WO2016203651A1 - Fuel injection control device and fuel injection control method - Google Patents

Fuel injection control device and fuel injection control method Download PDF

Info

Publication number
WO2016203651A1
WO2016203651A1 PCT/JP2015/067777 JP2015067777W WO2016203651A1 WO 2016203651 A1 WO2016203651 A1 WO 2016203651A1 JP 2015067777 W JP2015067777 W JP 2015067777W WO 2016203651 A1 WO2016203651 A1 WO 2016203651A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
fuel injection
fuel
timing
crank angle
Prior art date
Application number
PCT/JP2015/067777
Other languages
French (fr)
Japanese (ja)
Inventor
将 天内
孝嗣 片山
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2015/067777 priority Critical patent/WO2016203651A1/en
Publication of WO2016203651A1 publication Critical patent/WO2016203651A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • This invention relates to fuel injection control of a direct injection gasoline internal combustion engine.
  • a direct-injection gasoline internal combustion engine in which fuel is injected by a fuel injector using a solenoid and a spring, an excitation current is supplied to the solenoid with a time width equal to the injection pulse width signal output from the controller, and the solenoid is valved against the spring. Fuel injection is performed by lifting the body. The fuel injection amount is basically proportional to the injection pulse width.
  • the excitation current supplied by the injection pulse width signal is not constant.
  • a large current is supplied to the solenoid at the beginning of the injection pulse width signal, and then the valve is switched to the valve opening position maintaining current for holding the valve body in the lift position.
  • the valve opening position maintaining current is maintained until the end of the signal.
  • the valve element lifted by the initial large current of the injection pulse width signal collides with the stopper and bounces, it is impossible to finely control the lift of the valve element at the initial stage of the injection pulse width signal. Therefore, for example, in an injection pulse width region of 1 millisecond or less where the lift position of the valve body is not stable, in other words, in a small amount of fuel injection region, the injection pulse width and the fuel injection amount do not correspond linearly, and the fuel injection amount It was difficult to control.
  • JP2012-052419A issued by the Japan Patent Office in 2012 outputs a current corresponding to the injection pulse width signal so that a fuel injection amount corresponding to the injection pulse width can be obtained even in a small amount of fuel injection region.
  • Propose to change the waveform Specifically, the peak of the large current supplied to the solenoid in the initial stage is suppressed to a low level, and the current after output of the large current is once reduced to a value lower than the valve opening position maintaining current, and then the valve opening position maintaining current is To.
  • the bounce of the valve body lifted from the supply of a large current can be suppressed small, and a linear relationship between the injection pulse width and the actual fuel injection amount can be obtained even in a small amount of fuel injection region.
  • the controllable region of the fuel injection amount can be expanded to the small amount side.
  • injection pulse width becomes longer than the required fuel injection amount.
  • injection pulse width becomes longer, it is inevitable that the injection start timing is advanced or the injection end timing is delayed.
  • a direct injection gasoline internal combustion engine is generally provided with a knock sensor for detecting knock.
  • the knock sensor detects a knock in a certain angular region centered on the compression top dead center of the combustion cycle. If the fuel injector is opened or closed in this knock detection region, the knock sensor may erroneously detect knock.
  • an object of the present invention is to increase the control accuracy for a small amount of fuel injection while maintaining the knock detection accuracy.
  • a fuel injection control device performs fuel injection into a combustion chamber using a fuel injector that opens by supplying current in accordance with an injection pulse width signal, and has a predetermined crank angle region.
  • the present invention is applied to a direct-injection gasoline internal combustion engine having a knock sensor for detecting knocking of the engine.
  • the fuel injection control device includes a sensor that detects an operating condition of the engine and a programmable controller. The controller determines whether the injection timing of the fuel injector interferes with a predetermined crank angle region from the engine operating conditions. If the injection timing interferes with the predetermined crank angle region, the injection timing is It is programmed to increase the peak current supplied to the fuel injector rather than not interfering with the corner region.
  • FIG. 1 is a schematic configuration diagram of a fuel injection control device for a direct injection gasoline internal combustion engine according to the present invention.
  • FIG. 2 is a diagram illustrating a full lift mode and a partial lift mode applied by the fuel injection control device.
  • FIG. 3 is a diagram for explaining the change in the lift amount of the valve body in the full lift mode and the partial lift mode.
  • FIG. 4 is a flowchart illustrating a fuel injection control routine executed by a controller provided in the fuel injection control device.
  • FIG. 5 is FIG. 4 shows a second embodiment related to the fuel injection control routine, but similar to FIG.
  • FIG. 6 is FIG. 4 shows a third embodiment related to a fuel injection control routine.
  • FIG. 5 is FIG. 4 shows a second embodiment related to the fuel injection control routine, but similar to FIG.
  • FIG. 6 is FIG. 4 shows a third embodiment related to a fuel injection control routine.
  • FIG. 7 is a flowchart for explaining a fuel increase subroutine executed by the controller in the fuel injection control routine of the third embodiment.
  • FIG. 8 is a diagram showing the relationship between the air-fuel ratio of the internal combustion engine and the generated torque.
  • FIG. 9A-9E is shown in FIG. 6 is a timing chart showing an execution result of a fuel injection control routine of No. 4;
  • FIG. 10A-10E is shown in FIG. 6 is a timing chart showing an execution result of a fuel injection control routine of No. 5;
  • FIG. 11A-11F is shown in FIG. 6 is a timing chart showing execution results of a fuel injection control routine of FIG.
  • a fuel injection control device according to an embodiment of the present invention is applied to fuel injection control of an internal combustion engine 1 for a vehicle.
  • the internal combustion engine 1 is composed of a 4-cylinder direct injection gasoline internal combustion engine. Air is taken into each cylinder of the internal combustion engine 1 from the intake passage 2 through the throttle 3, the collector 4, and the intake manifold 5.
  • the internal combustion engine 1 includes a fuel injector 6 that directly injects fuel into the combustion chamber of each cylinder, and a spark plug 7 that performs spark ignition on a mixture of air and fuel generated in the combustion chamber.
  • the spark-ignition mixture burns and rotates the internal combustion engine 1 with combustion energy.
  • the combustion gas is discharged from the combustion chamber through the exhaust manifold 8, the catalytic converter 9, and the exhaust pipe 10 into the atmosphere.
  • the internal combustion engine 1 is composed of a 4-stroke cycle engine in which each cylinder burns once every two revolutions. Intake into the combustion chamber is performed through an intake valve 13, and exhaust of combustion gas from the combustion chamber is performed through an exhaust valve 14.
  • the internal combustion engine 1 is based on single-stage injection, and performs multi-stage injection for each cylinder according to operating conditions.
  • the fuel injection of the fuel injector 6 is controlled by the controller 20. It is also possible to control the throttle 3, the intake valve 13, the exhaust valve 14, and the spark plug 7 by the same controller 20.
  • the controller 20 includes a microcomputer having a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface). It is also possible to configure the controller with a plurality of microcomputers.
  • CPU central processing unit
  • ROM read only memory
  • RAM random access memory
  • I / O interface input / output interface
  • the controller 20 controls the fuel injection amount and injection timing of the fuel injector 6. Therefore, as a sensor for detecting the operating condition of the internal combustion engine 1, a crank angle sensor 21 for detecting the crank angle and the rotation speed of the internal combustion engine 1 and an air flow meter 22 for detecting the load of the internal combustion engine 1 are provided in the controller 20. Connected by signal circuit. Further, a knock sensor 23 for detecting knock of the internal combustion engine 1 is also connected to the controller 20 by a signal circuit.
  • the controller 20 sets the injection pulse width and injection timing of the fuel injector 6 based on the engine load of the internal combustion engine 1. Then, the set injection pulse width and injection timing are output to the fuel injector 6 as an injection pulse width signal.
  • the fuel injector 6 is composed of, for example, a known fuel injector disclosed in the prior art, a valve body held in a closed position by a spring, a solenoid that lifts the valve body against the spring, and a certain level of the valve body And a stopper for preventing the lift.
  • the fuel injection control performed by the controller 20 will be described in more detail below.
  • the injection pulse width signal is generally represented as a rectangular signal, but the current supplied to the solenoid of the fuel injector 6 by the injection pulse width signal is actually different between the initial stage of the injection pulse width signal and the others. This is because the solenoid excitation current required to start the valve body to lift against the initial load and inertial force of the spring, and the solenoid excitation current required to hold the lifted valve body in the lifted state. Is different.
  • the former is referred to as a peak current
  • the latter is referred to as a valve opening position maintaining current. Since the peak current is a large current, the valve body that has started to lift once suddenly lifts up and collides with the stopper.
  • FIG. 2 when the peak current is high in the injection pulse width signal having the same width, the solenoid drive current changes as indicated by a one-dot chain line in the figure.
  • this drive waveform of the injection pulse width signal is referred to as a full lift mode drive waveform.
  • the peak current in the full lift mode is referred to as the first peak current.
  • this drive waveform of the injection pulse width signal is referred to as a partial lift mode drive waveform.
  • the partial lift mode corresponds to the current control of the injection pulse width signal proposed by the prior art.
  • the internal combustion engine 1 is an engine that operates in the partial lift mode under at least certain conditions. Regarding the proper use of the full lift mode and the partial lift mode, for example, the full lift mode may be applied when the acceleration response is more important than the fuel efficiency of the internal combustion engine 1, and the partial lift mode may be applied otherwise. It is done. However, this fuel injection control device is also applicable to the internal combustion engine 1 designed to always operate in the partial lift mode in principle.
  • FIG. 3 in the full lift mode, the lift amount of the valve body varies as the valve body of the fuel injector 6 collides with the stopper. Therefore, it is difficult to control the fuel injection amount at the initial stage of the injection pulse width signal where the lift position is not stable.
  • the valve body in the partial lift mode, the valve body lifts smoothly, so the fuel injection amount changes stably from the initial stage of the injection pulse width signal.
  • the area of the drive waveform in each mode corresponds to the fuel injection amount.
  • the injection amount in the partial lift mode is lower than the injection amount in the full lift mode with respect to the injection pulse width signal having the same width.
  • the fuel injection amount can be accurately controlled from the initial stage of the output of the injection pulse width signal. Therefore, there is an advantage that highly accurate fuel injection control can be performed.
  • the injection amount can be kept low with respect to the pulse width. Therefore, even if the required injection amount is the same, the pulse width must be set longer than the full lift mode.
  • the fuel injection timing enters a knock detection region that is a crank angle region where the knock sensor 23 detects knock.
  • the fuel injection timing may enter this crank angle region.
  • the fuel injection timing means the timing of lift of the valve body of the fuel injector 6 or seating on the seat. If these operations of the valve body are performed in the knock detection region, the knock sensor 23 may erroneously recognize that knocking has occurred. Therefore, it is desirable to start fuel injection of the internal combustion engine 1 after the end of the knock detection region, or end it before the start of the knock detection region.
  • the actual injection amount is smaller in the partial lift mode than in the full lift mode as described above. Therefore, the pulse width of the injection pulse width signal set for the same required injection amount is longer than that in the full lift mode.
  • the fuel injection timing tends to enter the knock detection region. In other words, the fuel injection timing tends to interfere with the knock detection region.
  • the fuel injection control device calculates an injection timing and an injection amount of fuel injection based on a rotational speed and a load representing an operation condition of the internal combustion engine 1, and outputs an injection pulse width signal corresponding to the calculated injection timing and injection amount to the fuel injector. Output to.
  • the controller 20 determines whether or not the determined fuel injection timing interferes with a predetermined crank angle region that is a knock detection region of the knock sensor. When the fuel injection timing interferes with a predetermined crank angle region, the controller 20 switches the fuel injection mode from the partial lift mode to the full lift mode, and the injection pulse width signal reset under the full lift mode is supplied to the fuel injector 6. Output.
  • the ROM of the controller 20 has a FIG. A fuel injection control routine shown in FIG.
  • the controller 20 implements this control by executing a fuel injection control routine.
  • FIG. The fuel injection control routine will be described with reference to FIG.
  • the controller 20 repeatedly executes the fuel injection control routine in synchronization with, for example, the rotation of the internal combustion engine.
  • This routine corresponds to the first embodiment of the present invention relating to the fuel injection control routine.
  • step S1 the controller 20 reads the engine rotational speed input from the crank angle sensor 21 and the intake air amount input from the air flow meter 22.
  • the intake air amount is read as a value representative of the engine load.
  • step S2 the controller 20 calculates the fuel injection amount based on the engine load.
  • the controller 20 calculates a crank angle region in which the knock sensor 23 detects knocking of the internal combustion engine 1 based on the engine speed.
  • the crank angle region where the knock sensor 23 detects knocking of the internal combustion engine 1 is referred to as a knock detection region.
  • the knock detection area expands toward the advance side.
  • the controller 20 calculates the fuel injection pulse width and injection timing in the partial lift mode from the fuel injection amount determined in step S2.
  • the injection timing means an injection start timing and an injection end timing.
  • the injection end timing is a value obtained by adding the injection pulse width to the injection start timing. Note that the injection end timing may be calculated first, and the injection start timing may be calculated by subtracting the injection pulse width from the injection end timing.
  • the controller 20 calculates the injection start timing and the injection end timing for each injection stage of the multistage injection executed within one combustion cycle.
  • step S5 the controller 20 determines whether any of the injection start timing and the injection end timing calculated in step S4 interferes with the knock detection region set in step S3.
  • the interference means that the injection start timing or the injection end timing enters the knock detection region.
  • the injection start timing of the first injection stage is the most advanced position among the injection start timing and injection end timing of each injection stage, and the final injection stage is the most retarded position. Is the end timing of injection. Therefore, in step S5, it may be determined whether the injection start timing of the first injection stage and the injection end timing of the final injection stage are within the knock detection region.
  • the determination in step S5 is negative, that is, one of the injection start timing and the injection end timing interferes with the knock detection region is a region where the engine speed of the internal combustion engine 1 is high or the engine load is high. It is.
  • step S5 If both the injection start timing and the injection end timing are outside the knock detection region in step S5, the controller 20 determines in FIG. S7 according to the fuel injection pulse width and injection timing calculated in step S4.
  • the fuel injection in the partial lift mode is executed by outputting the injection pulse width signal having the driving waveform indicated by the solid line 2.
  • step S5 the controller 20 performs fuel injection in the full lift mode.
  • the controller 20 calculates the pulse width and injection timing of the full lift mode from the fuel injection amount calculated in step S2 in step S6.
  • Controller 20 determines in FIG. S7 according to the fuel injection pulse width and injection timing calculated in step S6.
  • the fuel injection in the full lift mode is executed by outputting an injection pulse width signal having a drive waveform indicated by a two-dot chain line.
  • step S7 the controller 20 ends the routine.
  • FIG. The execution result of this fuel injection control routine will be described with reference to 9A-9E.
  • FIG. 1 In the situation where fuel injection in the partial lift mode is being executed, for example, when the accelerator pedal of the vehicle is depressed and the engine load increases, FIG. The fuel injection amount calculated in step S2 of 4 increases.
  • step S5 the fuel injection start timing or the fuel injection end timing is detected by the knock sensor 23. It is determined whether or not it interferes with the knock detection area. Specifically, it is determined whether the fuel injection start timing and the fuel injection end timing are outside the knock detection region.
  • step S5 As long as the fuel injection amount is small, the determination in step S5 is affirmative. In addition, about the case where determination of step S5 is affirmative, FIG. In 9D, it is marked as knock detection area non-interference. In this case, FIG. As shown in 9E, fuel injection in the partial lift mode is continued.
  • the fuel injection amount increases with the increase in engine load. As shown in 9C, the fuel injection pulse width also increases. FIG. As indicated by 9B, the engine speed also increases.
  • Increase in fuel injection amount means increase in fuel injection pulse width. As a result, the fuel injection timing interferes with the knock detection region at a certain timing.
  • step S5 is FIG. Turn negative as shown in 9D.
  • the controller 20 switches the fuel injection mode from the partial lift mode to the full lift mode.
  • the fuel injection pulse width and fuel injection timing of a full lift mode are calculated by step S6.
  • fuel injection in the full lift mode is executed in step S7 using the fuel injection pulse width and fuel injection timing in the full lift mode calculated in step S6.
  • the fuel injection pulse width and fuel injection timing for the full lift mode are calculated in step S6 in each routine execution.
  • the calculated fuel injection pulse width is the same as that of FIG. As shown in 9C, it becomes smaller than the partial lift mode.
  • the fuel injection in the full lift mode performed in step S7 can be completed outside the knock detection region.
  • the fuel injection pulse width increases as the engine load increases.
  • the fuel injection stop timing enters the knock detection region as shown by the dotted line in the figure.
  • the knock sensor 23 may erroneously detect knock of the internal combustion engine 1.
  • FIG. A fuel injection control routine according to the second embodiment of the present invention will be described with reference to FIG.
  • This fuel injection control routine and the FIG. The fuel injection control routine of No. 4 differs from the determination process of whether or not the fuel injection timing interferes with the knock detection region.
  • the operating state in which the fuel injection timing interferes with the knock detection region can be directly determined using the engine speed and the engine load as parameters.
  • the engine speed and the engine load threshold value are stored in advance in the ROM of the controller 20, respectively. Then, the controller 20 determines whether or not the fuel injection timing interferes with the knock detection region by comparing the engine rotation speed and the engine load with these threshold values.
  • step S4 of the fuel injection control routine of No. 4 is deleted, step S5A is provided instead of step S5.
  • step S5A the controller 20 compares the engine speed and engine load read in step S1 with respective threshold values.
  • the engine rotation speed exceeds the engine rotation speed threshold value and the engine load exceeds the engine load threshold value it is determined that the operation range is to apply the full lift mode.
  • the fuel injection pulse width and fuel injection timing in the full lift mode are calculated in step S6, and the fuel injection corresponding to the calculation result is executed in step S7.
  • FIG. 10A when the fuel accelerator in the partial lift mode is being executed, for example, when the accelerator pedal of the vehicle is depressed, FIG. As indicated by 10C, the engine load increases and the fuel injection amount correspondingly increases.
  • FIG. 10D the fuel injection pulse width also increases.
  • FIG. As indicated by 10B the engine speed also increases.
  • the controller 20 compares the engine speed with the engine speed threshold value and compares the engine load with the engine load threshold value in step S5A.
  • step S5A determines whether fuel injection is performed in the partial lift mode.
  • the controller 20 calculates the fuel injection pulse width and fuel injection timing in the full lift mode in step S6, and executes fuel injection in step S7 using the calculation result in step S6.
  • the knock detection area is FIG. As shown in 9C, it expands to the advance side as the engine speed increases. On the other hand, the fuel injection timing of the fuel injector 6 moves to the retard side as the engine load increases. By performing the determination in step S5A, FIG. As shown in 10B and 10C, it can be directly predicted whether the fuel injection timing interferes with the knock detection region. By this determination, immediately before the fuel injection timing enters the knock detection region, the FIG. As shown at 10F, the controller 20 switches the fuel injection mode from the partial lift mode to the full lift mode.
  • FIG. A fuel injection control routine according to the third embodiment of the present invention will be described with reference to FIG.
  • step S51 is provided. Other steps are shown in FIG. 4 is the same as the fuel injection control routine.
  • step S5 if it is determined in step S5 that the injection timing interferes with the knock detection region, the controller 20 executes a fuel injection amount increase subroutine in step S51.
  • FIG. 1 The fuel injection amount increase subroutine executed in step S51 will be described with reference to FIG.
  • the controller 20 determines whether or not the fuel increase has been completed in step S11. If the increase has not been completed, the controller 20 executes the increase in step S12 and then performs the determination in step S11 again. Thus, a certain amount of fuel increase is executed. As a result, a certain amount is added to the fuel injection amount calculated in step S2. This enriches the air-fuel ratio of the air-fuel mixture in the combustion chamber.
  • step S6 the controller 20 calculates the fuel injection pulse width and fuel injection timing in the full lift mode based on the fuel injection amount increased in step S51.
  • the controller 20 performs fuel injection at step S7 using the calculation result at step S6.
  • the fuel injection amount increase subroutine will be described below.
  • FIG. 8 the control accuracy of the fuel injection amount by the controller 20 differs between the full lift mode and the partial lift mode.
  • F in the figure shows the variation in the fuel injection amount in the full lift mode
  • P in the figure shows the variation in the fuel injection amount in the partial lift mode.
  • the range of variation in the fuel injection amount in the partial lift mode is smaller than the range of variation in the fuel injection amount in the full lift mode. This is because the control accuracy of the fuel injection amount is higher in the partial lift mode than in the full lift mode.
  • fuel injection control is performed so that the internal combustion engine 6 has an air-fuel ratio in the vicinity of 14.7 of the theoretical air-fuel ratio.
  • the influence of fuel variation has a great influence on the change in generated torque. Therefore, if the partial lift mode is switched to the full lift mode in the vicinity of the theoretical air-fuel ratio, a step may be generated in the generated torque.
  • step S51 FIG.
  • the reason why the fuel injection amount increase subroutine 7 is executed is as described above.
  • step S5 If it is determined in step S5 that the injection timing is within the knock detection region while the internal combustion engine 1 is operating in the partial lift state, FIG. As shown in 11B, switching to the full lift mode is required.
  • the controller 20 executes the fuel injection amount increase subroutine of step S51 in response to this increase request, thereby FIG.
  • the fuel injection amount is increased as indicated by 11C.
  • the controller 20 calculates the fuel injection pulse width and fuel injection timing in the full lift mode corresponding to the fuel injection amount increased in step S51 in step S6.
  • Controller 20 outputs a pulse width signal in step S7 according to the calculation result in step S6. Thereafter, FIG. As shown in 11C and 11F, the pulse width signal of the drive waveform in the full lift mode corresponding to the increased fuel injection amount is output to the fuel injector 6.
  • the knock detection of the internal combustion engine 1 by the knock sensor 23 is prevented by preventing the fuel injection timing from entering the knock detection region. This makes it possible to cope with an increase in the fuel injection amount. Furthermore, according to this embodiment, it is possible to suppress the occurrence of a torque step due to mode switching.
  • step S51 for executing the fuel increase subroutine is provided between step S5A and step S6 of the second embodiment, a favorable effect can be obtained in suppressing the occurrence of a torque step due to mode switching.
  • the fuel injection control device determines whether or not the injection timing of the fuel injector 6 interferes with the knock detection region of the knock sensor 23 from the operating conditions of the internal combustion engine 1, and the injection timing is the knock detection region.
  • the peak current supplied to the fuel injector 6 is made larger than when the injection timing does not interfere with the knock detection region. Therefore, since the fuel injection pulse width can be reduced, the fuel injector 6 can complete the opening and closing of the fuel injector 6 for fuel injection without interfering with the knock detection region regardless of the operating state of the internal combustion engine 1.
  • the controller 20 increases the current supplied to the fuel injector 6 in response to the injection pulse width signal to the first peak current and then decreases it to the valve opening position maintaining current, and the first A partial lift mode in which the voltage is first lowered to a voltage lower than the valve opening position maintaining current after being increased to a second peak current lower than the peak current of 1 and then increased to the valve opening position maintaining current; Apply.
  • the peak current supplied to the fuel injector 6 is increased by switching from the partial lift mode to the full lift mode. . In this way, the fuel injection timing can be easily reset by switching between the two preset modes.
  • the cotton roller 20 increases the fuel injection amount when switching from the partial lift mode to the full lift mode.
  • the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine 1 changes from the stoichiometric air-fuel ratio to the rich side.
  • the fluctuation range of the output torque with respect to the variation in the fuel injection amount is small as compared with the theoretical air-fuel ratio. Therefore, it is possible to smoothly switch the modes by suppressing the step caused in the output torque by the variation in the fuel injection amount accompanying the switching of the modes.
  • this fuel injection control device uses a crank angle sensor 21 that detects the rotational speed of the internal combustion engine 1 and an air flow meter 22 that detects the load of the engine as sensors that detect the operating conditions of the internal combustion engine 1.
  • the controller 20 calculates a knock detection region based on the rotational speed of the internal combustion engine 1 and sets the injection pulse width and the injection timing based on the rotational speed and load of the internal combustion engine 1.
  • These sensors are sensors generally used for controlling the internal combustion engine 1. Therefore, according to this fuel injection control device, multistage fuel injection that does not interfere with the knock detection region can be realized without using a special sensor.
  • the present invention has been described through some specific embodiments, but the present invention is not limited to the above embodiments. Those skilled in the art can make various modifications or changes to these embodiments within the scope of the claims.
  • the engine is composed of a 4-cylinder direct injection gasoline internal combustion engine, but the present invention can also be applied to other multi-cylinder internal combustion engines such as 3 cylinders and 6 cylinders.

Abstract

The present invention is a direct-injection gasoline internal combustion engine wherein fuel is injected into a combustion chamber using a fuel injector which opens a valve by supplying an electrical current corresponding to an injection pulse width signal. A controller determines, from the operating condition of the engine, whether or not the injection timing of the fuel injector is going to enter a knock-detection area. If the controller determines that the injection timing is going to enter the knock-detection area, the injection timing is prevented from entering the knock-detection area by increasing the peak current which is supplied to the fuel injector to open the valve.

Description

燃料噴射制御装置及び燃料噴射制御方法Fuel injection control device and fuel injection control method
 この発明は、直噴ガソリン内燃エンジンの燃料噴射制御に関する。 This invention relates to fuel injection control of a direct injection gasoline internal combustion engine.
 ソレノイドとスプリングを用いた燃料インジェクタにより燃料を噴射する直噴ガソリン内燃エンジンにおいては、コントローラが出力する噴射パルス幅信号に等しい時間幅でソレノイドに励磁電流が供給され、ソレノイドがスプリングに抗して弁体をリフトさせることで、燃料噴射が行なわれる。燃料噴射量は基本的に噴射パルス幅に比例する。 In a direct-injection gasoline internal combustion engine in which fuel is injected by a fuel injector using a solenoid and a spring, an excitation current is supplied to the solenoid with a time width equal to the injection pulse width signal output from the controller, and the solenoid is valved against the spring. Fuel injection is performed by lifting the body. The fuel injection amount is basically proportional to the injection pulse width.
 噴射パルス幅信号によって供給される励磁電流は一定ではない。燃料インジェクタの弁体をリフトさせるために、噴射パルス幅信号の初期に大電流がソレノイドに供給され、その後に弁体をリフト位置に保持するための開弁位置維持電流に切り換えられ、噴射パルス幅信号の終了まで開弁位置維持電流が維持される。 The excitation current supplied by the injection pulse width signal is not constant. In order to lift the valve body of the fuel injector, a large current is supplied to the solenoid at the beginning of the injection pulse width signal, and then the valve is switched to the valve opening position maintaining current for holding the valve body in the lift position. The valve opening position maintaining current is maintained until the end of the signal.
 噴射パルス幅信号の初期の大電流でリフトした弁体はストッパに衝突してバウンスするので、噴射パルス幅信号の初期段階において弁体のリフトを細かく制御することは不可能である。そのため、弁体のリフト位置が安定しない例えば1ミリ秒以下の噴射パルス幅の領域、言い換えれば少量の燃料噴射領域、においては、噴射パルス幅と燃料噴射量がリニアに対応せず、燃料噴射量の制御は困難であった。 Since the valve element lifted by the initial large current of the injection pulse width signal collides with the stopper and bounces, it is impossible to finely control the lift of the valve element at the initial stage of the injection pulse width signal. Therefore, for example, in an injection pulse width region of 1 millisecond or less where the lift position of the valve body is not stable, in other words, in a small amount of fuel injection region, the injection pulse width and the fuel injection amount do not correspond linearly, and the fuel injection amount It was difficult to control.
 これに関して、日本国特許庁が2012年に発行したJP2012-052419Aは、少量の燃料噴射領域においても噴射パルス幅に応じた燃料噴射量が得られるように、噴射パルス幅信号に対応する電流の出力波形を変えることを提案している。具体的には、初期にソレノイドに供給する大電流のピークを低めに抑えるとともに、大電流の出力後電流を、開弁位置維持電流を下回る値へといったん低下させた後、開弁位置維持電流にする。 In this regard, JP2012-052419A issued by the Japan Patent Office in 2012 outputs a current corresponding to the injection pulse width signal so that a fuel injection amount corresponding to the injection pulse width can be obtained even in a small amount of fuel injection region. Propose to change the waveform. Specifically, the peak of the large current supplied to the solenoid in the initial stage is suppressed to a low level, and the current after output of the large current is once reduced to a value lower than the valve opening position maintaining current, and then the valve opening position maintaining current is To.
 この従来技術によれば、大電流供給よりリフトした弁体のバウンスが小さく抑えられ、少量の燃料噴射領域においても噴射パルス幅と実燃料噴射量とのリニアな関係を得ることができる。その結果、燃料噴射量の制御可能領域を小量側へ拡大することが可能となる。 According to this prior art, the bounce of the valve body lifted from the supply of a large current can be suppressed small, and a linear relationship between the injection pulse width and the actual fuel injection amount can be obtained even in a small amount of fuel injection region. As a result, the controllable region of the fuel injection amount can be expanded to the small amount side.
 この従来技術によれば、少量の燃料噴射領域における制御精度は改善されるが、噴射パルス幅信号の初期段階における燃料インジェクタの開口面積が相対的に小さくなる。結果として噴射パルス幅に対する実燃料噴射量が相対的に小さくなる。 According to this conventional technique, the control accuracy in a small amount of fuel injection region is improved, but the opening area of the fuel injector at the initial stage of the injection pulse width signal becomes relatively small. As a result, the actual fuel injection amount with respect to the injection pulse width becomes relatively small.
 これは要求される燃料噴射量に対して噴射パルス幅が長くなることを意味する。噴射パルス幅が長くなると、噴射開始タイミングが進角し、あるいは噴射終了タイミングが遅角することは避けられない。 This means that the injection pulse width becomes longer than the required fuel injection amount. When the injection pulse width becomes longer, it is inevitable that the injection start timing is advanced or the injection end timing is delayed.
 直噴ガソリン内燃エンジンは一般にノックを検出するためのノックセンサを備えている。ノックセンサは燃焼サイクルの圧縮上死点を中心とした一定の角度領域でノックを検出する。このノック検出領域で燃料インジェクタの開弁あるいは閉弁が行なわれると、ノックセンサがノックを誤検出する可能性がある。 A direct injection gasoline internal combustion engine is generally provided with a knock sensor for detecting knock. The knock sensor detects a knock in a certain angular region centered on the compression top dead center of the combustion cycle. If the fuel injector is opened or closed in this knock detection region, the knock sensor may erroneously detect knock.
 したがって、直噴ガソリン内燃エンジンに従来技術を適用した場合には、少量の燃料噴射に関する制御精度は向上するものの、ノックの検出精度には好ましくない影響を及ぼす可能性がある。 Therefore, when the conventional technology is applied to a direct injection gasoline internal combustion engine, although the control accuracy for a small amount of fuel injection is improved, there is a possibility that it may adversely affect the knock detection accuracy.
 この発明の目的は、したがって、ノック検出精度を維持しつつ、少量の燃料噴射に関する制御精度を高めることである。 Therefore, an object of the present invention is to increase the control accuracy for a small amount of fuel injection while maintaining the knock detection accuracy.
 以上の目的を達成するために、この発明による燃料噴射制御装置は、噴射パルス幅信号に応じた電流供給により開弁する燃料インジェクタを用いて燃焼室内に燃料噴射を行なうとともに、所定のクランク角領域でエンジンのノッキングを検出するノックセンサを備える直噴ガソリン内燃エンジンに適用される。燃料噴射制御装置は、エンジンの運転条件を検出するセンサと、プログラマブルコントローラとを備える。コントローラは、エンジンの運転条件から、燃料インジェクタの噴射タイミングが所定のクランク角領域と干渉するかどうかを判定し、噴射タイミングが所定のクランク角領域と干渉する場合には、噴射タイミングが所定のクランク角領域と干渉しない場合よりも、燃料インジェクタに供給するピーク電流を大きくする、ようプログラムされる。 In order to achieve the above object, a fuel injection control device according to the present invention performs fuel injection into a combustion chamber using a fuel injector that opens by supplying current in accordance with an injection pulse width signal, and has a predetermined crank angle region. The present invention is applied to a direct-injection gasoline internal combustion engine having a knock sensor for detecting knocking of the engine. The fuel injection control device includes a sensor that detects an operating condition of the engine and a programmable controller. The controller determines whether the injection timing of the fuel injector interferes with a predetermined crank angle region from the engine operating conditions. If the injection timing interferes with the predetermined crank angle region, the injection timing is It is programmed to increase the peak current supplied to the fuel injector rather than not interfering with the corner region.
 この発明の詳細並びに他の特徴や利点は、明細書の以下の記載の中で説明されるとともに、添付された図面に示される。 DETAILED DESCRIPTION Details and other features and advantages of the present invention are described in the following description of the specification and shown in the accompanying drawings.
FIG.1はこの発明による直噴ガソリン内燃エンジンの燃料噴射制御装置の概略構成図である。FIG. 1 is a schematic configuration diagram of a fuel injection control device for a direct injection gasoline internal combustion engine according to the present invention. FIG.2は燃料噴射制御装置が適用するフルリフトモードとパーシャルリフトモードを説明するダイアグラムである。FIG. 2 is a diagram illustrating a full lift mode and a partial lift mode applied by the fuel injection control device. FIG.3は同じくフルリフトモードとパーシャルリフトモードにおける弁体のリフト量の変化を説明するダイアグラムである。FIG. 3 is a diagram for explaining the change in the lift amount of the valve body in the full lift mode and the partial lift mode. FIG.4は燃料噴射制御装置が備えるコントローラが実行する燃料噴射制御ルーチンを説明するフローチャートである。FIG. 4 is a flowchart illustrating a fuel injection control routine executed by a controller provided in the fuel injection control device. FIG.5はFIG.4に類似するが、燃料噴射制御ルーチンに関する第2の実施形態を示す。FIG. 5 is FIG. 4 shows a second embodiment related to the fuel injection control routine, but similar to FIG. FIG.6はFIG.4に類似するが、燃料噴射制御ルーチンに関する第3の実施形態を示す。FIG. 6 is FIG. 4 shows a third embodiment related to a fuel injection control routine. FIG.7は第3実施形態の燃料噴射制御ルーチンにおいてコントローラが実行する燃料増量サブルーチンを説明するフローチャートである。FIG. 7 is a flowchart for explaining a fuel increase subroutine executed by the controller in the fuel injection control routine of the third embodiment. FIG.8は内燃エンジンの空燃比と発生トルクの関係を示すダイアグラムである。FIG. 8 is a diagram showing the relationship between the air-fuel ratio of the internal combustion engine and the generated torque. FIGS.9A-9EはFIG.4の燃料噴射制御ルーチンの実行結果を示すタイミングチャートである。FIG. 9A-9E is shown in FIG. 6 is a timing chart showing an execution result of a fuel injection control routine of No. 4; FIGS.10A-10EはFIG.5の燃料噴射制御ルーチンの実行結果を示すタイミングチャートである。FIG. 10A-10E is shown in FIG. 6 is a timing chart showing an execution result of a fuel injection control routine of No. 5; FIGS.11A-11FはFIG.6の燃料噴射制御ルーチンの実行結果を示すタイミングチャートである。FIG. 11A-11F is shown in FIG. 6 is a timing chart showing execution results of a fuel injection control routine of FIG.
 図面のFIG.1を参照すると、この発明の実施形態による燃料噴射制御装置は、車両用の内燃エンジン1の燃料噴射制御に適用される。 Fig. Of drawing. Referring to FIG. 1, a fuel injection control device according to an embodiment of the present invention is applied to fuel injection control of an internal combustion engine 1 for a vehicle.
 内燃エンジン1は4気筒の直噴ガソリン内燃エンジンで構成される。内燃エンジン1の各気筒には吸気通路2からスロットル3、コレクタ4、及び吸気マニホールド5を介して空気が吸入される。内燃エンジン1は各気筒の燃焼室に直接燃料を噴射する燃料インジェクタ6と、燃焼室内に生成された空気と燃料との混合気に火花点火を行なうスパークプラグ7と、を備える。 The internal combustion engine 1 is composed of a 4-cylinder direct injection gasoline internal combustion engine. Air is taken into each cylinder of the internal combustion engine 1 from the intake passage 2 through the throttle 3, the collector 4, and the intake manifold 5. The internal combustion engine 1 includes a fuel injector 6 that directly injects fuel into the combustion chamber of each cylinder, and a spark plug 7 that performs spark ignition on a mixture of air and fuel generated in the combustion chamber.
 火花点火された混合気は燃焼して、燃焼エネルギーで内燃エンジン1を回転させる。燃焼ガスは燃焼室から排気マニホールド8、触媒コンバータ9、及び排気管10を通って大気中に放出される。 The spark-ignition mixture burns and rotates the internal combustion engine 1 with combustion energy. The combustion gas is discharged from the combustion chamber through the exhaust manifold 8, the catalytic converter 9, and the exhaust pipe 10 into the atmosphere.
 内燃エンジン1は各気筒が2回転に1度ずつ燃焼を行なう4―ストロークサイクルエンジンで構成される。燃焼室への吸気は吸気弁13を介して行なわれ、燃焼室からの燃焼ガスの排気は排気弁14を介して行なわれる。 The internal combustion engine 1 is composed of a 4-stroke cycle engine in which each cylinder burns once every two revolutions. Intake into the combustion chamber is performed through an intake valve 13, and exhaust of combustion gas from the combustion chamber is performed through an exhaust valve 14.
 内燃エンジン1は単段噴射を基本としつつ、運転条件に応じて気筒ごとに多段噴射を実行する。 The internal combustion engine 1 is based on single-stage injection, and performs multi-stage injection for each cylinder according to operating conditions.
 燃料インジェクタ6の燃料噴射はコントローラ20によって制御される。スロットル3,吸気弁13,排気弁14、スパークプラグ7の制御を同じコントローラ20によって行なうことも可能である。 The fuel injection of the fuel injector 6 is controlled by the controller 20. It is also possible to control the throttle 3, the intake valve 13, the exhaust valve 14, and the spark plug 7 by the same controller 20.
 コントローラ20は中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/O インタフェース)を備えたマイクロコンピュータで構成される。コントローラを複数のマイクロコンピュータで構成することも可能である。 The controller 20 includes a microcomputer having a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface). It is also possible to configure the controller with a plurality of microcomputers.
 コントローラ20は燃料インジェクタ6の燃料噴射量と噴射タイミングの制御を行なう。そのために、内燃エンジン1の運転条件を検出するセンサとして、内燃エンジン1のクランク角と回転速度を検出するクランク角センサ21と、内燃エンジン1の負荷を検出するエアフローメータ22と、がコントローラ20に信号回路で接続される。さらに、内燃エンジン1のノックを検出するノックセンサ23もコントローラ20に信号回路で接続される。 The controller 20 controls the fuel injection amount and injection timing of the fuel injector 6. Therefore, as a sensor for detecting the operating condition of the internal combustion engine 1, a crank angle sensor 21 for detecting the crank angle and the rotation speed of the internal combustion engine 1 and an air flow meter 22 for detecting the load of the internal combustion engine 1 are provided in the controller 20. Connected by signal circuit. Further, a knock sensor 23 for detecting knock of the internal combustion engine 1 is also connected to the controller 20 by a signal circuit.
 コントローラ20は内燃エンジン1のエンジン負荷に基づき燃料インジェクタ6の噴射バルス幅と噴射タイミングを設定する。そして、設定された噴射パルス幅と噴射タイミングを噴射パルス幅信号として燃料インジェクタ6に出力する。 The controller 20 sets the injection pulse width and injection timing of the fuel injector 6 based on the engine load of the internal combustion engine 1. Then, the set injection pulse width and injection timing are output to the fuel injector 6 as an injection pulse width signal.
 燃料インジェクタ6は例えば前記従来技術に開示される公知の燃料インジェクタで構成され、スプリングで閉鎖位置に保持された弁体と、弁体をスプリングに抗してリフトさせるソレノイドと、弁体の一定以上のリフトを阻止するストッパとを備える。 The fuel injector 6 is composed of, for example, a known fuel injector disclosed in the prior art, a valve body held in a closed position by a spring, a solenoid that lifts the valve body against the spring, and a certain level of the valve body And a stopper for preventing the lift.
 コントローラ20が実行する以上の燃料噴射制御について以下により詳しく説明する。 The fuel injection control performed by the controller 20 will be described in more detail below.
 噴射パルス幅信号は一般には矩形の信号として表されるが、噴射パルス幅信号によって燃料インジェクタ6のソレノイドに供給される電流は、実際には噴射パルス幅信号の初期段階とそれ以外とで異なる。これは、スプリングのイニシャル荷重及び慣性力に抗して弁体にリフトを開始させるのに必要なソレノイドの励磁電流と、リフトさせた弁体をリフト状態に保持するのに必要なソレノイドの励磁電流とが異なるためである。以下の説明では、前者をピーク電流、後者を開弁位置維持電流と称する。ピーク電流は大電流であるため、一端リフトを開始した弁体は急激にリフトしてストッパに衝突する。 The injection pulse width signal is generally represented as a rectangular signal, but the current supplied to the solenoid of the fuel injector 6 by the injection pulse width signal is actually different between the initial stage of the injection pulse width signal and the others. This is because the solenoid excitation current required to start the valve body to lift against the initial load and inertial force of the spring, and the solenoid excitation current required to hold the lifted valve body in the lifted state. Is different. In the following description, the former is referred to as a peak current, and the latter is referred to as a valve opening position maintaining current. Since the peak current is a large current, the valve body that has started to lift once suddenly lifts up and collides with the stopper.
 FIG.2を参照すると、同一幅の噴射パルス幅信号において、ピーク電流が高い場合にはソレノイドの駆動電流は、図の一点鎖線に示すように変化する。以下の説明では噴射パルス幅信号のこの駆動波形をフルリフトモードの駆動波形と称する。フルリフトモードのピーク電流を第1のピーク電流と称する。 FIG. Referring to FIG. 2, when the peak current is high in the injection pulse width signal having the same width, the solenoid drive current changes as indicated by a one-dot chain line in the figure. In the following description, this drive waveform of the injection pulse width signal is referred to as a full lift mode drive waveform. The peak current in the full lift mode is referred to as the first peak current.
 一方、図の実線は、ピーク電流をフルリフトモードの第1のピーク電流より低い第2のピーク電流に抑えるとともに、第2のピーク電流の出力直後に電流を、いったん開弁位置維持電流を超えて低下させ、その後に開弁位置維持電流に戻す場合を示している。以下の説明では噴射パルス幅信号のこの駆動波形をパーシャルリフトモードの駆動波形と称する。パーシャルリフトモードは前記従来技術が提案する噴射パルス幅信号の電流制御に相当する。 On the other hand, the solid line in the figure shows that the peak current is suppressed to the second peak current lower than the first peak current in the full lift mode, and the current immediately exceeds the valve opening position maintaining current immediately after the second peak current is output. It shows a case of lowering and then returning to the valve opening position maintaining current. In the following description, this drive waveform of the injection pulse width signal is referred to as a partial lift mode drive waveform. The partial lift mode corresponds to the current control of the injection pulse width signal proposed by the prior art.
 内燃エンジン1は少なくとも一定の条件下ではパーシャルリフトモードで運転を行なうエンジンとする。フルリフトモードとパーシャルリフトモードの使い分けに関しては、例えば内燃エンジン1の燃費性能よりも加速レスポンスを重視するような場合にはフルリフトモードを適用し、それ以外の場合にパーシャルリフトモードを適用することが考えられる。ただし、この燃料噴射制御装置は原則として常時パーシャルリフトモードで運転を行なうように設計された内燃エンジン1にも適用可能である。 The internal combustion engine 1 is an engine that operates in the partial lift mode under at least certain conditions. Regarding the proper use of the full lift mode and the partial lift mode, for example, the full lift mode may be applied when the acceleration response is more important than the fuel efficiency of the internal combustion engine 1, and the partial lift mode may be applied otherwise. It is done. However, this fuel injection control device is also applicable to the internal combustion engine 1 designed to always operate in the partial lift mode in principle.
 FIG.3を参照すると、フルリフトモードでは燃料インジェクタ6の弁体がストッパに衝突することで弁体のリフト量が変動する。そのため、リフト位置が安定しない噴射パルス幅信号の初期においては燃料噴射量の制御は困難である。これに対して、パーシャルリフトモードでは弁体のリフトがスムーズに行なわれるので噴射パルス幅信号の初期の段階から燃料噴射量は安定的に推移する。 FIG. Referring to FIG. 3, in the full lift mode, the lift amount of the valve body varies as the valve body of the fuel injector 6 collides with the stopper. Therefore, it is difficult to control the fuel injection amount at the initial stage of the injection pulse width signal where the lift position is not stable. On the other hand, in the partial lift mode, the valve body lifts smoothly, so the fuel injection amount changes stably from the initial stage of the injection pulse width signal.
 FIG.3において各モードの駆動波形の面積が燃料噴射量に相当する。図から分かるように同一幅の噴射パルス幅信号に対して、パーシャルリフトモードの噴射量はフルリフトモードの噴射量を下回る。 FIG. 3, the area of the drive waveform in each mode corresponds to the fuel injection amount. As can be seen from the figure, the injection amount in the partial lift mode is lower than the injection amount in the full lift mode with respect to the injection pulse width signal having the same width.
 パーシャルリフトモードでは、噴射パルス幅信号の出力初期の段階から燃料噴射量を精度良く制御できるため、高精度の燃料噴射制御が行える利点がある。一方で、パルス幅に対して噴射量が低く抑えられる。そのため、要求噴射量が同じでも、パルス幅をフルリフトモードより長く設定しなければならない。噴射パルス幅信号のパルス幅が長くなると、燃料噴射タイミングが、ノックセンサ23がノック検出を行なうクランク角領域であるノック検出領域に入ってしまう。すなわち、ある気筒の吸気行程で燃料噴射が行われるのに対して、別の気筒では特定のクランク角領域(例えば、圧縮上死点後の特定のクランク角領域)でノック検出が行われるため、噴射パルス幅信号のパルス幅が長くなると、燃料噴射タイミングがこのクランク角領域に入ってしまう可能性がある。特に、多段噴射を行う場合、各噴射段の噴射パルス幅信号のパルス幅が長くなるので、その可能性がより高くなる。ここで、燃料噴射タイミングとは燃料インジェクタ6の弁体のリフトあるいはシートへの着座のタイミングを意味する。弁体のこれらの動作がノック検出領域で行なわれると、ノックセンサ23が誤ってノッキング発生と誤認するおそれがある。したがって、内燃エンジン1の燃料噴射はノック検出領域の終了後に開始、あるいはノック検出領域の開始前に終了させることが望ましい。 In the partial lift mode, the fuel injection amount can be accurately controlled from the initial stage of the output of the injection pulse width signal. Therefore, there is an advantage that highly accurate fuel injection control can be performed. On the other hand, the injection amount can be kept low with respect to the pulse width. Therefore, even if the required injection amount is the same, the pulse width must be set longer than the full lift mode. When the pulse width of the injection pulse width signal becomes longer, the fuel injection timing enters a knock detection region that is a crank angle region where the knock sensor 23 detects knock. That is, while fuel injection is performed in the intake stroke of a certain cylinder, knock detection is performed in a specific crank angle region (for example, a specific crank angle region after compression top dead center) in another cylinder, If the pulse width of the injection pulse width signal becomes longer, the fuel injection timing may enter this crank angle region. In particular, when performing multi-stage injection, the pulse width of the injection pulse width signal of each injection stage becomes longer, so the possibility becomes higher. Here, the fuel injection timing means the timing of lift of the valve body of the fuel injector 6 or seating on the seat. If these operations of the valve body are performed in the knock detection region, the knock sensor 23 may erroneously recognize that knocking has occurred. Therefore, it is desirable to start fuel injection of the internal combustion engine 1 after the end of the knock detection region, or end it before the start of the knock detection region.
 しかしながら、同じ幅の噴射パルス幅信号に対して、パーシャルリフトモードでは前述のようにフルリフトモードより実噴射量が小さくなる。そのため、同じ要求噴射量に対して設定される噴射パルス幅信号のパルス幅はフルリフトモードよりも長くなる。結果としてパーシャルリフトモードでは燃料噴射タイミングがノック検出領域に入りやすい。言い換えれば、燃料噴射タイミングがノック検出領域と干渉しやすい。 However, for the same injection pulse width signal, the actual injection amount is smaller in the partial lift mode than in the full lift mode as described above. Therefore, the pulse width of the injection pulse width signal set for the same required injection amount is longer than that in the full lift mode. As a result, in the partial lift mode, the fuel injection timing tends to enter the knock detection region. In other words, the fuel injection timing tends to interfere with the knock detection region.
 燃料噴射制御装置は、内燃エンジン1の運転条件を表す回転速度と負荷に基づき、燃料噴射の噴射タイミングと噴射量を算出し、算出した噴射タイミングと噴射量に応じた噴射パルス幅信号を燃料インジェクタに出力する。噴射パルス幅信号の出力に先立って、コントローラ20は、決定した燃料噴射タイミングがノックセンサのノック検出領域である所定のクランク角領域と干渉するかどうかを判定する。燃料噴射タイミングが所定のクランク角領域と干渉する場合には、コントローラ20は燃料噴射モードをパーシャルリフトモードからフルリフトモードに切り換え、フルリフトモードのもとで再設定した噴射パルス幅信号を燃料インジェクタ6に出力する。 The fuel injection control device calculates an injection timing and an injection amount of fuel injection based on a rotational speed and a load representing an operation condition of the internal combustion engine 1, and outputs an injection pulse width signal corresponding to the calculated injection timing and injection amount to the fuel injector. Output to. Prior to the output of the injection pulse width signal, the controller 20 determines whether or not the determined fuel injection timing interferes with a predetermined crank angle region that is a knock detection region of the knock sensor. When the fuel injection timing interferes with a predetermined crank angle region, the controller 20 switches the fuel injection mode from the partial lift mode to the full lift mode, and the injection pulse width signal reset under the full lift mode is supplied to the fuel injector 6. Output.
 この制御を実現するために、コントローラ20のROMにはFIG.4に示す燃料噴射制御ルーチンが予めプログラムされる。コントローラ20は燃料噴射制御ルーチンを実行することでこの制御を実現する。 In order to realize this control, the ROM of the controller 20 has a FIG. A fuel injection control routine shown in FIG. The controller 20 implements this control by executing a fuel injection control routine.
 FIG.4を参照して燃料噴射制御ルーチンを説明する。コントローラ20は燃料噴射制御ルーチンを例えば内燃エンジンの回転に同期して繰り返し実行する。このルーチは燃料噴射制御ルーチンに関するこの発明の第1の実施形態に相当する。 FIG. The fuel injection control routine will be described with reference to FIG. The controller 20 repeatedly executes the fuel injection control routine in synchronization with, for example, the rotation of the internal combustion engine. This routine corresponds to the first embodiment of the present invention relating to the fuel injection control routine.
 ステップS1で、コントローラ20はクランク角センサ21から入力されるエンジン回転速度と、エアフローメータ22から入力される吸入空気量と、を読み込む。吸入空気量はエンジン負荷を代表する値として読み込まれる。 In step S1, the controller 20 reads the engine rotational speed input from the crank angle sensor 21 and the intake air amount input from the air flow meter 22. The intake air amount is read as a value representative of the engine load.
 ステップS2で、コントローラ20はエンジン負荷に基づき燃料噴射量を算出する。 In step S2, the controller 20 calculates the fuel injection amount based on the engine load.
 次のステップS3で、コントローラ20はノックセンサ23が内燃エンジン1のノッキングを検出するクランク角領域を、エンジン回転速度に基づき算出する。以下の説明ではノックセンサ23が内燃エンジン1のノッキングを検出するクランク角領域をノック検出領域と称する。一般にエンジン回転速度が高くなるほどノック検出領域は進角側に拡大する。 In the next step S3, the controller 20 calculates a crank angle region in which the knock sensor 23 detects knocking of the internal combustion engine 1 based on the engine speed. In the following description, the crank angle region where the knock sensor 23 detects knocking of the internal combustion engine 1 is referred to as a knock detection region. Generally, as the engine speed increases, the knock detection area expands toward the advance side.
 次のステップS4で、コントローラ20はステップS2で決定した燃料噴射量からパーシャルリフトモードの燃料噴射パルス幅と噴射タイミングを算出する。ここで、噴射タイミングは噴射開始タイミングと噴射終了タイミングを意味する。噴射終了タイミングは噴射開始タイミングに噴射パルス幅を加えた値である。なお、先に噴射終了タイミングを算出して、噴射終了タイミングに噴射パルス幅を減じて噴射開始タイミングを算出しても良い。多段噴射を行なう場合には、コントローラ20は1燃焼サイクル内で実行される多段噴射の噴射段ごとに噴射開始タイミングと噴射終了タイミングを算出する。 In the next step S4, the controller 20 calculates the fuel injection pulse width and injection timing in the partial lift mode from the fuel injection amount determined in step S2. Here, the injection timing means an injection start timing and an injection end timing. The injection end timing is a value obtained by adding the injection pulse width to the injection start timing. Note that the injection end timing may be calculated first, and the injection start timing may be calculated by subtracting the injection pulse width from the injection end timing. When performing multistage injection, the controller 20 calculates the injection start timing and the injection end timing for each injection stage of the multistage injection executed within one combustion cycle.
 次のステップS5で、コントローラ20はステップS4で算出した噴射開始タイミングと噴射終了タイミングのいずれかが、ステップS3で設定したノック検出領域と干渉するかどうかを判定する。ここで、干渉とは噴射開始タイミングまたは噴射終了タイミングがノック検出領域に入ってしまうことを意味する。なお、多段噴射の場合、各噴射段の噴射開始タイミングと噴射終了タイミングのうち最も進角位置にあるのが最初の噴射段の噴射開始タイミングで、最も遅角位置にあるのが、最終噴射段の噴射終了タイミングである。したがって、ステップS5では実質的に最初の噴射段の噴射開始タイミングと、最終噴射段の噴射終了タイミングがノック検出領域に入るかどうかを判定すれば良い。一般にステップS5の判定が否定的となるのは、すなわち噴射開始タイミングと噴射終了タイミングのいずれかがノック検出領域と干渉するのは、内燃エンジン1のエンジン回転速度が高い領域またはエンジン負荷が高い領域である。 In the next step S5, the controller 20 determines whether any of the injection start timing and the injection end timing calculated in step S4 interferes with the knock detection region set in step S3. Here, the interference means that the injection start timing or the injection end timing enters the knock detection region. In the case of multi-stage injection, the injection start timing of the first injection stage is the most advanced position among the injection start timing and injection end timing of each injection stage, and the final injection stage is the most retarded position. Is the end timing of injection. Therefore, in step S5, it may be determined whether the injection start timing of the first injection stage and the injection end timing of the final injection stage are within the knock detection region. In general, the determination in step S5 is negative, that is, one of the injection start timing and the injection end timing interferes with the knock detection region is a region where the engine speed of the internal combustion engine 1 is high or the engine load is high. It is.
 ステップS5で噴射開始タイミングと噴射終了タイミングのいずれもがノック検出領域外である場合には、コントローラ20は、ステップS7において、ステップS4で算出した燃料噴射パルス幅と噴射タイミングに従って、FIG.2の実線に示す駆動波形の噴射パルス幅信号を出力することで、パーシャルリフトモードの燃料噴射を実行する。 If both the injection start timing and the injection end timing are outside the knock detection region in step S5, the controller 20 determines in FIG. S7 according to the fuel injection pulse width and injection timing calculated in step S4. The fuel injection in the partial lift mode is executed by outputting the injection pulse width signal having the driving waveform indicated by the solid line 2.
 一方、ステップS5で、噴射開始タイミングと噴射終了タイミングのいずれかが、ノック検出領域内となる場合には、コントローラ20はフルリフトモードで燃料噴射を行なう。そのために、コントローラ20はステップS6で、ステップS2で算出した燃料噴射量からフルリフトモードのパルス幅と噴射タイミングを算出する。 On the other hand, if either the injection start timing or the injection end timing falls within the knock detection region in step S5, the controller 20 performs fuel injection in the full lift mode. For this purpose, the controller 20 calculates the pulse width and injection timing of the full lift mode from the fuel injection amount calculated in step S2 in step S6.
 コントローラ20は、ステップS7において、ステップS6で算出した燃料噴射パルス幅と噴射タイミングに従って、FIG.2の一点鎖線に示す駆動波形の噴射パルス幅信号を出力することで、フルリフトモードの燃料噴射を実行する。 Controller 20 determines in FIG. S7 according to the fuel injection pulse width and injection timing calculated in step S6. The fuel injection in the full lift mode is executed by outputting an injection pulse width signal having a drive waveform indicated by a two-dot chain line.
 ステップS7の処理の後、コントローラ20はルーチンを終了する。 After the process of step S7, the controller 20 ends the routine.
 次にFIGS.9A-9Eを参照して、この燃料噴射制御ルーチンの実行結果を説明する。 Next, FIG. The execution result of this fuel injection control routine will be described with reference to 9A-9E.
 パーシャルリフトモードでの燃料噴射が実行されている状況で、例えば車両のアクセルレータペダルが踏み込まれ、エンジン負荷が増大すると、対応してFIG.4のステップS2で算出される燃料噴射量が増大する。 In the situation where fuel injection in the partial lift mode is being executed, for example, when the accelerator pedal of the vehicle is depressed and the engine load increases, FIG. The fuel injection amount calculated in step S2 of 4 increases.
 コントローラ20はステップS2で算出された燃料噴射量に基づき、ステップS4でパーシャルリフトモードの燃料噴射パルス幅と燃料噴射タイミングを算出し、ステップS5で燃料噴射開始タイミングあるいは燃料噴射終了タイミングがノックセンサ23のノック検出領域と干渉しないかどうかを判定する。具体的には、燃料噴射開始タイミング及び燃料噴射終了タイミングがノック検出領域の外側にあるかどうかを判定する。 Based on the fuel injection amount calculated in step S2, the controller 20 calculates the fuel injection pulse width and fuel injection timing in the partial lift mode in step S4. In step S5, the fuel injection start timing or the fuel injection end timing is detected by the knock sensor 23. It is determined whether or not it interferes with the knock detection area. Specifically, it is determined whether the fuel injection start timing and the fuel injection end timing are outside the knock detection region.
 燃料噴射量が少ないうちは、ステップS5の判定は肯定的となる。なお、ステップS5の判定が肯定的な場合について、FIG.9Dではノック検出領域非干渉と標記している。この場合には、FIG.9Eに示すように、パーシャルリフトモードでの燃料噴射が続行される。 As long as the fuel injection amount is small, the determination in step S5 is affirmative. In addition, about the case where determination of step S5 is affirmative, FIG. In 9D, it is marked as knock detection area non-interference. In this case, FIG. As shown in 9E, fuel injection in the partial lift mode is continued.
 エンジン負荷の増大とともに燃料噴射量が増え、それに伴ってFIG.9Cに示すように燃料噴射パルス幅も増加する。FIG.9Bに示すようにエンジン回転速度も上昇する。 The fuel injection amount increases with the increase in engine load. As shown in 9C, the fuel injection pulse width also increases. FIG. As indicated by 9B, the engine speed also increases.
 燃料噴射量の増加は燃料噴射パルス幅の増大を意味する。その結果、あるタイミングで、燃料噴射タイミングがノック検出領域と干渉する。 Increase in fuel injection amount means increase in fuel injection pulse width. As a result, the fuel injection timing interferes with the knock detection region at a certain timing.
 すると、ステップS5の判定がFIG.9Dに示すように否定的に転じる。コントローラ20はステップS5の判定が否定的に転じると、燃料噴射モードをパーシャルリフトモードからフルリフトモードへと切り換える。そして、ステップS2で求めた燃料噴射量に基づき、ステップS6でフルリフトモードの燃料噴射パルス幅と燃料噴射タイミングを算出する。そして、ステップS6で算出したフルリフトモードの燃料噴射パルス幅と燃料噴射タイミングを用いて、ステップS7でフルリフトモードの燃料噴射を実行する。 Then, the determination in step S5 is FIG. Turn negative as shown in 9D. When the determination in step S5 turns negative, the controller 20 switches the fuel injection mode from the partial lift mode to the full lift mode. And based on the fuel injection quantity calculated | required by step S2, the fuel injection pulse width and fuel injection timing of a full lift mode are calculated by step S6. Then, fuel injection in the full lift mode is executed in step S7 using the fuel injection pulse width and fuel injection timing in the full lift mode calculated in step S6.
 このようにして、コントローラ20はパーシャルリフトモードからフルリフトモードへの切り換えを行った後は、毎回のルーチン実行においてステップS6でフルリフトモード用の燃料噴射パルス幅と燃料噴射タイミングが算出される。算出される燃料噴射パルス幅は同一の燃料噴射量に関して、FIG.9Cに示すようにパーシャルリフトモードに比べて小さくなる。その結果、ステップS7で行なわれるフルリフトモードでの燃料噴射をノック検出領域の外側で完了することが可能となる。 Thus, after the controller 20 switches from the partial lift mode to the full lift mode, the fuel injection pulse width and fuel injection timing for the full lift mode are calculated in step S6 in each routine execution. The calculated fuel injection pulse width is the same as that of FIG. As shown in 9C, it becomes smaller than the partial lift mode. As a result, the fuel injection in the full lift mode performed in step S7 can be completed outside the knock detection region.
 パーシャルリフトモードからフルリフトモードへの切り換えを行なわずに、そのままパーシャルリフトモードでの燃料噴射を続けると、エンジン負荷の増大に伴って燃料噴射パルス幅が大きくなることで、例えば、多段噴射の最終段の燃料噴射停止タイミングが図の点線に示されるようにノック検出領域に入ってしまう。その結果、ノックセンサ23が内燃エンジン1のノックを誤検出する可能性がある。 If fuel injection in the partial lift mode is continued without switching from the partial lift mode to the full lift mode, the fuel injection pulse width increases as the engine load increases. The fuel injection stop timing enters the knock detection region as shown by the dotted line in the figure. As a result, the knock sensor 23 may erroneously detect knock of the internal combustion engine 1.
 この燃料噴射制御ルーチンを実行することで、燃料噴射タイミングがノック検出領域と干渉するのを防止することができる。したがって、ノックセンサ23による内燃エンジン1のノッキングの誤検出を回避しつつ、燃料噴射量の増加に対応することが可能となる。なお、フルリフトモードへ切り替えても燃料噴射量が多いので、少量の燃料噴射に関する制御精度の問題は起こらない。 It is possible to prevent the fuel injection timing from interfering with the knock detection region by executing this fuel injection control routine. Therefore, it is possible to cope with an increase in the fuel injection amount while avoiding erroneous detection of knocking of the internal combustion engine 1 by the knock sensor 23. Even if the mode is switched to the full lift mode, the fuel injection amount is large, so that there is no problem of control accuracy regarding a small amount of fuel injection.
 次にFIG.5を参照して、この発明の第2の実施形態による燃料噴射制御ルーチンを説明する。 Next, FIG. A fuel injection control routine according to the second embodiment of the present invention will be described with reference to FIG.
 この燃料噴射制御ルーチンと第1の実施形態によるFIG.4の燃料噴射制御ルーチンとでは、燃料噴射タイミングがノック検出領域と干渉するかどうかの判定プロセスが異なる。FIG.4の燃料噴射制御ルーチンでは、エンジン回転速度からノック検出領域を算出し、エンジン負荷からパーシャルリフトモードの燃料噴射パルス幅と燃料噴射タイミングを算出し、パーシャルリフトモードの燃料噴射タイミングがノック検出領域と干渉するかどうかを判定している。しかしながら、同一仕様の内燃エンジン1に関して、燃料噴射タイミングがノック検出領域と干渉する運転状態は、エンジン回転速度とエンジン負荷とをパラメータとして直接判定可能である。この実施形態では、エンジン回転速度とエンジン負荷のしきい値をあらかじめコントローラ20のROMにそれぞれ格納しておく。そして、コントローラ20はエンジン回転速度とエンジン負荷をこれらのしきい値と比較することで、燃料噴射タイミングがノック検出領域と干渉するかどうかを判定する。 This fuel injection control routine and the FIG. The fuel injection control routine of No. 4 differs from the determination process of whether or not the fuel injection timing interferes with the knock detection region. FIG. In the fuel injection control routine of No. 4, the knock detection region is calculated from the engine speed, the fuel injection pulse width and fuel injection timing in the partial lift mode are calculated from the engine load, and the fuel injection timing in the partial lift mode is calculated from the knock detection region. Judging whether to interfere. However, regarding the internal combustion engine 1 of the same specification, the operating state in which the fuel injection timing interferes with the knock detection region can be directly determined using the engine speed and the engine load as parameters. In this embodiment, the engine speed and the engine load threshold value are stored in advance in the ROM of the controller 20, respectively. Then, the controller 20 determines whether or not the fuel injection timing interferes with the knock detection region by comparing the engine rotation speed and the engine load with these threshold values.
 この決定プロセスのために、この燃料噴射制御ルーチンでは、FIG.4の燃料噴射制御ルーチンのステップS4を削除する一方、ステップS5に代えてステップS5Aを設けている。 For this decision process, the fuel injection control routine uses FIG. While step S4 of the fuel injection control routine of No. 4 is deleted, step S5A is provided instead of step S5.
 ステップS5Aで、コントローラ20はステップS1で読み込んだエンジン回転速度とエンジン負荷を、それぞれのしきい値と比較する。そして、エンジン回転速度がエンジン回転速度のしきい値を上回り、かつエンジン負荷がエンジン負荷のしきい値を上回る場合に、フルリフトモードを適用すべき運転領域と判定する。その場合には、ステップS6でフルリフトモードの燃料噴射パルス幅と燃料噴射タイミングを算出し、ステップS7で算出結果に対応した燃料噴射を実行する。一方、それ以外の領域についてはパーシャルリフトモードを適用するべき運転領域と判定する。その場合には、ステップS4で算出したパーシャルリフトモードの燃料噴射パルス幅と燃料噴射タイミングに従ってステップS7で燃料噴射を実行する。 In step S5A, the controller 20 compares the engine speed and engine load read in step S1 with respective threshold values. When the engine rotation speed exceeds the engine rotation speed threshold value and the engine load exceeds the engine load threshold value, it is determined that the operation range is to apply the full lift mode. In that case, the fuel injection pulse width and fuel injection timing in the full lift mode are calculated in step S6, and the fuel injection corresponding to the calculation result is executed in step S7. On the other hand, it determines with the area | region other than that being the driving | operation area | region which should apply partial lift mode. In that case, fuel injection is executed in step S7 according to the fuel injection pulse width and fuel injection timing in the partial lift mode calculated in step S4.
 FIGS.10A-10Eを参照して、この燃料噴射制御ルーチンの実行結果を説明する。 Fig. The execution result of this fuel injection control routine will be described with reference to 10A-10E.
 第1の実施形態と同じく、FIG.10Aに示すように、パーシャルリフトモードでの燃料噴射が実行されている状況から、例えば車両のアクセルレータペダルが踏み込まれると、FIG.10Cに示すようにエンジン負荷が増大し、対応して燃料噴射量が増大する。 As in the first embodiment, FIG. As shown in FIG. 10A, when the fuel accelerator in the partial lift mode is being executed, for example, when the accelerator pedal of the vehicle is depressed, FIG. As indicated by 10C, the engine load increases and the fuel injection amount correspondingly increases.
 これに伴い、FIG.10Dに示すように燃料噴射パルス幅も増大する。また、FIG.10Bに示すようにエンジン回転速度も上昇する。 Along with this, FIG. As shown in 10D, the fuel injection pulse width also increases. In addition, FIG. As indicated by 10B, the engine speed also increases.
 これに対して、コントローラ20は燃料噴射制御ルーチンの実行の都度、ステップS5Aでエンジン回転速度をエンジン回転速度のしきい値と比較し、エンジン負荷をエンジン負荷のしきい値と比較する。 On the other hand, every time the fuel injection control routine is executed, the controller 20 compares the engine speed with the engine speed threshold value and compares the engine load with the engine load threshold value in step S5A.
 ある時点で、エンジン回転速度がしきい値を上回るが、この段階ではエンジン負荷は依然としてしきい値以下のため、ステップS5Aの判定は否定的を維持し、パーシャルリフトモードで燃料噴射が行なわれる。エンジン負荷がしきい値を超えると、ステップS5Aの判定が肯定的に転じ、フルリフトモードへの切り換えが行われる。具体的には、コントローラ20がステップS6でフルリフトモードの燃料噴射パルス幅と燃料噴射タイミングを算出し、ステップS6の算出結果を用いてステップS7で燃料噴射を実行する。 At a certain point in time, the engine speed exceeds the threshold value, but at this stage the engine load is still below the threshold value, so the determination in step S5A remains negative and fuel injection is performed in the partial lift mode. When the engine load exceeds the threshold value, the determination in step S5A turns positive, and switching to the full lift mode is performed. Specifically, the controller 20 calculates the fuel injection pulse width and fuel injection timing in the full lift mode in step S6, and executes fuel injection in step S7 using the calculation result in step S6.
 ノック検出領域はFIG.9Cに示すようにエンジン回転速度の上昇に応じて進角側に拡大する。一方、燃料インジェクタ6の燃料噴射タイミングはエンジン負荷の増大とともに遅角側へ移動する。ステップS5Aの判定を行なうことで、FIG.10B、10Cに示すように燃料噴射タイミングがノック検出領域と干渉するどうかを直接的に予測することができる。この判定により、燃料噴射タイミングがノック検出領域に入る直前に、FIG.10Fに示すようにコントローラ20が燃料噴射モードをパーシャルリフトモードからフルリフトモードへと切り換える。 The knock detection area is FIG. As shown in 9C, it expands to the advance side as the engine speed increases. On the other hand, the fuel injection timing of the fuel injector 6 moves to the retard side as the engine load increases. By performing the determination in step S5A, FIG. As shown in 10B and 10C, it can be directly predicted whether the fuel injection timing interferes with the knock detection region. By this determination, immediately before the fuel injection timing enters the knock detection region, the FIG. As shown at 10F, the controller 20 switches the fuel injection mode from the partial lift mode to the full lift mode.
 この実施形態によっても、第1の実施形態と同様に、燃料噴射タイミングがノック検出領域に入るのを防止することで、ノックセンサ23による内燃エンジン1のノッキングの誤検出を回避しつつ、燃料噴射量の増加に対応することが可能となる。 Also in this embodiment, as in the first embodiment, by preventing the fuel injection timing from entering the knock detection region, it is possible to avoid erroneous detection of knocking of the internal combustion engine 1 by the knock sensor 23 and to perform fuel injection. It becomes possible to cope with the increase in quantity.
 次にFIG.6を参照して、この発明の第3の実施形態による燃料噴射制御ルーチンを説明する。 Next, FIG. A fuel injection control routine according to the third embodiment of the present invention will be described with reference to FIG.
 この燃料噴射制御ルーチンと第1の実施形態によるFIG.4の燃料噴射制御ルーチンとの違いは、ステップS51を設けた点である。その他のステップはFIG.4の燃料噴射制御ルーチンと同一である。 This fuel injection control routine and the FIG. The difference from the fuel injection control routine of No. 4 is that step S51 is provided. Other steps are shown in FIG. 4 is the same as the fuel injection control routine.
 FIG.6を参照すると、ステップS5で噴射タイミングがノック検出領域と干渉すると判定されると、コントローラ20はステップS51で燃料噴射量増量サブルーチンを実行する。 FIG. Referring to FIG. 6, if it is determined in step S5 that the injection timing interferes with the knock detection region, the controller 20 executes a fuel injection amount increase subroutine in step S51.
 FIG.7を参照してステップS51で実行される燃料噴射量増量サブルーチンを説明する。 FIG. The fuel injection amount increase subroutine executed in step S51 will be described with reference to FIG.
 コントローラ20はステップS11で燃料の増量が完了したかどうかを判定し、増量が完了していない場合にはステップS12で増量を実行した後、再度ステップS11の判定を行なう。こうして一定量の燃料増量を実行する。これにより、ステップS2で算出した燃料噴射量に一定量が加えられる。これにより燃焼室内の混合気の空燃比がリッチ化する。 The controller 20 determines whether or not the fuel increase has been completed in step S11. If the increase has not been completed, the controller 20 executes the increase in step S12 and then performs the determination in step S11 again. Thus, a certain amount of fuel increase is executed. As a result, a certain amount is added to the fuel injection amount calculated in step S2. This enriches the air-fuel ratio of the air-fuel mixture in the combustion chamber.
 ステップS6でコントローラ20は、ステップS51で増量した燃料噴射量に基づきフルリフトモードの燃料噴射パルス幅と燃料噴射タイミングを計算する。コントローラ20はステップS6の算出結果を用いてステップS7で燃料噴射を実行する。 In step S6, the controller 20 calculates the fuel injection pulse width and fuel injection timing in the full lift mode based on the fuel injection amount increased in step S51. The controller 20 performs fuel injection at step S7 using the calculation result at step S6.
 燃料噴射量増量サブルーチンについて以下に説明する。 The fuel injection amount increase subroutine will be described below.
 FIG.8を参照すると、フルリフトモードとパーシャルリフトモードとでは、コントローラ20による燃料噴射量の制御精度が異なる。図のFはフルリフトモードの燃料噴射量のばらつきを示し、図のPはパーシャルリフトモードの燃料噴射量のばらつきを示す。図に示すようにパーシャルリフトモードにおける燃料噴射量のばらつきの幅は、フルリフトモードにおける燃料噴射量のばらつきの幅より小さい。パーシャルリフトモードではフルリフトモードより燃料噴射量の制御精度が高いからである。 FIG. Referring to FIG. 8, the control accuracy of the fuel injection amount by the controller 20 differs between the full lift mode and the partial lift mode. F in the figure shows the variation in the fuel injection amount in the full lift mode, and P in the figure shows the variation in the fuel injection amount in the partial lift mode. As shown in the figure, the range of variation in the fuel injection amount in the partial lift mode is smaller than the range of variation in the fuel injection amount in the full lift mode. This is because the control accuracy of the fuel injection amount is higher in the partial lift mode than in the full lift mode.
 一般に内燃エンジン6は理論空燃比の14.7付近の空燃比となるように燃料噴射制御が行なわれる。しかしながら、理論空燃比付近では、図に示すように燃料のばらつきが発生トルクの変化に及ぼす影響が大きい。したがって、理論空燃比の近傍でパーシャルリフトモードからフルリフトモードへの切り換えが行なわれると、発生トルクに段差が生じる可能性がある。 Generally, fuel injection control is performed so that the internal combustion engine 6 has an air-fuel ratio in the vicinity of 14.7 of the theoretical air-fuel ratio. However, in the vicinity of the theoretical air-fuel ratio, as shown in the figure, the influence of fuel variation has a great influence on the change in generated torque. Therefore, if the partial lift mode is switched to the full lift mode in the vicinity of the theoretical air-fuel ratio, a step may be generated in the generated torque.
 発生トルクが最大値となる空燃比が約10の近傍のリッチ空燃比において、フルリフトモードにおける燃料噴射量のばらつきの幅は、依然としてパーシャルリフトモードにおける燃料噴射量のばらつきの幅より大きい。しかしながら、ばらつきが発生トルクに及ぼす影響は理論空燃比付近でのばらつきと比べてリッチ空燃比では格段に小さくなる。そこで、空燃比をリッチ空燃比へと制御したうえでパーシャルリフトモードからフルリフトモードへの切り換えを行なえば、モードの切り換えをトルク段差の発生させることなく、スムーズに行なうことができる。ステップS51でFIG.7の燃料噴射量増量サブルーチンを実行するのは以上の理由による。 When the air-fuel ratio at which the generated torque reaches the maximum value is about 10 in the rich air-fuel ratio, the variation range of the fuel injection amount in the full lift mode is still larger than the variation range of the fuel injection amount in the partial lift mode. However, the effect of the variation on the generated torque is significantly reduced at the rich air-fuel ratio as compared to the variation near the theoretical air-fuel ratio. Therefore, by switching from the partial lift mode to the full lift mode after controlling the air-fuel ratio to the rich air-fuel ratio, the mode can be switched smoothly without generating a torque step. In step S51, FIG. The reason why the fuel injection amount increase subroutine 7 is executed is as described above.
 FIGS.11A-11Fを参照して、この燃料噴射制御ルーチンの実行結果を説明する。 Fig. An execution result of this fuel injection control routine will be described with reference to 11A-11F.
 パーシャルリフト状態で内燃エンジン1を運転中に、ステップS5で噴射タイミングがノック検出領域内に入ると判定されると、FIG.11Bに示すように、フルリフトモードへの切り換えが要求される。コントローラ20はこの増量要求に対してステップS51の燃料噴射量増量サブルーチンを実行することで、FIG.11Cに示されるように燃料噴射量を増量する。コントローラ20はステップS51で増量した燃料噴射量に対応するフルリフトモードの燃料噴射パルス幅と燃料噴射タイミングをステップS6で算出する。 If it is determined in step S5 that the injection timing is within the knock detection region while the internal combustion engine 1 is operating in the partial lift state, FIG. As shown in 11B, switching to the full lift mode is required. The controller 20 executes the fuel injection amount increase subroutine of step S51 in response to this increase request, thereby FIG. The fuel injection amount is increased as indicated by 11C. The controller 20 calculates the fuel injection pulse width and fuel injection timing in the full lift mode corresponding to the fuel injection amount increased in step S51 in step S6.
 コントローラ20はステップS6の算出結果に従ってステップS7でパルス幅信号を出力する。以後は、FIGS.11C及び11Fに示されるように、増量した燃料噴射量に対応するフルリフトモードの駆動波形のパルス幅信号が燃料インジェクタ6に出力される。 Controller 20 outputs a pulse width signal in step S7 according to the calculation result in step S6. Thereafter, FIG. As shown in 11C and 11F, the pulse width signal of the drive waveform in the full lift mode corresponding to the increased fuel injection amount is output to the fuel injector 6.
 この実施形態によれば、第1の実施形態及び第2の実施形態と同様に、燃料噴射タイミングがノック検出領域に入るのを防止することで、ノックセンサ23による内燃エンジン1のノッキングの誤検出を回避しつつ、燃料噴射量の増加に対応することが可能となる。さらに、この実施形態によれば、モードの切り換えに伴うトルク段差の発生を抑制することができる。 According to this embodiment, similarly to the first embodiment and the second embodiment, the knock detection of the internal combustion engine 1 by the knock sensor 23 is prevented by preventing the fuel injection timing from entering the knock detection region. This makes it possible to cope with an increase in the fuel injection amount. Furthermore, according to this embodiment, it is possible to suppress the occurrence of a torque step due to mode switching.
 なお、第2の実施形態のステップS5AとステップS6の間に燃料増量サブルーチンを実行するステップS51を設けた場合も、モード切り換えに伴うトルク段差の発生の抑制に好ましい効果が得られる。 In addition, when step S51 for executing the fuel increase subroutine is provided between step S5A and step S6 of the second embodiment, a favorable effect can be obtained in suppressing the occurrence of a torque step due to mode switching.
 以上のように、この発明による燃料噴射制御装置は内燃エンジン1の運転条件から、燃料インジェクタ6の噴射タイミングがノックセンサ23のノック検出領域と干渉するかを判定し、噴射タイミングがノック検出領域と干渉する場合には、噴射タイミングがノック検出領域と干渉しない場合よりも、燃料インジェクタ6に供給するピーク電流を大きくする。そのため、燃料噴射パルス幅を小さくできるので、燃料インジェクタ6は内燃エンジン1の運転状態によらず、燃料噴射のための燃料インジェクタ6の開閉をノック検出領域と干渉せずに完了することができる。 As described above, the fuel injection control device according to the present invention determines whether or not the injection timing of the fuel injector 6 interferes with the knock detection region of the knock sensor 23 from the operating conditions of the internal combustion engine 1, and the injection timing is the knock detection region. In the case of interference, the peak current supplied to the fuel injector 6 is made larger than when the injection timing does not interfere with the knock detection region. Therefore, since the fuel injection pulse width can be reduced, the fuel injector 6 can complete the opening and closing of the fuel injector 6 for fuel injection without interfering with the knock detection region regardless of the operating state of the internal combustion engine 1.
 また、噴射タイミングを燃料噴射開始タイミングまたは燃料噴射終了タイミングとすることで、燃料インジェクタ6の弁体のリフトあるいはシートへの着座のタイミングのいずれにおいてもノック検出領域と干渉することがなくなる。 Also, by making the injection timing the fuel injection start timing or the fuel injection end timing, there is no interference with the knock detection region at any of the lift timing of the valve body of the fuel injector 6 or the seating timing on the seat.
 以上の制御のために、コントローラ20は噴射パルス幅信号に応じて燃料インジェクタ6に供給する電流を、第1のピーク電流へと高めた後に開弁位置維持電流へと低下させるフルリフトモードと、第1のピーク電流より低い第2のピーク電流へと高めた後に開弁位置維持電流を下回る電圧へといったん低下させ、その後に開弁位置維持電流へと上昇させるパーシャルリフトモードと、を選択的に適用する。そして、パーシャルリフトモードで燃料噴射制御を実行中に噴射タイミングがノック検出領域と干渉すると判定されると、パーシャルリフトモードからフルリフトモードに切り換えることで、燃料インジェクタ6に供給するピーク電流を高めている。このように、予め設定された2つのモードを切り換えることで、燃料噴射タイミングの再設定を容易に行なうことができる。 For the above control, the controller 20 increases the current supplied to the fuel injector 6 in response to the injection pulse width signal to the first peak current and then decreases it to the valve opening position maintaining current, and the first A partial lift mode in which the voltage is first lowered to a voltage lower than the valve opening position maintaining current after being increased to a second peak current lower than the peak current of 1 and then increased to the valve opening position maintaining current; Apply. When it is determined that the fuel injection timing interferes with the knock detection region during the fuel injection control in the partial lift mode, the peak current supplied to the fuel injector 6 is increased by switching from the partial lift mode to the full lift mode. . In this way, the fuel injection timing can be easily reset by switching between the two preset modes.
 さらに、コトンローラ20はパーシャルリフトモードからフルリフトモードへの切り換えにおいて、燃料噴射量を増量する。その結果、内燃エンジン1に供給される混合気の空燃比が理論空燃比よりリッチ側へと変化する。リッチ混合気のもとでは理論空燃比と比べて燃料噴射量のばらつきに対する出力トルクの変動幅が小さい。そのため、モードの切り換えに伴う燃料噴射量のばらつきが出力トルクにもたらす段差を抑制して、モードの切り換えをスムーズな行なうことができる。 Furthermore, the cotton roller 20 increases the fuel injection amount when switching from the partial lift mode to the full lift mode. As a result, the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine 1 changes from the stoichiometric air-fuel ratio to the rich side. Under the rich air-fuel mixture, the fluctuation range of the output torque with respect to the variation in the fuel injection amount is small as compared with the theoretical air-fuel ratio. Therefore, it is possible to smoothly switch the modes by suppressing the step caused in the output torque by the variation in the fuel injection amount accompanying the switching of the modes.
 さらに、この燃料噴射制御装置は内燃エンジン1の運転条件を検出するセンサとして、内燃エンジン1の回転速度を検出するクランク角センサ21と、エンジンの負荷を検出するエアフローメータ22とを用いている。コントローラ20は内燃エンジン1の回転速度に基づきノック検出領域を算出し、内燃エンジン1の回転速度と負荷に基づき噴射パルス幅と噴射タイミングとを設定する。これらのセンサは、内燃エンジン1の制御に一般的に用いられるセンサである。したがって、この燃料噴射制御装置によればノック検出領域と干渉しない多段燃料噴射を特別のセンサを用いずに実現可能である。 Furthermore, this fuel injection control device uses a crank angle sensor 21 that detects the rotational speed of the internal combustion engine 1 and an air flow meter 22 that detects the load of the engine as sensors that detect the operating conditions of the internal combustion engine 1. The controller 20 calculates a knock detection region based on the rotational speed of the internal combustion engine 1 and sets the injection pulse width and the injection timing based on the rotational speed and load of the internal combustion engine 1. These sensors are sensors generally used for controlling the internal combustion engine 1. Therefore, according to this fuel injection control device, multistage fuel injection that does not interfere with the knock detection region can be realized without using a special sensor.
 さらに、エンジンの回転速度を速度しきい値と比較し、エンジンの負荷を負荷しきい値と比較することで、噴射タイミングが所定のクランク角領域と干渉するどうかを判定している。そのため、ノック検出領域をその都度計算することなく、噴射タイミングが所定のクランク角領域と干渉するどうかを判定できる。したがって、計算プロセスを単純化することができる。 Furthermore, it is determined whether the injection timing interferes with a predetermined crank angle region by comparing the engine speed with a speed threshold value and comparing the engine load with a load threshold value. Therefore, it is possible to determine whether the injection timing interferes with a predetermined crank angle region without calculating the knock detection region each time. Therefore, the calculation process can be simplified.
 以上のように、この発明をいくつかの特定の実施形態を通じて説明して来たが、この発明は上記の各実施形態に限定されるものではない。当業者にとっては、請求の範囲でこれらの実施形態にさまざまな修正あるいは変更を加えることが可能である。例えば、上記実施形態では、4気筒の直噴ガソリン内燃エンジンで構成されたが、3気筒や6気筒など、その他の多気筒の内燃エンジンにも適用できる。 As described above, the present invention has been described through some specific embodiments, but the present invention is not limited to the above embodiments. Those skilled in the art can make various modifications or changes to these embodiments within the scope of the claims. For example, in the above-described embodiment, the engine is composed of a 4-cylinder direct injection gasoline internal combustion engine, but the present invention can also be applied to other multi-cylinder internal combustion engines such as 3 cylinders and 6 cylinders.
 この発明の実施形態が包含する排他的性質あるいは特長は以下のようにクレームされる。 The exclusive property or feature included in the embodiment of the present invention is claimed as follows.

Claims (8)

  1.  噴射パルス幅信号に応じた電流供給により開弁する燃料インジェクタを用いて燃焼室内に燃料噴射を行なうとともに、所定のクランク角領域でエンジンのノッキングを検出するノックセンサを備える直噴ガソリン内燃エンジンに適用され、
     エンジンの運転条件を検出するセンサと;
     次のようにプログラムされたプログラマブルコントローラ:
     エンジンの運転条件から、燃料インジェクタの噴射タイミングが所定のクランク角領域と干渉するかを判定し;
     噴射タイミングが所定のクランク角領域と干渉する場合には、噴射タイミングが所定のクランク角領域と干渉しない場合よりも、燃料インジェクタに供給するピーク電流を大きくする、とを備える燃料噴射制御装置。
    Applicable to a direct injection gasoline internal combustion engine that injects fuel into the combustion chamber using a fuel injector that opens by supplying current in accordance with an injection pulse width signal, and has a knock sensor that detects engine knock in a predetermined crank angle region. And
    A sensor for detecting engine operating conditions;
    Programmable controller programmed as follows:
    Determining from the engine operating conditions whether the injection timing of the fuel injector interferes with a predetermined crank angle region;
    A fuel injection control device comprising: increasing the peak current supplied to the fuel injector when the injection timing interferes with a predetermined crank angle region than when the injection timing does not interfere with the predetermined crank angle region.
  2.  噴射タイミングは噴射開始タイミングまたは噴射終了タイミングである請求項1の燃料噴射制御装置。 The fuel injection control device according to claim 1, wherein the injection timing is an injection start timing or an injection end timing.
  3.  コントローラは噴射パルス幅信号に応じて燃料インジェクタに供給する電流を、第1のピーク電流へと高めた後に開弁位置維持電流へと低下させるフルリフトモードと、第1のピーク電流より低い第2のピーク電流へと高めた後に開弁位置維持電流を下回る電流へといったん低下させ、その後に開弁位置維持電流へと上昇させるパーシャルリフトモードと、を選択的に適用して燃料噴射制御を実行するとともに、パーシャルリフトモードで燃料噴射制御を実行中に噴射タイミングがノック検出領域と干渉すると判定した場合に、燃料噴射モードをパーシャルリフトモードからフルリフトモードに切り換えるよう、さらにプログラムされる、請求項1または2の燃料噴射制御装置。 The controller raises the current supplied to the fuel injector in response to the injection pulse width signal to the first peak current and then reduces it to the valve opening position maintaining current, and the second lower than the first peak current. The fuel injection control is executed by selectively applying the partial lift mode in which the current is lowered to a current lower than the valve opening position maintaining current after being increased to the peak current and then increased to the valve opening position maintaining current. And further programmed to switch the fuel injection mode from the partial lift mode to the full lift mode when it is determined that the injection timing interferes with the knock detection region during execution of the fuel injection control in the partial lift mode. The fuel injection control device of 2.
  4.  コントローラは、パーシャルリフトモードからフルリフトモードへの切り換える際に、燃焼室内の混合気の空燃比をリッチ化するようにさらにプログラムされる、請求項3の燃料噴射制御装置。 4. The fuel injection control device according to claim 3, wherein the controller is further programmed to enrich the air-fuel ratio of the air-fuel mixture in the combustion chamber when switching from the partial lift mode to the full lift mode.
  5.  エンジンの運転条件を検出するセンサはエンジンの回転速度を検出するセンサと、エンジンの負荷を検出するセンサとを含み、コントローラは:
     エンジンの回転速度に基づき所定のクランク角領域を算出し;
     エンジンの回転速度と負荷に基づき噴射パルス幅と噴射タイミングとを設定し;
     噴射タイミングが所定のクランク角領域にはいるかどうかを判定するように、さらにプログラムされる、請求項1から4のいずれかの燃料噴射制御装置。
    Sensors that detect engine operating conditions include sensors that detect engine speed and sensors that detect engine load, and the controller:
    Calculate a predetermined crank angle region based on the engine speed;
    Set injection pulse width and injection timing based on engine speed and load;
    The fuel injection control device according to any one of claims 1 to 4, further programmed to determine whether or not the injection timing is within a predetermined crank angle region.
  6.  エンジンの運転条件を検出するセンサはエンジンの回転速度を検出するセンサと、エンジンの負荷を検出するセンサとを含み、コントローラは:
     エンジンの回転速度を速度しきい値と比較し、かつエンジンの負荷を負荷しきい値と比較することで、噴射タイミングが所定のクランク角領域と干渉するどうかを判定するよう、さらにプログラムされる、請求項1から4のいずれかの燃料噴射制御装置。
    Sensors that detect engine operating conditions include sensors that detect engine speed and sensors that detect engine load, and the controller:
    Further programmed to determine whether the injection timing interferes with a predetermined crank angle region by comparing engine speed to a speed threshold and comparing engine load to a load threshold; The fuel injection control device according to any one of claims 1 to 4.
  7.  噴射パルス幅信号に応じた電流供給により開弁する燃料インジェクタを用いて燃焼室内に燃料噴射を行なうとともに、所定のクランク角領域でエンジンのノッキングを検出するノックセンサを備える直噴ガソリン内燃エンジンに適用され、
     エンジンの運転条件を検出する手段と;
     エンジンの運転条件から、燃料インジェクタの噴射タイミングが所定のクランク角領域と干渉するかを判定する手段と;
     噴射タイミングが所定のクランク角領域と干渉する場合には、噴射タイミングが所定のクランク角領域と干渉しない場合よりも、燃料インジェクタに供給するピーク電流を大きくする手段と、
     を備える燃料噴射制御装置。
    Applicable to a direct injection gasoline internal combustion engine that injects fuel into the combustion chamber using a fuel injector that opens by supplying current in accordance with an injection pulse width signal, and has a knock sensor that detects engine knock in a predetermined crank angle region. And
    Means for detecting engine operating conditions;
    Means for determining whether the injection timing of the fuel injector interferes with a predetermined crank angle region from engine operating conditions;
    Means for increasing the peak current supplied to the fuel injector when the injection timing interferes with a predetermined crank angle region, compared to when the injection timing does not interfere with the predetermined crank angle region;
    A fuel injection control device comprising:
  8.  噴射パルス幅信号に応じた電流供給により開弁する燃料インジェクタを用いて燃焼室内に燃料噴射を行なうとともに、所定のクランク角領域で内燃エンジンのノッキングを検出するノックセンサを備えた直噴ガソリン内燃エンジンに適用され、
     エンジンの運転条件を検出し;
     エンジンの運転条件から、燃料インジェクタの噴射タイミングが所定のクランク角領域と干渉するかどうかを判定し;
     噴射タイミングが所定のクランク角領域と干渉する場合には、噴射タイミングが所定のクランク角領域と干渉しない場合よりも、燃料インジェクタに供給するピーク電流を大きくする、燃料噴射制御方法。
    A direct-injection gasoline internal combustion engine having a knock sensor for injecting fuel into a combustion chamber using a fuel injector that opens by supplying current in accordance with an injection pulse width signal and detecting knocking of the internal combustion engine in a predetermined crank angle region Applies to
    Detect engine operating conditions;
    Determining whether the fuel injector injection timing interferes with a predetermined crank angle region from engine operating conditions;
    A fuel injection control method in which, when the injection timing interferes with a predetermined crank angle region, the peak current supplied to the fuel injector is made larger than when the injection timing does not interfere with the predetermined crank angle region.
PCT/JP2015/067777 2015-06-19 2015-06-19 Fuel injection control device and fuel injection control method WO2016203651A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/067777 WO2016203651A1 (en) 2015-06-19 2015-06-19 Fuel injection control device and fuel injection control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/067777 WO2016203651A1 (en) 2015-06-19 2015-06-19 Fuel injection control device and fuel injection control method

Publications (1)

Publication Number Publication Date
WO2016203651A1 true WO2016203651A1 (en) 2016-12-22

Family

ID=57545302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067777 WO2016203651A1 (en) 2015-06-19 2015-06-19 Fuel injection control device and fuel injection control method

Country Status (1)

Country Link
WO (1) WO2016203651A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388945A (en) * 1989-08-31 1991-04-15 Fuji Heavy Ind Ltd Knocking sensing method for engine
JP2004197577A (en) * 2002-12-16 2004-07-15 Daihatsu Motor Co Ltd Knocking determination method in cylinder injection internal combustion engine
JP2011132814A (en) * 2009-12-22 2011-07-07 Nissan Motor Co Ltd Knock determining device of internal combustion engine
JP2012052419A (en) * 2010-08-31 2012-03-15 Hitachi Automotive Systems Ltd Drive device for fuel injection device
JP2015048823A (en) * 2013-09-04 2015-03-16 トヨタ自動車株式会社 Combustion engine controller
JP2015063928A (en) * 2013-09-25 2015-04-09 日立オートモティブシステムズ株式会社 Fuel injection device drive device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388945A (en) * 1989-08-31 1991-04-15 Fuji Heavy Ind Ltd Knocking sensing method for engine
JP2004197577A (en) * 2002-12-16 2004-07-15 Daihatsu Motor Co Ltd Knocking determination method in cylinder injection internal combustion engine
JP2011132814A (en) * 2009-12-22 2011-07-07 Nissan Motor Co Ltd Knock determining device of internal combustion engine
JP2012052419A (en) * 2010-08-31 2012-03-15 Hitachi Automotive Systems Ltd Drive device for fuel injection device
JP2015048823A (en) * 2013-09-04 2015-03-16 トヨタ自動車株式会社 Combustion engine controller
JP2015063928A (en) * 2013-09-25 2015-04-09 日立オートモティブシステムズ株式会社 Fuel injection device drive device

Similar Documents

Publication Publication Date Title
KR100674251B1 (en) Knocking determination apparatus for internal combustion engine
US7448253B2 (en) Combustion state determination method of internal combustion engine
JP5548029B2 (en) Control device for internal combustion engine
JP4873249B2 (en) Control device for vehicle engine
JP2007016685A (en) Internal combustion engine control device
JP6589892B2 (en) Engine equipment
WO2013140218A2 (en) Control apparatus for internal combustion engine
WO2019230406A1 (en) Control device of internal combustion engine and control method of internal combustion engine
US10669953B2 (en) Engine control system
JP4366855B2 (en) In-cylinder injection internal combustion engine control device
JP4151450B2 (en) Control device for internal combustion engine
JP4868242B2 (en) Control device for vehicle engine
JP2018071485A (en) Device for controlling internal combustion engine
WO2014147795A1 (en) Control device for internal combustion engines
JP5273310B2 (en) Control device for internal combustion engine
US10113490B2 (en) Control apparatus for internal combustion engine
JP4654994B2 (en) Diagnostic device for intake flow control valve
WO2016203651A1 (en) Fuel injection control device and fuel injection control method
US20160348596A1 (en) Ignition device and ignition method for internal combustion engine
JP5593132B2 (en) Control device for internal combustion engine
JP6610401B2 (en) Control device for internal combustion engine
JP4407505B2 (en) Valve characteristic control device for internal combustion engine
JP4453187B2 (en) Control device for internal combustion engine
US20110303188A1 (en) Abnormality determination apparatus and abnormality determination method for internal combustion engine
JP2010223039A (en) Method for controlling misfire inhibition in transient state of internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15895671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15895671

Country of ref document: EP

Kind code of ref document: A1