WO2016204159A1 - Liquid chromatography analysis method and liquid chromatograph device - Google Patents

Liquid chromatography analysis method and liquid chromatograph device Download PDF

Info

Publication number
WO2016204159A1
WO2016204159A1 PCT/JP2016/067726 JP2016067726W WO2016204159A1 WO 2016204159 A1 WO2016204159 A1 WO 2016204159A1 JP 2016067726 W JP2016067726 W JP 2016067726W WO 2016204159 A1 WO2016204159 A1 WO 2016204159A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
carrier solution
column
liquid
ions
Prior art date
Application number
PCT/JP2016/067726
Other languages
French (fr)
Japanese (ja)
Inventor
英幸 近藤
順也 加藤
直子 丸岡
亜希子 鶴見
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2016204159A1 publication Critical patent/WO2016204159A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/30Control of physical parameters of the fluid carrier of temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/50Conditioning of the sorbent material or stationary liquid
    • G01N30/52Physical parameters
    • G01N30/54Temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86

Definitions

  • the present invention relates to a liquid chromatography analysis method and a liquid chromatograph apparatus.
  • Liquid chromatography is used as a method for identifying and quantifying active ingredients and impurities such as pharmaceuticals, foods and cosmetics.
  • various components in a liquid sample can be separated and eluted based on the interaction between a mobile phase and a stationary phase such as reverse phase distribution, normal phase distribution, hydrophilic interaction, size exclusion, and ion exchange.
  • a mobile phase water or an organic solvent is used alone or in combination, and sodium phosphate, ammonium acetate, or the like may be added as a buffering agent.
  • the stationary phase is made of a filler such as silica gel and polymer
  • a filler such as silica gel and polymer
  • typical examples of the filler include polymer resins such as silica gel (ODS) into which octadecyl group is introduced, polystyrene, and acrylate.
  • ODS silica gel
  • the stationary phase is used by being packed in a column made of stainless steel or PEEK material.
  • the separation performance of a column packed with a stationary phase is highly temperature dependent, and the reproducibility of the analysis results decreases if the column temperature changes during the analysis. Therefore, it is generally used for analysis in a state where a column filled with a stationary phase is kept at a constant temperature in a column oven. Further, if the column temperature is raised, the resolution is improved and the column efficiency is improved. Therefore, it is often used for analysis under high temperature conditions of 40 ° C. or higher.
  • the carrier solution used for the mobile phase is sent to the column after being stored in a 0.1 to 5 L glass bottle. This carrier solution is usually used at room temperature regardless of the set temperature of the stationary phase.
  • the temperature of the mobile phase and the stationary phase may be greatly different or the temperature of the mobile phase may be unstable. This has a great influence on the reproducibility of the analysis, and there is a possibility that the pressure load increases and the life of the column is shortened.
  • Patent Document 1 as a method for reducing the temperature difference between the mobile phase and the stationary phase, the mobile phase flows in a coil shape (spiral) on the upstream side of the column in the column oven.
  • a method of increasing the length of the pipe line for heating is disclosed.
  • an object of the present invention is to provide a liquid chromatography analysis method and a liquid chromatograph apparatus having high analysis reproducibility.
  • the present inventor has improved the reproducibility of analysis by heating the carrier solution used for the mobile phase to a certain temperature with a heater or the like to reduce the temperature difference from the stationary phase.
  • the inventors have found that the present invention has been improved and have completed the present invention.
  • the present invention employs the following means in order to solve the above problems.
  • a liquid chromatography analysis method in which a carrier solution used for a mobile phase is introduced into a column housed in a temperature-controllable column oven, the temperature of the carrier solution before the carrier solution enters the column oven Is controlled so as to be within ⁇ 20 to + 5 ° C. of the set temperature of the column oven.
  • the liquid chromatography analysis method according to (1) wherein the temperature of the column oven is 40 to 60 ° C., and the temperature of the carrier solution is controlled to 25 to 60 ° C.
  • a liquid chromatograph device comprising a temperature control device for controlling the temperature of the carrier solution stored in the carrier solution storage tank.
  • FIG. 1 is a schematic diagram of an example of a liquid chromatograph apparatus according to an embodiment to which the present invention is applied. It is a chromatogram of 10 type ion mixed aqueous solution of an Example. It is a chromatogram of 10 types of ion mixed aqueous solution of a comparative example.
  • FIG. 1 shows a schematic diagram of an example of a liquid chromatograph apparatus according to an embodiment to which the present invention is applied.
  • a liquid chromatograph apparatus 100 shown in FIG. 1 includes a carrier solution storage tank 11 for storing a carrier solution A used for a mobile phase, a liquid feed pump 12, an injector 13, a column (stationary phase packed column) 14, and a detector. 15 and a waste liquid bottle 16.
  • the column 14 is installed in a column oven 17, and the inside of the column oven 17 can be heated to a predetermined temperature and held during analysis.
  • the liquid chromatograph apparatus 100 shown in FIG. 1 includes a temperature controller 20 that adjusts the temperature of the carrier solution A stored in the carrier solution phase storage tank 11.
  • the temperature control device 20 reduces the temperature difference between the mobile phase and the stationary phase by bringing the temperature of the mobile phase closer to the temperature of the stationary phase in order to improve the reproducibility of liquid chromatography analysis by the liquid chromatograph device 100. is there.
  • the structure is not limited as long as the purpose is achieved.
  • the temperature control apparatus 20 detects the temperature of the heater (heating means) 21 and the carrier solution A.
  • a temperature adjustment device 23 that takes in a temperature detection signal from the temperature sensor 22 and controls power supply from a power supply device (not shown) to the heater 21 so that the temperature of the carrier solution A becomes a target temperature.
  • the temperature adjusting device 23 the temperature of the carrier solution A may be adjusted using a temperature adjusting device (not shown) of the column oven 17.
  • the temperature control device 20 warms the carrier solution A and keeps the temperature, and can be used without particular limitation as long as the temperature can be kept constant by warming.
  • a constant temperature water tank, a silicon rubber heater, a ribbon heater or the like can be used as the heating means.
  • the temperature control apparatus 20 may have a stirring device.
  • the carrier solution storage tank 11 storing the carrier solution A that has been set to a temperature within a predetermined temperature difference range with respect to the set temperature of the column oven by the temperature control device 20 is sucked by the liquid feed pump 12.
  • the carrier solution A thus fed is sent at a constant flow rate toward the column 14 installed in the column oven 17 maintained at a predetermined temperature.
  • a liquid sample which is a measurement object is injected into the carrier solution by an injector 13 disposed between the liquid feed pump 12 and the column 14.
  • the measurement object injected from the injector 13 passes through the column 14 and is separated into each component, and each component is detected by a detector 15 disposed downstream of the column 14.
  • the temperature of the carrier solution A is controlled so as to be within a predetermined temperature difference range with respect to the set temperature of the column oven.
  • the temperature of the carrier solution A is controlled via the carrier solution storage tank 11.
  • the temperature of the carrier solution A is set within a predetermined temperature difference range with respect to the set temperature of the column oven. If it is a structure, there will be no restriction
  • the temperature of the carrier solution A may be controlled in the middle of a conduit connected from the carrier solution storage tank 11 to the column 14. This is because if the temperature difference between the mobile phase and the stationary phase can be reduced, the analytical reproducibility of liquid chromatography can be improved.
  • the temperature of the carrier solution A is controlled so that the temperature of the carrier solution is ⁇ 20 ° C. to + 5 ° C. (that is, 20 ° C. lower than the set temperature) before the carrier solution enters the column oven. To 5 ° C. higher than the set temperature). This is because, if the temperature of the carrier solution is within the range of ⁇ 20 ° C. to + 5 ° C., which is the set temperature of the column oven, it is possible to reduce the decrease in analysis reproducibility caused by the temperature difference between the mobile phase and the stationary phase. It is preferable that the temperature of the carrier solution is within the range of ⁇ 10 ° C. to + 5 ° C., which is the set temperature of the column oven, because the effect of reducing the reduction in analysis reproducibility is increased. Further, it is more preferable that the temperature of the carrier solution is in the range of ⁇ 5 ° C. to + 5 ° C., which is the set temperature of the column oven, because the effect of reducing the reduction in the reproducibility of the analysis is further increased
  • the temperature of the carrier solution is within ⁇ 20 ° C. to + 5 ° C. of the setting temperature of the column oven, the setting temperature of the column oven is 40 to 60 ° C., and the temperature of the carrier solution is 25 to 25 ° C. It is preferable to control at 60 ° C. This is because within these temperature ranges, the resolution is improved and the column efficiency is improved.
  • the column is preferably an ion chromatography column. Temperature by NO 3 - separation of ions and PO 4 3- ions, Br - ion and ClO 3 - is from affecting the like separation of ions.
  • the decrease in analytical reproducibility caused by the temperature difference between the mobile phase and the stationary phase include an increase in column pressure, a decrease in column efficiency, a change in separation characteristics, and a decrease in the reproducibility of these measurements.
  • N the number of theoretical plates (half-value width method, N)
  • N 5.54 ⁇ (peak width at 50% elution time / peak height of the peak) 2 formula be able to.
  • the degree of separation of two peaks in a chromatogram can be cited as an index of change in separation characteristics.
  • the stationary phase (filler) used in the liquid chromatography analysis method of the present invention is basically not particularly limited as long as it is a material used for liquid chromatography. However, it is necessary to be chemically and physically stable even when dispersed in water without causing decomposition or alteration.
  • the base material include silica gel-based, polymer resins such as polystyrene and acrylate, alumina (aluminum oxide), titania (titanium oxide), ceria (cerium oxide), and carbon.
  • a material in which a functional group such as a butyl group, an octyl group, an octadecyl group, a sulfo group, or an amino group can be used, and it can be used without any restrictions on the type, housing material, and size. it can.
  • separation modes such as ion chromatography, reverse phase chromatography, normal phase chromatography, hydrophilic interaction chromatography, size exclusion chromatography, and ion exchange chromatography are developed. The mode can be used without limitation. Ion chromatography column temperature Among these make measurements at 40 ° C.
  • reverse phase chromatography is preferably used in the hydrophilic interaction chromatography, the temperature NO 3 - ions and PO 4 3- ions separation, Br - ion and ClO 3 - is more preferably used to influence ion chromatography such as the separation of ions.
  • the stationary phase packed column is warmed by a column oven. Although there is no restriction
  • the carrier solution used in the mobile phase of the liquid chromatography analysis method of the present invention water and an organic solvent, a mixed solution of water and a water-soluble organic solvent, or the like is used.
  • the organic solvent include alcohols such as acetonitrile, methanol, ethanol, and isopropanol, ethers such as tetrahydrofuran, ketones such as acetone and methyl ethyl ketone, toluene, hexane, and the like. These may be used alone or in combination of two or more. They may be used in combination. There is no restriction on the composition ratio. Among them, it is preferable to use water having a large heat capacity.
  • Example 1 Using a 983 compact IC (manufactured by Metrohm) as the liquid chromatograph and CTO-20A (manufactured by Shimadzu Corporation) as the column oven, the column for anion analysis, Shodex IC SI-35 4D (inner diameter: 4.0 mm, Length 150 mm. Showa Denko Co., Ltd.) was used.
  • Shodex IC SI-35 4D inner diameter: 4.0 mm, Length 150 mm. Showa Denko Co., Ltd.
  • carrier solution used for the mobile phase 500 ml of a 3.6 mmol / L sodium carbonate aqueous solution prepared in a 1 L glass bottle was used.
  • the room temperature was 15 to 18 ° C.
  • the carrier solution was kept warm using a silicon rubber heater (manufactured by ASONE Co., Ltd.) so that the temperature of the carrier solution was 25 ° C. to 50 ° C.
  • the liquid temperature of the carrier solution was monitored using a portable thermometer. Setting temperature 45 ° C.
  • Example 2 The same liquid chromatograph apparatus, column oven, column and carrier solution as in Example 1 were used. At this time, the room temperature was 15 ° C. to 18 ° C., and the carrier solution was kept at a set temperature of 45 ° C. using a silicon rubber heater (manufactured by ASONE Corporation). The liquid temperature of the carrier solution was monitored using a portable thermometer. Setting temperature 45 ° C.
  • the liquid chromatographic analysis method and liquid chromatograph apparatus of the present invention are reproducible from the conventional liquid chromatographic analysis method and liquid chromatograph apparatus for liquid chromatography already widely used as analytical techniques in various fields. Can be used in the same field as before. In other words, it is useful in a wide range of fields such as food, cosmetics, environment, agriculture, medicine, and industrial materials. Especially when high analytical accuracy is required for product quality tests in these fields, it is used for multi-sample analysis and repeated analysis. It is suitable for the case.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

This liquid chromatography analysis method comprises introducing a carrier solution into a column accommodated inside a temperature-controllable column oven, said carrier solution being used in the mobile phase, wherein the method is characterized in that, before entering the column oven, the carrier solution is adjusted to a temperature of within –20°C to +5°C of the set temperature of the column oven.

Description

液体クロマトグラフィー分析方法及び液体クロマトグラフ装置Liquid chromatography analysis method and liquid chromatography apparatus
 本発明は、液体クロマトグラフィー分析方法及び液体クロマトグラフ装置に関する。
 本願は、2015年6月15日に、日本に出願された特願2015-120077号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a liquid chromatography analysis method and a liquid chromatograph apparatus.
This application claims priority on June 15, 2015 based on Japanese Patent Application No. 2015-120077 filed in Japan, the contents of which are incorporated herein by reference.
 医薬品や食品、化粧品などの有効成分や不純物の同定や定量を行う方法として液体クロマトグラフィーが用いられている。液体クロマトグラフィーは逆相分配、順相分配、親水性相互作用、サイズ排除、イオン交換等の移動相と固定相との相互作用に基づき液体試料中の各種成分を分離、溶出させることができる。
移動相に用いるキャリア溶液としては、水や有機溶媒を単独または混合して使用され、緩衝剤としてリン酸ナトリウムや酢酸アンモニウムなどが添加される場合もある。また、固定相は、シリカゲル、ポリマーなどの充填剤からなり、充填剤の代表例としてオクタデシル基を導入したシリカゲル(ODS)やポリスチレン、アクリレート等のポリマー樹脂が挙げられる。
Liquid chromatography is used as a method for identifying and quantifying active ingredients and impurities such as pharmaceuticals, foods and cosmetics. In liquid chromatography, various components in a liquid sample can be separated and eluted based on the interaction between a mobile phase and a stationary phase such as reverse phase distribution, normal phase distribution, hydrophilic interaction, size exclusion, and ion exchange.
As the carrier solution used in the mobile phase, water or an organic solvent is used alone or in combination, and sodium phosphate, ammonium acetate, or the like may be added as a buffering agent. The stationary phase is made of a filler such as silica gel and polymer, and typical examples of the filler include polymer resins such as silica gel (ODS) into which octadecyl group is introduced, polystyrene, and acrylate.
 固定相(充填剤)はステンレスやPEEK材からなるカラムに充填されて使用される。固定相を充填したカラムの分離性能は温度依存性が高く、分析中にカラムの温度が変化すると分析結果の再現性が低下する。そのため、一般に、カラムオーブン中にて固定相を充填したカラムを一定温度下とした状態で分析に用いられる。また、カラム温度が上がれば、分離度の改善やカラム効率が向上する。そのため、40℃以上の高温条件にて分析に用いられることも多い。
一方、移動相に用いるキャリア溶液は0.1~5Lのガラス瓶に貯留したものをカラムに送液している。このキャリア溶液は、固定相の設定温度に関わらず、通常、室温にて用いられている。
The stationary phase (filler) is used by being packed in a column made of stainless steel or PEEK material. The separation performance of a column packed with a stationary phase is highly temperature dependent, and the reproducibility of the analysis results decreases if the column temperature changes during the analysis. Therefore, it is generally used for analysis in a state where a column filled with a stationary phase is kept at a constant temperature in a column oven. Further, if the column temperature is raised, the resolution is improved and the column efficiency is improved. Therefore, it is often used for analysis under high temperature conditions of 40 ° C. or higher.
On the other hand, the carrier solution used for the mobile phase is sent to the column after being stored in a 0.1 to 5 L glass bottle. This carrier solution is usually used at room temperature regardless of the set temperature of the stationary phase.
特開2008-232729号公報JP 2008-232729 A
 しかし、特に冬季や夜間において室温が20℃を下回るような環境下にある場合、移動相と固定相の温度が大きく異なることや移動相の温度が不安定であることがあった。これは、分析再現性に大きく影響を与え、また、圧力負荷が大きくなりカラムの寿命を短縮させるおそれがあった。 However, particularly in winter and at night, when the room temperature is below 20 ° C., the temperature of the mobile phase and the stationary phase may be greatly different or the temperature of the mobile phase may be unstable. This has a great influence on the reproducibility of the analysis, and there is a possibility that the pressure load increases and the life of the column is shortened.
 特許文献1には、移動相と固定相の温度差を低減する方法として、カラムオーブン内のカラムより上流側において、移動相が流れる管路をコイル状(螺旋状)にすることによって、移動相を加温する管路長を長くする方法が開示されている。 In Patent Document 1, as a method for reducing the temperature difference between the mobile phase and the stationary phase, the mobile phase flows in a coil shape (spiral) on the upstream side of the column in the column oven. A method of increasing the length of the pipe line for heating is disclosed.
 しかし、特に冬季や夜間時の温度差が大きい場合、カラムオーブン内のカラムより上流側において管路長を長くするだけでは特に熱容量の大きい水を移動相に用いた際に十分に加温できない場合があり、分析再現性への影響を解消するのは困難であった。 However, especially when the temperature difference between winter and night is large, it is not possible to sufficiently heat water with a large heat capacity, especially when using water with a large heat capacity just by increasing the pipe length upstream of the column in the column oven. It was difficult to eliminate the influence on the reproducibility of analysis.
 本発明は、このような事情に鑑み、分析再現性が高い液体クロマトグラフィー分析方法及び液体クロマトグラフ装置を提供することを目的とする。 In view of such circumstances, an object of the present invention is to provide a liquid chromatography analysis method and a liquid chromatograph apparatus having high analysis reproducibility.
 本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、移動相に用いるキャリア溶液をヒーター等により一定温度に加温して固定相との温度差を低減することにより分析再現性を向上させることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventor has improved the reproducibility of analysis by heating the carrier solution used for the mobile phase to a certain temperature with a heater or the like to reduce the temperature difference from the stationary phase. The inventors have found that the present invention has been improved and have completed the present invention.
 本発明は、上記課題を解決するために、以下の手段を採用した。 The present invention employs the following means in order to solve the above problems.
(1)温度制御可能なカラムオーブン内に収容されたカラムに、移動相に用いるキャリア溶液を導入する液体クロマトグラフィー分析方法において、前記キャリア溶液が前記カラムオーブン内に入る前において、キャリア溶液の温度がカラムオーブンの設定温度の-20~+5℃以内となるように制御することを特徴とする液体クロマトグラフィー分析方法。
(2)前記カラムオーブンの温度が40~60℃であり、前記キャリア溶液の温度を25~60℃に制御することを特徴とする(1)に記載の液体クロマトグラフィー分析方法。
(3)前記カラムがイオンクロマトグラフィー用カラムであることを特徴とする(1)または(2)のいずれかに記載の液体クロマトグラフィー分析方法。
(4)キャリア溶液貯槽内に貯留するキャリア溶液の温度を制御する温度制御装置を備えたことを特徴とする液体クロマトグラフ装置。
(1) In a liquid chromatography analysis method in which a carrier solution used for a mobile phase is introduced into a column housed in a temperature-controllable column oven, the temperature of the carrier solution before the carrier solution enters the column oven Is controlled so as to be within −20 to + 5 ° C. of the set temperature of the column oven.
(2) The liquid chromatography analysis method according to (1), wherein the temperature of the column oven is 40 to 60 ° C., and the temperature of the carrier solution is controlled to 25 to 60 ° C.
(3) The liquid chromatography analysis method according to any one of (1) and (2), wherein the column is an ion chromatography column.
(4) A liquid chromatograph device comprising a temperature control device for controlling the temperature of the carrier solution stored in the carrier solution storage tank.
 本発明によれば、分析再現性が高い液体クロマトグラフィー分析方法及び液体クロマトグラフ装置を提供できる。 According to the present invention, it is possible to provide a liquid chromatography analysis method and a liquid chromatograph apparatus with high analysis reproducibility.
本発明を適用した一実施形態に係る液体クロマトグラフ装置の一例の概略図。1 is a schematic diagram of an example of a liquid chromatograph apparatus according to an embodiment to which the present invention is applied. 実施例の10種イオン混合水溶液のクロマトグラムである。It is a chromatogram of 10 type ion mixed aqueous solution of an Example. 比較例の10種イオン混合水溶液のクロマトグラムである。It is a chromatogram of 10 types of ion mixed aqueous solution of a comparative example.
 以下、本発明を適用した液体クロマトグラフィー分析方法及び液体クロマトグラフ装置について、図面を用いてその構成を説明する。なお、以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その効果を奏する範囲で適宜変更して実施することが可能である。 Hereinafter, the configuration of a liquid chromatography analysis method and a liquid chromatograph apparatus to which the present invention is applied will be described with reference to the drawings. In addition, the material, dimension, etc. which are illustrated in the following description are an example, Comprising: This invention is not limited to them, It is possible to implement suitably changing in the range with the effect.
 図1に、本発明を適用した一実施形態に係る液体クロマトグラフ装置の一例の概略図を示す。
 図1に示す液体クロマトグラフ装置100は、移動相に用いるキャリア溶液Aを貯留するキャリア溶液貯槽11と、送液ポンプ12と、インジェクタ―13と、カラム(固定相充填カラム)14と、検出器15と、廃液瓶16とを備える。
 ここで、カラム14はカラムオーブン17内に設置されており、分析中にカラムオーブン17内を所定の温度に加温し、保持することができる。
FIG. 1 shows a schematic diagram of an example of a liquid chromatograph apparatus according to an embodiment to which the present invention is applied.
A liquid chromatograph apparatus 100 shown in FIG. 1 includes a carrier solution storage tank 11 for storing a carrier solution A used for a mobile phase, a liquid feed pump 12, an injector 13, a column (stationary phase packed column) 14, and a detector. 15 and a waste liquid bottle 16.
Here, the column 14 is installed in a column oven 17, and the inside of the column oven 17 can be heated to a predetermined temperature and held during analysis.
 また、図1に示す液体クロマトグラフ装置100は、キャリア溶液相貯槽11に貯留するキャリア溶液Aの温度を調整する温度制御装置20を備えている。
 温度制御装置20は、液体クロマトグラフ装置100による液体クロマトグラフィーの分析再現性を向上させるために、移動相の温度を固定相の温度に近づけて移動相と固定相の温度差を低減するものである。かかる目的を奏するものであれば、その構成に制限はないが、図1に示す液体クロマトグラフ装置100では、温度制御装置20は、ヒーター(加温手段)21と、キャリア溶液Aの温度を検出する温度センサ22と、温度センサ22からの温度検出信号を取り込み、キャリア溶液Aの温度が目標温度になるように図示しない電源装置からヒーター21への電力供給を制御する温度調整装置23とを備える。なお、温度調整装置23としては、カラムオーブン17の温度調整装置(図示せず)を用いて、キャリア溶液Aの温度を調整してもよい。
Further, the liquid chromatograph apparatus 100 shown in FIG. 1 includes a temperature controller 20 that adjusts the temperature of the carrier solution A stored in the carrier solution phase storage tank 11.
The temperature control device 20 reduces the temperature difference between the mobile phase and the stationary phase by bringing the temperature of the mobile phase closer to the temperature of the stationary phase in order to improve the reproducibility of liquid chromatography analysis by the liquid chromatograph device 100. is there. The structure is not limited as long as the purpose is achieved. In the liquid chromatograph apparatus 100 shown in FIG. 1, the temperature control apparatus 20 detects the temperature of the heater (heating means) 21 and the carrier solution A. And a temperature adjustment device 23 that takes in a temperature detection signal from the temperature sensor 22 and controls power supply from a power supply device (not shown) to the heater 21 so that the temperature of the carrier solution A becomes a target temperature. . As the temperature adjusting device 23, the temperature of the carrier solution A may be adjusted using a temperature adjusting device (not shown) of the column oven 17.
 温度制御装置20はキャリア溶液Aを加温してその温度を保持するものであり、加温してその温度を一定に保てるものであれば、特に制限なく使用することができる。例えば、加温手段としては、恒温水槽、シリコンラバーヒーター、リボンヒーター等を用いることができる。また、温度制御装置20は、撹拌装置を有していてもよい。 The temperature control device 20 warms the carrier solution A and keeps the temperature, and can be used without particular limitation as long as the temperature can be kept constant by warming. For example, a constant temperature water tank, a silicon rubber heater, a ribbon heater or the like can be used as the heating means. Moreover, the temperature control apparatus 20 may have a stirring device.
 キャリア溶液Aの液温安定化のためには加温手段の温度安定後、測定開始前にさらに10~30分の保温時間を設けることが好ましい。 In order to stabilize the liquid temperature of the carrier solution A, it is preferable to provide a heat retention time of 10 to 30 minutes before the start of measurement after the temperature of the heating means is stabilized.
 液体クロマトグラフ装置100によれば、温度制御装置20によってカラムオーブンの設定温度に対して所定の温度差範囲の温度とされたキャリア溶液Aを貯留するキャリア溶液貯槽11から、送液ポンプ12によって吸引されたキャリア溶液Aは、所定の温度に保持されたカラムオーブン17内に設置されたカラム14へ向かって一定流量で送液される。送液ポンプ12とカラム14の間に配置されたインジェクタ―13によって、測定対象物である液体試料がキャリア溶液に注入される。インジェクタ―13から注入された測定対象物はカラム14を通過することにより各成分に分離され、カラム14の下流に配置された検出器15で各成分が検出される。 According to the liquid chromatograph device 100, the carrier solution storage tank 11 storing the carrier solution A that has been set to a temperature within a predetermined temperature difference range with respect to the set temperature of the column oven by the temperature control device 20 is sucked by the liquid feed pump 12. The carrier solution A thus fed is sent at a constant flow rate toward the column 14 installed in the column oven 17 maintained at a predetermined temperature. A liquid sample which is a measurement object is injected into the carrier solution by an injector 13 disposed between the liquid feed pump 12 and the column 14. The measurement object injected from the injector 13 passes through the column 14 and is separated into each component, and each component is detected by a detector 15 disposed downstream of the column 14.
 本発明の液体クロマトグラフィー分析方法では、キャリア溶液Aの温度を、カラムオーブンの設定温度に対して所定の温度差範囲に収まるように制御する。
 ここで、図1に示す液体クロマトグラフ装置100を用いて本発明の液体クロマトグラフィー分析方法を行う場合、キャリア溶液Aの温度の制御はキャリア溶液貯槽11を介して行われる。しかし、キャリア溶液Aの温度の制御を行う構成としてはキャリア溶液Aがカラムオーブン内に入る前において、キャリア溶液Aの温度をカラムオーブンの設定温度に対して所定の温度差範囲に収まるようにする構成であれば特に制限はない。例えば、キャリア溶液貯槽11からカラム14につながる管路の途中でキャリア溶液Aの温度を制御してもよい。移動相と固定相の温度差を低減することができれば、液体クロマトグラフィーの分析再現性を向上させることができるからである。
In the liquid chromatography analysis method of the present invention, the temperature of the carrier solution A is controlled so as to be within a predetermined temperature difference range with respect to the set temperature of the column oven.
Here, when the liquid chromatography analysis method of the present invention is performed using the liquid chromatograph apparatus 100 shown in FIG. 1, the temperature of the carrier solution A is controlled via the carrier solution storage tank 11. However, as a configuration for controlling the temperature of the carrier solution A, before the carrier solution A enters the column oven, the temperature of the carrier solution A is set within a predetermined temperature difference range with respect to the set temperature of the column oven. If it is a structure, there will be no restriction | limiting in particular. For example, the temperature of the carrier solution A may be controlled in the middle of a conduit connected from the carrier solution storage tank 11 to the column 14. This is because if the temperature difference between the mobile phase and the stationary phase can be reduced, the analytical reproducibility of liquid chromatography can be improved.
 キャリア溶液Aの温度の制御は、キャリア溶液がカラムオーブン内に入る前において、キャリア溶液の温度がカラムオーブンの設定温度の-20℃~+5℃(すなわち、当該設定温度に比べて20℃低い温度から当該設定温度に比べて5℃高い温度)の範囲内となるように行う。キャリア溶液の温度がカラムオーブンの設定温度の-20℃~+5℃の範囲内であれば、移動相と固定相との温度差により生じる分析再現性の低下を低減できるからである。キャリア溶液の温度がカラムオーブンの設定温度の-10℃~+5℃の範囲内であれば、分析再現性低下の低減効果が大きくなるので好ましい。また、キャリア溶液の温度がカラムオーブンの設定温度の-5℃~+5℃の範囲内であれば、分析再現性低下の低減効果がさらに大きくなるのでより好ましい。 The temperature of the carrier solution A is controlled so that the temperature of the carrier solution is −20 ° C. to + 5 ° C. (that is, 20 ° C. lower than the set temperature) before the carrier solution enters the column oven. To 5 ° C. higher than the set temperature). This is because, if the temperature of the carrier solution is within the range of −20 ° C. to + 5 ° C., which is the set temperature of the column oven, it is possible to reduce the decrease in analysis reproducibility caused by the temperature difference between the mobile phase and the stationary phase. It is preferable that the temperature of the carrier solution is within the range of −10 ° C. to + 5 ° C., which is the set temperature of the column oven, because the effect of reducing the reduction in analysis reproducibility is increased. Further, it is more preferable that the temperature of the carrier solution is in the range of −5 ° C. to + 5 ° C., which is the set temperature of the column oven, because the effect of reducing the reduction in the reproducibility of the analysis is further increased.
 本発明の液体クロマトグラフィー分析方法では、キャリア溶液の温度がカラムオーブンの設定温度の-20℃~+5℃以内の下、カラムオーブンの設定温度を40~60℃とし、キャリア溶液の温度を25~60℃に制御することが好ましい。これらの温度範囲内であれば、分離度の改善やカラム効率が良好となるからである。 In the liquid chromatography analysis method of the present invention, the temperature of the carrier solution is within −20 ° C. to + 5 ° C. of the setting temperature of the column oven, the setting temperature of the column oven is 40 to 60 ° C., and the temperature of the carrier solution is 25 to 25 ° C. It is preferable to control at 60 ° C. This is because within these temperature ranges, the resolution is improved and the column efficiency is improved.
本発明の液体クロマトグラフィー分析方法では、カラムがイオンクロマトグラフィー用カラムであることが好ましい。温度によりNO イオンとPO 3-イオンの分離、BrイオンとClO イオンの分離などに影響を及ぼすからである。  In the liquid chromatography analysis method of the present invention, the column is preferably an ion chromatography column. Temperature by NO 3 - separation of ions and PO 4 3- ions, Br - ion and ClO 3 - is from affecting the like separation of ions.
 移動相と固定相との温度差により生じる分析再現性の低下の具体例としては、カラム圧力の上昇、カラム効率の低下、分離特性の変化、ならびにこれらの測定再現性の低下などが挙げられる。
カラム効率の指標としては例えば理論段数(半値幅法、N)が挙げられ、N=5.54×(ピークの溶出時間/ピーク高さの50%におけるピーク幅)の計算式にて算出することができる。
また、分離特性の変化の指標としては例えば、クロマトグラムの2つのピークの分離度が挙げられる。分離度Rは、R=1.18×{(2つのピークの保持時間差)/(2つのピークのピーク高さの50%におけるピーク幅の和)}の計算式にて算出することができる。
Specific examples of the decrease in analytical reproducibility caused by the temperature difference between the mobile phase and the stationary phase include an increase in column pressure, a decrease in column efficiency, a change in separation characteristics, and a decrease in the reproducibility of these measurements.
As an index of column efficiency for example the number of theoretical plates (half-value width method, N) can be mentioned, calculated at N = 5.54 × (peak width at 50% elution time / peak height of the peak) 2 formula be able to.
In addition, as an index of change in separation characteristics, for example, the degree of separation of two peaks in a chromatogram can be cited. The degree of separation R can be calculated by the following formula: R = 1.18 × {(difference in retention time of two peaks) / (sum of peak widths at 50% of peak heights of two peaks)}.
 分析再現性の低下としては例えば、陰イオン分析に用いられるイオンクロマトグラフィー用カラムの場合、固定相温度に対して移動相温度が低いときにカラム圧力の上昇、理論段数の低下という問題があった。さらに、分離挙動の変化、特にNO イオンとPO 3-イオンの分離の悪化、BrイオンとClO イオンが重なってしまうなどが観測され、測定毎の再現性も得られないという問題があった。 For example, in the case of an ion chromatography column used for anion analysis, there is a problem that the column pressure increases and the number of theoretical plates decreases when the mobile phase temperature is lower than the stationary phase temperature. . In addition, changes in separation behavior, especially deterioration of separation of NO 3 ions and PO 4 3− ions, and overlap of Br ions and ClO 3 ions are observed, and reproducibility for each measurement cannot be obtained. There was a problem.
 本発明の液体クロマトグラフィー分析方法で用いられる固定相(充填剤)は、基本的には液体クロマトグラフィーに用いられる材料であれば、その種類については特に制限はない。ただし、水に分散させても化学的および物理的に安定で、分解・変質を起こさないことが必要とされる。
ベースとなる基材としては、シリカゲル系、ポリスチレン、アクリレート等のポリマー樹脂、アルミナ(酸化アルミニウム)、チタニア(酸化チタン)、セリア(酸化セリウム)、カーボンなどが挙げられる。また、基材に対してブチル基、オクチル基、オクタデシル基、スルホ基、アミノ基などの官能基が導入されたものも用いることができ、種類およびハウジングの材質、サイズに制約なく使用することができる。また、固定相の種類に応じてイオンクロマトグラフィー、逆相クロマトグラフィー、順相クロマトグラフィー、親水性相互作用クロマトグラフィー、サイズ排除クロマトグラフィー、イオン交換クロマトグラフィー等の分離モードが発現されるが、分離モードにも制限なく用いることができる。これらの中でもカラム温度を40℃~60℃にて測定を行うイオンクロマトグラフィー、逆相クロマトグラフィー、親水性相互作用クロマトグラフィーに用いるのが好ましく、温度によりNO イオンとPO 3-イオンの分離、BrイオンとClO イオンの分離などに影響を及ぼすイオンクロマトグラフィーに用いるのがより好ましい。
 固定相充填カラムはカラムオーブンにより加温される。その温度に特に制限はないが移動相の沸点以下にすることが好ましい。より好ましいのは40℃~60℃である。
The stationary phase (filler) used in the liquid chromatography analysis method of the present invention is basically not particularly limited as long as it is a material used for liquid chromatography. However, it is necessary to be chemically and physically stable even when dispersed in water without causing decomposition or alteration.
Examples of the base material include silica gel-based, polymer resins such as polystyrene and acrylate, alumina (aluminum oxide), titania (titanium oxide), ceria (cerium oxide), and carbon. In addition, a material in which a functional group such as a butyl group, an octyl group, an octadecyl group, a sulfo group, or an amino group is introduced to the base material can be used, and it can be used without any restrictions on the type, housing material, and size. it can. Depending on the type of stationary phase, separation modes such as ion chromatography, reverse phase chromatography, normal phase chromatography, hydrophilic interaction chromatography, size exclusion chromatography, and ion exchange chromatography are developed. The mode can be used without limitation. Ion chromatography column temperature Among these make measurements at 40 ° C. ~ 60 ° C., reverse phase chromatography, is preferably used in the hydrophilic interaction chromatography, the temperature NO 3 - ions and PO 4 3- ions separation, Br - ion and ClO 3 - is more preferably used to influence ion chromatography such as the separation of ions.
The stationary phase packed column is warmed by a column oven. Although there is no restriction | limiting in particular in the temperature, It is preferable to make it below the boiling point of a mobile phase. More preferred is 40 to 60 ° C.
 本発明の液体クロマトグラフィー分析方法の移動相に用いるキャリア溶液は、水および有機溶媒、水と水溶性有機溶媒との混合液などが使用される。有機溶媒の種類としてはアセトニトリル、メタノール、エタノール、イソプロパノール等のアルコール類、テトラヒドロフラン等のエーテル類、アセトン、メチルエチルケトンなどのケトン類、トルエン、ヘキサンなどが挙げられ、これらは単独でもよく、2種以上を組合せて用いてもよい。組成比率にも制約はない。その中でも熱容量が大きい水を用いることが好ましい。
 また、移動相に用いるキャリア溶液の容器に使用されるガラス瓶(キャリア溶液貯槽)の容量には制約はない。ただし、ヒーター(加温手段)による加温を効率良く行うために2L以下のガラス瓶を用いることが好ましく、1L以下のガラス瓶を用いることがより好ましい。
As the carrier solution used in the mobile phase of the liquid chromatography analysis method of the present invention, water and an organic solvent, a mixed solution of water and a water-soluble organic solvent, or the like is used. Examples of the organic solvent include alcohols such as acetonitrile, methanol, ethanol, and isopropanol, ethers such as tetrahydrofuran, ketones such as acetone and methyl ethyl ketone, toluene, hexane, and the like. These may be used alone or in combination of two or more. They may be used in combination. There is no restriction on the composition ratio. Among them, it is preferable to use water having a large heat capacity.
Moreover, there is no restriction | limiting in the capacity | capacitance of the glass bottle (carrier solution storage tank) used for the container of the carrier solution used for a mobile phase. However, in order to efficiently perform heating with a heater (heating means), a glass bottle of 2 L or less is preferably used, and a glass bottle of 1 L or less is more preferably used.
 以下、実施例により本発明の効果をより明らかなものとする。なお、本発明は、以下の実施例に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することができる。 Hereinafter, the effects of the present invention will be made clearer by examples. In addition, this invention is not limited to a following example, In the range which does not change the summary, it can change suitably and can implement.
(実施例1)
 液体クロマトグラフとして983 コンパクトIC(メトローム社製)、カラムオーブンとしてCTO-20A(株式会社島津製作所製)を用いて、カラムには陰イオン分析用カラムShodex IC SI-35 4D(内径4.0mm、長さ150mm。昭和電工株式会社製)を用いた。移動相に用いるキャリア溶液には1Lガラス瓶に用意された3.6mmol/L炭酸ナトリウム水溶液500mlを用いた。この時の室温は15~18℃であり、キャリア溶液はシリコンラバーヒーター(アズワン株式会社製)を用いてキャリア溶液の温度が25℃~50℃となるよう保温を行った。キャリア溶液の液温はポータブル温度計を用いてモニタリングした。カラムオーブンの設定温度45℃、流量0.6ml/minにてFイオン2mg/L、ClO イオン1mg/L、BrO イオン1mg/L、Clイオン10mg/L、NO イオン5mg/L、Brイオン10mg/L、ClO イオン1mg/L、NO イオン30mg/L、PO 3-イオン15mg/L、SO 2-イオン40mg/Lの混合水溶液を注入量20μlで10回測定した結果、キャリア溶液温度、カラム圧力、保持時間、理論段数、NO イオンとPO 3-イオンの分離度、BrイオンとClO イオンの分離度を表1に示した。
(Example 1)
Using a 983 compact IC (manufactured by Metrohm) as the liquid chromatograph and CTO-20A (manufactured by Shimadzu Corporation) as the column oven, the column for anion analysis, Shodex IC SI-35 4D (inner diameter: 4.0 mm, Length 150 mm. Showa Denko Co., Ltd.) was used. As the carrier solution used for the mobile phase, 500 ml of a 3.6 mmol / L sodium carbonate aqueous solution prepared in a 1 L glass bottle was used. At this time, the room temperature was 15 to 18 ° C., and the carrier solution was kept warm using a silicon rubber heater (manufactured by ASONE Co., Ltd.) so that the temperature of the carrier solution was 25 ° C. to 50 ° C. The liquid temperature of the carrier solution was monitored using a portable thermometer. Setting temperature 45 ° C. of the column oven, at a flow rate of 0.6 ml / min F - ions 2mg / L, ClO 2 - ion 1mg / L, BrO 3 - ion 1 mg / L, Cl - ion 10mg / L, NO 2 - ions 5mg / L, Br - ion 10mg / L, ClO 3 - ions 1mg / L, NO 3 - ion 30mg / L, PO 4 3- ions 15 mg / L, a mixed aqueous solution of SO 4 2-ion 40 mg / L injection volume results measured 10 times with 20 [mu] l, the carrier solution temperature, column pressure, holding time, the number of theoretical plates, NO 3 - separation of ions and PO 4 3- ions, Br - ion and ClO 3 - ions of separability in Table 1 Indicated.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果からわかるように、いずれの温度においてもBrとClO は良好な分離度が得られている。特に最も分離度が低いキャリア溶液の温度が25.1℃の場合(すなわち、カラムオーブンの設定温度に対して-約20℃)においても、分離度0.50で分離が得られている。これは後述する、キャリア溶液の加温を行わずに測定を行った比較例の結果である表3において、BrとClO が全く分離されていないのに比べると、キャリア溶液の温度をカラムオーブンの設定温度に対して-20℃~+5℃に制御した効果である。
特に、キャリア溶液の温度が40.1℃、45.0℃、50.0℃(すなわち、カラムオーブンの設定温度に対して±約5℃)では、NO とPO 3-の分離度は4.0以上、BrとClO の分離度は1.2以上が得られており、35℃以下で測定した場合と比べて良好であることが確認された。
As can be seen from the results in Table 1, Br and ClO 3 have a good degree of separation at any temperature. In particular, even when the temperature of the carrier solution having the lowest resolution is 25.1 ° C. (that is, −20 ° C. with respect to the set temperature of the column oven), the separation is obtained with a resolution of 0.50. This is the result of a comparative example which was measured without heating the carrier solution, which will be described later. In Table 3, the temperature of the carrier solution was compared with that in which Br - and ClO 3 - were not separated at all. This is the effect of controlling the temperature in the column oven to −20 ° C. to + 5 ° C.
In particular, when the temperature of the carrier solution is 40.1 ° C., 45.0 ° C., 50.0 ° C. (that is, ± about 5 ° C. with respect to the set temperature of the column oven), the separation degree of NO 3 and PO 4 3− it is 4.0 or more, Br - and ClO 3 - in which separation is obtained 1.2 or more, was confirmed to be good as compared with when measured at 35 ° C. or less.
(実施例2)
 実施例1と同じ液体クロマトグラフ装置、カラムオーブン、カラム、キャリア溶液を用いた。この時の室温は15℃~18℃であり、キャリア溶液はシリコンラバーヒーター(アズワン株式会製)を用いて設定温度45℃にて保温を行った。キャリア溶液の液温はポータブル温度計を用いてモニタリングした。カラムオーブンの設定温度45℃、流量0.6ml/minにてFイオン2mg/L、ClO イオン1mg/L、BrO イオン1mg/L、Clイオン10mg/L、NO イオン5mg/L、Brイオン10mg/L、ClO イオン1mg/L、NO イオン30mg/L、PO 3-イオン15mg/L、SO 2-イオン40mg/Lの混合水溶液を注入量20μlで10回測定した結果、キャリア溶液温度、カラム圧力、保持時間、理論段数、NO イオンとPO 3-イオンの分離度、BrイオンとClO イオンの分離度を表2に示した。
(Example 2)
The same liquid chromatograph apparatus, column oven, column and carrier solution as in Example 1 were used. At this time, the room temperature was 15 ° C. to 18 ° C., and the carrier solution was kept at a set temperature of 45 ° C. using a silicon rubber heater (manufactured by ASONE Corporation). The liquid temperature of the carrier solution was monitored using a portable thermometer. Setting temperature 45 ° C. of the column oven, at a flow rate of 0.6 ml / min F - ions 2mg / L, ClO 2 - ion 1mg / L, BrO 3 - ion 1 mg / L, Cl - ion 10mg / L, NO 2 - ions 5mg / L, Br - ion 10mg / L, ClO 3 - ions 1mg / L, NO 3 - ion 30mg / L, PO 4 3- ions 15 mg / L, a mixed aqueous solution of SO 4 2-ion 40 mg / L injection volume results measured 10 times with 20 [mu] l, the carrier solution temperature, column pressure, holding time, the number of theoretical plates, NO 3 - separation of ions and PO 4 3- ions, Br - ion and ClO 3 - ions of separability in Table 2 Indicated.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の結果からわかるように、カラム圧力、SO 2-イオンの理論段数、NO イオンとPO 3-イオンの分離、BrイオンとClO イオンの分離はいずれも良好であり測定再現性も得られた。測定10回目のクロマトグラムを図2に示す。 As can be seen from the results in Table 2, the column pressure, the theoretical number of SO 4 2− ions, the separation of NO 3 ions and PO 4 3− ions, and the separation of Br 2 ions and ClO 3 ions are all good. Measurement reproducibility was also obtained. The chromatogram of the 10th measurement is shown in FIG.
(比較例)
 実施例と同じ液体クロマトグラフ、カラムオーブン、カラム、キャリア溶液を用いた。室温は15℃~18℃であり、キャリア溶液の加温を行わずに測定を行った。キャリア溶液の液温はポータブル温度計を用いてモニタリングした。カラムオーブンの設定温度45℃、流量0.6ml/minにて実施例に記載の混合水溶液を注入量20μlで連続して10回測定した結果、キャリア溶液温度、カラム圧力、保持時間、理論段数、NO イオンとPO 3-イオンの分離度、BrイオンとClO イオンの分離度を表3に示した。
(Comparative example)
The same liquid chromatograph, column oven, column, and carrier solution as in the examples were used. The room temperature was 15 ° C. to 18 ° C., and the measurement was performed without heating the carrier solution. The liquid temperature of the carrier solution was monitored using a portable thermometer. As a result of continuously measuring the mixed aqueous solution described in the example at an injection amount of 20 μl at a column oven setting temperature of 45 ° C. and a flow rate of 0.6 ml / min, carrier solution temperature, column pressure, holding time, theoretical plate number, NO 3 - separation of ions and PO 4 3- ions, Br - ion and ClO 3 - ions of separation are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3の結果からわかるように、カラム圧力の上昇、SO 2-の理論段数低下とともにNO イオンとPO 3-イオンの分離度の悪化が確認された。また、BrイオンとClO イオンは分離せず、測定再現性の低下も確認された。測定10回目のクロマトグラムを図3に示す。 As can be seen from the results in Table 3, as the column pressure increased and the number of theoretical plates of SO 4 2− decreased, the degree of separation of NO 3 ions and PO 4 3− ions deteriorated. In addition, Br ions and ClO 3 ions were not separated, and a decrease in measurement reproducibility was also confirmed. The chromatogram of the 10th measurement is shown in FIG.
 本発明の液体クロマトグラフィー分析方法及び液体クロマトグラフ装置は、様々な分野で分析手法としてすでに広く用いられている液体クロマトグラフィーについて、従来の液体クロマトグラフフィー分析方法及び液体クロマトグラフ装置より分析再現性が向上されたものであり、従来と同様の分野において利用可能である。すなわち、食品、化粧品、環境、農業、医療、工業材料等の幅広い分野に有用であり、特にこれらの分野において製品品質試験などで高い分析精度が要求される場合、多検体分析や繰り返し分析に用いる場合に好適である。 The liquid chromatographic analysis method and liquid chromatograph apparatus of the present invention are reproducible from the conventional liquid chromatographic analysis method and liquid chromatograph apparatus for liquid chromatography already widely used as analytical techniques in various fields. Can be used in the same field as before. In other words, it is useful in a wide range of fields such as food, cosmetics, environment, agriculture, medicine, and industrial materials. Especially when high analytical accuracy is required for product quality tests in these fields, it is used for multi-sample analysis and repeated analysis. It is suitable for the case.
1 Fイオンのピーク
2 ClO イオンのピーク
3 BrO イオンのピーク
4 Clイオンのピーク
5 NO イオンのピーク
6 Brイオンのピーク
7 ClO イオンのピーク
8 NO イオンのピーク
9 PO 3-イオンのピーク
10 SO 2-イオンのピーク
11 キャリア溶液貯槽
12 送液ポンプ
13 インジェクタ―
14 固定相充填カラム(カラム)
15 検出器
16 廃液瓶
17 カラムオーブン
20 温度制御装置
21 ヒーター(加温手段)
22 温度センサ
23 温度調整装置
100 液体クロマトグラフ装置
A キャリア溶液
1 F ion peak 2 ClO 2 ion peak 3 BrO 3 ion peak 4 Cl ion peak 5 NO 2 ion peak 6 Br ion peak 7 ClO 3 ion peak 8 NO 3 Ion peak 9 PO 4 3- Ion peak 10 SO 4 2- Ion peak 11 Carrier solution storage tank 12 Feed pump 13 Injector
14 Stationary phase packed column (column)
15 Detector 16 Waste bottle 17 Column oven 20 Temperature controller 21 Heater (heating means)
22 Temperature Sensor 23 Temperature Control Device 100 Liquid Chromatograph Device A Carrier Solution

Claims (4)

  1.  温度制御可能なカラムオーブン内に収容されたカラムに、移動相に用いるキャリア溶液を導入する液体クロマトグラフィー分析方法において、
    前記キャリア溶液が前記カラムオーブン内に入る前において、キャリア溶液の温度がカラムオーブンの設定温度の-20℃~+5℃以内となるように制御することを特徴とする液体クロマトグラフィー分析方法。
    In a liquid chromatography analysis method for introducing a carrier solution used for a mobile phase into a column housed in a temperature-controllable column oven,
    A liquid chromatography analysis method, wherein the temperature of the carrier solution is controlled to be within −20 ° C. to + 5 ° C. of a set temperature of the column oven before the carrier solution enters the column oven.
  2. 前記カラムオーブンの温度が40℃~60℃であり、前記キャリア溶液の温度を25℃~60℃に制御することを特徴とする請求項1に記載の液体クロマトグラフィー分析方法。 2. The liquid chromatography analysis method according to claim 1, wherein the temperature of the column oven is 40 ° C. to 60 ° C., and the temperature of the carrier solution is controlled to 25 ° C. to 60 ° C.
  3. 前記カラムがイオンクロマトグラフィー用カラムであることを特徴とする請求項1または2のいずれかに記載の液体クロマトグラフィー分析方法。 The liquid chromatography analysis method according to claim 1, wherein the column is an ion chromatography column.
  4.  キャリア溶液貯槽内に貯留するキャリア溶液の温度を制御する温度制御装置を備えたことを特徴とする液体クロマトグラフ装置。 A liquid chromatograph apparatus comprising a temperature controller for controlling the temperature of a carrier solution stored in a carrier solution storage tank.
PCT/JP2016/067726 2015-06-15 2016-06-15 Liquid chromatography analysis method and liquid chromatograph device WO2016204159A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-120077 2015-06-15
JP2015120077 2015-06-15

Publications (1)

Publication Number Publication Date
WO2016204159A1 true WO2016204159A1 (en) 2016-12-22

Family

ID=57546552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067726 WO2016204159A1 (en) 2015-06-15 2016-06-15 Liquid chromatography analysis method and liquid chromatograph device

Country Status (1)

Country Link
WO (1) WO2016204159A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11258222A (en) * 1998-03-09 1999-09-24 Shimadzu Corp Liquid chromatograph device
WO2004083847A1 (en) * 2003-03-17 2004-09-30 Hitachi High-Technologies Corporation Liquid chromatograph and pre-heat condition setting method
JP2010139387A (en) * 2008-12-11 2010-06-24 Tosoh Corp Ion chromatograph system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11258222A (en) * 1998-03-09 1999-09-24 Shimadzu Corp Liquid chromatograph device
WO2004083847A1 (en) * 2003-03-17 2004-09-30 Hitachi High-Technologies Corporation Liquid chromatograph and pre-heat condition setting method
JP2010139387A (en) * 2008-12-11 2010-06-24 Tosoh Corp Ion chromatograph system

Similar Documents

Publication Publication Date Title
Walter et al. Recent innovations in UHPLC columns and instrumentation
Nguyen et al. High throughput liquid chromatography with sub-2 μm particles at high pressure and high temperature
Nazario et al. Evolution in miniaturized column liquid chromatography instrumentation and applications: An overview
Jiang et al. Preparation and characterization of monolithic polymer columns for capillary electrochromatography
Gritti et al. The current revolution in column technology: how it began, where is it going?
McCalley The challenges of the analysis of basic compounds by high performance liquid chromatography: some possible approaches for improved separations
Fekete et al. Kinetic evaluation of new generation of column packed with 1.3 μm core–shell particles
McCalley Some practical comparisons of the efficiency and overloading behaviour of sub-2 μm porous and sub-3 μm shell particles in reversed-phase liquid chromatography
Fekete et al. Comparison of the most recent chromatographic approaches applied for fast and high resolution separations: Theory and practice
Wren Peak capacity in gradient ultra performance liquid chromatography (UPLC)
Bartle et al. Theory of capillary electrochromatography
Gritti et al. The mass transfer kinetics in columns packed with Halo-ES shell particles
Hatsis et al. Improved sensitivity and characterization of high-speed ion chromatography of inorganic anions
Heaton et al. Practical observations on the performance of bare silica in hydrophilic interaction compared with C18 reversed-phase liquid chromatography
McCalley The impact of pressure and frictional heating on retention, selectivity and efficiency in ultra-high-pressure liquid chromatography
Škeříková et al. Effects of the operation parameters on hydrophilic interaction liquid chromatography separation of phenolic acids on zwitterionic monolithic capillary columns
Altun et al. Monolithic methacrylate packed 96-tips for high throughput bioanalysis
Detobel et al. Parameters affecting the separation of intact proteins in gradient-elution reversed-phase chromatography using poly (styrene-co-divinylbenzene) monolithic capillary columns
Gritti et al. Evaluation of the kinetic performance of new prototype 2.1 mm× 100 mm narrow-bore columns packed with 1.6 μm superficially porous particles
Goyon et al. The importance of system band broadening in modern size exclusion chromatography
Lin et al. Preparation of a mixed-mode hydrophilic interaction/anion-exchange polymeric monolithic stationary phase for capillary liquid chromatography of polar analytes
WO2014201222A1 (en) Methodology for scaling methods between supercritical fluid chromatography systems
Chen et al. Succinyl methacrylate polymerized in porous-layered phases for open-tubular capillary electrochromatography: Comparison with silica hydride monolayered phases
Asnin et al. The adsorption of Naproxen enantiomers on the chiral stationary phase Whelk-O1 under reversed-phase conditions: The effect of buffer composition
Gritti et al. Kinetic performance of narrow-bore columns on a micro-system for high performance liquid chromatography

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16811633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP