WO2016204112A1 - Silicon carbide semiconductor device and production method for same - Google Patents

Silicon carbide semiconductor device and production method for same Download PDF

Info

Publication number
WO2016204112A1
WO2016204112A1 PCT/JP2016/067510 JP2016067510W WO2016204112A1 WO 2016204112 A1 WO2016204112 A1 WO 2016204112A1 JP 2016067510 W JP2016067510 W JP 2016067510W WO 2016204112 A1 WO2016204112 A1 WO 2016204112A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
main surface
drift region
silicon carbide
impurity
Prior art date
Application number
PCT/JP2016/067510
Other languages
French (fr)
Japanese (ja)
Inventor
雄 斎藤
透 日吉
築野 孝
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2016204112A1 publication Critical patent/WO2016204112A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Definitions

  • the present invention relates to a silicon carbide semiconductor device and a method for manufacturing the same.
  • This application claims priority based on Japanese Patent Application No. 2015-123052, which was filed on June 18, 2015, and uses all the contents described in the Japanese Patent Application.
  • Patent Document 1 discloses a method for manufacturing a trench MOSFET in which a trench is formed on the surface of a breakdown voltage holding layer.
  • a silicon carbide semiconductor device includes a silicon carbide substrate and a gate insulating film.
  • the silicon carbide substrate has a first main surface and a second main surface opposite to the first main surface.
  • the silicon carbide substrate includes a first impurity region having a first conductivity type, a second impurity region provided on the first impurity region and having a second conductivity type different from the first conductivity type, and separated from the first impurity region.
  • a third impurity region which is provided on the second impurity region and forms the first main surface and has the first conductivity type.
  • the first impurity region has a first drift region and a second drift region sandwiched between the first drift region and the second impurity region.
  • the maximum value of the first conductivity type impurity concentration in the second drift region is larger than the maximum value of the first conductivity type impurity concentration in the first drift region.
  • the first main surface includes a side part that penetrates the second drift region, the second impurity region, and the third impurity region and reaches the first drift region, and a bottom portion that is provided continuously with the side portion.
  • a trench defined by is formed.
  • the gate insulating film is in contact with the first drift region at the bottom, and is in contact with the second drift region, the second impurity region, and the third impurity region at the side.
  • the gate insulating film has a third main surface in contact with the bottom and a fourth main surface opposite to the third main surface.
  • the position in the direction perpendicular to the second main surface is x, and the concentration of the first conductivity type impurity and the second conductivity type Assuming that the absolute value of the difference from the impurity concentration is y, the profile showing the relationship between x and y is the first minimum value and the second minimum value located closer to the first main surface than the first minimum value. And have.
  • the position showing the first minimum value is between the position of the third main surface and the position of the fourth main surface.
  • the position showing the second minimum value is between the position of the first main surface and the position of the fourth main surface.
  • the method for manufacturing a silicon carbide semiconductor device includes the following steps.
  • a silicon carbide substrate having a first main surface and a second main surface opposite to the first main surface is prepared.
  • the silicon carbide substrate includes a first impurity region having a first conductivity type, a second impurity region provided on the first impurity region and having a second conductivity type different from the first conductivity type, and separated from the first impurity region.
  • a third impurity region which is provided on the second impurity region and forms the first main surface and has the first conductivity type.
  • the first impurity region has a first drift region and a second drift region sandwiched between the first drift region and the second impurity region.
  • the maximum value of the first conductivity type impurity concentration in the second drift region is larger than the maximum value of the first conductivity type impurity concentration in the first drift region.
  • the first drift region and the second drift region are formed by epitaxial growth.
  • the second impurity region is formed by performing ion implantation on the second drift region.
  • the first main surface includes a side part penetrating the second drift region, the second impurity region, and the third impurity region and reaching the first drift region, and a bottom portion provided continuously with the side portion.
  • a defined trench is formed.
  • a gate insulating film is formed in contact with the first drift region at the bottom and in contact with the second drift region, the second impurity region, and the third impurity region at the side.
  • the gate insulating film has a third main surface in contact with the bottom and a fourth main surface opposite to the third main surface.
  • the position in the direction perpendicular to the second main surface is x
  • the concentration of the first conductivity type impurity and the second conductivity type Assuming that the absolute value of the difference from the impurity concentration is y, the profile showing the relationship between x and y is the first minimum value and the second minimum value located closer to the first main surface than the first minimum value. And have.
  • the position showing the first minimum value is between the position of the third main surface and the position of the fourth main surface.
  • the position showing the second minimum value is between the position of the first main surface and the position of the fourth main surface.
  • FIG. 1 is a schematic perspective view showing a configuration of a silicon carbide substrate included in a silicon carbide semiconductor device according to an embodiment.
  • FIG. 2 is a diagram schematically showing a profile of
  • FIG. 3 is a diagram showing roughly the fine structure of the surface of a silicon carbide layer which a silicon carbide semiconductor device has.
  • FIG. 3 is a diagram showing a crystal structure of a (000-1) plane in polytype 4H hexagonal crystal.
  • FIG. 7 is a diagram showing a crystal structure of a (11-20) plane along line VII-VII in FIG.
  • FIG. 6 is a view showing a crystal structure in the vicinity of the surface of the composite surface in FIG. 5 in the (11-20) plane.
  • FIG. 6 is a view of the composite surface of FIG. 5 as viewed from the (01-10) plane.
  • FIG. 5 is a graph showing an example of the relationship between the channel surface mobility and the angle between the channel surface and the (000-1) surface viewed macroscopically, when thermal etching is performed and when it is not performed. is there. It is a graph which shows an example of the relationship between the angle between a channel direction and the ⁇ 0-11-2> direction, and channel mobility. It is a figure which shows the modification of FIG.
  • FIG. 15 It is a flowchart which shows schematically the manufacturing method of the silicon carbide semiconductor device which concerns on embodiment. It is a flowchart which shows schematically the manufacturing process which the process of forming a silicon carbide substrate includes. It is a cross-sectional schematic diagram which shows the 1st process of the manufacturing method of the silicon carbide semiconductor device which concerns on embodiment. The profile of the N d in the direction along the arrow X of FIG. 15 is a diagram schematically showing. It is a figure which shows schematically the implantation profile of the p-type impurity ion in the process of forming a body region. It is a cross-sectional schematic diagram which shows the 2nd process of the manufacturing method of the silicon carbide semiconductor device which concerns on embodiment. FIG.
  • FIG. 19 is a diagram schematically showing a profile of
  • a p-type body region is formed by ion-implanting a p-type impurity such as aluminum into the surface of the breakdown voltage holding layer.
  • the p-type body region has an impurity concentration profile having a p-type impurity concentration peak in the depth direction of the breakdown voltage holding layer. At a position deeper than the position showing the peak of the p-type impurity concentration, the concentration of the p-type impurity monotonously decreases.
  • the p-type impurity reaches a deep region of about 1 ⁇ m or more and about 2 ⁇ m or less from the position showing the peak of the concentration of the p-type impurity due to channeling effect. This increases the effective channel length and increases the on-resistance of the MOSFET.
  • the position of the bottom of the body region in the depth direction of the breakdown voltage holding layer is close to the position of the bottom of the trench.
  • the thickness of the gate insulating film in contact with the bottom of the body region increases. That is, the thickness of the gate insulating film on the channel region in the body region is increased. Therefore, the channel is not easily inverted, and the on-resistance of the MOSFET is increased.
  • An object of one embodiment of the present invention is to provide a silicon carbide semiconductor device capable of reducing on-resistance and alleviating electric field concentration at a corner of a trench, and a method for manufacturing the same.
  • Silicon carbide semiconductor device 1 includes a silicon carbide substrate 10 and a gate insulating film 15.
  • Silicon carbide substrate 10 has a first main surface 10a and a second main surface 10b opposite to the first main surface 10a.
  • Silicon carbide substrate 10 includes a first impurity region 12 having a first conductivity type, a second impurity region 13 provided on first impurity region 12 and having a second conductivity type different from the first conductivity type, And a third impurity region 14 provided on second impurity region 13 so as to be separated from impurity region 12 and constituting first main surface 10a and having the first conductivity type.
  • the first impurity region 12 includes a first drift region 12 a and a second drift region 12 b sandwiched between the first drift region 12 a and the second impurity region 13.
  • the maximum concentration of the first conductivity type impurity in the second drift region 12b is larger than the maximum value of the concentration of the first conductivity type impurity in the first drift region 12a.
  • a side SW that penetrates the second drift region 12b, the second impurity region 13, and the third impurity region 14 and reaches the first drift region 12a is continuous with the side SW.
  • a trench TR defined by the bottom portion BT provided in this manner is formed.
  • Gate insulating film 15 is in contact with first drift region 12a at bottom BT, and is in contact with second drift region 12b, second impurity region 13, and third impurity region 14 at side SW. Gate insulating film 15 has third main surface 15b1 in contact with bottom portion BT, and fourth main surface 15b2 opposite to third main surface 15b1.
  • the position in the direction perpendicular to the second main surface 10b is x
  • the concentration of the first conductivity type impurity is Assuming that the absolute value of the difference from the concentration of the second conductivity type impurity is y, the profile indicating the relationship between x and y is the first minimum value C3 and the first main surface 10a side of the first minimum value C3. And a second minimum value C4.
  • the position a1 indicating the first minimum value C3 is between the position b1 of the third main surface 15b1 and the position b2 of the fourth main surface 15b2.
  • the position a2 indicating the second minimum value C4 is between the position 0 of the first main surface 10a and the position b2 of the fourth main surface 15b2.
  • position a2 indicating second minimum value C4 in the direction perpendicular to second main surface 10b is equal to positions 0 and 4 of first main surface 10a. It is between the position b2 of the main surface 15b2.
  • the position a2 indicating the second minimum value C4 corresponds to the position a2 at the bottom of the body region 13. That is, the position a2 at the bottom of the body region 13 is between the position 0 of the first main surface 10a and the position b2 of the fourth main surface 15b2. Therefore, it is possible to suppress an increase in the thickness of the gate insulating film 15 on the channel region in the body region 13.
  • silicon carbide semiconductor device 1 is reduced as compared with the case where position a2 at the bottom of body region 13 is between position b1 of third main surface 15b1 and position b2 of fourth main surface 15b2. can do.
  • position a1 indicating first minimum value C3 in the direction perpendicular to second main surface 10b is equal to position b1 of third main surface 15b1.
  • position b1 of third main surface 15b1 is equal to position b1 of third main surface 15b1.
  • the extension width of the depletion layer from the electric field relaxation region 17 can be increased, it is possible to suppress the concentration of the electric field at the corners of the trench TR.
  • gate insulating film 15 includes first portion 15a in contact with second impurity region 13 at side SW and first drift region 12a at bottom BT. 2 part 15b may be included.
  • the thickness t b of the second portion 15b in a direction perpendicular to the bottom portion BT may be greater than the thickness t s of the first portion 15a in a direction perpendicular to the sides SW.
  • the thickness t s of the first portion 15a is small, because the channel is easily reversed, it is possible to reduce the on-resistance of the silicon carbide semiconductor device.
  • the thickness t b of the second portion 15b is large, it is possible to gate insulating film 15 on the bottom portion BT is prevented from being destroyed.
  • the value of the thickness t b divided by the thickness t s of the first portion 15a of the second portion 15b may be of 1.5 to 8 . With divided by the value of 1.5 or more in the thickness t s of the thickness t b of the second portion 15b first portion 15a, it is possible to relax the electric field applied to the gate insulating film of the trench bottom. By value than 8 obtained by dividing the thickness t b of the second portion 15b the thickness t s of the first portion 15a, maintaining a low on-resistance without interfering the second portion 15b to the second impurity region 13 be able to.
  • the distance H1 between first main surface 10a and bottom portion BT in the direction perpendicular to second main surface 10b is It may be 1 ⁇ m or more and 1.5 ⁇ m or less.
  • the distance H ⁇ b> 1 to 1 ⁇ m or more the trench bottom is located outside the second impurity region 13, thereby suppressing an increase in on-resistance.
  • the electric field applied to the gate insulating film at the bottom corner of the trench can be relaxed.
  • thickness H2 of second impurity region 13 in the direction perpendicular to second main surface 10b is 0.4 ⁇ m or more and 0 It may be 8 ⁇ m or less.
  • the gate threshold voltage can be increased and the drain breakdown voltage can be maintained high.
  • the thickness H2 can be 0.8 ⁇ m or less, the on-resistance can be kept low without causing the second impurity region 13 to interfere with the second portion 15b.
  • the maximum concentration of the first conductivity type impurity in second drift region 12b is set to the first conductivity type in first drift region 12a.
  • the value divided by the maximum impurity concentration may be 5 or more and 10 or less.
  • the second impurity region 13 By dividing the maximum value of the first conductivity type impurity concentration of the second drift region 12b by the maximum value of the first conductivity type impurity concentration of the first drift region 12a to 10 or less, the second impurity region 13 The effective concentration of the second conductivity type impurity can be maintained, and the electric field applied to the gate insulating film in contact with the bottom corner of the trench can be reduced. As a result, the drain breakdown voltage can be maintained.
  • the maximum concentration of the second conductivity type impurity in second impurity region 13 is set to the first conductivity type in second drift region 12b.
  • the value divided by the maximum impurity concentration may be 10 or more and 100 or less.
  • the gate threshold voltage is increased by setting the value obtained by dividing the maximum concentration of the second conductivity type impurity in the second impurity region 13 by the maximum concentration of the first conductivity type impurity in the second drift region 12b to 10 or more.
  • the drain breakdown voltage can be kept high.
  • the second impurity region 13 By dividing the maximum value of the second conductivity type impurity concentration of the second impurity region 13 by the maximum value of the first conductivity type impurity concentration of the second drift region 12b to 100 or less, the second impurity region 13 By compensating for the second conductivity type impurity existing from the first to the first drift region, the effective channel length can be controlled and the on-resistance can be lowered.
  • side SW may include a surface S1 having a plane orientation ⁇ 0-33-8 ⁇ . Thereby, the channel resistance in the side part SW can be reduced.
  • the method for manufacturing silicon carbide semiconductor device 1 includes the following steps.
  • a silicon carbide substrate having a first main surface 10a and a second main surface 10b opposite to the first main surface 10a is prepared.
  • Silicon carbide substrate 10 includes a first impurity region 12 having a first conductivity type, a second impurity region 13 provided on first impurity region 12 and having a second conductivity type different from the first conductivity type, And a third impurity region 14 provided on second impurity region 13 so as to be separated from impurity region 12 and constituting first main surface 10a and having the first conductivity type.
  • the first impurity region 12 includes a first drift region 12 a and a second drift region 12 b sandwiched between the first drift region 12 a and the second impurity region 13.
  • the maximum concentration of the first conductivity type impurity in the second drift region 12b is larger than the maximum value of the concentration of the first conductivity type impurity in the first drift region 12a.
  • the first drift region 12a and the second drift region 12b are formed by epitaxial growth.
  • the second impurity region 13 is formed by performing ion implantation on the second drift region 12b.
  • a side SW that penetrates the second drift region 12b, the second impurity region 13, and the third impurity region 14 and reaches the first drift region 12a in the first main surface 10a is continuous with the side SW.
  • Gate insulating film 15 is formed in contact with first drift region 12a at bottom BT and in contact with second drift region 12b, second impurity region 13, and third impurity region 14 at side SW. Gate insulating film 15 has third main surface 15b1 in contact with bottom portion BT, and fourth main surface 15b2 opposite to third main surface 15b1.
  • the position in the direction perpendicular to the second main surface 10b is x
  • the concentration of the first conductivity type impurity is Assuming that the absolute value of the difference from the concentration of the second conductivity type impurity is y, the profile indicating the relationship between x and y is the first minimum value C3 and the first main surface 10a side of the first minimum value C3. And a second minimum value C4.
  • the position a1 indicating the first minimum value C3 is between the position b1 of the third main surface 15b1 and the position b2 of the fourth main surface 15b2.
  • the position a2 indicating the second minimum value C4 is between the position 0 of the first main surface 10a and the position b2 of the fourth main surface 15b2.
  • second impurity region 13 is second to second drift region 12b having a first conductivity type impurity concentration higher than first drift region 12a. It is formed by ion implantation of two conductivity type impurities. Therefore, channeling of the second conductivity type impurity can be suppressed. As a result, since the thickness H2 of the second impurity region 13 can be reduced, the channel length can be shortened. Therefore, the on-resistance of silicon carbide semiconductor device 1 can be reduced.
  • the position a1 indicating the first minimum value C3 in the direction perpendicular to the second main surface 10b is the position of the third main surface 15b1.
  • the concentration of the first conductivity type impurity in the portion of the first drift region 12a in the vicinity of the bottom portion BT of the trench TR is reduced.
  • the extension width of the depletion layer from the electric field relaxation region can be increased, it is possible to suppress the concentration of the electric field at the corners of the trench TR.
  • the step of forming gate insulating film 15 includes the steps of forming silicon layer 4 in contact with side SW and bottom BT, and facing bottom BT. Forming a mask layer 5 on a portion of the silicon layer 4 to be removed, removing a part of the silicon layer 4 using the mask layer 5, removing the mask layer 5, and removing the mask layer 5. After the step, a step of thermally oxidizing silicon carbide substrate 10 in a state where a part of silicon layer 4 is left on bottom portion BT may be included. Thereby, the gate insulating film 15 in which the thickness of the portion of the gate insulating film 15 on the bottom portion BT is larger than the thickness of the gate insulating film 15 on the side portion SW can be manufactured by a simple method.
  • the step of forming trench TR may be performed by thermal etching. Thereby, the side part SW of trench TR can be effectively made into a special surface. As a result, the channel resistance in the side SW can be reduced.
  • the step of forming first drift region 12a and the step of forming second drift region 12b include carbon and silicon. It may be performed using a gas containing.
  • the value obtained by dividing the number of silicon atoms in the step of forming the second drift region 12b by the number of carbon atoms is greater than the value obtained by dividing the number of silicon atoms in the step of forming the first drift region 12a by the number of carbon atoms. It can be large. Carbon is easier to incorporate nitrogen than silicon. Therefore, in the step of forming the second drift region 12b, nitrogen as an n-type impurity can be easily taken up. As a result, the n-type impurity concentration in the second drift region 12b can be effectively made higher than the n-type impurity concentration in the first drift region 12a.
  • first main surface 10a is on the carbon surface side
  • second main surface 10b is on the silicon surface side.
  • the carbon surface is easier to capture nitrogen than the silicon surface. Therefore, the concentration of the n-type impurity in the second drift region 12b formed on the first main surface 10a side can be effectively made higher than the concentration of the n-type impurity in the first drift region 12a.
  • the side portion SW of the trench TR can be a special surface. As a result, the channel resistance in the side SW can be reduced.
  • MOSFET 1 includes a silicon carbide substrate 10, a gate insulating film 15, a gate electrode 27, an interlayer insulating film 22, a source electrode 16, a source wiring 19,
  • the drain electrode 20 is mainly included.
  • Silicon carbide substrate 10 includes a silicon carbide single crystal substrate 11 and a silicon carbide epitaxial layer 24 provided on silicon carbide single crystal substrate 11.
  • Silicon carbide substrate 10 has a first main surface 10a and a second main surface 10b opposite to the first main surface 10a.
  • Silicon carbide epitaxial layer 24 constitutes first main surface 10a, and silicon carbide single crystal substrate 11 constitutes second main surface 10b.
  • the first main surface 10a is, for example, a surface that is off 2 ° or more and 8 ° or less from the ⁇ 000-1 ⁇ surface or the ⁇ 000-1 ⁇ surface.
  • the first main surface 10a is on the carbon surface side
  • the second main surface 10b is on the silicon surface side.
  • the first major surface 10a is, for example, a surface that is off 2 ° or more and 8 ° or less from the (000-1) plane or the (000-1) plane.
  • Silicon carbide single crystal substrate 11 is, for example, polytype 4H hexagonal silicon carbide.
  • Silicon carbide single crystal substrate 11 includes an n-type impurity such as nitrogen and has an n-type (first conductivity type) conductivity type.
  • Silicon carbide epitaxial layer 24 mainly includes drift region 12 (first impurity region 12), body region 13 (second impurity region 13), source region 14 (third impurity region 14), and contact region 18. Have.
  • the drift region 12 includes an n-type impurity such as nitrogen and has an n-type conductivity type.
  • the concentration of n-type impurities contained in drift region 12 may be lower than the concentration of n-type impurities contained in silicon carbide single crystal substrate 11.
  • the drift region 12 has a first drift region 12a and a second drift region 12b.
  • the second drift region 12b is sandwiched between the first drift region 12a and the body region 13.
  • Second drift region 12 b is in contact with first drift region 12 a and body region 13.
  • the maximum value of the n-type impurity concentration in the second drift region 12b is larger than the maximum value of the n-type impurity concentration in the first drift region 12a.
  • the body region 13 is provided on the drift region 12.
  • Body region 13 includes a p-type impurity such as aluminum and has a p-type (second conductivity type) conductivity type.
  • a thickness H2 of body region 13 in a direction perpendicular to second main surface 10b is, for example, not less than 0.4 ⁇ m and not more than 0.8 ⁇ m.
  • Source region 14 is provided on the body region 13 so as to be separated from the drift region 12 by the body region 13.
  • Source region 14 includes an n-type impurity such as nitrogen or phosphorus and has an n-type conductivity type.
  • Source region 14 constitutes first main surface 10a of silicon carbide substrate 10.
  • the concentration of the n-type impurity included in the source region 14 may be higher than the concentration of the n-type impurity included in the second drift region 12b.
  • the contact region 18 is in contact with the body region 13 and the source region 14.
  • Contact region 18 contains a p-type impurity such as aluminum and has p-type conductivity.
  • the concentration of the p-type impurity included in the contact region 18 may be higher than the concentration of the p-type impurity included in the body region 13.
  • Contact region 18 is provided through source region 14 so as to connect body region 13 and first major surface 10a.
  • a trench TR is formed in the first main surface 10 a of the silicon carbide substrate 10.
  • Trench TR is defined by side SW and bottom BT.
  • the side SW passes through the second drift region 12b, the body region 13, and the source region 14, and reaches the first drift region 12a.
  • the bottom part BT is provided continuously with the side part SW.
  • the bottom portion BT is located in the drift region 12.
  • the angle ⁇ formed by the side part SW and the bottom part BT is greater than 90 °.
  • the distance H1 between the first main surface 10a and the bottom portion BT in the direction perpendicular to the second main surface 10b is, for example, not less than 1 ⁇ m and not more than 1.5 ⁇ m.
  • Side view SW may be inclined so that the width of trench TR narrows in a tapered shape toward bottom portion BT in a cross-sectional view (a visual field viewed from a direction parallel to second main surface 10b of silicon carbide substrate 10). .
  • the side SW is preferably inclined at 52 ° or more and 72 ° or less with respect to the (000-1) plane. Note that the side portion SW may be formed perpendicular to the first main surface 10a.
  • the bottom portion BT may have a flat shape substantially parallel to the first main surface 10a.
  • the shape of the trench TR may be U-shaped or V-shaped.
  • the side part SW includes a special surface. Details of the configuration of the special surface will be described later.
  • FIG. 2 is a diagram showing silicon carbide substrate 10 taken out from MOSFET 1 shown in FIG.
  • source region 14, body region 13 and drift region 12 are exposed at side SW of trench TR.
  • Drift region 12 is exposed at each of side SW and bottom BT of trench TR.
  • a portion where bottom portion BT and side portion SW are connected constitutes a corner portion of trench TR.
  • Trench TR may extend so as to form a mesh having a honeycomb structure in a plan view (a visual field viewed from a direction perpendicular to second main surface 10b of silicon carbide substrate 10).
  • first main surface 10a of silicon carbide substrate 10 constituted by source region 14 and contact region 18 has a hexagonal shape.
  • body region 13, source region 14 and contact region 18 have a hexagonal outer shape.
  • the unit cell has a hexagonal shape, more preferably a regular hexagonal shape.
  • the shape of the unit cell may be a polygon such as a quadrangle.
  • the shapes of the body region 13, the source region 14, and the contact region 18 in plan view are preferably the same as the shape of the unit cell.
  • the gate insulating film 15 is in contact with the bottom portion BT and the side portion SW of the trench TR and a part of the first main surface 10a.
  • Gate insulating film 15 is made of, for example, a material containing silicon dioxide.
  • the gate insulating film 15 is a thermal oxide film, for example.
  • Gate insulating film 15 is in contact with first drift region 12 a at bottom BT, and is in contact with second drift region 12 b, body region 13, and source region 14 at side SW.
  • Gate insulating film 15 has third main surface 15b1 in contact with bottom portion BT, and fourth main surface 15b2 opposite to third main surface 15b1.
  • the gate insulating film 15 may include a first portion 15a in contact with the body region 13 in the side portion SW and a second portion 15b in contact with the first drift region 12a in the bottom portion BT.
  • the thickness t b of the second portion 15b in a direction perpendicular to the bottom portion BT may be greater than the thickness t s of the first portion 15a in a direction perpendicular to the sides SW.
  • Value the thickness t b divided by the thickness t s of the first portion 15a of the second portion 15b is, for example, 1.5 to 8.
  • FIG. 3 is a diagram schematically showing a profile of
  • Nd is the concentration of an n-type impurity (first conductivity type impurity).
  • N a is the concentration of a p-type impurity (second conductivity type impurity).
  • is the absolute value y of the difference between the n-type impurity concentration and the p-type impurity concentration.
  • the position x is a position in a direction perpendicular to the second major surface 10b.
  • the position 0 is the position of the portion of the first major surface 10a configured by the source region 14.
  • Position e is the position of boundary surface 11 a between silicon carbide single crystal substrate 11 and silicon carbide epitaxial layer 24.
  • the region from position 0 to position a3 is the source region 14.
  • the region from the position a3 to the position a2 is the body region 13.
  • a region from the position a2 to the position a1 is the second drift region 12b.
  • the region from the position a1 to the position e is the first drift region 12a.
  • the relationship between the position x and the absolute value y of the difference between the n-type impurity concentration and the p-type impurity concentration is shown.
  • the profile has a first minimum value C3 and a second minimum value C4 located closer to the first main surface 10a than the first minimum value C3.
  • the position a1 indicating the first minimum value C3 is between the position b1 of the third main surface 15b1 of the gate insulating film 15 and the position b2 of the fourth main surface 15b2. is there.
  • the position a2 indicating the second minimum value C4 is between the position 0 of the first main surface 10a and the position b2 of the fourth main surface 15b2 of the gate insulating film 15. is there.
  • the position a2 at which the absolute value y of the difference between the n-type impurity concentration and the p-type impurity concentration indicates the first minimum value C3 may be the boundary between the first drift region 12a and the second drift region 12b.
  • a value obtained by dividing the maximum value of the n-type impurity concentration of the second drift region 12b by the maximum value of the n-type impurity concentration of the first drift region 12a is 5 or more and 10 or less.
  • the concentration of the n-type impurity included in the first drift region 12a is, for example, 3 ⁇ 10 15 cm ⁇ 3 or more and 2 ⁇ 10 16 cm ⁇ 3 or less.
  • the concentration of the n-type impurity included in second drift region 12b is, for example, not less than 2 ⁇ 10 16 cm ⁇ 3 and not more than 1 ⁇ 10 17 cm ⁇ 3 .
  • a value obtained by dividing the maximum value of the concentration of the p-type impurity in the body region 13 by the maximum value of the concentration of the n-type impurity in the second drift region 12b may be 10 or more and 100 or less.
  • the position a3 is between the position a2 and the position 0.
  • the maximum value C7 of the absolute value y of the difference between the n-type impurity concentration and the p-type impurity concentration in the source region 14 is the absolute value y of the difference between the n-type impurity concentration and the p-type impurity concentration in the body region 13. It may be larger than the maximum value C5.
  • the absolute value y of the difference between the n-type impurity concentration and the p-type impurity concentration at position 0 may be smaller than the maximum value C7.
  • the maximum value C5 of the absolute value y of the difference between the n-type impurity concentration and the p-type impurity concentration in the body region 13 is the absolute difference between the n-type impurity concentration and the p-type impurity concentration in the second drift region 12b. It may be larger than the maximum value C2 of the value y.
  • the gate electrode 27 is provided inside the trench TR so as to be in contact with the gate insulating film 15 inside the trench TR.
  • the gate electrode 27 is made of polysilicon containing impurities, for example.
  • the gate electrode 27 is provided so as to face the source region 14, the body region 13, and the drift region 12.
  • the source electrode 16 is in contact with each of the source region 14 and the contact region 18 on the first main surface 10a.
  • the source electrode 16 is made of a material containing, for example, Ti, Al, and Si.
  • source electrode 16 is in ohmic contact with source region 14 and contact region 18.
  • the source wiring 19 is in contact with the source electrode 16.
  • Source wiring 19 is made of, for example, a material containing aluminum.
  • the interlayer insulating film 22 is provided in contact with the gate electrode 27 and the gate insulating film 15.
  • Interlayer insulating film 22 is made of, for example, a material containing silicon dioxide.
  • the interlayer insulating film 22 electrically insulates the gate electrode 27 and the source electrode 16 from each other.
  • Drain electrode 20 is in contact with silicon carbide single crystal substrate 11 on second main surface 10 b and is electrically connected to drift region 12.
  • the drain electrode 20 is made of a material containing, for example, NiSi or TiAlSi.
  • silicon carbide substrate 10 may include an electric field relaxation region 17.
  • Electric field relaxation region 17 includes a p-type impurity such as aluminum and has p-type conductivity.
  • the maximum value of the concentration of the p-type impurity included in the electric field relaxation region 17 is, for example, 7 ⁇ 10 17 cm ⁇ 3 .
  • the electric field relaxation region 17 may face the body region 13.
  • the electric field relaxation region 17 is in contact with, for example, the first drift region 12a.
  • electric field relaxation region 17 is located between position b1 and position e in the direction perpendicular to second main surface 10b.
  • the electric field relaxation region 17 may be connected to the body region 13 or may be separated from the body region 13.
  • the side portion SW described above has a special surface, particularly in a portion on the body region 13.
  • the side portion SW having the special surface includes a surface S1 (first surface) having a surface orientation ⁇ 0-33-8 ⁇ .
  • the surface including the surface S1 is provided in the body region 13 on the side portion SW of the trench TR.
  • the plane S1 preferably has a plane orientation (0-33-8).
  • the side SW includes the surface S1 microscopically, and the side SW further microscopically includes the surface S2 (second surface) having the surface orientation ⁇ 0-11-1 ⁇ .
  • “microscopic” means that the dimensions are as detailed as at least a dimension of about twice the atomic spacing.
  • TEM can be used as a microscopic structure observation method.
  • the plane S2 preferably has a plane orientation (0-11-1).
  • the surface S1 and the surface S2 of the side SW constitute a composite surface SR having a surface orientation ⁇ 0-11-2 ⁇ . That is, the composite surface SR is configured by periodically repeating the surfaces S1 and S2. Such a periodic structure can be observed by, for example, TEM or AFM (Atomic Force Microscopy).
  • the composite surface SR has an off angle of 62 ° macroscopically with respect to the ⁇ 000-1 ⁇ plane.
  • “macroscopic” means ignoring a fine structure having a dimension on the order of atomic spacing. As such a macroscopic off-angle measurement, for example, a general method using X-ray diffraction can be used.
  • composite surface SR has a plane orientation (0-11-2). In this case, the composite surface SR has an off angle of 62 ° macroscopically with respect to the (000-1) plane.
  • the sample analysis area is, for example, 10 ⁇ m ⁇ 10 ⁇ m ⁇ 0.1 ⁇ m.
  • the acceleration voltage is 200 kV, for example.
  • As the AFM for example, Dimension Icon SPM System made by Nippon Bico Co., Ltd. can be used.
  • the sample analysis area is, for example, 90 ⁇ m ⁇ 90 ⁇ m.
  • the scan rate is, for example, 0.2 Hz.
  • the chip speed is, for example, 8 ⁇ m / second.
  • the amplitude set point is 15.5 nm, for example.
  • the Z range is, for example, 1 ⁇ m. The above parameters are adjusted according to the sample.
  • the X-ray diffractometer for example, SmartLab manufactured by Rigaku Corporation can be used.
  • the sample analysis region is, for example, not less than 0.3 mm ⁇ and not more than 0.8 mm ⁇ .
  • the tube used is, for example, Cu.
  • the output is, for example, 45 kV and 80 mA.
  • the side SW of the trench TR is measured by AFM.
  • the channel direction CD which is the direction in which carriers flow on the channel surface, is along the direction in which the above-described periodic repetition is performed.
  • Si atoms are atoms of A layer (solid line in the figure), B layer atoms (broken line in the figure) located below, C layer atoms (dotted line in the figure) located below, and B layer atoms (not shown) located below this It is provided repeatedly. That is, a periodic laminated structure such as ABCBABCBABCB... Is provided with four layers ABCB as one period.
  • the atoms in each of the four layers ABCB constituting one cycle described above are (0-11-2) It is not arranged to be completely along the plane.
  • the (0-11-2) plane is shown so as to pass through the position of atoms in the B layer.
  • the atoms in the A layer and the C layer are separated from the (0-11-2) plane. You can see that it is shifted. For this reason, even if the macroscopic plane orientation of the surface of the silicon carbide single crystal, that is, the plane orientation when ignoring the atomic level structure is limited to (0-11-2), the surface is microscopic. Can take various structures.
  • a surface S1 having a surface orientation (0-33-8) and a surface S2 connected to the surface S1 and having a surface orientation different from the surface orientation of the surface S1 are alternately provided. It is configured by being.
  • the length of each of the surface S1 and the surface S2 is twice the atomic spacing of Si atoms (or C atoms).
  • the surface obtained by averaging the surfaces S1 and S2 corresponds to the (0-11-2) surface (FIG. 7).
  • the single crystal structure when the composite surface SR is viewed from the (01-10) plane periodically includes a structure (surface S1 portion) equivalent to a cubic crystal when viewed partially.
  • a surface S1 having a surface orientation (001) in a structure equivalent to the above-described cubic crystal and a surface S2 connected to the surface S1 and having a surface orientation different from the surface orientation of the surface S1 are alternated. It is comprised by being provided in.
  • polytypes other than 4H may constitute the surface according to S2).
  • the polytype may be 6H or 15R, for example.
  • the horizontal axis indicates the angle D1 formed by the macroscopic surface orientation of the side SW having the channel surface and the (000-1) plane
  • the vertical axis indicates the mobility MB.
  • the plot group CM corresponds to the case where the side SW is finished as a special surface by thermal etching
  • the plot group MC corresponds to the case where such thermal etching is not performed.
  • the mobility MB in the plot group MC was maximized when the macroscopic surface orientation of the channel surface was (0-33-8). This is because, when thermal etching is not performed, that is, when the microscopic structure of the channel surface is not particularly controlled, the macroscopic plane orientation is set to (0-33-8). This is probably because the ratio of the formation of the visual plane orientation (0-33-8), that is, the plane orientation (0-33-8) considering the atomic level, stochastically increased.
  • the mobility MB in the plot group CM was maximized when the macroscopic surface orientation of the channel surface was (0-11-2) (arrow EX).
  • the reason for this is that, as shown in FIGS. 8 and 9, a large number of surfaces S1 having a plane orientation (0-33-8) are regularly and densely arranged via the surface S2, so that the surface of the channel surface is minute. This is probably because the proportion of the visual plane orientation (0-33-8) has increased.
  • the mobility MB has an orientation dependency on the composite surface SR.
  • the horizontal axis indicates the angle D2 between the channel direction and the ⁇ 0-11-2> direction
  • the vertical axis indicates the mobility MB (arbitrary unit) of the channel surface.
  • a broken line is added to make the graph easier to see.
  • the angle D2 of the channel direction CD (FIG. 5) is preferably 0 ° or more and 60 ° or less, and more preferably approximately 0 °. all right.
  • the side SW may further include a surface S3 (third surface) in addition to the composite surface SR. More specifically, the side portion SW may include a composite surface SQ configured by periodically repeating the surface S3 and the composite surface SR.
  • the off angle of the side SW with respect to the ⁇ 000-1 ⁇ plane deviates from 62 ° which is the ideal off angle of the composite surface SR. This deviation is preferably small and preferably within a range of ⁇ 10 °.
  • a surface included in such an angle range for example, there is a surface whose macroscopic plane orientation is a ⁇ 0-33-8 ⁇ plane.
  • the off angle of the side SW with respect to the (000-1) plane deviates from 62 ° which is the ideal off angle of the composite surface SR.
  • This deviation is preferably small and preferably within a range of ⁇ 10 °.
  • a surface included in such an angle range for example, there is a surface whose macroscopic plane orientation is a (0-33-8) plane.
  • Such a periodic structure can be observed by, for example, TEM or AFM.
  • Specific examples of the measurement apparatus, the sample analysis region, and the measurement conditions are as described above.
  • a step of preparing a silicon carbide substrate (S10: FIG. 13) is performed.
  • the step of preparing the silicon carbide substrate includes the step of epitaxially growing the first drift region (S11: FIG. 14), the step of epitaxially growing the second drift region (S12: FIG. 14), The injection step (S13: FIG. 14) is mainly included.
  • the step of epitaxially growing the first drift region (S11: FIG. 14) is performed using, for example, a gas containing carbon and silicon.
  • First drift region 12 a is formed on silicon carbide single crystal substrate 11.
  • nitrogen (N) or phosphorus (P) is introduced as an impurity.
  • a step of epitaxially growing the second drift region (S12: FIG. 14) is performed.
  • the step of epitaxially growing the second drift region is performed using, for example, a gas containing carbon and silicon.
  • the first drift region is obtained by a CVD method using, for example, a mixed gas of silane (SiH 4 ) and propane (C 3 H 8 ) as a source gas and using, for example, hydrogen gas (H 2 ) as a carrier gas.
  • a second drift region 12b is formed on 12a (see FIG. 15).
  • nitrogen (N) or phosphorus (P) is introduced as an impurity.
  • the first drift region 12 a and the second drift region are formed such that the concentration of the n-type impurity included in the second drift region 12 b is higher than the concentration of the n-type impurity included in the first drift region 12 a.
  • Region 12b is formed by epitaxial growth.
  • the value obtained by dividing the number of silicon atoms in the step of forming the second drift region by the number of carbon atoms is greater than the value obtained by dividing the number of silicon atoms in the step of forming the first drift region by the number of carbon atoms.
  • the Si / C ratio of the atmospheric gas in the step of forming the second drift region is larger than the Si / C ratio of the atmospheric gas in the step of forming the first drift region.
  • the concentration C1 of the n-type impurity included in the first drift region 12a and the concentration C2 of the n-type impurity included in the second drift region 12b are Is almost constant.
  • the value obtained by dividing the concentration C2 of the n-type impurity in the second drift region 12b by the concentration C1 of the n-type impurity in the first drift region 12a is 5 or more and 10 or less.
  • an ion implantation step (S13: FIG. 14) is performed. Specifically, a p-type impurity such as aluminum is ion-implanted into second drift region 12b and first drift region 12a. As shown in FIG. 17, the concentration of the p-type impurity at the position a1 at the boundary between the first drift region 12a and the second drift region 12b is lower than the concentration C1 of the n-type impurity in the first drift region 12a, and The maximum value C8 (maximum value C8) of the concentration of the p-type impurity in the second drift region 12b (region between the position 0 and the position a1) is higher than the concentration C2 of the n-type impurity of the second drift region 12b.
  • the p-type impurity is introduced into both the first drift region 12a and the second drift region 12b.
  • body region 13 in contact with second drift region 12b is formed (see FIG. 18).
  • Body region 13 constitutes first main surface 10a.
  • the profile indicated by the alternate long and short dash line is the same as the profile shown in FIG.
  • FIG. 19 is a diagram schematically showing a profile of
  • the position 0 is the position of the portion of the first major surface 10a configured by the body region 13.
  • Position e is the position of boundary surface 11 a between silicon carbide single crystal substrate 11 and silicon carbide epitaxial layer 24.
  • a region from position 0 to position a2 is a body region 13 having a p-type.
  • a region from the position a2 to the position a1 is a second drift region 12b having an n-type.
  • the region from the position a1 to the position e is a first drift region 12a having an n type.
  • Profile showing the relationship between the position x and the absolute value y of the difference between the concentration of the n-type impurity and the concentration of the p-type impurity in the region constituted by the body region 13, the second drift region 12b, and the first drift region 12a Has a first minimum value C3 and a second minimum value C4 located closer to the first main surface 10a than the first minimum value C3.
  • a position a1 at which the absolute value y of the difference between the n-type impurity concentration and the p-type impurity concentration indicates the first minimum value C3 is a boundary between the first drift region 12a and the second drift region 12b.
  • a position a2 at which the absolute value y of the difference between the n-type impurity concentration and the p-type impurity concentration indicates the second minimum value C4 is a boundary between the body region 13 and the second drift region 12b.
  • the maximum value C5 of the absolute value y of the difference between the n-type impurity concentration and the p-type impurity concentration in the body region 13 is the absolute difference between the n-type impurity concentration and the p-type impurity concentration in the second drift region 12b. It becomes larger than the maximum value C2 of the value y.
  • the maximum value C2 of the absolute value y of the difference between the n-type impurity concentration and the p-type impurity concentration in the second drift region 12b is the difference between the n-type impurity concentration and the p-type impurity concentration in the first drift region 12a. Is greater than the maximum value C1 of the absolute value y.
  • the value C9 of the absolute value y of the difference between the n-type impurity concentration and the p-type impurity concentration at position 0 is the maximum of the absolute value y of the difference between the n-type impurity concentration and the p-type impurity concentration in the body region 13. It may be smaller than the value C5.
  • an n-type impurity such as phosphorus is ion-implanted into the body region 13.
  • the p-type impurity concentration P10 in the body region 13 is higher than the maximum p-type impurity concentration C5 in the body region 13 by p.
  • Type impurities are introduced.
  • the source region 14 in contact with the body region 13 is formed (see FIG. 21).
  • the source region 14 constitutes the first major surface 10a.
  • the profile indicated by the alternate long and short dash line is the same as the profile shown in FIG.
  • a contact region 18 is formed by ion implantation of a p-type impurity such as aluminum into the source region 14.
  • the contact region 18 is formed so as to penetrate the source region 14 and contact the body region 13.
  • activation annealing is performed to activate the impurities ion-implanted into silicon carbide substrate 10.
  • the temperature of activation annealing is preferably 1500 ° C. or higher and 1900 ° C. or lower, for example, about 1700 ° C.
  • the activation annealing time is, for example, about 30 minutes.
  • the atmosphere of activation annealing is preferably an inert gas atmosphere, for example, an Ar atmosphere.
  • a silicon carbide substrate having the first main surface 10a and the second main surface 10b opposite to the first main surface 10a is prepared.
  • Silicon carbide substrate 10 is provided on drift region 12 having n type, body region 13 having p type different from n type, and provided on body region 13 so as to be separated from drift region 12.
  • the first main surface 10a and the source region 14 having n-type.
  • the drift region 12 has a first drift region 12 a and a second drift region 12 b sandwiched between the first drift region 12 a and the body region 13.
  • the maximum value of the n-type impurity concentration in the second drift region 12b is larger than the maximum value of the n-type impurity concentration in the first drift region 12a.
  • the first main surface 10a may be on the carbon surface side, and the second main surface 10b may be on the silicon surface side.
  • the first major surface 10a is, for example, a surface that is off 2 ° or more and 8 ° or less from the (000-1) plane or the (000-1) plane.
  • a step of forming a trench is performed.
  • mask layer 3 having an opening at a position where trench TR (FIG. 1) is formed is formed on first main surface 10 a configured from source region 14 and contact region 18.
  • the source region 14, the body region 13, and a part of the drift region 12 are removed by etching.
  • etching method for example, reactive ion etching, particularly inductively coupled plasma reactive ion etching can be used.
  • inductively coupled plasma reactive ion etching using SF 6 or a mixed gas of SF 6 and O 2 as a reaction gas can be used.
  • thermal etching is performed in the recess.
  • the thermal etching can be performed, for example, by heating in an atmosphere containing a reactive gas having at least one kind of halogen atom in a state where the mask layer 3 is formed on the first main surface 10a.
  • the at least one or more types of halogen atom includes at least one of a chlorine (Cl) atom and a fluorine (F) atom.
  • the atmosphere includes, for example, Cl 2 , BCL 3 , SF 6 , or CF 4 .
  • thermal etching is performed using a mixed gas of chlorine gas and oxygen gas as a reaction gas and a heat treatment temperature of, for example, 700 ° C. or more and 1000 ° C. or less.
  • the reaction gas may contain a carrier gas in addition to the above-described chlorine gas and oxygen gas.
  • a carrier gas for example, nitrogen (N 2 ) gas, argon gas, helium gas or the like can be used.
  • trench TR is formed in first main surface 10a of silicon carbide substrate 10 by the thermal etching.
  • Trench TR includes a side SW passing through second drift region 12b, body region 13, and source region 14 and reaching first drift region 12a, and bottom BT provided continuously with side SW. It is prescribed by.
  • the angle ⁇ formed by the bottom portion BT and the side portion SW is, for example, not less than 110 ° and not more than 130 °.
  • the side portion SW includes the special surface described above.
  • the step of forming a gate insulating film (S30: FIG. 23) includes, for example, a step of forming a silicon layer (S31: FIG. 23), a step of forming a mask layer (S32: FIG. 23), and a part of the silicon layer.
  • the process mainly includes a step of removing (S33: FIG. 23), a step of removing the mask layer (S34: FIG. 23), and a step of thermally oxidizing the silicon carbide substrate (S35: FIG. 23).
  • the silicon layer 4 in contact with the side SW and bottom BT of the trench TR and in contact with the first main surface 10a is formed (see FIG. 24). Silicon layer 4 does not completely fill trench TR. The thickness of the silicon layer 4 is smaller than the depth H1 (see FIG. 1) of the trench TR. Silicon layer 4 is in contact with source region 14 and contact region 18 on first main surface 10a. Silicon layer 4 is in contact with source region 14, body region 13, second drift region 12b, and first drift region 12a in side SW. Silicon layer 4 is in contact with first drift region 12a at bottom BT.
  • silicon layer 4 has a first silicon layer portion 4a facing side portion SW and a second silicon layer portion 4b facing bottom portion BT.
  • Mask layer 5 is formed on second silicon layer portion 4b of silicon layer 4 facing bottom portion BT.
  • Mask layer 5 is, for example, a resist.
  • Mask layer 5 may cover a part of first silicon layer portion 4a. At least a part of the first silicon layer portion 4 a is exposed from the mask layer 5.
  • a step of removing a part of the silicon layer (S33: FIG. 23) is performed.
  • silicon layer 4 is removed by etching, for example. Thereby, a part of silicon layer 4 is removed.
  • the first silicon layer portion 4a is removed from the side portion SW while the second silicon layer portion 4b is left on the bottom portion BT.
  • the portion of silicon layer 4 on first main surface 10a is also removed.
  • a step of removing the mask layer (S34: FIG. 23) is performed.
  • the mask layer 5 is removed from the second silicon layer portion 4b by any method such as dry etching or wet etching.
  • Second silicon layer portion 4b is left in contact with first drift region 12a at bottom portion BT (see FIG. 26).
  • a step of thermally oxidizing the silicon carbide substrate (S35: FIG. 23) is performed.
  • silicon carbide substrate 10 is thermally oxidized with second silicon layer portion 4b remaining on bottom portion BT.
  • the second silicon layer portion 4b becomes silicon dioxide by thermal oxidation.
  • silicon carbide substrate 10 is heated at a temperature of, for example, 1300 ° C. or higher and 1400 ° C. or lower in an atmosphere containing oxygen.
  • the gate insulating film 15 is formed in contact with the first drift region 12a at the bottom portion BT and in contact with the second drift region 12b, the body region 13 and the source region 14 at the side portion SW.
  • Gate insulating film 15 has third main surface 15b1 in contact with bottom portion BT, and fourth main surface 15b2 opposite to third main surface 15b1.
  • the gate insulating film 15 includes a first portion 15a in contact with the body region 13 in the side portion SW and a second portion 15b in contact with the first drift region 12a in the bottom portion BT.
  • the thickness of the second portion 15b in the direction perpendicular to the bottom portion BT may be larger than the thickness of the first portion 15a in the direction perpendicular to the side portion SW.
  • a value obtained by dividing the thickness of the second portion 15b by the thickness of the first portion 15a is, for example, 1.5 or more and 8 or less.
  • the position in the direction perpendicular to second main surface 10b is x, and n-type Assuming that the absolute value of the difference between the impurity concentration and the p-type impurity concentration is y, the profile indicating the relationship between x and y is the first main surface than the first minimum value C3 and the first minimum value C3. And a second minimum value C4 located on the 10a side.
  • the position a1 indicating the first minimum value C3 is between the position b1 of the third main surface 15b1 and the position b2 of the fourth main surface 15b2.
  • the position a2 indicating the second minimum value C4 is between the position 0 of the first main surface 10a and the position b2 of the fourth main surface 15b2.
  • NO annealing After thermally oxidizing silicon carbide substrate 10, heat treatment (NO annealing) may be performed on silicon carbide substrate 10 in a nitrogen monoxide (NO) gas atmosphere.
  • NO annealing silicon carbide substrate 10 is held for about 1 hour under conditions of, for example, 1100 ° C. or higher and 1300 ° C. or lower.
  • nitrogen atoms are introduced into the interface region between the gate insulating film 15 and the body region 13.
  • the formation of interface states in the interface region is suppressed, so that channel mobility can be improved.
  • a gas other than NO gas for example, N 2 O
  • N 2 O may be used as the atmospheric gas.
  • Ar annealing using argon (Ar) as an atmospheric gas may be further performed after the NO annealing.
  • the heating temperature for Ar annealing is, for example, equal to or higher than the heating temperature for NO annealing.
  • the Ar annealing time is, for example, about 1 hour.
  • gate electrode 27 in contact with gate insulating film 15 is formed inside trench TR.
  • Gate electrode 27 is arranged inside trench TR and is formed on gate insulating film 15 so as to face each of side portion SW and bottom portion BT of trench TR.
  • the gate electrode 27 is formed, for example, by LPCVD (Low Pressure Chemical Vapor Deposition) method.
  • the interlayer insulating film 22 is formed so as to cover the gate electrode 27 and to be in contact with the gate insulating film 15.
  • the interlayer insulating film 22 is formed by a deposition method, more preferably a chemical vapor deposition method.
  • Interlayer insulating film 22 is made of, for example, a material containing silicon dioxide.
  • part of interlayer insulating film 22 and gate insulating film 15 is etched so that an opening is formed on source region 14 and contact region 18. As a result, the contact region 18 and the source region 14 are exposed from the gate insulating film 15 (see FIG. 28).
  • a step of forming a source electrode is performed.
  • source electrode 16 in contact with source region 14 and contact region 18 is formed on first main surface 10a.
  • the source electrode 16 is formed by, for example, a sputtering method.
  • the source electrode 16 is made of a material containing, for example, Ti, Al, and Si.
  • alloying annealing is performed. Specifically, the source electrode 16 in contact with the source region 14 and the contact region 18 is held for about 5 minutes at a temperature of 900 ° C. or higher and 1100 ° C. or lower, for example. Thereby, at least a part of source electrode 16 reacts with silicon included in silicon carbide substrate 10 to be silicided. As a result, the source electrode 16 that is in ohmic contact with the source region 14 is formed.
  • the source electrode 16 is in ohmic contact with the contact region 18.
  • MOSFET 1 (FIG. 1) according to the present embodiment is completed.
  • silicon layer 4 may be formed on first main surface 10a so as to completely fill trench TR.
  • the thickness of the portion of the silicon layer 4 on the bottom BT is larger than the depth H1 (see FIG. 1) of the trench TR.
  • Silicon layer 4 is in contact with source region 14 and contact region 18 on first main surface 10a.
  • Silicon layer 4 is in contact with source region 14, body region 13, second drift region 12b, and first drift region 12a in side SW.
  • Silicon layer 4 is in contact with first drift region 12a at bottom BT.
  • silicon layer 4 is removed by performing, for example, dry etching on the entire surface of the first main surface 10a. Specifically, part of silicon layer 4 is removed from side SW and first main surface 10a while part 4b of silicon layer 4 remains on bottom BT (see FIG. 30).
  • silicon carbide substrate 10 is thermally oxidized with a portion 4b of silicon layer 4 left on bottom portion BT. Thereby, the gate insulating film 15 may be formed in contact with the first drift region 12a at the bottom BT and in contact with the second drift region 12b, the body region 13, and the source region 14 at the side SW (FIG. 27). reference).
  • the silicon carbide semiconductor device is described as being a MOSFET, but the silicon carbide semiconductor device is not limited to a MOSFET.
  • the silicon carbide semiconductor device may be, for example, an IGBT (Insulated Gate Bipolar Transistor).
  • the n-type is the first conductivity type and the p-type is the second conductivity type.
  • the p-type may be the first conductivity type and the n-type may be the second conductivity type. .
  • the position a2 indicating the second minimum value C4 in the direction perpendicular to the second main surface 10b is the position 0 of the first main surface 10a and the position of the fourth main surface 15b2. It is between b2.
  • the position a2 indicating the second minimum value C4 corresponds to the position a2 at the bottom of the body region 13. That is, the position a2 at the bottom of the body region 13 is between the position 0 of the first main surface 10a and the position b2 of the fourth main surface 15b2. Therefore, it is possible to suppress an increase in the thickness of the gate insulating film 15 on the channel region in the body region 13.
  • MOSFET 1 the on-resistance of MOSFET 1 can be reduced as compared with the case where the position a2 at the bottom of the body region 13 is between the position b1 of the third main surface 15b1 and the position b2 of the fourth main surface 15b2. .
  • the position a1 indicating the first minimum value C3 in the direction perpendicular to the second main surface 10b is the position b1 of the third main surface 15b1 and the position of the fourth main surface 15b2. It is between position b2. Therefore, the concentration of the n-type impurity in the portion of the first drift region 12a in the vicinity of the bottom portion BT of the trench TR can be reduced. As a result, since the extension width of the depletion layer from the electric field relaxation region 17 can be increased, it is possible to suppress the concentration of the electric field at the corners of the trench TR.
  • the gate insulating film 15 includes the first portion 15a in contact with the second impurity region 13 in the side portion SW and the second portion 15b in contact with the first drift region 12a in the bottom portion BT. Contains.
  • the thickness t b of the second portion 15b in a direction perpendicular to the bottom portion BT is greater than the thickness t s of the first portion 15a in a direction perpendicular to the sides SW.
  • the thickness t s of the first portion 15a is small, because the channel is easily reversed, it is possible to reduce the on resistance of the MOSFET 1.
  • the thickness t b of the second portion 15b is large, it is possible to gate insulating film 15 on the bottom portion BT is prevented from being destroyed.
  • the values of the thickness t b divided by the thickness t s of the first portion 15a of the second portion 15b is 1.5 or more and 8 or less. With divided by the value of 1.5 or more in the thickness t s of the thickness t b of the second portion 15b first portion 15a, it is possible to relax the electric field applied to the gate insulating film of the trench bottom. By value than 8 obtained by dividing the thickness t b of the second portion 15b the thickness t s of the first portion 15a, to be kept low on-resistance without interfering the second portion 15b to the body region 13 it can.
  • distance H1 between first main surface 10a and bottom portion BT in the direction perpendicular to second main surface 10b is not less than 1 ⁇ m and not more than 1.5 ⁇ m.
  • thickness H2 of body region 13 in the direction perpendicular to second main surface 10b may be not less than 0.4 ⁇ m and not more than 0.8 ⁇ m.
  • the gate threshold voltage can be increased and the drain breakdown voltage can be maintained high.
  • the thickness H2 can be kept low without causing the second portion 15b to interfere with the body region 13.
  • the value obtained by dividing the maximum value of the n-type impurity concentration of second drift region 12b by the maximum value of the concentration of n-type impurity of first drift region 12a is 5 or more and 10 or less. It may be.
  • the effective concentration of the two conductivity type impurities can be maintained, and the electric field applied to the gate insulating film in contact with the bottom corner portion of the trench can be reduced. As a result, the drain breakdown voltage can be maintained.
  • the value obtained by dividing the maximum value of the p-type impurity concentration in body region 13 by the maximum value of the n-type impurity concentration in second drift region 12b is 10 or more and 100 or less. May be.
  • the value obtained by dividing the maximum value of the concentration of the p-type impurity in the body region 13 by the maximum value of the concentration of the n-type impurity in the second drift region 12b is set to 100 or less, thereby existing from the body region 13 to the first drift region.
  • side SW may include a plane S1 having a plane orientation ⁇ 0-33-8 ⁇ . Thereby, the channel resistance in the side part SW can be reduced.
  • body region 13 is subjected to ion implantation of p-type impurities into second drift region 12b having an n-type impurity concentration higher than that of first drift region 12a. It is formed by. Therefore, channeling of p-type impurities can be suppressed. As a result, since the thickness H2 of the body region 13 can be reduced, the channel length can be shortened. Therefore, the on-resistance of MOSFET 1 can be reduced.
  • the position a1 indicating the first minimum value C3 in the direction perpendicular to the second main surface 10b is the same as the position b1 of the third main surface 15b1 and the fourth main surface 15b1. Between the position b2 of the surface 15b2. Therefore, the concentration of the n-type impurity in the portion of the first drift region 12a in the vicinity of the bottom portion BT of the trench TR can be reduced. As a result, since the extension width of the depletion layer from the electric field relaxation region 17 can be increased, it is possible to suppress the concentration of the electric field at the corners of the trench TR.
  • the step of forming gate insulating film 15 includes the step of forming silicon layer 4 in contact with side SW and bottom BT, and the step of forming silicon layer 4 facing bottom BT. After the step of forming mask layer 5 on the portion, the step of removing part of silicon layer 4 using mask layer 5, the step of removing mask layer 5, the step of removing mask layer 5, the bottom BT And a step of thermally oxidizing silicon carbide substrate 10 with a portion of silicon layer 4 remaining thereon.
  • the gate insulating film 15 in which the thickness of the portion of the gate insulating film 15 on the bottom portion BT is larger than the thickness of the gate insulating film 15 on the side portion SW can be manufactured by a simple method.
  • the step of forming trench TR is performed by thermal etching.
  • the side part SW of trench TR can be effectively made into a special surface.
  • the channel resistance in the side SW can be reduced.
  • the step of forming first drift region 12a and the step of forming second drift region 12b may be performed using a gas containing carbon and silicon.
  • the value obtained by dividing the number of silicon atoms in the step of forming the second drift region 12b by the number of carbon atoms is greater than the value obtained by dividing the number of silicon atoms in the step of forming the first drift region 12a by the number of carbon atoms. It can be large. Carbon is easier to incorporate nitrogen than silicon. Therefore, in the step of forming the second drift region 12b, nitrogen as an n-type impurity can be easily taken up. As a result, the n-type impurity concentration in the second drift region 12b can be effectively made higher than the n-type impurity concentration in the first drift region 12a.
  • first main surface 10a is on the carbon surface side
  • second main surface 10b is on the silicon surface side.
  • the carbon surface is easier to capture nitrogen than the silicon surface. Therefore, the concentration of the n-type impurity in the second drift region 12b formed on the first main surface 10a side can be effectively made higher than the concentration of the n-type impurity in the first drift region 12a.
  • the side portion SW of the trench TR can be a special surface. As a result, the channel resistance in the side SW can be reduced.
  • 1 silicon carbide semiconductor device MOSFET
  • 3 5 mask layer
  • 10 silicon carbide substrate 10a first main surface, 10b first 2 main surface, 11 silicon carbide single crystal substrate, 11a boundary surface, 12 first impurity region (drift region), 12a first drift region, 12b second drift region, 13 second impurity region (body region), 14 third Impurity region (source region), 15 gate insulating film, 15a first part, 15b1, third main surface, 15b2, fourth main surface, 15b second part, 16 source electrode, 17 electric field relaxation region, 18 contact region, 19 source wiring , 20 drain electrode, 22 interlayer insulating film, 24 silicon carbide epitaxial layer, 27 gate electrode, BT bottom, CD channel Direction, H1 distance (depth), H2, tb, ts thickness, S1, S2, S3 surface, SQ, SR complex surface, SW side, TR trench.
  • H1 distance (depth) H2, tb, ts thickness, S

Abstract

According to the present invention, a gate-insulating film contacts a first drift region at a bottom section and contacts a second drift region, a second impurities region, and a third impurities region at side sections. A profile that indicates the relationship, within a region that is constituted by the second impurities region, the second drift region, and the first drift region, between positions in a direction that is orthogonal to a second main surface and the absolute value of the difference between the concentration of a first conductive impurity and the concentration of a second conductive impurity has a first minimum value and a second minimum value. The position that indicates the first minimum value is between the position of a third main surface and the position of a fourth main surface. The position that indicates the second minimum value is between the position of a first main surface and the position of the fourth main surface.

Description

炭化珪素半導体装置およびその製造方法Silicon carbide semiconductor device and manufacturing method thereof
 本発明は、炭化珪素半導体装置およびその製造方法に関する。本出願は、2015年6月18日に出願した日本特許出願である特願2015-123052に基づく優先権を主張し、当該日本特許出願に記載された全ての記載内容を援用するものである。 The present invention relates to a silicon carbide semiconductor device and a method for manufacturing the same. This application claims priority based on Japanese Patent Application No. 2015-123052, which was filed on June 18, 2015, and uses all the contents described in the Japanese Patent Application.
 近年、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)などの半導体装置の高耐圧化、低損失化、高温環境下での使用などを可能とするため、半導体装置を構成する材料として炭化珪素の採用が進められつつある。たとえば、国際公開2012/017798号(特許文献1)は、耐圧保持層の表面にトレンチが形成されたトレンチ型MOSFETの製造方法を開示している。 In recent years, silicon carbide has been increasingly adopted as a material for semiconductor devices in order to enable the use of high-voltage, low-loss and high-temperature environments in semiconductor devices such as MOSFETs (Metal Oxide Semiconductor Field Effect Transistors). It is being For example, International Publication No. 2012/017798 (Patent Document 1) discloses a method for manufacturing a trench MOSFET in which a trench is formed on the surface of a breakdown voltage holding layer.
国際公開2012/017798号International Publication No. 2012/017798
 本発明の一態様に係る炭化珪素半導体装置は、炭化珪素基板と、ゲート絶縁膜とを備えている。炭化珪素基板は、第1主面と、第1主面と反対側の第2主面とを有する。炭化珪素基板は、第1導電型を有する第1不純物領域と、第1不純物領域上に設けられ、第1導電型と異なる第2導電型を有する第2不純物領域と、第1不純物領域から隔てられるように第2不純物領域上に設けられ、第1主面を構成し、かつ第1導電型を有する第3不純物領域とを含む。第1不純物領域は、第1ドリフト領域と、第1ドリフト領域と第2不純物領域とに挟まれた第2ドリフト領域とを有する。第2ドリフト領域における第1導電型不純物の濃度の最大値は、第1ドリフト領域における第1導電型不純物の濃度の最大値よりも大きい。第1主面には、第2ドリフト領域と、第2不純物領域と、第3不純物領域とを貫通し、かつ第1ドリフト領域に至る側部と、側部と連続して設けられた底部とにより規定されたトレンチが形成されている。ゲート絶縁膜は、底部において第1ドリフト領域と接し、かつ側部において第2ドリフト領域と、第2不純物領域と、第3不純物領域とに接する。ゲート絶縁膜は、底部に接する第3主面と、第3主面と反対側の第4主面とを有する。第2不純物領域と第2ドリフト領域と第1ドリフト領域とにより構成される領域において、第2主面に対して垂直な方向の位置をxとし、第1導電型不純物の濃度と第2導電型不純物の濃度との差の絶対値をyとしたとき、xとyとの関係を示すプロファイルは、第1極小値と、第1極小値よりも第1主面側に位置する第2極小値とを有する。第2主面に対して垂直な方向において、第1極小値を示す位置は、第3主面の位置と第4主面の位置との間にある。第2主面に対して垂直な方向において、第2極小値を示す位置は、第1主面の位置と第4主面の位置との間にある。 A silicon carbide semiconductor device according to one embodiment of the present invention includes a silicon carbide substrate and a gate insulating film. The silicon carbide substrate has a first main surface and a second main surface opposite to the first main surface. The silicon carbide substrate includes a first impurity region having a first conductivity type, a second impurity region provided on the first impurity region and having a second conductivity type different from the first conductivity type, and separated from the first impurity region. And a third impurity region which is provided on the second impurity region and forms the first main surface and has the first conductivity type. The first impurity region has a first drift region and a second drift region sandwiched between the first drift region and the second impurity region. The maximum value of the first conductivity type impurity concentration in the second drift region is larger than the maximum value of the first conductivity type impurity concentration in the first drift region. The first main surface includes a side part that penetrates the second drift region, the second impurity region, and the third impurity region and reaches the first drift region, and a bottom portion that is provided continuously with the side portion. A trench defined by is formed. The gate insulating film is in contact with the first drift region at the bottom, and is in contact with the second drift region, the second impurity region, and the third impurity region at the side. The gate insulating film has a third main surface in contact with the bottom and a fourth main surface opposite to the third main surface. In the region constituted by the second impurity region, the second drift region, and the first drift region, the position in the direction perpendicular to the second main surface is x, and the concentration of the first conductivity type impurity and the second conductivity type Assuming that the absolute value of the difference from the impurity concentration is y, the profile showing the relationship between x and y is the first minimum value and the second minimum value located closer to the first main surface than the first minimum value. And have. In the direction perpendicular to the second main surface, the position showing the first minimum value is between the position of the third main surface and the position of the fourth main surface. In the direction perpendicular to the second main surface, the position showing the second minimum value is between the position of the first main surface and the position of the fourth main surface.
 本発明の一態様に係る炭化珪素半導体装置の製造方法は以下の工程を備えている。第1主面と、第1主面と反対側の第2主面とを有する炭化珪素基板が準備される。炭化珪素基板は、第1導電型を有する第1不純物領域と、第1不純物領域上に設けられ、第1導電型と異なる第2導電型を有する第2不純物領域と、第1不純物領域から隔てられるように第2不純物領域上に設けられ、第1主面を構成し、かつ第1導電型を有する第3不純物領域とを含む。第1不純物領域は、第1ドリフト領域と、第1ドリフト領域と第2不純物領域とに挟まれた第2ドリフト領域とを有する。第2ドリフト領域における第1導電型不純物の濃度の最大値は、第1ドリフト領域における第1導電型不純物の濃度の最大値よりも大きい。第1ドリフト領域および第2ドリフト領域は、エピタキシャル成長により形成される。第2不純物領域は、第2ドリフト領域に対してイオン注入が行われることにより形成される。第1主面に、第2ドリフト領域と、第2不純物領域と、第3不純物領域とを貫通し、かつ第1ドリフト領域に至る側部と、側部と連続して設けられた底部とにより規定されるトレンチが形成される。底部において第1ドリフト領域と接し、かつ側部において第2ドリフト領域と、第2不純物領域と、第3不純物領域とに接するゲート絶縁膜が形成される。ゲート絶縁膜は、底部に接する第3主面と、第3主面と反対側の第4主面とを有する。第2不純物領域と第2ドリフト領域と第1ドリフト領域とにより構成される領域において、第2主面に対して垂直な方向の位置をxとし、第1導電型不純物の濃度と第2導電型不純物の濃度との差の絶対値をyとしたとき、xとyとの関係を示すプロファイルは、第1極小値と、第1極小値よりも第1主面側に位置する第2極小値とを有する。第2主面に対して垂直な方向において、第1極小値を示す位置は、第3主面の位置と第4主面の位置との間にある。第2主面に対して垂直な方向において、第2極小値を示す位置は、第1主面の位置と第4主面の位置との間にある。 The method for manufacturing a silicon carbide semiconductor device according to one aspect of the present invention includes the following steps. A silicon carbide substrate having a first main surface and a second main surface opposite to the first main surface is prepared. The silicon carbide substrate includes a first impurity region having a first conductivity type, a second impurity region provided on the first impurity region and having a second conductivity type different from the first conductivity type, and separated from the first impurity region. And a third impurity region which is provided on the second impurity region and forms the first main surface and has the first conductivity type. The first impurity region has a first drift region and a second drift region sandwiched between the first drift region and the second impurity region. The maximum value of the first conductivity type impurity concentration in the second drift region is larger than the maximum value of the first conductivity type impurity concentration in the first drift region. The first drift region and the second drift region are formed by epitaxial growth. The second impurity region is formed by performing ion implantation on the second drift region. The first main surface includes a side part penetrating the second drift region, the second impurity region, and the third impurity region and reaching the first drift region, and a bottom portion provided continuously with the side portion. A defined trench is formed. A gate insulating film is formed in contact with the first drift region at the bottom and in contact with the second drift region, the second impurity region, and the third impurity region at the side. The gate insulating film has a third main surface in contact with the bottom and a fourth main surface opposite to the third main surface. In the region constituted by the second impurity region, the second drift region, and the first drift region, the position in the direction perpendicular to the second main surface is x, and the concentration of the first conductivity type impurity and the second conductivity type Assuming that the absolute value of the difference from the impurity concentration is y, the profile showing the relationship between x and y is the first minimum value and the second minimum value located closer to the first main surface than the first minimum value. And have. In the direction perpendicular to the second main surface, the position showing the first minimum value is between the position of the third main surface and the position of the fourth main surface. In the direction perpendicular to the second main surface, the position showing the second minimum value is between the position of the first main surface and the position of the fourth main surface.
実施の形態に係る炭化珪素半導体装置の構成を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structure of the silicon carbide semiconductor device which concerns on embodiment. 実施の形態に係る炭化珪素半導体装置が含む炭化珪素基板の構成を示す斜視模式図である。1 is a schematic perspective view showing a configuration of a silicon carbide substrate included in a silicon carbide semiconductor device according to an embodiment. 図1の矢印Lに沿った方向における|N-N|のプロファイルを概略的に示す図である。FIG. 2 is a diagram schematically showing a profile of | N d −N a | in a direction along an arrow L in FIG. 1. 実施の形態に係る炭化珪素半導体装置の変形例の構成を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structure of the modification of the silicon carbide semiconductor device which concerns on embodiment. 炭化珪素半導体装置が有する炭化珪素層の表面の微細構造を概略的に示す部分断面図である。It is a fragmentary sectional view showing roughly the fine structure of the surface of a silicon carbide layer which a silicon carbide semiconductor device has. ポリタイプ4Hの六方晶における(000-1)面の結晶構造を示す図である。FIG. 3 is a diagram showing a crystal structure of a (000-1) plane in polytype 4H hexagonal crystal. 図6の線VII-VIIに沿う(11-20)面の結晶構造を示す図である。FIG. 7 is a diagram showing a crystal structure of a (11-20) plane along line VII-VII in FIG. 図5の複合面の表面近傍における結晶構造を(11-20)面内において示す図である。FIG. 6 is a view showing a crystal structure in the vicinity of the surface of the composite surface in FIG. 5 in the (11-20) plane. 図5の複合面を(01-10)面から見た図である。FIG. 6 is a view of the composite surface of FIG. 5 as viewed from the (01-10) plane. 巨視的に見たチャネル面および(000-1)面の間の角度と、チャネル移動度との関係の一例を、熱エッチングが行われた場合と行われなかった場合との各々について示すグラフである。FIG. 5 is a graph showing an example of the relationship between the channel surface mobility and the angle between the channel surface and the (000-1) surface viewed macroscopically, when thermal etching is performed and when it is not performed. is there. チャネル方向および<0-11-2>方向の間の角度と、チャネル移動度との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the angle between a channel direction and the <0-11-2> direction, and channel mobility. 図5の変形例を示す図である。It is a figure which shows the modification of FIG. 実施の形態に係る炭化珪素半導体装置の製造方法を概略的に示すフロー図である。It is a flowchart which shows schematically the manufacturing method of the silicon carbide semiconductor device which concerns on embodiment. 炭化珪素基板を形成する工程が含む製造工程を概略的に示すフロー図である。It is a flowchart which shows schematically the manufacturing process which the process of forming a silicon carbide substrate includes. 実施の形態に係る炭化珪素半導体装置の製造方法の第1工程を示す断面模式図である。It is a cross-sectional schematic diagram which shows the 1st process of the manufacturing method of the silicon carbide semiconductor device which concerns on embodiment. 図15の矢印Xに沿った方向におけるNのプロファイルを概略的に示す図である。The profile of the N d in the direction along the arrow X of FIG. 15 is a diagram schematically showing. ボディ領域を形成する工程におけるp型不純物イオンの注入プロファイルを概略的に示す図である。It is a figure which shows schematically the implantation profile of the p-type impurity ion in the process of forming a body region. 実施の形態に係る炭化珪素半導体装置の製造方法の第2工程を示す断面模式図である。It is a cross-sectional schematic diagram which shows the 2nd process of the manufacturing method of the silicon carbide semiconductor device which concerns on embodiment. 図18の矢印Xに沿った方向における|N-N|のプロファイルを概略的に示す図である。FIG. 19 is a diagram schematically showing a profile of | N d −N a | in a direction along an arrow X in FIG. 18. ソース領域を形成する工程におけるn型不純物イオンの注入プロファイルを概略的に示す図である。It is a figure which shows roughly the implantation profile of the n-type impurity ion in the process of forming a source region. 実施の形態に係る炭化珪素半導体装置の製造方法の第3工程を示す断面模式図である。It is a cross-sectional schematic diagram which shows the 3rd process of the manufacturing method of the silicon carbide semiconductor device which concerns on embodiment. 実施の形態に係る炭化珪素半導体装置の製造方法の第4工程を示す断面模式図である。It is a cross-sectional schematic diagram which shows the 4th process of the manufacturing method of the silicon carbide semiconductor device which concerns on embodiment. ゲート絶縁膜を形成する工程が含む製造工程を概略的に示すフロー図である。It is a flowchart which shows schematically the manufacturing process which the process of forming a gate insulating film includes. 実施の形態に係る炭化珪素半導体装置の製造方法の第5工程を示す断面模式図である。It is a cross-sectional schematic diagram which shows the 5th process of the manufacturing method of the silicon carbide semiconductor device which concerns on embodiment. 実施の形態に係る炭化珪素半導体装置の製造方法の第6工程を示す断面模式図である。It is a cross-sectional schematic diagram which shows the 6th process of the manufacturing method of the silicon carbide semiconductor device which concerns on embodiment. 実施の形態に係る炭化珪素半導体装置の製造方法の第7工程を示す断面模式図である。It is a cross-sectional schematic diagram which shows the 7th process of the manufacturing method of the silicon carbide semiconductor device which concerns on embodiment. 実施の形態に係る炭化珪素半導体装置の製造方法の第8工程を示す断面模式図である。It is a cross-sectional schematic diagram which shows the 8th process of the manufacturing method of the silicon carbide semiconductor device which concerns on embodiment. 実施の形態に係る炭化珪素半導体装置の製造方法の第9工程を示す断面模式図である。It is a cross-sectional schematic diagram which shows the 9th process of the manufacturing method of the silicon carbide semiconductor device which concerns on embodiment. ゲート絶縁膜を形成する工程の変形例の第1工程を示す断面模式図である。It is a cross-sectional schematic diagram which shows the 1st process of the modification of the process of forming a gate insulating film. ゲート絶縁膜を形成する工程の変形例の第2工程を示す断面模式図である。It is a cross-sectional schematic diagram which shows the 2nd process of the modification of the process of forming a gate insulating film.
 [本開示が解決しようとする課題]
 上記トレンチ型MOSFETの製造方法においては、耐圧保持層の表面にアルミニウムなどのp型不純物をイオン注入することにより、p型ボディ領域が形成される。p型ボディ領域は、耐圧保持層の深さ方向において、p型不純物の濃度のピークを有する不純物濃度プロファイルを有する。p型不純物の濃度のピークを示す位置より深い位置においては、p型不純物の濃度は単調に減少する。つまり、p型不純物は、チャネリング効果により、p型不純物の濃度のピークを示す位置から1μm以上2μm以下程度の深い領域まで到達する。そのため、実効的なチャネル長が長くなり、MOSFETのオン抵抗が高くなる。
[Problems to be solved by the present disclosure]
In the trench MOSFET manufacturing method, a p-type body region is formed by ion-implanting a p-type impurity such as aluminum into the surface of the breakdown voltage holding layer. The p-type body region has an impurity concentration profile having a p-type impurity concentration peak in the depth direction of the breakdown voltage holding layer. At a position deeper than the position showing the peak of the p-type impurity concentration, the concentration of the p-type impurity monotonously decreases. That is, the p-type impurity reaches a deep region of about 1 μm or more and about 2 μm or less from the position showing the peak of the concentration of the p-type impurity due to channeling effect. This increases the effective channel length and increases the on-resistance of the MOSFET.
 またp型不純物のチャネリング効果により、耐圧保持層の深さ方向おけるボディ領域の底部の位置が、トレンチの底部の位置に近くなる。特に、トレンチの底部上に厚いゲート絶縁膜が形成されていると、ボディ領域の底部と接するゲート絶縁膜の厚みが大きくなる。つまり、ボディ領域内におけるチャネル領域上のゲート絶縁膜の厚みが大きくなる。そのため、チャネルが反転しづらくなり、MOSFETのオン抵抗が高くなる。 Also, due to the channeling effect of the p-type impurity, the position of the bottom of the body region in the depth direction of the breakdown voltage holding layer is close to the position of the bottom of the trench. In particular, when a thick gate insulating film is formed on the bottom of the trench, the thickness of the gate insulating film in contact with the bottom of the body region increases. That is, the thickness of the gate insulating film on the channel region in the body region is increased. Therefore, the channel is not easily inverted, and the on-resistance of the MOSFET is increased.
 耐圧保持層の深い領域までp型不純物が到達することを抑制するために、耐圧保持層のn型不純物の濃度を高め、p型不純物の濃度を補償することが考えられる。しかしながら、耐圧保持層のn型不純物の濃度を高めると、トレンチの角部近傍におけるn型不純物の濃度も高くなる。そのため、電界緩和領域からの空乏層の伸長幅が短くなり、トレンチの角部における電界集中を十分に緩和することができなくなる。つまり、オン抵抗の低減とトレンチの角部における電界緩和とは、トレードオフの関係にある。 In order to prevent the p-type impurity from reaching the deep region of the breakdown voltage holding layer, it is conceivable to increase the concentration of the n-type impurity in the breakdown voltage holding layer and compensate the concentration of the p-type impurity. However, when the concentration of the n-type impurity in the breakdown voltage holding layer is increased, the concentration of the n-type impurity near the corner of the trench is also increased. Therefore, the extension width of the depletion layer from the electric field relaxation region is shortened, and the electric field concentration at the corners of the trench cannot be sufficiently relaxed. That is, there is a trade-off relationship between reduction of on-resistance and electric field relaxation at the corners of the trench.
 本発明の一態様の目的は、オン抵抗を低減し、かつトレンチの角部における電界集中を緩和可能な炭化珪素半導体装置およびその製造方法を提供することである。 An object of one embodiment of the present invention is to provide a silicon carbide semiconductor device capable of reducing on-resistance and alleviating electric field concentration at a corner of a trench, and a method for manufacturing the same.
 [本開示の効果]
 本発明の一態様によれば、オン抵抗を低減し、かつトレンチの角部における電界集中を緩和可能な炭化珪素半導体装置およびその製造方法を提供することができる。
[Effects of the present disclosure]
According to one embodiment of the present invention, it is possible to provide a silicon carbide semiconductor device capable of reducing on-resistance and alleviating electric field concentration at a corner of a trench, and a method for manufacturing the same.
 [本願発明の実施形態の説明]
 (1)本発明の一態様に係る炭化珪素半導体装置1は、炭化珪素基板10と、ゲート絶縁膜15とを備えている。炭化珪素基板10は、第1主面10aと、第1主面10aと反対側の第2主面10bとを有する。炭化珪素基板10は、第1導電型を有する第1不純物領域12と、第1不純物領域12上に設けられ、第1導電型と異なる第2導電型を有する第2不純物領域13と、第1不純物領域12から隔てられるように第2不純物領域13上に設けられ、第1主面10aを構成し、かつ第1導電型を有する第3不純物領域14とを含む。第1不純物領域12は、第1ドリフト領域12aと、第1ドリフト領域12aと第2不純物領域13とに挟まれた第2ドリフト領域12bとを有する。第2ドリフト領域12bにおける第1導電型不純物の濃度の最大値は、第1ドリフト領域12aにおける第1導電型不純物の濃度の最大値よりも大きい。第1主面10aには、第2ドリフト領域12bと、第2不純物領域13と、第3不純物領域14とを貫通し、かつ第1ドリフト領域12aに至る側部SWと、側部SWと連続して設けられた底部BTとにより規定されたトレンチTRが形成されている。ゲート絶縁膜15は、底部BTにおいて第1ドリフト領域12aと接し、かつ側部SWにおいて第2ドリフト領域12bと、第2不純物領域13と、第3不純物領域14とに接する。ゲート絶縁膜15は、底部BTに接する第3主面15b1と、第3主面15b1と反対側の第4主面15b2とを有する。第2不純物領域13と第2ドリフト領域12bと第1ドリフト領域12aとにより構成される領域において、第2主面10bに対して垂直な方向の位置をxとし、第1導電型不純物の濃度と第2導電型不純物の濃度との差の絶対値をyとしたとき、xとyとの関係を示すプロファイルは、第1極小値C3と、第1極小値C3よりも第1主面10a側に位置する第2極小値C4とを有する。第2主面10bに対して垂直な方向において、第1極小値C3を示す位置a1は、第3主面15b1の位置b1と第4主面15b2の位置b2との間にある。第2主面10bに対して垂直な方向において、第2極小値C4を示す位置a2は、第1主面10aの位置0と第4主面15b2の位置b2との間にある。
[Description of Embodiment of Present Invention]
(1) Silicon carbide semiconductor device 1 according to one aspect of the present invention includes a silicon carbide substrate 10 and a gate insulating film 15. Silicon carbide substrate 10 has a first main surface 10a and a second main surface 10b opposite to the first main surface 10a. Silicon carbide substrate 10 includes a first impurity region 12 having a first conductivity type, a second impurity region 13 provided on first impurity region 12 and having a second conductivity type different from the first conductivity type, And a third impurity region 14 provided on second impurity region 13 so as to be separated from impurity region 12 and constituting first main surface 10a and having the first conductivity type. The first impurity region 12 includes a first drift region 12 a and a second drift region 12 b sandwiched between the first drift region 12 a and the second impurity region 13. The maximum concentration of the first conductivity type impurity in the second drift region 12b is larger than the maximum value of the concentration of the first conductivity type impurity in the first drift region 12a. In the first main surface 10a, a side SW that penetrates the second drift region 12b, the second impurity region 13, and the third impurity region 14 and reaches the first drift region 12a is continuous with the side SW. A trench TR defined by the bottom portion BT provided in this manner is formed. Gate insulating film 15 is in contact with first drift region 12a at bottom BT, and is in contact with second drift region 12b, second impurity region 13, and third impurity region 14 at side SW. Gate insulating film 15 has third main surface 15b1 in contact with bottom portion BT, and fourth main surface 15b2 opposite to third main surface 15b1. In the region constituted by the second impurity region 13, the second drift region 12b, and the first drift region 12a, the position in the direction perpendicular to the second main surface 10b is x, and the concentration of the first conductivity type impurity is Assuming that the absolute value of the difference from the concentration of the second conductivity type impurity is y, the profile indicating the relationship between x and y is the first minimum value C3 and the first main surface 10a side of the first minimum value C3. And a second minimum value C4. In a direction perpendicular to the second main surface 10b, the position a1 indicating the first minimum value C3 is between the position b1 of the third main surface 15b1 and the position b2 of the fourth main surface 15b2. In a direction perpendicular to the second main surface 10b, the position a2 indicating the second minimum value C4 is between the position 0 of the first main surface 10a and the position b2 of the fourth main surface 15b2.
 上記(1)に係る炭化珪素半導体装置1によれば、第2主面10bに対して垂直な方向において、第2極小値C4を示す位置a2は、第1主面10aの位置0と第4主面15b2の位置b2との間にある。第2極小値C4を示す位置a2は、ボディ領域13の底部の位置a2に対応する。つまり、ボディ領域13の底部の位置a2が、第1主面10aの位置0と第4主面15b2の位置b2との間にある。そのため、ボディ領域13内におけるチャネル領域上のゲート絶縁膜15の厚みが大きくなることを抑制することができる。従って、ボディ領域13の底部の位置a2が、第3主面15b1の位置b1と第4主面15b2の位置b2との間にある場合と比較して、炭化珪素半導体装置1のオン抵抗を低減することができる。 According to silicon carbide semiconductor device 1 according to (1) above, position a2 indicating second minimum value C4 in the direction perpendicular to second main surface 10b is equal to positions 0 and 4 of first main surface 10a. It is between the position b2 of the main surface 15b2. The position a2 indicating the second minimum value C4 corresponds to the position a2 at the bottom of the body region 13. That is, the position a2 at the bottom of the body region 13 is between the position 0 of the first main surface 10a and the position b2 of the fourth main surface 15b2. Therefore, it is possible to suppress an increase in the thickness of the gate insulating film 15 on the channel region in the body region 13. Therefore, the on-resistance of silicon carbide semiconductor device 1 is reduced as compared with the case where position a2 at the bottom of body region 13 is between position b1 of third main surface 15b1 and position b2 of fourth main surface 15b2. can do.
 また上記(1)に係る炭化珪素半導体装置1によれば、第2主面10bに対して垂直な方向において、第1極小値C3を示す位置a1は、第3主面15b1の位置b1と第4主面15b2の位置b2との間にある。そのため、トレンチTRの底部BT近傍における第1ドリフト領域12aの部分における第1導電型不純物の濃度を低減することができる。結果として、電界緩和領域17からの空乏層の伸長幅を大きくすることができるので、トレンチTRの角部に電界が集中することを抑制することができる。 According to silicon carbide semiconductor device 1 according to (1) above, position a1 indicating first minimum value C3 in the direction perpendicular to second main surface 10b is equal to position b1 of third main surface 15b1. Between the four principal surfaces 15b2 and the position b2. Therefore, it is possible to reduce the concentration of the first conductivity type impurity in the portion of the first drift region 12a in the vicinity of the bottom portion BT of the trench TR. As a result, since the extension width of the depletion layer from the electric field relaxation region 17 can be increased, it is possible to suppress the concentration of the electric field at the corners of the trench TR.
 (2)上記(1)に係る炭化珪素半導体装置1において、ゲート絶縁膜15は、側部SWにおいて第2不純物領域13に接する第1部分15aと、底部BTにおいて第1ドリフト領域12aに接する第2部分15bとを含んでいてもよい。底部BTに対して垂直な方向における第2部分15bの厚みtは、側部SWに対して垂直な方向における第1部分15aの厚みtよりも大きくてもよい。第1部分15aの厚みtが小さいことにより、チャネルが反転しやすくなるため、炭化珪素半導体装置のオン抵抗を低減することができる。第2部分15bの厚みtが大きいことにより、底部BT上のゲート絶縁膜15が破壊されることを抑制することができる。 (2) In silicon carbide semiconductor device 1 according to (1) above, gate insulating film 15 includes first portion 15a in contact with second impurity region 13 at side SW and first drift region 12a at bottom BT. 2 part 15b may be included. The thickness t b of the second portion 15b in a direction perpendicular to the bottom portion BT may be greater than the thickness t s of the first portion 15a in a direction perpendicular to the sides SW. When the thickness t s of the first portion 15a is small, because the channel is easily reversed, it is possible to reduce the on-resistance of the silicon carbide semiconductor device. When the thickness t b of the second portion 15b is large, it is possible to gate insulating film 15 on the bottom portion BT is prevented from being destroyed.
 (3)上記(2)に係る炭化珪素半導体装置1において、第2部分15bの厚みtを第1部分15aの厚みtで除した値は、1.5以上8以下であってもよい。第2部分15bの厚みtを第1部分15aの厚みtで除した値を1.5以上とすることにより、トレンチ底のゲート絶縁膜にかかる電界を緩和することができる。第2部分15bの厚みtを第1部分15aの厚みtで除した値を8以下とすることにより、第2不純物領域13に第2部分15bを干渉させることなくオン抵抗を低く維持することができる。 (3) In the silicon carbide semiconductor device 1 according to the above (2), the value of the thickness t b divided by the thickness t s of the first portion 15a of the second portion 15b may be of 1.5 to 8 . With divided by the value of 1.5 or more in the thickness t s of the thickness t b of the second portion 15b first portion 15a, it is possible to relax the electric field applied to the gate insulating film of the trench bottom. By value than 8 obtained by dividing the thickness t b of the second portion 15b the thickness t s of the first portion 15a, maintaining a low on-resistance without interfering the second portion 15b to the second impurity region 13 be able to.
 (4)上記(1)~(3)のいずれかに係る炭化珪素半導体装置1において、第2主面10bに対して垂直な方向における第1主面10aと底部BTとの間の距離H1は、1μm以上1.5μm以下であってもよい。距離H1を1μm以上とすることにより、トレンチ底が第2不純物領域13の外部に位置することでオン抵抗の増加を抑制することができる。距離H1を1.5μm以下とすることにより、トレンチ底角部のゲート絶縁膜にかかる電界を緩和することができる。 (4) In silicon carbide semiconductor device 1 according to any of (1) to (3) above, the distance H1 between first main surface 10a and bottom portion BT in the direction perpendicular to second main surface 10b is It may be 1 μm or more and 1.5 μm or less. By setting the distance H <b> 1 to 1 μm or more, the trench bottom is located outside the second impurity region 13, thereby suppressing an increase in on-resistance. By setting the distance H1 to 1.5 μm or less, the electric field applied to the gate insulating film at the bottom corner of the trench can be relaxed.
 (5)上記(1)~(4)のいずれかに係る炭化珪素半導体装置1において、第2主面10bに対して垂直な方向における第2不純物領域13の厚みH2は、0.4μm以上0.8μm以下であってもよい。厚みH2を0.4μm以上とすることにより、ゲート閾値電圧を高くし、ドレイン耐圧を高く維持することができる。厚みH2を0.8μm以下とすることにより、第2不純物領域13に第2部分15bを干渉させることなくオン抵抗を低く維持することができる。 (5) In silicon carbide semiconductor device 1 according to any of (1) to (4) above, thickness H2 of second impurity region 13 in the direction perpendicular to second main surface 10b is 0.4 μm or more and 0 It may be 8 μm or less. By setting the thickness H2 to 0.4 μm or more, the gate threshold voltage can be increased and the drain breakdown voltage can be maintained high. By setting the thickness H2 to 0.8 μm or less, the on-resistance can be kept low without causing the second impurity region 13 to interfere with the second portion 15b.
 (6)上記(1)~(5)のいずれかに係る炭化珪素半導体装置1において、第2ドリフト領域12bの第1導電型不純物の濃度の最大値を第1ドリフト領域12aの第1導電型不純物の濃度の最大値で除した値は、5以上10以下であってもよい。第2ドリフト領域12bの第1導電型不純物の濃度の最大値を第1ドリフト領域12aの第1導電型不純物の濃度の最大値で除した値を5以上とすることにより、第2不純物領域13から第1ドリフト領域にかけて存在する第2導電型不純物を補償することで、有効チャネル長を制御し、オン抵抗を低くすることができる。第2ドリフト領域12bの第1導電型不純物の濃度の最大値を第1ドリフト領域12aの第1導電型不純物の濃度の最大値で除した値を10以下とすることにより、第2不純物領域13の第2導電型不純物の有効濃度を維持することができ、かつトレンチ底角部に接するゲート絶縁膜にかかる電界を低くすることができる。その結果ドレイン耐圧を維持することができる。 (6) In silicon carbide semiconductor device 1 according to any one of (1) to (5) above, the maximum concentration of the first conductivity type impurity in second drift region 12b is set to the first conductivity type in first drift region 12a. The value divided by the maximum impurity concentration may be 5 or more and 10 or less. By dividing the maximum value of the first conductivity type impurity concentration of the second drift region 12b by the maximum value of the first conductivity type impurity concentration of the first drift region 12a to 5 or more, the second impurity region 13 By compensating for the second conductivity type impurity existing from the first to the first drift region, the effective channel length can be controlled and the on-resistance can be lowered. By dividing the maximum value of the first conductivity type impurity concentration of the second drift region 12b by the maximum value of the first conductivity type impurity concentration of the first drift region 12a to 10 or less, the second impurity region 13 The effective concentration of the second conductivity type impurity can be maintained, and the electric field applied to the gate insulating film in contact with the bottom corner of the trench can be reduced. As a result, the drain breakdown voltage can be maintained.
 (7)上記(1)~(6)のいずれかに係る炭化珪素半導体装置1において、第2不純物領域13の第2導電型不純物の濃度の最大値を第2ドリフト領域12bの第1導電型不純物の濃度の最大値で除した値は、10以上100以下であってもよい。第2不純物領域13の第2導電型不純物の濃度の最大値を第2ドリフト領域12bの第1導電型不純物の濃度の最大値で除した値を10以上とすることにより、ゲート閾値電圧を高くし、ドレイン耐圧を高く維持することができる。第2不純物領域13の第2導電型不純物の濃度の最大値を第2ドリフト領域12bの第1導電型不純物の濃度の最大値で除した値を100以下とすることにより、第2不純物領域13から第1ドリフト領域にかけて存在する第2導電型不純物を補償することで、有効チャネル長を制御し、オン抵抗を低くすることができる。 (7) In silicon carbide semiconductor device 1 according to any of (1) to (6) above, the maximum concentration of the second conductivity type impurity in second impurity region 13 is set to the first conductivity type in second drift region 12b. The value divided by the maximum impurity concentration may be 10 or more and 100 or less. The gate threshold voltage is increased by setting the value obtained by dividing the maximum concentration of the second conductivity type impurity in the second impurity region 13 by the maximum concentration of the first conductivity type impurity in the second drift region 12b to 10 or more. In addition, the drain breakdown voltage can be kept high. By dividing the maximum value of the second conductivity type impurity concentration of the second impurity region 13 by the maximum value of the first conductivity type impurity concentration of the second drift region 12b to 100 or less, the second impurity region 13 By compensating for the second conductivity type impurity existing from the first to the first drift region, the effective channel length can be controlled and the on-resistance can be lowered.
 (8)上記(1)~(7)のいずれかに係る炭化珪素半導体装置1において、側部SWは、面方位{0-33-8}を有する面S1を含んでいてもよい。これにより、側部SWにおけるチャネル抵抗を低減することができる。 (8) In silicon carbide semiconductor device 1 according to any of (1) to (7) above, side SW may include a surface S1 having a plane orientation {0-33-8}. Thereby, the channel resistance in the side part SW can be reduced.
 (9)本発明の一態様に係る炭化珪素半導体装置1の製造方法は以下の工程を備えている。第1主面10aと、第1主面10aと反対側の第2主面10bとを有する炭化珪素基板が準備される。炭化珪素基板10は、第1導電型を有する第1不純物領域12と、第1不純物領域12上に設けられ、第1導電型と異なる第2導電型を有する第2不純物領域13と、第1不純物領域12から隔てられるように第2不純物領域13上に設けられ、第1主面10aを構成し、かつ第1導電型を有する第3不純物領域14とを含む。第1不純物領域12は、第1ドリフト領域12aと、第1ドリフト領域12aと第2不純物領域13とに挟まれた第2ドリフト領域12bとを有する。第2ドリフト領域12bにおける第1導電型不純物の濃度の最大値は、第1ドリフト領域12aにおける第1導電型不純物の濃度の最大値よりも大きい。第1ドリフト領域12aおよび第2ドリフト領域12bは、エピタキシャル成長により形成される。第2不純物領域13は、第2ドリフト領域12bに対してイオン注入が行われることにより形成される。第1主面10aに、第2ドリフト領域12bと、第2不純物領域13と、第3不純物領域14とを貫通し、かつ第1ドリフト領域12aに至る側部SWと、側部SWと連続して設けられた底部BTとにより規定されるトレンチTRが形成される。底部BTにおいて第1ドリフト領域12aと接し、かつ側部SWにおいて第2ドリフト領域12bと、第2不純物領域13と、第3不純物領域14とに接するゲート絶縁膜15が形成される。ゲート絶縁膜15は、底部BTに接する第3主面15b1と、第3主面15b1と反対側の第4主面15b2とを有する。第2不純物領域13と第2ドリフト領域12bと第1ドリフト領域12aとにより構成される領域において、第2主面10bに対して垂直な方向の位置をxとし、第1導電型不純物の濃度と第2導電型不純物の濃度との差の絶対値をyとしたとき、xとyとの関係を示すプロファイルは、第1極小値C3と、第1極小値C3よりも第1主面10a側に位置する第2極小値C4とを有する。第2主面10bに対して垂直な方向において、第1極小値C3を示す位置a1は、第3主面15b1の位置b1と第4主面15b2の位置b2との間にある。第2主面10bに対して垂直な方向において、第2極小値C4を示す位置a2は、第1主面10aの位置0と第4主面15b2の位置b2との間にある。 (9) The method for manufacturing silicon carbide semiconductor device 1 according to one aspect of the present invention includes the following steps. A silicon carbide substrate having a first main surface 10a and a second main surface 10b opposite to the first main surface 10a is prepared. Silicon carbide substrate 10 includes a first impurity region 12 having a first conductivity type, a second impurity region 13 provided on first impurity region 12 and having a second conductivity type different from the first conductivity type, And a third impurity region 14 provided on second impurity region 13 so as to be separated from impurity region 12 and constituting first main surface 10a and having the first conductivity type. The first impurity region 12 includes a first drift region 12 a and a second drift region 12 b sandwiched between the first drift region 12 a and the second impurity region 13. The maximum concentration of the first conductivity type impurity in the second drift region 12b is larger than the maximum value of the concentration of the first conductivity type impurity in the first drift region 12a. The first drift region 12a and the second drift region 12b are formed by epitaxial growth. The second impurity region 13 is formed by performing ion implantation on the second drift region 12b. A side SW that penetrates the second drift region 12b, the second impurity region 13, and the third impurity region 14 and reaches the first drift region 12a in the first main surface 10a is continuous with the side SW. A trench TR defined by the bottom portion BT provided is formed. Gate insulating film 15 is formed in contact with first drift region 12a at bottom BT and in contact with second drift region 12b, second impurity region 13, and third impurity region 14 at side SW. Gate insulating film 15 has third main surface 15b1 in contact with bottom portion BT, and fourth main surface 15b2 opposite to third main surface 15b1. In the region constituted by the second impurity region 13, the second drift region 12b, and the first drift region 12a, the position in the direction perpendicular to the second main surface 10b is x, and the concentration of the first conductivity type impurity is Assuming that the absolute value of the difference from the concentration of the second conductivity type impurity is y, the profile indicating the relationship between x and y is the first minimum value C3 and the first main surface 10a side of the first minimum value C3. And a second minimum value C4. In a direction perpendicular to the second main surface 10b, the position a1 indicating the first minimum value C3 is between the position b1 of the third main surface 15b1 and the position b2 of the fourth main surface 15b2. In a direction perpendicular to the second main surface 10b, the position a2 indicating the second minimum value C4 is between the position 0 of the first main surface 10a and the position b2 of the fourth main surface 15b2.
 上記(9)に係る炭化珪素半導体装置1の製造方法によれば、第2不純物領域13は、第1ドリフト領域12aよりも高い第1導電型不純物濃度を有する第2ドリフト領域12bに対して第2導電型不純物のイオン注入が行われることにより形成される。それゆえ、第2導電型不純物のチャネリングを抑制することができる。結果として、第2不純物領域13の厚みH2を小さくすることができるので、チャネル長を短くすることができる。それゆえ、炭化珪素半導体装置1のオン抵抗を低減することができる。 According to the method for manufacturing silicon carbide semiconductor device 1 according to (9) above, second impurity region 13 is second to second drift region 12b having a first conductivity type impurity concentration higher than first drift region 12a. It is formed by ion implantation of two conductivity type impurities. Therefore, channeling of the second conductivity type impurity can be suppressed. As a result, since the thickness H2 of the second impurity region 13 can be reduced, the channel length can be shortened. Therefore, the on-resistance of silicon carbide semiconductor device 1 can be reduced.
 また上記(9)に係る炭化珪素半導体装置1の製造方法によれば、第2主面10bに対して垂直な方向において、第1極小値C3を示す位置a1は、第3主面15b1の位置b1と第4主面15b2の位置b2との間にある。そのため、トレンチTRの底部BT近傍における第1ドリフト領域12aの部分における第1導電型不純物の濃度を低減することができる。結果として、電界緩和領域からの空乏層の伸長幅を大きくすることができるので、トレンチTRの角部に電界が集中することを抑制することができる。 Further, according to the method for manufacturing silicon carbide semiconductor device 1 according to (9) above, the position a1 indicating the first minimum value C3 in the direction perpendicular to the second main surface 10b is the position of the third main surface 15b1. Between b1 and the position b2 of the fourth major surface 15b2. Therefore, it is possible to reduce the concentration of the first conductivity type impurity in the portion of the first drift region 12a in the vicinity of the bottom portion BT of the trench TR. As a result, since the extension width of the depletion layer from the electric field relaxation region can be increased, it is possible to suppress the concentration of the electric field at the corners of the trench TR.
 (10)上記(9)に係る炭化珪素半導体装置1の製造方法において、ゲート絶縁膜15を形成する工程は、側部SWおよび底部BTに接する珪素層4を形成する工程と、底部BTに対面する珪素層4の部分上にマスク層5を形成する工程と、マスク層5を用いて珪素層4の一部を除去する工程と、マスク層5を除去する工程と、マスク層5を除去する工程後、底部BT上に珪素層4の一部が残された状態で、炭化珪素基板10を熱酸化する工程とを含んでいてもよい。これにより、底部BT上のゲート絶縁膜15の部分の厚みが、側部SW上のゲート絶縁膜15の厚みよりも大きいゲート絶縁膜15を、簡易な方法で製造することができる。 (10) In the method for manufacturing silicon carbide semiconductor device 1 according to (9), the step of forming gate insulating film 15 includes the steps of forming silicon layer 4 in contact with side SW and bottom BT, and facing bottom BT. Forming a mask layer 5 on a portion of the silicon layer 4 to be removed, removing a part of the silicon layer 4 using the mask layer 5, removing the mask layer 5, and removing the mask layer 5. After the step, a step of thermally oxidizing silicon carbide substrate 10 in a state where a part of silicon layer 4 is left on bottom portion BT may be included. Thereby, the gate insulating film 15 in which the thickness of the portion of the gate insulating film 15 on the bottom portion BT is larger than the thickness of the gate insulating film 15 on the side portion SW can be manufactured by a simple method.
 (11)上記(9)または(10)に係る炭化珪素半導体装置1の製造方法において、トレンチTRを形成する工程は、熱エッチングにより行われてもよい。これにより、効果的にトレンチTRの側部SWを特殊面にすることができる。結果として、側部SWにおけるチャネル抵抗を低減することができる。 (11) In the method for manufacturing silicon carbide semiconductor device 1 according to (9) or (10) above, the step of forming trench TR may be performed by thermal etching. Thereby, the side part SW of trench TR can be effectively made into a special surface. As a result, the channel resistance in the side SW can be reduced.
 (12)上記(9)~(11)のいずれかに係る炭化珪素半導体装置1の製造方法において、第1ドリフト領域12aを形成する工程および第2ドリフト領域12bを形成する工程は、炭素および珪素を含むガスを用いて行われてもよい。第2ドリフト領域12bを形成する工程における珪素の原子数を炭素の原子数で除した値は、第1ドリフト領域12aを形成する工程における珪素の原子数を炭素の原子数で除した値よりも大きくてもよい。炭素は、珪素よりも窒素を取り込みやすい。そのため、第2ドリフト領域12bを形成する工程において、n型不純物としての窒素を取り込みやすくなる。結果として、効果的に、第2ドリフト領域12bにおけるn型不純物の濃度を第1ドリフト領域12aにおけるn型不純物の濃度よりも高くすることができる。 (12) In the method for manufacturing silicon carbide semiconductor device 1 according to any one of (9) to (11), the step of forming first drift region 12a and the step of forming second drift region 12b include carbon and silicon. It may be performed using a gas containing. The value obtained by dividing the number of silicon atoms in the step of forming the second drift region 12b by the number of carbon atoms is greater than the value obtained by dividing the number of silicon atoms in the step of forming the first drift region 12a by the number of carbon atoms. It can be large. Carbon is easier to incorporate nitrogen than silicon. Therefore, in the step of forming the second drift region 12b, nitrogen as an n-type impurity can be easily taken up. As a result, the n-type impurity concentration in the second drift region 12b can be effectively made higher than the n-type impurity concentration in the first drift region 12a.
 (13)上記(9)~(12)のいずれかに係る炭化珪素半導体装置1の製造方法において、第1主面10aは、炭素面側であり、第2主面10bは、珪素面側であってもよい。炭素面は、珪素面よりも窒素を取り込みやすい。そのため、効果的に、第1主面10a側に形成される第2ドリフト領域12bのn型不純物の濃度を第1ドリフト領域12aにおけるn型不純物の濃度よりも高くすることができる。またトレンチTRの側部SWを特殊面とすることができる。結果として、側部SWにおけるチャネル抵抗を低減することができる。 (13) In the method for manufacturing silicon carbide semiconductor device 1 according to any one of (9) to (12), first main surface 10a is on the carbon surface side, and second main surface 10b is on the silicon surface side. There may be. The carbon surface is easier to capture nitrogen than the silicon surface. Therefore, the concentration of the n-type impurity in the second drift region 12b formed on the first main surface 10a side can be effectively made higher than the concentration of the n-type impurity in the first drift region 12a. Further, the side portion SW of the trench TR can be a special surface. As a result, the channel resistance in the side SW can be reduced.
 [本願発明の実施形態の詳細]
 以下、本発明の実施の形態について図に基づいて説明する。なお、以下の図面において、同一または相当する部分には同一の参照番号を付し、その説明は繰り返さない。また、本明細書中の結晶学的記載においては、個別方位を[]、集合方位を<>、個別面を()、集合面を{}でそれぞれ示している。また結晶学上の指数が負であることは、通常、”-”(バー)を数字の上に付すことによって表現されるが、本明細書中では数字の前に負の符号を付している。
[Details of the embodiment of the present invention]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and the description thereof will not be repeated. In the crystallographic description in this specification, the individual orientation is indicated by [], the collective orientation is indicated by <>, the individual plane is indicated by (), and the collective plane is indicated by {}. In addition, a negative crystallographic index is usually expressed by adding “-” (bar) above a number. In this specification, a negative sign is added before the number. Yes.
 まず、本発明の実施の形態に係る炭化珪素半導体装置としてのMOSFETの構成について説明する。 First, the configuration of a MOSFET as a silicon carbide semiconductor device according to an embodiment of the present invention will be described.
 図1に示されるように、本実施の形態に係るMOSFET1は、炭化珪素基板10と、ゲート絶縁膜15と、ゲート電極27と、層間絶縁膜22と、ソース電極16と、ソース配線19と、ドレイン電極20とを主に有している。炭化珪素基板10は、炭化珪素単結晶基板11と、炭化珪素単結晶基板11上に設けられた炭化珪素エピタキシャル層24を含む。炭化珪素基板10は、第1主面10aと、第1主面10aと反対側の第2主面10bとを有する。炭化珪素エピタキシャル層24は第1主面10aを構成し、炭化珪素単結晶基板11は第2主面10bを構成する。 As shown in FIG. 1, MOSFET 1 according to the present embodiment includes a silicon carbide substrate 10, a gate insulating film 15, a gate electrode 27, an interlayer insulating film 22, a source electrode 16, a source wiring 19, The drain electrode 20 is mainly included. Silicon carbide substrate 10 includes a silicon carbide single crystal substrate 11 and a silicon carbide epitaxial layer 24 provided on silicon carbide single crystal substrate 11. Silicon carbide substrate 10 has a first main surface 10a and a second main surface 10b opposite to the first main surface 10a. Silicon carbide epitaxial layer 24 constitutes first main surface 10a, and silicon carbide single crystal substrate 11 constitutes second main surface 10b.
 第1主面10aは、たとえば{000-1}面または{000-1}面から2°以上8°以下オフした面である。好ましくは、第1主面10aは、炭素面側であり、第2主面10bが珪素面側である。第1主面10aは、たとえば(000-1)面または(000-1)面から2°以上8°以下オフした面である。炭化珪素単結晶基板11は、たとえばポリタイプ4Hの六方晶炭化珪素である。炭化珪素単結晶基板11は、たとえば窒素などのn型不純物を含みn型(第1導電型)の導電型を有する。炭化珪素エピタキシャル層24は、ドリフト領域12(第1不純物領域12)と、ボディ領域13(第2不純物領域13)と、ソース領域14(第3不純物領域14)と、コンタクト領域18とを主に有する。 The first main surface 10a is, for example, a surface that is off 2 ° or more and 8 ° or less from the {000-1} surface or the {000-1} surface. Preferably, the first main surface 10a is on the carbon surface side, and the second main surface 10b is on the silicon surface side. The first major surface 10a is, for example, a surface that is off 2 ° or more and 8 ° or less from the (000-1) plane or the (000-1) plane. Silicon carbide single crystal substrate 11 is, for example, polytype 4H hexagonal silicon carbide. Silicon carbide single crystal substrate 11 includes an n-type impurity such as nitrogen and has an n-type (first conductivity type) conductivity type. Silicon carbide epitaxial layer 24 mainly includes drift region 12 (first impurity region 12), body region 13 (second impurity region 13), source region 14 (third impurity region 14), and contact region 18. Have.
 ドリフト領域12は、たとえば窒素などのn型不純物を含み、n型の導電型を有する。ドリフト領域12が含むn型不純物の濃度は、炭化珪素単結晶基板11が含むn型不純物の濃度よりも低くてもよい。ドリフト領域12は、第1ドリフト領域12aと、第2ドリフト領域12bとを有する。第2ドリフト領域12bは、第1ドリフト領域12aとボディ領域13とに挟まれている。第2ドリフト領域12bは、第1ドリフト領域12aおよびボディ領域13に接している。第2ドリフト領域12bにおけるn型不純物の濃度の最大値は、第1ドリフト領域12aにおけるn型不純物の濃度の最大値よりも大きい。 The drift region 12 includes an n-type impurity such as nitrogen and has an n-type conductivity type. The concentration of n-type impurities contained in drift region 12 may be lower than the concentration of n-type impurities contained in silicon carbide single crystal substrate 11. The drift region 12 has a first drift region 12a and a second drift region 12b. The second drift region 12b is sandwiched between the first drift region 12a and the body region 13. Second drift region 12 b is in contact with first drift region 12 a and body region 13. The maximum value of the n-type impurity concentration in the second drift region 12b is larger than the maximum value of the n-type impurity concentration in the first drift region 12a.
 ボディ領域13はドリフト領域12上に設けられている。ボディ領域13は、たとえばアルミニウムなどのp型不純物を含み、p型(第2導電型)の導電型を有する。第2主面10bに対して垂直な方向におけるボディ領域13の厚みH2は、たとえば0.4μm以上0.8μm以下である。 The body region 13 is provided on the drift region 12. Body region 13 includes a p-type impurity such as aluminum and has a p-type (second conductivity type) conductivity type. A thickness H2 of body region 13 in a direction perpendicular to second main surface 10b is, for example, not less than 0.4 μm and not more than 0.8 μm.
 ソース領域14は、ボディ領域13によってドリフト領域12から隔てられるようにボディ領域13上に設けられている。ソース領域14は、たとえば窒素またはリンなどのn型不純物を含んでおり、n型の導電型を有する。ソース領域14は、炭化珪素基板10の第1主面10aを構成する。ソース領域14が含むn型不純物の濃度は、第2ドリフト領域12bが含むn型不純物の濃度よりも高くてもよい。 The source region 14 is provided on the body region 13 so as to be separated from the drift region 12 by the body region 13. Source region 14 includes an n-type impurity such as nitrogen or phosphorus and has an n-type conductivity type. Source region 14 constitutes first main surface 10a of silicon carbide substrate 10. The concentration of the n-type impurity included in the source region 14 may be higher than the concentration of the n-type impurity included in the second drift region 12b.
 コンタクト領域18は、ボディ領域13と、ソース領域14とに接している。コンタクト領域18は、たとえばアルミニウムなどのp型不純物を含んでおり、p型の導電型を有する。コンタクト領域18が含むp型不純物の濃度は、ボディ領域13が含むp型不純物の濃度よりも高くてもよい。コンタクト領域18は、ボディ領域13と第1主面10aとを繋ぐようにソース領域14を貫通して設けられている。 The contact region 18 is in contact with the body region 13 and the source region 14. Contact region 18 contains a p-type impurity such as aluminum and has p-type conductivity. The concentration of the p-type impurity included in the contact region 18 may be higher than the concentration of the p-type impurity included in the body region 13. Contact region 18 is provided through source region 14 so as to connect body region 13 and first major surface 10a.
 炭化珪素基板10の第1主面10aにはトレンチTRが形成されている。トレンチTRは、側部SWと、底部BTとにより規定されている。側部SWは、第2ドリフト領域12bとボディ領域13とソース領域14を貫通し、かつ第1ドリフト領域12aに至っている。底部BTは、側部SWと連続して設けられている。底部BTは、ドリフト領域12に位置している。好ましくは、側部SWと底部BTとがなす角度θは90°よりも大きい。第2主面10bに対して垂直な方向における第1主面10aと底部BTとの間の距離H1は、たとえば1μm以上1.5μm以下である。 A trench TR is formed in the first main surface 10 a of the silicon carbide substrate 10. Trench TR is defined by side SW and bottom BT. The side SW passes through the second drift region 12b, the body region 13, and the source region 14, and reaches the first drift region 12a. The bottom part BT is provided continuously with the side part SW. The bottom portion BT is located in the drift region 12. Preferably, the angle θ formed by the side part SW and the bottom part BT is greater than 90 °. The distance H1 between the first main surface 10a and the bottom portion BT in the direction perpendicular to the second main surface 10b is, for example, not less than 1 μm and not more than 1.5 μm.
 断面視(炭化珪素基板10の第2主面10bと平行な方向から見た視野)において、トレンチTRの幅が底部BTに向かってテーパ状に狭まるように側部SWが傾斜していてもよい。側部SWは、(000-1)面に対して52°以上72°以下傾斜していることが好ましい。なお、側部SWは第1主面10aに対して垂直に形成されていてもよい。底部BTは、第1主面10aとほぼ平行な平坦な形状を有してもよい。断面視において、トレンチTRの形状は、U字状またはV字状の形状を有してもよい。好ましくは、側部SWは、特殊面を含んでいる。特殊面の構成の詳細は後述する。 Side view SW may be inclined so that the width of trench TR narrows in a tapered shape toward bottom portion BT in a cross-sectional view (a visual field viewed from a direction parallel to second main surface 10b of silicon carbide substrate 10). . The side SW is preferably inclined at 52 ° or more and 72 ° or less with respect to the (000-1) plane. Note that the side portion SW may be formed perpendicular to the first main surface 10a. The bottom portion BT may have a flat shape substantially parallel to the first main surface 10a. In cross-sectional view, the shape of the trench TR may be U-shaped or V-shaped. Preferably, the side part SW includes a special surface. Details of the configuration of the special surface will be described later.
 図2は、図1に示すMOSFET1から炭化珪素基板10を取り出して示した図である。図2に示されるように、ソース領域14、ボディ領域13およびドリフト領域12は、トレンチTRの側部SWに露出している。ドリフト領域12は、トレンチTRの側部SWおよび底部BTの各々に露出している。底部BTと側部SWとがつながる部分はトレンチTRの角部を構成している。平面視(炭化珪素基板10の第2主面10bに対して垂直な方向から見た視野)において、トレンチTRは、ハニカム構造を有する網目を構成するように延在していてもよい。 FIG. 2 is a diagram showing silicon carbide substrate 10 taken out from MOSFET 1 shown in FIG. As shown in FIG. 2, source region 14, body region 13 and drift region 12 are exposed at side SW of trench TR. Drift region 12 is exposed at each of side SW and bottom BT of trench TR. A portion where bottom portion BT and side portion SW are connected constitutes a corner portion of trench TR. Trench TR may extend so as to form a mesh having a honeycomb structure in a plan view (a visual field viewed from a direction perpendicular to second main surface 10b of silicon carbide substrate 10).
 図2に示されるように、平面視において、ソース領域14およびコンタクト領域18により構成された炭化珪素基板10の第1主面10aは、六角形の形状を有する。好ましくは、平面視において、ボディ領域13、ソース領域14およびコンタクト領域18は、六角形の外形を有する。好ましくは、単位セルの形状は、六角形であり、より好ましくは正六角形である。単位セルの形状は、四角形などの多角形であってもよい。平面視におけるボディ領域13、ソース領域14およびコンタクト領域18の形状は、単位セルの形状と同じであることが好ましい。 As shown in FIG. 2, in plan view, first main surface 10a of silicon carbide substrate 10 constituted by source region 14 and contact region 18 has a hexagonal shape. Preferably, in plan view, body region 13, source region 14 and contact region 18 have a hexagonal outer shape. Preferably, the unit cell has a hexagonal shape, more preferably a regular hexagonal shape. The shape of the unit cell may be a polygon such as a quadrangle. The shapes of the body region 13, the source region 14, and the contact region 18 in plan view are preferably the same as the shape of the unit cell.
 図1に示されるように、ゲート絶縁膜15は、トレンチTRの底部BTおよび側部SWと、第1主面10aの一部とに接する。ゲート絶縁膜15は、たとえば二酸化珪素を含む材料により構成される。ゲート絶縁膜15は、たとえば熱酸化膜である。ゲート絶縁膜15は、底部BTにおいて第1ドリフト領域12aと接し、かつ側部SWにおいて第2ドリフト領域12bと、ボディ領域13と、ソース領域14とに接する。ゲート絶縁膜15は、底部BTに接する第3主面15b1と、第3主面15b1と反対側の第4主面15b2とを有する。 As shown in FIG. 1, the gate insulating film 15 is in contact with the bottom portion BT and the side portion SW of the trench TR and a part of the first main surface 10a. Gate insulating film 15 is made of, for example, a material containing silicon dioxide. The gate insulating film 15 is a thermal oxide film, for example. Gate insulating film 15 is in contact with first drift region 12 a at bottom BT, and is in contact with second drift region 12 b, body region 13, and source region 14 at side SW. Gate insulating film 15 has third main surface 15b1 in contact with bottom portion BT, and fourth main surface 15b2 opposite to third main surface 15b1.
 ゲート絶縁膜15は、側部SWにおいてボディ領域13に接する第1部分15aと、底部BTにおいて第1ドリフト領域12aに接する第2部分15bとを含んでいてもよい。底部BTに対して垂直な方向における第2部分15bの厚みtは、側部SWに対して垂直な方向における第1部分15aの厚みtよりも大きくてもよい。第2部分15bの厚みtを第1部分15aの厚みtで除した値は、たとえば1.5以上8以下である。 The gate insulating film 15 may include a first portion 15a in contact with the body region 13 in the side portion SW and a second portion 15b in contact with the first drift region 12a in the bottom portion BT. The thickness t b of the second portion 15b in a direction perpendicular to the bottom portion BT may be greater than the thickness t s of the first portion 15a in a direction perpendicular to the sides SW. Value the thickness t b divided by the thickness t s of the first portion 15a of the second portion 15b is, for example, 1.5 to 8.
 次に、炭化珪素エピタキシャル層中における不純物濃度のプロファイルについて説明する。 Next, the profile of the impurity concentration in the silicon carbide epitaxial layer will be described.
 図3は、図1の矢印Lに沿った方向における|N-N|のプロファイルを概略的に示す図である。ここで、Nは、n型不純物(第1導電型不純物)の濃度である。Nは、p型不純物(第2導電型不純物)の濃度である。|N-N|は、n型不純物の濃度とp型不純物の濃度との差の絶対値yである。位置xは、第2主面10bに対して垂直な方向の位置である。位置0は、ソース領域14により構成される第1主面10aの部分の位置である。位置eは、炭化珪素単結晶基板11と炭化珪素エピタキシャル層24との境界面11aの位置である。位置0から位置a3までの領域はソース領域14である。位置a3から位置a2までの領域はボディ領域13である。位置a2から位置a1までの領域は第2ドリフト領域12bである。位置a1から位置eまでの領域は第1ドリフト領域12aである。 FIG. 3 is a diagram schematically showing a profile of | N d −N a | in the direction along the arrow L in FIG. Here, Nd is the concentration of an n-type impurity (first conductivity type impurity). N a is the concentration of a p-type impurity (second conductivity type impurity). | N d −N a | is the absolute value y of the difference between the n-type impurity concentration and the p-type impurity concentration. The position x is a position in a direction perpendicular to the second major surface 10b. The position 0 is the position of the portion of the first major surface 10a configured by the source region 14. Position e is the position of boundary surface 11 a between silicon carbide single crystal substrate 11 and silicon carbide epitaxial layer 24. The region from position 0 to position a3 is the source region 14. The region from the position a3 to the position a2 is the body region 13. A region from the position a2 to the position a1 is the second drift region 12b. The region from the position a1 to the position e is the first drift region 12a.
 ボディ領域13と第2ドリフト領域12bと第1ドリフト領域12aとにより構成される領域において、位置xと、n型不純物の濃度とp型不純物の濃度との差の絶対値yとの関係を示すプロファイルは、第1極小値C3と、第1極小値C3よりも第1主面10a側に位置する第2極小値C4とを有する。第2主面10bに対して垂直な方向において、第1極小値C3を示す位置a1は、ゲート絶縁膜15の第3主面15b1の位置b1と第4主面15b2の位置b2との間にある。第2主面10bに対して垂直な方向において、第2極小値C4を示す位置a2は、第1主面10aの位置0とゲート絶縁膜15の第4主面15b2の位置b2との間にある。n型不純物の濃度とp型不純物の濃度との差の絶対値yが第1極小値C3を示す位置a2は、第1ドリフト領域12aと第2ドリフト領域12bとの境界であってもよい。 In the region constituted by the body region 13, the second drift region 12b, and the first drift region 12a, the relationship between the position x and the absolute value y of the difference between the n-type impurity concentration and the p-type impurity concentration is shown. The profile has a first minimum value C3 and a second minimum value C4 located closer to the first main surface 10a than the first minimum value C3. In a direction perpendicular to the second main surface 10b, the position a1 indicating the first minimum value C3 is between the position b1 of the third main surface 15b1 of the gate insulating film 15 and the position b2 of the fourth main surface 15b2. is there. In a direction perpendicular to the second main surface 10b, the position a2 indicating the second minimum value C4 is between the position 0 of the first main surface 10a and the position b2 of the fourth main surface 15b2 of the gate insulating film 15. is there. The position a2 at which the absolute value y of the difference between the n-type impurity concentration and the p-type impurity concentration indicates the first minimum value C3 may be the boundary between the first drift region 12a and the second drift region 12b.
 好ましくは、第2ドリフト領域12bのn型不純物の濃度の最大値を第1ドリフト領域12aのn型不純物の濃度の最大値で除した値は、5以上10以下である。第1ドリフト領域12aが含むn型不純物の濃度は、たとえば3×1015cm-3以上2×1016cm-3以下である。第2ドリフト領域12bが含むn型不純物の濃度は、たとえば2×1016cm-3以上1×1017cm-3以下である。 Preferably, a value obtained by dividing the maximum value of the n-type impurity concentration of the second drift region 12b by the maximum value of the n-type impurity concentration of the first drift region 12a is 5 or more and 10 or less. The concentration of the n-type impurity included in the first drift region 12a is, for example, 3 × 10 15 cm −3 or more and 2 × 10 16 cm −3 or less. The concentration of the n-type impurity included in second drift region 12b is, for example, not less than 2 × 10 16 cm −3 and not more than 1 × 10 17 cm −3 .
 好ましくは、ボディ領域13のp型不純物の濃度の最大値を第2ドリフト領域12bのn型不純物の濃度の最大値で除した値は、10以上100以下であってもよい。 Preferably, a value obtained by dividing the maximum value of the concentration of the p-type impurity in the body region 13 by the maximum value of the concentration of the n-type impurity in the second drift region 12b may be 10 or more and 100 or less.
 図3に示されるように、ソース領域14とボディ領域13との境界の位置a3において、位置xとn型不純物の濃度とp型不純物の濃度との差の絶対値yとの関係を示すプロファイルは、極小値を有する。位置a3は、位置a2と位置0との間にある。ソース領域14におけるn型不純物の濃度とp型不純物の濃度との差の絶対値yの最大値C7は、ボディ領域13におけるn型不純物の濃度とp型不純物の濃度との差の絶対値yの最大値C5よりも大きくてもよい。位置0におけるn型不純物の濃度とp型不純物の濃度との差の絶対値yの値C6は、最大値C7よりも小さくてもよい。ボディ領域13におけるn型不純物の濃度とp型不純物の濃度との差の絶対値yの最大値C5は、第2ドリフト領域12bにおけるn型不純物の濃度とp型不純物の濃度との差の絶対値yの最大値C2よりも大きくてもよい。 As shown in FIG. 3, a profile indicating the relationship between the position x and the absolute value y of the difference between the concentration of the n-type impurity and the concentration of the p-type impurity at the position a3 of the boundary between the source region 14 and the body region 13. Has a local minimum. The position a3 is between the position a2 and the position 0. The maximum value C7 of the absolute value y of the difference between the n-type impurity concentration and the p-type impurity concentration in the source region 14 is the absolute value y of the difference between the n-type impurity concentration and the p-type impurity concentration in the body region 13. It may be larger than the maximum value C5. The absolute value y of the difference between the n-type impurity concentration and the p-type impurity concentration at position 0 may be smaller than the maximum value C7. The maximum value C5 of the absolute value y of the difference between the n-type impurity concentration and the p-type impurity concentration in the body region 13 is the absolute difference between the n-type impurity concentration and the p-type impurity concentration in the second drift region 12b. It may be larger than the maximum value C2 of the value y.
 図1に示されるように、ゲート電極27は、トレンチTRの内部においてゲート絶縁膜15に接するようにトレンチTRの内部に設けられている。ゲート電極27は、たとえば不純物を含むポリシリコンからなる。ゲート電極27は、ソース領域14と、ボディ領域13と、ドリフト領域12とに対面するように設けられている。 As shown in FIG. 1, the gate electrode 27 is provided inside the trench TR so as to be in contact with the gate insulating film 15 inside the trench TR. The gate electrode 27 is made of polysilicon containing impurities, for example. The gate electrode 27 is provided so as to face the source region 14, the body region 13, and the drift region 12.
 ソース電極16は、第1主面10aにおいてソース領域14およびコンタクト領域18の各々と接している。ソース電極16は、たとえばTiと、Alと、Siとを含む材料からなる。好ましくは、ソース電極16は、ソース領域14およびコンタクト領域18とオーミック接合している。ソース配線19はソース電極16に接している。ソース配線19は、たとえばアルミニウムを含む材料からなる。 The source electrode 16 is in contact with each of the source region 14 and the contact region 18 on the first main surface 10a. The source electrode 16 is made of a material containing, for example, Ti, Al, and Si. Preferably, source electrode 16 is in ohmic contact with source region 14 and contact region 18. The source wiring 19 is in contact with the source electrode 16. Source wiring 19 is made of, for example, a material containing aluminum.
 層間絶縁膜22は、ゲート電極27およびゲート絶縁膜15に接して設けられている。層間絶縁膜22は、たとえば二酸化珪素を含む材料からなる。層間絶縁膜22は、ゲート電極27とソース電極16とを電気的に絶縁している。ドレイン電極20は、第2主面10bにおいて炭化珪素単結晶基板11と接しており、ドリフト領域12と電気的に接続されている。ドレイン電極20は、たとえばNiSiまたはTiAlSiを含む材料からなる。 The interlayer insulating film 22 is provided in contact with the gate electrode 27 and the gate insulating film 15. Interlayer insulating film 22 is made of, for example, a material containing silicon dioxide. The interlayer insulating film 22 electrically insulates the gate electrode 27 and the source electrode 16 from each other. Drain electrode 20 is in contact with silicon carbide single crystal substrate 11 on second main surface 10 b and is electrically connected to drift region 12. The drain electrode 20 is made of a material containing, for example, NiSi or TiAlSi.
 まず、本実施の形態に係るMOSFETの変形例の構成について説明する。
 図4に示されるように、炭化珪素基板10は、電界緩和領域17を含んでいてもよい。電界緩和領域17は、たとえばアルミニウムなどのp型不純物を含んでおり、p型の導電型を有する。電界緩和領域17が含むp型不純物の濃度の最大値は、たとえば7×1017cm-3である。電界緩和領域17は、ボディ領域13と対面していてもよい。電界緩和領域17は、たとえば第1ドリフト領域12aに接している。好ましくは、電界緩和領域17は、第2主面10bに対して垂直な方向において、位置b1と位置eとの間に位置している。電界緩和領域17は、ボディ領域13に接続されていてもよいし、ボディ領域13から離間していてもよい。
First, a configuration of a modification of the MOSFET according to the present embodiment will be described.
As shown in FIG. 4, silicon carbide substrate 10 may include an electric field relaxation region 17. Electric field relaxation region 17 includes a p-type impurity such as aluminum and has p-type conductivity. The maximum value of the concentration of the p-type impurity included in the electric field relaxation region 17 is, for example, 7 × 10 17 cm −3 . The electric field relaxation region 17 may face the body region 13. The electric field relaxation region 17 is in contact with, for example, the first drift region 12a. Preferably, electric field relaxation region 17 is located between position b1 and position e in the direction perpendicular to second main surface 10b. The electric field relaxation region 17 may be connected to the body region 13 or may be separated from the body region 13.
 次に、特殊面の構成について説明する。
 上述した側部SWは、特にボディ領域13上の部分において、特殊面を有する。特殊面を有する側部SWは、図5に示すように、面方位{0-33-8}を有する面S1(第1の面)を含む。言い換えれば、トレンチTRの側部SW上においてボディ領域13には、面S1を含む表面が設けられている。面S1は好ましくは面方位(0-33-8)を有する。
Next, the configuration of the special surface will be described.
The side portion SW described above has a special surface, particularly in a portion on the body region 13. As shown in FIG. 5, the side portion SW having the special surface includes a surface S1 (first surface) having a surface orientation {0-33-8}. In other words, the surface including the surface S1 is provided in the body region 13 on the side portion SW of the trench TR. The plane S1 preferably has a plane orientation (0-33-8).
 より好ましくは、側部SWは面S1を微視的に含み、側部SWはさらに、面方位{0-11-1}を有する面S2(第2の面)を微視的に含む。ここで「微視的」とは、原子間隔の2倍程度の寸法を少なくとも考慮する程度に詳細に、ということを意味する。このように微視的な構造の観察方法としては、たとえばTEMを用いることができる。面S2は好ましくは面方位(0-11-1)を有する。 More preferably, the side SW includes the surface S1 microscopically, and the side SW further microscopically includes the surface S2 (second surface) having the surface orientation {0-11-1}. Here, “microscopic” means that the dimensions are as detailed as at least a dimension of about twice the atomic spacing. As a microscopic structure observation method, for example, TEM can be used. The plane S2 preferably has a plane orientation (0-11-1).
 好ましくは、側部SWの面S1および面S2は、面方位{0-11-2}を有する複合面SRを構成している。すなわち複合面SRは、面S1およびS2が周期的に繰り返されることによって構成されている。このような周期的構造は、たとえば、TEMまたはAFM(Atomic Force Microscopy)により観察し得る。この場合、複合面SRは{000-1}面に対して巨視的に62°のオフ角を有する。ここで「巨視的」とは、原子間隔程度の寸法を有する微細構造を無視することを意味する。このように巨視的なオフ角の測定としては、たとえば、一般的なX線回折を用いた方法を用い得る。好ましくは、複合面SRは、面方位(0-11-2)を有する。この場合、複合面SRは(000-1)面に対して巨視的に62°のオフ角を有する。 Preferably, the surface S1 and the surface S2 of the side SW constitute a composite surface SR having a surface orientation {0-11-2}. That is, the composite surface SR is configured by periodically repeating the surfaces S1 and S2. Such a periodic structure can be observed by, for example, TEM or AFM (Atomic Force Microscopy). In this case, the composite surface SR has an off angle of 62 ° macroscopically with respect to the {000-1} plane. Here, “macroscopic” means ignoring a fine structure having a dimension on the order of atomic spacing. As such a macroscopic off-angle measurement, for example, a general method using X-ray diffraction can be used. Preferably, composite surface SR has a plane orientation (0-11-2). In this case, the composite surface SR has an off angle of 62 ° macroscopically with respect to the (000-1) plane.
 TEMとしては、たとえば日本電子株式会社製のJEM-2100Fが使用可能である。試料分析領域は、たとえば10μm×10μm×0.1μmである。加速電圧は、たとえば200kVである。AFMとしては、たとえば日本ビーコ株式会社製のDimension Icon SPM Systemが使用可能である。試料分析領域は、たとえば90μm×90μmである。スキャンレートは、たとえば0.2Hzである。チップ速度は、たとえば8μm/秒である。振幅セットポイントは、たとえば15.5nmである。Zレンジは、たとえば1μmである。試料に合わせて上記各パラメータが調整される。X線回折装置としては、たとえば株式会社リガク製のSmartLabが使用可能である。試料分析領域は、たとえば0.3mmφ以上0.8mmφ以下である。使用管球は、たとえばCuである。出力は、たとえば45kV、80mAである。たとえば、X線回折装置で第1主面10aが(000-1)面であることを確認した後、AFMでトレンチTRの側部SWが測定される。 As the TEM, for example, JEM-2100F manufactured by JEOL Ltd. can be used. The sample analysis area is, for example, 10 μm × 10 μm × 0.1 μm. The acceleration voltage is 200 kV, for example. As the AFM, for example, Dimension Icon SPM System made by Nippon Bico Co., Ltd. can be used. The sample analysis area is, for example, 90 μm × 90 μm. The scan rate is, for example, 0.2 Hz. The chip speed is, for example, 8 μm / second. The amplitude set point is 15.5 nm, for example. The Z range is, for example, 1 μm. The above parameters are adjusted according to the sample. As the X-ray diffractometer, for example, SmartLab manufactured by Rigaku Corporation can be used. The sample analysis region is, for example, not less than 0.3 mmφ and not more than 0.8 mmφ. The tube used is, for example, Cu. The output is, for example, 45 kV and 80 mA. For example, after confirming that the first major surface 10a is the (000-1) plane with an X-ray diffractometer, the side SW of the trench TR is measured by AFM.
 好ましくは、チャネル面上においてキャリアが流れる方向であるチャネル方向CDは、上述した周期的繰り返しが行われる方向に沿っている。 Preferably, the channel direction CD, which is the direction in which carriers flow on the channel surface, is along the direction in which the above-described periodic repetition is performed.
 次に、複合面SRの詳細な構造について説明する。
 一般に、ポリタイプ4Hの炭化珪素単結晶を(000-1)面から見ると、図6に示すように、Si原子(またはC原子)は、A層の原子(図中の実線)と、この下に位置するB層の原子(図中の破線)と、この下に位置するC層の原子(図中の一点鎖線)と、この下に位置するB層の原子(図示せず)とが繰り返し設けられている。つまり4つの層ABCBを1周期としてABCBABCBABCB・・・のような周期的な積層構造が設けられている。
Next, the detailed structure of the composite surface SR will be described.
In general, when a silicon carbide single crystal of polytype 4H is viewed from the (000-1) plane, as shown in FIG. 6, Si atoms (or C atoms) are atoms of A layer (solid line in the figure), B layer atoms (broken line in the figure) located below, C layer atoms (dotted line in the figure) located below, and B layer atoms (not shown) located below this It is provided repeatedly. That is, a periodic laminated structure such as ABCBABCBABCB... Is provided with four layers ABCB as one period.
 図7に示すように、(11-20)面(図6の線VII-VIIの断面)において、上述した1周期を構成する4つの層ABCBの各層の原子は、(0-11-2)面に完全に沿うようには配列されていない。図7においてはB層の原子の位置を通るように(0-11-2)面が示されており、この場合、A層およびC層の各々の原子は(0-11-2)面からずれていることがわかる。このため、炭化珪素単結晶の表面の巨視的な面方位、すなわち原子レベルの構造を無視した場合の面方位が(0-11-2)に限定されたとしても、この表面は、微視的には様々な構造をとり得る。 As shown in FIG. 7, on the (11-20) plane (cross section taken along line VII-VII in FIG. 6), the atoms in each of the four layers ABCB constituting one cycle described above are (0-11-2) It is not arranged to be completely along the plane. In FIG. 7, the (0-11-2) plane is shown so as to pass through the position of atoms in the B layer. In this case, the atoms in the A layer and the C layer are separated from the (0-11-2) plane. You can see that it is shifted. For this reason, even if the macroscopic plane orientation of the surface of the silicon carbide single crystal, that is, the plane orientation when ignoring the atomic level structure is limited to (0-11-2), the surface is microscopic. Can take various structures.
 図8に示すように、複合面SRは、面方位(0-33-8)を有する面S1と、面S1につながりかつ面S1の面方位と異なる面方位を有する面S2とが交互に設けられることによって構成されている。面S1および面S2の各々の長さは、Si原子(またはC原子)の原子間隔の2倍である。なお面S1および面S2が平均化された面は、(0-11-2)面(図7)に対応する。 As shown in FIG. 8, in the composite surface SR, a surface S1 having a surface orientation (0-33-8) and a surface S2 connected to the surface S1 and having a surface orientation different from the surface orientation of the surface S1 are alternately provided. It is configured by being. The length of each of the surface S1 and the surface S2 is twice the atomic spacing of Si atoms (or C atoms). The surface obtained by averaging the surfaces S1 and S2 corresponds to the (0-11-2) surface (FIG. 7).
 図9に示すように、複合面SRを(01-10)面から見て単結晶構造は、部分的に見て立方晶と等価な構造(面S1の部分)を周期的に含んでいる。具体的には複合面SRは、上述した立方晶と等価な構造における面方位(001)を有する面S1と、面S1につながりかつ面S1の面方位と異なる面方位を有する面S2とが交互に設けられることによって構成されている。このように、立方晶と等価な構造における面方位(001)を有する面(図5においては面S1)と、この面につながりかつこの面方位と異なる面方位を有する面(図5においては面S2)とによって表面を構成することは4H以外のポリタイプにおいても可能である。ポリタイプは、たとえば6Hまたは15Rであってもよい。 As shown in FIG. 9, the single crystal structure when the composite surface SR is viewed from the (01-10) plane periodically includes a structure (surface S1 portion) equivalent to a cubic crystal when viewed partially. Specifically, in the composite surface SR, a surface S1 having a surface orientation (001) in a structure equivalent to the above-described cubic crystal and a surface S2 connected to the surface S1 and having a surface orientation different from the surface orientation of the surface S1 are alternated. It is comprised by being provided in. Thus, a plane (plane S1 in FIG. 5) having a plane orientation (001) in a structure equivalent to a cubic crystal, and a plane connected to this plane and having a plane orientation different from this plane orientation (plane in FIG. 5) It is also possible for polytypes other than 4H to constitute the surface according to S2). The polytype may be 6H or 15R, for example.
 次に図10を参照して、側部SWの結晶面と、チャネル面の移動度MBとの関係について説明する。図10のグラフにおいて、横軸は、チャネル面を有する側部SWの巨視的な面方位と(000-1)面とのなす角度D1を示し、縦軸は移動度MBを示す。プロット群CMは側部SWが熱エッチングによる特殊面として仕上げられた場合に対応し、プロット群MCはそのような熱エッチングがなされない場合に対応する。 Next, the relationship between the crystal plane of the side SW and the mobility MB of the channel plane will be described with reference to FIG. In the graph of FIG. 10, the horizontal axis indicates the angle D1 formed by the macroscopic surface orientation of the side SW having the channel surface and the (000-1) plane, and the vertical axis indicates the mobility MB. The plot group CM corresponds to the case where the side SW is finished as a special surface by thermal etching, and the plot group MC corresponds to the case where such thermal etching is not performed.
 プロット群MCにおける移動度MBは、チャネル面の表面の巨視的な面方位が(0-33-8)のときに最大となった。この理由は、熱エッチングが行われない場合、すなわち、チャネル表面の微視的な構造が特に制御されない場合においては、巨視的な面方位が(0-33-8)とされることによって、微視的な面方位(0-33-8)、つまり原子レベルまで考慮した場合の面方位(0-33-8)が形成される割合が確率的に高くなったためと考えられる。 The mobility MB in the plot group MC was maximized when the macroscopic surface orientation of the channel surface was (0-33-8). This is because, when thermal etching is not performed, that is, when the microscopic structure of the channel surface is not particularly controlled, the macroscopic plane orientation is set to (0-33-8). This is probably because the ratio of the formation of the visual plane orientation (0-33-8), that is, the plane orientation (0-33-8) considering the atomic level, stochastically increased.
 一方、プロット群CMにおける移動度MBは、チャネル面の表面の巨視的な面方位が(0-11-2)のとき(矢印EX)に最大となった。この理由は、図8および図9に示すように、面方位(0-33-8)を有する多数の面S1が面S2を介して規則正しく稠密に配置されることで、チャネル面の表面において微視的な面方位(0-33-8)が占める割合が高くなったためと考えられる。 On the other hand, the mobility MB in the plot group CM was maximized when the macroscopic surface orientation of the channel surface was (0-11-2) (arrow EX). The reason for this is that, as shown in FIGS. 8 and 9, a large number of surfaces S1 having a plane orientation (0-33-8) are regularly and densely arranged via the surface S2, so that the surface of the channel surface is minute. This is probably because the proportion of the visual plane orientation (0-33-8) has increased.
 なお移動度MBは複合面SR上において方位依存性を有する。図11に示すグラフにおいて、横軸はチャネル方向と<0-11-2>方向との間の角度D2を示し、縦軸はチャネル面の移動度MB(任意単位)を示す。破線はグラフを見やすくするために補助的に付してある。このグラフから、チャネル移動度MBを大きくするには、チャネル方向CD(図5)が有する角度D2は、0°以上60°以下であることが好ましく、ほぼ0°であることがより好ましいことがわかった。 The mobility MB has an orientation dependency on the composite surface SR. In the graph shown in FIG. 11, the horizontal axis indicates the angle D2 between the channel direction and the <0-11-2> direction, and the vertical axis indicates the mobility MB (arbitrary unit) of the channel surface. A broken line is added to make the graph easier to see. From this graph, in order to increase the channel mobility MB, the angle D2 of the channel direction CD (FIG. 5) is preferably 0 ° or more and 60 ° or less, and more preferably approximately 0 °. all right.
 図12に示すように、側部SWは複合面SRに加えてさらに面S3(第3の面)を含んでもよい。より具体的には、面S3および複合面SRが周期的に繰り返されることによって構成された複合面SQを側部SWが含んでもよい。この場合、側部SWの{000-1}面に対するオフ角は、理想的な複合面SRのオフ角である62°からずれる。このずれは小さいことが好ましく、±10°の範囲内であることが好ましい。このような角度範囲に含まれる表面としては、たとえば、巨視的な面方位が{0-33-8}面となる表面がある。より好ましくは、側部SWの(000-1)面に対するオフ角は、理想的な複合面SRのオフ角である62°からずれる。このずれは小さいことが好ましく、±10°の範囲内であることが好ましい。このような角度範囲に含まれる表面としては、たとえば、巨視的な面方位が(0-33-8)面となる表面がある。 As shown in FIG. 12, the side SW may further include a surface S3 (third surface) in addition to the composite surface SR. More specifically, the side portion SW may include a composite surface SQ configured by periodically repeating the surface S3 and the composite surface SR. In this case, the off angle of the side SW with respect to the {000-1} plane deviates from 62 ° which is the ideal off angle of the composite surface SR. This deviation is preferably small and preferably within a range of ± 10 °. As a surface included in such an angle range, for example, there is a surface whose macroscopic plane orientation is a {0-33-8} plane. More preferably, the off angle of the side SW with respect to the (000-1) plane deviates from 62 ° which is the ideal off angle of the composite surface SR. This deviation is preferably small and preferably within a range of ± 10 °. As a surface included in such an angle range, for example, there is a surface whose macroscopic plane orientation is a (0-33-8) plane.
 このような周期的構造は、たとえば、TEMまたはAFMにより観察し得る。測定装置、試料分析領域および測定条件の具体例は、上述の通りである。 Such a periodic structure can be observed by, for example, TEM or AFM. Specific examples of the measurement apparatus, the sample analysis region, and the measurement conditions are as described above.
 次に、本実施の形態に係るMOSFET1の製造方法について説明する。
 まず、炭化珪素基板を準備する工程(S10:図13)が実施される。図14に示されるように、炭化珪素基板を準備する工程は、第1ドリフト領域をエピタキシャル成長する工程(S11:図14)と、第2ドリフト領域をエピタキシャル成長する工程(S12:図14)と、イオン注入工程(S13:図14)とを主に有している。第1ドリフト領域をエピタキシャル成長する工程(S11:図14)は、たとえば炭素および珪素を含むガスを用いて行われる。具体的には、たとえば原料ガスとしてシラン(SiH4)とプロパン(C38)との混合ガスを用い、キャリアガスとしてたとえば水素ガス(H2)を用いたCVD(Chemical Vapor Deposition)法により、炭化珪素単結晶基板11上に第1ドリフト領域12aが形成される。エピタキシャル成長の際、不純物として、たとえば窒素(N)またはリン(P)などが導入される。
Next, a method for manufacturing MOSFET 1 according to the present embodiment will be described.
First, a step of preparing a silicon carbide substrate (S10: FIG. 13) is performed. As shown in FIG. 14, the step of preparing the silicon carbide substrate includes the step of epitaxially growing the first drift region (S11: FIG. 14), the step of epitaxially growing the second drift region (S12: FIG. 14), The injection step (S13: FIG. 14) is mainly included. The step of epitaxially growing the first drift region (S11: FIG. 14) is performed using, for example, a gas containing carbon and silicon. Specifically, for example, by a CVD (Chemical Vapor Deposition) method using a mixed gas of silane (SiH 4 ) and propane (C 3 H 8 ) as a source gas and using, for example, hydrogen gas (H 2 ) as a carrier gas. First drift region 12 a is formed on silicon carbide single crystal substrate 11. In the epitaxial growth, for example, nitrogen (N) or phosphorus (P) is introduced as an impurity.
 次に、第2ドリフト領域をエピタキシャル成長する工程(S12:図14)が実施される。第2ドリフト領域をエピタキシャル成長する工程は、たとえば炭素および珪素を含むガスを用いて行われる。具体的には、たとえば原料ガスとしてシラン(SiH4)とプロパン(C38)との混合ガスを用い、キャリアガスとしてたとえば水素ガス(H2)を用いたCVD法により、第1ドリフト領域12a上に第2ドリフト領域12bが形成される(図15参照)。エピタキシャル成長の際、不純物として、たとえば窒素(N)またはリン(P)などが導入される。 Next, a step of epitaxially growing the second drift region (S12: FIG. 14) is performed. The step of epitaxially growing the second drift region is performed using, for example, a gas containing carbon and silicon. Specifically, the first drift region is obtained by a CVD method using, for example, a mixed gas of silane (SiH 4 ) and propane (C 3 H 8 ) as a source gas and using, for example, hydrogen gas (H 2 ) as a carrier gas. A second drift region 12b is formed on 12a (see FIG. 15). In the epitaxial growth, for example, nitrogen (N) or phosphorus (P) is introduced as an impurity.
 図16に示されるように、第2ドリフト領域12bが含むn型不純物の濃度が、第1ドリフト領域12aが含むn型不純物の濃度よりも高くなるように、第1ドリフト領域12aおよび第2ドリフト領域12bが、エピタキシャル成長により形成される。好ましくは、第2ドリフト領域を形成する工程における珪素の原子数を炭素の原子数で除した値は、第1ドリフト領域を形成する工程における珪素の原子数を炭素の原子数で除した値よりも大きい。つまり、第2ドリフト領域を形成する工程における雰囲気ガスのSi/C比は、第1ドリフト領域を形成する工程における雰囲気ガスのSi/C比よりも大きい。 As shown in FIG. 16, the first drift region 12 a and the second drift region are formed such that the concentration of the n-type impurity included in the second drift region 12 b is higher than the concentration of the n-type impurity included in the first drift region 12 a. Region 12b is formed by epitaxial growth. Preferably, the value obtained by dividing the number of silicon atoms in the step of forming the second drift region by the number of carbon atoms is greater than the value obtained by dividing the number of silicon atoms in the step of forming the first drift region by the number of carbon atoms. Is also big. That is, the Si / C ratio of the atmospheric gas in the step of forming the second drift region is larger than the Si / C ratio of the atmospheric gas in the step of forming the first drift region.
 図16に示されるように、第2主面10bに対して垂直な方向において、第1ドリフト領域12aが含むn型不純物の濃度C1と、第2ドリフト領域12bが含むn型不純物の濃度C2は、ほぼ一定である。好ましくは、第2ドリフト領域12bのn型不純物の濃度C2を第1ドリフト領域12aのn型不純物の濃度C1で除した値は、5以上10以下である。 As shown in FIG. 16, in the direction perpendicular to the second major surface 10b, the concentration C1 of the n-type impurity included in the first drift region 12a and the concentration C2 of the n-type impurity included in the second drift region 12b are Is almost constant. Preferably, the value obtained by dividing the concentration C2 of the n-type impurity in the second drift region 12b by the concentration C1 of the n-type impurity in the first drift region 12a is 5 or more and 10 or less.
 次に、イオン注入工程(S13:図14)が実施される。具体的には、第2ドリフト領域12bおよび第1ドリフト領域12aに対して、たとえばアルミニウムなどのp型不純物がイオン注入される。図17に示されるように、第1ドリフト領域12aと第2ドリフト領域12bとの境界の位置a1におけるp型不純物の濃度が第1ドリフト領域12aのn型不純物の濃度C1よりも低くなり、かつ第2ドリフト領域12b内(位置0から位置a1までの間の領域)におけるp型不純物の濃度の最大値C8(極大値C8)が第2ドリフト領域12bのn型不純物の濃度C2よりも高くなるように、第1ドリフト領域12aおよび第2ドリフト領域12bの双方にp型不純物が導入される。これにより、第2ドリフト領域12bと接するボディ領域13が形成される(図18参照)。ボディ領域13は、第1主面10aを構成する。なお、図17において、一点鎖線で示されるプロファイルは、図16に示すプロファイルと同じである。 Next, an ion implantation step (S13: FIG. 14) is performed. Specifically, a p-type impurity such as aluminum is ion-implanted into second drift region 12b and first drift region 12a. As shown in FIG. 17, the concentration of the p-type impurity at the position a1 at the boundary between the first drift region 12a and the second drift region 12b is lower than the concentration C1 of the n-type impurity in the first drift region 12a, and The maximum value C8 (maximum value C8) of the concentration of the p-type impurity in the second drift region 12b (region between the position 0 and the position a1) is higher than the concentration C2 of the n-type impurity of the second drift region 12b. As described above, the p-type impurity is introduced into both the first drift region 12a and the second drift region 12b. Thereby, body region 13 in contact with second drift region 12b is formed (see FIG. 18). Body region 13 constitutes first main surface 10a. In FIG. 17, the profile indicated by the alternate long and short dash line is the same as the profile shown in FIG.
 図19は、図18の矢印Xに沿った方向における|N-N|のプロファイルを概略的に示す図である。位置0は、ボディ領域13により構成される第1主面10aの部分の位置である。位置eは、炭化珪素単結晶基板11と炭化珪素エピタキシャル層24との境界面11aの位置である。位置0から位置a2までの領域はp型を有するボディ領域13である。位置a2から位置a1までの領域はn型を有する第2ドリフト領域12bである。位置a1から位置eまでの領域はn型を有する第1ドリフト領域12aである。 FIG. 19 is a diagram schematically showing a profile of | N d −N a | in the direction along the arrow X in FIG. The position 0 is the position of the portion of the first major surface 10a configured by the body region 13. Position e is the position of boundary surface 11 a between silicon carbide single crystal substrate 11 and silicon carbide epitaxial layer 24. A region from position 0 to position a2 is a body region 13 having a p-type. A region from the position a2 to the position a1 is a second drift region 12b having an n-type. The region from the position a1 to the position e is a first drift region 12a having an n type.
 ボディ領域13と第2ドリフト領域12bと第1ドリフト領域12aとにより構成される領域において、位置xとn型不純物の濃度とp型不純物の濃度との差の絶対値yとの関係を示すプロファイルは、第1極小値C3と、第1極小値C3よりも第1主面10a側に位置する第2極小値C4とを有する。n型不純物の濃度とp型不純物の濃度との差の絶対値yが第1極小値C3を示す位置a1は、第1ドリフト領域12aと第2ドリフト領域12bとの境界である。n型不純物の濃度とp型不純物の濃度との差の絶対値yが第2極小値C4を示す位置a2は、ボディ領域13と第2ドリフト領域12bとの境界である。ボディ領域13におけるn型不純物の濃度とp型不純物の濃度との差の絶対値yの最大値C5は、第2ドリフト領域12bにおけるn型不純物の濃度とp型不純物の濃度との差の絶対値yの最大値C2よりも大きくなる。第2ドリフト領域12bにおけるn型不純物の濃度とp型不純物の濃度との差の絶対値yの最大値C2は、第1ドリフト領域12aにおけるn型不純物の濃度とp型不純物の濃度との差の絶対値yの最大値C1よりも大きい。位置0におけるn型不純物の濃度とp型不純物の濃度との差の絶対値yの値C9は、ボディ領域13におけるn型不純物の濃度とp型不純物の濃度との差の絶対値yの最大値C5よりも小さくてもよい。 Profile showing the relationship between the position x and the absolute value y of the difference between the concentration of the n-type impurity and the concentration of the p-type impurity in the region constituted by the body region 13, the second drift region 12b, and the first drift region 12a Has a first minimum value C3 and a second minimum value C4 located closer to the first main surface 10a than the first minimum value C3. A position a1 at which the absolute value y of the difference between the n-type impurity concentration and the p-type impurity concentration indicates the first minimum value C3 is a boundary between the first drift region 12a and the second drift region 12b. A position a2 at which the absolute value y of the difference between the n-type impurity concentration and the p-type impurity concentration indicates the second minimum value C4 is a boundary between the body region 13 and the second drift region 12b. The maximum value C5 of the absolute value y of the difference between the n-type impurity concentration and the p-type impurity concentration in the body region 13 is the absolute difference between the n-type impurity concentration and the p-type impurity concentration in the second drift region 12b. It becomes larger than the maximum value C2 of the value y. The maximum value C2 of the absolute value y of the difference between the n-type impurity concentration and the p-type impurity concentration in the second drift region 12b is the difference between the n-type impurity concentration and the p-type impurity concentration in the first drift region 12a. Is greater than the maximum value C1 of the absolute value y. The value C9 of the absolute value y of the difference between the n-type impurity concentration and the p-type impurity concentration at position 0 is the maximum of the absolute value y of the difference between the n-type impurity concentration and the p-type impurity concentration in the body region 13. It may be smaller than the value C5.
 次に、ボディ領域13に対して、たとえばリンなどのn型不純物がイオン注入される。図20に示されるように、ボディ領域13内におけるn型不純物の濃度の最大値C10がボディ領域13のp型不純物の濃度の最大値C5よりも高くなるように、ボディ領域13に対してp型不純物が導入される。これにより、ボディ領域13と接するソース領域14が形成される(図21参照)。ソース領域14は、第1主面10aを構成する。なお、図20において、一点鎖線で示されるプロファイルは、図19に示すプロファイルと同じである。 Next, an n-type impurity such as phosphorus is ion-implanted into the body region 13. As shown in FIG. 20, the p-type impurity concentration P10 in the body region 13 is higher than the maximum p-type impurity concentration C5 in the body region 13 by p. Type impurities are introduced. Thereby, the source region 14 in contact with the body region 13 is formed (see FIG. 21). The source region 14 constitutes the first major surface 10a. In FIG. 20, the profile indicated by the alternate long and short dash line is the same as the profile shown in FIG.
 次に、ソース領域14に対して、たとえばアルミニウムなどのp型不純物がイオン注入されることにより、コンタクト領域18が形成される。コンタクト領域18は、ソース領域14を貫通し、ボディ領域13に接するように形成される。次に、炭化珪素基板10にイオン注入された不純物を活性化するため活性化アニールが実施される。活性化アニールの温度は、好ましくは1500℃以上1900℃以下であり、たとえば1700℃程度である。活性化アニールの時間は、たとえば30分程度である。活性化アニールの雰囲気は、好ましくは不活性ガス雰囲気であり、たとえばAr雰囲気である。 Next, a contact region 18 is formed by ion implantation of a p-type impurity such as aluminum into the source region 14. The contact region 18 is formed so as to penetrate the source region 14 and contact the body region 13. Next, activation annealing is performed to activate the impurities ion-implanted into silicon carbide substrate 10. The temperature of activation annealing is preferably 1500 ° C. or higher and 1900 ° C. or lower, for example, about 1700 ° C. The activation annealing time is, for example, about 30 minutes. The atmosphere of activation annealing is preferably an inert gas atmosphere, for example, an Ar atmosphere.
 以上により、第1主面10aと、第1主面10aと反対側の第2主面10bとを有する炭化珪素基板が準備される。炭化珪素基板10は、n型を有するドリフト領域12と、ドリフト領域12上に設けられ、n型と異なるp型を有するボディ領域13と、ドリフト領域12から隔てられるようにボディ領域13上に設けられ、第1主面10aを構成し、かつn型を有するソース領域14とを含む。ドリフト領域12は、第1ドリフト領域12aと、第1ドリフト領域12aとボディ領域13とに挟まれた第2ドリフト領域12bとを有する。第2ドリフト領域12bにおけるn型不純物の濃度の最大値は、第1ドリフト領域12aにおけるn型不純物の濃度の最大値よりも大きい。第1主面10aは、炭素面側であり、第2主面10bは、珪素面側であってもよい。第1主面10aは、たとえば(000-1)面または(000-1)面から2°以上8°以下オフした面である。 Thus, a silicon carbide substrate having the first main surface 10a and the second main surface 10b opposite to the first main surface 10a is prepared. Silicon carbide substrate 10 is provided on drift region 12 having n type, body region 13 having p type different from n type, and provided on body region 13 so as to be separated from drift region 12. And the first main surface 10a and the source region 14 having n-type. The drift region 12 has a first drift region 12 a and a second drift region 12 b sandwiched between the first drift region 12 a and the body region 13. The maximum value of the n-type impurity concentration in the second drift region 12b is larger than the maximum value of the n-type impurity concentration in the first drift region 12a. The first main surface 10a may be on the carbon surface side, and the second main surface 10b may be on the silicon surface side. The first major surface 10a is, for example, a surface that is off 2 ° or more and 8 ° or less from the (000-1) plane or the (000-1) plane.
 次に、トレンチを形成する工程(S20:図13)が実施される。たとえば、ソース領域14およびコンタクト領域18から構成される第1主面10a上に、トレンチTR(図1)が形成される位置上に開口を有するマスク層3が形成される。当該マスク層3を用いて、ソース領域14と、ボディ領域13と、ドリフト領域12の一部とがエッチングにより除去される。エッチングの方法としては、たとえば反応性イオンエッチング、特に誘導結合プラズマ反応性イオンエッチングを用いることができる。具体的には、たとえば反応ガスとしてSF6またはSF6とO2との混合ガスを用いた誘導結合プラズマ反応性イオンエッチングを用いることができる。エッチングにより、トレンチTR(図1)が形成されるべき領域に、第1主面10aに対してほぼ垂直な側部と、側部と連続的に設けられ、かつ第1主面10aとほぼ平行な底部とを有する凹部が形成される。 Next, a step of forming a trench (S20: FIG. 13) is performed. For example, mask layer 3 having an opening at a position where trench TR (FIG. 1) is formed is formed on first main surface 10 a configured from source region 14 and contact region 18. Using the mask layer 3, the source region 14, the body region 13, and a part of the drift region 12 are removed by etching. As an etching method, for example, reactive ion etching, particularly inductively coupled plasma reactive ion etching can be used. Specifically, for example, inductively coupled plasma reactive ion etching using SF 6 or a mixed gas of SF 6 and O 2 as a reaction gas can be used. By etching, in a region where trench TR (FIG. 1) is to be formed, a side portion substantially perpendicular to first main surface 10a and a side portion are provided continuously and substantially parallel to first main surface 10a. A recess having a bottom is formed.
 次に、凹部において熱エッチングが行われる。熱エッチングは、第1主面10a上にマスク層3が形成された状態で、たとえば、少なくとも1種類以上のハロゲン原子を有する反応性ガスを含む雰囲気中での加熱によって行い得る。少なくとも1種類以上のハロゲン原子は、塩素(Cl)原子およびフッ素(F)原子の少なくともいずれかを含む。当該雰囲気は、たとえば、Cl2、BCL3、SF6、またはCF4を含む。たとえば、塩素ガスと酸素ガスとの混合ガスを反応ガスとして用い、熱処理温度を、たとえば700℃以上1000℃以下として、熱エッチングが行われる。なお、反応ガスは、上述した塩素ガスと酸素ガスとに加えて、キャリアガスを含んでいてもよい。キャリアガスとしては、たとえば窒素(N2)ガス、アルゴンガス、ヘリウムガスなどを用いることができる。熱エッチングの際に、マスク層は、SiCに対する選択比が極めて大きいので、SiCのエッチング中に実質的にエッチングされない。 Next, thermal etching is performed in the recess. The thermal etching can be performed, for example, by heating in an atmosphere containing a reactive gas having at least one kind of halogen atom in a state where the mask layer 3 is formed on the first main surface 10a. The at least one or more types of halogen atom includes at least one of a chlorine (Cl) atom and a fluorine (F) atom. The atmosphere includes, for example, Cl 2 , BCL 3 , SF 6 , or CF 4 . For example, thermal etching is performed using a mixed gas of chlorine gas and oxygen gas as a reaction gas and a heat treatment temperature of, for example, 700 ° C. or more and 1000 ° C. or less. Note that the reaction gas may contain a carrier gas in addition to the above-described chlorine gas and oxygen gas. As the carrier gas, for example, nitrogen (N 2 ) gas, argon gas, helium gas or the like can be used. During the thermal etching, the mask layer is not substantially etched during the etching of SiC because the selectivity to SiC is very large.
 図22に示されるように、上記熱エッチングにより、炭化珪素基板10の第1主面10aにトレンチTRが形成される。トレンチTRは、第2ドリフト領域12bと、ボディ領域13と、ソース領域14とを貫通し、かつ第1ドリフト領域12aに至る側部SWと、側部SWと連続して設けられた底部BTとにより規定される。底部BTと側部SWとにより形成される角度θは、たとえば110°以上130°以下である。好ましくは、側部SWは、上述した特殊面を含む。 As shown in FIG. 22, trench TR is formed in first main surface 10a of silicon carbide substrate 10 by the thermal etching. Trench TR includes a side SW passing through second drift region 12b, body region 13, and source region 14 and reaching first drift region 12a, and bottom BT provided continuously with side SW. It is prescribed by. The angle θ formed by the bottom portion BT and the side portion SW is, for example, not less than 110 ° and not more than 130 °. Preferably, the side portion SW includes the special surface described above.
 次に、ゲート絶縁膜を形成する工程(S30:図13)が実施される。ゲート絶縁膜を形成する工程(S30:図23)は、たとえば、珪素層を形成する工程(S31:図23)と、マスク層を形成する工程(S32:図23)と、珪素層の一部を除去する工程(S33:図23)と、マスク層を除去する工程(S34:図23)と、炭化珪素基板を熱酸化する工程(S35:図23)とを主に含んでいる。 Next, a step of forming a gate insulating film (S30: FIG. 13) is performed. The step of forming a gate insulating film (S30: FIG. 23) includes, for example, a step of forming a silicon layer (S31: FIG. 23), a step of forming a mask layer (S32: FIG. 23), and a part of the silicon layer. The process mainly includes a step of removing (S33: FIG. 23), a step of removing the mask layer (S34: FIG. 23), and a step of thermally oxidizing the silicon carbide substrate (S35: FIG. 23).
 珪素層を形成する工程(S31:図23)においては、トレンチTRの側部SWおよび底部BTに接し、かつ第1主面10aに接する珪素層4が形成される(図24参照)。珪素層4は、トレンチTRを完全には埋めない。珪素層4の厚みは、トレンチTRの深さH1(図1参照)よりも小さい。珪素層4は、第1主面10aにおいてソース領域14およびコンタクト領域18に接する。珪素層4は、側部SWにおいて、ソース領域14とボディ領域13と第2ドリフト領域12bと第1ドリフト領域12aとに接する。珪素層4は、底部BTにおいて、第1ドリフト領域12aに接する。 In the step of forming the silicon layer (S31: FIG. 23), the silicon layer 4 in contact with the side SW and bottom BT of the trench TR and in contact with the first main surface 10a is formed (see FIG. 24). Silicon layer 4 does not completely fill trench TR. The thickness of the silicon layer 4 is smaller than the depth H1 (see FIG. 1) of the trench TR. Silicon layer 4 is in contact with source region 14 and contact region 18 on first main surface 10a. Silicon layer 4 is in contact with source region 14, body region 13, second drift region 12b, and first drift region 12a in side SW. Silicon layer 4 is in contact with first drift region 12a at bottom BT.
 次に、マスク層を形成する工程(S32:図23)が実施される。図25に示されるように、珪素層4は、側部SWに対面する第1珪素層部4aと、底部BTに対面する第2珪素層部4bとを有する。底部BTに対面する珪素層4の第2珪素層部4b上にマスク層5が形成される。マスク層5は、たとえばレジストである。マスク層5は、第1珪素層部4aの一部を覆っていてもよい。第1珪素層部4aの少なくとも一部は、マスク層5から露出している。 Next, a step of forming a mask layer (S32: FIG. 23) is performed. As shown in FIG. 25, silicon layer 4 has a first silicon layer portion 4a facing side portion SW and a second silicon layer portion 4b facing bottom portion BT. Mask layer 5 is formed on second silicon layer portion 4b of silicon layer 4 facing bottom portion BT. Mask layer 5 is, for example, a resist. Mask layer 5 may cover a part of first silicon layer portion 4a. At least a part of the first silicon layer portion 4 a is exposed from the mask layer 5.
 次に、珪素層の一部を除去する工程(S33:図23)が実施される。マスク層5を用いて、珪素層4がたとえばエッチングなどにより除去される。これにより、珪素層4の一部が除去される。具体的には、第2珪素層部4bが底部BT上に残されつつ、第1珪素層部4aが側部SW上から除去される。第1主面10a上の珪素層4の部分も除去される。 Next, a step of removing a part of the silicon layer (S33: FIG. 23) is performed. Using mask layer 5, silicon layer 4 is removed by etching, for example. Thereby, a part of silicon layer 4 is removed. Specifically, the first silicon layer portion 4a is removed from the side portion SW while the second silicon layer portion 4b is left on the bottom portion BT. The portion of silicon layer 4 on first main surface 10a is also removed.
 次に、マスク層を除去する工程(S34:図23)が実施される。たとえばドライエッチングまたはウェットエッチングなどの任意の方法により、マスク層5が第2珪素層部4b上から除去される。第2珪素層部4bは、底部BTにおいて第1ドリフト領域12aに接した状態で残される(図26参照)。 Next, a step of removing the mask layer (S34: FIG. 23) is performed. For example, the mask layer 5 is removed from the second silicon layer portion 4b by any method such as dry etching or wet etching. Second silicon layer portion 4b is left in contact with first drift region 12a at bottom portion BT (see FIG. 26).
 次に、炭化珪素基板を熱酸化する工程(S35:図23)が実施される。マスク層5を除去する工程後、底部BT上に第2珪素層部4bが残された状態で、炭化珪素基板10が熱酸化される。第2珪素層部4bは、熱酸化により二酸化珪素になる。たとえば、炭化珪素基板10が、酸素を含む雰囲気中において、たとえば1300℃以上1400℃以下の温度で加熱される。これにより、底部BTにおいて第1ドリフト領域12aと接し、かつ側部SWにおいて第2ドリフト領域12bと、ボディ領域13と、ソース領域14とに接するゲート絶縁膜15が形成される。ゲート絶縁膜15は、底部BTに接する第3主面15b1と、第3主面15b1と反対側の第4主面15b2とを有する。 Next, a step of thermally oxidizing the silicon carbide substrate (S35: FIG. 23) is performed. After the step of removing mask layer 5, silicon carbide substrate 10 is thermally oxidized with second silicon layer portion 4b remaining on bottom portion BT. The second silicon layer portion 4b becomes silicon dioxide by thermal oxidation. For example, silicon carbide substrate 10 is heated at a temperature of, for example, 1300 ° C. or higher and 1400 ° C. or lower in an atmosphere containing oxygen. As a result, the gate insulating film 15 is formed in contact with the first drift region 12a at the bottom portion BT and in contact with the second drift region 12b, the body region 13 and the source region 14 at the side portion SW. Gate insulating film 15 has third main surface 15b1 in contact with bottom portion BT, and fourth main surface 15b2 opposite to third main surface 15b1.
 ゲート絶縁膜15は、側部SWにおいてボディ領域13に接する第1部分15aと、底部BTにおいて第1ドリフト領域12aに接する第2部分15bとを含んでいる。底部BTに対して垂直な方向における第2部分15bの厚みは、側部SWに対して垂直な方向における第1部分15aの厚みよりも大きくてもよい。第2部分15bの厚みを第1部分15aの厚みで除した値は、たとえば1.5以上8以下である。 The gate insulating film 15 includes a first portion 15a in contact with the body region 13 in the side portion SW and a second portion 15b in contact with the first drift region 12a in the bottom portion BT. The thickness of the second portion 15b in the direction perpendicular to the bottom portion BT may be larger than the thickness of the first portion 15a in the direction perpendicular to the side portion SW. A value obtained by dividing the thickness of the second portion 15b by the thickness of the first portion 15a is, for example, 1.5 or more and 8 or less.
 再び図3を参照して、ボディ領域13と第2ドリフト領域12bと第1ドリフト領域12aとにより構成される領域において、第2主面10bに対して垂直な方向の位置をxとし、n型不純物の濃度とp型不純物の濃度との差の絶対値をyとしたとき、xとyとの関係を示すプロファイルは、第1極小値C3と、第1極小値C3よりも第1主面10a側に位置する第2極小値C4とを有する。第2主面10bに対して垂直な方向において、第1極小値C3を示す位置a1は、第3主面15b1の位置b1と第4主面15b2の位置b2との間にある。第2主面10bに対して垂直な方向において、第2極小値C4を示す位置a2は、第1主面10aの位置0と第4主面15b2の位置b2との間にある。 Referring to FIG. 3 again, in the region constituted by body region 13, second drift region 12b, and first drift region 12a, the position in the direction perpendicular to second main surface 10b is x, and n-type Assuming that the absolute value of the difference between the impurity concentration and the p-type impurity concentration is y, the profile indicating the relationship between x and y is the first main surface than the first minimum value C3 and the first minimum value C3. And a second minimum value C4 located on the 10a side. In a direction perpendicular to the second main surface 10b, the position a1 indicating the first minimum value C3 is between the position b1 of the third main surface 15b1 and the position b2 of the fourth main surface 15b2. In a direction perpendicular to the second main surface 10b, the position a2 indicating the second minimum value C4 is between the position 0 of the first main surface 10a and the position b2 of the fourth main surface 15b2.
 炭化珪素基板10を熱酸化した後に、一酸化窒素(NO)ガス雰囲気中において炭化珪素基板10に対して熱処理(NOアニール)が行われてもよい。NOアニールにおいて、炭化珪素基板10が、たとえば1100℃以上1300℃以下の条件下で1時間程度保持される。これにより、ゲート絶縁膜15とボディ領域13との界面領域に窒素原子が導入される。その結果、界面領域における界面準位の形成が抑制されることで、チャネル移動度を向上させることができる。なお、窒素原子の導入が可能であれば、NOガス以外のガス(たとえばN2O)が雰囲気ガスとして用いられてもよい。NOアニールの後にさらに、雰囲気ガスとしてアルゴン(Ar)を用いるArアニールが行われてもよい。Arアニールの加熱温度は、たとえば上記NOアニールの加熱温度以上である。Arアニールの時間は、たとえば1時間程度である。これにより、ゲート絶縁膜15とボディ領域13との界面領域における界面準位の形成がさらに抑制される。 After thermally oxidizing silicon carbide substrate 10, heat treatment (NO annealing) may be performed on silicon carbide substrate 10 in a nitrogen monoxide (NO) gas atmosphere. In NO annealing, silicon carbide substrate 10 is held for about 1 hour under conditions of, for example, 1100 ° C. or higher and 1300 ° C. or lower. As a result, nitrogen atoms are introduced into the interface region between the gate insulating film 15 and the body region 13. As a result, the formation of interface states in the interface region is suppressed, so that channel mobility can be improved. As long as nitrogen atoms can be introduced, a gas other than NO gas (for example, N 2 O) may be used as the atmospheric gas. Ar annealing using argon (Ar) as an atmospheric gas may be further performed after the NO annealing. The heating temperature for Ar annealing is, for example, equal to or higher than the heating temperature for NO annealing. The Ar annealing time is, for example, about 1 hour. As a result, the formation of interface states in the interface region between the gate insulating film 15 and the body region 13 is further suppressed.
 次に、ゲート電極を形成する工程が実施される。たとえば、トレンチTRの内部においてゲート絶縁膜15に接するゲート電極27が形成される。ゲート電極27は、トレンチTRの内部に配置され、ゲート絶縁膜15上においてトレンチTRの側部SWおよび底部BTの各々と対面するように形成される。ゲート電極27は、たとえばLPCVD(Low Pressure Chemical Vapor Deposition)法により形成される。 Next, a step of forming a gate electrode is performed. For example, gate electrode 27 in contact with gate insulating film 15 is formed inside trench TR. Gate electrode 27 is arranged inside trench TR and is formed on gate insulating film 15 so as to face each of side portion SW and bottom portion BT of trench TR. The gate electrode 27 is formed, for example, by LPCVD (Low Pressure Chemical Vapor Deposition) method.
 次に、層間絶縁膜を形成する工程が形成される。たとえば、ゲート電極27を覆い、かつゲート絶縁膜15と接するように層間絶縁膜22が形成される。好ましくは、層間絶縁膜22は、堆積法により形成され、より好ましくは化学気相成長法により形成される。層間絶縁膜22は、たとえば二酸化珪素を含む材料からなる。次に、ソース領域14およびコンタクト領域18上に開口部が形成されるように、層間絶縁膜22およびゲート絶縁膜15の一部がエッチングされる。これにより、コンタクト領域18およびソース領域14がゲート絶縁膜15から露出する(図28参照)。 Next, a step of forming an interlayer insulating film is formed. For example, the interlayer insulating film 22 is formed so as to cover the gate electrode 27 and to be in contact with the gate insulating film 15. Preferably, the interlayer insulating film 22 is formed by a deposition method, more preferably a chemical vapor deposition method. Interlayer insulating film 22 is made of, for example, a material containing silicon dioxide. Next, part of interlayer insulating film 22 and gate insulating film 15 is etched so that an opening is formed on source region 14 and contact region 18. As a result, the contact region 18 and the source region 14 are exposed from the gate insulating film 15 (see FIG. 28).
 次に、ソース電極を形成する工程が実施される。次に、第1主面10aにおいてソース領域14およびコンタクト領域18に接するソース電極16が形成される。ソース電極16は、たとえばスパッタリング法により形成される。ソース電極16は、たとえばTi、AlおよびSiを含む材料からなる。次に、合金化アニールが実施される。具体的には、ソース領域14およびコンタクト領域18と接するソース電極16が、たとえば900℃以上1100℃以下の温度で5分程度保持される。これにより、ソース電極16の少なくとも一部が、炭化珪素基板10が含む珪素と反応してシリサイド化する。これにより、ソース領域14とオーミック接合するソース電極16が形成される。好ましくは、ソース電極16は、コンタクト領域18とオーミック接合する。 Next, a step of forming a source electrode is performed. Next, source electrode 16 in contact with source region 14 and contact region 18 is formed on first main surface 10a. The source electrode 16 is formed by, for example, a sputtering method. The source electrode 16 is made of a material containing, for example, Ti, Al, and Si. Next, alloying annealing is performed. Specifically, the source electrode 16 in contact with the source region 14 and the contact region 18 is held for about 5 minutes at a temperature of 900 ° C. or higher and 1100 ° C. or lower, for example. Thereby, at least a part of source electrode 16 reacts with silicon included in silicon carbide substrate 10 to be silicided. As a result, the source electrode 16 that is in ohmic contact with the source region 14 is formed. Preferably, the source electrode 16 is in ohmic contact with the contact region 18.
 次に、ソース電極16と電気的に接続されるソース配線19が形成される。ソース配線19は、ソース電極16および層間絶縁膜22上に形成される。次に、炭化珪素基板10の第2主面10bと接するようにドレイン電極20が形成される。以上により、本実施の形態に係るMOSFET1(図1)が完成する。 Next, a source wiring 19 electrically connected to the source electrode 16 is formed. The source wiring 19 is formed on the source electrode 16 and the interlayer insulating film 22. Next, drain electrode 20 is formed in contact with second main surface 10b of silicon carbide substrate 10. Thus, MOSFET 1 (FIG. 1) according to the present embodiment is completed.
 次に、ゲート絶縁膜を形成する工程の変形例について説明する。
 図29に示されるように、第1主面10aにトレンチTRが形成された後、トレンチTRを完全に埋めるように、珪素層4が第1主面10a上に形成されてもよい。底部BT上の珪素層4の部分の厚みは、トレンチTRの深さH1(図1参照)よりも大きい。珪素層4は、第1主面10aにおいてソース領域14およびコンタクト領域18に接する。珪素層4は、側部SWにおいて、ソース領域14とボディ領域13と第2ドリフト領域12bと第1ドリフト領域12aとに接する。珪素層4は、底部BTにおいて、第1ドリフト領域12aに接する。
Next, a modification of the step of forming the gate insulating film will be described.
As shown in FIG. 29, after trench TR is formed in first main surface 10a, silicon layer 4 may be formed on first main surface 10a so as to completely fill trench TR. The thickness of the portion of the silicon layer 4 on the bottom BT is larger than the depth H1 (see FIG. 1) of the trench TR. Silicon layer 4 is in contact with source region 14 and contact region 18 on first main surface 10a. Silicon layer 4 is in contact with source region 14, body region 13, second drift region 12b, and first drift region 12a in side SW. Silicon layer 4 is in contact with first drift region 12a at bottom BT.
 次に、第1主面10aの全面に対して、たとえばドライエッチングが行われることにより、珪素層4の大部分が除去される。具体的には、珪素層4の一部4bが底部BT上に残されつつ、側部SWおよび第1主面10a上から珪素層4の部分が除去される(図30参照)。次に、底部BT上に珪素層4の一部4bが残された状態で、炭化珪素基板10が熱酸化される。これにより、底部BTにおいて第1ドリフト領域12aと接し、かつ側部SWにおいて第2ドリフト領域12bと、ボディ領域13と、ソース領域14とに接するゲート絶縁膜15が形成されてもよい(図27参照)。 Next, most of the silicon layer 4 is removed by performing, for example, dry etching on the entire surface of the first main surface 10a. Specifically, part of silicon layer 4 is removed from side SW and first main surface 10a while part 4b of silicon layer 4 remains on bottom BT (see FIG. 30). Next, silicon carbide substrate 10 is thermally oxidized with a portion 4b of silicon layer 4 left on bottom portion BT. Thereby, the gate insulating film 15 may be formed in contact with the first drift region 12a at the bottom BT and in contact with the second drift region 12b, the body region 13, and the source region 14 at the side SW (FIG. 27). reference).
 なお、上記実施の形態においては、炭化珪素半導体装置は、MOSFETの場合について説明したが、炭化珪素半導体装置は、MOSFETに限定されない。炭化珪素半導体装置は、たとえばIGBT(Insulated Gate Bipolar Transistor)等であってもよい。また上記実施の形態では、n型を第1導電型とし、かつp型を第2導電型して説明したが、p型を第1導電型とし、かつn型を第2導電型としてもよい。 In the above embodiment, the silicon carbide semiconductor device is described as being a MOSFET, but the silicon carbide semiconductor device is not limited to a MOSFET. The silicon carbide semiconductor device may be, for example, an IGBT (Insulated Gate Bipolar Transistor). In the above embodiment, the n-type is the first conductivity type and the p-type is the second conductivity type. However, the p-type may be the first conductivity type and the n-type may be the second conductivity type. .
 次に、実施の形態に係るMOSFETの作用効果について説明する。
 実施の形態に係るMOSFET1によれば、第2主面10bに対して垂直な方向において、第2極小値C4を示す位置a2は、第1主面10aの位置0と第4主面15b2の位置b2との間にある。第2極小値C4を示す位置a2は、ボディ領域13の底部の位置a2に対応する。つまり、ボディ領域13の底部の位置a2が、第1主面10aの位置0と第4主面15b2の位置b2との間にある。そのため、ボディ領域13内におけるチャネル領域上のゲート絶縁膜15の厚みが大きくなることを抑制することができる。従って、ボディ領域13の底部の位置a2が、第3主面15b1の位置b1と第4主面15b2の位置b2との間にある場合と比較して、MOSFET1のオン抵抗を低減することができる。
Next, functions and effects of the MOSFET according to the embodiment will be described.
According to the MOSFET 1 according to the embodiment, the position a2 indicating the second minimum value C4 in the direction perpendicular to the second main surface 10b is the position 0 of the first main surface 10a and the position of the fourth main surface 15b2. It is between b2. The position a2 indicating the second minimum value C4 corresponds to the position a2 at the bottom of the body region 13. That is, the position a2 at the bottom of the body region 13 is between the position 0 of the first main surface 10a and the position b2 of the fourth main surface 15b2. Therefore, it is possible to suppress an increase in the thickness of the gate insulating film 15 on the channel region in the body region 13. Therefore, the on-resistance of MOSFET 1 can be reduced as compared with the case where the position a2 at the bottom of the body region 13 is between the position b1 of the third main surface 15b1 and the position b2 of the fourth main surface 15b2. .
 また実施の形態に係るMOSFET1によれば、第2主面10bに対して垂直な方向において、第1極小値C3を示す位置a1は、第3主面15b1の位置b1と第4主面15b2の位置b2との間にある。そのため、トレンチTRの底部BT近傍における第1ドリフト領域12aの部分におけるn型不純物の濃度を低減することができる。結果として、電界緩和領域17からの空乏層の伸長幅を大きくすることができるので、トレンチTRの角部に電界が集中することを抑制することができる。 According to MOSFET 1 according to the embodiment, the position a1 indicating the first minimum value C3 in the direction perpendicular to the second main surface 10b is the position b1 of the third main surface 15b1 and the position of the fourth main surface 15b2. It is between position b2. Therefore, the concentration of the n-type impurity in the portion of the first drift region 12a in the vicinity of the bottom portion BT of the trench TR can be reduced. As a result, since the extension width of the depletion layer from the electric field relaxation region 17 can be increased, it is possible to suppress the concentration of the electric field at the corners of the trench TR.
 さらに実施の形態に係るMOSFET1によれば、ゲート絶縁膜15は、側部SWにおいて第2不純物領域13に接する第1部分15aと、底部BTにおいて第1ドリフト領域12aに接する第2部分15bとを含んでいる。底部BTに対して垂直な方向における第2部分15bの厚みtは、側部SWに対して垂直な方向における第1部分15aの厚みtよりも大きい。第1部分15aの厚みtが小さいことにより、チャネルが反転しやすくなるため、MOSFET1のオン抵抗を低減することができる。第2部分15bの厚みtが大きいことにより、底部BT上のゲート絶縁膜15が破壊されることを抑制することができる。 Furthermore, according to the MOSFET 1 according to the embodiment, the gate insulating film 15 includes the first portion 15a in contact with the second impurity region 13 in the side portion SW and the second portion 15b in contact with the first drift region 12a in the bottom portion BT. Contains. The thickness t b of the second portion 15b in a direction perpendicular to the bottom portion BT is greater than the thickness t s of the first portion 15a in a direction perpendicular to the sides SW. When the thickness t s of the first portion 15a is small, because the channel is easily reversed, it is possible to reduce the on resistance of the MOSFET 1. When the thickness t b of the second portion 15b is large, it is possible to gate insulating film 15 on the bottom portion BT is prevented from being destroyed.
 さらに実施の形態に係るMOSFET1によれば、第2部分15bの厚みtを第1部分15aの厚みtで除した値は、1.5以上8以下である。第2部分15bの厚みtを第1部分15aの厚みtで除した値を1.5以上とすることにより、トレンチ底のゲート絶縁膜にかかる電界を緩和することができる。第2部分15bの厚みtを第1部分15aの厚みtで除した値を8以下とすることにより、ボディ領域13に第2部分15bを干渉させることなくオン抵抗を低く維持することができる。 According to MOSFET1 according to still embodiment, the values of the thickness t b divided by the thickness t s of the first portion 15a of the second portion 15b is 1.5 or more and 8 or less. With divided by the value of 1.5 or more in the thickness t s of the thickness t b of the second portion 15b first portion 15a, it is possible to relax the electric field applied to the gate insulating film of the trench bottom. By value than 8 obtained by dividing the thickness t b of the second portion 15b the thickness t s of the first portion 15a, to be kept low on-resistance without interfering the second portion 15b to the body region 13 it can.
 さらに実施の形態に係るMOSFET1によれば、第2主面10bに対して垂直な方向における第1主面10aと底部BTとの間の距離H1は、1μm以上1.5μm以下である。距離H1を1μm以上とすることにより、トレンチ底がボディ領域13の外部に位置することでオン抵抗の増加を抑制することができる。距離H1を1.5μm以下とすることにより、トレンチ底角部のゲート絶縁膜にかかる電界を緩和することができる。 Furthermore, according to MOSFET 1 according to the embodiment, distance H1 between first main surface 10a and bottom portion BT in the direction perpendicular to second main surface 10b is not less than 1 μm and not more than 1.5 μm. By setting the distance H1 to be 1 μm or more, an increase in on-resistance can be suppressed because the trench bottom is located outside the body region 13. By setting the distance H1 to 1.5 μm or less, the electric field applied to the gate insulating film at the bottom corner of the trench can be relaxed.
 さらに実施の形態に係るMOSFET1によれば、第2主面10bに対して垂直な方向におけるボディ領域13の厚みH2は、0.4μm以上0.8μm以下であってもよい。厚みH2を0.4μm以上とすることにより、ゲート閾値電圧を高くし、ドレイン耐圧を高く維持することができる。厚みH2を0.8μm以下とすることにより、ボディ領域13に第2部分15bを干渉させることなくオン抵抗を低く維持することができる。 Furthermore, according to MOSFET 1 according to the embodiment, thickness H2 of body region 13 in the direction perpendicular to second main surface 10b may be not less than 0.4 μm and not more than 0.8 μm. By setting the thickness H2 to 0.4 μm or more, the gate threshold voltage can be increased and the drain breakdown voltage can be maintained high. By setting the thickness H2 to 0.8 μm or less, the on-resistance can be kept low without causing the second portion 15b to interfere with the body region 13.
 さらに実施の形態に係るMOSFET1によれば、第2ドリフト領域12bのn型不純物の濃度の最大値を第1ドリフト領域12aのn型不純物の濃度の最大値で除した値は、5以上10以下であってもよい。第2ドリフト領域12bの第1導電型不純物の濃度の最大値を第1ドリフト領域12aの第1導電型不純物の濃度の最大値で除した値を5以上とすることにより、ボディ領域13から第1ドリフト領域にかけて存在する第2導電型不純物を補償することで、有効チャネル長を制御し、オン抵抗を低くすることができる。第2ドリフト領域12bの第1導電型不純物の濃度の最大値を第1ドリフト領域12aの第1導電型不純物の濃度の最大値で除した値を10以下とすることにより、ボディ領域13の第2導電型不純物の有効濃度を維持することができ、かつトレンチ底角部に接するゲート絶縁膜にかかる電界を低くすることができる。その結果ドレイン耐圧を維持することができる。 Furthermore, according to MOSFET 1 according to the embodiment, the value obtained by dividing the maximum value of the n-type impurity concentration of second drift region 12b by the maximum value of the concentration of n-type impurity of first drift region 12a is 5 or more and 10 or less. It may be. By dividing the maximum value of the first conductivity type impurity concentration of the second drift region 12b by the maximum value of the first conductivity type impurity concentration of the first drift region 12a to 5 or more, By compensating for the second conductivity type impurity existing over one drift region, the effective channel length can be controlled and the on-resistance can be lowered. By dividing the maximum value of the first conductivity type impurity concentration of the second drift region 12b by the maximum value of the first conductivity type impurity concentration of the first drift region 12a to 10 or less, The effective concentration of the two conductivity type impurities can be maintained, and the electric field applied to the gate insulating film in contact with the bottom corner portion of the trench can be reduced. As a result, the drain breakdown voltage can be maintained.
 さらに実施の形態に係るMOSFET1によれば、ボディ領域13のp型不純物の濃度の最大値を第2ドリフト領域12bのn型不純物の濃度の最大値で除した値は、10以上100以下であってもよい。ボディ領域13のp型不純物の濃度の最大値を第2ドリフト領域12bのn型不純物の濃度の最大値で除した値を10以上とすることにより、ゲート閾値電圧を高くし、ドレイン耐圧を高く維持することができる。ボディ領域13のp型不純物の濃度の最大値を第2ドリフト領域12bのn型不純物の濃度の最大値で除した値を100以下とすることにより、ボディ領域13から第1ドリフト領域にかけて存在するp型不純物を補償することで、有効チャネル長を制御し、オン抵抗を低くすることができる。 Furthermore, according to MOSFET 1 according to the embodiment, the value obtained by dividing the maximum value of the p-type impurity concentration in body region 13 by the maximum value of the n-type impurity concentration in second drift region 12b is 10 or more and 100 or less. May be. By dividing the maximum value of the p-type impurity concentration in the body region 13 by the maximum value of the n-type impurity concentration in the second drift region 12b to 10 or more, the gate threshold voltage is increased and the drain breakdown voltage is increased. Can be maintained. The value obtained by dividing the maximum value of the concentration of the p-type impurity in the body region 13 by the maximum value of the concentration of the n-type impurity in the second drift region 12b is set to 100 or less, thereby existing from the body region 13 to the first drift region. By compensating the p-type impurity, the effective channel length can be controlled and the on-resistance can be lowered.
 さらに実施の形態に係るMOSFET1によれば、側部SWは、面方位{0-33-8}を有する面S1を含んでいてもよい。これにより、側部SWにおけるチャネル抵抗を低減することができる。 Furthermore, according to MOSFET 1 according to the embodiment, side SW may include a plane S1 having a plane orientation {0-33-8}. Thereby, the channel resistance in the side part SW can be reduced.
 実施の形態に係るMOSFET1の製造方法によれば、ボディ領域13は、第1ドリフト領域12aよりも高いn型不純物濃度を有する第2ドリフト領域12bに対してp型不純物のイオン注入が行われることにより形成される。それゆえ、p型不純物のチャネリングを抑制することができる。結果として、ボディ領域13の厚みH2を小さくすることができるので、チャネル長を短くすることができる。それゆえ、MOSFET1のオン抵抗を低減することができる。 According to the method of manufacturing MOSFET 1 according to the embodiment, body region 13 is subjected to ion implantation of p-type impurities into second drift region 12b having an n-type impurity concentration higher than that of first drift region 12a. It is formed by. Therefore, channeling of p-type impurities can be suppressed. As a result, since the thickness H2 of the body region 13 can be reduced, the channel length can be shortened. Therefore, the on-resistance of MOSFET 1 can be reduced.
 また実施の形態に係るMOSFET1の製造方法によれば、第2主面10bに対して垂直な方向において、第1極小値C3を示す位置a1は、第3主面15b1の位置b1と第4主面15b2の位置b2との間にある。そのため、トレンチTRの底部BT近傍における第1ドリフト領域12aの部分におけるn型不純物の濃度を低減することができる。結果として、電界緩和領域17からの空乏層の伸長幅を大きくすることができるので、トレンチTRの角部に電界が集中することを抑制することができる。 Further, according to the method for manufacturing MOSFET 1 according to the embodiment, the position a1 indicating the first minimum value C3 in the direction perpendicular to the second main surface 10b is the same as the position b1 of the third main surface 15b1 and the fourth main surface 15b1. Between the position b2 of the surface 15b2. Therefore, the concentration of the n-type impurity in the portion of the first drift region 12a in the vicinity of the bottom portion BT of the trench TR can be reduced. As a result, since the extension width of the depletion layer from the electric field relaxation region 17 can be increased, it is possible to suppress the concentration of the electric field at the corners of the trench TR.
 さらに実施の形態に係るMOSFET1の製造方法によれば、ゲート絶縁膜15を形成する工程は、側部SWおよび底部BTに接する珪素層4を形成する工程と、底部BTに対面する珪素層4の部分上にマスク層5を形成する工程と、マスク層5を用いて珪素層4の一部を除去する工程と、マスク層5を除去する工程と、マスク層5を除去する工程後、底部BT上に珪素層4の一部が残された状態で、炭化珪素基板10を熱酸化する工程とを含んでいる。これにより、底部BT上のゲート絶縁膜15の部分の厚みが、側部SW上のゲート絶縁膜15の厚みよりも大きいゲート絶縁膜15を、簡易な方法で製造することができる。 Furthermore, according to the method for manufacturing MOSFET 1 according to the embodiment, the step of forming gate insulating film 15 includes the step of forming silicon layer 4 in contact with side SW and bottom BT, and the step of forming silicon layer 4 facing bottom BT. After the step of forming mask layer 5 on the portion, the step of removing part of silicon layer 4 using mask layer 5, the step of removing mask layer 5, the step of removing mask layer 5, the bottom BT And a step of thermally oxidizing silicon carbide substrate 10 with a portion of silicon layer 4 remaining thereon. Thereby, the gate insulating film 15 in which the thickness of the portion of the gate insulating film 15 on the bottom portion BT is larger than the thickness of the gate insulating film 15 on the side portion SW can be manufactured by a simple method.
 さらに実施の形態に係るMOSFET1の製造方法によれば、トレンチTRを形成する工程は、熱エッチングにより行われる。これにより、効果的にトレンチTRの側部SWを特殊面にすることができる。結果として、側部SWにおけるチャネル抵抗を低減することができる。 Furthermore, according to the method for manufacturing MOSFET 1 according to the embodiment, the step of forming trench TR is performed by thermal etching. Thereby, the side part SW of trench TR can be effectively made into a special surface. As a result, the channel resistance in the side SW can be reduced.
 さらに実施の形態に係るMOSFET1の製造方法によれば、第1ドリフト領域12aを形成する工程および第2ドリフト領域12bを形成する工程は、炭素および珪素を含むガスを用いて行われてもよい。第2ドリフト領域12bを形成する工程における珪素の原子数を炭素の原子数で除した値は、第1ドリフト領域12aを形成する工程における珪素の原子数を炭素の原子数で除した値よりも大きくてもよい。炭素は、珪素よりも窒素を取り込みやすい。そのため、第2ドリフト領域12bを形成する工程において、n型不純物としての窒素を取り込みやすくなる。結果として、効果的に、第2ドリフト領域12bにおけるn型不純物の濃度を第1ドリフト領域12aにおけるn型不純物の濃度よりも高くすることができる。 Furthermore, according to the method for manufacturing MOSFET 1 according to the embodiment, the step of forming first drift region 12a and the step of forming second drift region 12b may be performed using a gas containing carbon and silicon. The value obtained by dividing the number of silicon atoms in the step of forming the second drift region 12b by the number of carbon atoms is greater than the value obtained by dividing the number of silicon atoms in the step of forming the first drift region 12a by the number of carbon atoms. It can be large. Carbon is easier to incorporate nitrogen than silicon. Therefore, in the step of forming the second drift region 12b, nitrogen as an n-type impurity can be easily taken up. As a result, the n-type impurity concentration in the second drift region 12b can be effectively made higher than the n-type impurity concentration in the first drift region 12a.
 さらに実施の形態に係るMOSFET1の製造方法によれば、第1主面10aは、炭素面側であり、第2主面10bは、珪素面側である。炭素面は、珪素面よりも窒素を取り込みやすい。そのため、効果的に、第1主面10a側に形成される第2ドリフト領域12bのn型不純物の濃度を第1ドリフト領域12aにおけるn型不純物の濃度よりも高くすることができる。またトレンチTRの側部SWを特殊面とすることができる。結果として、側部SWにおけるチャネル抵抗を低減することができる。 Furthermore, according to the method for manufacturing MOSFET 1 according to the embodiment, first main surface 10a is on the carbon surface side, and second main surface 10b is on the silicon surface side. The carbon surface is easier to capture nitrogen than the silicon surface. Therefore, the concentration of the n-type impurity in the second drift region 12b formed on the first main surface 10a side can be effectively made higher than the concentration of the n-type impurity in the first drift region 12a. Further, the side portion SW of the trench TR can be a special surface. As a result, the channel resistance in the side SW can be reduced.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 炭化珪素半導体装置(MOSFET)、3,5 マスク層、4 珪素層、4a 第1珪素層部、4b 第2珪素層部(一部)、10 炭化珪素基板、10a 第1主面、10b 第2主面、11 炭化珪素単結晶基板、11a 境界面、12 第1不純物領域(ドリフト領域)、12a 第1ドリフト領域、12b 第2ドリフト領域、13 第2不純物領域(ボディ領域)、14 第3不純物領域(ソース領域)、15 ゲート絶縁膜、15a 第1部分、15b1 第3主面、15b2 第4主面、15b 第2部分、16 ソース電極、17 電界緩和領域、18 コンタクト領域、19 ソース配線、20 ドレイン電極、22 層間絶縁膜、24 炭化珪素エピタキシャル層、27 ゲート電極、BT 底部、CD チャネル方向、H1 距離(深さ)、H2,tb,ts 厚み、S1,S2,S3 面、SQ,SR 複合面、SW 側部、TR トレンチ。 1 silicon carbide semiconductor device (MOSFET), 3, 5 mask layer, 4 silicon layer, 4a first silicon layer part, 4b second silicon layer part (part), 10 silicon carbide substrate, 10a first main surface, 10b first 2 main surface, 11 silicon carbide single crystal substrate, 11a boundary surface, 12 first impurity region (drift region), 12a first drift region, 12b second drift region, 13 second impurity region (body region), 14 third Impurity region (source region), 15 gate insulating film, 15a first part, 15b1, third main surface, 15b2, fourth main surface, 15b second part, 16 source electrode, 17 electric field relaxation region, 18 contact region, 19 source wiring , 20 drain electrode, 22 interlayer insulating film, 24 silicon carbide epitaxial layer, 27 gate electrode, BT bottom, CD channel Direction, H1 distance (depth), H2, tb, ts thickness, S1, S2, S3 surface, SQ, SR complex surface, SW side, TR trench.

Claims (13)

  1.  第1主面と、前記第1主面と反対側の第2主面とを有する炭化珪素基板を備え、
     前記炭化珪素基板は、第1導電型を有する第1不純物領域と、
     前記第1不純物領域上に設けられ、前記第1導電型と異なる第2導電型を有する第2不純物領域と、
     前記第1不純物領域から隔てられるように前記第2不純物領域上に設けられ、前記第1主面を構成し、かつ前記第1導電型を有する第3不純物領域とを含み、
     前記第1不純物領域は、第1ドリフト領域と、前記第1ドリフト領域と前記第2不純物領域とに挟まれた第2ドリフト領域とを有し、
     前記第2ドリフト領域における第1導電型不純物の濃度の最大値は、前記第1ドリフト領域における前記第1導電型不純物の濃度の最大値よりも大きく、
     前記第1主面には、前記第2ドリフト領域と、前記第2不純物領域と、前記第3不純物領域とを貫通し、かつ前記第1ドリフト領域に至る側部と、前記側部と連続して設けられた底部とにより規定されたトレンチが形成されており、さらに、
     前記底部において前記第1ドリフト領域と接し、かつ前記側部において前記第2ドリフト領域と、前記第2不純物領域と、前記第3不純物領域とに接するゲート絶縁膜とを備え、
     前記ゲート絶縁膜は、前記底部に接する第3主面と、前記第3主面と反対側の第4主面とを有し、
     前記第2不純物領域と前記第2ドリフト領域と前記第1ドリフト領域とにより構成される領域において、前記第2主面に対して垂直な方向の位置をxとし、前記第1導電型不純物の濃度と第2導電型不純物の濃度との差の絶対値をyとしたとき、xとyとの関係を示すプロファイルは、第1極小値と、前記第1極小値よりも前記第1主面側に位置する第2極小値とを有し、
     前記第2主面に対して垂直な方向において、前記第1極小値を示す位置は、前記第3主面の位置と前記第4主面の位置との間にあり、
     前記第2主面に対して垂直な方向において、前記第2極小値を示す位置は、前記第1主面の位置と前記第4主面の位置との間にある、炭化珪素半導体装置。
    A silicon carbide substrate having a first main surface and a second main surface opposite to the first main surface;
    The silicon carbide substrate includes a first impurity region having a first conductivity type;
    A second impurity region provided on the first impurity region and having a second conductivity type different from the first conductivity type;
    A third impurity region provided on the second impurity region so as to be separated from the first impurity region, constituting the first main surface, and having the first conductivity type;
    The first impurity region includes a first drift region, and a second drift region sandwiched between the first drift region and the second impurity region,
    The maximum concentration of the first conductivity type impurity in the second drift region is greater than the maximum concentration of the first conductivity type impurity in the first drift region,
    The first main surface includes a side portion that passes through the second drift region, the second impurity region, and the third impurity region and reaches the first drift region, and is continuous with the side portion. And a trench defined by a bottom portion provided, and further,
    A gate insulating film in contact with the first drift region at the bottom and in contact with the second drift region, the second impurity region, and the third impurity region at the side;
    The gate insulating film has a third main surface in contact with the bottom, and a fourth main surface opposite to the third main surface,
    In the region constituted by the second impurity region, the second drift region, and the first drift region, the position in the direction perpendicular to the second main surface is x, and the concentration of the first conductivity type impurity When the absolute value of the difference between the first conductivity type impurity concentration and the second conductivity type impurity is y, the profile indicating the relationship between x and y is the first minimum value and the first main surface side of the first minimum value. A second local minimum located at
    In a direction perpendicular to the second main surface, the position showing the first minimum value is between the position of the third main surface and the position of the fourth main surface,
    The silicon carbide semiconductor device, wherein the position showing the second minimum value is between the position of the first main surface and the position of the fourth main surface in a direction perpendicular to the second main surface.
  2.  前記ゲート絶縁膜は、前記側部において前記第2不純物領域に接する第1部分と、前記底部において前記第1ドリフト領域に接する第2部分とを含み、
     前記底部に対して垂直な方向における前記第2部分の厚みは、前記側部に対して垂直な方向における前記第1部分の厚みよりも大きい、請求項1に記載の炭化珪素半導体装置。
    The gate insulating film includes a first portion in contact with the second impurity region at the side portion, and a second portion in contact with the first drift region at the bottom portion,
    2. The silicon carbide semiconductor device according to claim 1, wherein a thickness of said second portion in a direction perpendicular to said bottom portion is greater than a thickness of said first portion in a direction perpendicular to said side portion.
  3.  前記第2部分の厚みを前記第1部分の厚みで除した値は、1.5以上8以下である、請求項2に記載の炭化珪素半導体装置。 The silicon carbide semiconductor device according to claim 2, wherein a value obtained by dividing the thickness of the second portion by the thickness of the first portion is 1.5 or more and 8 or less.
  4.  前記第2主面に対して垂直な方向における前記第1主面と前記底部との間の距離は、1μm以上1.5μm以下である、請求項1~請求項3のいずれか1項に記載の炭化珪素半導体装置。 The distance between the first main surface and the bottom in a direction perpendicular to the second main surface is 1 μm or more and 1.5 μm or less. Silicon carbide semiconductor device.
  5.  前記第2主面に対して垂直な方向における前記第2不純物領域の厚みは、0.4μm以上0.8μm以下である、請求項1~請求項4のいずれか1項に記載の炭化珪素半導体装置。 The silicon carbide semiconductor according to any one of claims 1 to 4, wherein a thickness of the second impurity region in a direction perpendicular to the second main surface is not less than 0.4 µm and not more than 0.8 µm. apparatus.
  6.  前記第2ドリフト領域の前記第1導電型不純物の濃度の最大値を前記第1ドリフト領域の前記第1導電型不純物の濃度の最大値で除した値は、5以上10以下である、請求項1~請求項5のいずれか1項に記載の炭化珪素半導体装置。 The value obtained by dividing the maximum value of the concentration of the first conductivity type impurity in the second drift region by the maximum value of the concentration of the first conductivity type impurity in the first drift region is 5 or more and 10 or less. The silicon carbide semiconductor device according to any one of claims 1 to 5.
  7.  前記第2不純物領域の前記第2導電型不純物の濃度の最大値を前記第2ドリフト領域の前記第1導電型不純物の濃度の最大値で除した値は、10以上100以下である、請求項1~請求項6のいずれか1項に記載の炭化珪素半導体装置。 The value obtained by dividing the maximum value of the second conductivity type impurity concentration in the second impurity region by the maximum value of the first conductivity type impurity concentration in the second drift region is 10 or more and 100 or less. The silicon carbide semiconductor device according to any one of claims 1 to 6.
  8.  前記側部は、面方位{0-33-8}を有する面を含む、請求項1~請求項7のいずれか1項に記載の炭化珪素半導体装置。 The silicon carbide semiconductor device according to any one of claims 1 to 7, wherein the side portion includes a plane having a plane orientation {0-33-8}.
  9.  第1主面と、前記第1主面と反対側の第2主面とを有する炭化珪素基板を準備する工程を備え、
     前記炭化珪素基板は、第1導電型を有する第1不純物領域と、
     前記第1不純物領域上に設けられ、前記第1導電型と異なる第2導電型を有する第2不純物領域と、
     前記第1不純物領域から隔てられるように前記第2不純物領域上に設けられ、前記第1主面を構成し、かつ前記第1導電型を有する第3不純物領域とを含み、
     前記第1不純物領域は、第1ドリフト領域と、前記第1ドリフト領域と前記第2不純物領域とに挟まれた第2ドリフト領域とを有し、
     前記第2ドリフト領域における第1導電型不純物の濃度の最大値は、前記第1ドリフト領域における前記第1導電型不純物の濃度の最大値よりも大きく、
     前記第1ドリフト領域および前記第2ドリフト領域は、エピタキシャル成長により形成され、
     前記第2不純物領域は、前記第2ドリフト領域に対してイオン注入が行われることにより形成され、さらに、
     前記第1主面に、前記第2ドリフト領域と、前記第2不純物領域と、前記第3不純物領域とを貫通し、かつ前記第1ドリフト領域に至る側部と、前記側部と連続して設けられた底部とにより規定されるトレンチを形成する工程と、
     前記底部において前記第1ドリフト領域と接し、かつ前記側部において前記第2ドリフト領域と、前記第2不純物領域と、前記第3不純物領域とに接するゲート絶縁膜を形成する工程とを備え、
     前記ゲート絶縁膜は、前記底部に接する第3主面と、前記第3主面と反対側の第4主面とを有し、
     前記第2不純物領域と前記第2ドリフト領域と前記第1ドリフト領域とにより構成される領域において、前記第2主面に対して垂直な方向の位置をxとし、前記第1導電型不純物の濃度と第2導電型不純物の濃度との差の絶対値をyとしたとき、xとyとの関係を示すプロファイルは、第1極小値と、前記第1極小値よりも前記第1主面側に位置する第2極小値とを有し、
     前記第2主面に対して垂直な方向において、前記第1極小値を示す位置は、前記第3主面の位置と前記第4主面の位置との間にあり、
     前記第2主面に対して垂直な方向において、前記第2極小値を示す位置は、前記第1主面の位置と前記第4主面の位置との間にある、炭化珪素半導体装置の製造方法。
    Providing a silicon carbide substrate having a first main surface and a second main surface opposite to the first main surface;
    The silicon carbide substrate includes a first impurity region having a first conductivity type;
    A second impurity region provided on the first impurity region and having a second conductivity type different from the first conductivity type;
    A third impurity region provided on the second impurity region so as to be separated from the first impurity region, constituting the first main surface, and having the first conductivity type;
    The first impurity region includes a first drift region, and a second drift region sandwiched between the first drift region and the second impurity region,
    The maximum concentration of the first conductivity type impurity in the second drift region is greater than the maximum concentration of the first conductivity type impurity in the first drift region,
    The first drift region and the second drift region are formed by epitaxial growth,
    The second impurity region is formed by performing ion implantation on the second drift region, and
    In the first main surface, a side portion that penetrates the second drift region, the second impurity region, and the third impurity region and reaches the first drift region, and the side portion is continuous. Forming a trench defined by the provided bottom;
    Forming a gate insulating film in contact with the first drift region at the bottom and in contact with the second drift region, the second impurity region, and the third impurity region at the side;
    The gate insulating film has a third main surface in contact with the bottom, and a fourth main surface opposite to the third main surface,
    In the region constituted by the second impurity region, the second drift region, and the first drift region, the position in the direction perpendicular to the second main surface is x, and the concentration of the first conductivity type impurity When the absolute value of the difference between the first conductivity type impurity concentration and the second conductivity type impurity is y, the profile indicating the relationship between x and y is the first minimum value and the first main surface side of the first minimum value. A second local minimum located at
    In a direction perpendicular to the second main surface, the position showing the first minimum value is between the position of the third main surface and the position of the fourth main surface,
    Manufacturing a silicon carbide semiconductor device, wherein the position indicating the second minimum value is between the position of the first main surface and the position of the fourth main surface in a direction perpendicular to the second main surface Method.
  10.  前記ゲート絶縁膜を形成する工程は、
     前記側部および前記底部に接する珪素層を形成する工程と、
     前記底部に対面する前記珪素層の部分上にマスク層を形成する工程と、
     前記マスク層を用いて前記珪素層の一部を除去する工程と、
     前記マスク層を除去する工程と、
     前記マスク層を除去する工程後、前記底部上に前記珪素層の一部が残された状態で、前記炭化珪素基板を熱酸化する工程とを含む、請求項9に記載の炭化珪素半導体装置の製造方法。
    The step of forming the gate insulating film includes:
    Forming a silicon layer in contact with the side and the bottom;
    Forming a mask layer on the portion of the silicon layer facing the bottom;
    Removing a portion of the silicon layer using the mask layer;
    Removing the mask layer;
    The silicon carbide semiconductor device according to claim 9, further comprising a step of thermally oxidizing the silicon carbide substrate in a state where a part of the silicon layer is left on the bottom after the step of removing the mask layer. Production method.
  11.  前記トレンチを形成する工程は、熱エッチングにより行われる、請求項9または請求項10に記載の炭化珪素半導体装置の製造方法。 The method for manufacturing a silicon carbide semiconductor device according to claim 9 or 10, wherein the step of forming the trench is performed by thermal etching.
  12.  前記第1ドリフト領域を形成する工程および前記第2ドリフト領域を形成する工程は、炭素および珪素を含むガスを用いて行われ、
     前記第2ドリフト領域を形成する工程における前記珪素の原子数を前記炭素の原子数で除した値は、前記第1ドリフト領域を形成する工程における前記珪素の原子数を前記炭素の原子数で除した値よりも大きい、請求項9~請求項11のいずれか1項に記載の炭化珪素半導体装置の製造方法。
    The step of forming the first drift region and the step of forming the second drift region are performed using a gas containing carbon and silicon,
    The value obtained by dividing the number of silicon atoms in the step of forming the second drift region by the number of carbon atoms is obtained by dividing the number of silicon atoms in the step of forming the first drift region by the number of carbon atoms. 12. The method for manufacturing a silicon carbide semiconductor device according to claim 9, wherein the method is larger than the measured value.
  13.  前記第1主面は、炭素面側であり、前記第2主面は、珪素面側である、請求項9~請求項12のいずれか1項に記載の炭化珪素半導体装置の製造方法。 13. The method for manufacturing a silicon carbide semiconductor device according to claim 9, wherein the first main surface is a carbon surface side, and the second main surface is a silicon surface side.
PCT/JP2016/067510 2015-06-18 2016-06-13 Silicon carbide semiconductor device and production method for same WO2016204112A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015123052A JP6500628B2 (en) 2015-06-18 2015-06-18 Silicon carbide semiconductor device and method of manufacturing the same
JP2015-123052 2015-06-18

Publications (1)

Publication Number Publication Date
WO2016204112A1 true WO2016204112A1 (en) 2016-12-22

Family

ID=57545886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067510 WO2016204112A1 (en) 2015-06-18 2016-06-13 Silicon carbide semiconductor device and production method for same

Country Status (2)

Country Link
JP (1) JP6500628B2 (en)
WO (1) WO2016204112A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022113609A1 (en) * 2020-11-30 2022-06-02 住友電気工業株式会社 Silicon carbide semiconductor device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7156313B2 (en) 2018-01-22 2022-10-19 住友電気工業株式会社 Silicon carbide semiconductor device
JP7287405B2 (en) 2019-02-04 2023-06-06 住友電気工業株式会社 Silicon carbide semiconductor device
WO2022201719A1 (en) * 2021-03-22 2022-09-29 株式会社デンソー Semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013168540A (en) * 2012-02-16 2013-08-29 Sumitomo Electric Ind Ltd Silicon carbide semiconductor device manufacturing method and silicon carbide semiconductor device
JP2013171931A (en) * 2012-02-20 2013-09-02 Renesas Electronics Corp Semiconductor device and semiconductor device manufacturing method
JP2015082544A (en) * 2013-10-22 2015-04-27 ルネサスエレクトロニクス株式会社 Semiconductor device and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013168540A (en) * 2012-02-16 2013-08-29 Sumitomo Electric Ind Ltd Silicon carbide semiconductor device manufacturing method and silicon carbide semiconductor device
JP2013171931A (en) * 2012-02-20 2013-09-02 Renesas Electronics Corp Semiconductor device and semiconductor device manufacturing method
JP2015082544A (en) * 2013-10-22 2015-04-27 ルネサスエレクトロニクス株式会社 Semiconductor device and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022113609A1 (en) * 2020-11-30 2022-06-02 住友電気工業株式会社 Silicon carbide semiconductor device

Also Published As

Publication number Publication date
JP6500628B2 (en) 2019-04-17
JP2017011031A (en) 2017-01-12

Similar Documents

Publication Publication Date Title
JP5954140B2 (en) Silicon carbide semiconductor device
WO2015040966A1 (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
US9799515B2 (en) Silicon carbide semiconductor device and method of manufacturing the same
JP6171678B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
WO2014199748A1 (en) Silicon carbide semiconductor device
US9647106B2 (en) Silicon carbide semiconductor device and method for manufacturing same
WO2016204112A1 (en) Silicon carbide semiconductor device and production method for same
JP6357869B2 (en) Method for manufacturing silicon carbide semiconductor device
WO2014041878A1 (en) Method for producing silicon carbide semiconductor device
JP6439606B2 (en) Silicon carbide semiconductor device
JP6146146B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
WO2014027520A1 (en) Silicon carbide semiconductor device
JP2015220408A (en) Silicon carbide semiconductor device and manufacturing method of the same
WO2014002589A1 (en) Method of manufacturing silicon carbide semiconductor device and silicon carbide semiconductor device
EP2937905B1 (en) Silicon carbide semiconductor device
WO2014041879A1 (en) Silicon carbide semiconductor device
JP6481511B2 (en) Silicon carbide semiconductor device
JP2016029707A (en) Silicon carbide semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16811586

Country of ref document: EP

Kind code of ref document: A1