WO2016203736A1 - Electric actuator and manufacturing method for same - Google Patents

Electric actuator and manufacturing method for same Download PDF

Info

Publication number
WO2016203736A1
WO2016203736A1 PCT/JP2016/002751 JP2016002751W WO2016203736A1 WO 2016203736 A1 WO2016203736 A1 WO 2016203736A1 JP 2016002751 W JP2016002751 W JP 2016002751W WO 2016203736 A1 WO2016203736 A1 WO 2016203736A1
Authority
WO
WIPO (PCT)
Prior art keywords
output shaft
housing
electric actuator
actuator
lever
Prior art date
Application number
PCT/JP2016/002751
Other languages
French (fr)
Japanese (ja)
Inventor
山中 哲爾
尚明 河野
悦豪 柳田
島田 広樹
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016102277A external-priority patent/JP6330850B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201680034705.2A priority Critical patent/CN107709727B/en
Priority to US15/736,812 priority patent/US10663076B2/en
Priority to DE112016002745.1T priority patent/DE112016002745B4/en
Publication of WO2016203736A1 publication Critical patent/WO2016203736A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/04Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
    • F16H1/06Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with parallel axes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present disclosure relates to an electric actuator for a turbocharger and a manufacturing method thereof.
  • Patent Document 1 As an example of an electric actuator for a turbocharger, a technique disclosed in Patent Document 1 is known.
  • Patent Document 1 discloses a technique for transmitting the output of an electric actuator to a turbocharger valve via a so-called four-bar link.
  • the four-bar link includes an actuator lever fixed to the output shaft of the electric actuator, a valve lever fixed to a valve shaft that rotates integrally with the valve, and a rod that transmits the rotation torque of the actuator lever to the valve lever.
  • the mounting angle of the electric actuator with respect to the turbocharger and the positional relationship between the valve shafts provided in the turbocharger are determined.
  • the versatility of the electric actuator will deteriorate.
  • the design change of the electric actuator is made unnecessary.
  • the position of the valve shaft is different, it is necessary to change the design of the electric actuator.
  • the present disclosure has been made in view of the above problems, and an object of the present disclosure is to provide an electric actuator that is excellent in versatility and that does not cause variations in the fixing angle of the actuator lever with respect to the output shaft, and a manufacturing method thereof. is there.
  • an electric actuator including a housing, an electric motor, a parallel shaft type gear reducer, an output shaft, a cover, and an actuator lever.
  • the housing has an opening that opens in one direction.
  • the electric motor is assembled to the housing.
  • the gear reducer is assembled to the housing and decelerates the rotational force generated by the electric motor.
  • the output shaft is assembled with the housing and driven by the rotational force decelerated by the gear reducer.
  • a cover is assembled
  • the actuator lever is fixed to one end of the output shaft exposed to the outside of the cover, and drives a valve provided in the turbocharger.
  • One end of the output shaft is provided with a cylindrical portion having a reduced diameter through an annular step surface.
  • the actuator lever is provided with a round hole into which the cylindrical portion is inserted.
  • the housing is provided with an exposure hole for exposing the other end of the output shaft to the outside.
  • the other end of the output shaft is provided with a rotation stop shape that can be engaged with a tool that restricts the rotation of the output shaft. The stop shape is visible from the exposed hole.
  • the relative angle between the output shaft and the actuator lever can be set arbitrarily using the non-rotating shape visible from the exposed hole as the reference angle of the output shaft. For this reason, there is no problem that the fixing angle of the actuator lever varies.
  • the fixed angle of the actuator lever with respect to an output shaft can be freely changed by setting the rotation stop shape visually recognizable from the exposure hole as the reference angle of the output shaft. For this reason, the versatility of an electric actuator can be improved.
  • the present disclosure provides a method for manufacturing the above electric actuator.
  • the electric actuator is manufactured using a jig that supports a housing, and the jig includes a tool that can be engaged in a non-rotating shape.
  • the electric actuator manufacturing method of the present disclosure includes a jig assembling step for assembling the housing at a predetermined position of the jig, an internal assembling step for assembling the electric motor, the gear reducer, and the output shaft inside the opening, During this internal assembly process, an engagement process for engaging the rotation shape with the tool to position the output shaft in the rotational direction, a cover assembly process for assembling the cover to the housing, a cylindrical portion and a round hole A lever fitting step of fitting together, and a lever fixing step of determining a fixing angle of the actuator lever with respect to the output shaft and fixing the actuator lever to the output shaft.
  • FIG. 1 is a schematic diagram of an engine intake / exhaust device according to an embodiment of the present disclosure.
  • FIG. 2 is an explanatory diagram of a turbocharger according to an embodiment of the present disclosure.
  • FIG. 3 is a top view of the electric actuator according to the embodiment of the present disclosure.
  • FIG. 4 is a side view of an electric actuator according to an embodiment of the present disclosure.
  • FIG. 5 is a bottom view of the electric actuator according to the embodiment of the present disclosure.
  • 6 is a cross-sectional view taken along line VI-VI in FIG. 7 is a cross-sectional view taken along line VII-VII in FIG.
  • FIG. 8 is a cross-sectional view of a main part of the electric actuator placed on the jig based on the embodiment of the present disclosure.
  • FIG. 9 is a perspective view of the electric actuator mounted on the jig according to the embodiment of the present disclosure.
  • FIG. 10 is an exploded perspective view of the upper end of the output shaft and the actuator lever according to an embodiment of the present disclosure.
  • FIG. 11 is a perspective view of an output shaft provided with a resin component that forms a final gear according to an embodiment of the present disclosure as viewed from below.
  • a traveling engine 1 mounted on an automobile is provided with an intake passage 2 that guides intake air into a cylinder of the engine 1 and an exhaust passage 3 that discharges exhaust gas generated in the cylinder into the atmosphere.
  • an intake compressor 4 of the turbocharger T and a throttle valve 5 for adjusting the intake air amount supplied to the engine 1 are provided.
  • an exhaust turbine 6 of the turbocharger T and a catalyst 7 for purifying exhaust gas are provided in the middle of the exhaust passage 3.
  • the catalyst 7 is a well-known three-way catalyst that adopts a monolithic structure, and purifies harmful substances contained in the exhaust gas by oxidizing and reducing action by raising the temperature to the activation temperature.
  • the exhaust turbine 6 includes a turbine wheel 6a that is rotationally driven by the exhaust gas discharged from the engine 1, and a spiral turbine housing 6b that accommodates the turbine wheel 6a.
  • the intake compressor 4 includes a compressor wheel 4a that rotates in response to the rotational force of the turbine wheel 6a, and a spiral compressor housing 4b that accommodates the compressor wheel 4a.
  • the turbine housing 6b is provided with a bypass passage 8 that bypasses the turbine wheel 6a and flows exhaust gas.
  • the bypass passage 8 guides the exhaust gas flowing into the turbine housing 6b directly to the exhaust outlet of the turbine housing 6b.
  • the bypass passage 8 is provided so as to be opened and closed by a waste gate valve 9.
  • the wastegate valve 9 is a swing valve that is rotatably supported inside the turbine housing 6b. Specifically, the wastegate valve 9 is rotated through a valve shaft 10 that is rotatably supported with respect to the turbine housing 6b.
  • the waste gate valve 9 controls the supercharging pressure by the turbocharger T by adjusting the opening of the bypass passage 8 when the engine 1 is rotating at high speed.
  • the waste gate valve 9 warms up the catalyst 7 by fully opening the bypass passage 8 when the temperature of the catalyst 7 does not reach the activation temperature, such as immediately after a cold start. As a result, high-temperature exhaust gas that is not deprived of heat by the turbine wheel 6a can be guided to the catalyst 7, and the catalyst 7 can be warmed up early.
  • the turbocharger T includes an electric actuator 11 as means for rotating the wastegate valve 9.
  • the electric actuator 11 is energized and controlled by an ECU 12 that performs engine control.
  • the electric actuator 11 is mounted on the intake compressor 4 away from the exhaust turbine 6 for the purpose of avoiding the thermal effect of the exhaust gas.
  • the electric actuator 11 is mounted at a position away from the waste gate valve 9.
  • the turbocharger T is provided with a link mechanism for transmitting the output of the electric actuator 11 to the wastegate valve 9.
  • the link mechanism is a four-bar link, and includes an actuator lever 13 that is rotated by the electric actuator 11, a valve lever 14 that is coupled to the valve shaft 10, and a rotational torque applied to the actuator lever 13. And a rod 15 for transmitting to
  • the electric actuator 11 will be described.
  • the electric actuator 11 includes a housing 20 attached to the intake compressor 4, an electric motor 21, a gear reducer 22, an output shaft 23, a cover 24, and an actuator lever 13 fixed to the upper end of the output shaft 23. And is configured.
  • the upper end of the output shaft 23 corresponds to one end, and the lower end of the output shaft 23 corresponds to the other end.
  • the housing 20 includes an opening ⁇ that opens toward one side.
  • reference numeral 20 a shown in FIG. 3 is a bolt insertion hole used when the electric actuator 11 is assembled to the intake compressor 4.
  • the housing 20 is made of, for example, die-cast aluminum.
  • a cover 24 is attached to the upper portion of the housing 20.
  • the electric motor 21 is assembled to the housing 20. Specifically, the electric motor 21 is inserted into a motor insertion chamber ⁇ formed in the housing 20 and then fixed to the housing 20 with a screw or the like.
  • the structure or the like of the electric motor 21 is not limited, and may be a known DC motor or a known stepping motor, for example.
  • the gear reducer 22 is assembled to the housing 20.
  • the gear reducer 22 is a parallel shaft type that reduces the rotational force generated by the electric motor 21.
  • the gear reducer 22 includes a pinion gear 26 that is driven by the electric motor 21, a first intermediate gear 27 that is rotationally driven by the pinion gear 26, and a second intermediate that is rotationally driven by the first intermediate gear 27.
  • a gear 28 and a final gear 29 that is rotationally driven by the second intermediate gear 28 are provided.
  • the pinion gear 26 is a small-diameter external gear fixed to the rotating shaft of the electric motor 21.
  • the first intermediate gear 27 is a double gear in which a first large-diameter gear 27a and a first small-diameter gear 27b are provided concentrically.
  • the first intermediate gear 27 is rotatably supported by a first intermediate shaft 31 that is fixed to the housing 20.
  • the first large-diameter gear 27a always meshes with the pinion gear 26.
  • the second intermediate gear 28 is a double gear in which a second large diameter gear 28a and a second small diameter gear 28b are provided concentrically.
  • the second intermediate gear 28 is rotatably supported by a second intermediate shaft 32 that is fixed to the housing 20.
  • the second large-diameter gear 28a is always meshed with the first small-diameter gear 27b, and the second small-diameter gear 28b is always meshed with the final gear 29.
  • the final gear 29 is a large-diameter external gear fixed to the output shaft 23.
  • the final gear 29 is provided only in a predetermined rotation range.
  • the output shaft 23 is rotatably supported by a lower bearing 33 assembled to the housing 20 and an upper bearing 34 assembled to the cover 24.
  • the electric actuator 11 includes a rotation angle sensor 35 that detects the opening degree of the wastegate valve 9 by detecting the rotation angle of the output shaft 23.
  • the rotation angle sensor 35 is a non-contact type and is provided at a position offset with respect to the axis C of the output shaft 23.
  • the rotation angle sensor 35 includes a magnetic flux generator 36 that rotates integrally with the output shaft 23, and a magnetic detector that is attached to one of the cover 24 or the housing 20 and detects the magnetic flux generated by the magnetic flux generator 36. 37.
  • the magnetic flux generator 36 is provided around the output shaft 23 and in a rotation range where the final gear 29 does not exist.
  • the ECU 12 is an engine control unit in which a microcomputer is mounted, and includes a control program for controlling energization of the electric actuator 11.
  • the ECU 12 calculates the target opening degree of the wastegate valve 9 suitable for the operating state of the engine 1 from the operating state of the engine 1. Then, the electric actuator 11 is feedback controlled so that the calculated target opening and the detected opening detected by the rotation angle sensor 35 coincide.
  • this supercharging pressure control is an example, and is not limited.
  • the ECU 12 performs an early warm-up of the catalyst 7 when the actual temperature or the predicted temperature of the catalyst 7 has not reached the activation temperature, such as immediately after a cold start. Specifically, the ECU 12 sets the wastegate valve 9 to a predetermined opening when the catalyst 7 is warmed up early. Thereby, it is possible to prevent the heat of the exhaust gas from being taken away by the wastegate valve 9.
  • the early warm-up control of the catalyst 7 is an example and is not limited.
  • a jig 60 shown in FIGS. 8 and 9 is used for assembling the electric actuator 11.
  • a cylindrical portion 62 whose diameter is reduced via an annular step surface 61 is provided.
  • the step surface 61 is an annular plane perpendicular to the axial direction of the output shaft 23.
  • the cylindrical portion 62 is provided concentrically with the rotation center of the output shaft 23.
  • the actuator lever 13 is provided with a round hole 63 into which the cylindrical portion 62 is inserted as shown in FIG.
  • the inner diameter of the round hole 63 is slightly larger than the inner diameter of the cylindrical portion 62.
  • the housing 20 is provided with an exposure hole 64 that exposes the lower end of the output shaft 23 to the outside.
  • a lower bearing hole 41 for press-fitting the lower bearing 33 is provided in the housing 20. At the lower end of the lower bearing hole 41, a lower rod 41a for restricting the downward movement of the lower bearing 33 is provided. In this embodiment, the inner side of the lower collar 41 a corresponds to the exposure hole 64.
  • the lower end of the output shaft 23 is provided with a non-rotating shape (also referred to as a non-rotating portion or a shaft side engaging portion) 66 that can be engaged with a tool 65 that restricts the rotation of the output shaft 23.
  • a non-rotating shape also referred to as a non-rotating portion or a shaft side engaging portion
  • the rotation shape 66 can be visually recognized from the outside of the exposure hole 64 as shown in FIGS. That is, the rotation shape 66 can be visually recognized from the outside of the housing 20 to the inside of the exposure hole 64. Specifically, as shown in FIG. 8, the exposure hole 64 is provided so that the tool 65 can be inserted into the exposure hole 64 from the outside of the housing 20 and the tool 65 can be engaged with the rotation shape 66.
  • the rotation stop shape 66 of this embodiment employs a minus groove. That is, the rotation stop shape 66 of this embodiment is provided by a straight groove that passes through the axis C of the output shaft 23.
  • the specific shape of the stop shape 66 is not limited, and any shape that can regulate the rotation of the output shaft 23 by fitting with the tool 65 may be used.
  • a plus groove may be employed, or a polygonal hole such as a hexagonal hole may be employed.
  • a star hole such as a hexagonal star may be employed, or an elliptical hole may be employed.
  • the tool 65 is configured to restrict the rotation of the output shaft 23 by being fitted to the rotation shape 66 and to position the output shaft 23 in the rotation direction.
  • the specific shape of the portion of the tool 65 that fits with the rotation stop shape 66 is a linear protrusion shape. Needless to say, the shape of the tool 65 that fits the stop shape 66 is changed to match the changed stop shape 66 when the stop shape 66 is changed. If a specific example is disclosed, when the turning shape 66 is changed to a hexagonal hole, the tool 65 is also changed to the shape of a hexagonal wrench.
  • the jig 60 supports the housing 20 when the electromagnetic actuator 11 is manufactured, and includes the above-described tool (also referred to as a jig side engaging portion) 65.
  • the tool 65 is provided integrally with the jig 60. That is, a part of the jig 60 is provided as the tool 65.
  • the tool 65 may be provided separately from the jig 60. In this case, it is desirable that the rotation angle of the tool 65 with respect to the jig 60 can be set at an arbitrary angle.
  • the housing 20 is provided with the opening ⁇ that opens upward.
  • an assembly space for the gear reducer 22, the output shaft 23, and the like is provided inside the opening ⁇ . All the components that are directly assembled to the housing 20, including the electric motor 21, the gear reducer 22, the output shaft 23, and the cover 24, are all assembled to the housing 20 from the top to the bottom.
  • the housing 20 is assembled at a predetermined position of the jig 60. Specifically, the housing 20 is placed on the jig 60 so that the opening ⁇ faces upward. At this time, the housing 20 is positioned with respect to the jig 60.
  • the housing 20 is provided with a plurality of positioning recesses 67. Specifically, two positioning recesses 67 are provided on the lower surface of the housing 20 as shown in FIG.
  • the jig 60 is provided with a plurality of positioning pins 68 that fit into the plurality of positioning recesses 67. Specifically, two positioning pins 68 that extend upward and fit into the positioning recesses 67 are provided on the upper surface of the jig 60.
  • the positioning pins 68 are fitted into the positioning recesses 67 when the housing 20 is placed on the jig 60.
  • the housing 20 is assembled at a predetermined position with respect to the jig 60, and the tool 65 is inserted into the central portion of the exposure hole 64.
  • the internal assembly process is a process of assembling the electric motor 21, the gear reducer 22, and the output shaft 23 inside the opening ⁇ .
  • a wave washer 38 is incorporated into the bottom of the motor insertion chamber ⁇ from above.
  • the wave washer 38 is compressed between the bottom of the motor insertion chamber ⁇ and the electric motor 21 to suppress vibration of the electric motor 21.
  • the electric motor 21 is inserted into the motor insertion chamber ⁇ from above.
  • the first intermediate shaft 31 and the second intermediate shaft 32 are press-fitted into the housing 20 from above. Specifically, a first press-fitting hole 39 for press-fitting the first intermediate shaft 31 and a second press-fitting hole 40 for press-fitting the second intermediate shaft 32 are formed in advance on the bottom surface inside the opening ⁇ . ing.
  • first intermediate shaft 31 is press-fitted into the first press-fitting hole 39 and the second intermediate shaft 32 is press-fitted into the second press-fitting hole 40.
  • the lower bearing 33 is press-fitted into the housing 20 from above. That is, the lower bearing 33 is press-fitted into the lower bearing hole 41.
  • the output shaft 23 is press-fitted into the lower bearing 33 from above. Specifically, the output shaft 23 is provided with a final gear 29 and a magnetic flux generator 36. For this reason, the final gear 29 and the magnetic flux generator 36 are also assembled to the housing 20 by press-fitting the output shaft 23 inside the lower bearing 33.
  • the engagement process is performed. That is, the engaging step is performed when the output shaft 23 is assembled.
  • This engagement step is a step of positioning the output shaft 23 in the rotational direction by engaging the rotation shape 66 with the tool 65 when the output shaft 23 is press-fitted into the lower bearing 33.
  • the rotation shape 66 is engaged with the tool 65 while the output shaft 23 is press-fitted inside the lower bearing 33 with the final gear 29 facing the second intermediate shaft 32. Thereby, the rotation direction of the output shaft 23 is positioned in a preset direction.
  • the turning shape 66 of this embodiment employs a minus groove as described above, the turning shape 66 and the tool 65 are engaged at an interval of 180 °. For this reason, it is possible to prevent erroneous assembly in which the output shaft 23 is assembled at an angle different from the prescribed assembly angle.
  • the final gear 29 of this embodiment is integrally provided with a stopper 71 that extends downward.
  • the stopper 71 is inserted into an arc groove 72 formed on the bottom surface of the opening ⁇ .
  • the rotation range of the output shaft 23 is mechanical. Regulated by
  • the stopper 71 can be inserted into the arc groove 72 only with the final gear 29 facing the second intermediate shaft 32. For this reason, even if the output shaft 23 is inserted at an incorrect angle, the stopper 71 interferes with the housing 20 to prevent erroneous assembly of the output shaft 23.
  • the second intermediate gear 28 is assembled to the second intermediate shaft 32.
  • the first intermediate gear 27 is assembled to the first intermediate shaft 31.
  • the cover assembling step is a step of assembling the cover 24 to the housing 20.
  • the cover 24 is attached to the housing 20 from above. At this time, the output shaft 23 is press-fitted inside the upper bearing 34 press-fitted into the cover 24.
  • the cover 24 is made of resin.
  • the resin cover 24 is molded with a metallic cylindrical bearing holder 55 as means for press-fitting the upper bearing 34.
  • the upper bearing 34 is press-fitted inside the bearing holder 55 before the cover assembling step.
  • the cover 24 is provided with a connector 43 that is electrically connected to the electric motor 21 and the magnetic detection unit 37, and is also provided with the magnetic detection unit 37. For this reason, the assembly of the connector 43 and the magnetic detection unit 37 is completed by assembling the cover 24 to the housing 20. Further, the lower surface of the cover 24 is provided with a first fitting hole 31a into which the upper end of the first intermediate shaft 31 is fitted, and a second fitting hole 32a into which the upper end of the second intermediate shaft 32 is fitted. Yes.
  • the lever fitting process is a process of mounting the actuator lever 13 on the upper end of the output shaft 23 from above. Specifically, this is a step of fitting the cylindrical portion 62 and the round hole 63 together.
  • the actuator lever 13 can be rotated 360 ° with respect to the output shaft 23.
  • the pin 44 that is rotatably coupled to the rod 15 on the pivot end side of the actuator lever 13 is coupled to the actuator lever 13 in advance by a process different from the lever fitting process.
  • a lever fixing step is performed.
  • the fixing angle of the actuator lever 13 with respect to the output shaft 23 is determined.
  • the actuator lever 13 is directed in a predetermined direction with respect to the jig 60 or the housing 20.
  • the actuator lever 13 is fixed to the output shaft 23 while maintaining the fixed angle of the actuator lever 13 with respect to the output shaft 23.
  • the output shaft 23 and the actuator lever 13 are fixed by a caulking technique that plastically deforms the upper end of the output shaft 23 or a welding technique.
  • the actuator lever 13 is fixed to the output shaft 23 using caulking technology. That is, in this embodiment, the upper end of the output shaft 23 is crushed and the end of the cylindrical portion 62 is expanded, and the actuator lever 13 is firmly fixed between the end of the crushed and expanded cylindrical portion 62 and the step surface 61. And the actuator lever 13 is fixed to the output shaft 23.
  • a plurality of local vertical grooves 63 a are formed at the edge of the round hole 63.
  • the rotation shape 66 provided on the output shaft 23 is engaged with the tool 65 to position the output shaft 23 in the rotation direction. Thereafter, the fixing angle of the actuator lever 13 is determined, and the actuator lever 13 is fixed to the output shaft 23. For this reason, the fixed angle of the actuator lever 13 with respect to the output shaft 23 does not vary.
  • the fixed angle of the actuator lever 13 with respect to the output shaft 23 can be freely changed. For this reason, the versatility of the electric actuator 11 can be improved.
  • the vehicle can be handled without changing the parts of the electric actuator 11.
  • turbocharger T having a different position of the valve shaft 10 can be handled without changing the parts of the electric actuator 11.
  • the electric actuator 11 of this embodiment has high versatility as described above, it can be mounted on various types of vehicles without incurring component changes.
  • the manufacturing cost of the electric actuator 11 can be suppressed, and as a result, the cost of the supercharging device including the turbocharger T mounted on the vehicle can be suppressed.
  • the electric actuator 11 may drive a switching valve that opens and closes the second exhaust scroll provided in the turbine housing 6b.
  • both the waste gate valve 9 and the switching valve may be operated by the electric actuator 11.
  • the present disclosure may be applied to the electric actuator 11 that operates a nozzle vane (an example of a valve) of the turbocharger T that uses a variable nozzle mechanism.
  • the present disclosure may be applied to the electric actuator 11 that switches between the two turbochargers T in a two-stage turbo that uses the two turbochargers T.
  • one intermediate gear may be provided between the pinion gear 26 and the final gear 29, or three or more intermediate gears may be provided. There may be.

Abstract

A rotation prevention form (66) is provided so as to be visible from an exposure hole (64). The relative angle of an output shaft (23) and an actuator lever (13) can be set at will by using the rotation prevention form (66), which is visible from the exposure hole (64), as the reference angle of the output shaft (23). Therefore, faults caused by variations in the fixed angle of the actuator lever (13) do not occur. The fixed angle of the actuator lever (13) relative to the output shaft (23) can be freely modified by using the rotation prevention form (66), which is visible from the exposure hole (64), as the reference angle of the output shaft (23).

Description

電動アクチュエータおよびその製造方法Electric actuator and manufacturing method thereof 関連出願の相互参照Cross-reference of related applications
 本願は、2015年6月18日に出願された日本国特許出願第2015-123013号および2016年5月23日に出願された日本国特許出願第2016-102277号に基づくものであり、この開示をもってその内容を本明細書中に開示したものとする。 This application is based on Japanese Patent Application No. 2015-123013 filed on June 18, 2015 and Japanese Patent Application No. 2016-102277 filed on May 23, 2016. The contents thereof are disclosed in this specification.
 本開示は、ターボチャージャ用の電動アクチュエータと、その製造方法に関する。 The present disclosure relates to an electric actuator for a turbocharger and a manufacturing method thereof.
 ターボチャージャ用の電動アクチュエータの一例として、特許文献1に開示される技術が知られている。 As an example of an electric actuator for a turbocharger, a technique disclosed in Patent Document 1 is known.
 特許文献1には、電動アクチュエータの出力を所謂4節リンクを介してターボチャージャのバルブに伝える技術が開示されている。 Patent Document 1 discloses a technique for transmitting the output of an electric actuator to a turbocharger valve via a so-called four-bar link.
 4節リンクは、電動アクチュエータの出力シャフトに固定されるアクチュエータレバーと、バルブと一体に回動するバルブ軸に固定されるバルブレバーと、アクチュエータレバーの回動トルクをバルブレバーに伝えるロッドとを備える。 The four-bar link includes an actuator lever fixed to the output shaft of the electric actuator, a valve lever fixed to a valve shaft that rotates integrally with the valve, and a rod that transmits the rotation torque of the actuator lever to the valve lever. .
 特許文献1の技術は、出力シャフトにアクチュエータレバーを固定する前の段階において、出力シャフトに対してアクチュエータレバーが自由に回動してしまう。即ち、出力シャフトに対するアクチュエータレバーの固定角度が決まらない問題がある。 In the technique of Patent Document 1, the actuator lever freely rotates with respect to the output shaft before the actuator lever is fixed to the output shaft. That is, there is a problem that the fixing angle of the actuator lever with respect to the output shaft is not determined.
 このように、アクチュエータレバーの固定角度が決まらない状態で、アクチュエータレバーを出力シャフトに固定すると、アクチュエータレバーの回動範囲にバラツキが生じてしまう。すると、4節リンクのリンク比にばらつきが生じてしまう。その結果、ターボチャージャに設けられるバルブの作動性が悪化してしまう。 As described above, when the actuator lever is fixed to the output shaft in a state where the fixing angle of the actuator lever is not determined, the rotation range of the actuator lever varies. As a result, the link ratio of the four-node link varies. As a result, the operability of the valve provided in the turbocharger is deteriorated.
 一方、上記の不具合を回避するために、キー溝や2面幅を用いて出力シャフトに対するアクチュエータレバーの固定角度を決定することが考えられる。 On the other hand, in order to avoid the above problems, it is conceivable to determine the fixing angle of the actuator lever with respect to the output shaft using the keyway and the width of two surfaces.
 この場合、ターボチャージャに対する電動アクチュエータの搭載角度と、ターボチャージャに設けられるバルブ軸の位置関係が決定されてしまう。 In this case, the mounting angle of the electric actuator with respect to the turbocharger and the positional relationship between the valve shafts provided in the turbocharger are determined.
 そのため、電動アクチュエータの汎用性が悪くなってしまう。即ち、ターボチャージャに対する電動アクチュエータの搭載角度が異なる場合には、電動アクチュエータの設計変更を余技なくされてしまう。同様に、バルブ軸の位置が異なる場合にも、電動アクチュエータの設計変更を行う必要がある。 Therefore, the versatility of the electric actuator will deteriorate. In other words, when the mounting angle of the electric actuator with respect to the turbocharger is different, the design change of the electric actuator is made unnecessary. Similarly, even when the position of the valve shaft is different, it is necessary to change the design of the electric actuator.
特開2002-349641号公報JP 2002-349441 A
 本開示は、上記問題点に鑑みて成されたものであり、その目的は、汎用性に優れ、且つ出力シャフトに対するアクチュエータレバーの固定角度にバラツキが生じない電動アクチュエータと、その製造方法の提供にある。 The present disclosure has been made in view of the above problems, and an object of the present disclosure is to provide an electric actuator that is excellent in versatility and that does not cause variations in the fixing angle of the actuator lever with respect to the output shaft, and a manufacturing method thereof. is there.
 上記の目的を達成すべく、本開示では、ハウジング、電動モータ、平行軸式の歯車減速機、出力シャフト、カバーおよびアクチュエータレバーを備える電動アクチュエータを提供する。ハウジングは、一方向へ向けて開口する開口部を有する。電動モータは、ハウジングに組み付けられる。歯車減速機は、ハウジングに組み付けられ、電動モータの発生する回転力を減速する。出力シャフトは、ハウジングに組み付けられ、歯車減速機によって減速された回転力により駆動される。カバーは、ハウジングに組み付けられ、ハウジングとの間に電動モータと歯車減速機を収容する空間を形成し、出力シャフトの一端を外部に露出させる。アクチュエータレバーは、カバーの外部に露出した出力シャフトの一端に固定されて、ターボチャージャに設けられるバルブを駆動する。出力シャフトの一端には、環状の段差面を介して縮径された円筒部が設けられている。アクチュエータレバーには、円筒部が挿し入れられる丸穴が設けられている。ハウジングには、出力シャフトの他端を外部に露出させる露出穴が設けられている。出力シャフトの他端には、出力シャフトの回転を規制する工具と係合可能な回止形状が設けられている。回止形状は露出穴から視認できる。 In order to achieve the above object, the present disclosure provides an electric actuator including a housing, an electric motor, a parallel shaft type gear reducer, an output shaft, a cover, and an actuator lever. The housing has an opening that opens in one direction. The electric motor is assembled to the housing. The gear reducer is assembled to the housing and decelerates the rotational force generated by the electric motor. The output shaft is assembled with the housing and driven by the rotational force decelerated by the gear reducer. A cover is assembled | attached to a housing, the space which accommodates an electric motor and a gear reducer between housings is formed, and the end of an output shaft is exposed outside. The actuator lever is fixed to one end of the output shaft exposed to the outside of the cover, and drives a valve provided in the turbocharger. One end of the output shaft is provided with a cylindrical portion having a reduced diameter through an annular step surface. The actuator lever is provided with a round hole into which the cylindrical portion is inserted. The housing is provided with an exposure hole for exposing the other end of the output shaft to the outside. The other end of the output shaft is provided with a rotation stop shape that can be engaged with a tool that restricts the rotation of the output shaft. The stop shape is visible from the exposed hole.
 露出穴から視認できる回止形状を出力シャフトの基準角として、出力シャフトとアクチュエータレバーの相対角度を任意に設定できる。このため、アクチュエータレバーの固定角度にバラツキが生じる不具合がない。 ∙ The relative angle between the output shaft and the actuator lever can be set arbitrarily using the non-rotating shape visible from the exposed hole as the reference angle of the output shaft. For this reason, there is no problem that the fixing angle of the actuator lever varies.
 また、露出穴から視認できる回止形状を出力シャフトの基準角とすることで、出力シャフトに対するアクチュエータレバーの固定角度を自由に変更できる。このため、電動アクチュエータの汎用性を高めることができる。 
 このように、本開示の原理を採用することにより、汎用性に優れ、且つ出力シャフトに対するアクチュエータレバーの固定角度にバラツキが生じない電動アクチュエータを提供できる。
Moreover, the fixed angle of the actuator lever with respect to an output shaft can be freely changed by setting the rotation stop shape visually recognizable from the exposure hole as the reference angle of the output shaft. For this reason, the versatility of an electric actuator can be improved.
Thus, by adopting the principle of the present disclosure, it is possible to provide an electric actuator that is excellent in versatility and that does not cause variations in the fixing angle of the actuator lever relative to the output shaft.
 さらに、本開示では、上記の電動アクチュエータの製造方法を提供する。電動アクチュエータは、ハウジングを支持する治具を用いて製造されるものであり、治具は、回止形状に係合可能な工具を備えるものである。本開示の電動アクチュエータの製造方法は、治具の所定位置にハウジングを組付ける治具組付工程と、電動モータ、歯車減速機および出力シャフトを、開口部の内側に組み付ける内部組付工程と、この内部組付工程中に、回止形状を工具に係合させて出力シャフトの回転方向の位置決めを行う係合工程と、カバーをハウジングに組付けるカバー組付工程と、円筒部と丸穴を嵌め合わせるレバー嵌合工程と、出力シャフトに対するアクチュエータレバーの固定角度を決定して、アクチュエータレバーを出力シャフトに固定するレバー固定工程とを備える。 Furthermore, the present disclosure provides a method for manufacturing the above electric actuator. The electric actuator is manufactured using a jig that supports a housing, and the jig includes a tool that can be engaged in a non-rotating shape. The electric actuator manufacturing method of the present disclosure includes a jig assembling step for assembling the housing at a predetermined position of the jig, an internal assembling step for assembling the electric motor, the gear reducer, and the output shaft inside the opening, During this internal assembly process, an engagement process for engaging the rotation shape with the tool to position the output shaft in the rotational direction, a cover assembly process for assembling the cover to the housing, a cylindrical portion and a round hole A lever fitting step of fitting together, and a lever fixing step of determining a fixing angle of the actuator lever with respect to the output shaft and fixing the actuator lever to the output shaft.
図1は、本開示の実施形態に基づくエンジン吸排気装置の概略図である。FIG. 1 is a schematic diagram of an engine intake / exhaust device according to an embodiment of the present disclosure. 図2は、本開示の実施形態に基づくターボチャージャの説明図である。FIG. 2 is an explanatory diagram of a turbocharger according to an embodiment of the present disclosure. 図3は、本開示の実施形態に基づく電動アクチュエータの上視図である。FIG. 3 is a top view of the electric actuator according to the embodiment of the present disclosure. 図4は、本開示の実施形態に基づく電動アクチュエータの側面図である。FIG. 4 is a side view of an electric actuator according to an embodiment of the present disclosure. 図5は、本開示の実施形態に基づく電動アクチュエータの下視図である。FIG. 5 is a bottom view of the electric actuator according to the embodiment of the present disclosure. 図6は、図3のVI-VI線に沿う断面図である。6 is a cross-sectional view taken along line VI-VI in FIG. 図7は、図3のVII-VII線に沿う断面図である。7 is a cross-sectional view taken along line VII-VII in FIG. 図8は、本開示の実施形態に基づく治具に乗せられた電動アクチュエータの要部断面図である。FIG. 8 is a cross-sectional view of a main part of the electric actuator placed on the jig based on the embodiment of the present disclosure. 図9は、本開示の実施形態に基づく治具に乗せられた電動アクチュエータの斜視図である。FIG. 9 is a perspective view of the electric actuator mounted on the jig according to the embodiment of the present disclosure. 図10は、本開示の実施形態に基づく出力シャフトの上端とアクチュエータレバーの分解斜視図である。FIG. 10 is an exploded perspective view of the upper end of the output shaft and the actuator lever according to an embodiment of the present disclosure. 図11は、本開示の実施形態に基づく最終ギヤを成す樹脂部品が設けられた出力シャフトを下方から見た斜視図である。FIG. 11 is a perspective view of an output shaft provided with a resin component that forms a final gear according to an embodiment of the present disclosure as viewed from below.
 以下では、図面に基づいて本開示を実施するための形態を説明する。なお、以下で開示する実施形態は、一例を開示するものであって、本開示が実施形態に限定されないことは言うまでもない。 Hereinafter, a mode for carrying out the present disclosure will be described based on the drawings. Note that the embodiment disclosed below discloses an example, and it is needless to say that the present disclosure is not limited to the embodiment.
[実施形態1]
 図1~図11に基づいて実施形態1を説明する。
[Embodiment 1]
The first embodiment will be described with reference to FIGS.
 自動車に搭載される走行用のエンジン1には、吸気をエンジン1の気筒内へ導く吸気通路2と、気筒内で発生した排気ガスを大気中に排出する排気通路3とが設けられる。 A traveling engine 1 mounted on an automobile is provided with an intake passage 2 that guides intake air into a cylinder of the engine 1 and an exhaust passage 3 that discharges exhaust gas generated in the cylinder into the atmosphere.
 吸気通路2の途中には、ターボチャージャTの吸気コンプレッサ4と、エンジン1に供給される吸気量の調整を行うスロットルバルブ5とが設けられる。 In the middle of the intake passage 2, an intake compressor 4 of the turbocharger T and a throttle valve 5 for adjusting the intake air amount supplied to the engine 1 are provided.
 排気通路3の途中には、ターボチャージャTの排気タービン6と、排気ガスの浄化を行う触媒7とが設けられる。なお、触媒7はモノリス構造を採用する周知な三元触媒であり、活性化温度に昇温することで排気ガス中に含まれる有害物質を酸化作用と還元作用により浄化する。 In the middle of the exhaust passage 3, an exhaust turbine 6 of the turbocharger T and a catalyst 7 for purifying exhaust gas are provided. The catalyst 7 is a well-known three-way catalyst that adopts a monolithic structure, and purifies harmful substances contained in the exhaust gas by oxidizing and reducing action by raising the temperature to the activation temperature.
 排気タービン6は、エンジン1から排出された排気ガスによって回転駆動されるタービンホイール6aと、このタービンホイール6aを収容する渦巻形状のタービンハウジング6bとを備える。 The exhaust turbine 6 includes a turbine wheel 6a that is rotationally driven by the exhaust gas discharged from the engine 1, and a spiral turbine housing 6b that accommodates the turbine wheel 6a.
 吸気コンプレッサ4は、タービンホイール6aの回転力を受けて回転するコンプレッサホイール4aと、このコンプレッサホイール4aを収容する渦巻形状のコンプレッサハウジング4bとを備える。 The intake compressor 4 includes a compressor wheel 4a that rotates in response to the rotational force of the turbine wheel 6a, and a spiral compressor housing 4b that accommodates the compressor wheel 4a.
 タービンハウジング6bには、タービンホイール6aを迂回して排気ガスを流すバイパス通路8が設けられる。 The turbine housing 6b is provided with a bypass passage 8 that bypasses the turbine wheel 6a and flows exhaust gas.
 バイパス通路8は、タービンハウジング6bに流入した排気ガスを直接タービンハウジング6bの排気出口へ導く。このバイパス通路8は、ウエストゲートバルブ9によって開閉可能に設けられる。 The bypass passage 8 guides the exhaust gas flowing into the turbine housing 6b directly to the exhaust outlet of the turbine housing 6b. The bypass passage 8 is provided so as to be opened and closed by a waste gate valve 9.
 ウエストゲートバルブ9は、タービンハウジング6bの内部で回動可能に支持されるスイングバルブである。具体的に、ウエストゲートバルブ9は、タービンハウジング6bに対して回転自在に支持されるバルブ軸10を介して回動操作される。 The wastegate valve 9 is a swing valve that is rotatably supported inside the turbine housing 6b. Specifically, the wastegate valve 9 is rotated through a valve shaft 10 that is rotatably supported with respect to the turbine housing 6b.
 このウエストゲートバルブ9は、エンジン1の高回転時などに、バイパス通路8の開度を調整してターボチャージャTによる過給圧をコントロールする。 The waste gate valve 9 controls the supercharging pressure by the turbocharger T by adjusting the opening of the bypass passage 8 when the engine 1 is rotating at high speed.
 また、ウエストゲートバルブ9は、冷間始動直後など、触媒7の温度が活性化温度に達していない時に、バイパス通路8を全開にして触媒7の暖機を行う。これにより、タービンホイール6aに熱を奪われていない高温の排気ガスを触媒7へ導くことができ、触媒7の早期暖機を実施できる。 The waste gate valve 9 warms up the catalyst 7 by fully opening the bypass passage 8 when the temperature of the catalyst 7 does not reach the activation temperature, such as immediately after a cold start. As a result, high-temperature exhaust gas that is not deprived of heat by the turbine wheel 6a can be guided to the catalyst 7, and the catalyst 7 can be warmed up early.
 ウエストゲートバルブ9を回動操作する手段として、ターボチャージャTは、電動アクチュエータ11を備える。この電動アクチュエータ11は、エンジン制御を行うECU12によって通電制御される。 The turbocharger T includes an electric actuator 11 as means for rotating the wastegate valve 9. The electric actuator 11 is energized and controlled by an ECU 12 that performs engine control.
 電動アクチュエータ11は、排気ガスの熱影響を回避する目的で、排気タービン6から離れた吸気コンプレッサ4に搭載される。このように、電動アクチュエータ11は、ウエストゲートバルブ9から離れた位置に搭載される。このため、ターボチャージャTには、電動アクチュエータ11の出力をウエストゲートバルブ9に伝達するためのリンク機構が設けられる。 The electric actuator 11 is mounted on the intake compressor 4 away from the exhaust turbine 6 for the purpose of avoiding the thermal effect of the exhaust gas. Thus, the electric actuator 11 is mounted at a position away from the waste gate valve 9. For this reason, the turbocharger T is provided with a link mechanism for transmitting the output of the electric actuator 11 to the wastegate valve 9.
 リンク機構は、4節リンクであり、電動アクチュエータ11によって回動操作されるアクチュエータレバー13と、バルブ軸10に結合されるバルブレバー14と、アクチュエータレバー13に付与される回動トルクをバルブレバー14に伝えるロッド15とを備える。 The link mechanism is a four-bar link, and includes an actuator lever 13 that is rotated by the electric actuator 11, a valve lever 14 that is coupled to the valve shaft 10, and a rotational torque applied to the actuator lever 13. And a rod 15 for transmitting to
 電動アクチュエータ11を説明する。 The electric actuator 11 will be described.
 電動アクチュエータ11は、吸気コンプレッサ4に取り付けられるハウジング20と、このハウジング20に組み付けられる電動モータ21、歯車減速機22、出力シャフト23、カバー24と、出力シャフト23の上端に固定されるアクチュエータレバー13とを備えて構成される。なお、出力シャフト23の上端が一端に相当し、出力シャフト23の下端が他端に相当するものである。 The electric actuator 11 includes a housing 20 attached to the intake compressor 4, an electric motor 21, a gear reducer 22, an output shaft 23, a cover 24, and an actuator lever 13 fixed to the upper end of the output shaft 23. And is configured. The upper end of the output shaft 23 corresponds to one end, and the lower end of the output shaft 23 corresponds to the other end.
 ハウジング20は、一方に向けて開口する開口部αを備える。 The housing 20 includes an opening α that opens toward one side.
 以下では、説明の便宜上、ハウジング20において開口部αが開口する方向を上、逆方向を下として説明する。もちろん、この上下方向は、搭載方向を限定するものではない。なお、図3に示す符合20aは、電動アクチュエータ11を吸気コンプレッサ4に組付ける際に用いられるボルト挿通穴である。 Hereinafter, for convenience of explanation, the direction in which the opening α opens in the housing 20 will be described as being upward, and the reverse direction will be described as being downward. Of course, this vertical direction does not limit the mounting direction. Note that reference numeral 20 a shown in FIG. 3 is a bolt insertion hole used when the electric actuator 11 is assembled to the intake compressor 4.
 ハウジング20は、例えばアルミニウム等によるダイキャスト製である。このハウジング20の上部には、カバー24が装着される。 The housing 20 is made of, for example, die-cast aluminum. A cover 24 is attached to the upper portion of the housing 20.
 そして、ハウジング20とカバー24との間に形成される空間βに、電動モータ21や歯車減速機22等が配置される。 In the space β formed between the housing 20 and the cover 24, the electric motor 21, the gear reducer 22 and the like are arranged.
 電動モータ21は、ハウジング20に組み付けられる。具体的に電動モータ21は、ハウジング20に形成されたモータ挿入室γに挿入された後、スクリュ等によってハウジング20に固定される。電動モータ21の構造等は限定するものではなく、例えば周知の直流モータであっても良いし、周知のステッピングモータであっても良い。 The electric motor 21 is assembled to the housing 20. Specifically, the electric motor 21 is inserted into a motor insertion chamber γ formed in the housing 20 and then fixed to the housing 20 with a screw or the like. The structure or the like of the electric motor 21 is not limited, and may be a known DC motor or a known stepping motor, for example.
 歯車減速機22は、ハウジング20に組み付けられる。この歯車減速機22は、電動モータ21の発生する回転力を減速する平行軸式である。 The gear reducer 22 is assembled to the housing 20. The gear reducer 22 is a parallel shaft type that reduces the rotational force generated by the electric motor 21.
 具体的に、歯車減速機22は、電動モータ21によって駆動されるピニオンギヤ26と、このピニオンギヤ26によって回転駆動される第1中間ギヤ27と、この第1中間ギヤ27によって回転駆動される第2中間ギヤ28と、この第2中間ギヤ28によって回転駆動される最終ギヤ29とを備える。 Specifically, the gear reducer 22 includes a pinion gear 26 that is driven by the electric motor 21, a first intermediate gear 27 that is rotationally driven by the pinion gear 26, and a second intermediate that is rotationally driven by the first intermediate gear 27. A gear 28 and a final gear 29 that is rotationally driven by the second intermediate gear 28 are provided.
 ピニオンギヤ26は、電動モータ21の回転軸に固定された小径の外歯歯車である。 The pinion gear 26 is a small-diameter external gear fixed to the rotating shaft of the electric motor 21.
 第1中間ギヤ27は、第1大径ギヤ27aと第1小径ギヤ27bが同芯で設けられた2重歯車である。この第1中間ギヤ27は、ハウジング20に固定される第1中間シャフト31によって回転自在に支持される。そして、第1大径ギヤ27aがピニオンギヤ26と常に噛合する。 The first intermediate gear 27 is a double gear in which a first large-diameter gear 27a and a first small-diameter gear 27b are provided concentrically. The first intermediate gear 27 is rotatably supported by a first intermediate shaft 31 that is fixed to the housing 20. The first large-diameter gear 27a always meshes with the pinion gear 26.
 第2中間ギヤ28は、第1中間ギヤ27と同様、第2大径ギヤ28aと第2小径ギヤ28bが同芯で設けられた2重歯車である。この第2中間ギヤ28は、ハウジング20に固定される第2中間シャフト32によって回転自在に支持される。そして、第2大径ギヤ28aが第1小径ギヤ27bと常に噛合し、第2小径ギヤ28bが最終ギヤ29と常に噛合する。 As with the first intermediate gear 27, the second intermediate gear 28 is a double gear in which a second large diameter gear 28a and a second small diameter gear 28b are provided concentrically. The second intermediate gear 28 is rotatably supported by a second intermediate shaft 32 that is fixed to the housing 20. The second large-diameter gear 28a is always meshed with the first small-diameter gear 27b, and the second small-diameter gear 28b is always meshed with the final gear 29.
 最終ギヤ29は、出力シャフト23に固定された大径の外歯歯車である。この最終ギヤ29は、所定の回動範囲のみに設けられる。 The final gear 29 is a large-diameter external gear fixed to the output shaft 23. The final gear 29 is provided only in a predetermined rotation range.
 なお、出力シャフト23は、ハウジング20に組み付けられる下ベアリング33と、カバー24に組み付けられる上ベアリング34とによって回転自在に支持される。 Note that the output shaft 23 is rotatably supported by a lower bearing 33 assembled to the housing 20 and an upper bearing 34 assembled to the cover 24.
 電動アクチュエータ11は、出力シャフト23の回転角度を検出することでウエストゲートバルブ9の開度を検出する回転角センサ35を備える。 The electric actuator 11 includes a rotation angle sensor 35 that detects the opening degree of the wastegate valve 9 by detecting the rotation angle of the output shaft 23.
 回転角センサ35は、非接触型であり、出力シャフト23の軸芯Cに対してオフセットされた位置に設けられる。 The rotation angle sensor 35 is a non-contact type and is provided at a position offset with respect to the axis C of the output shaft 23.
 具体的に、回転角センサ35は、出力シャフト23と一体に回動する磁束発生部36と、カバー24またはハウジング20の一方に取り付けられて磁束発生部36の発生する磁束を検出する磁気検出部37とを備える。そして、磁束発生部36は、出力シャフト23の周囲で、且つ最終ギヤ29が存在しない回動範囲に設けられる。 Specifically, the rotation angle sensor 35 includes a magnetic flux generator 36 that rotates integrally with the output shaft 23, and a magnetic detector that is attached to one of the cover 24 or the housing 20 and detects the magnetic flux generated by the magnetic flux generator 36. 37. The magnetic flux generator 36 is provided around the output shaft 23 and in a rotation range where the final gear 29 does not exist.
 なお、この実施形態では、磁気検出部37をカバー24に設ける例を示す。そして、回転角センサ35によって検出される出力シャフト23の回転角度は、ECU12へ出力される。 In addition, in this embodiment, the example which provides the magnetism detection part 37 in the cover 24 is shown. Then, the rotation angle of the output shaft 23 detected by the rotation angle sensor 35 is output to the ECU 12.
 ECU12は、マイクロコンピュータを搭載するエンジン・コントロール・ユニットであり、電動アクチュエータ11を通電制御する制御プログラムを備える。 The ECU 12 is an engine control unit in which a microcomputer is mounted, and includes a control program for controlling energization of the electric actuator 11.
 具体的に、ECU12は、エンジン1の運転状態からエンジン1の運転状態に適したウエストゲートバルブ9の目標開度を算出する。そして、算出した目標開度と回転角センサ35によって検出した検出開度とが一致するように電動アクチュエータ11をフィードバック制御する。もちろん、この過給圧制御は一例であり、限定するものではない。 Specifically, the ECU 12 calculates the target opening degree of the wastegate valve 9 suitable for the operating state of the engine 1 from the operating state of the engine 1. Then, the electric actuator 11 is feedback controlled so that the calculated target opening and the detected opening detected by the rotation angle sensor 35 coincide. Of course, this supercharging pressure control is an example, and is not limited.
 また、ECU12は、冷間始動直後など、触媒7の実温度または予測温度が活性化温度に達していない時に、触媒7の早期暖機を実施する。具体的に、ECU12は、触媒7の早期暖機を行う際に、ウエストゲートバルブ9を所定の開度に設定する。これにより、排気ガスの熱がウエストゲートバルブ9に奪われるのを防ぐことができる。もちろん、この触媒7の早期暖機制御は一例であって、限定するものではない。 Further, the ECU 12 performs an early warm-up of the catalyst 7 when the actual temperature or the predicted temperature of the catalyst 7 has not reached the activation temperature, such as immediately after a cold start. Specifically, the ECU 12 sets the wastegate valve 9 to a predetermined opening when the catalyst 7 is warmed up early. Thereby, it is possible to prevent the heat of the exhaust gas from being taken away by the wastegate valve 9. Of course, the early warm-up control of the catalyst 7 is an example and is not limited.
(実施形態1の特徴技術)
 電動アクチュエータ11の製造方法を説明する。
(Feature Technology of Embodiment 1)
A method for manufacturing the electric actuator 11 will be described.
 電動アクチュエータ11の組付けには、図8、図9に示す治具60が用いられる。 
 出力シャフト23の上端には、図10に示すように、環状の段差面61を介して縮径した円筒部62を設けている。段差面61は、出力シャフト23の軸方向に対して垂直な環状の平面である。また、円筒部62は、出力シャフト23の回転中心と同芯に設けられている。
A jig 60 shown in FIGS. 8 and 9 is used for assembling the electric actuator 11.
At the upper end of the output shaft 23, as shown in FIG. 10, a cylindrical portion 62 whose diameter is reduced via an annular step surface 61 is provided. The step surface 61 is an annular plane perpendicular to the axial direction of the output shaft 23. The cylindrical portion 62 is provided concentrically with the rotation center of the output shaft 23.
 アクチュエータレバー13には、図10に示すように、円筒部62が挿し入れられる丸穴63が設けられている。この丸穴63の内径寸法は、円筒部62の内径寸法より僅かに大径に設けられている。 The actuator lever 13 is provided with a round hole 63 into which the cylindrical portion 62 is inserted as shown in FIG. The inner diameter of the round hole 63 is slightly larger than the inner diameter of the cylindrical portion 62.
 ハウジング20には、出力シャフト23の下端を外部に露出させる露出穴64が設けられている。 The housing 20 is provided with an exposure hole 64 that exposes the lower end of the output shaft 23 to the outside.
 この実施形態における露出穴64を具体的に説明する。ハウジング20には、下ベアリング33を圧入するための下ベアリング穴41が設けられている。この下ベアリング穴41の下端には、下ベアリング33の下方への移動を規制する下鍔41aが設けられている。この実施形態では、この下鍔41aの内側が露出穴64に相当する。 The exposure hole 64 in this embodiment will be specifically described. A lower bearing hole 41 for press-fitting the lower bearing 33 is provided in the housing 20. At the lower end of the lower bearing hole 41, a lower rod 41a for restricting the downward movement of the lower bearing 33 is provided. In this embodiment, the inner side of the lower collar 41 a corresponds to the exposure hole 64.
 出力シャフト23の下端には、出力シャフト23の回転を規制する工具65と係合可能な回止形状(回止部またはシャフト側係合部とも称する)66が設けられている。 The lower end of the output shaft 23 is provided with a non-rotating shape (also referred to as a non-rotating portion or a shaft side engaging portion) 66 that can be engaged with a tool 65 that restricts the rotation of the output shaft 23.
 この回止形状66は、図5、図7に示すように、露出穴64の外部から視認できる。即ち、ハウジング20の外部から露出穴64の内側に回止形状66を視認できる。具体的に露出穴64は、図8に示すように、工具65をハウジング20の外部から露出穴64に挿し入れて、工具65を回止形状66に係合できるように設けられている。 The rotation shape 66 can be visually recognized from the outside of the exposure hole 64 as shown in FIGS. That is, the rotation shape 66 can be visually recognized from the outside of the housing 20 to the inside of the exposure hole 64. Specifically, as shown in FIG. 8, the exposure hole 64 is provided so that the tool 65 can be inserted into the exposure hole 64 from the outside of the housing 20 and the tool 65 can be engaged with the rotation shape 66.
 回止形状66の具体的な一例を説明する。この実施形態の回止形状66は、図11に示すように、マイナス溝を採用する。即ち、この実施形態の回止形状66は、出力シャフト23の軸芯Cを通る直線の溝によって設けられる。 A specific example of the stop shape 66 will be described. As shown in FIG. 11, the rotation stop shape 66 of this embodiment employs a minus groove. That is, the rotation stop shape 66 of this embodiment is provided by a straight groove that passes through the axis C of the output shaft 23.
 もちろん、回止形状66の具体的な形は限定するものではなく、工具65と嵌まり合うことで出力シャフト23の回転を規制できるものであれば良い。具体的には、回止形状66の一例として、プラス溝を採用しても良いし、六角穴などの多角穴を採用しても良い。あるいは、六ぼう星などの星穴を採用しても良いし、楕円穴を採用してもよい。 Of course, the specific shape of the stop shape 66 is not limited, and any shape that can regulate the rotation of the output shaft 23 by fitting with the tool 65 may be used. Specifically, as an example of the rotation stop shape 66, a plus groove may be employed, or a polygonal hole such as a hexagonal hole may be employed. Alternatively, a star hole such as a hexagonal star may be employed, or an elliptical hole may be employed.
 工具65は、回止形状66に嵌まり合うことで出力シャフト23の回転を規制して、出力シャフト23の回転方向の位置決めを行うものである。 The tool 65 is configured to restrict the rotation of the output shaft 23 by being fitted to the rotation shape 66 and to position the output shaft 23 in the rotation direction.
 工具65において回止形状66に嵌まり合う箇所の具体的な形状は、直線状の突起形状に設けられている。もちろん、工具65において回止形状66に嵌まり合う形状は、回止形状66が変更された場合に、変更された回止形状66に合致するように変更されるものである。具体的な一例を開示すると、回止形状66が六角穴に変更される場合は、工具65も六角レンチの形状に変更されるものである。 The specific shape of the portion of the tool 65 that fits with the rotation stop shape 66 is a linear protrusion shape. Needless to say, the shape of the tool 65 that fits the stop shape 66 is changed to match the changed stop shape 66 when the stop shape 66 is changed. If a specific example is disclosed, when the turning shape 66 is changed to a hexagonal hole, the tool 65 is also changed to the shape of a hexagonal wrench.
 治具60は、電磁アクチュエータ11の製造時にハウジング20を支持するものであり、上述した工具(治具側係合部とも称する)65を備える。具体的にこの実施形態では、工具65が治具60と一体に設けられる。即ち、治具60の一部が工具65として設けられる。 The jig 60 supports the housing 20 when the electromagnetic actuator 11 is manufactured, and includes the above-described tool (also referred to as a jig side engaging portion) 65. Specifically, in this embodiment, the tool 65 is provided integrally with the jig 60. That is, a part of the jig 60 is provided as the tool 65.
 なお、この実施形態とは異なり、工具65を治具60と別体に設けても良い。この場合、治具60に対する工具65の回転角度が任意の角度で設定できることが望ましい。 Note that, unlike this embodiment, the tool 65 may be provided separately from the jig 60. In this case, it is desirable that the rotation angle of the tool 65 with respect to the jig 60 can be set at an arbitrary angle.
 続いて、具体的な電動アクチュエータ11の製造方法を説明する。 Subsequently, a specific method for manufacturing the electric actuator 11 will be described.
 ハウジング20には、上述したように、上方へ向けて開口する開口部αが設けられている。この開口部αの内側には、モータ挿入室γの他に、歯車減速機22や出力シャフト23等の組付スペースが設けられる。そして、ハウジング20に直接組み付けられる全ての部品は、電動モータ21、歯車減速機22、出力シャフト23、カバー24を含め、全て上方から下方へ向けてハウジング20に組付けられる。  As described above, the housing 20 is provided with the opening α that opens upward. In addition to the motor insertion chamber γ, an assembly space for the gear reducer 22, the output shaft 23, and the like is provided inside the opening α. All the components that are directly assembled to the housing 20, including the electric motor 21, the gear reducer 22, the output shaft 23, and the cover 24, are all assembled to the housing 20 from the top to the bottom.
 電動アクチュエータ11の組立を行う際は、治具組付工程と、内部組付工程と、カバー組付工程と、レバー嵌合工程と、レバー固定工程とを実施する。 When assembling the electric actuator 11, a jig assembling step, an internal assembling step, a cover assembling step, a lever fitting step, and a lever fixing step are performed.
 治具組付工程では、治具60の所定位置にハウジング20を組付ける。具体的には、開口部αが上方に向くようにしてハウジング20を治具60の上に乗せる。この時、治具60に対してハウジング20の位置決めを行う。 In the jig assembling step, the housing 20 is assembled at a predetermined position of the jig 60. Specifically, the housing 20 is placed on the jig 60 so that the opening α faces upward. At this time, the housing 20 is positioned with respect to the jig 60.
 このことを具体的に説明する。ハウジング20には、複数の位置決め凹部67が設けられる。具体的にハウジング20の下面には、図5に示すように、2つの位置決め凹部67が設けられる。 This will be explained in detail. The housing 20 is provided with a plurality of positioning recesses 67. Specifically, two positioning recesses 67 are provided on the lower surface of the housing 20 as shown in FIG.
 一方、治具60には、複数の位置決め凹部67に嵌まり合う複数の位置決めピン68が設けられる。具体的に治具60の上面には、上方へ延びて位置決め凹部67に嵌まり合う2つの位置決めピン68が設けられる。 On the other hand, the jig 60 is provided with a plurality of positioning pins 68 that fit into the plurality of positioning recesses 67. Specifically, two positioning pins 68 that extend upward and fit into the positioning recesses 67 are provided on the upper surface of the jig 60.
 そして、治具組付工程では、ハウジング20を治具60に乗せる際に、各位置決め凹部67に、各位置決めピン68を嵌め合わせる。これにより、治具60に対してハウジング20が所定の位置に組み付けられるとともに、露出穴64の中心部に工具65が挿し入れられる。 In the jig assembling step, the positioning pins 68 are fitted into the positioning recesses 67 when the housing 20 is placed on the jig 60. As a result, the housing 20 is assembled at a predetermined position with respect to the jig 60, and the tool 65 is inserted into the central portion of the exposure hole 64.
 続いて、内部組付工程を実施する。 Subsequently, an internal assembly process is performed.
 内部組付工程は、電動モータ21、歯車減速機22、出力シャフト23を、開口部αの内側に組み付ける工程である。 The internal assembly process is a process of assembling the electric motor 21, the gear reducer 22, and the output shaft 23 inside the opening α.
 内部組付工程の詳細を説明する。 The details of the internal assembly process will be described.
 上方からモータ挿入室γの底にウエーブワッシャ38を組み入れる。このウエーブワッシャ38は、モータ挿入室γの底と電動モータ21との間で圧縮されて、電動モータ21の振動を抑制するものである。 A wave washer 38 is incorporated into the bottom of the motor insertion chamber γ from above. The wave washer 38 is compressed between the bottom of the motor insertion chamber γ and the electric motor 21 to suppress vibration of the electric motor 21.
 次に、上方からモータ挿入室γに電動モータ21を挿し入れる。 Next, the electric motor 21 is inserted into the motor insertion chamber γ from above.
 次に、上方から複数のスクリュ等をハウジング20に螺合して、電動モータ21をハウジング20に固定する。 Next, a plurality of screws or the like are screwed into the housing 20 from above, and the electric motor 21 is fixed to the housing 20.
 上方から第1中間シャフト31と第2中間シャフト32をハウジング20に圧入する。具体的に、開口部αの内側の底面には、第1中間シャフト31を圧入するための第1圧入穴39と、第2中間シャフト32を圧入するための第2圧入穴40が予め形成されている。 The first intermediate shaft 31 and the second intermediate shaft 32 are press-fitted into the housing 20 from above. Specifically, a first press-fitting hole 39 for press-fitting the first intermediate shaft 31 and a second press-fitting hole 40 for press-fitting the second intermediate shaft 32 are formed in advance on the bottom surface inside the opening α. ing.
 そして、第1圧入穴39に第1中間シャフト31を圧入するとともに、第2圧入穴40に第2中間シャフト32を圧入する。 Then, the first intermediate shaft 31 is press-fitted into the first press-fitting hole 39 and the second intermediate shaft 32 is press-fitted into the second press-fitting hole 40.
 上方から下ベアリング33をハウジング20に圧入する。即ち、下ベアリング穴41に下ベアリング33を圧入する。 The lower bearing 33 is press-fitted into the housing 20 from above. That is, the lower bearing 33 is press-fitted into the lower bearing hole 41.
 上方から出力シャフト23を下ベアリング33の内側に圧入する。具体的に、出力シャフト23には、最終ギヤ29と磁束発生部36が設けられている。このため、出力シャフト23を下ベアリング33の内側に圧入することで、最終ギヤ29と磁束発生部36もハウジング20に組み付けられる。 The output shaft 23 is press-fitted into the lower bearing 33 from above. Specifically, the output shaft 23 is provided with a final gear 29 and a magnetic flux generator 36. For this reason, the final gear 29 and the magnetic flux generator 36 are also assembled to the housing 20 by press-fitting the output shaft 23 inside the lower bearing 33.
 この時、係合工程を実施する。即ち、出力シャフト23の組付けを行う際に係合工程を実施する。 At this time, the engagement process is performed. That is, the engaging step is performed when the output shaft 23 is assembled.
 この係合工程は、出力シャフト23を下ベアリング33に圧入する時に、回止形状66を工具65に係合させて出力シャフト23の回転方向の位置決めを行う工程である。 This engagement step is a step of positioning the output shaft 23 in the rotational direction by engaging the rotation shape 66 with the tool 65 when the output shaft 23 is press-fitted into the lower bearing 33.
 具体的に、最終ギヤ29を第2中間シャフト32に向けた状態で出力シャフト23を下ベアリング33の内側に圧入しつつ、回止形状66を工具65に係合させる。これにより、出力シャフト23の回転方向が、予め設定した方向に位置決めされる。 Specifically, the rotation shape 66 is engaged with the tool 65 while the output shaft 23 is press-fitted inside the lower bearing 33 with the final gear 29 facing the second intermediate shaft 32. Thereby, the rotation direction of the output shaft 23 is positioned in a preset direction.
 このことをさらに具体的に説明する。 This will be explained more specifically.
 この実施形態の回止形状66は、上述したようにマイナス溝を採用するため、回止形状66と工具65は180°の間隔で係合する。このため、出力シャフト23が規定の組付角度と異なる角度で組み付けられる誤組付けを防止できる。 Since the turning shape 66 of this embodiment employs a minus groove as described above, the turning shape 66 and the tool 65 are engaged at an interval of 180 °. For this reason, it is possible to prevent erroneous assembly in which the output shaft 23 is assembled at an angle different from the prescribed assembly angle.
 誤組付を防ぐ構造をさらに説明する。 構造 The structure to prevent incorrect assembly will be further explained.
 この実施形態の最終ギヤ29には、下方へ伸びるストッパ71が一体に設けられる。 The final gear 29 of this embodiment is integrally provided with a stopper 71 that extends downward.
 このストッパ71は、開口部αの底面に形成された円弧溝72に挿し入れられるものであり、円弧溝72のラジアル方向の端にストッパ71が当たることで出力シャフト23の回動範囲が機械的に規制される。 The stopper 71 is inserted into an arc groove 72 formed on the bottom surface of the opening α. When the stopper 71 hits the radial end of the arc groove 72, the rotation range of the output shaft 23 is mechanical. Regulated by
 このストッパ71は、最終ギヤ29を第2中間シャフト32に向けた状態でのみ円弧溝72に挿し入れ可能になっている。このため、出力シャフト23を誤った角度で挿入しても、ストッパ71がハウジング20に干渉して、出力シャフト23の誤組付けが防がれる。 The stopper 71 can be inserted into the arc groove 72 only with the final gear 29 facing the second intermediate shaft 32. For this reason, even if the output shaft 23 is inserted at an incorrect angle, the stopper 71 interferes with the housing 20 to prevent erroneous assembly of the output shaft 23.
 次に、第2中間シャフト32に第2中間ギヤ28を組付ける。続いて、第1中間シャフト31に第1中間ギヤ27を組付ける。 Next, the second intermediate gear 28 is assembled to the second intermediate shaft 32. Subsequently, the first intermediate gear 27 is assembled to the first intermediate shaft 31.
 以上により、内部組付工程を終了する。 This completes the internal assembly process.
 続いて、カバー組付工程を実施する。 Subsequently, the cover assembly process is performed.
 カバー組付工程は、ハウジング20にカバー24を組付ける工程である。 The cover assembling step is a step of assembling the cover 24 to the housing 20.
 具体的に、上方からカバー24をハウジング20に装着する。この時、カバー24に圧入された上ベアリング34の内側に出力シャフト23を圧入する。具体的に、カバー24は樹脂製である。そして、樹脂製のカバー24には上ベアリング34を圧入する手段として金属製で筒状のベアリングホルダ55がモールドされている。そして、このカバー組付け工程の前に、ベアリングホルダ55の内側に上ベアリング34が圧入されている。 Specifically, the cover 24 is attached to the housing 20 from above. At this time, the output shaft 23 is press-fitted inside the upper bearing 34 press-fitted into the cover 24. Specifically, the cover 24 is made of resin. The resin cover 24 is molded with a metallic cylindrical bearing holder 55 as means for press-fitting the upper bearing 34. The upper bearing 34 is press-fitted inside the bearing holder 55 before the cover assembling step.
 次に、上方から複数のボルト42をハウジング20に螺合して、カバー24をハウジング20に固定する。 Next, a plurality of bolts 42 are screwed into the housing 20 from above, and the cover 24 is fixed to the housing 20.
 なお、カバー24には、電動モータ21および磁気検出部37と電気的な接続を行うコネクタ43が設けられるとともに、磁気検出部37が設けられる。このため、カバー24をハウジング20に組付けることで、コネクタ43と磁気検出部37の組付けも完了する。また、カバー24の下面には、第1中間シャフト31の上端が嵌め入れられる第1嵌合穴31aと、第2中間シャフト32の上端が嵌め入れられる第2嵌合穴32aとが設けられている。 The cover 24 is provided with a connector 43 that is electrically connected to the electric motor 21 and the magnetic detection unit 37, and is also provided with the magnetic detection unit 37. For this reason, the assembly of the connector 43 and the magnetic detection unit 37 is completed by assembling the cover 24 to the housing 20. Further, the lower surface of the cover 24 is provided with a first fitting hole 31a into which the upper end of the first intermediate shaft 31 is fitted, and a second fitting hole 32a into which the upper end of the second intermediate shaft 32 is fitted. Yes.
 以上により、カバー組付工程を終了する。 Thus, the cover assembling process is completed.
 続いて、レバー嵌合工程を実施する。 Subsequently, a lever fitting process is performed.
 レバー嵌合工程は、上方からアクチュエータレバー13を出力シャフト23の上端に装着する工程である。具体的には、円筒部62と丸穴63を嵌め合わせる工程である。 The lever fitting process is a process of mounting the actuator lever 13 on the upper end of the output shaft 23 from above. Specifically, this is a step of fitting the cylindrical portion 62 and the round hole 63 together.
 このレバー嵌合工程が完了した状態では、出力シャフト23に対してアクチュエータレバー13を360°回動させることができる。なお、アクチュエータレバー13の回動端側においてロッド15と回動自在に結合されるピン44は、レバー嵌合工程とは別の工程により、前もってアクチュエータレバー13に結合したものである。 When the lever fitting process is completed, the actuator lever 13 can be rotated 360 ° with respect to the output shaft 23. The pin 44 that is rotatably coupled to the rod 15 on the pivot end side of the actuator lever 13 is coupled to the actuator lever 13 in advance by a process different from the lever fitting process.
 続いて、レバー固定工程を実施する。 
 レバー固定工程は、先ず、出力シャフト23に対するアクチュエータレバー13の固定角度を決定する。具体的には、治具60またはハウジング20に対して予め決まった向きにアクチュエータレバー13を向ける。
Subsequently, a lever fixing step is performed.
In the lever fixing step, first, the fixing angle of the actuator lever 13 with respect to the output shaft 23 is determined. Specifically, the actuator lever 13 is directed in a predetermined direction with respect to the jig 60 or the housing 20.
 次に、出力シャフト23に対するアクチュエータレバー13の固定角度を保ったままの状態で、アクチュエータレバー13を出力シャフト23に固定する。 Next, the actuator lever 13 is fixed to the output shaft 23 while maintaining the fixed angle of the actuator lever 13 with respect to the output shaft 23.
 出力シャフト23とアクチュエータレバー13は、出力シャフト23の上端を塑性変形させるカシメ技術、あるいは溶接技術によって固定される。 The output shaft 23 and the actuator lever 13 are fixed by a caulking technique that plastically deforms the upper end of the output shaft 23 or a welding technique.
 具体的な一例として、この実施形態では、カシメ技術を用いてアクチュエータレバー13を出力シャフト23に固定するものである。即ち、この実施形態では、出力シャフト23の上端を潰して円筒部62の端部を拡径するとともに、潰して拡径した円筒部62の端部と段差面61の間でアクチュエータレバー13を強固に挟み付けて、アクチュエータレバー13を出力シャフト23に固定する。 As a specific example, in this embodiment, the actuator lever 13 is fixed to the output shaft 23 using caulking technology. That is, in this embodiment, the upper end of the output shaft 23 is crushed and the end of the cylindrical portion 62 is expanded, and the actuator lever 13 is firmly fixed between the end of the crushed and expanded cylindrical portion 62 and the step surface 61. And the actuator lever 13 is fixed to the output shaft 23.
 なお、丸穴63の縁部には、局所的な縦溝63aが複数形成されている。上述したカシメを行うと、塑性変形した出力シャフト23の一部が各縦溝63aに食い込む。これにより、出力シャフト23とアクチュエータレバー13の回転方向の結合力が高められる。 A plurality of local vertical grooves 63 a are formed at the edge of the round hole 63. When the above-described caulking is performed, a part of the plastically deformed output shaft 23 bites into each vertical groove 63a. Thereby, the coupling force in the rotational direction of the output shaft 23 and the actuator lever 13 is increased.
 以上により、電動アクチュエータ11の組付が完了する。 Thus, the assembly of the electric actuator 11 is completed.
(実施形態1の効果)
 この実施形態の電動アクチュエータ11は、露出穴64から視認できる回止形状66を出力シャフト23の基準角として、出力シャフト23とアクチュエータレバー13の相対角度を任意に設定できる。このため、アクチュエータレバー13の固定角度にバラツキが生じる不具合がない。
(Effect of Embodiment 1)
In the electric actuator 11 of this embodiment, the relative angle between the output shaft 23 and the actuator lever 13 can be arbitrarily set with the rotation shape 66 visible from the exposure hole 64 as the reference angle of the output shaft 23. For this reason, there is no problem that the fixing angle of the actuator lever 13 varies.
 また、露出穴64から視認できる回止形状66を出力シャフト23の基準角とすることで、出力シャフト23に対するアクチュエータレバー13の固定角度を自由に変更できる。このため、電動アクチュエータ11の汎用性を高めることができる。 Further, by making the rotation shape 66 visible from the exposure hole 64 as the reference angle of the output shaft 23, the fixing angle of the actuator lever 13 with respect to the output shaft 23 can be freely changed. For this reason, the versatility of the electric actuator 11 can be improved.
 電動アクチュエータ11の製造方法では、出力シャフト23に設けた回止形状66を、工具65に係合させて出力シャフト23の回転方向の位置決めを行う。その後、アクチュエータレバー13の固定角度を決定して、アクチュエータレバー13を出力シャフト23に固定する。このため、出力シャフト23に対するアクチュエータレバー13の固定角度にバラツキが生じない。 In the manufacturing method of the electric actuator 11, the rotation shape 66 provided on the output shaft 23 is engaged with the tool 65 to position the output shaft 23 in the rotation direction. Thereafter, the fixing angle of the actuator lever 13 is determined, and the actuator lever 13 is fixed to the output shaft 23. For this reason, the fixed angle of the actuator lever 13 with respect to the output shaft 23 does not vary.
 これにより、4節リンクのリンク比にばらつきが生じる不具合がなく、ウエストゲートバルブ9の作動性の悪化を招く不具合が生じない。 This ensures that there are no problems that cause variations in the link ratio of the four-bar link, and no problems that cause the deterioration of the operability of the wastegate valve 9.
 また、出力シャフト23に対してアクチュエータレバー13の固定角度を自由に変更できる。このため、電動アクチュエータ11の汎用性を高めることができる。 Further, the fixed angle of the actuator lever 13 with respect to the output shaft 23 can be freely changed. For this reason, the versatility of the electric actuator 11 can be improved.
 具体的には、ターボチャージャTに対する電動アクチュエータ11の搭載角度が異なる車両であっても、電動アクチュエータ11の部品を変更することなく対応できる。 Specifically, even if the mounting angle of the electric actuator 11 with respect to the turbocharger T is different, the vehicle can be handled without changing the parts of the electric actuator 11.
 同様に、バルブ軸10の位置が異なるターボチャージャTに対しても、電動アクチュエータ11の部品を変更することなく対応できる。 Similarly, the turbocharger T having a different position of the valve shaft 10 can be handled without changing the parts of the electric actuator 11.
 この実施形態の電動アクチュエータ11は、上述したように高い汎用性を備えるため、部品変更を招くことなく種々の車種等への搭載が可能になる。 Since the electric actuator 11 of this embodiment has high versatility as described above, it can be mounted on various types of vehicles without incurring component changes.
 これにより、電動アクチュエータ11の製造コストを抑えることができ、結果的に車両に搭載されるターボチャージャTを含む過給装置のコストを抑えることができる。 Thereby, the manufacturing cost of the electric actuator 11 can be suppressed, and as a result, the cost of the supercharging device including the turbocharger T mounted on the vehicle can be suppressed.
[他の実施形態]
 上記の実施形態では、ウエストゲートバルブ9を駆動する電動アクチュエータ11を例示したが、電動アクチュエータ11の駆動対象物をウエストゲートバルブ9に限定しない。
[Other Embodiments]
In the above embodiment, the electric actuator 11 that drives the waste gate valve 9 is illustrated, but the drive target of the electric actuator 11 is not limited to the waste gate valve 9.
 具体的な一例を開示すると、電動アクチュエータ11によってタービンハウジング6bに設けた第2排気スクロールの開閉を行う切替バルブを駆動しても良い。もちろん、電動アクチュエータ11によってウエストゲートバルブ9と切替バルブの両方を操作しても良い。 If a specific example is disclosed, the electric actuator 11 may drive a switching valve that opens and closes the second exhaust scroll provided in the turbine housing 6b. Of course, both the waste gate valve 9 and the switching valve may be operated by the electric actuator 11.
 または、可変ノズル機構を用いるターボチャージャTのノズルベーン(バルブの一例)の操作を行う電動アクチュエータ11に本開示を適用しても良い。 Alternatively, the present disclosure may be applied to the electric actuator 11 that operates a nozzle vane (an example of a valve) of the turbocharger T that uses a variable nozzle mechanism.
 あるいは、2基のターボチャージャTを用いた2ステージターボにおいて、2基のターボチャージャTの切替を行う電動アクチュエータ11に本開示を適用しても良い。 Alternatively, the present disclosure may be applied to the electric actuator 11 that switches between the two turbochargers T in a two-stage turbo that uses the two turbochargers T.
 上記の実施形態では、歯車減速機22の具体的な一例として、ピニオンギヤ26と最終ギヤ29との間に第1中間ギヤ27と第2中間ギヤ28を設ける例を示した。 In the embodiment described above, an example in which the first intermediate gear 27 and the second intermediate gear 28 are provided between the pinion gear 26 and the final gear 29 is shown as a specific example of the gear reducer 22.
 このように平行軸式の歯車減速機22を用いる場合は、ピニオンギヤ26と最終ギヤ29との間に1つの中間ギヤを設けるものであっても良いし、3つ以上の中間ギヤを設けるものであっても良い。

 
When the parallel shaft type gear reducer 22 is used as described above, one intermediate gear may be provided between the pinion gear 26 and the final gear 29, or three or more intermediate gears may be provided. There may be.

Claims (5)

  1.  一方向へ向けて開口する開口部(α)を有するハウジング(20)と、
     前記ハウジング(20)に組み付けられる電動モータ(21)と、
     前記ハウジング(20)に組み付けられ、前記電動モータ(21)の発生する回転力を減速する平行軸式の歯車減速機(22)と、
     前記ハウジング(20)に組み付けられ、前記歯車減速機(22)によって減速された回転力により駆動される出力シャフト(23)と、
     前記ハウジング(20)に組み付けられ、前記ハウジング(20)との間に前記電動モータ(21)と前記歯車減速機(22)を収容する空間(β)を形成し、前記出力シャフト(23)の一端を外部に露出させるカバー(24)と、
     前記カバー(24)の外部に露出した前記出力シャフト(23)の一端に固定されて、ターボチャージャ(T)に設けられるバルブ(9)を駆動するアクチュエータレバー(13)とを備え、
     前記出力シャフト(23)の一端には、環状の段差面(61)を介して縮径された円筒部(62)が設けられ、
     前記アクチュエータレバー(13)には、前記円筒部(62)が挿し入れられる丸穴(63)が設けられ、
     前記ハウジング(20)には、前記出力シャフト(23)の他端を外部に露出させる露出穴(64)が設けられ、
     前記出力シャフト(23)の他端には、前記出力シャフト(23)の回転を規制する工具(65)と係合可能な回止形状(66)が設けられ、
     前記回止形状(66)が前記露出穴(64)から視認できる電動アクチュエータ。
    A housing (20) having an opening (α) that opens in one direction;
    An electric motor (21) assembled to the housing (20);
    A parallel shaft type gear reducer (22) that is assembled to the housing (20) and decelerates the rotational force generated by the electric motor (21);
    An output shaft (23) assembled to the housing (20) and driven by a rotational force decelerated by the gear reducer (22);
    A space (β) for housing the electric motor (21) and the gear reducer (22) is formed between the housing (20) and the housing (20), and the output shaft (23) A cover (24) exposing one end to the outside;
    An actuator lever (13) that is fixed to one end of the output shaft (23) exposed to the outside of the cover (24) and drives a valve (9) provided in the turbocharger (T);
    One end of the output shaft (23) is provided with a cylindrical portion (62) having a reduced diameter via an annular step surface (61),
    The actuator lever (13) is provided with a round hole (63) into which the cylindrical portion (62) is inserted,
    The housing (20) is provided with an exposure hole (64) for exposing the other end of the output shaft (23) to the outside.
    The other end of the output shaft (23) is provided with a rotation stop shape (66) that can be engaged with a tool (65) that restricts the rotation of the output shaft (23),
    The electric actuator which can visually recognize the said stop shape (66) from the said exposure hole (64).
  2.  請求項1に記載の電動アクチュエータにおいて、
     前記回止形状(66)は、前記出力シャフト(23)の軸芯(C)を通る直線の溝である電動アクチュエータ。
    The electric actuator according to claim 1,
    The non-rotating shape (66) is an electric actuator that is a straight groove that passes through the axis (C) of the output shaft (23).
  3.  請求項1または請求項2に記載の電動アクチュエータにおいて、
     前記ハウジング(20)には、複数の位置決め凹部(67)が設けられている電動アクチュエータ。
    The electric actuator according to claim 1 or 2,
    The electric actuator provided with a plurality of positioning recesses (67) in the housing (20).
  4.  請求項1ないし請求項3のいずれか1つに記載の電動アクチュエータにおいて、
     前記出力シャフト(23)と前記アクチュエータレバー(13)は、前記出力シャフト(23)の一端を塑性変形させるカシメ技術、あるいは溶接技術によって固定されている電動アクチュエータ。
    The electric actuator according to any one of claims 1 to 3,
    The output shaft (23) and the actuator lever (13) are electric actuators fixed by caulking technology or welding technology that plastically deforms one end of the output shaft (23).
  5.  請求項1ないし請求項4のいずれか1つに記載の電動アクチュエータは、
     前記ハウジング(20)を支持する治具(60)を用いて製造されるものであり、
     前記治具(60)は、前記回止形状(66)に係合可能な工具(65)を備えるものであり、
     前記電動アクチュエータの製造方法は、
     前記治具(60)の所定位置に前記ハウジング(20)を組付ける治具組付工程と、
     前記電動モータ(21)、前記歯車減速機(22)および前記出力シャフト(23)を、前記開口部の内側に組み付ける内部組付工程と、
     この内部組付工程中に、前記回止形状(66)を前記工具(65)に係合させて前記出力シャフト(23)の回転方向の位置決めを行う係合工程と、
     前記カバー(24)を前記ハウジング(20)に組付けるカバー組付工程と、
     前記円筒部(62)と前記丸穴(63)を嵌め合わせるレバー嵌合工程と、
     前記出力シャフト(23)に対する前記アクチュエータレバー(13)の固定角度を決定して、前記アクチュエータレバー(13)を前記出力シャフト(23)に固定するレバー固定工程と、 
    を備える電動アクチュエータの製造方法。 

     
    The electric actuator according to any one of claims 1 to 4,
    It is manufactured using a jig (60) that supports the housing (20),
    The jig (60) includes a tool (65) that can be engaged with the stop shape (66),
    The method for manufacturing the electric actuator includes:
    A jig assembling step for assembling the housing (20) at a predetermined position of the jig (60);
    An internal assembly step of assembling the electric motor (21), the gear reducer (22) and the output shaft (23) inside the opening;
    An engagement step in which the rotation shape of the output shaft (23) is positioned by engaging the turning shape (66) with the tool (65) during the internal assembly step;
    A cover assembling step for assembling the cover (24) to the housing (20);
    A lever fitting step for fitting the cylindrical portion (62) and the round hole (63);
    Determining a fixing angle of the actuator lever (13) with respect to the output shaft (23), and fixing the actuator lever (13) to the output shaft (23);
    A method of manufacturing an electric actuator comprising:

PCT/JP2016/002751 2015-06-18 2016-06-07 Electric actuator and manufacturing method for same WO2016203736A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680034705.2A CN107709727B (en) 2015-06-18 2016-06-07 Electric actuator and its manufacturing method
US15/736,812 US10663076B2 (en) 2015-06-18 2016-06-07 Electric actuator and method of manufacturing the same
DE112016002745.1T DE112016002745B4 (en) 2015-06-18 2016-06-07 Electric actuator and manufacturing process for the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-123013 2015-06-18
JP2015123013 2015-06-18
JP2016-102277 2016-05-23
JP2016102277A JP6330850B2 (en) 2015-06-18 2016-05-23 Electric actuator and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2016203736A1 true WO2016203736A1 (en) 2016-12-22

Family

ID=57545391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002751 WO2016203736A1 (en) 2015-06-18 2016-06-07 Electric actuator and manufacturing method for same

Country Status (1)

Country Link
WO (1) WO2016203736A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109838302A (en) * 2017-11-24 2019-06-04 丰田自动车株式会社 Abnormity determining device and method
US10389204B2 (en) 2015-06-18 2019-08-20 Denso Corporation Electric actuator
CN110312850A (en) * 2017-03-01 2019-10-08 株式会社电装 The manufacturing method of plate and plate
US10451154B2 (en) 2015-06-18 2019-10-22 Denso Corporation Electric actuator
US10591079B2 (en) 2015-06-18 2020-03-17 Denso Corporation Electric actuator and manufacturing method for same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5846285U (en) * 1981-09-22 1983-03-29 アルプス電気株式会社 Pulse motor drive gear mounting structure
US20030100251A1 (en) * 2001-10-16 2003-05-29 Hansjoerg Besch Power tool comprising a securement flange
JP2007002846A (en) * 2005-06-20 2007-01-11 Robert Bosch Gmbh Actuator used for actuating mechanism
JP2012013179A (en) * 2010-07-02 2012-01-19 Denso Corp Valve control device
US20120124993A1 (en) * 2010-11-19 2012-05-24 Mando Corporation Electric waste gate actuator for turbocharger
JP5349696B2 (en) * 2010-08-20 2013-11-20 三菱電機株式会社 Electric actuator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5846285U (en) * 1981-09-22 1983-03-29 アルプス電気株式会社 Pulse motor drive gear mounting structure
US20030100251A1 (en) * 2001-10-16 2003-05-29 Hansjoerg Besch Power tool comprising a securement flange
JP2007002846A (en) * 2005-06-20 2007-01-11 Robert Bosch Gmbh Actuator used for actuating mechanism
JP2012013179A (en) * 2010-07-02 2012-01-19 Denso Corp Valve control device
JP5349696B2 (en) * 2010-08-20 2013-11-20 三菱電機株式会社 Electric actuator
US20120124993A1 (en) * 2010-11-19 2012-05-24 Mando Corporation Electric waste gate actuator for turbocharger

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10389204B2 (en) 2015-06-18 2019-08-20 Denso Corporation Electric actuator
US10451154B2 (en) 2015-06-18 2019-10-22 Denso Corporation Electric actuator
US10591079B2 (en) 2015-06-18 2020-03-17 Denso Corporation Electric actuator and manufacturing method for same
CN110312850A (en) * 2017-03-01 2019-10-08 株式会社电装 The manufacturing method of plate and plate
US11098658B2 (en) * 2017-03-01 2021-08-24 Denso Corporation Plate and method for manufacturing plate
CN110312850B (en) * 2017-03-01 2021-11-05 株式会社电装 Plate for driving wastegate valve of turbocharger and method for manufacturing the same
CN109838302A (en) * 2017-11-24 2019-06-04 丰田自动车株式会社 Abnormity determining device and method
CN109838302B (en) * 2017-11-24 2022-02-25 丰田自动车株式会社 Abnormality determination device and method

Similar Documents

Publication Publication Date Title
JP6330850B2 (en) Electric actuator and manufacturing method thereof
JP6418076B2 (en) Electric actuator and manufacturing method thereof
WO2016203736A1 (en) Electric actuator and manufacturing method for same
US7669581B2 (en) Throttle control apparatus and method for throttle control
WO2016203734A1 (en) Electric actuator
CN107709840B (en) Electric actuator
JP5673602B2 (en) Valve device
US20070240677A1 (en) Throttle control apparatus and method for throttle control
JP6428946B2 (en) Valve control device
JP6915495B2 (en) Actuator
US11319869B2 (en) Actuator
JP2013256885A (en) Valve driving device and installation method thereof
JP5131317B2 (en) Valve open / close control device
WO2017130599A1 (en) Method for manufacturing rotating component, method for manufacturing valve device, and valve device
JP6614309B2 (en) Electric actuator
WO2019124304A1 (en) Actuator
US10851720B2 (en) Actuator
JP5850076B2 (en) Valve device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811211

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15736812

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016002745

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16811211

Country of ref document: EP

Kind code of ref document: A1