermediate level LM lower than the predetermined level LV is applied to the control line TG.
  • the transfer transistor TG-Tr is controlled so that the accumulation state and the non-accumulation state are mixed under the gate electrode by applying the pulse PLST to the gate electrode.
  • depletion under the gate electrode of the transfer transistor TG-Tr is suppressed, and dark current is suppressed without impairing the function of discharging surplus charge during accumulation.
  • a reset gate pulse PLSR set to a predetermined level LV is applied to the gate electrode of the reset transistor RST-Tr through the control line RST. Is done. As a result, depletion in the vicinity of the transfer transistor TG-Tr is suppressed, and dark current is reliably suppressed.
  • the read operation shifts from the shutter scan to the read scan.
  • the control line SEL connected to each pixel PXL in the selected row is set to the H level.
  • the selection transistor SEL-Tr of the pixel PXL is turned on.
  • the reset transistor RST-Tr is selected during the reset period PR1 while the control line RST is at the H level and becomes conductive, and the floating diffusion FD is connected to the power supply line VDD. Reset to potential.
  • the reset period PR1 has elapsed (the reset transistor RST-Tr is in a non-conductive state)
  • the period until the transfer period PT1 is started is a first read period PRD1 for reading the reset voltage Vrst in the reset state.
  • the reset voltage Vrst which is the pixel readout voltage in the reset state, is read out through the vertical signal line LSGN. At this time, the reset voltage Vrst is supplied to the read circuit 40 and is held, for example.
  • the first read period PRD1 ends and the transfer period PT1 starts.
  • the transfer transistor TG-Tr is selected during the period when the control line TG is at the high level (H) and becomes conductive, and is photoelectrically converted and stored by the photodiode PD. Charges (electrons) are transferred to the floating diffusion FD.
  • the second read period PRD2 in which the signal voltage Vsig corresponding to the charge accumulated by photoelectric conversion of the photodiode PD is read.
  • the control line TG is set to H level for a predetermined period, and the accumulated charge of the photodiode PD is transferred to the floating diffusion FD through the transfer transistor TG-Tr.
  • a signal voltage Vsig that is a pixel readout voltage corresponding to the electrons (charges) accumulated in the second readout period PRD2 is read out. At this time, the signal voltage Vsig is supplied to the read circuit 40 and is held, for example.
  • the state controller 70 changes the state under the gate electrode 205 of the transfer transistor TG-Tr during the accumulation period (exposure period) EXP in the shutter scan period.
  • a transfer gate pulse PLST of an intermediate level LM to the gate electrode 205, control is performed so that an accumulating state and an unaccumulated state are mixed.
  • the state control unit 70 applies the pulse PLST to the gate electrode of the transfer transistor TG-Tr, thereby suppressing depletion under the gate electrode and It is possible to suppress the dark current without impairing the function of discharging the surplus charge, and it is possible to reduce image defects caused by the dark current from the GR center under the gate electrode, thereby improving the image quality. There is an advantage that can be realized.
  • FIGS. 8A to 8C are diagrams showing the relationship between the state of the depletion region in the gate bias to the gate electrode of the transfer transistor and the suppression state of dark current, blooming, and saturation.
  • a region indicated by reference sign DPL is a depletion region.
  • FIG. 8A shows a case where depletion under the gate electrode is suppressed by applying a negative gate bias Vg to the gate electrode of the transfer transistor TG-Tr in the first embodiment. .
  • Vg negative gate bias
  • FIG. 8B shows a case where a depletion region and a region where depletion is suppressed are mixed under the gate electrode without applying the pulse PLST or the like of the present embodiment to the gate electrode of the transfer transistor TG-Tr.
  • FIG. 8C shows a case where a positive gate case is applied to the gate electrode of the transfer transistor TG-Tr without applying the pulse PLST of the present embodiment, and a depletion region is present in substantially the entire area under the gate electrode. Shows when to do. In this case, since depletion in substantially the entire area under the gate electrode cannot be suppressed, saturation output is impaired and it is difficult to suppress dark current. However, a sufficient effect can be obtained for blooming.
  • FIG. 9A to 9C show the case where a transfer gate pulse is applied to the gate electrode of the transfer transistor, the case where an intermediate voltage is applied, and the case where a pulse is applied to a substrate or the like, dark current, It is a figure which shows the relationship with the suppression state of blooming and saturation by potential transition.
  • FIG. 10 is a diagram illustrating that blooming is suppressed by pulsing in the photoelectric conversion characteristics.
  • FIG. 9A shows the depletion under the gate electrode by applying the transfer gate pulse PLST instead of the negative gate bias Vg to the gate electrode of the transfer transistor TG-Tr in the first embodiment.
  • the case where it suppressed is shown.
  • dark current can be suppressed without impairing the function of discharging surplus charges during accumulation.
  • a sufficient effect for blooming can be obtained by pulsing.
  • FIG. 9B shows a case where a constant intermediate voltage is applied to the gate electrode of the transfer transistor TG-Tr without applying the pulse PLST of the present embodiment.
  • a constant intermediate voltage is applied to the gate electrode of the transfer transistor TG-Tr without applying the pulse PLST of the present embodiment.
  • FIG. 9C shows a case where a pulse is applied to the other part of the gate electrode of the transfer transistor TG-Tr in the first embodiment.
  • a pulse is applied to the other part of the gate electrode of the transfer transistor TG-Tr in the first embodiment.
  • it is possible to suppress dark current without impairing the function of discharging surplus charges during accumulation.
  • a sufficient effect cannot be obtained for blooming.
  • FIG. 11 is a diagram for explaining that an overflow function via a buried channel under a gate electrode can be easily realized in accordance with pulsing in the first embodiment.
  • the horizontal axis indicates the depth of Si, and the vertical axis indicates the potential.
  • the overflow function via the buried channel under the gate electrode can be easily realized with the pulse formation. Further, according to the first embodiment, the saturation charge amount can be adjusted to the optimum value from the outside or automatically.
  • the state controller 70 sets the reset transistor RST-Tr in parallel with the application of the transfer gate pulse PLST in the accumulation period (exposure period) EXP in the shutter scan period.
  • a reset gate pulse PLSR which is an intermittent (or periodic) voltage signal, set to a predetermined level LV through the control line RST is applied to the gate electrode.
  • FIGS. 12A and 12B illustrate a read operation including a control for mixing the accumulating state and the non-accumulating state by the state control unit 70 according to the second embodiment of the present invention. It is a figure for doing.
  • FIG. 12A shows an equivalent circuit of a pixel
  • FIG. 12B shows an operation waveform.
  • the second embodiment is different from the first embodiment as follows.
  • the state control unit applies a control line to the gate electrode of the reset transistor RST-Tr in parallel with the application of the transfer gate pulse PLST in the accumulation period (exposure period) EXP during the shutter scan period.
  • a reset gate pulse PLSR which is an intermittent (or periodic) voltage signal set to a predetermined level LV through RST is applied.
  • a constant voltage signal VR set to a predetermined level LV is applied to the gate electrode of the reset transistor RST-Tr through the control line RST.
  • FIGS. 13A and 13B illustrate a read operation including a control for mixing an accumulating state and an unaccumulated state by the state control unit 70 according to the third embodiment of the present invention. It is a figure for doing.
  • FIG. 13A shows an equivalent circuit of a pixel
  • FIG. 13B shows an operation waveform.
  • the third embodiment is different from the first embodiment as follows.
  • the state control unit applies a pulse to the gate electrode of the reset transistor RST-Tr in the accumulation period (exposure period) EXP during the shutter scan period in parallel with the application of the transfer gate pulse PLST.
  • a pulse IPLSG having a phase opposite to that of the transfer gate pulse PLST is applied to the ground line (GND) in order to stabilize the potential of the substrate well.
  • the potential of the substrate well can be stabilized as well as the same effect as that of the first embodiment described above.
  • FIG. 14 is a circuit diagram illustrating an example of a pixel according to the fourth embodiment.
  • FIGS. 15A and 15B illustrate a read operation including a control for mixing the accumulating state and the non-accumulating state by the state control unit 70 according to the fourth embodiment of the present invention. It is a figure for doing.
  • FIG. 15A shows an equivalent circuit of a pixel
  • FIG. 15B shows an operation waveform.
  • the fourth embodiment is different from the first embodiment as follows.
  • the pixel PXLA discharges the charge overflowing from the photodiode PD between the cathode side (charge storage unit side) of the photodiode PD and the power supply line VDD in addition to the configuration of FIG.
  • an overflow gate transistor OFG-Tr is connected.
  • the gate electrode of the overflow gate transistor OFG-Tr is connected to the control line OFG, and instead of the transfer gate pulse PLST, the overflow gate pulse PLSOF of the intermediate level LM is connected to the gate electrode of the overflow gate transistor OFG-Tr through the control line OFG. Is applied.
  • a pulse IPLSOF having an opposite phase to the overflow gate pulse PLSOF is applied to the gate electrode of the transfer transistor TG-Tr.
  • the potential of the substrate well can be stabilized as well as the same effect as that of the first embodiment described above.
  • FIGS. 16A and 16B illustrate a read operation including a control for mixing the accumulating state and the non-accumulating state by the state control unit 70 according to the fifth embodiment of the present invention. It is a figure for doing.
  • FIG. 16A shows an equivalent circuit of a pixel
  • FIG. 16B shows an operation waveform.
  • the fifth embodiment is different from the fourth embodiment as follows.
  • a constant voltage signal IVOF having a reverse phase is used instead of the pulse having a phase opposite to that of the overflow gate pulse PLSOF.
  • FIGS. 17A and 17B illustrate a read operation including a control for mixing the accumulating state and the non-accumulating state by the state control unit 70 according to the sixth embodiment of the present invention. It is a figure for doing.
  • FIG. 17A shows an equivalent circuit of a pixel
  • FIG. 17B shows an operation waveform.
  • the sixth embodiment is different from the fourth embodiment as follows.
  • the overflow gate in order to stabilize the potential of the substrate well, instead of applying a pulse having a phase opposite to that of the overflow gate pulse PLSOF to the gate electrode of the transfer transistor TG-Tr, the overflow gate is applied to the ground line.
  • a pulse IPLSGOF having a phase opposite to that of the pulse PLSOF is applied.
  • FIG. 18 is a circuit diagram illustrating an example of a pixel according to the seventh embodiment.
  • FIG. 19A and FIG. 19B illustrate a read operation including control for mixing the accumulating state and the non-accumulating state by the state control unit 70 according to the seventh embodiment of the present invention. It is a figure for doing.
  • FIG. 19A shows an equivalent circuit of a pixel
  • FIG. 19B shows an operation waveform.
  • the seventh embodiment is different from the first embodiment as follows.
  • the pixel PXLB has a pixel sharing structure in which one floating diffusion FD is shared by two photodiodes PD1 and PD2 and transfer transistors TG1-Tr and TG2-Tr.
  • the state control unit of the seventh embodiment shifts the timing of the transfer gate pulses to the gate electrodes of the shared transfer transistors TG1-Tr and TG2-Tr in order to stabilize the potential of the substrate well.
  • PLST1 and PLST2 are applied.
  • the seventh embodiment even in the case of the pixel sharing structure, the same effect as the effect of the first embodiment described above can be obtained.
  • FIG. 20 is a circuit diagram illustrating an example of a pixel according to the eighth embodiment.
  • FIGS. 21A and 21B illustrate a read operation including a control for mixing an accumulating state and an unaccumulated state by the state control unit 70 according to the eighth embodiment of the present invention. It is a figure for doing.
  • FIG. 21A shows an equivalent circuit of a pixel
  • FIG. 21B shows an operation waveform.
  • the eighth embodiment is different from the first embodiment as follows.
  • the pixel PXLC shares one floating diffusion FD with the four photodiodes PD1, PD2, PD3, PD4 and the transfer transistors TG1-Tr, TG2-Tr, TG3-T, TG4-Tr. It has a pixel sharing structure.
  • the state control unit of the eighth embodiment uses the gate electrodes of the shared transfer transistors TG1-Tr, TG2-Tr, TG3-Tr, and TG4-Tr to stabilize the potential of the substrate well. Transfer gate pulses PLST1, PLST2, PLST3, and PLST4 are applied at different timings.
  • the eighth embodiment even in the case of the pixel sharing structure, the same effect as the effect of the first embodiment described above can be obtained.
  • FIG. 22 is a circuit diagram illustrating an example of a pixel according to the ninth embodiment.
  • FIGS. 23A and 23B illustrate a read operation including a control for mixing the accumulating state and the non-accumulating state by the state control unit 70 according to the ninth embodiment of the present invention. It is a figure for doing.
  • FIG. 23A shows an equivalent circuit of a pixel
  • FIG. 23B shows an operation waveform.
  • the ninth embodiment is different from the fourth embodiment as follows.
  • the pixel PXLD shares one floating diffusion FD with two photodiodes PD1, PD2, transfer transistors TG1-Tr, TG2-Tr, and overflow gate transistors OFG1-Tr, OFG2-Tr. It has a pixel sharing structure.
  • the state control unit of the ninth embodiment shifts the timing of the gate electrodes of the shared overflow gate transistors OFG1-Tr and OFG2-Tr for the overflow gate in order to stabilize the potential of the substrate well. Pulses PLSOF1 and PLSOF2 are applied.
  • FIG. 24 is a circuit diagram illustrating an example of a pixel according to the tenth embodiment.
  • FIG. 25A and FIG. 25B illustrate a read operation including control for mixing the accumulating state and the non-accumulating state by the state control unit 70 according to the tenth embodiment of the present invention. It is a figure for doing.
  • FIG. 25A shows an equivalent circuit of a pixel
  • FIG. 25B shows an operation waveform.
  • the pixel PXLE includes one floating diffusion FD, four photodiodes PD1, PD2, PD3, PD4, transfer transistors TG1-Tr, TG2-Tr, TG3-Tr, TG4-Tr, and overflow. It has a pixel sharing structure shared by the gate transistors OFG1-Tr, OFG2-Tr, OFG3-Tr, OFG4-Tr.
  • the state control unit of the ninth embodiment uses the gate electrodes of the shared overflow gate transistors OFG1-Tr, OFG2-Tr, OFG3-Tr, OFG4-Tr to stabilize the potential of the substrate well. Applies the overflow gate pulses PLSOF1, PLSOF2, PLSOF3, PLSOF4 at different timings.
  • the solid-state imaging device 10 described above can be applied as an imaging device to an electronic apparatus such as a digital camera, a video camera, a portable terminal, a monitoring camera, or a medical endoscope camera.
  • FIG. 26 is a diagram illustrating an example of the configuration of an electronic apparatus equipped with a camera system to which the solid-state imaging device according to the embodiment of the present invention is applied.
  • the electronic apparatus 100 includes a CMOS image sensor 110 to which the solid-state imaging device 10 according to the present embodiment can be applied.
  • the electronic device 100 further includes an optical system (lens or the like) 120 that guides incident light (forms a subject image) to the pixel region of the CMOS image sensor 110.
  • the electronic device 100 includes a signal processing circuit (PRC) 130 that processes an output signal of the CMOS image sensor 110.
  • PRC signal processing circuit
  • the signal processing circuit 130 performs predetermined signal processing on the output signal of the CMOS image sensor 110.
  • the image signal processed by the signal processing circuit 130 can be displayed as a moving image on a monitor composed of a liquid crystal display or the like, or output to a printer, or directly recorded on a recording medium such as a memory card. Is possible.
  • CMOS image sensor 110 As described above, by mounting the above-described solid-state imaging device 10 as the CMOS image sensor 110, it is possible to provide a high-performance, small, and low-cost camera system.
  • Electronic devices such as surveillance cameras and medical endoscope cameras are used for applications where the camera installation requirements include restrictions such as mounting size, number of connectable cables, cable length, and installation height. Can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

A solid-state image capturing device 10 comprises: a photodiode PD, which is an opto-electrical conversion element that accumulates electric charge generated by opto-electrical conversion during an accumulation period (exposure period); a transfer transistor TG-Tr which serves as an electric charge transfer gate portion with which charge accumulated by the photodiode can be transferred during a transfer period; and a state control unit 70 which, during the accumulation period (exposure period), controls the state below the gate of the transfer transistor TG-Tr to be a mixture of a state in which accumulation is occurring and a state in which accumulation is not occurring. By this means, it is possible to suppress a dark current without losing the function of discharging surplus electric current during accumulation.

Description

固体撮像装置、固体撮像装置の駆動方法、および電子機器Solid-state imaging device, driving method of solid-state imaging device, and electronic apparatus
 本発明は、固体撮像装置、固体撮像装置の駆動方法、および電子機器に関するものである。 The present invention relates to a solid-state imaging device, a driving method for the solid-state imaging device, and an electronic apparatus.
 光を検出して電荷を発生させる光電変換素子を用いた固体撮像装置(イメージセンサ)として、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサが実用に供されている。
 CMOSイメージセンサは、デジタルカメラ、ビデオカメラ、監視カメラ、医療用内視鏡、パーソナルコンピュータ(PC)、携帯電話等の携帯端末装置(モバイル機器)等の各種電子機器の一部として広く適用されている。
A CMOS (Complementary Metal Oxide Semiconductor) image sensor has been put to practical use as a solid-state imaging device (image sensor) using a photoelectric conversion element that detects light and generates charges.
CMOS image sensors are widely applied as a part of various electronic devices such as digital cameras, video cameras, surveillance cameras, medical endoscopes, personal computers (PCs), and mobile terminal devices (mobile devices) such as mobile phones. Yes.
 CMOSイメージセンサは、画素毎にフォトダイオード(光電変換素子)および浮遊拡散層(FD:Floating Diffusion、フローティングディフュージョン)を有するFDアンプを持ち合わせており、その読み出しは、画素アレイの中のある一行を選択し、それらを同時に列(カラム)出力方向へと読み出すような列並列出力型が主流である。 The CMOS image sensor has an FD amplifier having a photodiode (photoelectric conversion element) and a floating diffusion layer (FD: Floating Diffusion) for each pixel, and the readout selects one row in the pixel array. However, a column parallel output type in which these are simultaneously read in the column output direction is the mainstream.
 CMOSイメージセンサの各画素は、たとえば1個のフォトダイオードに対して、転送ゲートとしての転送トランジスタ、リセットゲートとしてのリセットトランジスタ、ソースフォロワゲート(増幅ゲート)としてのソースフォロワトランジスタ、および選択ゲートとしての選択トランジスタの4素子を能動素子として含んで構成される(たとえば特許文献1参照)。
 また、各画素には、フォトダイオードの蓄積期間にフォトダイオードから溢れるオーバーフロー電荷を排出するためのオーバーフローゲート(オーバーフロートランジスタ)が設けられてもよい。
Each pixel of the CMOS image sensor has, for example, a transfer transistor as a transfer gate, a reset transistor as a reset gate, a source follower transistor as a source follower gate (amplification gate), and a selection gate for one photodiode. The configuration includes four elements of the selection transistor as active elements (see, for example, Patent Document 1).
Each pixel may be provided with an overflow gate (overflow transistor) for discharging overflow charges overflowing from the photodiode during the photodiode accumulation period.
 転送トランジスタは、フォトダイオードと出力ノードとしてのフローティングディフュージョンFDとの間に接続されている。
 転送トランジスタは、フォトダイオードの電荷蓄積期間には非導通状態に保持され、フォトダイオードの蓄積電荷をフローディングディフュージョンに転送する転送期間に、ゲートに駆動信号が印加されて導通状態に保持され、フォトダイオードで光電変換された電荷をフローティングディフュージョンFDに転送する。
The transfer transistor is connected between the photodiode and the floating diffusion FD as an output node.
The transfer transistor is held in a non-conducting state during the charge accumulation period of the photodiode, and a drive signal is applied to the gate and held in the conducting state during a transfer period in which the accumulated charge of the photodiode is transferred to the floating diffusion. The charge photoelectrically converted by the diode is transferred to the floating diffusion FD.
 リセットトランジスタは、電源ラインとフローティングディフュージョンFDとの間に接続されている。
 リセットトランジスタは、そのゲートにリセット信号が与えられることで、フローティングディフュージョンFDの電位を電源ラインの電位にリセットする。
The reset transistor is connected between the power supply line and the floating diffusion FD.
The reset transistor resets the potential of the floating diffusion FD to the potential of the power supply line when a reset signal is given to its gate.
 フローティングディフュージョンFDには、ソースフォロワトランジスタのゲートが接続されている。ソースフォロワトランジスタは、選択トランジスタを介して垂直信号線に接続され、画素部外の負荷回路の定電流源とソースフォロアを構成している。
 そして、制御信号(アドレス信号またはセレクト信号)が選択トランジスタのゲートに与えられ、選択トランジスタがオンする。
 選択トランジスタがオンすると、ソースフォロワトランジスタはフローティングディフュージョンFDの電位を増幅してその電位に応じた電圧を垂直信号線に出力する。垂直信号線を通じて、各画素から出力された電圧は、画素信号読み出し回路としての列並列処理部に出力される。
A gate of a source follower transistor is connected to the floating diffusion FD. The source follower transistor is connected to the vertical signal line via the selection transistor, and constitutes a constant current source and a source follower of the load circuit outside the pixel portion.
Then, a control signal (address signal or select signal) is supplied to the gate of the selection transistor, and the selection transistor is turned on.
When the selection transistor is turned on, the source follower transistor amplifies the potential of the floating diffusion FD and outputs a voltage corresponding to the potential to the vertical signal line. The voltage output from each pixel through the vertical signal line is output to a column parallel processing unit as a pixel signal readout circuit.
 また、各画素において、フォトダイオード(PD)としては、埋め込みフォトダイオード(Buried Photo Diode;BPD)が広く用いられている。
 フォトダイオード(PD)を形成する基板表面にはダングリングボンドなどの欠陥による表面準位が存在するため、熱エネルギーによって多くの電荷(暗電流)が発生し、正しい信号が読み出せなくなるおそれがある。
 埋め込みフォトダイオード(BPD)では、フォトダイオード(PD)の電荷蓄積部を基板内に埋め込むことで、暗電流の信号への混入を低減することが可能となる。
 なお、フォトダイオード(PD)の感度は、たとえば露光時間を変えたりすることで変更できる。
In each pixel, a buried photo diode (BPD) is widely used as a photodiode (PD).
Since surface levels due to dangling bonds and other defects exist on the surface of the substrate on which the photodiode (PD) is formed, a large amount of charge (dark current) is generated due to thermal energy, and a correct signal may not be read out. .
In the embedded photodiode (BPD), it is possible to reduce mixing of dark current into the signal by embedding the charge storage portion of the photodiode (PD) in the substrate.
The sensitivity of the photodiode (PD) can be changed by changing the exposure time, for example.
特開2005-223681号公報Japanese Patent Laid-Open No. 2005-223681
 ところが、上述した固体撮像装置(イメージセンサ)においては、フォトダイオードの蓄積期間中は、電荷を転送する機能を有する転送トランジスタまたはオーバーフロートランジスタは、非導通状態に保持されるが、蓄積時の余剰電荷を排出するために常時空乏化されており、暗電流が増加するという欠点がある。 However, in the above-described solid-state imaging device (image sensor), during the accumulation period of the photodiode, the transfer transistor or the overflow transistor having a function of transferring charge is held in a non-conductive state, but the excess charge at the time of accumulation. Is always depleted in order to discharge the light, and there is a disadvantage that dark current increases.
 本発明は、蓄積時の余剰電荷を排出する機能を損なうことなく、暗電流を抑制することが可能な固体撮像装置、固体撮像装置の駆動方法、および電子機器を提供することにある。 It is an object of the present invention to provide a solid-state imaging device, a driving method for the solid-state imaging device, and an electronic apparatus that can suppress dark current without impairing the function of discharging surplus charges during accumulation.
 本発明の第1の観点の固体撮像装置は、蓄積期間に光電変換により生成した電荷を蓄積する光電変換素子と、前記光電変換素子に蓄積された電荷を転送可能な少なくとも一つの電荷転送ゲート部と、少なくとも前記蓄積期間に、少なくとも前記電荷転送ゲート部のゲート下の状態をアキュムレーションしている状態とアキュムレーションしていない状態とが混在するように制御する状態制御部とを有する。 A solid-state imaging device according to a first aspect of the present invention includes a photoelectric conversion element that accumulates charges generated by photoelectric conversion during an accumulation period, and at least one charge transfer gate unit that can transfer charges accumulated in the photoelectric conversion element And a state control unit that controls so that at least the state under the gate of the charge transfer gate unit is accumulating and the state of not accumulating at least during the accumulation period.
 本発明の第2の観点は、蓄積期間に光電変換により生成した電荷を蓄積する光電変換素子と、前記光電変換素子に蓄積された電荷を転送可能な少なくとも一つの電荷転送ゲート部と、を有する固体撮像装置の駆動方法であって、少なくとも前記蓄積期間に、少なくとも前記電荷転送ゲート部のゲート下の状態をアキュムレーションしている状態とアキュムレーションしていない状態とが混在するように制御する。 A second aspect of the present invention includes a photoelectric conversion element that accumulates charges generated by photoelectric conversion during an accumulation period, and at least one charge transfer gate unit that can transfer the charges accumulated in the photoelectric conversion element. In the solid-state imaging device driving method, control is performed so that at least the state below the gate of the charge transfer gate unit is accumulated and the state is not accumulated at least in the accumulation period.
 本発明の第3の観点の電子機器は、固体撮像装置と、前記固体撮像装置に被写体像を結像する光学系と、を有し、前記固体撮像装置は、蓄積期間に光電変換により生成した電荷を蓄積する光電変換素子と、前記光電変換素子に蓄積された電荷を転送可能な少なくとも一つの電荷転送ゲート部と、少なくとも前記蓄積期間に、少なくとも前記電荷転送ゲート部のゲート下の状態をアキュムレーションしている状態とアキュムレーションしていない状態とが混在するように制御する状態制御部と、を含む。 An electronic apparatus according to a third aspect of the present invention includes a solid-state imaging device and an optical system that forms a subject image on the solid-state imaging device, and the solid-state imaging device is generated by photoelectric conversion during an accumulation period. A photoelectric conversion element for accumulating charge; at least one charge transfer gate part capable of transferring charge accumulated in the photoelectric conversion element; and accumulating at least a state under the gate of the charge transfer gate part during at least the accumulation period And a state control unit that performs control so that a state that is being performed and a state that is not being accumulated are mixed.
 本発明によれば、蓄積時の余剰電荷を排出する機能を損なうことなく、暗電流を抑制することができる。 According to the present invention, dark current can be suppressed without impairing the function of discharging surplus charge during storage.
図1は、本発明の第1の実施形態に係る固体撮像装置の構成例を示すブロック図である。FIG. 1 is a block diagram illustrating a configuration example of a solid-state imaging apparatus according to the first embodiment of the present invention. 図2(A)および図2(B)は、本実施形態における通常の画素読み出し動作時のシャッタースキャンおよび読み出しスキャンの動作タイミングを示す図である。FIG. 2A and FIG. 2B are diagrams illustrating operation timings of the shutter scan and the readout scan during the normal pixel readout operation in the present embodiment. 図3は、本第1の実施形態に係る画素の一例を示す回路図である。FIG. 3 is a circuit diagram illustrating an example of a pixel according to the first embodiment. 図4は、本第1の実施形態に係る画素における、埋め込み型フォトダイオード、転送トランジスタ、フローティングディフュージョンの断面を簡略的に示す図である。FIG. 4 is a diagram schematically showing a cross section of the embedded photodiode, the transfer transistor, and the floating diffusion in the pixel according to the first embodiment. 図5は、Si/絶縁層界面のGRセンタにおける電子と正孔(ホール)の振る舞いについて説明するための図である。FIG. 5 is a diagram for explaining the behavior of electrons and holes in the GR center at the Si / insulating layer interface. 図6(A)~図6(C)は、本実施形態に係る読み出し回路における列信号処理回路の構成例を示す図である。6A to 6C are diagrams showing a configuration example of the column signal processing circuit in the readout circuit according to the present embodiment. 図7(A)および図7(B)は、第1の実施形態に係る読み出し動作を説明するための図である。FIG. 7A and FIG. 7B are diagrams for explaining the read operation according to the first embodiment. 図8(A)~図8(C)は、転送トランジスタのゲート電極へのゲートバイアスにおける空乏領域の状態と、暗電流、ブルーミング、飽和の抑制状態との関係を示す図である。FIGS. 8A to 8C are diagrams showing the relationship between the state of the depletion region in the gate bias to the gate electrode of the transfer transistor and the suppression state of dark current, blooming, and saturation. 図9(A)~図9(C)は、転送トランジスタのゲート電極に、転送ゲート用パルスを印加した場合、中間電圧を印加した場合、および基板等にパルスを印加した場合と、暗電流、ブルーミング、飽和の抑制状態との関係をポテンシャル遷移で示す図である。9A to 9C show the case where a transfer gate pulse is applied to the gate electrode of the transfer transistor, the case where an intermediate voltage is applied, and the case where a pulse is applied to a substrate or the like, dark current, It is a figure which shows the relationship with the suppression state of blooming and saturation by potential transition. 図10は、光電変換特性においてブルーミングがパルス化によって抑制されることを示す図である。FIG. 10 is a diagram illustrating that blooming is suppressed by pulsing in the photoelectric conversion characteristics. 図11は、本第1の実施形態において、パルス化に伴いゲート電極下の埋め込みチャネルを経由してのオーバーフロー機能を容易に実現することができることを説明するための図である。FIG. 11 is a diagram for explaining that an overflow function via a buried channel under a gate electrode can be easily realized in accordance with pulsing in the first embodiment. 図12(A)および図12(B)は、本発明の第2の実施形態に係る状態制御部によるアキュムレーションしている状態とアキュムレーションしていない状態とを混在させる制御を含む読み出し動作について説明するための図である。FIG. 12A and FIG. 12B illustrate a read operation including control for mixing the accumulating state and the non-accumulating state by the state control unit according to the second embodiment of the present invention. FIG. 図13(A)および図13(B)は、本発明の第3の実施形態に係る状態制御部によるアキュムレーションしている状態とアキュムレーションしていない状態とを混在させる制御を含む読み出し動作について説明するための図である。FIGS. 13A and 13B illustrate a read operation including a control for mixing the accumulating state and the non-accumulating state by the state control unit according to the third embodiment of the present invention. FIG. 図14は、本第4の実施形態に係る画素の一例を示す回路図である。FIG. 14 is a circuit diagram illustrating an example of a pixel according to the fourth embodiment. 図15(A)および図15(B)は、本発明の第4の実施形態に係る状態制御部70によるアキュムレーションしている状態とアキュムレーションしていない状態とを混在させる制御を含む読み出し動作について説明するための図である。FIGS. 15A and 15B illustrate a read operation including a control for mixing the accumulating state and the non-accumulating state by the state control unit 70 according to the fourth embodiment of the present invention. It is a figure for doing. 図16(A)および図16(B)は、本発明の第5の実施形態に係る状態制御部によるアキュムレーションしている状態とアキュムレーションしていない状態とを混在させる制御を含む読み出し動作について説明するための図である。FIGS. 16A and 16B illustrate a read operation including a control for mixing the accumulating state and the non-accumulating state by the state control unit according to the fifth embodiment of the present invention. FIG. 図17(A)および図17(B)は、本発明の第6の実施形態に係る状態制御部によるアキュムレーションしている状態とアキュムレーションしていない状態とを混在させる制御を含む読み出し動作について説明するための図である。FIGS. 17A and 17B illustrate a read operation including a control for mixing the accumulating state and the non-accumulating state by the state control unit according to the sixth embodiment of the present invention. FIG. 図18は、本第7の実施形態に係る画素の一例を示す回路図である。FIG. 18 is a circuit diagram illustrating an example of a pixel according to the seventh embodiment. 図19(A)および図19(B)は、本発明の第7の実施形態に係る状態制御部によるアキュムレーションしている状態とアキュムレーションしていない状態とを混在させる制御を含む読み出し動作について説明するための図である。FIG. 19A and FIG. 19B illustrate a read operation including a control for mixing the accumulating state and the non-accumulating state by the state control unit according to the seventh embodiment of the present invention. FIG. 図20は、本第8の実施形態に係る画素の一例を示す回路図である。FIG. 20 is a circuit diagram illustrating an example of a pixel according to the eighth embodiment. 図21(A)および図21(B)は、本発明の第8の実施形態に係る状態制御部によるアキュムレーションしている状態とアキュムレーションしていない状態とを混在させる制御を含む読み出し動作について説明するための図である。FIGS. 21A and 21B illustrate a read operation including a control for mixing an accumulating state and an unaccumulated state by the state control unit according to the eighth embodiment of the present invention. FIG. 図22は、本第9の実施形態に係る画素の一例を示す回路図である。FIG. 22 is a circuit diagram illustrating an example of a pixel according to the ninth embodiment. 図23(A)および図23(B)は、本発明の第9の実施形態に係る状態制御部によるアキュムレーションしている状態とアキュムレーションしていない状態とを混在させる制御を含む読み出し動作について説明するための図である。FIG. 23 (A) and FIG. 23 (B) explain a read operation including a control for mixing the accumulating state and the non-accumulating state by the state control unit according to the ninth embodiment of the present invention. FIG. 図24は、本第10の実施形態に係る画素の一例を示す回路図である。FIG. 24 is a circuit diagram illustrating an example of a pixel according to the tenth embodiment. 図25(A)および図25(B)は、本発明の第10の実施形態に係る状態制御部によるアキュムレーションしている状態とアキュムレーションしていない状態とを混在させる制御を含む読み出し動作について説明するための図である。FIGS. 25A and 25B illustrate a read operation including a control for mixing the accumulating state and the non-accumulating state by the state control unit according to the tenth embodiment of the present invention. FIG. 図26は、本発明の実施形態に係る固体撮像装置が適用される電子機器の構成の一例を示す図である。FIG. 26 is a diagram illustrating an example of a configuration of an electronic apparatus to which the solid-state imaging device according to the embodiment of the present invention is applied.
 10・・・固体撮像装置、20・・・画素部、30・・・垂直走査回路、40・・・水平走査回路、50・・・読み出し回路、60・・・タイミング制御回路、70・・・状態制御部、80・・・読み出し部、100・・・電子機器、110・・・CMOSイメージセンサ、120・・・光学系、130・・・信号処理回路(PRC)。 DESCRIPTION OF SYMBOLS 10 ... Solid-state imaging device, 20 ... Pixel part, 30 ... Vertical scanning circuit, 40 ... Horizontal scanning circuit, 50 ... Read-out circuit, 60 ... Timing control circuit, 70 ... State controller 80 ... Reading unit 100 ... Electronic device 110 ... CMOS image sensor 120 ... Optical system 130 ... Signal processing circuit (PRC)
 以下、本発明の実施形態を図面に関連付けて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(第1の実施形態)
 図1は、本発明の第1の実施形態に係る固体撮像装置の構成例を示すブロック図である。
 本実施形態において、固体撮像装置10は、たとえばCMOSイメージセンサにより構成される。
(First embodiment)
FIG. 1 is a block diagram illustrating a configuration example of a solid-state imaging apparatus according to the first embodiment of the present invention.
In the present embodiment, the solid-state imaging device 10 is configured by, for example, a CMOS image sensor.
 この固体撮像装置10は、図1に示すように、撮像部としての画素部20、垂直走査回路(行走査回路)30、読み出し回路(カラム読み出し回路)40、水平走査回路(列走査回路)50、およびタイミング制御回路60を主構成要素として有している。
 これらの構成要素のうち、たとえば垂直走査回路30およびタイミング制御回路60を含んで状態制御部70が構成される。
 また、これらの構成要素のうち、たとえば垂直走査回路30、読み出し回路40、およびタイミング制御回路60により画素信号の読み出し部80が構成される。
As shown in FIG. 1, the solid-state imaging device 10 includes a pixel unit 20 as an imaging unit, a vertical scanning circuit (row scanning circuit) 30, a readout circuit (column readout circuit) 40, and a horizontal scanning circuit (column scanning circuit) 50. , And a timing control circuit 60 as main components.
Among these components, for example, the state control unit 70 includes the vertical scanning circuit 30 and the timing control circuit 60.
Among these components, for example, the vertical scanning circuit 30, the readout circuit 40, and the timing control circuit 60 constitute a pixel signal readout unit 80.
 本実施形態において、固体撮像装置10は、後で詳述するように、蓄積時の余剰電荷を排出する機能を損なうことなく、暗電流を抑制することが可能となるように、画素部20に配置される画素の光電変換素子(フォトダイオード)に蓄積された電荷を転送可能な電荷転送ゲート部としての転送トランジスタ(またはオーバーフローゲート)のゲート下の状態を、蓄積期間(露光期間)に、状態制御部70が、アキュムレーションしている状態とアキュムレーションしていない状態とが混在するように制御する。
 状態制御部70は、たとえば転送トランジスタのゲート電極に間欠的(あるいは周期的)な電圧信号であるパルスを印加することにより、アキュムレーションしている状態とアキュムレーションしていない状態とが混在するように制御する。換言すれば、状態制御部70は、パルスを印加することにより、ゲート電極下における空乏化を抑制する。
In the present embodiment, as will be described in detail later, the solid-state imaging device 10 includes the pixel unit 20 so that dark current can be suppressed without impairing the function of discharging surplus charges during accumulation. The state under the gate of the transfer transistor (or overflow gate) as a charge transfer gate part capable of transferring the charge accumulated in the photoelectric conversion element (photodiode) of the arranged pixel is the state during the accumulation period (exposure period). The control unit 70 performs control so that an accumulating state and an unaccumulated state are mixed.
For example, the state control unit 70 applies a pulse, which is an intermittent (or periodic) voltage signal, to the gate electrode of the transfer transistor, for example, so that the accumulated state and the unaccumulated state are mixed. To do. In other words, the state control unit 70 suppresses depletion under the gate electrode by applying a pulse.
 図2(A)および図2(B)は、本実施形態における通常の画素読み出し動作時のシャッタースキャンおよび読み出しスキャンの動作タイミングを示す図である。
 図2(A)はシャッタースキャン、露光期間、読み出しスキャンの関係を示し、図2(B)はシャッタースキャンおよび読み出しスキャンの具体的な動作タイミングを示している。
FIG. 2A and FIG. 2B are diagrams illustrating operation timings of the shutter scan and the readout scan during the normal pixel readout operation in the present embodiment.
2A shows the relationship between the shutter scan, the exposure period, and the readout scan, and FIG. 2B shows specific operation timings of the shutter scan and readout scan.
 通常の画素読み出し動作においては、読み出し部80による駆動により、シャッタースキャンが行われ、その後、読み出しスキャンが行われるが、状態制御部70によるアキュムレーションしている状態とアキュムレーションしていない状態とを混在させる制御は、シャッタースキャン期間PSHTの蓄積期間(露光期間)EXPに行われる。 In a normal pixel readout operation, a shutter scan is performed by driving by the readout unit 80, and then a readout scan is performed, but an accumulation state and an unaccumulation state by the state control unit 70 are mixed. The control is performed during the accumulation period (exposure period) EXP of the shutter scan period PSHT.
 また、本実施形態において、読み出し部80は、一つの読み出しスキャン期間PRDOに、リセット期間PRに続く第1読み出し期間PRD1にリセット電圧Vrstを読み出す第1読み出しと、リセット期間PRに続く第1読み出し期間PRD1後に行われる転送期間PT後の第2読み出し期間PRD2において、光電変換素子の蓄積電荷に応じた信号電圧Vsigを読み出す第2読み出しと、を行うことが可能に構成されている。 Further, in the present embodiment, the reading unit 80 performs the first reading in which the reset voltage Vrst is read in the first reading period PRD1 following the reset period PR, and the first reading period following the reset period PR in one reading scan period PRDO. In the second read period PRD2 after the transfer period PT performed after PRD1, the second read that reads the signal voltage Vsig corresponding to the accumulated charge of the photoelectric conversion element can be performed.
 以下、固体撮像装置10の各部の構成および機能の概要を説明した後、状態制御部70によるアキュムレーションしている状態とアキュムレーションしていない状態とを混在させる制御等について詳述する。 Hereinafter, after describing the outline of the configuration and functions of each unit of the solid-state imaging device 10, the control of mixing the accumulated state and the unaccumulated state by the state control unit 70 will be described in detail.
(画素部20および画素PXLの構成)
 画素部20は、フォトダイオード(光電変換素子)と画素内アンプとを含む複数の画素がN行×M列の2次元の行列状(マトリクス状)に配列されている。
(Configuration of the pixel unit 20 and the pixel PXL)
In the pixel unit 20, a plurality of pixels including photodiodes (photoelectric conversion elements) and in-pixel amplifiers are arranged in a two-dimensional matrix (matrix) of N rows × M columns.
 図3は、本第1の実施形態に係る画素の一例を示す回路図である。 FIG. 3 is a circuit diagram illustrating an example of a pixel according to the first embodiment.
 この画素PXLは、たとえば光電変換素子であるフォトダイオード(PD)を有する。
 このフォトダイオードPDに対して、電荷転送ゲート部としての転送トランジスタTG-Tr、リセット素子としてのリセットトランジスタRST-Tr、ソースフォロワ素子としてのソースフォロワトランジスタSF-Tr、および選択素子としての選択トランジスタSEL-Trをそれぞれ一つずつ有する。
The pixel PXL includes, for example, a photodiode (PD) that is a photoelectric conversion element.
For this photodiode PD, a transfer transistor TG-Tr as a charge transfer gate portion, a reset transistor RST-Tr as a reset element, a source follower transistor SF-Tr as a source follower element, and a selection transistor SEL as a selection element Each has one -Tr.
 フォトダイオードPDとしては、たとえば埋め込みフォトダイオード(Buried Photo Diode;BPD)が用いられる。
 フォトダイオードPDを形成する基板表面にはダングリングボンドなどの欠陥による表面準位が存在するため、熱エネルギーによって多くの電荷(暗電流)が発生し、正しい信号が読み出せなくなるおそれがある。
 埋め込みフォトダイオード(BPD)では、フォトダイオードPDの電荷蓄積部を基板内に埋め込むことで、暗電流の信号への混入を低減することが可能となる。
For example, a buried photo diode (BPD) is used as the photodiode PD.
Since surface levels due to dangling bonds and other defects exist on the surface of the substrate on which the photodiode PD is formed, a large amount of charge (dark current) is generated due to thermal energy, and a correct signal may not be read out.
In the embedded photodiode (BPD), it is possible to reduce the incorporation of dark current into the signal by embedding the charge storage portion of the photodiode PD in the substrate.
 フォトダイオードPDは、入射光量に応じた量の信号電荷(ここでは電子)を発生し、蓄積する。
 以下、信号電荷は電子であり、各トランジスタがn型トランジスタである場合について説明するが、信号電荷がホールであったり、各トランジスタがp型トランジスタであっても構わない。
 また、本実施形態は、複数のフォトダイオード間で、各トランジスタを共有している場合や、選択トランジスタを有していない3トランジスタ(3Tr)画素を採用している場合にも有効である。
The photodiode PD generates and accumulates signal charges (electrons here) in an amount corresponding to the amount of incident light.
Hereinafter, a case where the signal charge is an electron and each transistor is an n-type transistor will be described. However, the signal charge may be a hole or each transistor may be a p-type transistor.
This embodiment is also effective when a plurality of photodiodes share each transistor or when a three-transistor (3Tr) pixel that does not have a selection transistor is employed.
 転送トランジスタTG-Trは、フォトダイオードPDとフローティングディフュージョンFD(Floating Diffusion;浮遊拡散層)の間に接続され、制御線TGを通じて制御される。
 転送トランジスタTG-Trは、状態制御部70の制御の下、たとえば読み出しスキャン時に、制御線TGが所定レベルLV(たとえば電源電圧レベル)のハイレベルHの期間に選択されて導通状態となり、フォトダイオードPDで光電変換され蓄積された電荷(電子)をフローティングディフュージョンFDに転送する。
The transfer transistor TG-Tr is connected between the photodiode PD and a floating diffusion FD (floating diffusion layer), and is controlled through a control line TG.
Under the control of the state control unit 70, the transfer transistor TG-Tr becomes conductive when the control line TG is selected during a high level H of a predetermined level LV (eg, power supply voltage level), for example, during a read scan. Charges (electrons) photoelectrically converted and stored by the PD are transferred to the floating diffusion FD.
 そして、本第1の実施形態において、転送トランジスタTG-Trは、図2(B)に示すように、状態制御部70の制御の下、たとえばシャッタースキャン期間PSHT中の蓄積期間(露光期間)EXPに、制御線TGに所定レベルより低い中間レベルLMに設定される間欠的(あるいは周期的)な電圧信号である転送ゲート用パルスPLSTが印加される。
 このように、転送トランジスタTG-Trは、ゲート電極にパルスPLSTが印加されることにより、ゲート電極下が、アキュムレーションしている状態とアキュムレーションしていない状態とが混在するように制御される。
 換言すれば、転送トランジスタTG-Trは、ゲート電極に、パルスPLSTが印加されることにより、ゲート電極下における空乏化が抑制される。
In the first embodiment, as shown in FIG. 2B, the transfer transistor TG-Tr is, for example, an accumulation period (exposure period) EXP during the shutter scan period PSHT under the control of the state control unit 70. In addition, a transfer gate pulse PLST which is an intermittent (or periodic) voltage signal set to an intermediate level LM lower than a predetermined level is applied to the control line TG.
As described above, the transfer transistor TG-Tr is controlled so that the accumulation state and the non-accumulation state are mixed under the gate electrode by applying the pulse PLST to the gate electrode.
In other words, in the transfer transistor TG-Tr, depletion under the gate electrode is suppressed by applying the pulse PLST to the gate electrode.
 なお、転送ゲート用パルスPLSTのレベルは、状態制御部70によりを調整可能である。
 本実施形態において,図2(B)に示すように、印加する転送ゲート用パルスPLSTのレベル(電位)LPは、所定レベルLV、たとえば電源電圧レベルと、基準レベルLR,たとえばグランドレベルとの間の中間レベルLMに設定される。すなわちパルスのレベルLPは、{LR<LP(=LM)<LV}の関係をもって設定される。
Note that the level of the transfer gate pulse PLST can be adjusted by the state control unit 70.
In the present embodiment, as shown in FIG. 2B, the level (potential) LP of the transfer gate pulse PLST to be applied is between a predetermined level LV, for example, a power supply voltage level, and a reference level LR, for example, a ground level. Is set to an intermediate level LM. That is, the pulse level LP is set with the relationship {LR <LP (= LM) <LV}.
 図4は、本第1の実施形態に係る画素における、埋め込み型フォトダイオード、転送トランジスタ、フローティングディフュージョンの断面を簡略的に示す図である。 FIG. 4 is a diagram schematically showing a cross section of the embedded photodiode, the transfer transistor, and the floating diffusion in the pixel according to the first embodiment.
 埋め込み型フォトダイオードBPDは、表面側からシール層としての第1導電型のp+層201、電荷蓄積部としての第2導電型のn-層202が形成されている。符号203はp-領域を、204はフローティングディフュージョンFDを形成するn+層を示している。
 フォトダイオードPDの側部に所定幅のp-領域203をおいてn+層204が形成され、所定幅のp-領域203上にゲート酸化膜を介して転送トランジスタTG-Trのゲート電極(GT)205が形成されている。
The embedded photodiode BPD is formed with a first conductivity type p + layer 201 as a seal layer and a second conductivity type n− layer 202 as a charge storage portion from the surface side. Reference numeral 203 denotes a p− region, and 204 denotes an n + layer that forms the floating diffusion FD.
An n + layer 204 is formed on the side of the photodiode PD with a p-region 203 having a predetermined width, and a gate electrode (GT) of the transfer transistor TG-Tr is formed on the p-region 203 having a predetermined width via a gate oxide film. 205 is formed.
 転送トランジスタTG-Trは、上述したように蓄積期間(露光期間)EXPに、ゲート電極に対して任意の電圧であるパルスPLSTを印加したときに、ゲート電極205下のポテンシャルプロファイル(Potential Profile)が埋め込み型となっていてもよい。そして、ゲート電極下のポテンシャルプロファイルにおいて、その最小点が印加する電圧信号であるパルスで制御可能である。
 このように、本実施形態では、転送トランジスタTG-Trのゲート電極下のいわゆる転送電極部が埋め込み型チャネルにより形成されてもよい。
 転送トランジスタTG-Trは、蓄積期間(露光期間)EXPに、ゲート電極に対して任意の電圧レベルであるパルスPLSTを印加することによって、ゲート電極205下において、多数キャリアをSi/絶縁層界面に集め、Si/絶縁層界面のジェネレーションリコンビネーションセンタ(GRセンタ)に埋めることができる。
As described above, the transfer transistor TG-Tr has a potential profile (potential profile) under the gate electrode 205 when a pulse PLST, which is an arbitrary voltage, is applied to the gate electrode during the accumulation period (exposure period) EXP. It may be an embedded type. The potential profile under the gate electrode can be controlled by a pulse that is a voltage signal applied to the minimum point.
Thus, in the present embodiment, a so-called transfer electrode portion under the gate electrode of the transfer transistor TG-Tr may be formed by a buried channel.
The transfer transistor TG-Tr applies a pulse PLST having an arbitrary voltage level to the gate electrode during the accumulation period (exposure period) EXP, so that majority carriers are transferred to the Si / insulating layer interface under the gate electrode 205. It can be collected and buried in a generation recombination center (GR center) at the Si / insulating layer interface.
 図5は、Si/絶縁層界面のGRセンタにおける電子と正孔(ホール)の振る舞いについて説明するための図である。
 GRセンタでは、電子と正孔(ホール)との再結合が生じる。
 GRセンサでは、図5に示すように、再結合され、あるいは生成されたホールまたは電子によって占有される。
 そして、蓄積期間(露光期間)EXPに、ゲート電極に対して任意の電圧レベルであるパルスPLSTを印加することを通して、GRセンタからの電子の生成が抑制され、ホールで占有されたGRセンタを得ることができる。
 これにより、蓄積時の余剰電荷を排出する機能を損なうことなく、暗電流を抑制することができる。
FIG. 5 is a diagram for explaining the behavior of electrons and holes in the GR center at the Si / insulating layer interface.
In the GR center, recombination of electrons and holes occurs.
In the GR sensor, as shown in FIG. 5, the holes are recombined or occupied by generated holes or electrons.
Then, by applying a pulse PLST having an arbitrary voltage level to the gate electrode during the accumulation period (exposure period) EXP, generation of electrons from the GR center is suppressed, and a GR center occupied by holes is obtained. be able to.
As a result, dark current can be suppressed without impairing the function of discharging excess charge during storage.
 リセットトランジスタRST-Trは、図3に示すように、電源線VRstとフローティングディフュージョンFDの間に接続され、制御線RSTを通じて制御される。
 なお、リセットトランジスタRST-Trは、電源線VDDとフローティングディフュージョンFDの間に接続され、制御線RSTを通じて制御されるように構成してもよい。
 リセットトランジスタRST-Trは、状態制御部70の制御の下、たとえば読み出しスキャン時に、制御線RSTがHレベルの期間に選択されて導通状態となり、フローティングディフュージョンFDを電源線VRst(またはVDD)の電位にリセットする。
As shown in FIG. 3, the reset transistor RST-Tr is connected between the power supply line VRst and the floating diffusion FD, and is controlled through the control line RST.
The reset transistor RST-Tr may be connected between the power supply line VDD and the floating diffusion FD, and may be configured to be controlled through the control line RST.
Under the control of the state control unit 70, the reset transistor RST-Tr becomes conductive when the control line RST is selected during the period of the read scan, for example, during the read scan, and the floating diffusion FD is set to the potential of the power supply line VRst (or VDD). Reset to.
 本第1の実施形態において、リセットトランジスタRST-Trは、状態制御部70の制御の下、たとえばシャッタースキャン期間PSHT中の蓄積期間(露光期間)EXPに、制御線RSTに所定レベルLVに設定される、間欠的(あるいは周期的)な電圧信号であるリセットゲート用パルスPLSRが印加される。
 リセットトランジスタRST-Trは、ゲート電極に、パルスPLSRが印加されることにより、ゲート電極下における空乏化が抑制される。
 リセットゲート用パルスPLSRは、転送ゲート用パルスPLSTと同相のパルス信号であり、そのレベルは所定レベル(電源電圧レベル)LVであり、転送ゲート用パルスPLSTのレベル(中間レベルLM)より大きい。
In the first embodiment, the reset transistor RST-Tr is set to a predetermined level LV on the control line RST, for example, during the accumulation period (exposure period) EXP during the shutter scan period PSHT under the control of the state control unit 70. The reset gate pulse PLSR, which is an intermittent (or periodic) voltage signal, is applied.
In the reset transistor RST-Tr, depletion under the gate electrode is suppressed by applying a pulse PLSR to the gate electrode.
The reset gate pulse PLSR is a pulse signal in phase with the transfer gate pulse PLST, and its level is a predetermined level (power supply voltage level) LV, which is higher than the level of the transfer gate pulse PLST (intermediate level LM).
 ソースフォロワトランジスタSF-Trと選択トランジスタSEL-Trは、電源線VDDと垂直信号線LSGNの間に直列に接続されている。
 ソースフォロワトランジスタSF-TrのゲートにはフローティングディフュージョンFDが接続され、選択トランジスタSEL-Trは制御線SELを通じて制御される。
 ソースフォロワトランジスタSF-Trは、選択トランジスタSEL-Trを介して列出力信号線LSGNに接続され、画素部20外で出力信号線LSGNに接続された負荷回路とでソースフォロワを構成している。
 選択トランジスタSEL-Trは、制御線SELがHレベルの期間に選択されて導通状態となる。これにより、ソースフォロワトランジスタSF-TrはフローティングディフュージョンFDの電荷を電荷量(電位)に応じた利得をもって電圧信号に変換した列出力の読み出し電圧(信号)VSL(PIXOUT)を垂直信号線LSGNに出力する。
 これらの動作は、たとえば転送トランジスタTG-Tr、リセットトランジスタRST-Tr、および選択トランジスタSEL-Trの各ゲートが行単位で接続されていることから、1行分の各画素について同時並列的に行われる。
The source follower transistor SF-Tr and the selection transistor SEL-Tr are connected in series between the power supply line VDD and the vertical signal line LSGN.
A floating diffusion FD is connected to the gate of the source follower transistor SF-Tr, and the selection transistor SEL-Tr is controlled through a control line SEL.
The source follower transistor SF-Tr is connected to the column output signal line LSGN via the selection transistor SEL-Tr, and constitutes a source follower with a load circuit connected to the output signal line LSGN outside the pixel unit 20.
The selection transistor SEL-Tr is selected during the period when the control line SEL is at the H level and becomes conductive. As a result, the source follower transistor SF-Tr outputs the column output read voltage (signal) VSL (PIXOUT), which is obtained by converting the charge of the floating diffusion FD into a voltage signal with a gain corresponding to the amount of charge (potential), to the vertical signal line LSGN. To do.
For example, the gates of the transfer transistor TG-Tr, the reset transistor RST-Tr, and the selection transistor SEL-Tr are connected in units of rows. Is called.
 画素部20には、画素PXLがN行×M列配置されているので、各制御線SEL、RST、TGはそれぞれN本、垂直信号線LSGNはM本ある。
 図1においては、各制御線SEL、RST、TGを1本の行走査制御線として表している。
Since the pixel unit 20 has N rows × M columns of pixels PXL, there are N control lines SEL, RST, and TG, respectively, and M vertical signal lines LSGN.
In FIG. 1, each control line SEL, RST, TG is represented as one row scanning control line.
 垂直走査回路30は、タイミング制御回路60の制御に応じてシャッター行および読み出し行において行走査制御線を通して画素の駆動を行う。
 また、垂直走査回路30は、アドレス信号に従い、信号の読み出しを行うリード行と、フォトダイオードPDに蓄積された電荷をリセットするシャッター行の行アドレスの行選択信号を出力する。
The vertical scanning circuit 30 drives the pixels through the row scanning control lines in the shutter row and the readout row in accordance with the control of the timing control circuit 60.
In addition, the vertical scanning circuit 30 outputs a row selection signal of a row address of a read row that reads out the signal and a shutter row that resets the charge accumulated in the photodiode PD in accordance with the address signal.
 上述したように、通常の画素読み出し動作においては、読み出し部80の垂直走査回路30による駆動により、シャッタースキャンが行われ、その後、読み出しスキャンが行われる。 As described above, in a normal pixel readout operation, a shutter scan is performed by driving by the vertical scanning circuit 30 of the readout unit 80, and then a readout scan is performed.
 前述したように、図2(A)および図2(B)は、本実施形態における通常の画素読み出し動作時のシャッタースキャンおよび読み出しスキャンの動作タイミングを示している。 As described above, FIG. 2A and FIG. 2B show the operation timing of the shutter scan and the readout scan during the normal pixel readout operation in the present embodiment.
 選択トランジスタSEL-Trのオン(導通)、オフ(非導通)を制御する制御線SELは、シャッタースキャン期間PSHTにはLレベルに設定されて選択トランジスタSEL-Trが非導通状態に保持され、読み出しスキャン期間PRDOにはHレベルに設定されて選択トランジスタSEL-Trが導通状態に保持される。
 シャッタースキャン期間PSHTにおいては、まず、制御線RSTがHレベルの期間に所定期間制御線TGがHレベルに設定されて、リセットトランジスタRST-Trおよび転送トランジスタTG-Trを通じてフォトダイオードPDおよびフローティングディフュージョンFDがリセットされる。
 そして、前述したように、シャッタースキャン期間PSHTの蓄積期間(露光期間)EXPに、制御線TGに所定レベルLVにより低い中間レベルLMに設定される間欠的(あるいは周期的)な電圧信号である転送ゲート用パルスPLSTが印加される。このように、転送トランジスタTG-Trは、ゲート電極にパルスPLSTが印加されることにより、ゲート電極下が、アキュムレーションしている状態とアキュムレーションしていない状態とが混在するように制御される。
 このとき、リセットトランジスタRST-Trは、状態制御部70の制御の下、たとえばシャッタースキャン期間PSHT中の蓄積期間(露光期間)EXPに、制御線RSTに、所定レベルLVに設定される、間欠的(あるいは周期的)な電圧信号であるリセットゲート用パルスPLSRが印加される。
The control line SEL for controlling the on (conducting) and off (non-conducting) of the selection transistor SEL-Tr is set to L level during the shutter scan period PSHT, and the selection transistor SEL-Tr is held in the non-conducting state and read. In the scan period PRDO, the selection transistor SEL-Tr is set in the conductive state by being set to the H level.
In the shutter scan period PSHT, first, the control line TG is set to the H level for a predetermined period while the control line RST is at the H level, and the photodiode PD and the floating diffusion FD are passed through the reset transistor RST-Tr and the transfer transistor TG-Tr. Is reset.
Then, as described above, in the accumulation period (exposure period) EXP of the shutter scan period PSHT, the transfer is an intermittent (or periodic) voltage signal that is set to the intermediate level LM lower than the predetermined level LV on the control line TG. A gate pulse PLST is applied. As described above, the transfer transistor TG-Tr is controlled so that the accumulation state and the non-accumulation state are mixed under the gate electrode by applying the pulse PLST to the gate electrode.
At this time, the reset transistor RST-Tr is intermittently set to a predetermined level LV on the control line RST under the control of the state control unit 70, for example, in the accumulation period (exposure period) EXP in the shutter scan period PSHT. A reset gate pulse PLSR, which is a (or periodic) voltage signal, is applied.
 読み出しスキャン期間PRDOには、制御線RSTがHレベルに設定されてリセットトランジスタRST-Trを通じてフローティングディフュージョンFDがリセットされ、このリセット期間PR後の第1読み出し期間PRD1にリセット状態の画素読み出し電圧であるリセット電圧Vrstが読み出される。
 読み出し期間PRD1後に、所定期間、制御線TGがHレベルに設定されて転送トランジスタTG-Trを通じてフローティングディフュージョンFDにフォトダイオードPDの蓄積電荷が転送され、この転送期間PT後の第2読み出し期間PRD2に蓄積された電子(電荷)に応じた画素読み出し電圧である信号電圧Vsigが読み出される。
In the read scan period PRDO, the control line RST is set to H level, the floating diffusion FD is reset through the reset transistor RST-Tr, and the pixel read voltage is in the reset state in the first read period PRD1 after the reset period PR. The reset voltage Vrst is read out.
After the read period PRD1, the control line TG is set to H level for a predetermined period, and the charge stored in the photodiode PD is transferred to the floating diffusion FD through the transfer transistor TG-Tr. In the second read period PRD2 after the transfer period PT, A signal voltage Vsig, which is a pixel readout voltage corresponding to the accumulated electrons (charges), is read out.
 読み出し回路40は、画素部20の各列出力に対応して配置された複数の列信号処理回路(図示せず)を含み、複数の列信号処理回路で列並列処理が可能に構成されてもよい。 The readout circuit 40 includes a plurality of column signal processing circuits (not shown) arranged corresponding to the respective column outputs of the pixel unit 20, and may be configured to allow column parallel processing by the plurality of column signal processing circuits. Good.
 読み出し回路40は、相関二重サンプリング(CDS:Correlated Double Sampling)回路やADC(アナログデジタルコンバータ;AD変換器)、アンプ(AMP,増幅器)、サンプルホールド(S/H)回路等を含んで構成可能である。 The readout circuit 40 can be configured to include a correlated double sampling (CDS) circuit, an ADC (analog / digital converter; AD converter), an amplifier (AMP), a sample hold (S / H) circuit, and the like. It is.
 このように、読み出し回路40は、たとえば図6(A)に示すように、画素部20の各列出力の読み出し信号VSLをデジタル信号に変換するADC41を含んで構成されてもよい。
 あるいは、読み出し回路40は、たとえば図6(B)に示すように、画素部20の各列出力の読み出し信号VSLを増幅するアンプ(AMP)42が配置されてもよい。
 また、読み出し回路40は、たとえば図6(C)に示すように、画素部20の各列出力の読み出し信号VSLをサンプル、ホールドするサンプルホールド(S/H)回路43が配置されてもよい。
As described above, the readout circuit 40 may include an ADC 41 that converts the readout signal VSL output from each column of the pixel unit 20 into a digital signal, for example, as illustrated in FIG.
Alternatively, in the readout circuit 40, for example, as shown in FIG. 6B, an amplifier (AMP) 42 that amplifies the readout signal VSL output from each column of the pixel unit 20 may be arranged.
For example, as shown in FIG. 6C, the read circuit 40 may include a sample hold (S / H) circuit 43 that samples and holds the read signal VSL output from each column of the pixel unit 20.
 水平走査回路50は、読み出し回路40のADC等の複数の列信号処理回路で処理された信号を走査して水平方向に転送し、図示しない信号処理回路に出力する。 The horizontal scanning circuit 50 scans a signal processed by a plurality of column signal processing circuits such as ADC of the reading circuit 40, transfers it in the horizontal direction, and outputs it to a signal processing circuit (not shown).
 タイミング制御回路60は、画素部20、垂直走査回路30、読み出し回路40、水平走査回路50等の信号処理に必要なタイミング信号を生成する。 The timing control circuit 60 generates timing signals necessary for signal processing of the pixel unit 20, the vertical scanning circuit 30, the readout circuit 40, the horizontal scanning circuit 50, and the like.
 状態制御部70は、上述したように、シャッタースキャン期間PSHT中の蓄積期間(露光期間)EXPに、転送トランジスタTG-Trのゲート電極205下の状態を、ゲート電極205に中間レベルLMの転送ゲート用パルスPLSTを印加することにより、アキュムレーションしている状態とアキュムレーションしていない状態とが混在するように制御する。
 換言すれば、状態制御部70は、転送トランジスタTG-Trのゲート電極に、パルスPLSTを印加することにより、ゲート電極下における空乏化を抑制し、蓄積時の余剰電荷を排出する機能を損なうことなく、暗電流を抑制する。
 これと並行して、状態制御部70は、シャッタースキャン期間PSHT中の蓄積期間(露光期間)EXPにおいて、リセットトランジスタRST-Trのゲート電極に、制御線RSTに所定レベルLVに設定される、間欠的(あるいは周期的)な電圧信号であるリセットゲート用パルスPLSRを印加する。
 これにより、転送トランジスタTG-Trの近傍領域の空乏化が抑制され、さらに暗電流を抑制することが可能となる。
As described above, the state control unit 70 sets the state under the gate electrode 205 of the transfer transistor TG-Tr during the accumulation period (exposure period) EXP in the shutter scan period PSHT and the transfer gate of the intermediate level LM to the gate electrode 205. By applying the application pulse PLST, control is performed so that the accumulation state and the non-accumulation state are mixed.
In other words, the state control unit 70 applies the pulse PLST to the gate electrode of the transfer transistor TG-Tr, thereby suppressing the depletion under the gate electrode and impairing the function of discharging excess charge during accumulation. No dark current is suppressed.
In parallel with this, the state control unit 70 intermittently sets the gate electrode of the reset transistor RST-Tr and the control line RST at a predetermined level LV during the accumulation period (exposure period) EXP during the shutter scan period PSHT. A reset gate pulse PLSR, which is a target (or periodic) voltage signal, is applied.
This suppresses depletion in the vicinity of the transfer transistor TG-Tr and further suppresses dark current.
 以上、固体撮像装置10の各部の構成および機能の概要について説明した。
 次に、本第1の実施形態に係る状態制御部70によるアキュムレーションしている状態とアキュムレーションしていない状態とを混在させる制御を含む読み出し動作について説明する。
The outline of the configuration and function of each unit of the solid-state imaging device 10 has been described above.
Next, a read operation including a control for mixing the accumulating state and the non-accumulating state by the state control unit 70 according to the first embodiment will be described.
 図7(A)および図7(B)は、第1の実施形態に係る読み出し動作を説明するための図である。
 図7(A)が画素の等価回路を示し、図7(B)が動作波形を示している。
FIG. 7A and FIG. 7B are diagrams for explaining the read operation according to the first embodiment.
FIG. 7A shows an equivalent circuit of a pixel, and FIG. 7B shows an operation waveform.
 シャッタースキャン期間PSHTにおいては、選択トランジスタSEL-Trのオン(導通)、オフ(非導通)を制御する制御線SELがLレベルに設定されて選択トランジスタSEL-Trが非導通状態に保持される。
 シャッタースキャンPSHTにおいては、まず、たとえば制御線RSTがHレベルの期間に所定期間制御線TGがHレベルに設定されて、リセットトランジスタRST-Trおよび転送トランジスタTG-Trを通じてフォトダイオードPDおよびフローティングディフュージョンFDがリセットされる。
In the shutter scan period PSHT, the control line SEL for controlling on (conductive) and off (non-conductive) of the selection transistor SEL-Tr is set to L level, and the selection transistor SEL-Tr is held in a non-conductive state.
In the shutter scan PSHT, first, for example, the control line TG is set to H level for a predetermined period while the control line RST is at H level, and the photodiode PD and the floating diffusion FD are passed through the reset transistor RST-Tr and the transfer transistor TG-Tr. Is reset.
 フォトダイオードPDおよびフローティングディフュージョンFDがリセットされた後の蓄積期間(露光期間)EXPに、制御線TGに所定レベルLVより低い中間レベルLMに設定される転送ゲート用パルスPLSTが印加される。
 転送トランジスタTG-Trは、ゲート電極にパルスPLSTが印加されることにより、ゲート電極下が、アキュムレーションしている状態とアキュムレーションしていない状態とが混在するように制御される。
 これにより、転送トランジスタTG-Trのゲート電極下における空乏化が抑制され、蓄積時の余剰電荷を排出する機能を損なうことなく、暗電流が抑制される。
 また、これと並行して、シャッタースキャン期間中の蓄積期間(露光期間)EXPにおいて、リセットトランジスタRST-Trのゲート電極に、制御線RSTを通じて所定レベルLVに設定されるリセットゲート用パルスPLSRが印加される。
 これにより、転送トランジスタTG-Trの近傍領域の空乏化が抑制され、暗電流が確実に抑制される。
In the accumulation period (exposure period) EXP after the reset of the photodiode PD and the floating diffusion FD, the transfer gate pulse PLST set to the intermediate level LM lower than the predetermined level LV is applied to the control line TG.
The transfer transistor TG-Tr is controlled so that the accumulation state and the non-accumulation state are mixed under the gate electrode by applying the pulse PLST to the gate electrode.
As a result, depletion under the gate electrode of the transfer transistor TG-Tr is suppressed, and dark current is suppressed without impairing the function of discharging surplus charge during accumulation.
In parallel with this, in the accumulation period (exposure period) EXP during the shutter scan period, a reset gate pulse PLSR set to a predetermined level LV is applied to the gate electrode of the reset transistor RST-Tr through the control line RST. Is done.
As a result, depletion in the vicinity of the transfer transistor TG-Tr is suppressed, and dark current is reliably suppressed.
 続いて、読み出し動作は、シャッタースキャンから読み出しスキャンに移行する。
 読み出しスキャン期間PRDOにおいては、図7(B)に示すように、画素アレイの中のある一行を選択するために、その選択された行の各画素PXLに接続された制御線SELがHレベルに設定されて画素PXLの選択トランジスタSEL-Trが導通状態となる。
 この選択状態において、図7(B)に示すように、リセット期間PR1にリセットトランジスタRST-Trが、制御線RSTがHレベルの期間に選択されて導通状態となり、フローティングディフュージョンFDが電源線VDDの電位にリセットされる。
 このリセット期間PR1が経過した後(リセットトランジスタRST-Trが非導通状態)、転送期間PT1が開始されるまでの期間が、リセット状態時のリセット電圧Vrstを読み出す第1読み出し期間PRD1となる。
Subsequently, the read operation shifts from the shutter scan to the read scan.
In the read scan period PRDO, as shown in FIG. 7B, in order to select a certain row in the pixel array, the control line SEL connected to each pixel PXL in the selected row is set to the H level. Thus, the selection transistor SEL-Tr of the pixel PXL is turned on.
In this selected state, as shown in FIG. 7B, the reset transistor RST-Tr is selected during the reset period PR1 while the control line RST is at the H level and becomes conductive, and the floating diffusion FD is connected to the power supply line VDD. Reset to potential.
After the reset period PR1 has elapsed (the reset transistor RST-Tr is in a non-conductive state), the period until the transfer period PT1 is started is a first read period PRD1 for reading the reset voltage Vrst in the reset state.
 リセット期間PR1後の第1読み出し期間PRD1にリセット状態の画素読み出し電圧であるリセット電圧Vrstが垂直信号線LSGNを通して読み出される。このとき、リセット電圧Vrstは、読み出し回路40に供給されて、たとえば保持される。 In the first readout period PRD1 after the reset period PR1, the reset voltage Vrst, which is the pixel readout voltage in the reset state, is read out through the vertical signal line LSGN. At this time, the reset voltage Vrst is supplied to the read circuit 40 and is held, for example.
 ここで、第1読み出し期間PRD1が終了し、転送期間PT1となる。
 図7(B)に示すように、転送期間PT1に転送トランジスタTG-Trが、制御線TGがハイレベル(H)の期間に選択されて導通状態となり、フォトダイオードPDで光電変換され蓄積された電荷(電子)がフローティングディフュージョンFDに転送される。
 この転送期間PT1が経過した後(転送トランジスタTG-Trが非導通状態)、フォトダイオードPDが光電変換して蓄積した電荷に応じた信号電圧Vsigを読み出す第2読み出し期間PRD2となる。
Here, the first read period PRD1 ends and the transfer period PT1 starts.
As shown in FIG. 7B, in the transfer period PT1, the transfer transistor TG-Tr is selected during the period when the control line TG is at the high level (H) and becomes conductive, and is photoelectrically converted and stored by the photodiode PD. Charges (electrons) are transferred to the floating diffusion FD.
After the transfer period PT1 has elapsed (the transfer transistor TG-Tr is in a non-conducting state), the second read period PRD2 in which the signal voltage Vsig corresponding to the charge accumulated by photoelectric conversion of the photodiode PD is read.
 上述したように、第1読み出し期間PRD1後に、所定期間、制御線TGがHレベルに設定されて転送トランジスタTG-Trを通じてフローティングディフュージョンFDにフォトダイオードPDの蓄積電荷が転送され、この転送期間PT1後の第2読み出し期間PRD2に蓄積された電子(電荷)に応じた画素読み出し電圧である信号電圧Vsigが読み出される。
 このとき、信号電圧Vsigは、読み出し回路40に供給されて、たとえば保持される。
As described above, after the first read period PRD1, the control line TG is set to H level for a predetermined period, and the accumulated charge of the photodiode PD is transferred to the floating diffusion FD through the transfer transistor TG-Tr. A signal voltage Vsig that is a pixel readout voltage corresponding to the electrons (charges) accumulated in the second readout period PRD2 is read out.
At this time, the signal voltage Vsig is supplied to the read circuit 40 and is held, for example.
 そして、たとえば読み出し部80の一部を構成する読み出し回路40において、第2読み出し期間PRD2に読み出された信号電圧Vsigと第1読み出し期間PRD1に読み出されたリセット電圧Vrstとの差分(Vsig-Vrst)がとられてCDS処理が行われる。 For example, in the read circuit 40 constituting a part of the read unit 80, the difference (Vsig−) between the signal voltage Vsig read in the second read period PRD2 and the reset voltage Vrst read in the first read period PRD1. Vrst) is taken and the CDS process is performed.
 以上説明したように、本第1の実施形態によれば、状態制御部70が、シャッタースキャン期間中の蓄積期間(露光期間)EXPに、転送トランジスタTG-Trのゲート電極205下の状態を、ゲート電極205に中間レベルLMの転送ゲート用パルスPLSTを印加することにより、アキュムレーションしている状態とアキュムレーションしていない状態とが混在するように制御する。
 このように、本第1の実施形態にすれば、状態制御部70は、転送トランジスタTG-Trのゲート電極に、パルスPLSTを印加することにより、ゲート電極下における空乏化を抑制し、蓄積時の余剰電荷を排出する機能を損なうことなく、暗電流を抑制することが可能となり、ゲート電極下のGRセンタからの暗電流に起因する画像欠陥を低減することが可能となり、ひいては高画質化を実現することが可能となる利点がある。
As described above, according to the first embodiment, the state controller 70 changes the state under the gate electrode 205 of the transfer transistor TG-Tr during the accumulation period (exposure period) EXP in the shutter scan period. By applying a transfer gate pulse PLST of an intermediate level LM to the gate electrode 205, control is performed so that an accumulating state and an unaccumulated state are mixed.
As described above, according to the first embodiment, the state control unit 70 applies the pulse PLST to the gate electrode of the transfer transistor TG-Tr, thereby suppressing depletion under the gate electrode and It is possible to suppress the dark current without impairing the function of discharging the surplus charge, and it is possible to reduce image defects caused by the dark current from the GR center under the gate electrode, thereby improving the image quality. There is an advantage that can be realized.
 図8(A)~図8(C)は、転送トランジスタのゲート電極へのゲートバイアスにおける空乏領域の状態と、暗電流、ブルーミング、飽和の抑制状態との関係を示す図である。
 図8(A)~図8(C)において、符号DPLで示す領域が空乏領域である。
FIGS. 8A to 8C are diagrams showing the relationship between the state of the depletion region in the gate bias to the gate electrode of the transfer transistor and the suppression state of dark current, blooming, and saturation.
In FIGS. 8A to 8C, a region indicated by reference sign DPL is a depletion region.
 図8(A)は、本第1の実施形態において、転送トランジスタTG-Trのゲート電極に、負のゲートバイアスVgを印加することにより、ゲート電極下における空乏化を抑制した場合を示している。
 この場合、ゲート電極下の略全域における空乏化を抑制できることから、蓄積時の余剰電荷を排出する機能を損なうことなく、暗電流を抑制することが可能となる。ただし、この場合、ブルーミングには十分な効果は得られない。
FIG. 8A shows a case where depletion under the gate electrode is suppressed by applying a negative gate bias Vg to the gate electrode of the transfer transistor TG-Tr in the first embodiment. .
In this case, since depletion in substantially the entire area under the gate electrode can be suppressed, dark current can be suppressed without impairing the function of discharging surplus charges during accumulation. However, in this case, a sufficient effect cannot be obtained for blooming.
 図8(B)は、転送トランジスタTG-Trのゲート電極に、本実施形態のパルスPLST等を印加せずに、ゲート電極下に空乏化領域と空乏化を抑制した領域が混在する場合を示している。
 図8(C)は、転送トランジスタTG-Trのゲート電極に、本実施形態のパルスPLSTを印加せずに、正のゲート場合を印加して、ゲート電極下の略全域に空乏化領域が存在する場合を示している。
 この場合、ゲート電極下の略全域における空乏化を抑制できないことから、飽和出力を損ない、暗電流を抑制することが困難となる。ただし、ブルーミングには十分な効果が得られる。
FIG. 8B shows a case where a depletion region and a region where depletion is suppressed are mixed under the gate electrode without applying the pulse PLST or the like of the present embodiment to the gate electrode of the transfer transistor TG-Tr. ing.
FIG. 8C shows a case where a positive gate case is applied to the gate electrode of the transfer transistor TG-Tr without applying the pulse PLST of the present embodiment, and a depletion region is present in substantially the entire area under the gate electrode. Shows when to do.
In this case, since depletion in substantially the entire area under the gate electrode cannot be suppressed, saturation output is impaired and it is difficult to suppress dark current. However, a sufficient effect can be obtained for blooming.
 図9(A)~図9(C)は、転送トランジスタのゲート電極に、転送ゲート用パルスを印加した場合、中間電圧を印加した場合、および基板等にパルスを印加した場合と、暗電流、ブルーミング、飽和の抑制状態との関係をポテンシャル遷移で示す図である。
 図10は、光電変換特性においてブルーミングがパルス化によって抑制されることを示す図である。
9A to 9C show the case where a transfer gate pulse is applied to the gate electrode of the transfer transistor, the case where an intermediate voltage is applied, and the case where a pulse is applied to a substrate or the like, dark current, It is a figure which shows the relationship with the suppression state of blooming and saturation by potential transition.
FIG. 10 is a diagram illustrating that blooming is suppressed by pulsing in the photoelectric conversion characteristics.
 図9(A)は、本第1の実施形態において、転送トランジスタTG-Trのゲート電極に、負のゲートバイアスVgでなく転送ゲート用パルスPLSTを印加することにより、ゲート電極下における空乏化を抑制した場合を示している。
 この場合、ゲート電極下の略全域における空乏化を抑制できることから、蓄積時の余剰電荷を排出する機能を損なうことなく、暗電流を抑制することが可能となる。そしてこの場合、図8(A)の負のゲートバイアスの場合と異なり、図10に示すように、パルス化によってブルーミングにも十分な効果が得られる。
FIG. 9A shows the depletion under the gate electrode by applying the transfer gate pulse PLST instead of the negative gate bias Vg to the gate electrode of the transfer transistor TG-Tr in the first embodiment. The case where it suppressed is shown.
In this case, since depletion in substantially the entire area under the gate electrode can be suppressed, dark current can be suppressed without impairing the function of discharging surplus charges during accumulation. In this case, unlike the case of the negative gate bias in FIG. 8A, as shown in FIG. 10, a sufficient effect for blooming can be obtained by pulsing.
 図9(B)は、転送トランジスタTG-Trのゲート電極に、本実施形態のパルスPLSTを印加せずに、一定の中間電圧を印加した場合を示している。
 この場合、ゲート電極下の略全域における空乏化を抑制できないことから、飽和出力を損ない、暗電流を抑制することが困難となる。ただし、ブルーミングには十分な効果が得られる。
FIG. 9B shows a case where a constant intermediate voltage is applied to the gate electrode of the transfer transistor TG-Tr without applying the pulse PLST of the present embodiment.
In this case, since depletion in substantially the entire area under the gate electrode cannot be suppressed, saturation output is impaired and it is difficult to suppress dark current. However, a sufficient effect can be obtained for blooming.
 図9(C)は、本第1の実施形態において、転送トランジスタTG-Trのゲート電極の他の部分に、パルスを印加した場合を示している。
 この場合、蓄積時の余剰電荷を排出する機能を損なうことなく、暗電流を抑制することが可能となる。ただし、この場合、ブルーミングには十分な効果は得られない。
FIG. 9C shows a case where a pulse is applied to the other part of the gate electrode of the transfer transistor TG-Tr in the first embodiment.
In this case, it is possible to suppress dark current without impairing the function of discharging surplus charges during accumulation. However, in this case, a sufficient effect cannot be obtained for blooming.
 また、本第1の実施形態においては、ゲート電極下の埋め込みチャネルを経由してのオーバーフロー機能を容易に実現することができる。
 図11は、本第1の実施形態において、パルス化に伴いゲート電極下の埋め込みチャネルを経由してのオーバーフロー機能を容易に実現することができることを説明するための図である。
 図11において、横軸がSiの深さを、縦軸がポテンシャルを示している。
In the first embodiment, the overflow function via the buried channel under the gate electrode can be easily realized.
FIG. 11 is a diagram for explaining that an overflow function via a buried channel under a gate electrode can be easily realized in accordance with pulsing in the first embodiment.
In FIG. 11, the horizontal axis indicates the depth of Si, and the vertical axis indicates the potential.
 従来は、ゲート電極下をアキュムレーション状態にして、かつ、オーバーフローパスをポテンシャル設計することは容易ではなかった。特に、フォトダイオードに電荷が蓄積されるとその変調によりオーバーフローバスが有効でなくなる。
 また、蓄積期間中にフローティングディフュージョンFDの電位を高く設定し変調させ、オーバーフローを有効にする方法も考えられるが、電源電圧や読み出し系回路に制約が生じる。
Conventionally, it is not easy to design the potential of the overflow path with the accumulation under the gate electrode. In particular, when charge is accumulated in the photodiode, the modulation makes the overflow bus ineffective.
In addition, a method is considered in which the potential of the floating diffusion FD is set high during the accumulation period and modulated to enable the overflow, but there are restrictions on the power supply voltage and the readout system circuit.
 これに対して、本第1の実施形態によれば、図11に示すように、パルス化に伴いゲート電極下の埋め込みチャネルを経由してのオーバーフロー機能を容易に実現することができる。
 また、本第1の実施形態によれば、飽和電荷量を最適値に、外部よりあるいは自動的に調整することができる。
On the other hand, according to the first embodiment, as shown in FIG. 11, the overflow function via the buried channel under the gate electrode can be easily realized with the pulse formation.
Further, according to the first embodiment, the saturation charge amount can be adjusted to the optimum value from the outside or automatically.
 また、本第1の実施形態によれば、状態制御部70が、シャッタースキャン期間中の蓄積期間(露光期間)EXPにおいて、転送ゲート用パルスPLSTの印加に並行して、リセットトランジスタRST-Trのゲート電極に、制御線RSTを通じて所定レベルLVに設定される、間欠的(あるいは周期的)な電圧信号であるリセットゲート用パルスPLSRを印加する。
 これにより、転送トランジスタTG-Trの近傍領域の空乏化を抑制しさらに暗電流を抑制することが可能となり,ひいてはさらなる高画質化を実現することが可能となる利点がある。
Further, according to the first embodiment, the state controller 70 sets the reset transistor RST-Tr in parallel with the application of the transfer gate pulse PLST in the accumulation period (exposure period) EXP in the shutter scan period. A reset gate pulse PLSR, which is an intermittent (or periodic) voltage signal, set to a predetermined level LV through the control line RST is applied to the gate electrode.
As a result, it is possible to suppress the depletion of the region near the transfer transistor TG-Tr, further suppress the dark current, and thus further improve the image quality.
(第2の実施形態)
 図12(A)および図12(B)は、本発明の第2の実施形態に係る状態制御部70によるアキュムレーションしている状態とアキュムレーションしていない状態とを混在させる制御を含む読み出し動作について説明するための図である。
 図12(A)が画素の等価回路を示し、図12(B)が動作波形を示している。
(Second Embodiment)
FIGS. 12A and 12B illustrate a read operation including a control for mixing the accumulating state and the non-accumulating state by the state control unit 70 according to the second embodiment of the present invention. It is a figure for doing.
FIG. 12A shows an equivalent circuit of a pixel, and FIG. 12B shows an operation waveform.
 本第2の実施形態が、第1の実施形態と異なる点は、次の通りである。
 第1の実施形態では、状態制御部が、シャッタースキャン期間中の蓄積期間(露光期間)EXPにおいて、転送ゲート用パルスPLSTの印加に並行して、リセットトランジスタRST-Trのゲート電極に、制御線RSTを通じて所定レベルLVに設定される、間欠的(あるいは周期的)な電圧信号であるリセットゲート用パルスPLSRを印加する。
 これに対して、本第2の実施形態においては、リセットトランジスタRST-Trのゲート電極に、制御線RSTを通じて所定レベルLVに設定される、一定の電圧信号VRを印加する。
The second embodiment is different from the first embodiment as follows.
In the first embodiment, the state control unit applies a control line to the gate electrode of the reset transistor RST-Tr in parallel with the application of the transfer gate pulse PLST in the accumulation period (exposure period) EXP during the shutter scan period. A reset gate pulse PLSR which is an intermittent (or periodic) voltage signal set to a predetermined level LV through RST is applied.
In contrast, in the second embodiment, a constant voltage signal VR set to a predetermined level LV is applied to the gate electrode of the reset transistor RST-Tr through the control line RST.
 本第2の実施形態によれば、上述した第1の実施形態の効果と同様の効果を得ることができる。 According to the second embodiment, the same effect as that of the first embodiment described above can be obtained.
(第3の実施形態)
 図13(A)および図13(B)は、本発明の第3の実施形態に係る状態制御部70によるアキュムレーションしている状態とアキュムレーションしていない状態とを混在させる制御を含む読み出し動作について説明するための図である。
 図13(A)が画素の等価回路を示し、図13(B)が動作波形を示している。
(Third embodiment)
FIGS. 13A and 13B illustrate a read operation including a control for mixing an accumulating state and an unaccumulated state by the state control unit 70 according to the third embodiment of the present invention. It is a figure for doing.
FIG. 13A shows an equivalent circuit of a pixel, and FIG. 13B shows an operation waveform.
 本第3の実施形態が、第1の実施形態と異なる点は、次の通りである。
 第3の実施形態においては、状態制御部が、シャッタースキャン期間中の蓄積期間(露光期間)EXPにおいて、転送ゲート用パルスPLSTの印加に並行して、リセットトランジスタRST-Trのゲート電極にパルスを印加する代わりに、基板ウェルのポテンシャルを安定させるために、グランドライン(GND)に転送ゲート用パルスPLSTと逆位相のパルスIPLSGを印加している。
The third embodiment is different from the first embodiment as follows.
In the third embodiment, the state control unit applies a pulse to the gate electrode of the reset transistor RST-Tr in the accumulation period (exposure period) EXP during the shutter scan period in parallel with the application of the transfer gate pulse PLST. Instead of applying, a pulse IPLSG having a phase opposite to that of the transfer gate pulse PLST is applied to the ground line (GND) in order to stabilize the potential of the substrate well.
 本第3の実施形態によれば、上述した第1の実施形態の効果と同様の効果を得ることができることはもとより、基板ウェルのポテンシャルを安定させることができる。 According to the third embodiment, the potential of the substrate well can be stabilized as well as the same effect as that of the first embodiment described above.
(第4の実施形態)
 図14は、本第4の実施形態に係る画素の一例を示す回路図である。
 図15(A)および図15(B)は、本発明の第4の実施形態に係る状態制御部70によるアキュムレーションしている状態とアキュムレーションしていない状態とを混在させる制御を含む読み出し動作について説明するための図である。
 図15(A)が画素の等価回路を示し、図15(B)が動作波形を示している。
(Fourth embodiment)
FIG. 14 is a circuit diagram illustrating an example of a pixel according to the fourth embodiment.
FIGS. 15A and 15B illustrate a read operation including a control for mixing the accumulating state and the non-accumulating state by the state control unit 70 according to the fourth embodiment of the present invention. It is a figure for doing.
FIG. 15A shows an equivalent circuit of a pixel, and FIG. 15B shows an operation waveform.
 本第4の実施形態が、第1の実施形態と異なる点は、次の通りである。
 第4の実施形態においては、画素PXLAが、図3の構成に加えて、フォトダイオードPDのカソード側(電荷蓄積部側)と電源線VDDとの間に、フォトダイオードPDから溢れる電荷を排出するためのオーバーフローゲートトランジスタOFG-Trが接続されている。
 オーバーフローゲートトランジスタOFG-Trのゲート電極が制御線OFGに接続され、転送ゲート用パルスPLSTの代わりに、オーバーフローゲートトランジスタOFG-Trのゲート電極に、制御線OFGを通じて中間レベルLMのオーバーフローゲート用パルスPLSOFが印加される。
 そして、転送トランジスタTG-Trのゲート電極に、基板ウェルのポテンシャルを安定させるために、オーバーフローゲート用パルスPLSOFと逆位相のパルスIPLSOFを印加している。
The fourth embodiment is different from the first embodiment as follows.
In the fourth embodiment, the pixel PXLA discharges the charge overflowing from the photodiode PD between the cathode side (charge storage unit side) of the photodiode PD and the power supply line VDD in addition to the configuration of FIG. For this purpose, an overflow gate transistor OFG-Tr is connected.
The gate electrode of the overflow gate transistor OFG-Tr is connected to the control line OFG, and instead of the transfer gate pulse PLST, the overflow gate pulse PLSOF of the intermediate level LM is connected to the gate electrode of the overflow gate transistor OFG-Tr through the control line OFG. Is applied.
Then, in order to stabilize the potential of the substrate well, a pulse IPLSOF having an opposite phase to the overflow gate pulse PLSOF is applied to the gate electrode of the transfer transistor TG-Tr.
 本第4の実施形態によれば、上述した第1の実施形態の効果と同様の効果を得ることができることはもとより、基板ウェルのポテンシャルを安定させることができる。 According to the fourth embodiment, the potential of the substrate well can be stabilized as well as the same effect as that of the first embodiment described above.
(第5の実施形態)
 図16(A)および図16(B)は、本発明の第5の実施形態に係る状態制御部70によるアキュムレーションしている状態とアキュムレーションしていない状態とを混在させる制御を含む読み出し動作について説明するための図である。
 図16(A)が画素の等価回路を示し、図16(B)が動作波形を示している。
(Fifth embodiment)
FIGS. 16A and 16B illustrate a read operation including a control for mixing the accumulating state and the non-accumulating state by the state control unit 70 according to the fifth embodiment of the present invention. It is a figure for doing.
FIG. 16A shows an equivalent circuit of a pixel, and FIG. 16B shows an operation waveform.
 本第5の実施形態が、第4の実施形態と異なる点は、次の通りである。
 第5の実施形態においては、転送トランジスタTG-Trのゲート電極に、基板ウェルのポテンシャルを安定させるために、オーバーフローゲート用パルスPLSOFと逆位相のパルスの代わりに、逆相の一定の電圧信号IVOFを印加する。
The fifth embodiment is different from the fourth embodiment as follows.
In the fifth embodiment, in order to stabilize the potential of the substrate well at the gate electrode of the transfer transistor TG-Tr, a constant voltage signal IVOF having a reverse phase is used instead of the pulse having a phase opposite to that of the overflow gate pulse PLSOF. Apply.
 本第5の実施形態によれば、上述した第4の実施形態の効果と同様の効果を得ることができる。 According to the fifth embodiment, the same effect as that of the fourth embodiment described above can be obtained.
(第6の実施形態)
 図17(A)および図17(B)は、本発明の第6の実施形態に係る状態制御部70によるアキュムレーションしている状態とアキュムレーションしていない状態とを混在させる制御を含む読み出し動作について説明するための図である。
 図17(A)が画素の等価回路を示し、図17(B)が動作波形を示している。
(Sixth embodiment)
FIGS. 17A and 17B illustrate a read operation including a control for mixing the accumulating state and the non-accumulating state by the state control unit 70 according to the sixth embodiment of the present invention. It is a figure for doing.
FIG. 17A shows an equivalent circuit of a pixel, and FIG. 17B shows an operation waveform.
 本第6の実施形態が、第4の実施形態と異なる点は、次の通りである。
 第6の実施形態においては、基板ウェルのポテンシャルを安定させるために、転送トランジスタTG-Trのゲート電極に、オーバーフローゲート用パルスPLSOFと逆位相のパルスを印加する代わりに、グランドラインにオーバーフローゲート用パルスPLSOFと逆位相のパルスIPLSGOFを印加している。
The sixth embodiment is different from the fourth embodiment as follows.
In the sixth embodiment, in order to stabilize the potential of the substrate well, instead of applying a pulse having a phase opposite to that of the overflow gate pulse PLSOF to the gate electrode of the transfer transistor TG-Tr, the overflow gate is applied to the ground line. A pulse IPLSGOF having a phase opposite to that of the pulse PLSOF is applied.
 本第6の実施形態によれば、上述した第4の実施形態の効果と同様の効果を得ることができる。 According to the sixth embodiment, the same effect as that of the fourth embodiment described above can be obtained.
(第7の実施形態)
 図18は、本第7の実施形態に係る画素の一例を示す回路図である。
 図19(A)および図19(B)は、本発明の第7の実施形態に係る状態制御部70によるアキュムレーションしている状態とアキュムレーションしていない状態とを混在させる制御を含む読み出し動作について説明するための図である。
 図19(A)が画素の等価回路を示し、図19(B)が動作波形を示している。
(Seventh embodiment)
FIG. 18 is a circuit diagram illustrating an example of a pixel according to the seventh embodiment.
FIG. 19A and FIG. 19B illustrate a read operation including control for mixing the accumulating state and the non-accumulating state by the state control unit 70 according to the seventh embodiment of the present invention. It is a figure for doing.
FIG. 19A shows an equivalent circuit of a pixel, and FIG. 19B shows an operation waveform.
 本第7の実施形態が、第1の実施形態と異なる点は、次の通りである。
 第7の実施形態においては、画素PXLBが、一つのフローティングディフュージョンFDを2つのフォトダイオードPD1,PD2および転送トランジスタTG1-Tr,TG2-Trで共有する画素共有構造を有している。
 そして、本第7の実施形態の状態制御部は、基板ウェルのポテンシャルを安定させるために、共有される各転送トランジスタTG1-Tr,TG2-Trのゲート電極にはタイミングをずらして転送ゲート用パルスPLST1,PLST2を印加する。
The seventh embodiment is different from the first embodiment as follows.
In the seventh embodiment, the pixel PXLB has a pixel sharing structure in which one floating diffusion FD is shared by two photodiodes PD1 and PD2 and transfer transistors TG1-Tr and TG2-Tr.
The state control unit of the seventh embodiment shifts the timing of the transfer gate pulses to the gate electrodes of the shared transfer transistors TG1-Tr and TG2-Tr in order to stabilize the potential of the substrate well. PLST1 and PLST2 are applied.
 本第7の実施形態によれば、画素共有構造の場合も、上述した第1の実施形態の効果と同様の効果を得ることができる。 According to the seventh embodiment, even in the case of the pixel sharing structure, the same effect as the effect of the first embodiment described above can be obtained.
(第8の実施形態)
 図20は、本第8の実施形態に係る画素の一例を示す回路図である。
 図21(A)および図21(B)は、本発明の第8の実施形態に係る状態制御部70によるアキュムレーションしている状態とアキュムレーションしていない状態とを混在させる制御を含む読み出し動作について説明するための図である。
 図21(A)が画素の等価回路を示し、図21(B)が動作波形を示している。
(Eighth embodiment)
FIG. 20 is a circuit diagram illustrating an example of a pixel according to the eighth embodiment.
FIGS. 21A and 21B illustrate a read operation including a control for mixing an accumulating state and an unaccumulated state by the state control unit 70 according to the eighth embodiment of the present invention. It is a figure for doing.
FIG. 21A shows an equivalent circuit of a pixel, and FIG. 21B shows an operation waveform.
 本第8の実施形態が、第1の実施形態と異なる点は、次の通りである。
 第8の実施形態においては、画素PXLCが、一つのフローティングディフュージョンFDを4つのフォトダイオードPD1,PD2,PD3,PD4および転送トランジスタTG1-Tr,TG2-Tr,TG3-T,TG4-Trで共有する画素共有構造を有している。
 そして、本第8の実施形態の状態制御部は、基板ウェルのポテンシャルを安定させるために、共有される各転送トランジスタTG1-Tr,TG2-Tr,TG3-Tr,TG4-Trのゲート電極にはタイミングをずらして転送ゲート用パルスPLST1,PLST2,PLST3,PLST4を印加する。
The eighth embodiment is different from the first embodiment as follows.
In the eighth embodiment, the pixel PXLC shares one floating diffusion FD with the four photodiodes PD1, PD2, PD3, PD4 and the transfer transistors TG1-Tr, TG2-Tr, TG3-T, TG4-Tr. It has a pixel sharing structure.
The state control unit of the eighth embodiment uses the gate electrodes of the shared transfer transistors TG1-Tr, TG2-Tr, TG3-Tr, and TG4-Tr to stabilize the potential of the substrate well. Transfer gate pulses PLST1, PLST2, PLST3, and PLST4 are applied at different timings.
 本第8の実施形態によれば、画素共有構造の場合も、上述した第1の実施形態の効果と同様の効果を得ることができる。 According to the eighth embodiment, even in the case of the pixel sharing structure, the same effect as the effect of the first embodiment described above can be obtained.
(第9の実施形態)
 図22は、本第9の実施形態に係る画素の一例を示す回路図である。
 図23(A)および図23(B)は、本発明の第9の実施形態に係る状態制御部70によるアキュムレーションしている状態とアキュムレーションしていない状態とを混在させる制御を含む読み出し動作について説明するための図である。
 図23(A)が画素の等価回路を示し、図23(B)が動作波形を示している。
(Ninth embodiment)
FIG. 22 is a circuit diagram illustrating an example of a pixel according to the ninth embodiment.
FIGS. 23A and 23B illustrate a read operation including a control for mixing the accumulating state and the non-accumulating state by the state control unit 70 according to the ninth embodiment of the present invention. It is a figure for doing.
FIG. 23A shows an equivalent circuit of a pixel, and FIG. 23B shows an operation waveform.
 本第9の実施形態が、第4の実施形態と異なる点は、次の通りである。
 第9の実施形態においては、画素PXLDが、一つのフローティングディフュージョンFDを2つのフォトダイオードPD1,PD2、転送トランジスタTG1-Tr,TG2-Tr、およびオーバーフローゲートトランジスタOFG1-Tr,OFG2-Trで共有する画素共有構造を有している。
 そして、本第9の実施形態の状態制御部は、基板ウェルのポテンシャルを安定させるために、共有される各オーバーフローゲートトランジスタOFG1-Tr,OFG2-Trのゲート電極にはタイミングをずらしてオーバーフローゲート用パルスPLSOF1,PLSOF2を印加する。
The ninth embodiment is different from the fourth embodiment as follows.
In the ninth embodiment, the pixel PXLD shares one floating diffusion FD with two photodiodes PD1, PD2, transfer transistors TG1-Tr, TG2-Tr, and overflow gate transistors OFG1-Tr, OFG2-Tr. It has a pixel sharing structure.
The state control unit of the ninth embodiment shifts the timing of the gate electrodes of the shared overflow gate transistors OFG1-Tr and OFG2-Tr for the overflow gate in order to stabilize the potential of the substrate well. Pulses PLSOF1 and PLSOF2 are applied.
 本第9の実施形態によれば、画素共有構造の場合も、上述した第4の実施形態の効果と同様の効果を得ることができる。 According to the ninth embodiment, even in the case of the pixel sharing structure, the same effect as that of the fourth embodiment described above can be obtained.
(第10の実施形態)
 図24は、本第10の実施形態に係る画素の一例を示す回路図である。
 図25(A)および図25(B)は、本発明の第10の実施形態に係る状態制御部70によるアキュムレーションしている状態とアキュムレーションしていない状態とを混在させる制御を含む読み出し動作について説明するための図である。
 図25(A)が画素の等価回路を示し、図25(B)が動作波形を示している。
(Tenth embodiment)
FIG. 24 is a circuit diagram illustrating an example of a pixel according to the tenth embodiment.
FIG. 25A and FIG. 25B illustrate a read operation including control for mixing the accumulating state and the non-accumulating state by the state control unit 70 according to the tenth embodiment of the present invention. It is a figure for doing.
FIG. 25A shows an equivalent circuit of a pixel, and FIG. 25B shows an operation waveform.
 本第10の実施形態が、第4の実施形態と異なる点は、次の通りである。
 第10の実施形態においては、画素PXLEが、一つのフローティングディフュージョンFDを4つのフォトダイオードPD1,PD2、PD3、PD4、転送トランジスタTG1-Tr,TG2-Tr、TG3-Tr,TG4-Tr、およびオーバーフローゲートトランジスタOFG1-Tr,OFG2-Tr,OFG3-Tr,OFG4-Trで共有する画素共有構造を有している。
 そして、本第9の実施形態の状態制御部は、基板ウェルのポテンシャルを安定させるために、共有される各オーバーフローゲートトランジスタOFG1-Tr,OFG2-Tr,OFG3-Tr,OFG4-Trのゲート電極にはタイミングをずらしてオーバーフローゲート用パルスPLSOF1,PLSOF2,PLSOF3,PLSOF4を印加する。
The tenth embodiment is different from the fourth embodiment as follows.
In the tenth embodiment, the pixel PXLE includes one floating diffusion FD, four photodiodes PD1, PD2, PD3, PD4, transfer transistors TG1-Tr, TG2-Tr, TG3-Tr, TG4-Tr, and overflow. It has a pixel sharing structure shared by the gate transistors OFG1-Tr, OFG2-Tr, OFG3-Tr, OFG4-Tr.
The state control unit of the ninth embodiment uses the gate electrodes of the shared overflow gate transistors OFG1-Tr, OFG2-Tr, OFG3-Tr, OFG4-Tr to stabilize the potential of the substrate well. Applies the overflow gate pulses PLSOF1, PLSOF2, PLSOF3, PLSOF4 at different timings.
 本第10の実施形態によれば、画素共有構造の場合も、上述した第4の実施形態の効果と同様の効果を得ることができる。 According to the tenth embodiment, even in the case of the pixel sharing structure, the same effect as the effect of the fourth embodiment described above can be obtained.
 以上説明した固体撮像装置10は、デジタルカメラやビデオカメラ、携帯端末、あるいは監視用カメラ、医療用内視鏡用カメラなどの電子機器に、撮像デバイスとして適用することができる。 The solid-state imaging device 10 described above can be applied as an imaging device to an electronic apparatus such as a digital camera, a video camera, a portable terminal, a monitoring camera, or a medical endoscope camera.
 図26は、本発明の実施形態に係る固体撮像装置が適用されるカメラシステムを搭載した電子機器の構成の一例を示す図である。 FIG. 26 is a diagram illustrating an example of the configuration of an electronic apparatus equipped with a camera system to which the solid-state imaging device according to the embodiment of the present invention is applied.
 本電子機器100は、図26に示すように、本実施形態に係る固体撮像装置10が適用可能なCMOSイメージセンサ110を有する。
 さらに、電子機器100は、このCMOSイメージセンサ110の画素領域に入射光を導く(被写体像を結像する)光学系(レンズ等)120を有する。
 電子機器100は、CMOSイメージセンサ110の出力信号を処理する信号処理回路(PRC)130を有する。
As shown in FIG. 26, the electronic apparatus 100 includes a CMOS image sensor 110 to which the solid-state imaging device 10 according to the present embodiment can be applied.
The electronic device 100 further includes an optical system (lens or the like) 120 that guides incident light (forms a subject image) to the pixel region of the CMOS image sensor 110.
The electronic device 100 includes a signal processing circuit (PRC) 130 that processes an output signal of the CMOS image sensor 110.
 信号処理回路130は、CMOSイメージセンサ110の出力信号に対して所定の信号処理を施す。
 信号処理回路130で処理された画像信号は、液晶ディスプレイ等からなるモニタに動画として映し出し、あるいはプリンタに出力することも可能であり、またメモリカード等の記録媒体に直接記録する等、種々の態様が可能である。
The signal processing circuit 130 performs predetermined signal processing on the output signal of the CMOS image sensor 110.
The image signal processed by the signal processing circuit 130 can be displayed as a moving image on a monitor composed of a liquid crystal display or the like, or output to a printer, or directly recorded on a recording medium such as a memory card. Is possible.
 上述したように、CMOSイメージセンサ110として、前述した固体撮像装置10を搭載することで、高性能、小型、低コストのカメラシステムを提供することが可能となる。
 そして、カメラの設置の要件に実装サイズ、接続可能ケーブル本数、ケーブル長さ、設置高さなどの制約がある用途に使われる、たとえば、監視用カメラ、医療用内視鏡用カメラなどの電子機器を実現することができる。
As described above, by mounting the above-described solid-state imaging device 10 as the CMOS image sensor 110, it is possible to provide a high-performance, small, and low-cost camera system.
Electronic devices such as surveillance cameras and medical endoscope cameras are used for applications where the camera installation requirements include restrictions such as mounting size, number of connectable cables, cable length, and installation height. Can be realized.

Claims (21)

  1.  蓄積期間に光電変換により生成した電荷を蓄積する光電変換素子と、
     前記光電変換素子に蓄積された電荷を転送可能な少なくとも一つの電荷転送ゲート部と、
     少なくとも前記蓄積期間に、少なくとも前記電荷転送ゲート部のゲート下の状態をアキュムレーションしている状態とアキュムレーションしていない状態とが混在するように制御する状態制御部と
     を有する固体撮像装置。
    A photoelectric conversion element for accumulating charges generated by photoelectric conversion during the accumulation period;
    At least one charge transfer gate portion capable of transferring charges accumulated in the photoelectric conversion element;
    A solid-state imaging device comprising: a state control unit that controls at least the state under accumulation of the charge transfer gate unit and a state of non-accumulation at least during the accumulation period.
  2.  前記状態制御部は、
      パルスを印加することより、アキュムレーションしている状態とアキュムレーションしていない状態とが混在するように制御する
     請求項1記載の固体撮像装置。
    The state control unit
    The solid-state imaging device according to claim 1, wherein control is performed so that an accumulation state and a non-accumulation state are mixed by applying a pulse.
  3.  前記電荷転送ゲート部は、
      前記光電変換素子に蓄積された電荷をフローティングディフュージョンに転送する転送トランジスタを含み、
     前記状態制御部は、
      少なくとも前記蓄積期間に、前記転送トランジスタのゲート電極に前記パルスを印加する
     請求項2記載の固体撮像装置。
    The charge transfer gate portion is
    Including a transfer transistor for transferring the charge accumulated in the photoelectric conversion element to the floating diffusion,
    The state control unit
    The solid-state imaging device according to claim 2, wherein the pulse is applied to a gate electrode of the transfer transistor at least during the accumulation period.
  4.  前記転送トランジスタの転送電極部が埋め込み型チャネルにより形成されている
     請求項3記載の固体撮像装置。
    The solid-state imaging device according to claim 3, wherein a transfer electrode portion of the transfer transistor is formed by a buried channel.
  5.  前記状態制御部は、
      前記転送トランジスタのゲート電極に印加する前記パルスのレベルを所定レベルと基準レベルとの間の中間レベルに設定する
     請求項3記載の固体撮像装置。
    The state control unit
    The solid-state imaging device according to claim 3, wherein a level of the pulse applied to the gate electrode of the transfer transistor is set to an intermediate level between a predetermined level and a reference level.
  6.   リセット期間に前記フローティングディフュージョンを所定電位にリセットするリセットトランジスタを含み、
     前記状態制御部は、
      前記転送トランジスタのゲート電極に前記パルスを印加しつつ、前記リセットトランジスタのゲート電極に所定レベルの電圧信号を印加する
     請求項3記載の固体撮像装置。
    Including a reset transistor that resets the floating diffusion to a predetermined potential during a reset period;
    The state control unit
    The solid-state imaging device according to claim 3, wherein a voltage signal of a predetermined level is applied to the gate electrode of the reset transistor while applying the pulse to the gate electrode of the transfer transistor.
  7.  前記状態制御部は、
      前記リセットトランジスタのゲート電極に前記転送トランジスタのゲート電極に印加する転送ゲート用前記パルスと同相のリセットゲート用パルスを印加する
     請求項6記載の固体撮像装置。
    The state control unit
    The solid-state imaging device according to claim 6, wherein a reset gate pulse having the same phase as the transfer gate pulse applied to the gate electrode of the transfer transistor is applied to the gate electrode of the reset transistor.
  8.  前記転送ゲート用前記パルスのレベルは前記リセットゲート用パルスの所定レベルより小さい
     請求項7記載の固体撮像装置。
    The solid-state imaging device according to claim 7, wherein a level of the transfer gate pulse is smaller than a predetermined level of the reset gate pulse.
  9.  前記状態制御部は、
      グランドラインに、前記転送トランジスタのゲート電極に印加する前記パルスと逆位相のパルスを印加する
     請求項3記載の固体撮像装置。
    The state control unit
    The solid-state imaging device according to claim 3, wherein a pulse having a phase opposite to that of the pulse applied to the gate electrode of the transfer transistor is applied to the ground line.
  10.  前記画素部は、
      一つの前記フローティングディフュージョンを複数の前記光電変換素子および前記転送トランジスタで共有する画素共有構造を有し、
     前記状態制御部は、
      共有される前記各転送トランジスタのゲート電極にはタイミングをずらして前記パルスを印加する
     請求項3記載の固体撮像装置。
    The pixel portion is
    Having a pixel sharing structure in which one floating diffusion is shared by a plurality of the photoelectric conversion elements and the transfer transistors;
    The state control unit
    The solid-state imaging device according to claim 3, wherein the pulse is applied to the shared gate electrode of each transfer transistor at different timings.
  11.  前記電荷転送ゲート部は、
      前記光電変換素子に蓄積された電荷をフローティングディフュージョンに転送する転送トランジスタと、
      前記光電変換素子から溢れる電荷を排出するオーバーフローゲートと、を含み、
     前記状態制御部は、
      少なくとも前記蓄積期間に、前記転送トランジスタのゲート電極および前記オーバーフローゲートのうち少なくとも前記オーバーフローゲートに前記パルスを印加する
     請求項2記載の固体撮像装置。
    The charge transfer gate portion is
    A transfer transistor for transferring the charge accumulated in the photoelectric conversion element to a floating diffusion;
    An overflow gate for discharging the overflowing charge from the photoelectric conversion element,
    The state control unit
    The solid-state imaging device according to claim 2, wherein the pulse is applied to at least the overflow gate among the gate electrode of the transfer transistor and the overflow gate at least during the accumulation period.
  12.  前記状態制御部は、
      前記オーバーフローゲートのゲート電極に印加する前記パルスのレベルを所定レベルと基準レベルとの間の中間レベルに設定する
     請求項11記載の固体撮像装置。
    The state control unit
    The solid-state imaging device according to claim 11, wherein a level of the pulse applied to the gate electrode of the overflow gate is set to an intermediate level between a predetermined level and a reference level.
  13.  前記状態制御部は、
      前記転送トランジスタのゲート電極に、前記オーバーフローゲートに印加する前記パルスと逆位相のパルスを印加する
     請求項11記載の固体撮像装置。
    The state control unit
    The solid-state imaging device according to claim 11, wherein a pulse having a phase opposite to that of the pulse applied to the overflow gate is applied to a gate electrode of the transfer transistor.
  14.  前記状態制御部は、
      前記転送トランジスタのゲート電極に、前記オーバーフローゲートに印加する前記パルスと逆位相の電圧信号を印加する
     請求項11記載の固体撮像装置。
    The state control unit
    The solid-state imaging device according to claim 11, wherein a voltage signal having a phase opposite to that of the pulse applied to the overflow gate is applied to a gate electrode of the transfer transistor.
  15.  前記状態制御部は、
      グランドラインに、前記オーバーフローゲートに印加する前記パルスと逆位相のパルスを印加する
     請求項11記載の固体撮像装置。
    The state control unit
    The solid-state imaging device according to claim 11, wherein a pulse having a phase opposite to that of the pulse applied to the overflow gate is applied to a ground line.
  16.  前記画素部は、
      一つの前記フローティングディフュージョンを複数の前記光電変換素子、前記転送トランジスタ、および前記オーバーフローゲートで共有する画素共有構造を有し、
     前記状態制御部は、
      共有される前記各オーバーフローゲートにはタイミングをずらして前記パルスを印加する
     請求項11記載の固体撮像装置。
    The pixel portion is
    Having a pixel sharing structure in which one floating diffusion is shared by the plurality of photoelectric conversion elements, the transfer transistor, and the overflow gate;
    The state control unit
    The solid-state imaging device according to claim 11, wherein the pulses are applied to the shared overflow gates at different timings.
  17.  前記パルスは、電位レベルが調整可能である
     請求項2記載の固体撮像装置。
    The solid-state imaging device according to claim 2, wherein a potential level of the pulse is adjustable.
  18.  蓄積期間に光電変換により生成した電荷を蓄積する光電変換素子と、
     前記光電変換素子に蓄積された電荷を転送可能な少なくとも一つの電荷転送ゲート部と、を有する固体撮像装置の駆動方法であって、
     少なくとも前記蓄積期間に、少なくとも前記電荷転送ゲート部のゲート下の状態をアキュムレーションしている状態とアキュムレーションしていない状態とが混在するように制御する
     固体撮像装置の駆動方法。
    A photoelectric conversion element for accumulating charges generated by photoelectric conversion during the accumulation period;
    A solid-state imaging device driving method comprising: at least one charge transfer gate portion capable of transferring charges accumulated in the photoelectric conversion element;
    A method for driving a solid-state imaging device, wherein at least the state under the gate of the charge transfer gate unit is controlled so that a state where accumulation is performed and a state where accumulation is not performed exist at least in the accumulation period.
  19.   パルスを印加することより、アキュムレーションしている状態とアキュムレーションしていない状態とが混在するように制御する
     請求項18記載の固体撮像装置の駆動方法。
    The solid-state imaging device driving method according to claim 18, wherein the control is performed so that an accumulation state and a non-accumulation state are mixed by applying a pulse.
  20.  固体撮像装置と、
     前記固体撮像装置に被写体像を結像する光学系と、を有し、
     前記固体撮像装置は、
      蓄積期間に光電変換により生成した電荷を蓄積する光電変換素子と、
      前記光電変換素子に蓄積された電荷を転送可能な少なくとも一つの電荷転送ゲート部と、
      少なくとも前記蓄積期間に、少なくとも前記電荷転送ゲート部のゲート下の状態をアキュムレーションしている状態とアキュムレーションしていない状態とが混在するように制御する状態制御部と、を含む
     電子機器。
    A solid-state imaging device;
    An optical system that forms a subject image on the solid-state imaging device,
    The solid-state imaging device
    A photoelectric conversion element for accumulating charges generated by photoelectric conversion during the accumulation period;
    At least one charge transfer gate portion capable of transferring charges accumulated in the photoelectric conversion element;
    An electronic device comprising: a state control unit that controls at least the state under accumulation of the charge transfer gate unit and a state of non-accumulation in at least the accumulation period.
  21.  前記状態制御部は、
      パルスを印加することより、アキュムレーションしている状態とアキュムレーションしていない状態とが混在するように制御する
     請求項20記載の電子機器。
    The state control unit
    21. The electronic apparatus according to claim 20, wherein a pulse is applied so that an accumulation state and a non-accumulation state are mixed.
PCT/JP2016/067932 2015-06-19 2016-06-16 Solid-state imaging device, method of driving solid-state image capturing device, and electronic instrument WO2016204225A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017525292A JPWO2016204225A1 (en) 2015-06-19 2016-06-16 Solid-state imaging device, driving method of solid-state imaging device, and electronic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-123580 2015-06-19
JP2015123580 2015-06-19

Publications (1)

Publication Number Publication Date
WO2016204225A1 true WO2016204225A1 (en) 2016-12-22

Family

ID=57545392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067932 WO2016204225A1 (en) 2015-06-19 2016-06-16 Solid-state imaging device, method of driving solid-state image capturing device, and electronic instrument

Country Status (2)

Country Link
JP (1) JPWO2016204225A1 (en)
WO (1) WO2016204225A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111590A (en) * 2002-09-18 2004-04-08 Sony Corp Solid state imaging device and its drive controlling method
JP2005223681A (en) * 2004-02-06 2005-08-18 Olympus Corp Solid-state image pickup device
JP2006032681A (en) * 2004-07-16 2006-02-02 Sony Corp Semiconductor device, drive method thereof and physical information acquiring device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111590A (en) * 2002-09-18 2004-04-08 Sony Corp Solid state imaging device and its drive controlling method
JP2005223681A (en) * 2004-02-06 2005-08-18 Olympus Corp Solid-state image pickup device
JP2006032681A (en) * 2004-07-16 2006-02-02 Sony Corp Semiconductor device, drive method thereof and physical information acquiring device

Also Published As

Publication number Publication date
JPWO2016204225A1 (en) 2018-04-05

Similar Documents

Publication Publication Date Title
US10574925B2 (en) Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
EP3799421A1 (en) Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
US10567691B2 (en) Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
US10694121B2 (en) Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
US9961262B2 (en) Solid-state imaging device having a switchable conversion gain in the floating diffusion, method for driving solid-state imaging device, and electronic apparatus
US8564706B2 (en) Solid-state imaging apparatus, driving method of the same and imaging system
US8934036B2 (en) Solid state imaging device, driving method of the solid state imaging device and electronic equipment
CN101840926B (en) Solid-state imaging device, method of manufacturing the same, method of driving the same, and electronic apparatus
US10645327B2 (en) Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
US11240448B2 (en) Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
JP6995549B2 (en) Solid-state image sensor, solid-state image sensor driving method, and electronic equipment
JP7455525B2 (en) Solid-state imaging device, solid-state imaging device manufacturing method, and electronic equipment
US20120235022A1 (en) Solid-state imaging device, drive method of solid-state imaging device, and imaging apparatus
US12108182B2 (en) Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
US11849235B2 (en) Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
US11785360B2 (en) Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
US20230353898A1 (en) Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
JP7338983B2 (en) Solid-state imaging device, driving method for solid-state imaging device, and electronic device
US12107095B2 (en) Solid-state imaging device, method for fabricating solid-state imaging device, and electronic apparatus
WO2016204225A1 (en) Solid-state imaging device, method of driving solid-state image capturing device, and electronic instrument
WO2023079795A1 (en) Imaging device
US20240357255A1 (en) Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811699

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017525292

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.05.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16811699

Country of ref document: EP

Kind code of ref document: A1