WO2016203749A1 - Communication flow relay device, communication system and communication flow relay method - Google Patents

Communication flow relay device, communication system and communication flow relay method Download PDF

Info

Publication number
WO2016203749A1
WO2016203749A1 PCT/JP2016/002829 JP2016002829W WO2016203749A1 WO 2016203749 A1 WO2016203749 A1 WO 2016203749A1 JP 2016002829 W JP2016002829 W JP 2016002829W WO 2016203749 A1 WO2016203749 A1 WO 2016203749A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
communication flow
flows
transfer rate
pacing
Prior art date
Application number
PCT/JP2016/002829
Other languages
French (fr)
Japanese (ja)
Inventor
裕志 吉田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2016203749A1 publication Critical patent/WO2016203749A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints

Definitions

  • the present invention relates to a communication flow relay device for transferring a communication flow between communication devices, a communication system including the communication flow relay device, and a communication flow relay method.
  • a communication flow relay device that transfers a communication flow transmitted from a transmission side via a communication network to a reception side is known.
  • the communication flow refers to a series of communication data flows identified by the source address and port number, the destination address and port number, the application type, and the like.
  • the communication flow to be transferred is multimedia data such as a moving image
  • the communication flow relay device described in Patent Document 1 refers to the multimedia media rate (data amount per unit reproduction time).
  • the communication flow relay apparatus optimizes an objective function indicating an index integrating the quality of experience of the user who receives and reproduces the multimedia data and the transfer cost of the multimedia data.
  • a communication flow relay apparatus for controlling a transfer rate is disclosed.
  • the transfer cost of the multimedia data is a communication resource of the network spent when transferring the communication flow.
  • the radio access network is also called a RAN (Radio Access Network).
  • the communication speed decreases in RAN There are two main reasons why the communication speed decreases in RAN.
  • the first cause is the radio wave environment. Depending on the surrounding environment of the mobile user, the radio wave intensity is lowered, or a radio transmission error occurs due to radio wave interference, thereby reducing the communication speed.
  • the second cause is the traffic (cross traffic) of other mobile users.
  • a large number of mobile terminals are connected to a RAN configured by one base station to generate a large amount of communication traffic, a sufficient communication speed can be obtained even if the communication environment of the RAN is insufficient and the radio wave environment is good. I can't get it.
  • the above communication resources are referred to as resource blocks in the case of LTE (Long Term Evolution).
  • the device that transfers the communication flow to the RAN may perform control to keep the transfer rate of the communication flow low.
  • the transfer rate is controlled for a user who generates a large amount of communication traffic by receiving a large amount of communication flow such as moving image streaming in the RAN, for example.
  • the transfer rate means the data amount of the communication flow transferred per unit time.
  • the paced user may have a lower quality of experience as opposed to other users.
  • the communication flow with the transfer rate suppressed is video streaming
  • the transfer rate is more than the media rate of the video
  • the video streaming may cause a drop in the quality of experience such as image quality degradation or playback stop. There is no.
  • the communication flow relay device described in Patent Document 1 described above operates to release communication resources as much as possible while ensuring a transfer rate equal to or higher than the media rate for communication flows such as video streaming. As a result, it is possible to optimize the user experience quality and transfer cost that are in a trade-off relationship.
  • the communication flow relay device described in Patent Document 1 does not take into consideration the effects of changes in the real environment (disturbances) such as increase / decrease in communication flow and fluctuations in the communication environment. For this reason, for example, when the communication flow relay device described in Patent Literature 1 continues pacing in a situation where the communication resources of the RAN are not insufficient, the communication resources are unnecessarily released, and the RAN utilization rate (maximum communication possible) The proportion of the amount actually used) decreases. In a situation where the communication resources of the RAN are not insufficient, pacing does not contribute to the quality of experience of other users, leading to the possibility of impairing the quality of experience of the paced user, which is counterproductive.
  • the present invention makes it possible to achieve both improvement in the quality of experience of the entire user connected to the mobile network and improvement in the utilization rate of communication resources while taking into consideration the influence of disturbances such as increase / decrease of communication flow and fluctuation of communication environment.
  • the aim is to provide possible technology.
  • a communication flow relay device for receiving a plurality of communication flows, and periodically selecting n communication flows from the plurality of communication flows, pacing control means for simultaneously determining whether or not to provide a transfer rate limit for each of the selected n communication flows each time n communication flows are selected, and based on the determination, Communication flow transfer means for transferring the communication flow to an external terminal.
  • a communication system includes the communication flow relay apparatus that transfers a received communication flow to an external terminal, and an external terminal that receives and consumes the transferred communication flow. .
  • a communication flow relay method receives a plurality of communication flows, periodically selects n communication flows from the plurality of communication flows, and sets n communication flows. Is selected simultaneously to determine whether or not to provide a transfer rate restriction for each of the selected n communication flows, and based on the determination, the received plurality of communication flows are transferred to an external terminal.
  • FIG. 1 A block diagram of a communication flow relay apparatus according to the present embodiment is shown in FIG.
  • the communication flow relay device 10 includes a communication flow receiving unit 20, a pacing control unit 30, and a communication flow transfer unit 40.
  • the communication flow receiving unit 20 receives a plurality of communication flows transmitted from the transmission source to the transmission destination via the Internet or the like, and delivers the received plurality of communication flows to the communication flow transfer unit 40.
  • the communication flow receiving unit 20 transmits G multimedia data transmitted to the user's external terminal.
  • a communication flow is received from the Internet and transferred to the communication flow transfer means 40.
  • the communication flow refers to a series of communication data flows identified by a source address and port number, a destination address and port number, an application type, and the like.
  • the communication flow receiving unit 20 periodically selects n ( ⁇ G) communication flows from among a plurality (for example, G) of communication flows received by the communication flow receiving unit 20, and selects the n communication flows. Each time it is selected, it is simultaneously determined whether or not to provide a transfer rate restriction for each of the selected n communication flows, and the determined content is output to the communication flow transfer means 40. When determining whether or not to set a transfer rate limit for n communication flows at the same time, the influence of disturbance can be reduced.
  • the communication flow receiving means 20 refers to the selected n communication flow points, and determines probabilistically whether or not to set a transfer rate limit according to the size of the referenced points. Specifically, for example, when the communication flow receiving means 20 inputs a reference point to a monotonically increasing function that outputs ( ⁇ , ( ⁇ + ⁇ ) / 2, ⁇ ) when ( ⁇ , 0, ⁇ ). The output value is compared with a uniform random value between ⁇ and ⁇ . If the output value is greater than or equal to the random value, a transfer rate limit is set. If the output value is less than the random number value, no transfer rate limit is set. To do.
  • the communication flow transfer means 40 is periodically input from the communication flow reception means 20 to determine whether or not to set a transfer rate limit for n communication flows.
  • the communication flow transfer unit 40 transfers the G communication flows transferred from the communication flow reception unit 20 to the user's external terminal according to the determination input from the communication flow reception unit 20.
  • the communication flow relay device 10 periodically selects n communication flows from the G communication flows to be transferred, and sets whether or not to set a transfer rate restriction on the selected n communication flows. Determine at the same time.
  • the communication flow relay device 10 can increase or decrease the communication flow or the communication environment. It is possible to achieve both improvement in the quality of experience of the entire user connected to the mobile network and improvement in the utilization rate of communication resources, while taking into consideration the influence of disturbance such as fluctuations in the network.
  • FIG. 2 shows a system configuration diagram of the communication system according to the present embodiment.
  • the communication system 700 includes a communication flow relay device 100, a base station 200, and a terminal 300.
  • the communication flow relay device 100 is installed in the mobile core network 500 and transfers a communication flow, which is a service provided from the Internet 400, to the terminal 300 via the base station 200.
  • the base station 200 is a communication device that mediates between the mobile core network 500 and the mobile access network 600, and wirelessly transmits the communication flow transferred from the communication flow relay device 100 to the target terminal 300.
  • the base station 200 is a communication device called eNodeB (Evolved Node B) in LTE, for example.
  • the terminal 300 is installed in the mobile access network 600, receives a communication flow, which is a service provided from the Internet 400, via the communication flow relay device 100 and the base station 200, and consumes (reproduces or displays) the communication flow. )
  • the Internet 400 is a network that performs communication conforming to the Internet protocol (IP: Internet Protocol), and various sub-networks around the world are connected by the IP of the third layer of the OSI (Open Systems Interconnection) reference model. It is a global network.
  • IP Internet Protocol
  • OSI Open Systems Interconnection
  • the mobile core network 500 is a network connecting the Internet 400 and the mobile access network 600, and transfers and manages a communication flow to the terminal 300.
  • EPC Evolved Packet Core
  • the mobile access network 600 is a RAN from the base station 200 to the terminal 300.
  • eUTRAN Evolved Universal Terrestrial Radio Network
  • FIG. 3 shows a block configuration diagram of the communication flow relay device 100 according to the present embodiment.
  • 3 includes a communication flow receiving unit 101, a communication flow transfer unit 102, a sensation quality calculation unit 103, and a pacing control unit 104.
  • the communication flow receiving unit 101 receives a communication flow transmitted from the Internet 400 to the terminal 300 and delivers the communication flow to the communication flow transfer unit 102.
  • the communication flow receiving unit 101 according to the present embodiment is configured to be able to identify a communication flow. Instead of identifying the communication flow in the communication flow receiving unit 101, the communication flow can be identified by DPI (Deep Packet Inspection) or the like before receiving the communication flow receiving unit 101.
  • DPI Deep Packet Inspection
  • the communication flow transfer unit 102 transfers the communication flow delivered from the communication flow receiving unit 101 to the terminal 300 via the mobile access network 600.
  • the communication flow transfer unit 102 according to the present embodiment further acquires each transfer rate for the transfer target communication flow, and notifies the pacing control unit 104 of the total of the acquired transfer rates as the total communication traffic amount. Further, the communication flow transfer unit 102 receives a notification from the pacing control unit 104 regarding whether or not to perform pacing on the communication flow to be transferred, and transfers the communication flow to be transferred to the terminal 300 according to the notification.
  • the communication flow transfer unit 102 immediately transfers the communication flow delivered from the communication flow receiving unit 101 for communication flows that do not execute pacing. That is, the communication flow is transferred at a transfer rate equivalent to the reception rate received by the communication flow receiving unit 101. On the other hand, the communication flow transfer unit 102 transfers the communication flow at a predetermined transfer rate, instead of transferring the communication flow immediately when transferring the communication flow for the communication flow for executing pacing. .
  • the communication flow for performing pacing is video streaming
  • the transfer rate equivalent to the media rate of the target video can be secured
  • the user's quality of experience will not be impaired.
  • Performs pacing by limiting the transfer rate to the media rate or media rate + ⁇ (a margin).
  • the reception rate received by the communication flow receiving unit 101 is equal to or less than the media rate or the media rate + ⁇
  • immediate transfer is performed without performing pacing.
  • the playback buffer amount (or the remaining playback time) in the terminal 300 can also be referred to.
  • pacing is executed when the reproduction buffer amount exceeds a predetermined threshold value.
  • the communication flow relay apparatus 100 may not be able to directly observe the reproduction buffer amount, it is necessary to estimate the reproduction buffer amount from the transfer amount of the communication flow and the passage of time.
  • the communication flow for performing pacing is file download, it is easy to limit the transfer rate so as not to exceed a predetermined value.
  • This predetermined value can be changed according to the file size. Note that any pacing method can be applied as the pacing method.
  • the sensation quality calculation unit 103 quantifies the sensation quality of the communication flow transferred from the communication flow transfer unit 102 and notifies the pacing control unit 104 of the quantified total sensation quality.
  • ITU-U Telecommunication standardization of the International Telecommunication Union
  • P.I. 1201 Amendment 2 can be used to calculate MOS (Mean Opinion Score) estimates (real numbers from a minimum of 1 to a maximum of 5).
  • MOS Magnetic Opinion Score
  • the communication flow is Web access
  • the ITU-T recommendation G According to 1030 Annex A, the estimated value of MOS can be calculated.
  • any method can be applied as a method for quantifying the quality of experience.
  • the pacing control unit 104 has a total quality of each communication flow notified from the quality of experience calculation unit 103, a total transfer rate (total communication traffic amount) of each communication flow notified from the communication flow transfer unit 102, and Based on the above, a communication flow for performing pacing (communication flow for pacing ON) and a communication flow for not performing pacing (communication flow for pacing OFF) are determined for each communication flow.
  • the pacing control unit 104 notifies the communication flow transfer unit 102 of the determined content.
  • the communication flow transfer unit 102 transfers the communication flow to the terminal 300 according to the determination of necessity of pacing execution notified from the pacing control unit 104.
  • Step 0 Initialization
  • F A set of all communication flows handled by the communication flow relay apparatus 100
  • G a set of communication flows related to pacing target video streaming
  • pg is a point with respect to the communication flow g.
  • the pacing controller 104 all communication flows g of QoE q g summation Q (t) and for transferring input from experience quality calculation unit 103, all communication flows to transfer inputted from the communication flow transfer unit 102
  • the objective function value J (t) is calculated from the sum ( g of total communication traffic) X (t) of the transfer rate xg of g .
  • Q (t), X (t), and J (t) are represented by Expression (1), Expression (2), and Expression (3), respectively.
  • pacing control unit 104 randomly selects n communication flows from set G.
  • the selection method of n communication flows is random, but any selection method may be used.
  • H be the set of selected communication flows.
  • Step 2 Pacing ON / OFF control
  • the pacing control unit 104 generates random values of uniform random numbers (hereinafter referred to as U (0, 1)) of 0 to 1 for the selected n communication flows h ⁇ H, Let the value be r h (0 ⁇ r h ⁇ 1). Further, the pacing controller 104 calculates the sigmoid function value as an argument a point p h of flow h zeta the (p h) (0 ⁇ ⁇ (p h) ⁇ 1).
  • the pacing controller 104 generated allowed random number r h, calculated on the basis of the paging status of the sigmoid function value zeta (p h) and the selected flow h, pacing ON / OFF for the selected flow h ⁇ H Take control. Specifically, in the case of r h ⁇ ⁇ (p h) , is turned ON pacing flow h, or r h> zeta of (p h), turns OFF the pacing flow h.
  • the sigmoid function ⁇ (p) approaches 1 as the value of the point p increases (closer to ⁇ ), and approaches 0 as the value of the point p decreases (closer to ⁇ ). Therefore, in the pacing ON / OFF control by comparing the sigmoid function value ⁇ (p) and the random value of U (0, 1) as described above, the pacing is turned ON as the flow of the point p is larger. The smaller the value of p, the higher the probability that pacing will be turned off.
  • Step 3 Evaluation of objective function value
  • Step 4 Point update of communication flow
  • the objective function average value ⁇ J (t ⁇ )> ⁇ obtained in step 0 is compared with the objective function average value ⁇ J (t)> ⁇ obtained in step 3. Based on the comparison result, the point p is changed as follows.
  • the only observable quantity is the objective function value J (t). Therefore, when each communication flow is changed from the pacing OFF state to the ON state, the objective function value J (t) fluctuates by a value from ⁇ 1 to +1, but how much it changes is actually changed to the ON state. I don't know until later. Further, since only the objective function value J (t) cannot be observed, when a plurality of communication flows are changed to the ON state or OFF state at the same time, which communication flow contributes to how much the objective function value J (t) varies. I do n’t know.
  • a normal random number N (0, ⁇ ) is given.
  • the pacing ON / OFF control method of FIG. 4 described in the present embodiment and the method of controlling the communication flow one by one (hereinafter referred to as a comparison method) are compared and evaluated for an increase in the objective function.
  • the horizontal axis of FIG. 6 is the number of ON / OFF control executions, and the vertical axis is the objective function value.
  • the solid line is the pacing ON / OFF control method according to the present embodiment, and the broken line is the comparison method.
  • the comparison method can increase the objective function reliably by switching the pacing of each communication flow one by one as described above. it can. Therefore, as shown by the broken line in FIG. 6A, the objective function value can be increased almost linearly, and the maximum value of the objective function is reached after 10,000 times.
  • a plurality of communication flows in this case, 20 communication flows
  • the ON / OFF switching is controlled stochastically. Therefore, the optimal solution is not reached even after 10,000 trials.
  • ON / OFF control is simultaneously performed for a plurality of communication flows, the objective function increase rate at the initial stage of the trial start is higher in the method of the present invention.
  • the comparison method cannot increase the objective function in the same manner as when there is no disturbance. This is because there is a case where the decrease amount of the objective function value due to the disturbance is larger than the increase amount of the objective function value when pacing is turned on for one communication flow. At this time, the ON / OFF control is erroneously performed. It is. The same applies when the objective function value increase amount due to disturbance is larger than the objective function value decrease amount when pacing is turned on for one communication flow.
  • the increase / decrease amount of the objective function value due to the ON / OFF becomes larger than the increase / decrease amount of the objective function value due to the disturbance.
  • the possibility increases.
  • the determination in step 4 of the method of the present embodiment can be performed accurately. Further, by simultaneously pacing a plurality of communication flows, the increase speed of the objective function value at the initial stage is fast.
  • the communication flow relay device 100 randomly selects n communication flows from the communication flow G to be transferred such as video streaming, and the objective function increases.
  • pacing control corresponding to points is simultaneously performed for n communication flows.
  • the amount of change in the objective function value due to pacing control can be made larger than the amount of change in the objective function value due to disturbance. Therefore, the communication flow relay device 100 according to the present embodiment improves the quality of experience of the entire user connected to the mobile network and the communication resources while taking into consideration the influence of disturbance such as increase / decrease of the communication flow and fluctuation of the communication environment. It is possible to achieve both improvement in the utilization rate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

In order to provide a communication flow relay device, a communication system and a communication flow relay method which enable both an improvement in the quality of experience of all users connected to a mobile network and an improvement in the rate of utilization of a communication resource while the influence of disturbance such as the increase or decrease of a communication flow and the change of an communication environment is taken into consideration, a communication flow relay device 10 is provided with: a communication flow reception means 20 for receiving a plurality of communication flows; a pacing control means 30 for periodically selecting n communication flows from among the plurality of communication flows, and every time the n communication flows are selected, simultaneously determining whether or not to put a transfer rate limit regarding each of the selected n communication flows; and a communication flow transfer means 40 for, on the basis of the determination, transferring the received plurality of communication flows to an external terminal.

Description

通信フロー中継装置、通信システムおよび通信フロー中継方法Communication flow relay apparatus, communication system, and communication flow relay method
 本発明は、通信装置間において通信フローを転送する通信フロー中継装置、該通信フロー中継装置を備えた通信システムおよび通信フロー中継方法に関する。 The present invention relates to a communication flow relay device for transferring a communication flow between communication devices, a communication system including the communication flow relay device, and a communication flow relay method.
 通信ネットワークを介して送信側から送信された通信フローを受信側へと転送する通信フロー中継装置が知られている。ここで、通信フローとは、送信元のアドレスやポート番号、送信先のアドレスやポート番号、アプリケーション種別などによって識別される、一連の通信データの流れを指す。 A communication flow relay device that transfers a communication flow transmitted from a transmission side via a communication network to a reception side is known. Here, the communication flow refers to a series of communication data flows identified by the source address and port number, the destination address and port number, the application type, and the like.
 例えば、特許文献1に記載された通信フロー中継装置は、転送する通信フローが動画などのマルチメディアデータである場合に、当該マルチメディアのメディアレート(単位再生時間あたりのデータ量)を参照する。そして、通信フロー中継装置は、当該マルチメディアデータを受信して再生するユーザの体感品質と当該マルチメディアデータの転送コストとを統合した指標を示す目的関数を最適化にするように、通信フローの転送レートを制御する通信フロー中継装置が開示されている。ここで、当該マルチメディアデータの転送コストは、通信フローを転送するときに費やすネットワークの通信資源である。 For example, when the communication flow to be transferred is multimedia data such as a moving image, the communication flow relay device described in Patent Document 1 refers to the multimedia media rate (data amount per unit reproduction time). Then, the communication flow relay apparatus optimizes an objective function indicating an index integrating the quality of experience of the user who receives and reproduces the multimedia data and the transfer cost of the multimedia data. A communication flow relay apparatus for controlling a transfer rate is disclosed. Here, the transfer cost of the multimedia data is a communication resource of the network spent when transferring the communication flow.
 ところで、モバイルユーザがモバイルネットワークを介してインターネットサービスを利用する場合、モバイルコアネットワークとユーザの間のネットワークである無線アクセスネットワークにおける通信速度の低下がボトルネックとなる場合がある。そして、その結果、モバイルユーザのインターネットサービスの体感品質が低下することがある。なお、無線アクセスネットワークは、RAN(Radio Access Network)とも呼ばれる。 By the way, when a mobile user uses an Internet service via a mobile network, a decrease in communication speed in a radio access network that is a network between the mobile core network and the user may become a bottleneck. As a result, the experience quality of the Internet service of the mobile user may deteriorate. The radio access network is also called a RAN (Radio Access Network).
 RANにおいて通信速度が低下する原因は大きく二つある。一つ目の原因は、電波環境である。モバイルユーザの周囲環境によって、電波強度が低くなったり、電波干渉によって無線伝送エラーが生じたりすることで、通信速度が低下する。二つ目の原因は、他のモバイルユーザのトラヒック(クロストラヒック)である。一つの基地局が構成するRANに、多数のモバイル端末が接続して大きな通信トラヒックを発生させている場合、RANの通信資源が不足し、電波環境が良好であったとしても十分な通信速度が得られない。なお、上記の通信資源は、LTE(Long Term Evolution)の場合、リソースブロックと呼ばれる。 There are two main reasons why the communication speed decreases in RAN. The first cause is the radio wave environment. Depending on the surrounding environment of the mobile user, the radio wave intensity is lowered, or a radio transmission error occurs due to radio wave interference, thereby reducing the communication speed. The second cause is the traffic (cross traffic) of other mobile users. When a large number of mobile terminals are connected to a RAN configured by one base station to generate a large amount of communication traffic, a sufficient communication speed can be obtained even if the communication environment of the RAN is insufficient and the radio wave environment is good. I can't get it. Note that the above communication resources are referred to as resource blocks in the case of LTE (Long Term Evolution).
 RANの通信資源が不足している場合、通信フローをRANへ転送している装置が、通信フローの転送レートを低く抑える制御を行う場合がある。転送レートの制御は、例えば、RANにおいて動画ストリーミングなどの大量の通信フローを受信することで大きな通信トラヒックを発生させているユーザに対して行われる。ここで、転送レートは、単位時間あたりに転送する通信フローのデータ量を意味する。大量の通信フローを発生させているユーザの転送レートを低く抑えることにより、当該ユーザが占有していたRANの通信資源の一部を解放して他のユーザが利用できる通信資源を増加させることができる。その結果、他のユーザの体感品質を向上させ、モバイルネットワーク全体での体感品質を向上させることができる。ここで、通信フローの転送レートを何も制御しないときよりも低く抑える制御のことをペーシング(Pacing)と呼ぶ。 When the communication resources of the RAN are insufficient, the device that transfers the communication flow to the RAN may perform control to keep the transfer rate of the communication flow low. The transfer rate is controlled for a user who generates a large amount of communication traffic by receiving a large amount of communication flow such as moving image streaming in the RAN, for example. Here, the transfer rate means the data amount of the communication flow transferred per unit time. By reducing the transfer rate of a user generating a large amount of communication flow, a part of the RAN communication resources occupied by the user can be released to increase the communication resources that can be used by other users. it can. As a result, the quality of experience of other users can be improved, and the quality of experience of the entire mobile network can be improved. Here, the control for suppressing the transfer rate of the communication flow to be lower than when nothing is controlled is referred to as pacing.
 なお、ペーシングされたユーザは、他のユーザとは反対に体感品質が低下する可能性がある。しかし、転送レートを抑制された通信フローが動画ストリーミングである場合、転送レートが当該動画のメディアレート以上を確保できていれば、当該動画ストリーミングは画質劣化や再生停止など体感品質の低下を招くことはない。 It should be noted that the paced user may have a lower quality of experience as opposed to other users. However, when the communication flow with the transfer rate suppressed is video streaming, if the transfer rate is more than the media rate of the video, the video streaming may cause a drop in the quality of experience such as image quality degradation or playback stop. There is no.
 上述の特許文献1に記載の通信フロー中継装置は、動画ストリーミングなどの通信フローに対して、メディアレート以上の転送レートを確保しつつ、できるだけ通信資源を解放するように動作する。その結果、トレードオフの関係にあるユーザの体感品質と転送コストの最適化が図られる。 The communication flow relay device described in Patent Document 1 described above operates to release communication resources as much as possible while ensuring a transfer rate equal to or higher than the media rate for communication flows such as video streaming. As a result, it is possible to optimize the user experience quality and transfer cost that are in a trade-off relationship.
国際公開第2013/094118号International Publication No. 2013/094118
 しかしながら、特許文献1に記載の通信フロー中継装置では、通信フローの増減や通信環境の変動等の実環境の変化(外乱)による影響については考慮されていない。このため、例えば、RANの通信資源が不足していない状況において特許文献1に記載の通信フロー中継装置がペーシングを継続することにより、無駄に通信資源が開放され、RANの利用率(最大通信可能量のうち実際に利用された割合)が低下する。RANの通信資源が不足していない状況では、ペーシングは他のユーザの体感品質に寄与せず、ペーシングされたユーザの体感品質を損なう可能性を招くことになり、逆効果となる。 However, the communication flow relay device described in Patent Document 1 does not take into consideration the effects of changes in the real environment (disturbances) such as increase / decrease in communication flow and fluctuations in the communication environment. For this reason, for example, when the communication flow relay device described in Patent Literature 1 continues pacing in a situation where the communication resources of the RAN are not insufficient, the communication resources are unnecessarily released, and the RAN utilization rate (maximum communication possible) The proportion of the amount actually used) decreases. In a situation where the communication resources of the RAN are not insufficient, pacing does not contribute to the quality of experience of other users, leading to the possibility of impairing the quality of experience of the paced user, which is counterproductive.
 本発明は、通信フローの増減や通信環境の変動等の外乱による影響を考慮しつつ、モバイルネットワークに接続されているユーザ全体の体感品質の向上と通信資源の利用率の向上を両立することが可能な技術を提供することを目的とする。 The present invention makes it possible to achieve both improvement in the quality of experience of the entire user connected to the mobile network and improvement in the utilization rate of communication resources while taking into consideration the influence of disturbances such as increase / decrease of communication flow and fluctuation of communication environment. The aim is to provide possible technology.
 上記目的を達成するために本発明に係る通信フロー中継装置は、複数の通信フローを受信する通信フロー受信手段と、前記複数の通信フローの中からn個の通信フローを定期的に選択し、n個の通信フローを選択するごとに、該選択したn個の通信フローのそれぞれについて転送レート制限を設けるか否か同時に決定するペーシング制御手段と、前記決定に基づいて、前記受信された複数の通信フローを外部端末へ転送する通信フロー転送手段と、を備える。 In order to achieve the above object, a communication flow relay device according to the present invention, a communication flow receiving means for receiving a plurality of communication flows, and periodically selecting n communication flows from the plurality of communication flows, pacing control means for simultaneously determining whether or not to provide a transfer rate limit for each of the selected n communication flows each time n communication flows are selected, and based on the determination, Communication flow transfer means for transferring the communication flow to an external terminal.
 上記目的を達成するために本発明に係る通信システムは、受信した通信フローを外部端末へ転送する上記の通信フロー中継装置と、転送された通信フローを受信して消費する外部端末と、を備える。 In order to achieve the above object, a communication system according to the present invention includes the communication flow relay apparatus that transfers a received communication flow to an external terminal, and an external terminal that receives and consumes the transferred communication flow. .
 上記目的を達成するために本発明に係る通信フロー中継方法は、複数の通信フローを受信し、前記複数の通信フローの中からn個の通信フローを定期的に選択し、n個の通信フローを選択するごとに、該選択したn個の通信フローのそれぞれについて転送レート制限を設けるか否か同時に決定し、前記決定に基づいて、前記受信された複数の通信フローを外部端末へ転送する。 In order to achieve the above object, a communication flow relay method according to the present invention receives a plurality of communication flows, periodically selects n communication flows from the plurality of communication flows, and sets n communication flows. Is selected simultaneously to determine whether or not to provide a transfer rate restriction for each of the selected n communication flows, and based on the determination, the received plurality of communication flows are transferred to an external terminal.
 上述した本発明の態様によれば、通信フローの増減や通信環境の変動等の外乱による影響を考慮しつつ、モバイルネットワークに接続されているユーザ全体の体感品質の向上と通信資源の利用率の向上を両立することができる。 According to the aspect of the present invention described above, while considering the influence of disturbances such as increase / decrease of communication flow and fluctuation of communication environment, improvement in the quality of experience of the entire user connected to the mobile network and the utilization rate of communication resources. Both improvements can be achieved.
第1の実施形態に係る通信フロー中継装置10のブロック構成図である。It is a block block diagram of the communication flow relay apparatus 10 which concerns on 1st Embodiment. 第2の実施形態に係る通信システム700のシステム構成図である。It is a system configuration figure of communication system 700 concerning a 2nd embodiment. 第2の実施形態に係る通信フロー中継装置100のブロック構成図である。It is a block block diagram of the communication flow relay apparatus 100 which concerns on 2nd Embodiment. 第2の実施形態に係る通信フロー中継装置100の動作フロー図である。It is an operation | movement flowchart of the communication flow relay apparatus 100 which concerns on 2nd Embodiment. 第2の実施形態において用いられるシグモイド関数の一例である。It is an example of the sigmoid function used in 2nd Embodiment. 第2の実施形態に係る通信フロー中継装置100および比較手法におけるシミュレーション結果の一例である。It is an example of the simulation result in the communication flow relay apparatus 100 which concerns on 2nd Embodiment, and a comparison method.
<第1の実施形態>
 本発明の第1の実施形態について説明する。本実施形態に係る通信フロー中継装置のブロック構成図を図1に示す。図1において、通信フロー中継装置10は、通信フロー受信手段20、ペーシング制御手段30および通信フロー転送手段40を備える。
<First Embodiment>
A first embodiment of the present invention will be described. A block diagram of a communication flow relay apparatus according to the present embodiment is shown in FIG. In FIG. 1, the communication flow relay device 10 includes a communication flow receiving unit 20, a pacing control unit 30, and a communication flow transfer unit 40.
 通信フロー受信手段20は、送信元からインターネット等を介して送信先へ送信された複数の通信フローを受信し、受信した複数の通信フローを通信フロー転送手段40へ受け渡す。例えば、ユーザが外部端末を用いてインターネットにアクセスし、動画などのマルチメディアデータをダウンロード要求した場合、通信フロー受信手段20は、ユーザの外部端末へ向けて送信されたG個のマルチメディアデータの通信フローをインターネットから受信して通信フロー転送手段40へ受け渡す。ここで、通信フローとは、送信元のアドレスやポート番号、送信先のアドレスやポート番号、アプリケーション種別などによって識別される一連の通信データの流れを指す。 The communication flow receiving unit 20 receives a plurality of communication flows transmitted from the transmission source to the transmission destination via the Internet or the like, and delivers the received plurality of communication flows to the communication flow transfer unit 40. For example, when a user accesses the Internet using an external terminal and requests download of multimedia data such as a moving image, the communication flow receiving unit 20 transmits G multimedia data transmitted to the user's external terminal. A communication flow is received from the Internet and transferred to the communication flow transfer means 40. Here, the communication flow refers to a series of communication data flows identified by a source address and port number, a destination address and port number, an application type, and the like.
 通信フロー受信手段20は、通信フロー受信手段20において受信された複数(例えばG個)の通信フローの中からn(<G)個の通信フローを定期的に選択し、n個の通信フローを選択するごとに、該選択したn個の通信フローのそれぞれについて転送レート制限を設けるか否か同時に決定し、決定内容を通信フロー転送手段40へ出力する。n個の通信フローについて同時に転送レート制限を設けるか否か決定する場合、外乱によって受ける影響を小さくすることができる。 The communication flow receiving unit 20 periodically selects n (<G) communication flows from among a plurality (for example, G) of communication flows received by the communication flow receiving unit 20, and selects the n communication flows. Each time it is selected, it is simultaneously determined whether or not to provide a transfer rate restriction for each of the selected n communication flows, and the determined content is output to the communication flow transfer means 40. When determining whether or not to set a transfer rate limit for n communication flows at the same time, the influence of disturbance can be reduced.
 ここで、通信フロー受信手段20は、選択したn個の通信フローのポイントを参照し、参照したポイントの大小に応じて転送レート制限を設けるか否か確率的に決定する。具体的には、例えば、通信フロー受信手段20は、(-∞、0、∞)の時に(α、(α+β)/2、β)を出力する単調増加関数に参照したポイントを入力した時の出力値と、α~βの一様乱数値とを比較し、出力値が乱数値以上の場合は転送レート制限を設け、出力値が乱数値より小さい場合は転送レート制限を設けないように決定する。 Here, the communication flow receiving means 20 refers to the selected n communication flow points, and determines probabilistically whether or not to set a transfer rate limit according to the size of the referenced points. Specifically, for example, when the communication flow receiving means 20 inputs a reference point to a monotonically increasing function that outputs (α, (α + β) / 2, β) when (−∞, 0, ∞). The output value is compared with a uniform random value between α and β. If the output value is greater than or equal to the random value, a transfer rate limit is set. If the output value is less than the random number value, no transfer rate limit is set. To do.
 通信フロー転送手段40には、n個の通信フローについての転送レート制限を設けるか否かの決定が定期的に通信フロー受信手段20から入力される。通信フロー転送手段40は、通信フロー受信手段20から入力された決定に従い、通信フロー受信手段20から転送されたG個の通信フローをユーザの外部端末へ転送する。 The communication flow transfer means 40 is periodically input from the communication flow reception means 20 to determine whether or not to set a transfer rate limit for n communication flows. The communication flow transfer unit 40 transfers the G communication flows transferred from the communication flow reception unit 20 to the user's external terminal according to the determination input from the communication flow reception unit 20.
 以上のように、通信フロー中継装置10は、転送対象のG個の通信フローの中から定期的にn個の通信フローを選択し、選択したn個の通信フローに転送レート制限を設けるか否かを同時に決定する。n個の通信フローについて同時に転送レート制限を設けるか否か決定する場合、外乱によって受ける影響を小さくすることができることから、本実施形態に係る通信フロー中継装置10は、通信フローの増減や通信環境の変動等の外乱による影響を考慮しつつ、モバイルネットワークに接続されているユーザ全体の体感品質の向上と通信資源の利用率の向上を両立することができる。 As described above, the communication flow relay device 10 periodically selects n communication flows from the G communication flows to be transferred, and sets whether or not to set a transfer rate restriction on the selected n communication flows. Determine at the same time. When determining whether or not to set a transfer rate limit for n communication flows at the same time, since the influence of disturbance can be reduced, the communication flow relay device 10 according to the present embodiment can increase or decrease the communication flow or the communication environment. It is possible to achieve both improvement in the quality of experience of the entire user connected to the mobile network and improvement in the utilization rate of communication resources, while taking into consideration the influence of disturbance such as fluctuations in the network.
 <第2の実施形態>
 第2の実施形態について説明する。本実施形態に係る通信システムのシステム構成図を図2に示す。図2において、通信システム700は、通信フロー中継装置100、基地局200および端末300によって構成される。
<Second Embodiment>
A second embodiment will be described. FIG. 2 shows a system configuration diagram of the communication system according to the present embodiment. In FIG. 2, the communication system 700 includes a communication flow relay device 100, a base station 200, and a terminal 300.
 通信フロー中継装置100は、モバイルコアネットワーク500内に設置され、インターネット400から提供されたサービスである通信フローを、基地局200を介して端末300へ転送する。 The communication flow relay device 100 is installed in the mobile core network 500 and transfers a communication flow, which is a service provided from the Internet 400, to the terminal 300 via the base station 200.
 基地局200は、モバイルコアネットワーク500とモバイルアクセスネットワーク600とを仲介する通信装置であり、通信フロー中継装置100から転送された通信フローを目的の端末300まで無線伝送する。基地局200は、例えば、LTEではeNodeB(Evolved Node B)と呼ばれる通信装置である。 The base station 200 is a communication device that mediates between the mobile core network 500 and the mobile access network 600, and wirelessly transmits the communication flow transferred from the communication flow relay device 100 to the target terminal 300. The base station 200 is a communication device called eNodeB (Evolved Node B) in LTE, for example.
 端末300は、モバイルアクセスネットワーク600内に設置され、インターネット400から提供されたサービスである通信フローを、通信フロー中継装置100および基地局200を介して受信し、当該通信フローを消費(再生や表示)する。 The terminal 300 is installed in the mobile access network 600, receives a communication flow, which is a service provided from the Internet 400, via the communication flow relay device 100 and the base station 200, and consumes (reproduces or displays) the communication flow. )
 ここで、インターネット400は、インターネットプロトコル(IP:Internet Protocol)に準拠した通信を行うネットワークであり、世界中の様々なサブネットワークをOSI(Open Systems Interconnection)参照モデルの第3層のIPにより結合して、世界的に広がっているネットワークである。 Here, the Internet 400 is a network that performs communication conforming to the Internet protocol (IP: Internet Protocol), and various sub-networks around the world are connected by the IP of the third layer of the OSI (Open Systems Interconnection) reference model. It is a global network.
 モバイルコアネットワーク500は、インターネット400とモバイルアクセスネットワーク600とを接続するネットワークであり、端末300への通信フローの転送や管理を行う。例えば、LTEでは、EPC(Evolved Packet Core)と呼ばれる。 The mobile core network 500 is a network connecting the Internet 400 and the mobile access network 600, and transfers and manages a communication flow to the terminal 300. For example, in LTE, it is called EPC (Evolved Packet Core).
 モバイルアクセスネットワーク600は、基地局200から端末300までのRANであり、例えば、LTEでは、eUTRAN(Evolved Universal Terrestrial Radio Network)と呼ばれる。 The mobile access network 600 is a RAN from the base station 200 to the terminal 300. For example, in LTE, it is called eUTRAN (Evolved Universal Terrestrial Radio Network).
 通信フロー中継装置100について詳細に説明する。本実施形態に係る通信フロー中継装置100のブロック構成図を図3に示す。図3の通信フロー中継装置100は、通信フロー受信部101、通信フロー転送部102、体感品質算出部103およびペーシング制御部104を備える。 The communication flow relay device 100 will be described in detail. FIG. 3 shows a block configuration diagram of the communication flow relay device 100 according to the present embodiment. 3 includes a communication flow receiving unit 101, a communication flow transfer unit 102, a sensation quality calculation unit 103, and a pacing control unit 104.
 通信フロー受信部101は、インターネット400から端末300へ向けて送信された通信フローを受信し、当該通信フローを通信フロー転送部102へと引き渡す。本実施形態に係る通信フロー受信部101は、通信フローを識別可能に構成される。なお、通信フロー受信部101において通信フローを識別する代わりに、通信フロー受信部101が受信する前段において、DPI(Deep Packet Inspection)などによって通信フローを識別しておくこともできる。 The communication flow receiving unit 101 receives a communication flow transmitted from the Internet 400 to the terminal 300 and delivers the communication flow to the communication flow transfer unit 102. The communication flow receiving unit 101 according to the present embodiment is configured to be able to identify a communication flow. Instead of identifying the communication flow in the communication flow receiving unit 101, the communication flow can be identified by DPI (Deep Packet Inspection) or the like before receiving the communication flow receiving unit 101.
 通信フロー転送部102は、通信フロー受信部101から引き渡された通信フローを、モバイルアクセスネットワーク600を介して端末300へ転送する。本実施形態に係る通信フロー転送部102はさらに、転送対象の通信フローについての転送レートをそれぞれ取得し、取得した転送レートの総和を全通信トラヒック量としてペーシング制御部104へ通知する。通信フロー転送部102はさらに、転送対象の通信フローについて、ペーシング制御部104からペーシングを実行するか否かの通知を受けることにより、当該通知にしたがって転送対象の通信フローを端末300へ転送する。 The communication flow transfer unit 102 transfers the communication flow delivered from the communication flow receiving unit 101 to the terminal 300 via the mobile access network 600. The communication flow transfer unit 102 according to the present embodiment further acquires each transfer rate for the transfer target communication flow, and notifies the pacing control unit 104 of the total of the acquired transfer rates as the total communication traffic amount. Further, the communication flow transfer unit 102 receives a notification from the pacing control unit 104 regarding whether or not to perform pacing on the communication flow to be transferred, and transfers the communication flow to be transferred to the terminal 300 according to the notification.
 通信フロー転送部102は、ペーシングを実行しない通信フローについては、通信フロー受信部101から引き渡された通信フローを即時に転送する。すなわち、通信フロー受信部101が受信する受信レートと同等の転送レートにて、当該通信フローを転送する。一方、通信フロー転送部102は、ペーシングを実行する通信フローについては、当該通信フローを転送する際に、即時に通信フローを転送するのではなく、所定の転送レートにて当該通信フローを転送する。 The communication flow transfer unit 102 immediately transfers the communication flow delivered from the communication flow receiving unit 101 for communication flows that do not execute pacing. That is, the communication flow is transferred at a transfer rate equivalent to the reception rate received by the communication flow receiving unit 101. On the other hand, the communication flow transfer unit 102 transfers the communication flow at a predetermined transfer rate, instead of transferring the communication flow immediately when transferring the communication flow for the communication flow for executing pacing. .
 具体的には、ペーシングを実行する通信フローが動画ストリーミングである場合、対象の動画のメディアレートと同等の転送レートを確保できれば、ユーザの体感品質を損なうことがないことから、通信フロー転送部102は、転送レートをメディアレート、あるいはメディアレート+α(余裕分)までに制限することにより、ペーシングを実行する。ここで、通信フロー受信部101が受信する受信レートがメディアレート、あるいはメディアレート+α以下であれば、ペーシングは行わずに即時転送する。なお、メディアレートを参照する代わりに、端末300における再生バッファ量(あるいは残余再生時間)を参照することもできる。この場合、再生バッファ量が所定の閾値以上となった場合にペーシングを実行する。ただし、通信フロー中継装置100が再生バッファ量を直接観測できない場合があるため、当該通信フローの転送量と時間経過から再生バッファ量を推定することが必要となる。 Specifically, when the communication flow for performing pacing is video streaming, if the transfer rate equivalent to the media rate of the target video can be secured, the user's quality of experience will not be impaired. Performs pacing by limiting the transfer rate to the media rate or media rate + α (a margin). Here, if the reception rate received by the communication flow receiving unit 101 is equal to or less than the media rate or the media rate + α, immediate transfer is performed without performing pacing. Instead of referring to the media rate, the playback buffer amount (or the remaining playback time) in the terminal 300 can also be referred to. In this case, pacing is executed when the reproduction buffer amount exceeds a predetermined threshold value. However, since the communication flow relay apparatus 100 may not be able to directly observe the reproduction buffer amount, it is necessary to estimate the reproduction buffer amount from the transfer amount of the communication flow and the passage of time.
 また、ペーシングを実行する通信フローがファイルダウンロードである場合、転送レートが所定の値を超えないように制限する方法が簡単である。ファイルサイズによって、この所定の値を変更することができる。なお、ペーシング方法については、任意のペーシング手法を適用することができる。 Also, when the communication flow for performing pacing is file download, it is easy to limit the transfer rate so as not to exceed a predetermined value. This predetermined value can be changed according to the file size. Note that any pacing method can be applied as the pacing method.
 体感品質算出部103は、通信フロー転送部102から転送される通信フローの体感品質をそれぞれ定量化し、定量化した体感品質の総和をペーシング制御部104へ通知する。体感品質を定量化する方法としては、例えば、通信フローが動画ストリーミングであれば、ITU-U(Telecommunication standardization sector of International Telecommunication Union)勧告P.1201 Amendment 2に従い、MOS(Mean Opinion Score)の推定値(最低1から最高5までの実数値)を算出することができる。一方、例えば、通信フローがWebアクセスであれば、同じくITU-T勧告G.1030 Annex Aに従い、MOSの推定値を算出することができる。この他、体感品質を定量化する方法は任意の方法を適用することができる。 The sensation quality calculation unit 103 quantifies the sensation quality of the communication flow transferred from the communication flow transfer unit 102 and notifies the pacing control unit 104 of the quantified total sensation quality. As a method of quantifying the quality of experience, for example, if the communication flow is video streaming, ITU-U (Telecommunication standardization of the International Telecommunication Union) recommended P.I. 1201 Amendment 2 can be used to calculate MOS (Mean Opinion Score) estimates (real numbers from a minimum of 1 to a maximum of 5). On the other hand, for example, if the communication flow is Web access, the ITU-T recommendation G. According to 1030 Annex A, the estimated value of MOS can be calculated. In addition, any method can be applied as a method for quantifying the quality of experience.
 ペーシング制御部104は、体感品質算出部103から通知された各通信フローの体感品質の総和と、通信フロー転送部102から通知された各通信フローの転送レートの総和(全通信トラヒック量)と、に基づいて、各通信フローについてペーシングを実行する通信フロー(ペーシングONの通信フロー)とペーシングを実行しない通信フロー(ペーシングOFFの通信フロー)を決定する。ペーシング制御部104は、決定した内容を通信フロー転送部102に通知する。通信フロー転送部102は、ペーシング制御部104から通知されたペーシングの実行の要否の決定に従い、通信フローを端末300へ転送する。 The pacing control unit 104 has a total quality of each communication flow notified from the quality of experience calculation unit 103, a total transfer rate (total communication traffic amount) of each communication flow notified from the communication flow transfer unit 102, and Based on the above, a communication flow for performing pacing (communication flow for pacing ON) and a communication flow for not performing pacing (communication flow for pacing OFF) are determined for each communication flow. The pacing control unit 104 notifies the communication flow transfer unit 102 of the determined content. The communication flow transfer unit 102 transfers the communication flow to the terminal 300 according to the determination of necessity of pacing execution notified from the pacing control unit 104.
 次に、ペーシング制御部104において、ペーシングの実行の要否を決定する手順について図4を用いて詳細に説明する。以下では、ペーシング対象の通信フローが動画ストリーミングである場合について説明する。なお、大容量ファイルをダウンロードする通信フローをペーシング対象とする場合の手順も同様である。 Next, a procedure for determining whether or not to perform pacing in pacing control unit 104 will be described in detail with reference to FIG. Hereinafter, a case where the communication flow to be paced is video streaming will be described. The procedure when the communication flow for downloading a large-capacity file is targeted for pacing is the same.
 [ステップ0:初期化]
 通信フロー中継装置100が扱う全通信フローの集合をF、ペーシング対象の動画ストリーミングに関する通信フローの集合をGと記載する(G⊆F)。先ず、ペーシング制御部104は、G内の全通信フローg(g∈G)について、p=0で初期化し、全てペーシングOFFからスタートする(t=0)。ここで、pは通信フローgに対するポイントである。そして、ペーシング制御部104は、体感品質算出部103から入力された転送する全通信フローgの体感品質qの総和Q(t)および、通信フロー転送部102から入力された転送する全通信フローgの転送レートxの総和(全通信トラヒック量)X(t)から目的関数値J(t)を算出する。ここで、Q(t)、X(t)およびJ(t)はそれぞれ、式(1)、式(2)、式(3)によって表される。
[Step 0: Initialization]
A set of all communication flows handled by the communication flow relay apparatus 100 is indicated as F, and a set of communication flows related to pacing target video streaming is indicated as G (G⊆F). First, the pacing control unit 104 initializes all communication flows g (gεG) in G with p g = 0, and starts all from pacing OFF (t = 0). Here, pg is a point with respect to the communication flow g. Then, the pacing controller 104, all communication flows g of QoE q g summation Q (t) and for transferring input from experience quality calculation unit 103, all communication flows to transfer inputted from the communication flow transfer unit 102 The objective function value J (t) is calculated from the sum ( g of total communication traffic) X (t) of the transfer rate xg of g . Here, Q (t), X (t), and J (t) are represented by Expression (1), Expression (2), and Expression (3), respectively.
 Q(t)= Σ q(t)             式(1)
 X(t)= Σ x(t)            式(2)
 J(t)= A(Q(t))+ B(X(t))    式(3)
 なお、q(t)は時刻tにおける通信フローgの体感品質、x(t)は時刻tにおける通信フローgの転送レート(通信トラヒック)である。また、A(Q(t))はQ(t)に関する単調増加関数、B(X(t))はX(t)に関する単調増加関数である。
Q (t) = Σ g q g (t) Equation (1)
X (t) = Σ g x g (t) (2)
J (t) = A (Q (t)) + B (X (t)) Equation (3)
Note that q g (t) is the quality of experience of the communication flow g at time t, and x g (t) is the transfer rate (communication traffic) of the communication flow g at time t. A (Q (t)) is a monotonically increasing function for Q (t), and B (X (t)) is a monotonically increasing function for X (t).
 そして、ペーシング制御部104は、τ時間経過後(t=τ)に、時間間隔τでの目的関数値J(t)の平均<J(τ)>τを、式(4)を用いて計算する。 Then, the pacing control unit 104 calculates the average <J (τ)> τ of the objective function value J (t) at the time interval τ using the equation (4) after τ time elapses (t = τ). To do.
 <J(t)>τ=(1/τ)∫t-τ→τ J(t)dt   式(4)
 [ステップ1:通信フローの選択]
 次に、ペーシング制御部104は、集合Gの中からランダムにn個の通信フローを選択する。ただし、1≦n≦|G|であり、|G|は集合Gの要素数(=通信フロー数)である。n個の通信フローの選択方法はランダムとしているが、任意の選択方法であって良い。ここで、選択された通信フローの集合をHとする。
<J (t)> τ = (1 / τ) ∫t −τ → τ J (t) dt Equation (4)
[Step 1: Select communication flow]
Next, pacing control unit 104 randomly selects n communication flows from set G. However, 1 ≦ n ≦ | G |, and | G | is the number of elements of the set G (= the number of communication flows). The selection method of n communication flows is random, but any selection method may be used. Here, let H be the set of selected communication flows.
 [ステップ2:ペーシングON/OFF制御]
 ペーシング制御部104は、選択したn個の通信フローh∈Hに対して、それぞれ0~1の一様乱数(以下、U(0、1)と記載する。)の乱数値を発生させ、その値をr(0≦r≦1)とする。また、ペーシング制御部104は、フローhのポイントpを引数とするシグモイド関数値ζ(p)(0≦ζ(p)≦1)を算出する。そして、ペーシング制御部104は、発生させた乱数値r、算出したシグモイド関数値ζ(p)および選択したフローhのページング状態に基づいて、選択したフローh∈HについてペーシングのON/OFF制御を行う。具体的には、r≦ζ(p)の場合、フローhのペーシングをONにし、r>ζ(p)の場合、フローhのペーシングをOFFにする。
[Step 2: Pacing ON / OFF control]
The pacing control unit 104 generates random values of uniform random numbers (hereinafter referred to as U (0, 1)) of 0 to 1 for the selected n communication flows hεH, Let the value be r h (0 ≦ r h ≦ 1). Further, the pacing controller 104 calculates the sigmoid function value as an argument a point p h of flow h zeta the (p h) (0 ≦ ζ (p h) ≦ 1). Then, the pacing controller 104, generated allowed random number r h, calculated on the basis of the paging status of the sigmoid function value zeta (p h) and the selected flow h, pacing ON / OFF for the selected flow h∈H Take control. Specifically, in the case of r h ≦ ζ (p h) , is turned ON pacing flow h, or r h> zeta of (p h), turns OFF the pacing flow h.
 ここで、シグモイド関数ζ(p)はポイントpの値が大きい程(∞に近づく程)1に近づき、ポイントpの値が小さい程(-∞に近づく程)0に近づく。従って、前述のようなシグモイド関数値ζ(p)とU(0、1)の乱数値の比較によるペーシングのON/OFF制御では、ポイントpの値が大きいフロー程、ペーシングがONになり、ポイントpの値が小さなフロー程、ペーシングがOFFとなる確率が高くなる。シグモイド関数ζの一例としては、ζ(p)=(1+exp(-ap))-1があり、このとき、図5のようなグラフとなる。他にも(-∞、∞)→(0、1)の単調増加関数で、ζ(0)=1/2であれば、任意の関数を適用することができる。 Here, the sigmoid function ζ (p) approaches 1 as the value of the point p increases (closer to ∞), and approaches 0 as the value of the point p decreases (closer to −∞). Therefore, in the pacing ON / OFF control by comparing the sigmoid function value ζ (p) and the random value of U (0, 1) as described above, the pacing is turned ON as the flow of the point p is larger. The smaller the value of p, the higher the probability that pacing will be turned off. As an example of the sigmoid function ζ, there is ζ (p) = (1 + exp (−ap)) −1 , and at this time, a graph as shown in FIG. 5 is obtained. In addition, any monotonically increasing function of (−∞, ∞) → (0, 1) can be applied as long as ζ (0) = ½.
 [ステップ3:目的関数値の評価]
 ステップ2の実施からτ時間経過後、次の目的関数の平均値<J(t)>τを計算する。
[Step 3: Evaluation of objective function value]
After elapse of τ time from the execution of step 2, the average value <J (t)> τ of the next objective function is calculated.
 [ステップ4:通信フローのポイント更新]
 ステップ0で求めた目的関数平均値<J(t-τ)>τと、ステップ3で求めた目的関数平均値<J(t)>τを比較する。そして、比較結果に基づいて、下記のようにポイントpを変更する。
(i)<J(t-τ)>τ < <J(t)>τのとき(目的関数が改善されたとき)
 ・ペーシングをOFFからONに変更したフローのポイントpをk加点
 ・ペーシングをONからOFFに変更したフローのポイントpをk減点
(ii)<J(t-τ)>τ ≧ <J(t)>τのとき(目的関数が改善されないとき)
 ・ペーシングをOFFからONに変更したフローのポイントpをk減点
 ・ペーシングをONからOFFに変更したフローのポイントpをk加点
 ここで、加点または減点するkはある定数にしても良いし、目的関数の平均値の差分(<J(t)>τ-<J(t-τ)>τ)に応じて定めることでも良い。上述のようにポイントpを変更することにより、ペーシングによって目的関数の増加に寄与できる通信フローについて、ペーシングONとなる確率が高くなるようにすることができる。
[Step 4: Point update of communication flow]
The objective function average value <J (t−τ)> τ obtained in step 0 is compared with the objective function average value <J (t)> τ obtained in step 3. Based on the comparison result, the point p is changed as follows.
(I) <J (t−τ)> τ <<< J (t)> When τ (when the objective function is improved)
・ K points are added to point p of the flow where pacing is changed from OFF to ON ・ k points are subtracted from point p of the flow where pacing is changed from ON to OFF (ii) <J (t−τ)> τ ≧ <J (t) > When τ (when objective function is not improved)
・ The point p of the flow where the pacing is changed from OFF to ON is decremented by k ・ The point p of the flow where the pacing is changed from ON to OFF is added by k. It may be determined according to the difference between the average values of the functions (<J (t)> τ− <J (t−τ)> τ ). By changing the point p as described above, it is possible to increase the probability that the pacing is turned on for a communication flow that can contribute to an increase in the objective function by pacing.
 [ステップ5:繰り返し]
 ステップ1に戻る。
[Step 5: Repeat]
Return to step 1.
 上記の手順によってペーシングのON/OFF制御がなされることにより、ユーザの体感品質の総和Q(t)と通信トラヒック量の総和X(t)の双方を同時に高めることができる。 By performing pacing ON / OFF control according to the above procedure, it is possible to simultaneously increase both the total Q (t) of the user experience quality and the total X (t) of the communication traffic.
 次に、上述したペーシングのON/OFF制御の有用性についてシミュレーションした結果について説明する。本シミュレーションでは、ペーシング候補の通信フローが10,000個の存在し(|G|=10,000)、シミュレーション途中でペーシング候補の通信フローの数は増減しないものとする。また、初期状態では、全通信フローgについてペーシングはOFFとする。本シミュレーションにより、この10,000個の通信フローgについて上述した図4のペーシングON/OFF制御を適用し、目的関数値J(t)を大きくすることができるか否か検証する。 Next, the simulation results of the usefulness of the above-described pacing ON / OFF control will be described. In this simulation, there are 10,000 pacing candidate communication flows (| G | = 10,000), and the number of pacing candidate communication flows does not increase or decrease during the simulation. In the initial state, pacing is turned off for all communication flows g. By this simulation, it is verified whether the objective function value J (t) can be increased by applying the pacing ON / OFF control of FIG. 4 described above to the 10,000 communication flows g.
 先ず、通信フロー1から通信フロー10,000までの、10,000個の通信フローそれぞれについて、ペーシングをONにしたときの目的関数増減量をU(-1、1)(-1から1までの一様乱数)で予め決定しておく。これは、実際のペーシングのON/OFFによる目的関数値増減をシミュレートすることが容易でないことから、各通信フローのペーシングON/OFFによる目的関数値への影響を簡易的に設定したものである。 First, for each of 10,000 communication flows from communication flow 1 to communication flow 10,000, the amount of increase / decrease in the objective function when pacing is turned ON is U (−1, 1) (from −1 to 1). (Uniform random number). This is because it is not easy to simulate the increase / decrease of the objective function value due to actual pacing ON / OFF, and thus the influence on the objective function value due to pacing ON / OFF of each communication flow is simply set. .
 ここで、観測可能な量は目的関数値J(t)だけとする。従って、各通信フローをペーシングOFF状態からON状態へ変更した時、目的関数値J(t)は-1から+1までの値だけ変動するが、どの程度変動するかは実際にON状態へ変更した後でなければ分からない。また、目的関数値J(t)だけを観測できないため、同時に複数の通信フローをON状態もしくはOFF状態へと変更した場合、どの通信フローがどれだけ目的関数値J(t)の変動に寄与したかは分からない。 Here, the only observable quantity is the objective function value J (t). Therefore, when each communication flow is changed from the pacing OFF state to the ON state, the objective function value J (t) fluctuates by a value from −1 to +1, but how much it changes is actually changed to the ON state. I don't know until later. Further, since only the objective function value J (t) cannot be observed, when a plurality of communication flows are changed to the ON state or OFF state at the same time, which communication flow contributes to how much the objective function value J (t) varies. I do n’t know.
 また、実際には、通信フローの増減や通信環境の変動等の、ペーシングON/OFF以外の要因(=外乱)によって観測される目的関数値J(t)は変動することから、目的関数値に対する外乱の影響を考慮する。そこで、目的関数値J(t)を算出する際に、正規乱数N(0、σ)が付与されるものとする。本シミュレーションでは、σ=0、σ=0.5、σ=1の3パターンでシミュレーションを実施する。外乱がσ=0であれば、一つずつフローをペーシングONに切り替えていき、その都度目的関数値の増減を確認し、目的関数値が増加した場合はペーシングONのままとし、目的関数値が減少した場合はペーシングOFFに戻すことによって、10,000回で必ず大域的最適解(=目的関数値を最大化)に到達できる。 Further, in practice, the objective function value J (t) observed due to factors other than pacing ON / OFF (= disturbance) such as increase / decrease of communication flow and fluctuation of communication environment, etc. fluctuate. Consider the effects of disturbances. Therefore, when calculating the objective function value J (t), a normal random number N (0, σ) is given. In this simulation, the simulation is performed with three patterns of σ = 0, σ = 0.5, and σ = 1. If the disturbance is σ = 0, the flow is switched to pacing ON one by one, and the increase / decrease of the objective function value is checked each time. If the objective function value increases, the pacing is kept ON and the objective function value is If it decreases, by returning to pacing OFF, the global optimal solution (= maximizing the objective function value) can be reached without fail at 10,000 times.
 本実施形態で説明した図4のペーシングON/OFF制御手法と、通信フローを一つずつ制御していく方法(以降、比較手法と記載する。)とで、目的関数の増加について比較評価する。本シミュレーションにおいて、図4のペーシングON/OFF制御におけるパラメータを、n=20、k=1、a=1とする。外乱がσ=0の場合のシミュレーション結果を図6(a)に、σ=0.5の場合のシミュレーション結果を図6(b)に、σ=1の場合のシミュレーション結果を図6(c)に示す。ここで、図6の横軸はON/OFF制御の実行回数、縦軸は目的関数値である。また、実線が本実施形態に係るペーシングON/OFF制御手法、破線が比較手法である。 The pacing ON / OFF control method of FIG. 4 described in the present embodiment and the method of controlling the communication flow one by one (hereinafter referred to as a comparison method) are compared and evaluated for an increase in the objective function. In this simulation, parameters in the pacing ON / OFF control in FIG. 4 are set to n = 20, k = 1, and a = 1. FIG. 6A shows the simulation result when the disturbance is σ = 0, FIG. 6B shows the simulation result when σ = 0.5, and FIG. 6C shows the simulation result when σ = 1. Shown in Here, the horizontal axis of FIG. 6 is the number of ON / OFF control executions, and the vertical axis is the objective function value. Further, the solid line is the pacing ON / OFF control method according to the present embodiment, and the broken line is the comparison method.
 先ず、外乱がσ=0の場合のシミュレーション結果について説明する。図6(a)に示すように、外乱が全くない場合、比較手法は、前述のとおり、各通信フローのペーシングを一つずつ切り替えていくことで、確実に目的関数を増加させていくことができる。従って、図6(a)の破線のように、ほぼ線形に目的関数値を増加させることができ、10,000回後に目的関数の最大値に到達する。一方、本実施形態に係るペーシングON/OFF制御手法においては、複数の通信フロー(この場合20個の通信フロー)を同時にON/OFF切り替え候補とし、それらのON/OFF切り替えを確率的に制御しているため、10,000回試行しても最適解へは到達しない。しかし、複数の通信フローに対してON/OFF制御を同時に実施していることから、試行開始初期段階での目的関数増加率は本発明の手法の方が高い。 First, the simulation result when the disturbance is σ = 0 will be described. As shown in FIG. 6A, when there is no disturbance, the comparison method can increase the objective function reliably by switching the pacing of each communication flow one by one as described above. it can. Therefore, as shown by the broken line in FIG. 6A, the objective function value can be increased almost linearly, and the maximum value of the objective function is reached after 10,000 times. On the other hand, in the pacing ON / OFF control method according to the present embodiment, a plurality of communication flows (in this case, 20 communication flows) are set as ON / OFF switching candidates at the same time, and the ON / OFF switching is controlled stochastically. Therefore, the optimal solution is not reached even after 10,000 trials. However, since ON / OFF control is simultaneously performed for a plurality of communication flows, the objective function increase rate at the initial stage of the trial start is higher in the method of the present invention.
 次に、外乱がσ=0.5のときのシミュレーション結果について説明する。外乱が含まれている場合、図6(b)の破線のように、比較手法は外乱がない時と同じようには目的関数を増加させることができない。なぜなら、一つの通信フローをペーシングONにしたときの目的関数値の増加量よりも外乱による目的関数値の減少量の方が大きい場合があり、このとき、ON/OFFの制御を誤ってしまうからである。一つの通信フローをペーシングONにしたときの目的関数値減少量よりも外乱による目的関数値増加量が大きい場合も同様である。一方、本実施形態に係る手法では、複数の通信フローを同時にON/OFF切り替えしているため、当該ON/OFFによる目的関数値の増減量が、外乱による目的関数値の増減量よりも大きくなる可能性が高くなる。その結果、本実施形態の手法のステップ4における判断を正確に行うことができる。また、複数の通信フローを同時にペーシング制御することで、初期段階での目的関数値の増加速度は速い。 Next, the simulation result when the disturbance is σ = 0.5 will be described. When a disturbance is included, as shown by the broken line in FIG. 6B, the comparison method cannot increase the objective function in the same manner as when there is no disturbance. This is because there is a case where the decrease amount of the objective function value due to the disturbance is larger than the increase amount of the objective function value when pacing is turned on for one communication flow. At this time, the ON / OFF control is erroneously performed. It is. The same applies when the objective function value increase amount due to disturbance is larger than the objective function value decrease amount when pacing is turned on for one communication flow. On the other hand, in the method according to the present embodiment, since a plurality of communication flows are switched ON / OFF simultaneously, the increase / decrease amount of the objective function value due to the ON / OFF becomes larger than the increase / decrease amount of the objective function value due to the disturbance. The possibility increases. As a result, the determination in step 4 of the method of the present embodiment can be performed accurately. Further, by simultaneously pacing a plurality of communication flows, the increase speed of the objective function value at the initial stage is fast.
 最後に、外乱がσ=1のときのシミュレーション結果について説明する。このとき、図6(c)の破線のように、比較手法では、目的関数値を増加させることが困難である。これは、一つの通信フローによる目的関数値の増減量よりも外乱による目的関数値の増減量の方が大きくなる確率が高くなったからである。一方、本実施形態に係る手法では、σ=1の場合も確実に目的関数値を増加させることができる。本シミュレーション結果により、本実施形態に係る手法は、ロバスト性の高い手法であることが示された。 Finally, the simulation results when the disturbance is σ = 1 will be described. At this time, as shown by the broken line in FIG. 6C, it is difficult to increase the objective function value by the comparison method. This is because the probability that the increase / decrease amount of the objective function value due to the disturbance is greater than the increase / decrease amount of the objective function value due to one communication flow. On the other hand, with the method according to the present embodiment, the objective function value can be reliably increased even when σ = 1. From this simulation result, it was shown that the method according to the present embodiment is a highly robust method.
 以上のように、本実施形態に係る通信システム700において、通信フロー中継装置100は、動画ストリーミング等の転送対象の通信フローGからn個の通信フローをランダムに選択し、目的関数が増加するように、ポイントに応じたペーシング制御をn個の通信フローに対して同時に行う。ポイントに応じたペーシング制御をn個の通信フローに対して同時に行うことにより、外乱による目的関数値の変化量よりもペーシング制御による目的関数値の変化量を大きくすることができる。従って、本実施形態に係る通信フロー中継装置100は、通信フローの増減や通信環境の変動等の外乱による影響を考慮しつつ、モバイルネットワークに接続されているユーザ全体の体感品質の向上と通信資源の利用率の向上を両立することができる。 As described above, in the communication system 700 according to the present embodiment, the communication flow relay device 100 randomly selects n communication flows from the communication flow G to be transferred such as video streaming, and the objective function increases. In addition, pacing control corresponding to points is simultaneously performed for n communication flows. By performing pacing control according to points simultaneously on n communication flows, the amount of change in the objective function value due to pacing control can be made larger than the amount of change in the objective function value due to disturbance. Therefore, the communication flow relay device 100 according to the present embodiment improves the quality of experience of the entire user connected to the mobile network and the communication resources while taking into consideration the influence of disturbance such as increase / decrease of the communication flow and fluctuation of the communication environment. It is possible to achieve both improvement in the utilization rate.
 本願発明は上記実施形態に限定されるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があってもこの発明に含まれる。 The invention of the present application is not limited to the above-described embodiment, and any design change or the like within a range not departing from the gist of the invention is included in the invention.
 この出願は、2015年6月19日に出願された日本出願特願2015-123781を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2015-123781 filed on June 19, 2015, the entire disclosure of which is incorporated herein.
 10  通信フロー中継装置
 20  通信フロー受信手段
 30  ペーシング制御手段
 40  通信フロー転送手段
 100  通信フロー中継装置
 101  通信フロー受信部
 102  通信フロー転送部
 103  体感品質算出部
 104  ペーシング制御部
 200  基地局
 300  端末
 400  インターネット
 500  モバイルコアネットワーク
 600  モバイルアクセスネットワーク
 700  通信システム
DESCRIPTION OF SYMBOLS 10 Communication flow relay apparatus 20 Communication flow receiving means 30 Pacing control means 40 Communication flow transfer means 100 Communication flow relay apparatus 101 Communication flow receiving part 102 Communication flow transfer part 103 Experience quality calculation part 104 Pacing control part 200 Base station 300 Terminal 400 Internet 500 Mobile Core Network 600 Mobile Access Network 700 Communication System

Claims (9)

  1. 複数の通信フローを受信する通信フロー受信手段と、
    前記複数の通信フローの中からn個の通信フローを定期的に選択し、n個の通信フローを選択するごとに、該選択したn個の通信フローのそれぞれについて転送レート制限を設けるか否か同時に決定するペーシング制御手段と、
    前記決定に基づいて、前記受信された複数の通信フローを外部端末へ転送する通信フロー転送手段と、
    を備える通信フロー中継装置。
    A communication flow receiving means for receiving a plurality of communication flows;
    Whether n communication flows are periodically selected from the plurality of communication flows, and each time n communication flows are selected, whether or not a transfer rate limit is set for each of the selected n communication flows Pacing control means to determine simultaneously;
    A communication flow transfer means for transferring the plurality of received communication flows to an external terminal based on the determination;
    A communication flow relay device comprising:
  2. 前記ペーシング制御手段は、前記選択したn個の通信フローのそれぞれについて転送レート制限を設けるか否かを確率的に決定する、請求項1に記載の通信フロー中継装置。 The communication flow relay apparatus according to claim 1, wherein the pacing control unit probabilistically determines whether a transfer rate restriction is provided for each of the selected n communication flows.
  3. 前記ペーシング制御手段は、
    n個の通信フローを選択するごとにα~βの一様乱数であるn個の乱数値を発生させ、
    (-∞、0、∞)の時に(α、(α+β)/2、β)を出力する単調増加関数に前記選択したn個の通信フローのポイントを入力した時のn個の出力値と、前記発生させたn個の乱数値とをそれぞれ比較し、
    前記出力値が乱数値以上の場合は転送レート制限を設け、出力値が乱数値より小さい場合は転送レート制限を設けない、
    ことを特徴とする請求項2に記載の通信フロー中継装置。
    The pacing control means includes
    Each time n communication flows are selected, n random numbers, which are uniform random numbers from α to β, are generated.
    N output values when the selected n communication flow points are input to a monotonically increasing function that outputs (α, (α + β) / 2, β) when (−∞, 0, ∞); Each of the generated n random values is compared,
    If the output value is greater than or equal to the random value, transfer rate restriction is provided, and if the output value is smaller than the random value, no transfer rate restriction is provided.
    The communication flow relay device according to claim 2.
  4. 前記受信された複数の通信フローの体感品質をそれぞれ算出してその総和を出力する体感品質算出手段をさらに備え、
    前記通信フロー転送手段はさらに、前記受信された複数の通信フローの転送レートをそれぞれ取得してその総和を通信トラヒックの総和として出力し、
    前記ペーシング制御手段は、前記出力された通信トラヒックの総和と前記出力された体感品質の総和との和が増加するように、前記n個の通信フローのポイントを変更する、
    請求項3に記載の通信フロー中継装置。
    Further comprising bodily sensation quality calculating means for calculating the bodily sensation quality of each of the plurality of received communication flows and outputting the sum thereof,
    The communication flow transfer means further obtains the transfer rates of the received plurality of communication flows, respectively, and outputs the sum as a sum of communication traffic,
    The pacing control means changes the points of the n communication flows so that the sum of the output communication traffic sum and the output experience quality sum increases.
    The communication flow relay device according to claim 3.
  5. 前記体感品質がq、前記転送レートがxである場合(g=1,2,…,G:Gは受信された複数の通信フローの総数)、
    前記ペーシング制御手段は、Σ q(t)についての単調増加関数とΣ x(t)についての単調増加関数との和である目的関数値J(t)を算出し、該算出した目的関数値J(t)が増加するように、前記n個の通信フローのポイントを変更する、
    請求項4に記載の通信フロー中継装置。
    When the quality of experience is q g and the transfer rate is x g (g = 1, 2,..., G: G is the total number of received communication flows),
    The pacing control means calculates an objective function value J (t) that is the sum of a monotonically increasing function for Σ g q g (t) and a monotonically increasing function for Σ g x g (t) Changing the points of the n communication flows so that the objective function value J (t) increases;
    The communication flow relay device according to claim 4.
  6. 前記ペーシング制御手段は、
    所定の時間間隔τごとに前記目的関数値J(t)の平均値を演算し、
    一つ前の平均値に対して新たな平均値が増加した場合、転送レート制限を新たに設けた通信フローのポイントを加点すると共に転送レート制限を新たに削除した通信フローのポイントを減点し、
    一つ前の平均値に対して新たな平均値が減少した場合、転送レート制限を新たに設けた通信フローのポイントを減点すると共に転送レート制限を新たに削除した通信フローのポイントを加点する、
    請求項5に記載の通信フロー中継装置。
    The pacing control means includes
    An average value of the objective function value J (t) is calculated at a predetermined time interval τ,
    When the new average value increases with respect to the previous average value, the communication flow point with the newly added transfer rate limit is added and the communication flow point with the newly deleted transfer rate limit is deducted,
    When the new average value decreases with respect to the previous average value, the points of the communication flow in which the transfer rate restriction is newly provided are deducted and the points of the communication flow in which the transfer rate restriction is newly deleted are added,
    The communication flow relay device according to claim 5.
  7. 受信した通信フローを外部端末へ転送する請求項1乃至6のいずれか1項に記載の通信フロー中継装置と、
    転送された通信フローを受信して消費する外部端末と、
    を備える通信システム。
    The communication flow relay device according to any one of claims 1 to 6, wherein the received communication flow is transferred to an external terminal;
    An external terminal that receives and consumes the transferred communication flow;
    A communication system comprising:
  8. 前記通信フロー中継装置はモバイルコアネットワーク内に配置され、
    前記外部端末はモバイルアクセスネットワーク内に配置され、
    前記通信フロー中継装置は前記モバイルコアネットワークと前記モバイルアクセスネットワークを仲介する基地局を介して、前記通信フローを外部端末へ転送する、
    請求項7に記載の通信システム。
    The communication flow relay device is arranged in a mobile core network,
    The external terminal is located in a mobile access network;
    The communication flow relay device transfers the communication flow to an external terminal via a base station that mediates the mobile core network and the mobile access network.
    The communication system according to claim 7.
  9. 複数の通信フローを受信し、
    前記複数の通信フローの中からn個の通信フローを定期的に選択し、n個の通信フローを選択するごとに、該選択したn個の通信フローのそれぞれについて転送レート制限を設けるか否か同時に決定し、
    前記決定に基づいて、前記受信された複数の通信フローを外部端末へ転送する、
    通信フロー中継方法。
    Receive multiple communication flows,
    Whether n communication flows are periodically selected from the plurality of communication flows, and each time n communication flows are selected, whether or not a transfer rate limit is set for each of the selected n communication flows Decide at the same time,
    Based on the determination, forwarding the received plurality of communication flows to an external terminal;
    Communication flow relay method.
PCT/JP2016/002829 2015-06-19 2016-06-13 Communication flow relay device, communication system and communication flow relay method WO2016203749A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-123781 2015-06-19
JP2015123781 2015-06-19

Publications (1)

Publication Number Publication Date
WO2016203749A1 true WO2016203749A1 (en) 2016-12-22

Family

ID=57545125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002829 WO2016203749A1 (en) 2015-06-19 2016-06-13 Communication flow relay device, communication system and communication flow relay method

Country Status (1)

Country Link
WO (1) WO2016203749A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012080420A (en) * 2010-10-04 2012-04-19 Nippon Telegr & Teleph Corp <Ntt> Device and method for data transfer
US20150146552A1 (en) * 2013-11-27 2015-05-28 At&T Intellectual Property I, L.P. Adaptive Pacing of Media Content Delivery Over a Wireless Network

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012080420A (en) * 2010-10-04 2012-04-19 Nippon Telegr & Teleph Corp <Ntt> Device and method for data transfer
US20150146552A1 (en) * 2013-11-27 2015-05-28 At&T Intellectual Property I, L.P. Adaptive Pacing of Media Content Delivery Over a Wireless Network

Similar Documents

Publication Publication Date Title
CN106452958B (en) Flow control method, system and centralized controller
US20210336885A1 (en) Phantom queue link level load balancing system, method and device
KR102059867B1 (en) Methods and apparatus for managing network resources used by multimedia streams in a virtual pipe
CN107534981B (en) Resource reallocation
TW201322699A (en) Methods and devices for content delivery control
KR20140116450A (en) Method and apparatus for providing intelligent codec rate adaptation for wireless users
US10638347B2 (en) Method, device and computer storage medium for transmitting a control message
US20070127419A1 (en) Enforcing fairness in ad hoc mesh networks
KR20130069815A (en) Reducing the maximum latency of reserved streams
CN109922161B (en) Content distribution method, system, device and medium for dynamic cloud content distribution network
KR20120017972A (en) Method for notifying/avoding congestion situation of data transmission in wireless mesh network, and mesh node for the same
EP3560152A1 (en) Determining the bandwidth of a communication link
US10819582B2 (en) Traffic optimization device and traffic optimization method
US10439947B2 (en) Method and apparatus for providing deadline-based segmentation for video traffic
WO2016203749A1 (en) Communication flow relay device, communication system and communication flow relay method
US20170019463A1 (en) Communication system, communication device and communication method
CN107592269B (en) Method and network node for transmitting load information of path
KR101074465B1 (en) Method and apparatus for controlling traffic by cooperating with peer
US10778546B2 (en) Aggregate energy consumption across a network
WO2018018641A1 (en) Data transmission method and apparatus for data service
JP7259738B2 (en) CONTROL DEVICE, CONTROL SYSTEM, CONTROL METHOD AND PROGRAM OF CONTROL DEVICE
EP3162149B1 (en) Volume-deadline scheduling
US9439228B2 (en) Method for managing at least one dynamic virtual connection between a mobile terminal and a communication network, the associated computer program products and communication network
JP2007325012A (en) Router and traffic distributing method
JP4829929B2 (en) Relay control device and relay control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16811224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP