WO2016204023A1 - Ball circulation tube for ball screw, ball screw, and ball screw manufacturing method - Google Patents

Ball circulation tube for ball screw, ball screw, and ball screw manufacturing method Download PDF

Info

Publication number
WO2016204023A1
WO2016204023A1 PCT/JP2016/066898 JP2016066898W WO2016204023A1 WO 2016204023 A1 WO2016204023 A1 WO 2016204023A1 JP 2016066898 W JP2016066898 W JP 2016066898W WO 2016204023 A1 WO2016204023 A1 WO 2016204023A1
Authority
WO
WIPO (PCT)
Prior art keywords
ball
scooping
component
tube
nut
Prior art date
Application number
PCT/JP2016/066898
Other languages
French (fr)
Japanese (ja)
Inventor
俊郎 廣瀬
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Publication of WO2016204023A1 publication Critical patent/WO2016204023A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members

Definitions

  • the present invention relates to an external circulation type ball screw.
  • the ball circulation tube In the external circulation type ball screw, the ball circulation tube is exposed and arranged on the outer surface of the nut screwed to the screw shaft via a large number of balls, and the ball in the rolling path is wound by this ball circulation tube. It is a structure that circulates after guiding it to the outside of the nut.
  • This type of ball circulation tube has, as two functional parts, a ball scooping part for scooping up the ball from the rolling path and a ball circulation path for circulating the ball, located at the end of the ball circulation tube.
  • the ball scooping-up portion is known as a portion greatly related to the operability of the ball.
  • both ends of the ball circulation tube are attached to the nut via a pair of tube guides to improve operability.
  • the ball scooping portion is a portion that greatly affects the operability even if there is a slight processing error. Therefore, if the shape of the ball scooping part is complicated, it becomes more susceptible to processing errors. Further, even when the ball circulation tube is formed as a molded product, it is sufficient if there is a production amount commensurate with it. However, when the molded product is used for the other product, the cost advantage is reduced. Therefore, as disclosed in Patent Document 1, even when a structure that is attached to a nut via a tube guide is adopted for both ends of the ball circulation tube, There can be a step between the rolling path and there is room for consideration in reducing the effects of machining errors.
  • an object of the present invention is to provide a ball circulation tube for a ball screw, a ball screw, and a method for manufacturing the ball screw, each having a scooping portion that can reduce the influence of a processing error.
  • a ball circulation tube for a ball screw includes a screw shaft having a spiral thread groove on an outer peripheral surface, and a nut having a spiral thread groove on an inner peripheral surface. And a ball screw having a plurality of balls disposed in a rolling path formed by these thread grooves, and is mounted on a tube mounting portion of the nut so that the ball circulates on an outer surface of the nut.
  • a ball circulation tube that scoops up the ball of the rolling path from the ball scooping part on one end side and returns it from the ball scooping part on the other end side through the ball circulation path,
  • the pair of scooping parts and the circulation path part having the ball circulation path are formed of separate parts.
  • the pair of scooping parts and the circulation path part are formed of separate parts.
  • the relative posture can be adjusted individually.
  • the mounting posture of each scooping component can be individually adjusted in a state where only a pair of scooping components are attached to the tube mounting portion of the nut without mounting the circulation path components. Therefore, if there is an absolute processing error in the ball scooping part of each scooping part or a relative processing error in the ball scooping part between a pair of scooping parts, In addition, the influence of processing errors can be reduced as compared with a ball circulation tube in which a pair of ball scooping portions and a ball circulation path portion are integrally formed.
  • the pair of scooping parts and the circulation path parts are composed of separate parts.
  • the stuffing operation can be performed with only the scooping parts attached to the tube mounting portion of the nut.
  • the stuffing operation can be performed with the scooping component attached to the nut, there is an effect of preventing the ball from entering the rolling path in the direction outside the circulation path.
  • the scooping component is formed from a cylindrical member having a center axis as a track drawn by the center of the ball circulating in the scooping component, It is preferable to have a cylindrical shape and an upper surface that allow rotation around the central axis when mounted on the tube mounting portion.
  • the scooping component can freely move in the direction of rotation around its own axis. For this reason, the rolling-up component itself is rotated to the position where the magnitude of the force of collision with the ball is the smallest due to the collision force between the ball and the scooping-up portion by the leveling rotation after filling the rolling path. Can do. Therefore, it is more suitable for mounting scooping parts so as to reduce the influence of machining errors during the leveling operation.
  • the scooping component and the elastic component are either one of the other surface with respect to the concave portion formed on one of the opposing surfaces. It is preferable to have a concavo-convex shape into which the convex portions formed on the surface of the mate. With such a configuration, it is preferable to improve the assembling property by preventing the misalignment around the respective axes by providing the concave and convex shapes to be fitted to each other on the opposing surfaces and combining each other. It is.
  • the scooping component and the elastic component may be configured such that the recess formed on one of the surfaces has a dimension around the central axis of the convex portion formed on the other surface. It is preferable that it is formed wider than the surrounding dimensions.
  • the concave part formed on one surface of the scooping part and the elastic part has a dimension around the central axis, and the central axis of the convex part formed on the other surface Since it is wider than the surrounding dimensions, the mounting posture of each scooping part around the central axis can be individually adjusted (hereinafter also referred to as “alignment”), and each scooping shape has an uneven shape that fits together.
  • the rotatable range around the central axis of the raised component can be restricted. Therefore, it is more suitable for facilitating positioning while providing alignment to the scooping component.
  • the scooping component and the tube mounting portion of the nut are arranged on the opposing surface with respect to any one convex portion.
  • the concave portion formed on one of the surfaces has a concave-convex shape to which the concave portion is fitted, and the size around the central axis is the size of the convex portion formed on the other surface around the central axis. It is preferable that it is formed wider than the dimension.
  • the concave part formed on one surface of the scooping part and the tube mounting portion of the nut is the convex part formed on the other surface with the dimension around the central axis. This is more suitable for facilitating positioning while keeping the scooping parts aligned.
  • a ball screw includes a screw shaft having a spiral thread groove on an outer peripheral surface, a nut having a spiral thread groove on an inner peripheral surface, and these A plurality of balls disposed in a rolling path formed by a thread groove, and one end of the ball of the rolling path that is mounted on a mounting surface of the nut and circulates on the outer surface of the nut.
  • a ball circulation tube that scoops up from the ball scooping portion on the side and returns from the ball scooping portion on the other end side through a ball circulation path, and the ball circulating ball according to one aspect of the present invention is used as the ball circulation tube It has a circulation tube.
  • the ball screw tube ball circulation tube according to the aspect of the present invention since the ball screw tube ball circulation tube according to the aspect of the present invention is provided, only the pair of scooping parts is attached to the nut without attaching the circulation path parts. In the state, the mounting posture of each scooping component can be individually adjusted. Therefore, even if a relative processing error occurs in the ball scooping portion between the pair of scooping parts, the influence of the processing error can be reduced.
  • a ball screw manufacturing method is a method of manufacturing a ball screw according to any one of the present invention, wherein the pair of scooping up A part is assembled to the tube mounting portion, and a first step of inserting the ball into the rolling path from an upper opening of the pair of scooping parts in the assembled state is included.
  • the pair of scooping components is assembled to the tube mounting portion of the nut, so that when scooping the nut, the scooping component is rotated about its axis. Can move freely in any direction.
  • the balls are packed in the circulation path components, and the circulation path components packed with the balls are
  • the second step of assembling the tube mounting portion of the nut from the top of the scooping component and after the second step, the ball is circulated by rotating the nut or the screw shaft while holding the circulation path component.
  • the balls are packed in the circulation path parts, and the circulation path parts packed with the balls are assembled from the upper part of the pair of scooping parts to the tube mounting portion of the nut.
  • the ball of the rolling path is scooped up from the ball scooping portion on one end side so that the ball circulates on the outer surface of the nut, and the ball on the other end side is scooped up through the ball circulation path. It can be returned from the department.
  • the ball is circulated by rotating the nut or the screw shaft while holding the circulation path component, so that the scooping component itself is caused by the force of the ball colliding with the scooping portion of the scooping component. Since it is rotated around the axis, it is possible to rotate around the axis from the part to be picked up to a position where the force with which the ball scooping part collides with the ball is minimized.
  • the manufacturing method of the ball screw which concerns on 1 aspect of this invention manufactures the ball screw which concerns on any one aspect (except the aspect which does not interpose an elastic component) among this invention.
  • a third step of rotating the scooping component itself around its axis by a force of the ball colliding with a ball scooping portion of the scooping component by rotating the screw shaft or the screw shaft After the third step, a fourth method of fixing the scooping component together with the circulation path component by pressing the circulation path component using a tube presser for fixing the ball circulation tube to the outer surface of the nut.
  • the pair of scooping parts are assembled to the tube mounting part of the nut.
  • the scooping part can be moved freely in the direction of rotation about its axis. Therefore, even if a relative processing error occurs in the ball scooping portion between the pair of scooping parts, the influence of the processing error can be reduced.
  • the ball is inserted into the rolling path in the assembled state, when the ball is inserted into the rolling path between the screw shaft and the nut, the ball is mounted by attaching a scooping part to the nut in advance. The ball can be prevented from entering in a direction that should not be inserted.
  • a ball is packed in the circulation path component, and the circulation path component packed with the ball is interposed between a pair of scooping parts and the circulation path component packed with the ball.
  • the ball of the rolling path is scooped on one end side so that the ball circulates on the outer surface of the nut. It is possible to scoop up from the raising portion and return from the ball scooping portion on the other end side through the ball circulation path.
  • the ball is circulated by rotating the nut or the screw shaft while holding the circulation path component, so that the scooping component itself is caused by the force of the ball colliding with the scooping portion of the scooping component.
  • the circuit parts are pressed using a tube presser for fixing the ball circulation tube to the outer surface of the nut, and the scooping parts are fixed together with the circuit parts.
  • the elastic part interposed between the scooping part and the circulation path part absorbs the machining error in the axial direction of the scooping part and the circulation path part and the tightening amount error at the time of fixing.
  • the circulation path portion can be fixed at the same time with a sufficient tightening force.
  • the figure (a) is the top view
  • (b) is the principal part enlarged view of (a). It is a figure which shows the image which the scooping component rotates around an axis
  • the figure (a) shows the image which the moment which rotates around an axis
  • the figure (b) The image of the cooperation effect by the elastic part to interpose is shown. It is a figure ((a)-(c)) explaining the effect of the elastic part interposed between the scooping up part and the circulation path part,
  • the figure (a) and (b) is the conventional integrated type.
  • FIG. 1 It is a comparative example using a ball circulation tube, and the same figure (c) is an example using one embodiment of a ball circulation tube concerning one mode of the present invention.
  • It is a figure explaining the modification of a scooping component and an elastic component. It is a figure explaining the scooping components of a 1st modification. It is a figure explaining the elastic component of a 1st modification. It is a figure explaining the scooping components of a 2nd modification. It is a figure explaining the elastic component of a 2nd modification. It is a figure explaining the modification of a scooping component and a tube mounting part.
  • FIG. 4C is an enlarged view showing a fitting portion between the convex part of the scooping component and the concave part of the countersink hole
  • FIG. 4D is a modification of the example shown in FIG.
  • FIG. 1 It is a figure explaining the modification of a scooping-up component, an elastic component, and a circulation path component. It is a figure explaining the circuit components of a 4th modification (and a 5th modification),
  • the figure (a) is a front view
  • (b) is E arrow in (a)
  • (c) is (a ) In F direction.
  • It is a figure explaining the scooping up part of a 4th modification The figure (a) is a top view
  • (b) is a front view.
  • It is a figure explaining the elastic component of a 4th modification The figure (a) is a top view, (b) is a front view.
  • the ball screw 10 includes a screw shaft 1 and a cylindrical nut 2 that is screwed to the screw shaft 1 via a plurality of balls 3.
  • An annular flange 22 is formed at one end of the nut 2.
  • a spiral thread groove 11 is formed on the outer peripheral surface of the screw shaft 1, and a spiral thread groove 21 facing the screw groove 11 of the screw shaft 1 is formed on the inner peripheral surface of the nut 2.
  • a plurality of balls 3 are arranged in the rolling path 7 formed by these thread grooves 11 and 21.
  • a flat installation surface 23 is formed on the outer peripheral surface of the nut 2, and the ball circulation tube 4 is mounted on the installation surface 23.
  • Two screw holes 24 for attaching the tube presser 5 are formed in the mounting surface 23 (see FIG. 2A), and the ball circulation tube 4 is fixed to the screw hole 24 with bolts 6 on both sides of the tube presser 5. As a result, the mounting surface 23 is mounted.
  • the ball circulation tube 4 is a substantially U-shaped tube (tube) having a tongue-shaped ball scooping portion 4a for scooping the ball 3 from the rolling path 7 at both ends, and between the ball scooping portions 4a on both sides. Is provided with a ball circulation path 4 j provided so that the ball 3 circulates on the outer surface of the nut 2.
  • a pair of tube mounting portions 25 into which the ball scooping portions 4 a at both ends of the ball circulation tube 4 are respectively inserted are provided on the installation surface 23 at two locations separated in the axial direction. .
  • Each tube mounting portion 25 is formed corresponding to the position where the ball 3 is lifted, and the angle formed by the line connecting the centers of the pair of tube mounting portions 25 and the axis of the nut 2 is a predetermined inclination angle. To be processed.
  • Each tube mounting portion 25 has a through hole 26 slightly larger than the diameter of the ball 3 and a counterbore hole 27 having a diameter larger than the through hole 26 by the thickness of the ball circulation tube 4.
  • the through hole 26 is machined from a direction perpendicular to the installation surface 23 of the nut 2, passes through the thick part of the nut 2, and communicates with the rolling path 7.
  • each tube mounting portion 25 is provided with a long hole-shaped mounting groove 28 in which the concave R portion 4r of the tube in the ball circulation path 4j shown in FIG. 1 fits along the predetermined inclination angle. .
  • the mounting groove 28 is formed in a convex arc shape that follows the inwardly bent shape of the concave R portion 4r shown in FIG.
  • the ball circulation tube 4 is a circulation having a pair of scooping parts 43A and 43B each having the ball scooping part 4a and the ball circulation path 4j.
  • the road part 41 is formed from a separate part. Furthermore, in this embodiment, it has the annular
  • FIG. The elastic component 42 of the present embodiment is made of synthetic rubber that can be elastically deformed in the axial direction.
  • the elastic component 42 is not limited to a synthetic rubber, and may be made of a synthetic resin, a disc spring or a wave washer that can be elastically deformed in the axial direction as long as it is elastically deformable in the axial direction. It may be made of metal.
  • Each of the pair of scooping parts 43A and 43B and the circulation path part 41 is formed of a metal pipe material having an inner diameter that matches the diameter of the ball 3 circulating inside each part.
  • the circulation path component 41 is formed by bending a metal pipe material into a U shape.
  • the scooping parts 43A and 43B are formed of a cylindrical pipe material having a center axis CL as a trajectory drawn by the center of the ball 3 circulating in the scooping parts 43A and 43B. Then, the ball scooping portion 4 a formed at the lower portion is cut into a predetermined tongue shape having a scooping scooping angle along the lead angle of the ball screw 10.
  • Each scooping component 43A, 43B has a cylindrical shape and an upper surface 43j that allow rotation about the central axis CL when mounted on the tube mounting portion 25, respectively.
  • the upper surface 43j is a plane orthogonal to the central axis CL.
  • the lower surface 41k of the circulation path component 41 facing the upper surface 43j is also a plane orthogonal to the central axis CL when mounted on the tube mounting portion 25.
  • the inner and outer diameters of the elastic component 42 are the same as the inner and outer diameters of the pipe material, and both the upper and lower surfaces of the elastic component 42 are a plane orthogonal to the central axis CL when the tube mounting portion 25 is mounted. Has been. As a result, each scooping component 43A, 43B can rotate about its central axis CL when mounted on the tube mounting portion 25.
  • the pair of scooping parts 43 ⁇ / b> A and 43 ⁇ / b> B are assembled in the counterbore holes 27 provided in the pair of tube mounting portions 25 of the installation surface 23.
  • Each scooping component 43A, 43B is inserted at a position where the ball scooping portion 4a at its lower end faces the through hole 26, and the insertion position in the axial direction is regulated at the bottom surface of the counterbore hole 27.
  • a predetermined number of balls 3 are inserted into the rolling path 7 from the upper openings of the scooping parts 43A and 43B into the counterbore holes 27 of the tube mounting portions 25 (first step).
  • the annular elastic component 42 is mounted on the upper surface 43j of each scooping component 43A, 43B in a mounting posture that is coaxial (elastic component mounting step).
  • This elastic component mounting step may be performed before inserting the predetermined number of balls 3 in the first step.
  • the ball 3 is packed in the U-shaped circulation path component 41, and the circulation path component 41 packed with the ball 3 is circulated with a pair of scooping components 43A and 43B and the ball 3.
  • the elastic part 42 interposed between the road parts 41, the upper part of the pair of scooping parts 43A and 43B is assembled to the tube mounting portion 25 of the nut 2 (second step).
  • each scooping component 43A, 43B has a top surface 43j that is a plane perpendicular to the central axis CL when mounted on the tube mounting portion 25, and both the upper and lower surfaces of the elastic component 42 and the circulation path. Since the lower surface 41k of the part 41 is also a similar plane, each scooping part 43A, 43B can freely move in the rotational direction around the axis as long as the circulation path part 41 is lightly pressed by hand. Can do.
  • the scooping parts 43A and 43B in which the ball 3 is repeatedly collided with the ball scooping portion 4a are subjected to the scooping part 43 (one of the scooping parts 43A and 43B (the same applies hereinafter) by the collision force).
  • the scooping component 43 rotates around the axis so that the most colliding force is in a position.
  • an arrow indicated by a symbol R indicates a centering action in which the scooping component 43 rotates around the central axis CL when the ball 3 collides with the ball scooping portion 4a of the scooping component 43. This shows the image that occurs.
  • the ball scooping portion 4a when the ball 3 collides with the ball scooping portion 4a as shown by the broken line M in FIG. Since the scooping component 43 moves in the axial direction due to the elastic deformation of 42, the ball scooping portion 4 a moves as if it “shrinks” in the axial direction, thereby providing a buffering effect and performing the above-mentioned alignment function. Can assist effectively. Thereby, it can prevent or suppress that the ball
  • the screw shaft 1 or the nut 2 is rotated for a while, and after the third step, circulation is performed using a tube presser 5 for fixing to the outer surface of the nut 2 as shown in FIG.
  • the road part 41 is pressed toward the installation surface 23, and as shown in FIG. 1, the scooping parts 43A and 43B are fixed together with the circulation path part 41 with the bolt 6 (fourth step).
  • the scooping parts 43 ⁇ / b> A and 43 ⁇ / b> B are also fixed to move in the rotational direction via the elastic parts 42.
  • the ball circulation tube 4 is inserted in a desired posture into the pair of tube mounting portions 25 formed on the installation surface 23 with the ball scooping portions 4a of the scooping components 43A and 43B on both sides.
  • the circulation path component 41 scoops up the ball 3 of the rolling path 7 from the ball scooping portion 4a on one end side so that the ball 3 circulates on the outer surface of the nut 2, and on the other end side through the ball circulation path 4j. It is mounted so as to return from the ball scooping portion 4a.
  • the amount of pressing the ball circulation tube toward the mounting surface 23 varies due to a processing error of the tube retainer 5.
  • the amount of press-in is insufficient, a gap T is generated between the integrated ball circulation tube 104 and the tube retainer 5 as shown in a comparative example in FIG. May not be fixed.
  • the tube presser 5 may press the ball circulation tube 104 too much and cause deformation of the ball circulation tube 104 as shown in the comparative example in FIG. Show excessive image).
  • the elastic part 42 formed of a material that can be elastically deformed in the axial direction is interposed between the circulation path part 41 and the scooping parts 43A and 43B.
  • the tightening error caused by the machining error in the axial direction of the scooping parts 43A and 43B and the circulation path part 41, the processing error of the tube presser 5, etc. , 43B and the circulation path part 41 are absorbed by the elastic part 42, and the scooping parts 43A, 43B and the circulation path part 41 can be securely fixed with an appropriate force.
  • the ball screw 10 of the present embodiment when the ball 3 rolls along the rolling path 7 by the relative rotational movement of the nut 2 and the screw shaft 1, the ball 3 scoops one ball of the ball circulation tube 4. Circulation is smoothly repeated by scooping up from the rolling path 7 by the raising part 4a and entering the ball circulation tube 4 and entering the rolling path 7 again from the ball scooping part 4a on the opposite side through the ball circulation path 4j. It can be done.
  • the ball circulation tube 4 has a split structure, the mounting postures of the scooping parts 43A and 43B can be individually adjusted. Therefore, even if a processing error has occurred in the ball scooping portion 4a between the pair of scooping parts 43A and 43B, the influence of the processing error can be prevented or reduced. That is, according to this ball screw 10, the ball circulation tube 4 is formed of a pair of scooping parts 43A and 43B and a circulation path part 41 as separate parts. The relative posture between the parts 43A and 43B can be individually adjusted. For example, the mounting posture of each scooping component 43A, 43B is individually adjusted with only the pair of scooping components 43A, 43B attached to the tube mounting portion 25 of the nut 2 without mounting the circulation path component 41. it can.
  • the ball stuffing operation can be performed with the scooping parts 43A and 43B attached to the nut 2, as shown in FIG. 4B, the movement of the ball 3 in the direction out of the circulation path is the ball scooping part 4a. Since the ball 3 enters only in the desired direction S of the rolling path 7, there is an effect of preventing the ball 3 from entering the rolling path 7 in the direction outside the circulation path.
  • each scooping component 43A, 43B is formed of a cylindrical member having a center axis CL as a trajectory drawn by the center of the ball circulating in the scooping component 43A, 43B. Since it has a cylindrical shape and an upper surface 43j that allow rotation about the central axis CL when mounted on the mounting portion 25, the scooping parts 43A and 43B can freely move in the rotational direction around the axis when the nut is mounted. Can do. Therefore, in the rolling rotation after rolling the ball into the rolling path 7, the parts that are picked up to the position where the magnitude of the force that collides with the ball 3 is the smallest due to the collision force between the ball scooping part 4 a and the ball 3. 43A and 43B itself can be rotated. Therefore, it is possible to automatically mount the scooping parts 43A and 43B so as to reduce the influence of the processing error automatically during the leveling operation.
  • the annular elastic part 42 is formed of a material that can be elastically deformed in the axial direction, and the upper surface 43 j of the scooping parts 43 A and 43 B and the lower surface 41 k of the circulation path part 41. Since the elastic parts 42 absorb the machining errors in the axial direction of the scooping parts 43A and 43B and the circulation path part 41, the scooping parts 43A and 43B and the circulation path part 41 Can be fixed with a sufficient tightening force. Further, according to the method for manufacturing the ball screw 10 described above, in the first step, the pair of scooping parts 43A and 43B described above are assembled to the tube mounting part 25 of the nut 2, so that the scooping part 43A is attached when the nut is mounted.
  • the ball 3 is inserted into the rolling path 7 from the upper opening of the pair of scooping parts 43A and 43B, so the ball 3 is inserted into the rolling path 7 between the screw shaft 1 and the nut 2.
  • the balls 3 can be incorporated so that the balls 3 do not enter in the direction in which the balls 3 should not be inserted by attaching the scooping parts 43A and 43B to the nut 2 in advance.
  • the balls 3 are packed in the circulation path component 41 and the circulation path component 41 packed with the balls 3 is paired up.
  • the ball 3 of the rolling path 7 is scooped up from the ball scooping portion 4a on one end side so that the ball 3 circulates on the outer surface of the nut 2, and the other end side through the ball circulation path 4j. It is possible to return from the ball scooping portion 4a.
  • the ball 3 collides with the ball scooping part 4a of the scooping parts 43A and 43B by rotating the nut 2 or the screw shaft 1 and circulating the ball 3 while holding the circulation path part 41. Since the scooping-up component itself is rotated about its axis by the force of the scooping, the scooping-up component itself can be rotated about its axis at a position where the force with which the ball scooping portion 4a collides with the ball 3 is minimized. Accordingly, it is possible to prevent or suppress the operability from deteriorating due to the processing error of the scooping parts 43A and 43B and the ball 3 colliding with an unexpected part of the scooping parts 43A and 43B. Can be improved.
  • the balls 3 are packed in the circulation path component 41, and the circulation path component 41 packed with the balls 3 is replaced with a pair of scooping parts 43A and 43B and the circulation path packed with the balls 3.
  • the ball circulation tube 4 is attached to the tube mounting portion 25 of the nut 2 from the upper part of the pair of scooping parts 43A and 43B. 2 is used to hold the circulation path component 41 and the scooping parts 43A and 43B together with the circulation path component 41.
  • the elastic part 42 interposed between the parts 43A and 43B and the circulation path part 41 absorbs machining errors in the axial direction of the scooping parts 43A and 43B and the circulation path part 41.
  • the scoop parts 43A, 43B and a circulation path component 41 can be fixed at the same time neither excessive nor insufficient clamping force.
  • the ball circulation tube 4 of the present embodiment the ball screw 10 including the same, and the manufacturing method thereof, it is possible to reduce the influence of the processing error of the scooping portion.
  • the ball circulation tube for ball screw, the ball screw, and the manufacturing method of the ball screw according to the present invention are not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention.
  • the ball circulation tube 4 has been described as an example in which the elastic part 42 is interposed between the scooping parts 43A and 43B and the circulation path part 41. It is good also as an aspect which does not interpose.
  • the facing surfaces of the scooping parts 43A and 43B, the circulation path part 41, and the elastic part 42 are all flat surfaces orthogonal to the central axis CL when mounted on the tube mounting part 25.
  • the present invention is not limited to this.
  • a convex portion formed on one of the other surfaces is fitted to a concave portion formed on one of the opposite surfaces.
  • One or a plurality of uneven shapes can be provided. In the case where this uneven shape is provided, when the scooping parts 43A and 43B and the circulation path part 41 are mounted on the tube mounting part 25, the mounting postures around the central axis of the scooping parts 43A and 43B are individually set.
  • one of the concave portions has a circumferential dimension that is more aligned than the circumferential dimension of the other convex portion. It may be formed slightly wider by a corresponding dimension. Moreover, the uneven
  • FIGS. 7 to 9 A first modification is shown in FIGS. 7 to 9 (note that FIG. 7 is common to the following second modification).
  • the scooping component 43 and the elastic component 42 are provided with concave and convex shapes (reference numerals 43 t and 42 d) that are fitted to each other on each other, and combined with each other.
  • this is an example in which assemblability is improved by preventing misalignment between the axes. That is, in the first modification, the scooping component 43 is formed toward the elastic component 42 side at a position near the inner peripheral surface of the upper surface 43j that is a surface facing the elastic component 42, as shown in FIG.
  • the convex portions 43t are provided at two opposing positions in the radial direction.
  • the elastic component 42 is fitted with the two convex portions of the scooping component 43 at positions near the inner peripheral surface of the lower surface 42 s that is the surface facing the scooping component 43.
  • Two recesses that can be formed are provided.
  • the scooping component 43 and the elastic component 42 are scooped against the concave portion 42d formed on the mutually opposing surfaces at a position near the inner peripheral surface of the lower surface 42s of the elastic component 42.
  • the convex portion 43t formed at a position near the inner peripheral surface of the upper surface 43j of the raised component 43 has a concave / convex shape to be fitted, the concave / convex shapes to be fitted to each other are combined in addition to the operational effects of the above embodiment. Thus, it is possible to improve the assembling property by preventing the displacement around the mutual axes.
  • the second modified example is different from the first modified example in that an uneven shape (reference numerals 43t and 42d) is formed at a position closer to the outer peripheral surface. That is, in the second modification, the scooping component 43 is formed toward the elastic component 42 side at a position near the outer peripheral surface of the upper surface 43j that is a surface facing the elastic component 42, as shown in FIG. Two convex portions 43t are provided. Further, as shown in FIG. 11, the elastic component 42 can be fitted with the two convex portions 43 t of the scooping component 43 at a position near the outer peripheral surface of the lower surface 42 s that is a surface facing the scooping component 43.
  • Two recesses 42d are formed at the two locations.
  • the scooping component 43 and the elastic component 42 are formed on the mutually opposing surfaces at a position near the outer peripheral surface of the lower surface 42s of the elastic component 42. Since the convex portion 43t formed at a position near the outer peripheral surface of the upper surface 43j of the scooping part 43 is fitted to the concave portion 42d, the fitting portion is fitted to each other in addition to the function and effect of the above embodiment.
  • FIGS. a third modification is shown in FIGS.
  • the third modification is provided with concave and convex shapes (reference numerals 29 and 43d) that are fitted to each other on the facing surfaces of the scooping component 43 and the counterbore 27 of the tube mounting portion 25, and
  • the concave portion 29 is slightly wider than the convex portion 43d by a dimension corresponding to the alignment amount.
  • the scooping component 43 has a position near the outer peripheral surface of the lower surface 43 s that is a surface facing the countersink hole 27, as shown in FIG.
  • a convex portion 43d having a width W formed in the direction is provided on one side substantially opposite to the ball scooping portion 4a.
  • the bottom surface of the counterbore 27, which is the surface facing the scooping component 43, can be fitted to the convex portion 43d of the scooping component 43 at a position near the outer peripheral surface of the bottom surface.
  • One recess 29 having a groove width H is formed.
  • the concave portion 29 formed on the bottom surface of the counterbore hole 27 has a groove width H around the central axis, the central axis of the convex portion 43 d formed on the lower surface 43 s of the scooping component 43.
  • the dimension corresponding to the alignment amount is slightly wider than the dimension of the surrounding width W (H> W).
  • FIGS. 14C and 14D are enlarged views at the time of fitting.
  • the convex portion 43d and the concave portion 29 do not reach the bottom surface of the concave portion 29 in the axial direction when the convex portion 43d and the concave portion 29 are fitted.
  • the convex portion 43d and the concave portion 29 are gap fittings having a gap having a size corresponding to the alignment amount between the outer surface of the convex portion 43d and the inner side surface of the concave portion 29 in the circumferential direction. Yes.
  • the dimension around the central axis of the concave portion 29 is more aligned than the dimension around the central axis of the convex portion 43d. Since the corresponding dimension is slightly wider (H> W), the scooping component 43 can be provided with alignment as with the operational effects of the above embodiment. Furthermore, according to the configuration of the third modified example, the rotatable range around the central axis of each scooping component 43A, 43B can be regulated by the concavo-convex shape that fits together. Therefore, positioning can be facilitated while aligning each scooping part 43A, 43B.
  • FIGS. 15 to 18 a fourth modification is shown in FIGS. 15 to 18 (note that FIGS. 15 and 16 are common to the following fifth modification).
  • the scooping part 43 and the circulation path part 41 have a concave-convex shape (reference numerals 43t, 41d) in which either one of the concave parts is fitted to either one of the convex parts.
  • the concave portion formed on one of the surfaces has a dimension around the central axis CL that is more dependent on the amount of alignment than the dimension around the central axis CL of the convex portion formed on either one of the surfaces. This is an example in which a groove 42h through which a convex portion can pass is provided in the elastic part 42 that is formed slightly wider in size and is interposed.
  • the circulation path component 41 has a groove width S penetrating along the radial direction at the center of the two lower surfaces 41k that are opposed to the scooping component 43, as shown in FIG.
  • Each of the concave portions 41d is provided in two places (four places in total).
  • the scooping component 43 is formed at a position near the inner peripheral surface of the upper surface 43 j that is a surface facing the circulation channel component 41, toward the lower surface side of the circulation channel component 41.
  • Two convex portions 43t are provided, and each convex portion 43t is formed to be able to fit into two concave portions 41d of the circulation path component 41, respectively. Further, as shown in FIG.
  • the elastic component 42 is provided with two grooves 42 h on the inner peripheral surface through which two convex portions formed on the upper surface 43 j of the scooping component 43 can pass.
  • the groove width M of the groove 42h of the elastic part 42 is a clearance fit slightly larger than the width W of the convex part 43t of the scooping part 43 shown in FIG. 17 (M> W).
  • the recess 41d formed on the lower surface 41k of the circulation path component 41 has a dimension around the central axis CL (in this example, the groove width S) of the scooping component 43.
  • the dimension corresponding to the alignment amount is slightly wider than the dimension around the central axis CL of the convex part 43t formed on the upper surface 43j (in this example, the width W of the convex part 43t) (S> W).
  • the 3rd modification mentioned above it is the same as that of the fitting example shown in FIG.14 (c) and (d). It can be configured.
  • the recess 41 d formed on the lower surface 41 k of the circulation path component 41 has a dimension around the center axis CL that is the center axis of the projection 43 t formed on the upper surface 43 j of the scooping component 43. Since the dimension corresponding to the alignment amount is slightly wider than the dimension around CL (S> W), the scooping component 43 can be aligned as in the above embodiment.
  • the rotatable range around the central axis CL of each scooping component 43A, 43B can be restricted by the concave and convex shapes of the concave portion 41d and the convex portion 43t that are fitted to each other. Therefore, it is possible to easily position the scooping parts 43A and 43B while aligning them.
  • the groove 42h of the elastic component 42 and the convex portion 43t of the scooping component 43 have a clearance fit between the opposing surfaces during alignment, and a close fit between the opposing surfaces when assembled.
  • Each component can be securely fixed by fixing in the fourth step while maintaining the alignment in the third step.
  • FIGS. a fifth modification is shown in FIGS.
  • the fifth modified example is different from the fourth modified example in that the convex portion 43t of the scooping component 43 and the groove 42h of the elastic component 42 are formed at positions close to the outer peripheral surface. That is, in the fifth modification, as shown in FIG. 16, the circulation path component 41 has a diameter at the center of the two lower surfaces 41 k that are opposed to the scooping component 43, as in the fourth modification. Each of the recesses 41d penetrating along the direction is provided at two places (four places in total). As shown in FIG.
  • the scooping component 43 has a convex formed on the lower surface side of the circulation path component 41 at a position near the outer peripheral surface of the upper surface 43 j that is a surface facing the circulation path component 41.
  • Two portions 43t are provided, and each convex portion 43t is formed so as to be fitted to two concave portions 41d of the circulation path component 41, respectively.
  • grooved part mutually fitted in the 3rd modification mentioned above, it is the same as that of the fitting example shown in FIG.14 (c) and (d). It can be configured.
  • the recess 41d formed on the lower surface 41k of the circulation path component 41 is formed on the upper surface 43j of the scooping component 43 in the same dimension as the fourth modified example.
  • the protrusion 43t is formed slightly wider than the dimension around the center axis CL by a dimension corresponding to the alignment amount.
  • the elastic part 42 is provided with two grooves 42 h on the outer peripheral surface through which the two convex portions 43 t formed on the upper surface 43 j of the scooping part 43 can pass.
  • the groove 42h of the elastic component 42 and the convex portion 43t of the scooping component 43 are clearances where a gap is generated between the opposing surfaces during alignment, and the opposing surfaces are in close contact during assembly, as in the fourth modification. It has become.
  • the recess 41d formed on the lower surface 41k of the circulation path component 41 is formed on the upper surface 43j of the scooping component 43 with a dimension around the central axis CL. Since the projected portion 43t is slightly wider than the dimension around the center axis CL of the convex portion 43t, the positioning of the scooping parts 43A and 43B is adjusted while maintaining the alignment as in the fourth modification. Can be made easier. Further, the groove 42h of the elastic component 42 and the convex portion 43t of the scooping component 43 have a gap between the opposing surfaces during alignment, and the opposing surfaces are in close contact during assembly, as in the fourth modification. Since it is a clearance fit, each part can be securely fixed by fixing in the fourth step while maintaining alignment in the third step.

Abstract

Provided is a ball circulation tube for a ball screw, which is provided with a scoop-up section that can reduce the influence of machining errors. This ball circulation tube (4) is formed of, as discrete parts: a pair of scoop-up parts (43A, 43B) each having a ball scoop-up section (4a); and a circulation channel part (41) having a ball circulation channel (4j).

Description

ボールねじ用ボール循環チューブ及びボールねじ並びにボールねじの製造方法Ball circulation tube for ball screw, ball screw and ball screw manufacturing method
 本発明は、外部循環方式のボールねじに関する。 The present invention relates to an external circulation type ball screw.
 外部循環方式のボールねじは、ねじ軸に多数のボールを介して螺合されたナットの外面に、ボール循環チューブを露出して配設し、このボール循環チューブにより、転動路のボールを掬い上げてからナットの外部に導いて循環させる構造である。この種のボール循環チューブは、二つの機能部分として、ボール循環チューブの端部に位置して、ボールを転動路から掬い上げるボール掬い上げ部と、ボールを循環させるボール循環経路とを有する。
 ボール掬い上げ部は、ボールの作動性に大きく関わる部分として知られている。例えば、ボール掬い上げ部と転動路とが相対する位置に、加工誤差の影響等によって段差が生じれば、ボール掬い上げ部にボールが衝突して、ボール掬い上げ部が損傷したり、振動や騒音が発生したりする。そこで、例えば特許文献1に記載の技術では、ボール循環チューブの両端部を、一対のチューブガイドを介してナットに装着して作動性を改善させている。
In the external circulation type ball screw, the ball circulation tube is exposed and arranged on the outer surface of the nut screwed to the screw shaft via a large number of balls, and the ball in the rolling path is wound by this ball circulation tube. It is a structure that circulates after guiding it to the outside of the nut. This type of ball circulation tube has, as two functional parts, a ball scooping part for scooping up the ball from the rolling path and a ball circulation path for circulating the ball, located at the end of the ball circulation tube.
The ball scooping-up portion is known as a portion greatly related to the operability of the ball. For example, if there is a step at the position where the ball scooping section and the rolling path face each other due to the effects of processing errors, the ball collides with the ball scooping section and the ball scooping section is damaged or vibrated. And noise may be generated. Therefore, for example, in the technique described in Patent Document 1, both ends of the ball circulation tube are attached to the nut via a pair of tube guides to improve operability.
特開2004-108454号公報JP 2004-108454 A
 しかしながら、ボール掬い上げ部は、僅かな加工誤差があっても作動性に大きく影響する部分である。そのため、ボール掬い上げ部の形状が複雑であれば、加工誤差の影響をより大きく受けやすくなる。また、ボール循環チューブを成形品とする場合であっても、それに見合った生産量があればよいが、そうでないものに対して成形品とすることはコスト上のメリットが小さくなる。
 そのため、特許文献1に開示されるように、ボール循環チューブの両端部に対し、チューブガイドを介してナットに装着する構造を採用した場合であっても、加工誤差の影響によりボール掬い上げ部と転動路との間に段差が生じ得るため、加工誤差の影響を軽減する上で検討の余地がある。
However, the ball scooping portion is a portion that greatly affects the operability even if there is a slight processing error. Therefore, if the shape of the ball scooping part is complicated, it becomes more susceptible to processing errors. Further, even when the ball circulation tube is formed as a molded product, it is sufficient if there is a production amount commensurate with it. However, when the molded product is used for the other product, the cost advantage is reduced.
Therefore, as disclosed in Patent Document 1, even when a structure that is attached to a nut via a tube guide is adopted for both ends of the ball circulation tube, There can be a step between the rolling path and there is room for consideration in reducing the effects of machining errors.
 そこで、本発明は、加工誤差の影響を軽減し得る掬い上げ部を備えるボールねじ用ボール循環チューブ及びボールねじ並びにボールねじの製造方法を提供することを課題とする。 Therefore, an object of the present invention is to provide a ball circulation tube for a ball screw, a ball screw, and a method for manufacturing the ball screw, each having a scooping portion that can reduce the influence of a processing error.
 上記課題を解決するために、本発明の一態様に係るボールねじ用ボール循環チューブは、外周面に螺旋状のねじ溝を有するねじ軸と、内周面に螺旋状のねじ溝を有するナットと、これらのねじ溝で形成される転動路内に配置された複数のボールとを備えるボールねじに用いられ、前記ナットのチューブ装着部に装着されて、前記ナットの外面を前記ボールが循環するように前記転動路のボールを一端側のボール掬い上げ部から掬い上げるとともにボール循環経路を介して他端側のボール掬い上げ部から戻すボール循環チューブであって、前記ボール掬い上げ部をそれぞれ有する一対の掬い上げ部品と、前記ボール循環経路を有する循環路部品とが、別箇の部品から形成されていることを特徴とする。 In order to solve the above-described problems, a ball circulation tube for a ball screw according to an aspect of the present invention includes a screw shaft having a spiral thread groove on an outer peripheral surface, and a nut having a spiral thread groove on an inner peripheral surface. And a ball screw having a plurality of balls disposed in a rolling path formed by these thread grooves, and is mounted on a tube mounting portion of the nut so that the ball circulates on an outer surface of the nut. A ball circulation tube that scoops up the ball of the rolling path from the ball scooping part on one end side and returns it from the ball scooping part on the other end side through the ball circulation path, The pair of scooping parts and the circulation path part having the ball circulation path are formed of separate parts.
 本発明の一態様に係るボールねじ用ボール循環チューブによれば、一対の掬い上げ部品と循環路部品とが別箇の部品から形成されているので、ナット装着時に、一対の掬い上げ部品相互の相対姿勢を個別に調整できる。例えば、循環路部品を装着しない状態で、一対の掬い上げ部品のみをナットのチューブ装着部に取り付けた状態で、各掬い上げ部品の装着姿勢をそれぞれ個別に調整できる。よって、仮に、各掬い上げ部品のボール掬い上げ部に絶対的な加工誤差が生じていたり、一対の掬い上げ部品相互のボール掬い上げ部に相対的な加工誤差が生じていたりする場合であっても、一対のボール掬い上げ部とボール循環路部とが一体形成されたボール循環チューブに比べて、加工誤差の影響を軽減することができる。
 また、本発明の一態様に係るボールねじ用ボール循環チューブによれば、一対の掬い上げ部品と循環路部品とが別箇の部品から構成されているので、循環路部品を装着しない状態で、掬い上げ部品のみをナットのチューブ装着部に取り付けた状態で玉詰め作業を行うことができる。また、掬い上げ部品をナットに取り付けた状態で玉詰め作業が行えるため、ボールが循環経路外の方向の転動路に入っていくことを防ぐ効果もある。
According to the ball circulation tube for a ball screw according to one aspect of the present invention, the pair of scooping parts and the circulation path part are formed of separate parts. The relative posture can be adjusted individually. For example, the mounting posture of each scooping component can be individually adjusted in a state where only a pair of scooping components are attached to the tube mounting portion of the nut without mounting the circulation path components. Therefore, if there is an absolute processing error in the ball scooping part of each scooping part or a relative processing error in the ball scooping part between a pair of scooping parts, In addition, the influence of processing errors can be reduced as compared with a ball circulation tube in which a pair of ball scooping portions and a ball circulation path portion are integrally formed.
In addition, according to the ball circulation tube for ball screw according to one aspect of the present invention, the pair of scooping parts and the circulation path parts are composed of separate parts. The stuffing operation can be performed with only the scooping parts attached to the tube mounting portion of the nut. In addition, since the stuffing operation can be performed with the scooping component attached to the nut, there is an effect of preventing the ball from entering the rolling path in the direction outside the circulation path.
 ここで、本発明の一態様に係るボールねじ用ボール循環チューブにおいて、前記掬い上げ部品は、当該掬い上げ部品内を循環するボール中心が描く軌道を中心軸とする円筒部材から形成されるとともに、前記チューブ装着部に装着されたときに、前記中心軸まわりの自転を許容する円筒形状および上面を有することは好ましい。
 このような構成であれば、ナット装着時、掬い上げ部品が自身軸回りの回転方向に自由に動くことができる。そのため、転動路内に玉詰め後のならし回転にて、ボールと掬い上げ部との衝突力によって、ボールと衝突する力の大きさが最も小さい位置へと掬い上げ部品自身を回転させることができる。したがって、ならし運転時に、加工誤差の影響を軽減するように掬い上げ部品を装着する上でより好適である。
Here, in the ball circulation tube for a ball screw according to an aspect of the present invention, the scooping component is formed from a cylindrical member having a center axis as a track drawn by the center of the ball circulating in the scooping component, It is preferable to have a cylindrical shape and an upper surface that allow rotation around the central axis when mounted on the tube mounting portion.
With such a configuration, when the nut is mounted, the scooping component can freely move in the direction of rotation around its own axis. For this reason, the rolling-up component itself is rotated to the position where the magnitude of the force of collision with the ball is the smallest due to the collision force between the ball and the scooping-up portion by the leveling rotation after filling the rolling path. Can do. Therefore, it is more suitable for mounting scooping parts so as to reduce the influence of machining errors during the leveling operation.
 また、本発明の一態様に係るボールねじ用ボール循環チューブにおいて、前記掬い上げ部品の上面と前記循環路部品の下面との間に同軸に介装される軸方向に弾性変形可能な円環状の弾性部品を有することは好ましい。
 このような構成であれば、掬い上げ部品と循環路部品との間に同軸に介装する円環状の弾性部品が、軸方向に弾性変形可能なので、この弾性部品によって掬い上げ部品や循環路部品の軸方向での加工誤差や固定時の締付け量の誤差を吸収し、掬い上げ部品と循環路部とを過不足ない締め付け力で固定する上で好適である。
Further, in the ball circulation tube for a ball screw according to one aspect of the present invention, an annular elastically deformable in an axial direction interposed between the upper surface of the scooping component and the lower surface of the circulation path component. It is preferable to have an elastic part.
With such a configuration, since the annular elastic part interposed coaxially between the scooping part and the circulation path part can be elastically deformed in the axial direction, the scooping part and the circulation path part can be obtained by this elastic part. It is suitable for absorbing the machining error in the axial direction and the error of the tightening amount at the time of fixing, and fixing the scooping part and the circulation path part with an excessive and insufficient tightening force.
 また、本発明の一態様に係るボールねじ用ボール循環チューブにおいて、前記掬い上げ部品と前記弾性部品とは、相互の対向面に、いずれか一方の面に形成された凹部に対していずれか他方の面に形成された凸部が嵌合する凹凸形状を有することは好ましい。
 このような構成であれば、相互の対向面に、相互に嵌合する凹凸形状をそれぞれに設けて相互を組み合わせることで、相互の軸まわりのずれを防止して組立性を向上させる上で好適である。
Further, in the ball circulation tube for ball screw according to one aspect of the present invention, the scooping component and the elastic component are either one of the other surface with respect to the concave portion formed on one of the opposing surfaces. It is preferable to have a concavo-convex shape into which the convex portions formed on the surface of the mate.
With such a configuration, it is preferable to improve the assembling property by preventing the misalignment around the respective axes by providing the concave and convex shapes to be fitted to each other on the opposing surfaces and combining each other. It is.
 また、前記掬い上げ部品と前記弾性部品とは、前記いずれか一方の面に形成された凹部は、前記中心軸まわりの寸法が、前記いずれか他方の面に形成された凸部の前記中心軸まわりの寸法よりも広く形成されていることは好ましい。
 このような構成であれば、掬い上げ部品と弾性部品とは、いずれか一方の面に形成された凹部は、中心軸まわりの寸法が、いずれか他方の面に形成された凸部の中心軸まわりの寸法よりも広いので、各掬い上げ部品の中心軸回りの装着姿勢をそれぞれ個別に調整可能とし(以下、「調心性」ともいう)、且つ、相互に嵌合する凹凸形状により、各掬い上げ部品の中心軸まわりの回転可能範囲を規制することができる。よって、掬い上げ部品に調心性をもたせつつ位置決めを容易にする上でより好適である。
In addition, the scooping component and the elastic component may be configured such that the recess formed on one of the surfaces has a dimension around the central axis of the convex portion formed on the other surface. It is preferable that it is formed wider than the surrounding dimensions.
With such a configuration, the concave part formed on one surface of the scooping part and the elastic part has a dimension around the central axis, and the central axis of the convex part formed on the other surface Since it is wider than the surrounding dimensions, the mounting posture of each scooping part around the central axis can be individually adjusted (hereinafter also referred to as “alignment”), and each scooping shape has an uneven shape that fits together. The rotatable range around the central axis of the raised component can be restricted. Therefore, it is more suitable for facilitating positioning while providing alignment to the scooping component.
 また、本発明の一態様に係るボールねじ用ボール循環チューブにおいて、前記掬い上げ部品と前記ナットのチューブ装着部とは、相互の対向面に、いずれか一方の凸部に対していずれか他方の凹部が嵌合する凹凸形状を有し、前記いずれか一方の面に形成された凹部は、前記中心軸まわりの寸法が、前記いずれか他方の面に形成された凸部の前記中心軸まわりの寸法よりも広く形成されていることは好ましい。
 このような構成であれば、掬い上げ部品とナットのチューブ装着部とは、いずれか一方の面に形成された凹部は、中心軸まわりの寸法が、いずれか他方の面に形成された凸部の中心軸まわりの寸法よりも広いので、掬い上げ部品に調心性をもたせつつ位置決めを容易にする上でより好適である。
Moreover, in the ball circulation tube for a ball screw according to an aspect of the present invention, the scooping component and the tube mounting portion of the nut are arranged on the opposing surface with respect to any one convex portion. The concave portion formed on one of the surfaces has a concave-convex shape to which the concave portion is fitted, and the size around the central axis is the size of the convex portion formed on the other surface around the central axis. It is preferable that it is formed wider than the dimension.
With such a configuration, the concave part formed on one surface of the scooping part and the tube mounting portion of the nut is the convex part formed on the other surface with the dimension around the central axis. This is more suitable for facilitating positioning while keeping the scooping parts aligned.
 また、上記課題を解決するために、本発明の一態様に係るボールねじは、外周面に螺旋状のねじ溝を有するねじ軸と、内周面に螺旋状のねじ溝を有するナットと、これらのねじ溝で形成される転動路内に配置された複数のボールと、前記ナットの取付け面に装着されて、前記ナットの外面を前記ボールが循環するように前記転動路のボールを一端側のボール掬い上げ部から掬い上げるとともにボール循環経路を介して他端側のボール掬い上げ部から戻すボール循環チューブとを備え、前記ボール循環チューブとして、本発明の一態様に係るボールねじ用ボール循環チューブを有することを特徴とする。
 本発明の一態様に係るボールねじによれば、本発明の一態様に係るボールねじ用ボール循環チューブを有するので、循環路部品を装着しない状態で、一対の掬い上げ部品のみをナットに取り付けた状態で、各掬い上げ部品の装着姿勢をそれぞれ個別に調整できる。よって、仮に、一対の掬い上げ部品相互のボール掬い上げ部に、相対的な加工誤差が生じている場合であっても加工誤差の影響を軽減することができる。
In order to solve the above problems, a ball screw according to an aspect of the present invention includes a screw shaft having a spiral thread groove on an outer peripheral surface, a nut having a spiral thread groove on an inner peripheral surface, and these A plurality of balls disposed in a rolling path formed by a thread groove, and one end of the ball of the rolling path that is mounted on a mounting surface of the nut and circulates on the outer surface of the nut. A ball circulation tube that scoops up from the ball scooping portion on the side and returns from the ball scooping portion on the other end side through a ball circulation path, and the ball circulating ball according to one aspect of the present invention is used as the ball circulation tube It has a circulation tube.
According to the ball screw according to the aspect of the present invention, since the ball screw tube ball circulation tube according to the aspect of the present invention is provided, only the pair of scooping parts is attached to the nut without attaching the circulation path parts. In the state, the mounting posture of each scooping component can be individually adjusted. Therefore, even if a relative processing error occurs in the ball scooping portion between the pair of scooping parts, the influence of the processing error can be reduced.
 また、上記課題を解決するために、本発明の一態様に係るボールねじの製造方法は、本発明のうちいずれか一の態様に係るボールねじを製造する方法であって、前記一対の掬い上げ部品を前記チューブ装着部に組み付け、その組み付け状態で、前記一対の掬い上げ部品の上部開口から前記転動路内に前記ボールを挿入する第一の工程を含むことを特徴とする。
 本発明の一態様に係るボールねじの製造方法によれば、第一の工程では、一対の掬い上げ部品をナットのチューブ装着部に組み付けるので、ナット装着時に、掬い上げ部品をその軸回りの回転方向に自由に動かすことができる。よって、仮に、各掬い上げ部品のボール掬い上げ部に絶対的な加工誤差が生じていたり、一対の掬い上げ部品相互のボール掬い上げ部に相対的な加工誤差が生じていたりする場合であっても、加工誤差の影響を軽減することができる。そして、その組み付け状態で、一対の掬い上げ部品の上部開口から転動路内にボールを挿入するので、ねじ軸とナットとの間の転動路にボールを挿入する際、予めナットに掬い上げ部品を装着することで、ボールが挿入されてはいけない方向にボールが入らないようにボールを組み込むことができる。
In order to solve the above-mentioned problem, a ball screw manufacturing method according to an aspect of the present invention is a method of manufacturing a ball screw according to any one of the present invention, wherein the pair of scooping up A part is assembled to the tube mounting portion, and a first step of inserting the ball into the rolling path from an upper opening of the pair of scooping parts in the assembled state is included.
According to the ball screw manufacturing method according to one aspect of the present invention, in the first step, the pair of scooping components is assembled to the tube mounting portion of the nut, so that when scooping the nut, the scooping component is rotated about its axis. Can move freely in any direction. Therefore, if there is an absolute processing error in the ball scooping part of each scooping part or a relative processing error in the ball scooping part between a pair of scooping parts, In addition, the influence of processing errors can be reduced. Then, in the assembled state, the ball is inserted into the rolling path from the upper opening of the pair of scooping parts. Therefore, when inserting the ball into the rolling path between the screw shaft and the nut, the ball is lifted up in advance. By mounting the part, the ball can be incorporated so that the ball does not enter in a direction where the ball should not be inserted.
 ここで、本発明の一態様に係るボールねじの製造方法において、前記第一の工程の後に、前記循環路部品内に前記ボールを詰めるとともに、当該ボールを詰めた循環路部品を、前記一対の掬い上げ部品の上部から前記ナットのチューブ装着部に組み付ける第二の工程と、前記第二の工程の後に、前記循環路部品を押えつつ、前記ナットまたは前記ねじ軸を回して前記ボールを循環させることで、前記掬い上げ部品のボール掬い上げ部に前記ボールが衝突する力により前記掬い上げ部品自らをその軸回りに回転させる第三の工程とを含むことは好ましい。 Here, in the ball screw manufacturing method according to one aspect of the present invention, after the first step, the balls are packed in the circulation path components, and the circulation path components packed with the balls are After the second step of assembling the tube mounting portion of the nut from the top of the scooping component, and after the second step, the ball is circulated by rotating the nut or the screw shaft while holding the circulation path component. Thus, it is preferable to include a third step of rotating the scooping component itself around its axis by the force of the ball colliding with the scooping portion of the scooping component.
 このような構成であれば、第二の工程では、循環路部品内にボールを詰めるとともに、当該ボールを詰めた循環路部品を、一対の掬い上げ部品の上部からナットのチューブ装着部に組み付けるので、第二の工程の状態において、ナットの外面をボールが循環するように、転動路のボールを一端側のボール掬い上げ部から掬い上げるとともにボール循環経路を介して他端側のボール掬い上げ部から戻すことができる。
 そして、第三の工程では、循環路部品を押えつつ、ナットまたはねじ軸を回してボールを循環させることで、掬い上げ部品のボール掬い上げ部にボールが衝突する力により掬い上げ部品自らをその軸回りに回転させるので、ボール掬い上げ部がボールと衝突する力が最も小さくなる位置に掬い上げ部品自からをその軸回りに回転させることができる。
In such a configuration, in the second step, the balls are packed in the circulation path parts, and the circulation path parts packed with the balls are assembled from the upper part of the pair of scooping parts to the tube mounting portion of the nut. In the state of the second step, the ball of the rolling path is scooped up from the ball scooping portion on one end side so that the ball circulates on the outer surface of the nut, and the ball on the other end side is scooped up through the ball circulation path. It can be returned from the department.
In the third step, the ball is circulated by rotating the nut or the screw shaft while holding the circulation path component, so that the scooping component itself is caused by the force of the ball colliding with the scooping portion of the scooping component. Since it is rotated around the axis, it is possible to rotate around the axis from the part to be picked up to a position where the force with which the ball scooping part collides with the ball is minimized.
 さらに、上記課題を解決するために、本発明の一態様に係るボールねじの製造方法は、本発明のうちいずれか一の態様(弾性部品を介装しない態様を除く)に係るボールねじを製造する方法であって、前記一対の掬い上げ部品を前記チューブ装着部に組み付け、その組み付け状態で、前記一対の掬い上げ部品の上部開口から前記転動路内に前記ボールを挿入する第一の工程と、前記第一の工程の後に、前記循環路部品内に前記ボールを詰めるとともに、当該ボールを詰めた循環路部品を、前記一対の掬い上げ部品と当該ボールを詰めた循環路部品の間に前記弾性部品を介装した状態で、前記一対の掬い上げ部品の上部から前記ナットのチューブ装着部に組み付ける第二の工程と、前記第二の工程の後に、前記循環路部品を押えつつ、前記ナットまたは前記ねじ軸を回して前記ボールを循環させることで、前記掬い上げ部品のボール掬い上げ部に前記ボールが衝突する力により前記掬い上げ部品自らをその軸回りに回転させる第三の工程と、前記第三の工程の後に、前記ボール循環チューブを前記ナットの外面に固定するためのチューブ押えを用いて前記循環路部品を押えて、前記循環路部品とともに前記掬い上げ部品を固定する第四の工程とを含むことを特徴とする。 Furthermore, in order to solve the said subject, the manufacturing method of the ball screw which concerns on 1 aspect of this invention manufactures the ball screw which concerns on any one aspect (except the aspect which does not interpose an elastic component) among this invention. A first step of assembling the pair of scooping parts to the tube mounting portion and inserting the ball into the rolling path from the upper openings of the pair of scooping parts in the assembled state. And after the first step, the balls are packed in the circulation path parts, and the circulation path parts packed with the balls are placed between the pair of scooping parts and the circulation path parts packed with the balls. In a state where the elastic part is interposed, a second step of assembling the tube mounting portion of the nut from the upper part of the pair of scooping parts, and after the second step, while holding the circulation path part, Na A third step of rotating the scooping component itself around its axis by a force of the ball colliding with a ball scooping portion of the scooping component by rotating the screw shaft or the screw shaft After the third step, a fourth method of fixing the scooping component together with the circulation path component by pressing the circulation path component using a tube presser for fixing the ball circulation tube to the outer surface of the nut. These steps are included.
 本発明の一態様に係るボールねじの製造方法(弾性部品を介装しない態様を除く)によれば、第一の工程では、一対の掬い上げ部品をナットのチューブ装着部に組み付けるので、ナット装着時に、掬い上げ部品をその軸回りの回転方向に自由に動かすことができる。よって、仮に、一対の掬い上げ部品相互のボール掬い上げ部に、相対的な加工誤差が生じている場合であっても、加工誤差の影響を軽減することができる。そして、その組み付け状態で、転動路内にボールを挿入するので、ねじ軸とナットとの間の転動路にボールを挿入する際、予めナットに掬い上げ部品を装着することで、ボールが挿入されてはいけない方向にボールが入らないようにすることができる。 According to the ball screw manufacturing method according to one aspect of the present invention (except for an aspect in which no elastic part is interposed), in the first step, the pair of scooping parts are assembled to the tube mounting part of the nut. Sometimes the scooping part can be moved freely in the direction of rotation about its axis. Therefore, even if a relative processing error occurs in the ball scooping portion between the pair of scooping parts, the influence of the processing error can be reduced. And, since the ball is inserted into the rolling path in the assembled state, when the ball is inserted into the rolling path between the screw shaft and the nut, the ball is mounted by attaching a scooping part to the nut in advance. The ball can be prevented from entering in a direction that should not be inserted.
 第二の工程では、循環路部品内にボールを詰めるとともに、当該ボールを詰めた循環路部品を、一対の掬い上げ部品と当該ボールを詰めた循環路部品の間に弾性部品を介装した状態で、一対の掬い上げ部品の上部からナットのチューブ装着部に組み付けるので、この第二の工程の状態において、ナットの外面をボールが循環するように、転動路のボールを一端側のボール掬い上げ部から掬い上げるとともにボール循環経路を介して他端側のボール掬い上げ部から戻すことができる。
 そして、第三の工程では、循環路部品を押えつつ、ナットまたはねじ軸を回してボールを循環させることで、掬い上げ部品のボール掬い上げ部にボールが衝突する力により掬い上げ部品自らをその軸回りに回転させるので、最もボールと衝突する力が小さくなる位置に掬い上げ部品自からをその軸回りに回転させることができる。これにより、掬い上げ部品の加工誤差により、ボールが掬い上げ部品の予期しない箇所に衝突して作動性が悪化することを防止または抑制することができるため、作動性を改善することができる。
In the second step, a ball is packed in the circulation path component, and the circulation path component packed with the ball is interposed between a pair of scooping parts and the circulation path component packed with the ball. In this second step state, the ball of the rolling path is scooped on one end side so that the ball circulates on the outer surface of the nut. It is possible to scoop up from the raising portion and return from the ball scooping portion on the other end side through the ball circulation path.
In the third step, the ball is circulated by rotating the nut or the screw shaft while holding the circulation path component, so that the scooping component itself is caused by the force of the ball colliding with the scooping portion of the scooping component. Since it is rotated around the axis, it is possible to rotate the component itself up to the position where the force that collides with the ball is the smallest, and to rotate around the axis. Accordingly, it is possible to prevent or suppress the operability from being deteriorated due to a collision of an unexpected part of the scooping part due to a processing error of the scooping part, so that the operability can be improved.
 その後、第四の工程で、ボール循環チューブをナットの外面に固定するためのチューブ押えを用いて循環路部品を押え、循環路部品とともに掬い上げ部品を固定する。これにより、掬い上げ部品と循環路部品との間に介装する弾性部品によって、掬い上げ部品や循環路部品の軸方向での加工誤差や固定時の締付け量の誤差を吸収し、掬い上げ部品と循環路部とを同時に過不足ない締め付け力で固定することができる。 After that, in the fourth step, the circuit parts are pressed using a tube presser for fixing the ball circulation tube to the outer surface of the nut, and the scooping parts are fixed together with the circuit parts. As a result, the elastic part interposed between the scooping part and the circulation path part absorbs the machining error in the axial direction of the scooping part and the circulation path part and the tightening amount error at the time of fixing. And the circulation path portion can be fixed at the same time with a sufficient tightening force.
 上述のように、本発明によれば、加工誤差の影響を軽減し得る掬い上げ部を備えるボールねじ用ボール循環チューブ及びボールねじ並びにボールねじの製造方法を提供することができる。 As described above, according to the present invention, it is possible to provide a ball circulation tube for a ball screw, a ball screw, and a ball screw manufacturing method including a scooping portion that can reduce the influence of processing errors.
本発明の一態様に係るボールねじの一実施形態の模式的説明図であり、同図では要部を一部破断して示している。It is typical explanatory drawing of one Embodiment of the ball screw which concerns on 1 aspect of this invention, and the principal part is partially broken and shown in the same figure. 図1のナットの説明図であり、同図(a)はその平面図、(b)は左側面図(A矢視図)である。It is explanatory drawing of the nut of FIG. 1, The figure (a) is the top view, (b) is a left view (A arrow directional view). 本発明の一態様に係るボール循環チューブの一実施形態の説明図であり、同図(a)は、ボール循環チューブの構成部品を分解状態で図示し、(b)は(a)でのB矢視を、(c)は(a)でのC矢視をそれぞれ示している。It is explanatory drawing of one Embodiment of the ball | bowl circulation tube which concerns on 1 aspect of this invention, The figure (a) shows the component of a ball | bowl circulation tube in an exploded state, (b) is B in (a). (C) shows the C view in (a). 図1のナットのチューブ装着部に、掬い上げ部品を装着した状態を説明する図であり、同図(a)はその平面図、(b)は(a)の要部拡大図である。It is a figure explaining the state which mounted the scooping components in the tube mounting part of the nut of FIG. 1, The figure (a) is the top view, (b) is the principal part enlarged view of (a). ボールの衝突力により掬い上げ部品が軸回りに回転するイメージを示す図であり、同図(a)は、衝突力により軸回りに回転するモーメントがかかるイメージを示し、同図(b)は、介装する弾性部品による協働効果のイメージを示している。It is a figure which shows the image which the scooping component rotates around an axis | shaft with the collision force of a ball | bowl, The figure (a) shows the image which the moment which rotates around an axis | shaft by a collision force is applied, The figure (b) The image of the cooperation effect by the elastic part to interpose is shown. 掬い上げ部品と循環路部品との間に介装する弾性部品の効果を説明する図((a)~(c))であり、同図(a)および(b)は、従来の一体型のボール循環チューブを用いた比較例であり、同図(c)は、本発明の一態様に係るボール循環チューブの一実施形態を用いた実施例である。It is a figure ((a)-(c)) explaining the effect of the elastic part interposed between the scooping up part and the circulation path part, The figure (a) and (b) is the conventional integrated type. It is a comparative example using a ball circulation tube, and the same figure (c) is an example using one embodiment of a ball circulation tube concerning one mode of the present invention. 掬い上げ部品と弾性部品の変形例を説明する図である。It is a figure explaining the modification of a scooping component and an elastic component. 第一変形例の掬い上げ部品を説明する図である。It is a figure explaining the scooping components of a 1st modification. 第一変形例の弾性部品を説明する図である。It is a figure explaining the elastic component of a 1st modification. 第二変形例の掬い上げ部品を説明する図である。It is a figure explaining the scooping components of a 2nd modification. 第二変形例の弾性部品を説明する図である。It is a figure explaining the elastic component of a 2nd modification. 掬い上げ部品とチューブ装着部の変形例を説明する図である。It is a figure explaining the modification of a scooping component and a tube mounting part. 第三変形例の掬い上げ部品(弾性部品も含めて図示)を説明する図であり、同図(a)は平面図、(b)は正面図、(c)は底面図である。It is a figure explaining the scooping up part (illustrated including an elastic part) of the 3rd modification, The figure (a) is a top view, (b) is a front view, (c) is a bottom view. 第三変形例のチューブ装着部を説明する図であり、同図(a)は図2(b)に対応する図を示し、(b)は図14(a)での要部のD矢視図、(c)は掬い上げ部品の凸部と座繰り穴の凹部との嵌合部分を示す拡大図、(d)は(c)に示す例の変形例である。It is a figure explaining the tube mounting part of a 3rd modification, The figure (a) shows the figure corresponding to FIG.2 (b), (b) is D arrow view of the principal part in Fig.14 (a). FIG. 4C is an enlarged view showing a fitting portion between the convex part of the scooping component and the concave part of the countersink hole, and FIG. 4D is a modification of the example shown in FIG. 掬い上げ部品、弾性部品および循環路部品の変形例を説明する図である。It is a figure explaining the modification of a scooping-up component, an elastic component, and a circulation path component. 第四変形例(および第五変形例)の循環路部品を説明する図であり、同図(a)は正面図、(b)は(a)でのE矢視、(c)は(a)でのF矢視を示している。It is a figure explaining the circuit components of a 4th modification (and a 5th modification), The figure (a) is a front view, (b) is E arrow in (a), (c) is (a ) In F direction. 第四変形例の掬い上げ部品を説明する図であり、同図(a)は平面図、(b)は正面図である。It is a figure explaining the scooping up part of a 4th modification, The figure (a) is a top view, (b) is a front view. 第四変形例の弾性部品を説明する図であり、同図(a)は平面図、(b)は正面図である。It is a figure explaining the elastic component of a 4th modification, The figure (a) is a top view, (b) is a front view. 第四変形例での弾性部品の溝と掬い上げ部品の凸部との嵌合状態を説明する図である。It is a figure explaining the fitting state of the groove | channel of the elastic component in the 4th modification, and the convex part of the scooping-up component. 第五変形例の掬い上げ部品を説明する図であり、同図(a)は平面図、(b)は正面図である。It is a figure explaining the scooping up part of a 5th modification, The figure (a) is a top view, (b) is a front view. 第五変形例の弾性部品を説明する図であり、同図(a)は平面図、(b)は正面図である。It is a figure explaining the elastic component of a 5th modification, The figure (a) is a top view, (b) is a front view.
 以下、本発明の一実施形態および変形例について、図面を適宜参照しつつ説明する。なお、図面は模式的なものである。そのため、厚みと平面寸法との関係、比率等は現実のものとは異なることに留意すべきであり、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。また、以下に示す実施形態および変形例は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記の実施形態および変形例に特定するものではない。 Hereinafter, embodiments and modifications of the present invention will be described with reference to the drawings as appropriate. The drawings are schematic. For this reason, it should be noted that the relationship between the thickness and the planar dimension, the ratio, and the like are different from the actual ones, and the dimensional relationship and the ratio are different between the drawings. Further, the following embodiments and modifications exemplify apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention includes the material, shape, The structure, arrangement, and the like are not specified in the following embodiments and modifications.
 図1に示すように、このボールねじ10は、ねじ軸1と、ねじ軸1に対して複数のボール3を介して螺合する円筒状のナット2とを有する。ナット2の一端部には円環状のフランジ22が形成されている。ねじ軸1の外周面には、螺旋状のねじ溝11が形成され、ナット2の内周面には、ねじ軸1のねじ溝11に対向する螺旋状のねじ溝21が形成されている。これらのねじ溝11,21で形成される転動路7内に複数のボール3が配置されている。
 ナット2の外周面には、平坦な据え付け面23が形成され、この据え付け面23にボール循環チューブ4が装着されている。据え付け面23には、チューブ押さえ5を取り付けるねじ穴24が二箇所に形成され(図2(a)参照)、ボール循環チューブ4は、チューブ押さえ5の両側をボルト6でねじ穴24に固定することにより、据え付け面23に装着される。
As shown in FIG. 1, the ball screw 10 includes a screw shaft 1 and a cylindrical nut 2 that is screwed to the screw shaft 1 via a plurality of balls 3. An annular flange 22 is formed at one end of the nut 2. A spiral thread groove 11 is formed on the outer peripheral surface of the screw shaft 1, and a spiral thread groove 21 facing the screw groove 11 of the screw shaft 1 is formed on the inner peripheral surface of the nut 2. A plurality of balls 3 are arranged in the rolling path 7 formed by these thread grooves 11 and 21.
A flat installation surface 23 is formed on the outer peripheral surface of the nut 2, and the ball circulation tube 4 is mounted on the installation surface 23. Two screw holes 24 for attaching the tube presser 5 are formed in the mounting surface 23 (see FIG. 2A), and the ball circulation tube 4 is fixed to the screw hole 24 with bolts 6 on both sides of the tube presser 5. As a result, the mounting surface 23 is mounted.
 ボール循環チューブ4は略U字形のチューブ(管)であり、ボール3を転動路7から掬い上げるタング状のボール掬い上げ部4aを両端部に有するとともに、両側のボール掬い上げ部4aの間を繋ぐ部分に、ナット2の外面をボール3が循環するように設けられたボール循環経路4jを有する。
 詳しくは、据え付け面23には、図2に示すように、ボール循環チューブ4両端のボール掬い上げ部4aがそれぞれ差し込まれる一対のチューブ装着部25が軸方向に離隔した二箇所に設けられている。各チューブ装着部25は、ボール3を掬い上げる位置に対応してそれぞれ形成されており、一対のチューブ装着部25の中心同士を結んだ線とナット2の軸線とのなす角度が所定の傾斜角に加工される。
The ball circulation tube 4 is a substantially U-shaped tube (tube) having a tongue-shaped ball scooping portion 4a for scooping the ball 3 from the rolling path 7 at both ends, and between the ball scooping portions 4a on both sides. Is provided with a ball circulation path 4 j provided so that the ball 3 circulates on the outer surface of the nut 2.
Specifically, as shown in FIG. 2, a pair of tube mounting portions 25 into which the ball scooping portions 4 a at both ends of the ball circulation tube 4 are respectively inserted are provided on the installation surface 23 at two locations separated in the axial direction. . Each tube mounting portion 25 is formed corresponding to the position where the ball 3 is lifted, and the angle formed by the line connecting the centers of the pair of tube mounting portions 25 and the axis of the nut 2 is a predetermined inclination angle. To be processed.
 各チューブ装着部25は、ボール3の径よりも僅かに大きい通し穴26と、通し穴26よりもボール循環チューブ4の管の厚さ分だけ径の大きい座繰り穴27とを同軸に有する。通し穴26は、ナット2の据え付け面23に垂直な方向から加工され、ナット2の肉厚部を貫通して転動路7に連通している。また、各チューブ装着部25には、上記所定の傾斜角に沿って、図1に示すボール循環経路4j部分のチューブの凹のR部4rが嵌る長穴状の装着溝28が設けられている。装着溝28は、図1に示す凹のR部4rの内曲げ形状に倣う凸の円弧状に形成される。 Each tube mounting portion 25 has a through hole 26 slightly larger than the diameter of the ball 3 and a counterbore hole 27 having a diameter larger than the through hole 26 by the thickness of the ball circulation tube 4. The through hole 26 is machined from a direction perpendicular to the installation surface 23 of the nut 2, passes through the thick part of the nut 2, and communicates with the rolling path 7. Further, each tube mounting portion 25 is provided with a long hole-shaped mounting groove 28 in which the concave R portion 4r of the tube in the ball circulation path 4j shown in FIG. 1 fits along the predetermined inclination angle. . The mounting groove 28 is formed in a convex arc shape that follows the inwardly bent shape of the concave R portion 4r shown in FIG.
 ここで、このボール循環チューブ4は、図3に構成部品の分解図を示すように、上記ボール掬い上げ部4aをそれぞれ有する一対の掬い上げ部品43A,43Bと、上記ボール循環経路4jを有する循環路部品41とが別箇の部品から形成されている。さらに、本実施形態では、各掬い上げ部品43A,43Bの上面43jと循環路部品41の下面41kとの間に同軸に介装される円環状の弾性部品42を有する。本実施形態の弾性部品42は、軸方向に弾性変形可能な合成ゴム製である。なお、弾性部品42は、合成ゴム製に限定されず、軸方向に弾性変形可能に形成されていれば、合成樹脂製としたり、軸方向に弾性変形可能な皿ばねや波座金等のように金属製としてもよい。 Here, as shown in an exploded view of the component parts in FIG. 3, the ball circulation tube 4 is a circulation having a pair of scooping parts 43A and 43B each having the ball scooping part 4a and the ball circulation path 4j. The road part 41 is formed from a separate part. Furthermore, in this embodiment, it has the annular | circular shaped elastic component 42 interposed coaxially between the upper surface 43j of each scooping component 43A, 43B, and the lower surface 41k of the circulation path component 41. FIG. The elastic component 42 of the present embodiment is made of synthetic rubber that can be elastically deformed in the axial direction. The elastic component 42 is not limited to a synthetic rubber, and may be made of a synthetic resin, a disc spring or a wave washer that can be elastically deformed in the axial direction as long as it is elastically deformable in the axial direction. It may be made of metal.
 一対の掬い上げ部品43A,43Bと循環路部品41とは、いずれも各部品の内部を循環するボール3の直径と整合した内径を有する金属製のパイプ材料から形成されている。循環路部品41は、金属製のパイプ材料をU字形状に曲げ加工されている。また、各掬い上げ部品43A,43Bは、各掬い上げ部品43A,43B内を循環するボール3の中心が描く軌道を中心軸CLとする円筒状のパイプ材料から形成されている。そして、下部に形成されるボール掬い上げ部4aは、ボールねじ10のリード角に沿った傾斜の掬い上げ角となる所定のタング形状に切削加工されている。 Each of the pair of scooping parts 43A and 43B and the circulation path part 41 is formed of a metal pipe material having an inner diameter that matches the diameter of the ball 3 circulating inside each part. The circulation path component 41 is formed by bending a metal pipe material into a U shape. The scooping parts 43A and 43B are formed of a cylindrical pipe material having a center axis CL as a trajectory drawn by the center of the ball 3 circulating in the scooping parts 43A and 43B. Then, the ball scooping portion 4 a formed at the lower portion is cut into a predetermined tongue shape having a scooping scooping angle along the lead angle of the ball screw 10.
 また、各掬い上げ部品43A,43Bは、上記チューブ装着部25に装着されたときに、その中心軸CLまわりの自転を許容する円筒形状および上面43jをそれぞれ有する。ここで、本実施形態では、上面43jは、中心軸CLに直交する平面とされている。また、この上面43jに対向する循環路部品41の下面41kについても、チューブ装着部25に装着されたときに中心軸CLに直交する平面とされている。
 なお、弾性部品42の内外径もパイプ材料の内外径と同径であり、また、弾性部品42の上下の両面も、チューブ装着部25に装着されたときに、中心軸CLに直交する平面とされている。これにより、各掬い上げ部品43A,43Bは、チューブ装着部25に装着されたときに、その中心軸CLまわりに自転可能になっている。
Each scooping component 43A, 43B has a cylindrical shape and an upper surface 43j that allow rotation about the central axis CL when mounted on the tube mounting portion 25, respectively. Here, in the present embodiment, the upper surface 43j is a plane orthogonal to the central axis CL. In addition, the lower surface 41k of the circulation path component 41 facing the upper surface 43j is also a plane orthogonal to the central axis CL when mounted on the tube mounting portion 25.
The inner and outer diameters of the elastic component 42 are the same as the inner and outer diameters of the pipe material, and both the upper and lower surfaces of the elastic component 42 are a plane orthogonal to the central axis CL when the tube mounting portion 25 is mounted. Has been. As a result, each scooping component 43A, 43B can rotate about its central axis CL when mounted on the tube mounting portion 25.
 次に、このボールねじ10の組立工程、つまり、ボールねじ10の製造方法について説明する。
 このボールねじ10を組み立てる際は、まず、図4に示すように、一対の掬い上げ部品43A,43Bを、上記据え付け面23の一対のチューブ装着部25に設けた座繰り穴27に組み付ける。各掬い上げ部品43A,43Bは、自身の下部先端のボール掬い上げ部4aが通し穴26に臨む位置に挿入され、座繰り穴27の底面にて軸方向の挿入位置が規制される。
Next, an assembly process of the ball screw 10, that is, a method for manufacturing the ball screw 10 will be described.
When assembling the ball screw 10, first, as shown in FIG. 4, the pair of scooping parts 43 </ b> A and 43 </ b> B are assembled in the counterbore holes 27 provided in the pair of tube mounting portions 25 of the installation surface 23. Each scooping component 43A, 43B is inserted at a position where the ball scooping portion 4a at its lower end faces the through hole 26, and the insertion position in the axial direction is regulated at the bottom surface of the counterbore hole 27.
 そして、その組み付け状態で、各チューブ装着部25の座繰り穴27に、各掬い上げ部品43A,43Bの上部開口から転動路7内に所定数のボール3を挿入する(第一の工程)。次いで、各掬い上げ部品43A,43Bの上面43jに円環状の弾性部品42を同軸となる装着姿勢で装着する(弾性部品装着工程)。なお、この弾性部品装着工程は、上記第一の工程での所定数のボール3を挿入する前に行ってもよい。
 第一の工程の後に、U字状の循環路部品41内にボール3を詰めるとともに、ボール3を詰めた循環路部品41を、一対の掬い上げ部品43A,43Bと当該ボール3を詰めた循環路部品41の間に弾性部品42を介装した状態で、一対の掬い上げ部品43A,43Bの上部からナット2のチューブ装着部25に組み付ける(第二の工程)。
Then, in the assembled state, a predetermined number of balls 3 are inserted into the rolling path 7 from the upper openings of the scooping parts 43A and 43B into the counterbore holes 27 of the tube mounting portions 25 (first step). . Next, the annular elastic component 42 is mounted on the upper surface 43j of each scooping component 43A, 43B in a mounting posture that is coaxial (elastic component mounting step). This elastic component mounting step may be performed before inserting the predetermined number of balls 3 in the first step.
After the first step, the ball 3 is packed in the U-shaped circulation path component 41, and the circulation path component 41 packed with the ball 3 is circulated with a pair of scooping components 43A and 43B and the ball 3. With the elastic part 42 interposed between the road parts 41, the upper part of the pair of scooping parts 43A and 43B is assembled to the tube mounting portion 25 of the nut 2 (second step).
 第二の工程の後に、循環路部品41を軽く手で押えつつ、ナット2またはねじ軸1を回転させてボール3を循環させる。ボール3を循環させることで、各掬い上げ部品43A,43Bのボール掬い上げ部4aにボール3が何度も衝突する。
 このとき、各掬い上げ部品43A,43Bは、その上面43jが、チューブ装着部25に装着されたときに、中心軸CLに直交する平面であり、また、弾性部品42の上下両面、および循環路部品41の下面41kについても同様の平面とされているので、循環路部品41を軽く手で押さえている状態であれば、各掬い上げ部品43A,43Bは軸回りの回転方向に自由に動くことができる。
After the second step, the ball 3 is circulated by rotating the nut 2 or the screw shaft 1 while lightly pressing the circulation path component 41 by hand. By circulating the ball 3, the ball 3 collides with the ball scooping portion 4a of each scooping component 43A, 43B many times.
At this time, each scooping component 43A, 43B has a top surface 43j that is a plane perpendicular to the central axis CL when mounted on the tube mounting portion 25, and both the upper and lower surfaces of the elastic component 42 and the circulation path. Since the lower surface 41k of the part 41 is also a similar plane, each scooping part 43A, 43B can freely move in the rotational direction around the axis as long as the circulation path part 41 is lightly pressed by hand. Can do.
 そのため、ボール掬い上げ部4aにボール3が繰り返し衝突された各掬い上げ部品43A,43Bは、その衝突力により、図5に掬い上げ部品43(各掬い上げ部品43A,43Bのいずれか(以下同様))が軸回りに回転するイメージを示すように、最も衝突される力が小さい位置になるように掬い上げ部品43が自から軸回りに回転する。なお、同図(a)において、符号Rで示す矢印は、掬い上げ部品43のボール掬い上げ部4aにボール3が衝突したときに、掬い上げ部品43が中心軸CLまわりに回転する調芯作用が生じるイメージを示している。 Therefore, the scooping parts 43A and 43B in which the ball 3 is repeatedly collided with the ball scooping portion 4a are subjected to the scooping part 43 (one of the scooping parts 43A and 43B (the same applies hereinafter) by the collision force). As shown in the image)) rotating around the axis, the scooping component 43 rotates around the axis so that the most colliding force is in a position. In FIG. 9A, an arrow indicated by a symbol R indicates a centering action in which the scooping component 43 rotates around the central axis CL when the ball 3 collides with the ball scooping portion 4a of the scooping component 43. This shows the image that occurs.
 また、本実施形態によれば、介装された弾性部品42の協働により、同図(b)に破線Mでイメージを示すように、ボール3がボール掬い上げ部4aに衝突すると、弾性部品42の弾性変形により、掬い上げ部品43が軸方向に移動することから、ボール掬い上げ部4aが、あたかも軸方向に「縮む」ように移動することによって緩衝効果を奏する上、上記調芯作用を効果的に補助することができる。
 これにより、各掬い上げ部品43A,43Bの加工誤差により、ボール3が掬い上げ部品43A,43Bの予期しない箇所に衝突して作動性が悪化することを防止または抑制することができ、作動性を改善することができる(第三の工程)。
Further, according to the present embodiment, when the ball 3 collides with the ball scooping portion 4a as shown by the broken line M in FIG. Since the scooping component 43 moves in the axial direction due to the elastic deformation of 42, the ball scooping portion 4 a moves as if it “shrinks” in the axial direction, thereby providing a buffering effect and performing the above-mentioned alignment function. Can assist effectively.
Thereby, it can prevent or suppress that the ball | bowl 3 collides with the unexpected location of the scooping components 43A and 43B by the processing error of each scooping components 43A and 43B, and a operability deteriorates. It can be improved (third step).
 第三の工程でねじ軸1またはナット2をしばらく回転させ、その第三の工程の後に、図6(c)に示すように、ナット2の外面に固定するためのチューブ押え5を用いて循環路部品41を据え付け面23に向けて押え、図1に示したように、ボルト6で循環路部品41とともに各掬い上げ部品43A,43Bを固定する(第四の工程)。これにより、各掬い上げ部品43A,43Bは、弾性部品42を介して回転方向の動きも固定される。
 以上の組み付け工程を経て、ボール循環チューブ4は、両側の掬い上げ部品43A,43Bのボール掬い上げ部4aが、据え付け面23に形成された一対のチューブ装着部25に所期の姿勢で挿入され、循環路部品41が、ナット2の外面をボール3が循環するように転動路7のボール3を一端側のボール掬い上げ部4aから掬い上げるとともにボール循環経路4jを介して他端側のボール掬い上げ部4aから戻すように装着される。
In the third step, the screw shaft 1 or the nut 2 is rotated for a while, and after the third step, circulation is performed using a tube presser 5 for fixing to the outer surface of the nut 2 as shown in FIG. The road part 41 is pressed toward the installation surface 23, and as shown in FIG. 1, the scooping parts 43A and 43B are fixed together with the circulation path part 41 with the bolt 6 (fourth step). As a result, the scooping parts 43 </ b> A and 43 </ b> B are also fixed to move in the rotational direction via the elastic parts 42.
Through the above assembly process, the ball circulation tube 4 is inserted in a desired posture into the pair of tube mounting portions 25 formed on the installation surface 23 with the ball scooping portions 4a of the scooping components 43A and 43B on both sides. The circulation path component 41 scoops up the ball 3 of the rolling path 7 from the ball scooping portion 4a on one end side so that the ball 3 circulates on the outer surface of the nut 2, and on the other end side through the ball circulation path 4j. It is mounted so as to return from the ball scooping portion 4a.
 ここで、ボール掬い上げ部4aとボール循環経路4jとが一体となっている通常のボール循環チューブの場合、チューブ押え5の加工誤差によってボール循環チューブを据え付け面23に向けた押え込み量が変動する場合がある。
 押え込み量が不足していれば、図6(a)に比較例を示すように、一体型のボール循環チューブ104とチューブ押え5との間に隙間Tが発生してボール循環チューブ104が十分に固定されないおそれがある。また、押え込み量が多すぎれば、同図(b)に比較例を示すように、チューブ押え5がボール循環チューブ104を押えすぎてボール循環チューブ104の変形を招き得る(符号Pに押付け力が過剰なイメージを示す)。
Here, in the case of a normal ball circulation tube in which the ball scooping portion 4a and the ball circulation path 4j are integrated, the amount of pressing the ball circulation tube toward the mounting surface 23 varies due to a processing error of the tube retainer 5. There is a case.
If the amount of press-in is insufficient, a gap T is generated between the integrated ball circulation tube 104 and the tube retainer 5 as shown in a comparative example in FIG. May not be fixed. If the amount of press-in is too large, the tube presser 5 may press the ball circulation tube 104 too much and cause deformation of the ball circulation tube 104 as shown in the comparative example in FIG. Show excessive image).
 これに対し、本実施形態によれば、循環路部品41と各掬い上げ部品43A,43Bとの間に、軸方向に弾性変形可能な材料から形成された弾性部品42を介しているので、同図(c)に実施例を示したように、掬い上げ部品43A,43Bや循環路部品41の軸方向での加工誤差やチューブ押え5の加工誤差等による締付け量の誤差を、掬い上げ部品43A,43Bと循環路部品41との間に介装した弾性部品42によって吸収し、適度な力で掬い上げ部品43A,43Bと循環路部品41とを確実に固定することができる。
 これにより、本実施形態のボールねじ10は、ナット2とねじ軸1の相対回転運動により、転動路7に沿ってボール3が転動すると、ボール3がボール循環チューブ4の一方のボール掬い上げ部4aにより転動路7から掬い上げられてボール循環チューブ4内に入り、ボール循環経路4jを通って反対側のボール掬い上げ部4aより再び転動路7に入るという循環を円滑に繰り返すことができるのである。
On the other hand, according to this embodiment, the elastic part 42 formed of a material that can be elastically deformed in the axial direction is interposed between the circulation path part 41 and the scooping parts 43A and 43B. As shown in the embodiment in FIG. 7C, the tightening error caused by the machining error in the axial direction of the scooping parts 43A and 43B and the circulation path part 41, the processing error of the tube presser 5, etc. , 43B and the circulation path part 41 are absorbed by the elastic part 42, and the scooping parts 43A, 43B and the circulation path part 41 can be securely fixed with an appropriate force.
Thereby, in the ball screw 10 of the present embodiment, when the ball 3 rolls along the rolling path 7 by the relative rotational movement of the nut 2 and the screw shaft 1, the ball 3 scoops one ball of the ball circulation tube 4. Circulation is smoothly repeated by scooping up from the rolling path 7 by the raising part 4a and entering the ball circulation tube 4 and entering the rolling path 7 again from the ball scooping part 4a on the opposite side through the ball circulation path 4j. It can be done.
 次に、このボールねじ10の作用・効果について説明する。
 上述したように、このボールねじ10によれば、ボール循環チューブ4が分割構造を有するので、各掬い上げ部品43A,43Bの装着姿勢をそれぞれ個別に調整できる。よって、仮に、一対の掬い上げ部品43A,43B相互のボール掬い上げ部4aに加工誤差が生じている場合であっても、加工誤差の影響を防止または軽減することができる。
 すなわち、このボールねじ10によれば、ボール循環チューブ4は、一対の掬い上げ部品43A,43Bと循環路部品41とが別箇の部品から形成されているので、ナット装着時に、一対の掬い上げ部品43A,43B相互の相対姿勢を個別に調整できる。例えば、循環路部品41を装着せずに、一対の掬い上げ部品43A,43Bのみをナット2のチューブ装着部25に取り付けた状態で、各掬い上げ部品43A,43Bの装着姿勢をそれぞれ個別に調整できる。
Next, functions and effects of the ball screw 10 will be described.
As described above, according to this ball screw 10, since the ball circulation tube 4 has a split structure, the mounting postures of the scooping parts 43A and 43B can be individually adjusted. Therefore, even if a processing error has occurred in the ball scooping portion 4a between the pair of scooping parts 43A and 43B, the influence of the processing error can be prevented or reduced.
That is, according to this ball screw 10, the ball circulation tube 4 is formed of a pair of scooping parts 43A and 43B and a circulation path part 41 as separate parts. The relative posture between the parts 43A and 43B can be individually adjusted. For example, the mounting posture of each scooping component 43A, 43B is individually adjusted with only the pair of scooping components 43A, 43B attached to the tube mounting portion 25 of the nut 2 without mounting the circulation path component 41. it can.
 よって、仮に、各掬い上げ部品43A,43Bのタング状のボール掬い上げ部4aに絶対的な加工誤差が生じていたり、一対の掬い上げ部品43A,43B相互のボール掬い上げ部4aに相対的な加工誤差が生じていたりする場合であっても、ボール掬い上げ部4aとボール循環経路4jが一体形成されたボール循環チューブに比べて、加工誤差の影響を軽減することができる。
 また、このボールねじ10によれば、一対の掬い上げ部品43A,43Bと循環路部品41とが別箇の部品から構成されているので、循環路部品41を装着しない状態で、掬い上げ部品43A,43Bのみをナット2のチューブ装着部25に取り付けた状態で玉詰め作業を行うことができる。また、掬い上げ部品43A,43Bをナット2に取り付けた状態で玉詰め作業が行えるため、図4(b)に示すように、循環経路外の方向へのボール3の移動がボール掬い上げ部4aによって阻止され、ボール3が転動路7の所望の方向Sに限って入るので、ボール3が循環経路外の方向の転動路7に入っていくことを防ぐ効果もある。
Therefore, there is an absolute processing error in the tongue-shaped ball scooping portion 4a of each scooping component 43A, 43B, or relative to the ball scooping portion 4a between the pair of scooping components 43A, 43B. Even when a machining error occurs, the influence of the machining error can be reduced as compared with a ball circulation tube in which the ball scooping portion 4a and the ball circulation path 4j are integrally formed.
Further, according to the ball screw 10, since the pair of scooping parts 43A and 43B and the circulation path part 41 are composed of separate parts, the scooping part 43A is not mounted. , 43B can be stuffed in a state where only the tube mounting portion 25 of the nut 2 is attached. Further, since the ball stuffing operation can be performed with the scooping parts 43A and 43B attached to the nut 2, as shown in FIG. 4B, the movement of the ball 3 in the direction out of the circulation path is the ball scooping part 4a. Since the ball 3 enters only in the desired direction S of the rolling path 7, there is an effect of preventing the ball 3 from entering the rolling path 7 in the direction outside the circulation path.
 また、このボールねじ10によれば、各掬い上げ部品43A,43Bは、当該掬い上げ部品43A,43B内を循環するボール中心が描く軌道を中心軸CLとする円筒部材から形成されるとともに、チューブ装着部25に装着されたときに、中心軸CLまわりの自転を許容する円筒形状および上面43jを有するので、ナット装着時、掬い上げ部品43A,43Bが自身軸回りの回転方向に自由に動くことができる。
 そのため、転動路7内に玉詰め後のならし回転にて、ボール掬い上げ部4aとボール3との衝突力によって、ボール3と衝突する力の大きさが最も小さい位置へと掬い上げ部品43A,43B自身を回転させることができる。したがって、ならし運転時に、いわば自動的に、加工誤差の影響を軽減するように掬い上げ部品43A,43Bを装着することができる。
Further, according to the ball screw 10, each scooping component 43A, 43B is formed of a cylindrical member having a center axis CL as a trajectory drawn by the center of the ball circulating in the scooping component 43A, 43B. Since it has a cylindrical shape and an upper surface 43j that allow rotation about the central axis CL when mounted on the mounting portion 25, the scooping parts 43A and 43B can freely move in the rotational direction around the axis when the nut is mounted. Can do.
Therefore, in the rolling rotation after rolling the ball into the rolling path 7, the parts that are picked up to the position where the magnitude of the force that collides with the ball 3 is the smallest due to the collision force between the ball scooping part 4 a and the ball 3. 43A and 43B itself can be rotated. Therefore, it is possible to automatically mount the scooping parts 43A and 43B so as to reduce the influence of the processing error automatically during the leveling operation.
 また、このボールねじ10によれば、円環状の弾性部品42は、軸方向に弾性変形可能な材料から形成されており、掬い上げ部品43A,43Bの上面43jと循環路部品41の下面41kとの間に同軸に介装されるので、この弾性部品42によって掬い上げ部品43A,43Bや循環路部品41の軸方向での加工誤差を吸収し、掬い上げ部品43A,43Bと循環路部品41とを過不足ない締め付け力で固定することができる。
 さらに、上述したボールねじ10の製造方法によれば、第一の工程では、上述した一対の掬い上げ部品43A,43Bをナット2のチューブ装着部25に組み付けるので、ナット装着時に、掬い上げ部品43A,43Bをその軸回りの回転方向に自由に動かすことができる。よって、仮に、各掬い上げ部品43A,43Bのボール掬い上げ部4aに絶対的な加工誤差が生じていたり、一対の掬い上げ部品43A,43B相互のボール掬い上げ部4aに相対的な加工誤差が生じている場合であっても、加工誤差の影響を軽減することができる。
Further, according to the ball screw 10, the annular elastic part 42 is formed of a material that can be elastically deformed in the axial direction, and the upper surface 43 j of the scooping parts 43 A and 43 B and the lower surface 41 k of the circulation path part 41. Since the elastic parts 42 absorb the machining errors in the axial direction of the scooping parts 43A and 43B and the circulation path part 41, the scooping parts 43A and 43B and the circulation path part 41 Can be fixed with a sufficient tightening force.
Further, according to the method for manufacturing the ball screw 10 described above, in the first step, the pair of scooping parts 43A and 43B described above are assembled to the tube mounting part 25 of the nut 2, so that the scooping part 43A is attached when the nut is mounted. , 43B can be freely moved in the direction of rotation around the axis. Therefore, there is an absolute processing error in the ball scooping part 4a of each scooping part 43A, 43B, or there is a relative processing error in the ball scooping part 4a between the pair of scooping parts 43A, 43B. Even if it occurs, the influence of the processing error can be reduced.
 そして、その組み付け状態で、一対の掬い上げ部品43A,43Bの上部開口から転動路7内にボール3を挿入するので、ねじ軸1とナット2との間の転動路7にボール3を挿入する際、予めナット2に掬い上げ部品43A,43Bを装着することで、ボール3が挿入されてはいけない方向にボール3が入らないようにボール3を組み込むことができる。
 また、上述したボールねじ10の製造方法によれば、上記第一の工程の後に、循環路部品41内にボール3を詰めるとともに、当該ボール3を詰めた循環路部品41を、一対の掬い上げ部品43A,43Bの上部からナット2のチューブ装着部25に組み付ける第二の工程と、この第二の工程の後に、循環路部品41を押えつつ、ナット2またはねじ軸1を回してボール3を循環させて、掬い上げ部品43A,43Bのボール掬い上げ部4aにボール3が衝突する力により掬い上げ部品43A,43B自らをその軸回りに回転させる第三の工程とを含むので、第二の工程において、ナット2の外面をボール3が循環するように、転動路7のボール3を一端側のボール掬い上げ部4aから掬い上げるとともにボール循環経路4jを介して他端側のボール掬い上げ部4aから戻すことができる。
In this assembled state, the ball 3 is inserted into the rolling path 7 from the upper opening of the pair of scooping parts 43A and 43B, so the ball 3 is inserted into the rolling path 7 between the screw shaft 1 and the nut 2. At the time of insertion, the balls 3 can be incorporated so that the balls 3 do not enter in the direction in which the balls 3 should not be inserted by attaching the scooping parts 43A and 43B to the nut 2 in advance.
Moreover, according to the manufacturing method of the ball screw 10 described above, after the first step, the balls 3 are packed in the circulation path component 41 and the circulation path component 41 packed with the balls 3 is paired up. A second step of assembling the parts 43A and 43B from the upper part of the tube mounting portion 25 of the nut 2 and, after this second step, while turning the nut 2 or the screw shaft 1 while holding the circulation path component 41, And the third step of rotating the scooping parts 43A and 43B themselves around their axes by the force of the ball 3 colliding with the ball scooping part 4a of the scooping parts 43A and 43B. In the process, the ball 3 of the rolling path 7 is scooped up from the ball scooping portion 4a on one end side so that the ball 3 circulates on the outer surface of the nut 2, and the other end side through the ball circulation path 4j. It is possible to return from the ball scooping portion 4a.
 そして、第三の工程では、循環路部品41を押えつつ、ナット2またはねじ軸1を回してボール3を循環させることで、掬い上げ部品43A,43Bのボール掬い上げ部4aにボール3が衝突する力により掬い上げ部品自らをその軸回りに回転させるので、ボール掬い上げ部4aがボール3と衝突する力が最も小さくなる位置に掬い上げ部品自からをその軸回りに回転させることができる。これにより、掬い上げ部品43A,43Bの加工誤差により、ボール3が掬い上げ部品43A,43Bの予期しない箇所に衝突して作動性が悪化することを防止または抑制することができるため、作動性を改善することができる。 In the third step, the ball 3 collides with the ball scooping part 4a of the scooping parts 43A and 43B by rotating the nut 2 or the screw shaft 1 and circulating the ball 3 while holding the circulation path part 41. Since the scooping-up component itself is rotated about its axis by the force of the scooping, the scooping-up component itself can be rotated about its axis at a position where the force with which the ball scooping portion 4a collides with the ball 3 is minimized. Accordingly, it is possible to prevent or suppress the operability from deteriorating due to the processing error of the scooping parts 43A and 43B and the ball 3 colliding with an unexpected part of the scooping parts 43A and 43B. Can be improved.
 また、上記第二の工程では、循環路部品41内にボール3を詰めるとともに、当該ボール3を詰めた循環路部品41を、一対の掬い上げ部品43A,43Bと当該ボール3を詰めた循環路部品41の間に弾性部品42を介装した状態で、一対の掬い上げ部品43A,43Bの上部からナット2のチューブ装着部25に組み付け、その後、第四の工程で、ボール循環チューブ4をナット2の外面に固定するためのチューブ押え5を用いて循環路部品41を押え、循環路部品41とともに掬い上げ部品43A,43Bを固定するので、このボールねじ10の製造方法によれば、掬い上げ部品43A,43Bと循環路部品41との間に介装する弾性部品42によって、掬い上げ部品43A,43Bや循環路部品41の軸方向での加工誤差を吸収し、掬い上げ部品43A,43Bと循環路部品41とを同時に過不足ない締め付け力で固定することができる。 Further, in the second step, the balls 3 are packed in the circulation path component 41, and the circulation path component 41 packed with the balls 3 is replaced with a pair of scooping parts 43A and 43B and the circulation path packed with the balls 3. In a state where the elastic part 42 is interposed between the parts 41, the ball circulation tube 4 is attached to the tube mounting portion 25 of the nut 2 from the upper part of the pair of scooping parts 43A and 43B. 2 is used to hold the circulation path component 41 and the scooping parts 43A and 43B together with the circulation path component 41. According to this ball screw 10 manufacturing method, The elastic part 42 interposed between the parts 43A and 43B and the circulation path part 41 absorbs machining errors in the axial direction of the scooping parts 43A and 43B and the circulation path part 41. The scoop parts 43A, 43B and a circulation path component 41 can be fixed at the same time neither excessive nor insufficient clamping force.
 以上説明したように、本実施形態のボール循環チューブ4およびこれを備えるボールねじ10並びにその製造方法によれば、掬い上げ部の加工誤差の影響を軽減することができる。なお、本発明に係るボールねじ用ボール循環チューブ及びボールねじ並びにボールねじの製造方法は、上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しなければ種々の変形が可能である。
 例えば、上記実施形態では、ボール循環チューブ4は、掬い上げ部品43A,43Bと循環路部品41との間に弾性部品42を介装した例で説明したが、これに限定されず、弾性部品42を介装しない態様としてもよい。但しこの場合、図6を参照して説明したように、チューブ押え5の押え込み量の変動幅を吸収することが難しくなる。そのため、適度な力で掬い上げ部品43A,43Bと循環路部品41とを確実に固定する上では、掬い上げ部品43A,43Bと循環路部品41との間に弾性部品42を介装したボール循環チューブ4とすることが好ましい。
As described above, according to the ball circulation tube 4 of the present embodiment, the ball screw 10 including the same, and the manufacturing method thereof, it is possible to reduce the influence of the processing error of the scooping portion. Note that the ball circulation tube for ball screw, the ball screw, and the manufacturing method of the ball screw according to the present invention are not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention. .
For example, in the above-described embodiment, the ball circulation tube 4 has been described as an example in which the elastic part 42 is interposed between the scooping parts 43A and 43B and the circulation path part 41. It is good also as an aspect which does not interpose. However, in this case, as described with reference to FIG. 6, it becomes difficult to absorb the fluctuation range of the pressing amount of the tube presser 5. Therefore, in order to securely fix the scooping parts 43A and 43B and the circulation path part 41 with an appropriate force, the ball circulation in which the elastic parts 42 are interposed between the scooping parts 43A and 43B and the circulation path part 41. The tube 4 is preferable.
 また、例えば上記実施形態では、掬い上げ部品43A,43B、循環路部品41、および弾性部品42相互の対向面が、いずれもチューブ装着部25に装着されたときに中心軸CLに直交する平面とされている例で説明したが、これに限定されず、例えば、相互の対向面に、いずれか一方の面に形成された凹部に対していずれか他方の面に形成された凸部が嵌合する一または複数の凹凸形状を設けることができる。
 なお、この凹凸形状を設ける場合において、掬い上げ部品43A,43Bと循環路部品41とがチューブ装着部25に装着されたときに、掬い上げ部品43A,43Bの中心軸回りの装着姿勢をそれぞれ個別に調整可能(以下、「調心性」ともいう)とする上で、いずれか一方の凹部は、円周方向の寸法が、いずれか他方の凸部の円周方向の寸法よりも調心量に応じた寸法だけ僅かに広く形成されていてもよい。また、相互の対向面の凹凸関係が逆転していてもよい。
Further, for example, in the above-described embodiment, the facing surfaces of the scooping parts 43A and 43B, the circulation path part 41, and the elastic part 42 are all flat surfaces orthogonal to the central axis CL when mounted on the tube mounting part 25. However, the present invention is not limited to this. For example, a convex portion formed on one of the other surfaces is fitted to a concave portion formed on one of the opposite surfaces. One or a plurality of uneven shapes can be provided.
In the case where this uneven shape is provided, when the scooping parts 43A and 43B and the circulation path part 41 are mounted on the tube mounting part 25, the mounting postures around the central axis of the scooping parts 43A and 43B are individually set. Can be adjusted (hereinafter also referred to as “alignment”), one of the concave portions has a circumferential dimension that is more aligned than the circumferential dimension of the other convex portion. It may be formed slightly wider by a corresponding dimension. Moreover, the uneven | corrugated relationship of a mutual opposing surface may be reversed.
 以下、このような凹凸形状を設けた変形例について図面を参照して説明する。なお、以下説明する各変形例は、相互の対向面に、相互に嵌合する凹凸形状を設けた点以外は、上記実施形態と同じ構成なので相違点以外の説明は省略する。なおまた、以下の変形例では、一対の掬い上げ部品43A,43Bを共に示す場合を除き、相互を特に区別せずに掬い上げ部品43として説明する。 Hereinafter, a modified example in which such an uneven shape is provided will be described with reference to the drawings. In addition, since each modified example demonstrated below is the same structure as the said embodiment except the uneven | corrugated shape which mutually fits in the mutually opposing surface, description except a difference is abbreviate | omitted. In addition, in the following modified examples, except for the case where a pair of scooping parts 43A and 43B are shown together, the scooping parts 43 will be described without particularly distinguishing each other.
[第一変形例]
 第一変形例を図7~図9に示す(なお、図7は以下の第二変形例と共通)。第一変形例では、掬い上げ部品43と弾性部品42について、図7に示すように、相互の対向面に、相互に嵌合する凹凸形状(符号43t、42d)をそれぞれに設けて相互を組み合わせることで、相互の軸まわりのずれを防止して組立性を向上させた例である。
 すなわち、第一変形例では、掬い上げ部品43には、図8に示すように、弾性部品42との対向面である上面43jの内周面寄りの位置に、弾性部品42側に向けて形成された凸部43tが径方向の二箇所の対向位置に設けられている。また、弾性部品42には、図9に示すように、掬い上げ部品43との対向面である下面42sの内周面寄りの位置に、掬い上げ部品43の二箇所の凸部とそれぞれ嵌合可能に形成された凹部が二箇所設けられている。
 第一変形例の構成によれば、掬い上げ部品43と弾性部品42とは、相互の対向面に、弾性部品42の下面42sの内周面寄りの位置に形成された凹部42dに対して掬い上げ部品43の上面43jの内周面寄りの位置に形成された凸部43tが嵌合する凹凸形状を有するので、上記実施形態の奏する作用効果に加え、相互に嵌合する凹凸形状を組み合わせることで、相互の軸まわりのずれを防止して組立性を向上させることができる。
[First modification]
A first modification is shown in FIGS. 7 to 9 (note that FIG. 7 is common to the following second modification). In the first modification, as shown in FIG. 7, the scooping component 43 and the elastic component 42 are provided with concave and convex shapes ( reference numerals 43 t and 42 d) that are fitted to each other on each other, and combined with each other. Thus, this is an example in which assemblability is improved by preventing misalignment between the axes.
That is, in the first modification, the scooping component 43 is formed toward the elastic component 42 side at a position near the inner peripheral surface of the upper surface 43j that is a surface facing the elastic component 42, as shown in FIG. The convex portions 43t are provided at two opposing positions in the radial direction. Further, as shown in FIG. 9, the elastic component 42 is fitted with the two convex portions of the scooping component 43 at positions near the inner peripheral surface of the lower surface 42 s that is the surface facing the scooping component 43. Two recesses that can be formed are provided.
According to the configuration of the first modified example, the scooping component 43 and the elastic component 42 are scooped against the concave portion 42d formed on the mutually opposing surfaces at a position near the inner peripheral surface of the lower surface 42s of the elastic component 42. Since the convex portion 43t formed at a position near the inner peripheral surface of the upper surface 43j of the raised component 43 has a concave / convex shape to be fitted, the concave / convex shapes to be fitted to each other are combined in addition to the operational effects of the above embodiment. Thus, it is possible to improve the assembling property by preventing the displacement around the mutual axes.
[第二変形例]
 次に、第二変形例を図10および図11に示す。第二変形例は、上記第一変形例に対し、凹凸形状(符号43t、42d)が外周面寄りの位置に形成されている点が相違する。
 すなわち、第二変形例では、掬い上げ部品43には、図10に示すように、弾性部品42との対向面である上面43jの外周面寄りの位置に、弾性部品42側に向けて形成された凸部43tが二箇所設けられている。また、弾性部品42には、図11に示すように、掬い上げ部品43との対向面である下面42sの外周面寄りの位置に、掬い上げ部品43の二箇所の凸部43tと嵌合可能に形成された凹部42dが二箇所設けられている。
 第二変形例の構成によれば、上記第一変形例同様に、掬い上げ部品43と弾性部品42とは、相互の対向面に、弾性部品42の下面42sの外周面寄りの位置に形成された凹部42dに対して掬い上げ部品43の上面43jの外周面寄りの位置に形成された凸部43tが嵌合する凹凸形状を有するので、上記実施形態の奏する作用効果に加え、相互に嵌合する凹凸形状を組み合わせることで、相互の軸まわりのずれを防止して組立性を向上させることができる。
[Second modification]
Next, a second modification is shown in FIGS. The second modified example is different from the first modified example in that an uneven shape ( reference numerals 43t and 42d) is formed at a position closer to the outer peripheral surface.
That is, in the second modification, the scooping component 43 is formed toward the elastic component 42 side at a position near the outer peripheral surface of the upper surface 43j that is a surface facing the elastic component 42, as shown in FIG. Two convex portions 43t are provided. Further, as shown in FIG. 11, the elastic component 42 can be fitted with the two convex portions 43 t of the scooping component 43 at a position near the outer peripheral surface of the lower surface 42 s that is a surface facing the scooping component 43. Two recesses 42d are formed at the two locations.
According to the configuration of the second modified example, as in the first modified example, the scooping component 43 and the elastic component 42 are formed on the mutually opposing surfaces at a position near the outer peripheral surface of the lower surface 42s of the elastic component 42. Since the convex portion 43t formed at a position near the outer peripheral surface of the upper surface 43j of the scooping part 43 is fitted to the concave portion 42d, the fitting portion is fitted to each other in addition to the function and effect of the above embodiment. By combining the concavo-convex shapes, the assemblability can be improved by preventing the displacement around the mutual axes.
[第三変形例]
 次に、第三変形例を図12~図14に示す。
 第三変形例は、図12に示すように、掬い上げ部品43とチューブ装着部25の座繰り穴27相互の対向面に、相互に嵌合する凹凸形状(符号29、43d)を設け、且つ、凸部43dに対して凹部29を調心量に応じた寸法だけ僅かに広く形成している例である。
 すなわち、第三変形例では、掬い上げ部品43には、図13に示すように、座繰り穴27との対向面である下面43sの外周面寄りの位置に、座繰り穴27の底面側に向けて形成された幅Wの凸部43dがボール掬い上げ部4aとは略反対側に一箇所設けられている。また、掬い上げ部品43との対向面である座繰り穴27の底面には、図14に示すように、底面の外周面寄りの位置に、掬い上げ部品43の凸部43dと嵌合可能に形成された溝幅Hの凹部29が一箇所設けられている。
[Third modification]
Next, a third modification is shown in FIGS.
As shown in FIG. 12, the third modification is provided with concave and convex shapes ( reference numerals 29 and 43d) that are fitted to each other on the facing surfaces of the scooping component 43 and the counterbore 27 of the tube mounting portion 25, and This is an example in which the concave portion 29 is slightly wider than the convex portion 43d by a dimension corresponding to the alignment amount.
That is, in the third modified example, the scooping component 43 has a position near the outer peripheral surface of the lower surface 43 s that is a surface facing the countersink hole 27, as shown in FIG. A convex portion 43d having a width W formed in the direction is provided on one side substantially opposite to the ball scooping portion 4a. Further, as shown in FIG. 14, the bottom surface of the counterbore 27, which is the surface facing the scooping component 43, can be fitted to the convex portion 43d of the scooping component 43 at a position near the outer peripheral surface of the bottom surface. One recess 29 having a groove width H is formed.
 そして、第三変形例では、座繰り穴27の底面に形成された凹部29は、中心軸まわりの溝幅Hの寸法が、掬い上げ部品43の下面43sに形成された凸部43dの中心軸まわりの幅Wの寸法よりも、調心量に応じた寸法だけ僅かに広く形成されている(H>W)。
 要部の具体的構成例として、図14(c)および(d)に嵌合時の拡大図を示す。この第三変形例では、同図(c)に示すように、嵌合時において、凸部43dと凹部29とは、軸方向では、凸部43dの下端面が凹部29の底面に到達しないように設定される。さらに、凸部43dと凹部29とは、周方向では、凸部43dの外側面と凹部29の内側面との間に、上記調心量に応じた寸法の隙間を有する隙間ばめになっている。
In the third modification, the concave portion 29 formed on the bottom surface of the counterbore hole 27 has a groove width H around the central axis, the central axis of the convex portion 43 d formed on the lower surface 43 s of the scooping component 43. The dimension corresponding to the alignment amount is slightly wider than the dimension of the surrounding width W (H> W).
As a specific configuration example of the main part, FIGS. 14C and 14D are enlarged views at the time of fitting. In this third modified example, as shown in FIG. 4C, the convex portion 43d and the concave portion 29 do not reach the bottom surface of the concave portion 29 in the axial direction when the convex portion 43d and the concave portion 29 are fitted. Set to Further, the convex portion 43d and the concave portion 29 are gap fittings having a gap having a size corresponding to the alignment amount between the outer surface of the convex portion 43d and the inner side surface of the concave portion 29 in the circumferential direction. Yes.
 なお、同図(d)に示すように、凸部43dの下端面を下方に向けて中央部が凸の曲面としてもよい。この場合、嵌合時において、凸部43dと凹部29とは、軸方向では、凸部43dの下端の凸曲面が凹部29の底面に摺接するように設定され、且つ、周方向では、上記調心量に応じた隙間ばめとする。
 第三変形例の構成によれば、図14(c)、(d)に示したように、凹部29の中心軸まわりの寸法が、凸部43dの中心軸まわりの寸法よりも調心量に応じた寸法だけ僅かに広い(H>W)ので、上記実施形態の奏する作用効果同様に、掬い上げ部品43に調心性を持たせることができる。
 さらに、第三変形例の構成によれば、相互に嵌合する凹凸形状により、各掬い上げ部品43A,43Bの中心軸まわりの回転可能範囲を規制できる。よって、各掬い上げ部品43A,43Bに調心性をもたせつつ位置決めを容易にすることができる。
In addition, as shown to the same figure (d), it is good also considering the lower end surface of the convex part 43d as the downward direction, and making a center part into a curved surface convex. In this case, at the time of fitting, the convex portion 43d and the concave portion 29 are set so that the convex curved surface at the lower end of the convex portion 43d is in sliding contact with the bottom surface of the concave portion 29 in the axial direction, and in the circumferential direction, the above adjustment is performed. Fit the gap according to the amount of heart.
According to the configuration of the third modified example, as shown in FIGS. 14C and 14D, the dimension around the central axis of the concave portion 29 is more aligned than the dimension around the central axis of the convex portion 43d. Since the corresponding dimension is slightly wider (H> W), the scooping component 43 can be provided with alignment as with the operational effects of the above embodiment.
Furthermore, according to the configuration of the third modified example, the rotatable range around the central axis of each scooping component 43A, 43B can be regulated by the concavo-convex shape that fits together. Therefore, positioning can be facilitated while aligning each scooping part 43A, 43B.
[第四変形例]
 次に、第四変形例を図15~図18に示す(なお、図15、図16は以下の第五変形例と共通)。第四変形例では、掬い上げ部品43と循環路部品41とは、相互の対向面に、いずれか一方の凸部に対していずれか他方の凹部が嵌合する凹凸形状(符号43t、41d)を有するとともに、いずれか一方の面に形成された凹部は、中心軸CLまわりの寸法が、いずれか他方の面に形成された凸部の中心軸CLまわりの寸法よりも調心量に応じた寸法だけ僅かに広く形成され、さらに、介装される弾性部品42には、凸部が貫通可能な溝42hが設けられている例である。
[Fourth modification]
Next, a fourth modification is shown in FIGS. 15 to 18 (note that FIGS. 15 and 16 are common to the following fifth modification). In the fourth modified example, the scooping part 43 and the circulation path part 41 have a concave-convex shape ( reference numerals 43t, 41d) in which either one of the concave parts is fitted to either one of the convex parts. In addition, the concave portion formed on one of the surfaces has a dimension around the central axis CL that is more dependent on the amount of alignment than the dimension around the central axis CL of the convex portion formed on either one of the surfaces. This is an example in which a groove 42h through which a convex portion can pass is provided in the elastic part 42 that is formed slightly wider in size and is interposed.
 すなわち、第四変形例では、循環路部品41には、図16に示すように、掬い上げ部品43との対向面である二つの下面41kの中央に、径方向に沿って貫通する溝幅Sの凹部41dがそれぞれ二箇所(計四箇所)設けられている。また、掬い上げ部品43には、図17に示すように、循環路部品41との対向面である上面43jの内周面寄りの位置に、循環路部品41の下面側に向けて形成された凸部43tが二箇所設けられ、各凸部43tは、循環路部品41の二箇所の凹部41dとそれぞれ嵌合可能に形成されている。
 さらに、弾性部品42には、図18に示すように、掬い上げ部品43の上面43jに形成された二箇所の凸部が貫通可能な溝42hが内周面に二箇所設けられている。弾性部品42の溝42hの溝幅Mは、図17に示した掬い上げ部品43の凸部43tの幅Wよりも僅かに大きいすき間ばめになっている(M>W)。これにより、相互の嵌合状態は、強固な組み付け力(軸方向の圧縮力F1)が作用しないとき(調心時)には、相互の対向面間に僅かに隙間が生じる。また、図19に示すように、組み付け時に弾性部品42に対して軸方向に圧縮力F1が作用したときには、弾性部品42の弾性変形により、相互の対向面が密着するように凸部43tの左右からの挟持力F2が生じるように設定されている。なお、同図において軸方向に弾性部品42が短縮する弾性変形のイメージを破線および符号dで示している。
That is, in the fourth modified example, the circulation path component 41 has a groove width S penetrating along the radial direction at the center of the two lower surfaces 41k that are opposed to the scooping component 43, as shown in FIG. Each of the concave portions 41d is provided in two places (four places in total). Further, as shown in FIG. 17, the scooping component 43 is formed at a position near the inner peripheral surface of the upper surface 43 j that is a surface facing the circulation channel component 41, toward the lower surface side of the circulation channel component 41. Two convex portions 43t are provided, and each convex portion 43t is formed to be able to fit into two concave portions 41d of the circulation path component 41, respectively.
Further, as shown in FIG. 18, the elastic component 42 is provided with two grooves 42 h on the inner peripheral surface through which two convex portions formed on the upper surface 43 j of the scooping component 43 can pass. The groove width M of the groove 42h of the elastic part 42 is a clearance fit slightly larger than the width W of the convex part 43t of the scooping part 43 shown in FIG. 17 (M> W). Thereby, in the mutual fitting state, when a strong assembling force (axial compressive force F1) does not act (during alignment), a slight gap is generated between the opposing surfaces. Further, as shown in FIG. 19, when a compressive force F1 is applied to the elastic part 42 in the axial direction during assembly, the left and right sides of the convex portion 43t are brought into close contact with each other due to elastic deformation of the elastic part 42. Is set to generate a clamping force F2. In the figure, an image of elastic deformation in which the elastic part 42 is shortened in the axial direction is indicated by a broken line and a symbol d.
 そして、第四変形例では、上記実施形態同様に、循環路部品41の下面41kに形成された凹部41dは、中心軸CLまわりの寸法(この例では溝幅S)が、掬い上げ部品43の上面43jに形成された凸部43tの中心軸CLまわりの寸法(この例では凸部43tの幅W)よりも、調心量に応じた寸法だけ僅かに広く形成されている(S>W)。なお、相互に嵌合する凹凸部の要部の具体的な構成(相対位置)としては、上述した第三変形例において、図14(c)および(d)に示した嵌合例と同様の構成とすることができる。
 第四変形例の構成によれば、循環路部品41の下面41kに形成された凹部41dは、中心軸CLまわりの寸法が、掬い上げ部品43の上面43jに形成された凸部43tの中心軸CLまわりの寸法よりも調心量に応じた寸法だけ僅かに広い(S>W)ので、上記実施形態同様に、掬い上げ部品43に調心性を持たせることができる。
In the fourth modification, as in the above embodiment, the recess 41d formed on the lower surface 41k of the circulation path component 41 has a dimension around the central axis CL (in this example, the groove width S) of the scooping component 43. The dimension corresponding to the alignment amount is slightly wider than the dimension around the central axis CL of the convex part 43t formed on the upper surface 43j (in this example, the width W of the convex part 43t) (S> W). . In addition, as a specific structure (relative position) of the main part of the uneven | corrugated | grooved part mutually fitted, in the 3rd modification mentioned above, it is the same as that of the fitting example shown in FIG.14 (c) and (d). It can be configured.
According to the configuration of the fourth modification, the recess 41 d formed on the lower surface 41 k of the circulation path component 41 has a dimension around the center axis CL that is the center axis of the projection 43 t formed on the upper surface 43 j of the scooping component 43. Since the dimension corresponding to the alignment amount is slightly wider than the dimension around CL (S> W), the scooping component 43 can be aligned as in the above embodiment.
 さらに、第四変形例の構成によれば、相互に嵌合する凹部41dと凸部43t相互の凹凸形状により、各掬い上げ部品43A,43Bの中心軸CLまわりの回転可能範囲を規制できる。よって、各掬い上げ部品43A,43Bに調心性をもたせつつその位置決めを容易にすることができる。
 また、弾性部品42の溝42hと掬い上げ部品43の凸部43tとは、調心時には相互の対向面間に隙間が生じ、組み付け時には相互の対向面が密着するすき間ばめになっているので、第三の工程での調心性を持たせつつ、第四の工程での固定により各部品を確実に固定することができる。
Furthermore, according to the configuration of the fourth modified example, the rotatable range around the central axis CL of each scooping component 43A, 43B can be restricted by the concave and convex shapes of the concave portion 41d and the convex portion 43t that are fitted to each other. Therefore, it is possible to easily position the scooping parts 43A and 43B while aligning them.
Further, the groove 42h of the elastic component 42 and the convex portion 43t of the scooping component 43 have a clearance fit between the opposing surfaces during alignment, and a close fit between the opposing surfaces when assembled. Each component can be securely fixed by fixing in the fourth step while maintaining the alignment in the third step.
[第五変形例]
 次に、第五変形例を図20、図21に示す。第五変形例は、上記第四変形例に対し、掬い上げ部品43の凸部43t、および弾性部品42の溝42hが外周面寄りの位置に形成されている点が相違する。
 すなわち、第五変形例では、循環路部品41には、図16に示したように、第四変形例と同様に、掬い上げ部品43との対向面である二つの下面41kの中央に、径方向に沿って貫通する凹部41dがそれぞれ二箇所(計四箇所)設けられている。そして、掬い上げ部品43には、図20に示すように、循環路部品41との対向面である上面43jの外周面寄りの位置に、循環路部品41の下面側に向けて形成された凸部43tが二箇所設けられ、各凸部43tは、循環路部品41の二箇所の凹部41dとそれぞれ嵌合可能に形成されている。なお、相互に嵌合する凹凸部の要部の具体的な構成(相対位置)としては、上述した第三変形例において、図14(c)および(d)に示した嵌合例と同様の構成とすることができる。
[Fifth Modification]
Next, a fifth modification is shown in FIGS. The fifth modified example is different from the fourth modified example in that the convex portion 43t of the scooping component 43 and the groove 42h of the elastic component 42 are formed at positions close to the outer peripheral surface.
That is, in the fifth modification, as shown in FIG. 16, the circulation path component 41 has a diameter at the center of the two lower surfaces 41 k that are opposed to the scooping component 43, as in the fourth modification. Each of the recesses 41d penetrating along the direction is provided at two places (four places in total). As shown in FIG. 20, the scooping component 43 has a convex formed on the lower surface side of the circulation path component 41 at a position near the outer peripheral surface of the upper surface 43 j that is a surface facing the circulation path component 41. Two portions 43t are provided, and each convex portion 43t is formed so as to be fitted to two concave portions 41d of the circulation path component 41, respectively. In addition, as a specific structure (relative position) of the main part of the uneven | corrugated | grooved part mutually fitted, in the 3rd modification mentioned above, it is the same as that of the fitting example shown in FIG.14 (c) and (d). It can be configured.
 そして、第五変形例においても、循環路部品41の下面41kに形成された凹部41dは、中心軸CLまわりの寸法が、上記第四変形例同様に、掬い上げ部品43の上面43jに形成された凸部43tの中心軸CLまわりの寸法よりも、調心量に応じた寸法だけ僅かに広く形成されている。
 さらに、弾性部品42には、図21に示すように、掬い上げ部品43の上面43jに形成された二箇所の凸部43tが貫通可能な溝42hが外周面に二箇所設けられている。弾性部品42の溝42hと掬い上げ部品43の凸部43tとは、上記第四変形例同様に、調心時には相互の対向面間に隙間が生じ、組み付け時には相互の対向面が密着するすき間ばめになっている。
Also in the fifth modified example, the recess 41d formed on the lower surface 41k of the circulation path component 41 is formed on the upper surface 43j of the scooping component 43 in the same dimension as the fourth modified example. The protrusion 43t is formed slightly wider than the dimension around the center axis CL by a dimension corresponding to the alignment amount.
Further, as shown in FIG. 21, the elastic part 42 is provided with two grooves 42 h on the outer peripheral surface through which the two convex portions 43 t formed on the upper surface 43 j of the scooping part 43 can pass. The groove 42h of the elastic component 42 and the convex portion 43t of the scooping component 43 are clearances where a gap is generated between the opposing surfaces during alignment, and the opposing surfaces are in close contact during assembly, as in the fourth modification. It has become.
 第五変形例の構成によれば、上記第四変形例同様に、循環路部品41の下面41kに形成された凹部41dは、中心軸CLまわりの寸法が、掬い上げ部品43の上面43jに形成された凸部43tの中心軸CLまわりの寸法よりも調心量に応じた寸法だけ僅かに広いので、上記第四変形例同様に、各掬い上げ部品43A,43Bに調心性をもたせつつその位置決めを容易にすることができる。
 また、弾性部品42の溝42hと掬い上げ部品43の凸部43tとは、上記第四変形例同様に、調心時には相互の対向面間に隙間が生じ、組み付け時には相互の対向面が密着するすき間ばめになっているので、第三の工程での調心性を持たせつつ、第四の工程での固定により各部品を確実に固定することができる。
According to the configuration of the fifth modification, as in the fourth modification, the recess 41d formed on the lower surface 41k of the circulation path component 41 is formed on the upper surface 43j of the scooping component 43 with a dimension around the central axis CL. Since the projected portion 43t is slightly wider than the dimension around the center axis CL of the convex portion 43t, the positioning of the scooping parts 43A and 43B is adjusted while maintaining the alignment as in the fourth modification. Can be made easier.
Further, the groove 42h of the elastic component 42 and the convex portion 43t of the scooping component 43 have a gap between the opposing surfaces during alignment, and the opposing surfaces are in close contact during assembly, as in the fourth modification. Since it is a clearance fit, each part can be securely fixed by fixing in the fourth step while maintaining alignment in the third step.
 1  ねじ軸
 2  ナット
 3  ボール
 4  ボール循環チューブ
 4a  ボール掬い上げ部
 4j  ボール循環経路
 5  チューブ押さえ
 6  ボルト
 7  転動路
 10  ボールねじ
 11  ねじ軸のねじ溝
 21  ナットのねじ溝
 22  フランジ
 23  据え付け面
 24  取り付け用のねじ穴
 25  チューブ装着部
 41  循環路部品
 42  弾性部品
 43(43A、43B)  掬い上げ部品
DESCRIPTION OF SYMBOLS 1 Screw shaft 2 Nut 3 Ball 4 Ball circulation tube 4a Ball scooping part 4j Ball circulation path 5 Tube retainer 6 Bolt 7 Rolling path 10 Ball screw 11 Screw shaft thread groove 21 Nut thread groove 22 Flange 23 Mounting surface 24 Installation Screw hole 25 Tube mounting part 41 Circulating path part 42 Elastic part 43 (43A, 43B) Scooping part

Claims (10)

  1.  外周面に螺旋状のねじ溝を有するねじ軸と、内周面に螺旋状のねじ溝を有するナットと、これらのねじ溝で形成される転動路内に配置された複数のボールとを備えるボールねじに用いられ、前記ナットのチューブ装着部に装着されて、前記ナットの外面を前記ボールが循環するように前記転動路のボールを一端側のボール掬い上げ部から掬い上げるとともにボール循環経路を介して他端側のボール掬い上げ部から戻すボール循環チューブであって、
     前記ボール掬い上げ部をそれぞれ有する一対の掬い上げ部品と、前記ボール循環経路を有する循環路部品とが、別箇の部品から形成されていることを特徴とするボールねじ用ボール循環チューブ。
    A screw shaft having a spiral thread groove on the outer peripheral surface, a nut having a spiral thread groove on the inner peripheral surface, and a plurality of balls arranged in a rolling path formed by these thread grooves. Used in a ball screw, mounted on the tube mounting portion of the nut, scoops the ball of the rolling path from the ball scooping portion on one end side so that the ball circulates on the outer surface of the nut, and the ball circulation path A ball circulation tube to be returned from the ball scooping portion on the other end side through
    A ball circulation tube for a ball screw, wherein a pair of scooping parts each having the ball scooping part and a circulation path part having the ball circulation path are formed of separate parts.
  2.  前記掬い上げ部品は、当該掬い上げ部品内を循環するボール中心が描く軌道を中心軸とする円筒部材から形成されるとともに、前記チューブ装着部に装着されたときに、前記中心軸まわりの自転を許容する円筒形状および上面を有する請求項1に記載のボールねじ用ボール循環チューブ。 The scooping part is formed of a cylindrical member having a center axis as a track drawn by the center of the ball circulating in the scooping part, and rotates around the central axis when mounted on the tube mounting part. The ball circulation tube for a ball screw according to claim 1, which has an allowable cylindrical shape and upper surface.
  3.  前記掬い上げ部品の上面と前記循環路部品の下面との間に同軸に介装される軸方向に弾性変形可能な円環状の弾性部品を有する請求項2に記載のボールねじ用ボール循環チューブ。 The ball circulation tube for a ball screw according to claim 2, further comprising an annular elastic part that is elastically deformable in an axial direction and is coaxially interposed between an upper surface of the scooping part and a lower surface of the circulation path part.
  4.  前記掬い上げ部品と前記弾性部品とは、相互の対向面に、いずれか一方の面に形成された凹部に対していずれか他方の面に形成された凸部が嵌合する凹凸形状を有する請求項3に記載のボールねじ用ボール循環チューブ。 The scooping component and the elastic component have a concavo-convex shape in which a convex portion formed on one of the other surfaces is fitted to a concave portion formed on one of the opposing surfaces. Item 4. A ball circulation tube for ball screw according to Item 3.
  5.  前記いずれか一方の面に形成された凹部は、前記中心軸まわりの寸法が、前記いずれか他方の面に形成された凸部の前記中心軸まわりの寸法よりも広く形成されている請求項4に記載のボールねじ用ボール循環チューブ。 5. The concave portion formed on one of the surfaces has a dimension around the central axis wider than a dimension around the central axis of a convex portion formed on the other surface. Ball circulation tube for ball screw as described in 1.
  6.  前記掬い上げ部品と前記ナットのチューブ装着部とは、相互の対向面に、いずれか一方の面に形成された凸部に対していずれか他方の面に形成された凹部が嵌合する凹凸形状を有し、前記いずれか一方の面に形成された凸部は、前記中心軸まわりの寸法が、前記いずれか他方の面に形成された凹部の前記中心軸まわりの寸法よりも広く形成されている請求項3~5のいずれか一項に記載のボールねじ用ボール循環チューブ。 The scooping component and the tube mounting portion of the nut have a concave-convex shape in which the concave portion formed on one of the other surfaces is fitted to the convex portion formed on one of the opposing surfaces. The convex portion formed on one of the surfaces has a dimension around the central axis wider than the dimension around the central axis of the concave portion formed on the other surface. The ball circulation tube for a ball screw according to any one of claims 3 to 5.
  7.  外周面に螺旋状のねじ溝を有するねじ軸と、内周面に螺旋状のねじ溝を有するナットと、これらのねじ溝で形成される転動路内に配置された複数のボールと、前記ナットのチューブ装着部に装着されて、前記ナットの外面を前記ボールが循環するように前記転動路のボールを一端側のボール掬い上げ部から掬い上げるとともにボール循環経路を介して他端側のボール掬い上げ部から戻すボール循環チューブとを備えるボールねじであって、
     前記ボール循環チューブとして、請求項1~6のいずれか一項に記載のボールねじ用ボール循環チューブを備えていることを特徴とするボールねじ。
    A screw shaft having a spiral thread groove on the outer peripheral surface, a nut having a spiral thread groove on the inner peripheral surface, and a plurality of balls disposed in a rolling path formed by these thread grooves, Mounted on the tube mounting portion of the nut, the ball of the rolling path is scooped up from the ball scooping portion on one end side so that the ball circulates on the outer surface of the nut, and on the other end side through the ball circulation path. A ball screw including a ball circulation tube returning from a ball scooping portion,
    A ball screw comprising the ball circulation tube for a ball screw according to any one of claims 1 to 6, as the ball circulation tube.
  8.  請求項1~6のいずれか一項に記載のボールねじ用ボール循環チューブを有するボールねじを製造する方法であって、
     前記一対の掬い上げ部品を前記チューブ装着部に組み付け、その組み付け状態で、前記一対の掬い上げ部品の上部開口から前記転動路内に前記ボールを挿入する第一の工程を含むことを特徴とするボールねじの製造方法。
    A method for producing a ball screw having the ball circulation tube for ball screw according to any one of claims 1 to 6,
    Including a first step of assembling the pair of scooping parts to the tube mounting portion and, in the assembled state, inserting the ball into the rolling path from an upper opening of the pair of scooping parts. To manufacture a ball screw.
  9.  前記第一の工程の後に、前記循環路部品内に前記ボールを詰めるとともに、当該ボールを詰めた循環路部品を、前記一対の掬い上げ部品の上部から前記チューブ装着部に組み付ける第二の工程と、
     前記第二の工程の後に、前記循環路部品を押えつつ、前記ナットまたは前記ねじ軸を回して前記ボールを循環させることで、前記掬い上げ部品のボール掬い上げ部に前記ボールが衝突する力により前記掬い上げ部品自らをその軸回りに回転させる第三の工程とを含む請求項8に記載のボールねじの製造方法。
    After the first step, the second step of packing the ball in the circulation path component and assembling the circulation path component packed with the ball from the upper part of the pair of scooping components to the tube mounting portion; ,
    After the second step, the ball is circulated by rotating the nut or the screw shaft while pressing the circulation path component, so that the ball collides with the ball scooping portion of the scooping component. The ball screw manufacturing method according to claim 8, further comprising a third step of rotating the scooping component itself about its axis.
  10.  請求項3~6のいずれか一項に記載のボールねじ用ボール循環チューブを有するボールねじを製造する方法であって、
     前記一対の掬い上げ部品を前記チューブ装着部に組み付け、その組み付け状態で、前記一対の掬い上げ部品の上部開口から前記転動路内に前記ボールを挿入する第一の工程と、
     前記第一の工程の後に、前記循環路部品内に前記ボールを詰めるとともに、当該ボールを詰めた循環路部品を、前記一対の掬い上げ部品と当該ボールを詰めた循環路部品の間に前記弾性部品を介装した状態で、前記一対の掬い上げ部品の上部から前記ナットのチューブ装着部に組み付ける第二の工程と、
     前記第二の工程の後に、前記循環路部品を押えつつ、前記ナットまたは前記ねじ軸を回して前記ボールを循環させることで、前記掬い上げ部品のボール掬い上げ部に前記ボールが衝突する力により前記掬い上げ部品自らをその軸回りに回転させる第三の工程と、
     前記第三の工程の後に、前記ボール循環チューブを前記ナットの外面に固定するためのチューブ押えを用いて前記循環路部品を押え、前記循環路部品とともに前記掬い上げ部品を固定する第四の工程とを含むことを特徴とするボールねじの製造方法。
    A method for producing a ball screw having a ball circulation tube for a ball screw according to any one of claims 3 to 6,
    Assembling the pair of scooping parts to the tube mounting portion, and in the assembled state, a first step of inserting the ball into the rolling path from the upper openings of the pair of scooping parts;
    After the first step, the ball is packed in the circulation path part, and the circulation path part packed with the ball is placed between the pair of scooping parts and the circulation path part packed with the ball. A second step of assembling the tube mounting portion of the nut from the upper part of the pair of scooping parts in a state of interposing the parts;
    After the second step, the ball is circulated by rotating the nut or the screw shaft while pressing the circulation path component, so that the ball collides with the ball scooping portion of the scooping component. A third step of rotating the scooping component itself around its axis;
    After the third step, a fourth step of pressing the circuit part using a tube presser for fixing the ball circulation tube to the outer surface of the nut and fixing the scooping part together with the circuit part. A method of manufacturing a ball screw.
PCT/JP2016/066898 2015-06-18 2016-06-07 Ball circulation tube for ball screw, ball screw, and ball screw manufacturing method WO2016204023A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-123171 2015-06-18
JP2015123171 2015-06-18

Publications (1)

Publication Number Publication Date
WO2016204023A1 true WO2016204023A1 (en) 2016-12-22

Family

ID=57545746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066898 WO2016204023A1 (en) 2015-06-18 2016-06-07 Ball circulation tube for ball screw, ball screw, and ball screw manufacturing method

Country Status (2)

Country Link
TW (1) TW201713883A (en)
WO (1) WO2016204023A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6954220B2 (en) * 2018-04-24 2021-10-27 日本精工株式会社 Ball screw
TWI718020B (en) * 2020-03-04 2021-02-01 銀泰科技股份有限公司 Refluxing auxiliary device and ball screw using the same
CN113374846B (en) * 2020-03-10 2022-09-13 银泰科技股份有限公司 Return bend assistor and ball screw using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58169246U (en) * 1982-05-07 1983-11-11 日本精工株式会社 ball screw
JP2010265983A (en) * 2009-05-14 2010-11-25 Thk Co Ltd Rolling guide device equipped with rolling element circulating member, and method for manufacturing the rolling element circulating member
JP2012057655A (en) * 2010-09-06 2012-03-22 Thk Co Ltd Roller screw device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58169246U (en) * 1982-05-07 1983-11-11 日本精工株式会社 ball screw
JP2010265983A (en) * 2009-05-14 2010-11-25 Thk Co Ltd Rolling guide device equipped with rolling element circulating member, and method for manufacturing the rolling element circulating member
JP2012057655A (en) * 2010-09-06 2012-03-22 Thk Co Ltd Roller screw device

Also Published As

Publication number Publication date
TW201713883A (en) 2017-04-16

Similar Documents

Publication Publication Date Title
WO2016204023A1 (en) Ball circulation tube for ball screw, ball screw, and ball screw manufacturing method
TWI518258B (en) Unilateral actuator
US8893574B2 (en) Ball screw with sectional circulating assemblies
WO2016125453A1 (en) Circulation piece and ball screw provided with same
EP1925852B1 (en) Rolling-element screw device and method of assembling the same
US20080110284A1 (en) Sectional Circulating Assembly for a Ball Screw
WO2015059923A1 (en) Seal for ball-screw device
KR200478051Y1 (en) Ball screw
JP5004304B2 (en) Koma type ball screw
TWI713938B (en) Ball screw spline
JP3219708U (en) Ball screw
JP2008157374A (en) Ball screw mechanism
JP5157625B2 (en) Ball screw mechanism
JP2005155720A (en) Screw device and its manufacturing method
JP2008513706A (en) Drive unit with adjusting member
JP6892027B2 (en) Ball screw device
JP4978887B2 (en) Ball screw mechanism
US20110314941A1 (en) Sectional circulating assembly for a ball screw
KR101171497B1 (en) Nut for ball screw
JP6400860B2 (en) Screw and nut type linear drive mechanism with perfect rolling contact
JP6083146B2 (en) Ball screw deflector and deflector ball screw
JP2016142341A (en) Circulation piece and ball screw with the same
KR20190084996A (en) Threaded nut for ball screw drive
JP6805961B2 (en) Ball screw device and actuator
TWI819869B (en) Stopper assembly and motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811498

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16811498

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP