WO2016203577A1 - Cytotoxic t-cell epitope peptide and use thereof - Google Patents

Cytotoxic t-cell epitope peptide and use thereof Download PDF

Info

Publication number
WO2016203577A1
WO2016203577A1 PCT/JP2015/067469 JP2015067469W WO2016203577A1 WO 2016203577 A1 WO2016203577 A1 WO 2016203577A1 JP 2015067469 W JP2015067469 W JP 2015067469W WO 2016203577 A1 WO2016203577 A1 WO 2016203577A1
Authority
WO
WIPO (PCT)
Prior art keywords
ctl
ebv
peptide
epitope peptide
specific
Prior art date
Application number
PCT/JP2015/067469
Other languages
French (fr)
Japanese (ja)
Inventor
棟梁 李
弘紀 大鷹
一絵 中野
真悟 田路
Original Assignee
株式会社医学生物学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社医学生物学研究所 filed Critical 株式会社医学生物学研究所
Priority to JP2017524207A priority Critical patent/JPWO2016203577A1/en
Priority to PCT/JP2015/067469 priority patent/WO2016203577A1/en
Priority to CN201580080723.XA priority patent/CN107709351A/en
Priority to TW105119067A priority patent/TW201708248A/en
Publication of WO2016203577A1 publication Critical patent/WO2016203577A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/15Cells of the myeloid line, e.g. granulocytes, basophils, eosinophils, neutrophils, leucocytes, monocytes, macrophages or mast cells; Myeloid precursor cells; Antigen-presenting cells, e.g. dendritic cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/17Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/245Herpetoviridae, e.g. herpes simplex virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/464838Viral antigens
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms

Definitions

  • the present invention relates to a cytotoxic T cell (cytotoxic T T lymphocyte, hereinafter referred to as CTL) epitope peptide specific to Epstein-Barr virus (hereinafter referred to as EBV), and EBV using the peptide.
  • CTL cytotoxic T T lymphocyte
  • EBV Epstein-Barr virus
  • the present invention relates to a vaccine for treating or preventing infection and virus-positive cancer, a passive immunotherapeutic agent for EBV, and a method for quantifying EBV-specific CTL.
  • the present invention relates to a peptide capable of inducing CTL targeting cancer cells.
  • this invention relates to the cancer vaccine and anticancer agent containing the said peptide.
  • the present invention further relates to the use of the peptide for inducing CTL targeting cancer cells, the obtained CTL and an anticancer agent comprising the CTL.
  • Epstein and Barr discovered a new herpes virus from cultured cells derived from Burkitt lymphoma tissue and named it Epstein-Barr virus (EBV) (Non-patent Document 1).
  • EBV is classified into HHV-4, which is one of eight types of human herpesviruses (HHV), and is a virus that is widely latently infected worldwide (Non-patent Document 2).
  • HHV-4 human herpesviruses
  • Non-patent Document 2 a virus that is widely latently infected worldwide
  • infection occurs in the oral and pharyngeal mucosa via saliva in childhood, and the virus produced in the oral and pharyngeal mucosal epithelial cells further infects B cells that pass between the epithelia and spreads throughout the body.
  • Infected B cells are injured and killed mainly by the immune surveillance mechanism with cytotoxic T cells (CTL), but some become latent infections that do not produce viruses.
  • CTL cytotoxic T cells
  • EBV virus-derived DNA fragments were found in nasopharyngeal carcinoma tissues in 1970, EBV has been called the first tumor virus among viruses that infect humans (Non-Patent Documents 3 and 4).
  • typical examples of tumor viruses include hepatitis C virus (HCV) that causes liver cancer, human papilloma virus (HPV) that causes cervical cancer, and humans that cause adult T-cell leukemia.
  • HCV hepatitis C virus
  • HPV human papilloma virus
  • HTLV-1 T cell leukemia virus
  • EBV mainly infects B cells, one of the human lymphocyte components, but it also infects epithelial cells, T cells, NK cells, etc. in addition to B cells, and its diverse cell tropism causes various tumor development Is thought to be involved.
  • cancers that are thought to be caused by EBV infection include malignant tumors such as Burkitt lymphoma (BL), Hodgkin lymphoma (HL), NK / T cell lymphoma, nasopharyngeal cancer (NPC), and gastric cancer (MK). It is done.
  • BL Burkitt lymphoma
  • HL Hodgkin lymphoma
  • NPC nasopharyngeal cancer
  • MK gastric cancer
  • LPD lymphoproliferative disease
  • IM infectious mononucleosis
  • PTLD post-transplant lymphoproliferative disease
  • EBV-derived small RNA EBV encoded small RNA, EBER
  • EBER EBV encoded small RNA
  • EBV lymphoproliferative disease
  • PTLD post-transplant lymphoproliferative disease
  • immune cells that transfuse immunocompetent cells that can eliminate the causative virus-infected cells into the patient's body Therapy was performed and the therapeutic effect was proved
  • Non-patent Documents 8, 9, and 10 The effectiveness of immune cell therapy has also been reported for EBV-related malignant tumors such as Hodgkin lymphoma and nasopharyngeal cancer.
  • Immune cell therapy is considered to be a powerful treatment for malignant tumors and immunodeficiency diseases that are refractory to conventional surgical procedures, radiation therapy, and chemotherapy.
  • Immune cell therapy is a treatment method that activates the immune power of patients and specifically attacks and eliminates target cancer cells or virus-infected cells. is there.
  • Cytotoxic T cells (CTL) play a central role in specifically attacking these target cells.
  • CTL Cytotoxic T cells
  • TCR T cell receptor
  • TCR does not directly recognize cancer antigen molecules or virus particles themselves, but HLA (human leukocyte type antigen) expressed on the membrane surface of target cells and, in the case of tumor cells, cancer antigen-derived or viral infection
  • HLA human leukocyte type antigen
  • CTL recognizes a target cell and exerts a killing effect by binding to a complex with a peptide (epitope peptide) consisting of 8 to 10 amino acids derived from a virus.
  • HLA is broadly classified into class I and class II. Complexes of HLA class I and peptides are recognized by TCR expressed on CD8 + T cells, and complexes of HLA class II and peptides are TCR expressed on CD4 + T cells. And an immune response is elicited.
  • HLA class I is further divided into a classical classification called HLA-A, B, C and a non-classical classification called HLA-E, F, G.
  • HLA compatibility between donors and recipients in transplantation therapy is important for HLA-A, B and HLA-DRB class 6 HLA-DRB classification, especially for transplants between unrelated individuals. It is considered as a risk factor.
  • IMGT HLA database http://www.imgt.org/
  • 2,041 types of HLA-A, 2,688 types of HLA-B, and 1,677 types of proteins are registered for HLA-C.
  • HLA-A11 is over 50% of white people, and about 20 Japanese people % Holds.
  • the EBV-derived LMP2 and EBNA1-specific CTL epitope peptides identified by the inventors specifically bind to HLA-A11, and EBV-infected cells are killed and eliminated by CTLs that recognize them.
  • the ownership rate of HLA-A11 is about 10% in the Japanese, but in Southeast Asia, it has a wide population distribution as the third largest allele.
  • HLA-A24, HLA-A2 and HLA-A11 in Southeast Asia are 32.1%, 24.5% and 23.7%, respectively (http://www.ncbi.nlm.nih.gov/projects/gv/mhc/ ihwg.cgi).
  • NPC nasopharyngeal Carcinoma
  • GLOBOCAN2012 GLOBOCAN2012
  • HLA type has been reported as one of the onset risks of NPC (Non-patent Document 17).
  • the frequency of HLA-A which is the highest in the results of statistical analysis of HLA-A frequency in NPC patients, is 50% for A11 holders, 50% for A2 holders, and A24 holders. 30% and B40 holders were reported to be 32% (Non-patent Document 15).
  • HLA-A11 has been reported to be closely related to the onset of NPC (Non-patent literature). 19). In this way, NPC has a high incidence of HLA-A11 carriers, and it is probable that it is profound to provide a treatment method using EBV LMP2 and EBV EBNA1-specific CTL epitopes exhibiting HLA-A11 restriction according to the present invention.
  • NPC is a refractory malignant tumor
  • CTL epitope peptides used in these clinical trials are mainly HLA-A2 and HLA-A24 restricted peptides, and there are almost no clinical trial reports of HLA-A11 restricted CTL epitope peptides.
  • the reason for this is that almost no attempt has been made worldwide to identify HLA-A11-restricted CTL epitope peptides and it is very difficult to identify EBNA1-derived CTL epitopes expressed in NPCs. Can be mentioned.
  • the identification method described later was used to intensively investigate the identification of CTL epitope peptides that are restricted to EBV-related malignant tumors, particularly HLA-A11, which has the highest prevalence in NPC patients.
  • EBV has about 170kbp double-stranded DNA encoding about 85 gene products, but the expression of LMP1, LMP2, and EBNA1, which are EBV-derived proteins, has been reported in NPC cancer affected areas. While LMP1 can be detected only in some patients, LMP2 and EBNA1 are constitutively expressed in NPC (Non-patent Documents 20 and 21), and these two proteins are used to identify cytotoxic T cell epitope peptides. Is an attractive target for. However, in previous reports, it has been believed that the immune response of CTL is preferentially directed to LMP2, and that EBNA1 is not recognized by CTL (Non-patent Documents 22, 23, 24, 25).
  • EBNA1 is composed of 641 amino acids in total length, but there is a glycine-alanine repetitive sequence (GAr) consisting of about 200 amino acids in the central region (101st to 324th amino acids).
  • Gr glycine-alanine repetitive sequence
  • sequences corresponding to specific CTL epitope peptides may differ between EBV strains, for example, B95.8 strain and GD1 strain, which may affect CTL induction ability and detection ability with MHC-tetramer reagent.
  • MHC major histocompatibility complex
  • HLA major histocompatibility complex
  • MHC class II (hereinafter referred to as MHC-II) is expressed on the cell membrane surface of antigen-presenting cells such as dendritic cells, and presents non-self peptides to CD4 + T cells to induce cytokine secretion and antibody production To do.
  • MHC-I-CTL MHC-II-CD4 + T cells
  • Non-patent Document 31 This is the first example that shows that MHC-I specifically induces cytotoxic activity by presenting its own antigenic peptide derived from cancer cells to CTL.
  • CTL can also react with self-antigens, and it has been shown that cancer can be treated by using its function. Since then, identification of proteins specifically expressed in cancer (hereinafter referred to as cancer antigens) and peptide fragments derived from the proteins has been actively promoted. In parallel with these discoveries, development of cancer immunotherapy has been actively promoted. Cancer immunotherapy is a method for treating cancer by proliferating immunocytes such as CTLs that kill and eliminate cancer cells in vivo and in vivo. There are several possible methods for cancer immunotherapy.
  • 1 to 3 are non-specific cancer immunotherapy, which is not necessarily an immune response specific to cancer antigens.
  • a surgical procedure such as excision of a cancer affected part from a cancer patient becomes necessary.
  • Cancer peptide vaccine therapy in which a patient is inoculated with a cancer antigen-specific CTL epitope peptide and an immunostimulant.
  • Peptide pulse dendritic cell therapy in which a cancer antigen-specific CTL epitope peptide is pulsed to a dendritic cell isolated and cultured from peripheral blood of a patient and then inoculated to the patient.
  • Combination therapy of CTL transfer therapy 7.4 and 6 that induces specific CTL by stimulating culture of lymphocytes isolated from patient's peripheral blood using cancer antigen-specific CTL epitope peptide and returns this to the patient's body.
  • the patient is inoculated with a cancer antigen-specific CTL epitope peptide and an immunostimulant.
  • This method induces specific CTLs by stimulating the lymphocytes isolated from the patient's peripheral blood with a cancer antigen-specific CTL epitope peptide and returns it to the patient's body. 8).
  • Artificial CTL transfer therapy by extracting T cell receptor (TCR) gene from cancer antigen-specific CTL and introducing it into lymphocytes isolated and cultured from the patient's peripheral blood to produce artificial CTL and return it to the patient's body .
  • TCR T cell receptor
  • CTL monitoring Cancer immunotherapy is a treatment method that recognizes cancer in vivo and expects amplification of CTL that attacks, and monitoring of CTL, which is an effective component, is important .
  • Methods for monitoring CTL include intracellular cytokine staining and measurement of cytotoxic activity. These are methods for indirectly detecting CTL.
  • intracellular cytokine staining is a method that measures the production of IFN ⁇ (interferon gamma) and TNF ⁇ (tumor necrosis factor-alpha) in response to peptide stimulation, and may detect reactions other than antigen peptide-specific immune responses. is there.
  • IFN ⁇ interferon gamma
  • TNF ⁇ tumor necrosis factor-alpha
  • the MHC-tetramer reagent is a reagent in which a ternary complex (MHC-monomer) of MHC, ⁇ 2-microglobulin (hereinafter ⁇ 2m) and a peptide fragment is produced in a test tube, and the MHC-monomer is tetramerized.
  • MHC-monomer ternary complex of MHC, ⁇ 2-microglobulin (hereinafter ⁇ 2m) and a peptide fragment
  • MHC-MHC that constitutes a monomer is a diverse molecule. According to the IMGT HLA database (http://hla.alleles.org/nomenclature/stats.html), there are 2077 types of HLA-A and HLA-B. There are 2741 types of proteins registered for HLA-C and 1739 types for HLA-C (as of October 2014). In addition, the characteristics of peptide fragments (8 to 12 amino acid residues in length) to be bound differ depending on the allyl type of MHC. In other words, there are an enormous number of combinations of MHC / peptide complexes, which include only the allyl form of MHC and the types of peptide fragments.
  • CTL recognizes the peptide presented by MHC-I by TCR.
  • Individual TCRs are created by rearrangement of the TCR gene, and the number of TCR repertoires in one individual is said to be as high as 10 18 . That is, both the MHC / peptide complex of the target cell and the TCR on the CTL side have a great variety.
  • Each CTL generally expresses one type of TCR on the cell membrane surface and recognizes and activates only a specific MHC / peptide complex.
  • MHC-tetramer reagent is a reagent using this mechanism.
  • the MHC-tetramer reagent is a reagent that mimics the structure of the MHC / peptide complex on the target cell membrane, whereby only CTL having a specific TCR can be selectively detected.
  • the MHC-tetramer reagent is considered to be an ideal reagent for CTL monitoring.
  • the reason that tetramerization of MHC-monomer is to enhance the binding force with TCR expressed by CTLs so that they can be detected by a device such as a flow cytometer.
  • Mutations in antigen-presenting molecules (HLA and ⁇ 2m) in cancer cells Mutations in HLA and ⁇ 2m in cancer cells are known as the immune escape mechanism of cancer cells.
  • cancer cells no longer present the antigenic peptide, so the CTL cannot recognize and attack the cancer cells.
  • an HLA mutation an LOH type mutation (loss of heterozygosity) in which one side of the same locus is deleted is known.
  • ⁇ 2m mutation is known as frameshift mutation.
  • attempts have been made to compensate for ⁇ 2m expression by introducing the ⁇ 2m gene with an adenoviral vector and to present antigenic peptides to cancer cells.
  • (3) Expression of cancer cell target antigens There are various types of cancer antigens, and which cancer antigen is expressed varies depending on the type of cancer and the individual.
  • cancer antigen derived from the peptide vaccine when the cancer antigen derived from the peptide vaccine is not expressed at all in the cancerous part of the patient, the cancer cells cannot be targeted, so the therapeutic effect of the cancer peptide vaccine therapy cannot be expected.
  • cancer peptide vaccine therapy clinical trials have confirmed whether cancer cells of patients express peptide vaccine-derived antigens by tissue staining using cancer antigen-specific antibodies. .
  • malignant glioblastoma it is difficult to confirm the expression of a cancer antigen in a cancer affected part because it is difficult to obtain a cancer cell sample.
  • CTL activates when it specifically recognizes an antigenic peptide presented by a target cell, and exhibits cytotoxic activity.
  • TGF ⁇ is a suppressive cytokine secreted by cancer cells and inhibits the proliferation and differentiation of CTL and CD4 + T cells.
  • PD-1 and CTLA-4 are molecules on the cell membrane of T cells. When each binds to a ligand expressed by cancer cells, an inhibitory signal is transmitted and CTL is inactivated.
  • HLA type of patient Epitope peptide is basically presented to only one type of HLA. This is called HLA restraint. For this reason, even if cancer immunotherapy is performed on a patient who does not have an HLA type capable of presenting an epitope peptide, no therapeutic effect can be expected because cancer cells do not present the epitope peptide in that patient. That is, the target patient of cancer immunotherapy is limited to the HLA restriction
  • HLA-A * 24: 02 is the most common HLA-A allylate in Japanese, with about 60%. Therefore, in the present invention, HLA-A * 24: 02-restricted novel cancer antigen epitope peptide that can be used for specific cancer immunotherapy, cancer vaccine and anticancer agent using the same, and epitope peptide specific
  • An object of the present invention is to provide a reagent that detects CTL.
  • CKAP4 is a type II transmembrane protein composed of a molecular weight of 63 kDa and a total length of 602 amino acids. From the N-terminal side, there are three regions: a cytoplasmic region composed of 106 amino acids, a transmembrane region composed of 21 amino acids, and an extracellular region composed of 475 amino acids (non-patented) Reference 32). CKAP4 has a function of binding to the endoplasmic reticulum and microtubules in the intercytoplasmic region in the interphase of the cell cycle and fixing the endoplasmic reticulum to the microtubules (Non-patent Document 33).
  • Non-patent Document 34 Before the cell enters mitosis, the cysteine residue, which is the 100th amino acid from the N-terminal side of CKAP4, is reversibly palmitoylated (Non-patent Document 34). By this palmitoylation, localization of CKAP4 Turns into a cell membrane (Non-patent Document 35), and the interaction with microtubules is inhibited. It has also been reported that CKAP4 is phosphorylated during mitosis and loses its ability to bind to microtubules (Non-patent Document 36). On the other hand, it is known that microtubules constitute a spindle that plays a role in correctly dividing a cell by distributing chromosomes during mitosis.
  • CKAP4 is thought to be involved in the control of normal mitosis by dissociating appropriately from microtubules during mitosis.
  • CKAP4 is also known to act as a receptor for surfactant-protein-A (hereinafter referred to as SP-A), which is responsible for the removal of surfactant (pulmonary surfactant) on the surface of alveolar cells (non-patented). Reference 32).
  • SP-A surfactant-protein-A
  • SP-A surfactant-protein-A
  • SP-A surfactant-protein-A
  • SP-A surfactant-protein-A
  • SP-A has the function of removing a surfactant and is responsible for maintaining alveolar cell homeostasis by functioning with the receptor CKAP4.
  • CKAP4 is expressed in normal cells, it is highly expressed in cell lines derived from various cancers such as breast cancer, central nervous system tumor, lung cancer, kidney cancer, and malignant melanoma (http://129.187.44.58 : 7070 / NCI60 / protein / show / 10796).
  • CKAP4 is an overexpressed cancer antigen that is highly expressed in cancer cells (Non-patent Document 38).
  • an overexpressed cancer antigen for example, Her-2 is known, and clinical trials of cancer peptide vaccines using Her-2 derived peptides have been conducted (Non-patent Documents 39 and 40).
  • CKAP4 is considered to be highly expressed in various cancers, but the antigenicity of CKAP4 in cancer cells has not been clarified. That is, whether CKAP4 is a target of the immune system as a cancer antigen, that is, CKAP4-derived peptides are presented on the HLA on the surface of cancer cells, and cancer cells attack by CTLs that specifically recognize this It is unclear as to whether or not it has been done.
  • EPSTEIN MA ACHONG BG, BARR YM.Virus particles in cultured lymphoblasts from burkitt's lymphoma. Lancet. 1964 Mar 28; 1 (7335): 702-3.
  • Ikuta K Satoh Y, Hoshikawa Y, Sairenji T. Detection of Epstein-Barr virus in salivas and throat washings in healthy adults and children. Microbes Infect. 2000 Feb; 2 (2): 115-20.
  • Pagano JS Epstein-Barr virus: the first human tumor virus and its role in cancer. Proc Assoc Am Physicians. 1999 Nov-Dec; 111 (6): 573-80.
  • Vedrenne C Klopfenstein DR, Hauri HP. Phosphorylation controls CLIMP-63-mediated anchoring of the endoplasmic reticulum to microtubules. Mol Biol Cell. 2005; 16: 1928-1937. Li SX, Tang GS, Zhou DX, Pan YF, Tan YX, Zhang J, Zhang B, Ding ZW, Liu LJ, Jiang TY, Hu HP, Dong LW, Wang HY. Prognostic significance membrane associated membrane associated palmitoyl acyltransferase DHHC2 in hepatocellular carcinoma. Cancer. 2014; 120: 1520-1531. Heemskerk B, Kvistborg P, Schumacher TN. The cancer antigenome. EMBO J.
  • the present invention has been made in view of such a situation, and the target is limited to LMP2 and EBNA1 of EBV, and the purpose thereof is LMP2-specific cytotoxic T cell epitope peptide, and EBNA1-specific cytotoxicity.
  • a vaccine for identifying a T cell epitope peptide and treating or preventing EBV-related malignant tumors and immunodeficiencies including NPC using the peptide, a passive immunotherapeutic agent for EBV, and cytotoxic T cells specific to EBV It is to provide a quantitative method.
  • the present inventors have conducted extensive studies on cancer antigenicity, that is, CTL inducing ability of various CKAP4-derived peptides.
  • EBV comprising the steps of obtaining EBV-specific cytotoxic T cells generated by the above steps, and measuring cytokines and / or chemokines and / or cell surface molecules produced by the obtained cytotoxic T cells.
  • a method for quantifying specific cytotoxic T cells [14] A step of mixing the epitope peptide according to any one of [1] to [2], a major histocompatibility antigen complex and ⁇ 2-microglobulin, and the prepared major histocompatibility antigen complex-tetramer and subject-derived A method of quantifying cytotoxic T cells specific for EBV in the peripheral blood, comprising a step of contacting the peripheral blood with [15] A method for inducing cytotoxic T cells specific to EBV, comprising the step of contacting the epitope peptide according to any one of [1] to [2] with an antigen-presenting cell, [16] A kit for inducing cytotoxic T cells comprising the epitope peptide according to any one of [1] to [2] as a constituent element, [17] A method for producing EBV-specific CTL comprising the step of contacting the peptide according to any one of [1] to [2] with peripheral blood mononuclear cells in a medium containing
  • a method for producing a passive immunotherapeutic agent for cancer treatment [33] an antibody specific for a major histocompatibility antigen complex prepared from the epitope peptide of any one of [18] to [19], [A1] Use of the epitope peptide according to any one of [1] to [2] in the manufacture of a medicament for treating or preventing EBV infection or EBV positive cancer, [A2] Use according to [A1], wherein EBV is selected from AKata strain, GD1 strain, GD2 strain, HKNPC1 strain, AG876 strain, Mutu strain and B95.8 strain, [A3] Use of the nucleic acid or expression vector according to any one of [3] to [4] in the manufacture of a medicament for treating or preventing EBV infection or EBV positive cancer, [A4] Use according to [A3], wherein EBV is selected from AKata strain, GD1 strain, GD2 strain, HKNPC1 strain, AG876 strain, Mutu strain and B95.
  • EBV-specific cytotoxic T cells obtained by [A8] Major histocompatibility antigen complex and / or major histocompatibility antigen complex-tetramer prepared from the epitope peptide according to any one of [1] to [2] in the production of a passive immunotherapeutic agent for EBV And peripheral blood lymphocytes are contacted to form a conjugate in which cytotoxic T cells are bound to the major histocompatibility antigen complex and / or major histocompatibility complex-tetramer.
  • cytotoxic T cells obtained separately, [A9] Use of the epitope peptide according to any one of [18] to [19] in the manufacture of a medicament for treating or preventing cancer, [A10] Use of the nucleic acid or expression vector according to any one of [21] to [22] in the manufacture of a medicament for treating or preventing cancer, [A11] Use of an antigen-presenting cell in which the epitope peptide according to any one of [18] to [19] is presented to HLA in the manufacture of a medicament for treating or preventing cancer, [A12] In the production of a passive immunotherapeutic agent for cancer treatment, peripheral blood lymphocytes are produced by the epitope peptide according to any one of [18] to [19] or antigen-presenting cells presenting the epitope peptide on HLA.
  • CKAP4-specific CTL obtained by stimulation [A13] Major histocompatibility complex and / or major histocompatibility antigen prepared from the epitope peptide of any one of [18] to [19] in the production of a passive immunotherapeutic agent for cancer treatment
  • the complex-tetramer is contacted with peripheral blood lymphocytes to form the major histocompatibility antigen complex and / or the conjugate with CTL bound to the major histocompatibility antigen complex-tetramer.
  • a vaccine composition comprising the epitope peptide according to any one of [1] to [2] as an active ingredient for treating or preventing EBV infection or EBV positive cancer
  • the vaccine composition according to [B1] wherein EBV is selected from AKata strain, GD1 strain, GD2 strain, HKNPC1 strain, AG876 strain, Mutu strain and B95.8 strain
  • [B3] A vaccine composition comprising the nucleic acid or expression vector according to any one of [3] to [4] as an active ingredient for treating or preventing EBV infection or EBV-positive cancer
  • the vaccine composition according to [B3] wherein EBV is selected from AKata strain, GD1 strain, GD2 strain, HKNPC1 strain, AG876 strain, Mutu strain, and B95.8 strain
  • [B5] containing, as an active ingredient, an antigen-presenting cell presenting the epitope peptide according to any one of [1] to [
  • a composition comprising cytotoxic T cells obtained by [B9] A vaccine composition comprising the epitope peptide according to any one of [18] to [19] as an active ingredient for cancer treatment or prevention, [B10] A vaccine composition comprising the nucleic acid or expression vector according to any one of [21] to [22] as an active ingredient for cancer treatment or prevention, [B11] A vaccine composition comprising, as an active ingredient, an antigen-presenting cell presenting the epitope peptide according to any one of [18] to [19] on HLA for cancer treatment or prevention, [B12] For treating cancer by passive immunotherapy, the peripheral blood lymphocytes are stimulated by the epitope peptide according to any one of [18] to [19] or antigen-presenting cells presenting the epitope peptide on HLA.
  • a composition comprising CKAP4-specific CTL obtained as an active ingredient, [B13] Major histocompatibility complex and / or major histocompatibility complex prepared from the epitope peptide of any one of [18] to [19] for treating cancer by passive immunotherapy Contacting the tetramer with peripheral blood lymphocytes to form a major histocompatibility antigen complex and / or a major histocompatibility antigen complex-a conjugate in which CTL is bound to the tetramer, and isolated from the conjugate
  • a composition comprising the obtained CTL as an active ingredient, [C1]
  • a method for treating or preventing EBV infection or EBV-positive cancer comprising a step of administering the epitope peptide according to any one of [1] to [2] to an individual in need thereof , [C2] EBV is selected from AKata strain, GD1 strain, GD2 strain, HKNPC1 strain, AG876 strain, Mutu strain and B95.8 strain, [C
  • EBV is selected from AKata strain, GD1 strain, GD2 strain, HKNPC1 strain, AG876 strain, Mutu strain and B95.8 strain
  • [C5] EBV-infected or EBV virus-positive cancer comprising a step of administering an antigen-presenting cell presenting the epitope peptide of any one of [1] to [2] to HLA to an individual in need thereof
  • a method for treating or preventing [C6] The method according to [C5], wherein EBV is selected from AKata strain, GD1 strain, GD2 strain, HKNPC1 strain, AG876 strain, Mutu strain and B95.8 strain
  • [C7] EBV-specific cytotoxic T cells obtained by stimulating peripheral blood lymphocytes with the epitope peptide according to any one of [1] to [2] or antigen-presenting cells presenting the epitope peptide on HLA Passive immunotherapy against EBV, comprising the step of administering to an individual in need thereof
  • FIG. 4 is a diagram showing the quantification of the proportion of live IFN ⁇ -producing cells present in CD8-positive cells after confirming EBVEBLMP2-specific CTL induction by the intracellular IFN ⁇ -producing cell quantification method.
  • FIG. 11 is a view showing the detection result of LMP2-specific CTL by the prepared MHC-tetramer reagent (donor ID * 11-11).
  • FIG. 6 is a diagram showing the detection result (1) of EBNA1-specific CTL by the prepared MHC-tetramer reagent.
  • FIG. 6 is a diagram showing the detection result (2) of EBNA1-specific CTL by the prepared MHC-tetramer reagent. It is a figure which shows the confirmation result of EBNA1 specific CTL induction
  • the peptide referred to in the present invention means a molecular chain of linear amino acids having physiological activity and bound to each other by a peptide bond between an ⁇ -amino group and a carboxyl group of adjacent amino acid residues.
  • Peptides are not meant to be of a specific length and can be of various lengths. Further, it may be in an uncharged or salt form, and may be modified by glycosylation, amidation, phosphorylation, carboxylation, phosphorylation or the like in some cases. Further, the epitope peptide of the present invention may be one or several (for example, 1 to 10) unless the physiological peptide and the immune activity are substantially modified and has no harmful activity when administered.
  • Peptides in which insertion, addition, substitution, deletion or the like of amino acids or amino acid analogs have occurred are also included in the present invention.
  • the purpose of changing such amino acids is, for example, 1. Changes to increase affinity with HLA (Rosenberg SA, Yang JC, Schwartzentruber DJ, Hwu P, Marincola FM, Topalian SL, Restifo NP, Dudley ME, Schwarz SL, Spiess PJ, Wunderlich JR, Parkhurst MR, Kawakami Y, Seipp CA, Einhorn JH, White DE.Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med.
  • the peptide of the present invention can be used in the form of a complex to which saccharides, polyethylene glycol, lipids and the like are added, a derivative with a radioisotope, or a polymer.
  • the amino acid analogs include N-acylated products, O-acylated products, esterified products, acid amidated products, and alkylated products of various amino acids.
  • the N-terminus of the antigen peptide or free amino group May be bound with a formyl group, an acetyl group, a t-butoxycarbonyl (t-Boc) group, and the C-terminus of the antigen peptide and a free carboxyl group include a methyl group, an ethyl group, and a t-butyl group.
  • Group, benzyl group and the like may be bonded.
  • the epitope peptide of the present invention may be subjected to various modifications that can facilitate introduction into the living body.
  • the PT (Protein Transduction) domain is famous as an example of various modifications that can facilitate introduction into the living body.
  • the PT domain of HIV is a peptide composed of the 49th to 57th amino acids (Arg Lys Lys Arg Arg Gln Arg Arg Arg) of the Tat protein. It has been reported that this PT domain can be easily introduced into cells by adding it to the N-terminal and / or C-terminal of the target protein or peptide (Ryu J, Han K, Park J, Choi SY.
  • HSP heat shock prtein
  • HSP90 heat shock prtein
  • gp96 heat shock prtein
  • CD91 is a common receptor for heat shock proteins gp96, hsp70, and calreticulin. Immunity. 2001; 14: 303-313).
  • nucleic acid encoding epitope peptide is important for producing the epitope peptide in the host using genetic recombination techniques. In this case, since the usage frequency (codon usage) of the amino acid codon differs between hosts, it is desirable to change the codon of the amino acid so as to match the codon usage of the host to be produced.
  • Nucleic acids encoding epitope peptides are also important as vaccines and can be transported as bare nucleic acids or using appropriate viral or bacterial vectors (Berzofsky JA, Ahlers JD, Janik J, Morris J, Oh S, Terabe M, Belyakov IM Progress on new vaccine strategies against chronic viral infections.J Clin Invest. 2004; 114: 450-462, Berzofsky JA, Terabe M, Oh S, Belyakov IM, Ahlers JD, Janik JE, Morris JC Progress on new vaccine strategies for the immunotherapy and prevention of cancer. J Clin Invest. 2004; 113: 1515-1525).
  • Suitable bacterial vectors are Salmonella subspecies bacteria.
  • Suitable viral vectors are, for example, retroviral vectors, EBV vectors, vaccinia vectors, Sendai virus vectors, lentiviral vectors.
  • a suitable vaccinia vector is a modified vaccinia ankara vector.
  • the CTL epitope candidate peptide specific for EBV of the present invention consists of 8 to 10 amino acids having a binding motif for the target HLA class I molecule with respect to the amino acid sequences of LMP2 and EBNA1. MHC binding Nucleic Acids Multiple epitope prediction software published on the Internet (Pingping Guan, Irini A. Doytchinova, Christianna Zygouri, and Spotify R. Flower MHCPred: a server for quantitative prediction of peptide? Res., 2003; 31: 3621-3624, Karosiene E, Lundegaard C, Lund O, Nielsen M.
  • NetMHCcons a consensus method for the major histocompatibility complex class I predictions. Immunogenetics. 2012 Mar; 64 (3): 177-86 , Jorgensen KW, Rasmussen M, Buus S, Nielsen M. NetMHCstab-predicting stability of peptide-MHC-I complexes; impacts for cytotoxic T lymphocyte epitope discovery. Immunology. 2014 Jan; 141 (1): 18-26. ) Can be selected.
  • HLA class I molecules mainly include HLA-A, HLA-B, and HLA-C, and the epitope peptides that are displayed by binding to these consist of 8 to 10 amino acids.
  • the second, ninth or tenth amino acid from the N-terminal side of the epitope peptide is the most important amino acid for binding to the HLA class I molecule, and is called an anchor motif. It has been reported that this anchor motif varies depending on the type of each HLA class I molecule. For example, as the peptide that binds to HLA-A2 that is the most studied worldwide, Leu is located at the second position from the N-terminus, and Leu or Val is located at the 9th or 10th position.
  • HLA-A11 Chang CX, Tan AT, Or MY, Toh KY, Lim PY, Chia AS, Froesig TM, Nadua KD, Oh HL, Leong HN, Hadrup SR, Gehring AJ, Tan YJ, Bertoletti A, Grotenbreg GM.
  • peptide library consisting of about 20 amino acid sequences covering the entire target protein among the proteins constituting EBV is synthesized.
  • a library is prepared so that about 10 amino acid sequences out of about 20 amino acids overlap with preceding and subsequent peptides. As a result, the entire protein can be searched comprehensively, and once the library is prepared, the HLA restriction can be comprehensively examined.
  • the CTL epitope candidate peptides represented by SEQ ID NOs: 1 to 35 of the present invention can be prepared by various conventional peptide synthesis methods.
  • organic chemical synthesis methods such as solid phase peptide synthesis methods, or nucleic acids encoding peptides can be prepared and prepared using recombinant DNA technology.
  • combination by a commercially available chemical synthesizer is also possible.
  • the CTL epitope candidate peptide selected by the above-mentioned method does not necessarily become a CTL epitope peptide, and can only become an EBV LMP2-specific CTL epitope peptide and an EBV EBNA1-specific CTL epitope peptide after the following examination.
  • TAP transporter associated with antigen processing
  • HLA class I molecules and ⁇ 2-microglobulin It binds to the complex and is transported to the cell membrane surface.
  • a TAP gene-deficient cell line deficient in this TAP molecule cannot express peptide fragments, which are degradation products of endogenous proteins, on the cell membrane surface.
  • human lymphoblastoid cell line T2 which is a typical TAP gene-deficient cell line, or a cell line (T2-A11) in which HLA-A11 molecule is introduced into T2 is expressed on the cell membrane surface. Very unstable.
  • the HLA molecule when bound to an externally supplied peptide, the HLA molecule is stabilized on the cell membrane surface.
  • the TAP gene-deficient cell line can be used in experiments for verifying the binding properties of HLA molecules and externally supplied peptides. Specifically, mixed culture of TAP gene-deficient cell line and CTL epitope candidate peptide, staining with anti-HLA antibody, and calculating change in expression intensity of HLA molecule by flow cytometry The binding of CTL epitope candidate peptides can be examined.
  • the HLA molecule-peptide complex is stabilized on the cell membrane surface, and when stained with an anti-HLA antibody, the expression of the HLA molecule is enhanced. Is observed.
  • the added CTL epitope candidate peptide does not bind to the HLA molecule, the HLA molecule on the cell membrane surface is unstable, and even when stained with an anti-HLA antibody, enhanced expression of the HLA molecule is not confirmed. Using such a method, it is possible to verify the binding between the HLA molecule and the CTL epitope candidate peptide.
  • the MHC-tetramer reagent is a three-component complex (MHC-monomer) of MHC (HLA in the case of humans), ⁇ 2-microglobulin and peptide fragments in vitro. It is an incorporated reagent.
  • the MHC-tetramer reagent is the only reagent that can selectively detect antigen-specific cytotoxic T cells (CTLs) that are MHC restricted.
  • CTLs cytotoxic T cells
  • MHC-tetramer reagent can not only quantify the number of CTLs by co-staining with anti-CD (cluster of differentiation) antibody, anti-cytokine antibody, etc., but also by analyzing with flow cytometry. It is possible to evaluate every single cell.
  • the first step in MHC-tetramer reagent production begins with folding where the raw materials MHC, ⁇ 2-microglobulin and peptide are mixed in a suitable solution in a test tube.
  • a three-component complex (MHC-monomer) is formed by the association reaction of these three raw materials.
  • MHC-monomer a three-component complex
  • this association reaction proceeds smoothly, and analysis with a gel filtration column makes it possible to detect a complex of three kinds of raw materials (MHC-monomer).
  • MHC-monomer when there is no binding force between MHC and peptide, MHC-monomer is hardly detected. Therefore, it is possible to verify the binding properties and stability of MHC and peptide by analyzing the folding solution over time or by performing heat treatment or the like.
  • Epitope peptide-specific CTL detection (3-1) Epitope peptide determination method Peripheral blood mononuclear cells (PBMC) isolated from a person with a history of EBV infection, or T cells isolated from PBMC Suspend in a suitable medium at a cell concentration of 0.1-2 x 10 6 / mL. To this, 1 ⁇ 10 5 / mL of EBV-infected cells previously separated and cultured from the same person is added, and cultured at 37 ° C. for 7 days in a 5% carbon dioxide (CO 2 ) thermostat.
  • PBMC peripheral blood mononuclear cells
  • EBV-infected cells and interleukin 2 are added, and then CTL are induced by repeated stimulation with EBV-infected cells and IL-2 every week. Whether or not the CTL thus induced is specific for the epitope candidate peptide is determined by MHC-tetramer method, elicitor assay, chromium release assay, intracellular cytokine staining method, etc. (Current Protocols in Immunology Edited by: John E. Coligan, Ada M. Kruisbeek, David H. Margulies, Ethan M.
  • Whether or not the CTL thus induced is specific for the epitope candidate peptide is determined by an Elispot assay, a chromium release assay, an intracellular cytokine staining method, or the like. For pooled peptides that showed good results, it is possible to select peptides having CTL inducing ability by repeating the above experiment with one peptide added at a time. The reacted peptides are shortened in order, and finally an epitope peptide consisting of 8 to 10 amino acids is obtained as the epitope peptide of the present invention.
  • EBV LMP2 and EBNA1-specific MHC-monomers and MHC-tetramer reagents [Production of EBV LMP2 and EBNA1-specific MHC-monomers and MHC-tetramer reagents] MHC-monomer and MHC-tetramer reagent using EBV LMP2-specific CTL epitope candidate peptide and EBV EBNA1-specific CTL epitope candidate peptide can be prepared by known methods (US Patent Number 5,635,363, French Application Number FR9911133) .
  • MHC- which is a triple complex of an HLA class I molecule, ⁇ 2-microglobulin and LMP2-specific CTL epitope candidate peptide of the present invention, or EBNA1-specific CTL epitope candidate peptide purified from a recombinant host for protein expression
  • Monomers are formed in the folding solution.
  • a biotin binding site is added to the C-terminus of the recombinant HLA class I molecule in advance, and biotin is added to this site after MHC-monomer formation.
  • a MHC-tetramer reagent can be prepared by mixing commercially available dye-labeled streptavidin and biotinylated MHC-monomer at a molar ratio of 1: 4.
  • MHC-tetramer reagent and antibodies against cell surface proteins (CD62L, CCR7, CD45RA, etc.) can be used to examine the differentiation stage of CTL (Seder RA, Ahmed R. Similarities and differences in CD4 + and CD8 + effector and memory T cell generation. Nat Immunol. 2003; 4: 835-842.).
  • it can be used for functional evaluation of CTL by combining with intracellular cytokine staining method.
  • CTL against HCV Hepatitis C virus
  • Cytomegalovirus reactivation following allogeneic stem cell transplantation is associated with the presence of dysfunctional antigen-specific CD8 + T cells.Blood. 2002; 100: 3690-3697.).
  • a specific CTL epitope peptide is identified and an MHC-tetramer reagent is produced, it becomes possible to quantify and qualify specific CTLs, and to make a great contribution to obtaining diagnostic information.
  • the CTL epitope peptide of the present invention can be used as a peptide vaccine in active immunotherapy. That is, a vaccine comprising the CTL epitope peptide of the present invention is administered to a patient, and EBV LMP2-specific CTL or EBV EBNA1-specific CTL is proliferated in the body to prevent infection and treat infection and EBV positive tumor. Can be useful. Only one type of epitope peptide may be used, or two or more types of peptides may be combined and mixed according to the intended use of the vaccine.
  • Vaccine using antigen-presenting cell The antigen-presenting cell on which the CTL epitope peptide of the present invention is presented can be used as a vaccine in active immunotherapy.
  • Antigen-presenting cells with CTL epitope peptides presented 1.
  • CTL epitope peptide pulse antigen-presenting cells in which antigen-presenting cells and CTL epitope peptides are mixed for 30 minutes to 1 hour in an appropriate culture medium.
  • An antigen-presenting cell means, for example, a dendritic cell, a B cell, a macrophage, a certain type of T cell, etc., and is a cell that expresses on its cell surface an HLA molecule to which the peptide can bind, It means something that has stimulating ability.
  • Artificial antigen-presenting cells with antigen-presenting ability are artificially prepared by immobilizing a ternary complex of HLA molecule, CTL epitope peptide and ⁇ 2-microglobulin on beads such as lipid bilayer membrane, plastic or latex.
  • costimulatory molecules such as CD80, CD83, and CD86 that can stimulate CTLs
  • fix antibodies that act agonistically on CD28, a T cell ligand that binds to costimulatory molecules.
  • Cutting edge predetermined avidity of human CD8 T cells expanded on calibrated MHC / anti -CD28-coated microspheres. J Immunol. 2003; 171: 4974- 4978, Oosten LE, Blokland E, van Halteren AG, Curtsinger J, Mescher MF, Falkenburg JH, Mutis T, Goulmy E. Artificial antigen-presenting constructs efficiently stimulate minor histocompatibility antigen-specific cytotoxic T lymphocytes.Blood. 2004; 104: 224 -226).
  • the nucleic acid of the CTL epitope peptide of the present invention can be used for DNA vaccines, recombinant virus vector vaccines and the like in active immunotherapy.
  • it is desirable to change the nucleic acid sequence of the CTL epitope peptide to codon usage suitable for the host producing the recombinant vaccine or the recombinant virus vaccine (Casimiro, DR et al. Comparative Immunogenicity in Rhesus Monkeys of DNA Plasmid , Recombinant Vaccinia Virus, and Replication-Defective Adenovirus Vectors Expressing a Human Immunodeficiency Virus Type 1 gag Gene J.
  • a vaccine comprising a CTL epitope peptide of the present invention or an antigen-presenting cell on which a CTL epitope peptide is presented can be prepared using methods known in the art.
  • a vaccine includes an injection or a solid preparation containing the CTL epitope peptide of the present invention as an active ingredient.
  • the CTL epitope peptide can be formulated in a neutral or salt form.
  • pharmaceutically acceptable salts include inorganic salts such as hydrochloric acid and phosphoric acid, and organic acids such as acetic acid and tartaric acid. .
  • the antigen-presenting cell on which the CTL epitope peptide of the present invention is presented is a pharmaceutically acceptable excipient compatible with the peptide or the activity of the cell, such as water, saline, dextrose, ethanol, It can be used by mixing with glycerol, DMSO (dimethyl sulphoxide), other adjuvants, or a combination thereof. Furthermore, you may add adjuvants, such as albumin, a wetting agent, and an emulsifier, as needed.
  • the vaccine of the present invention can be administered by parenteral administration or oral administration, but parenteral administration is generally preferred.
  • Parenteral administration includes nasal administration, subcutaneous injection, intramuscular injection, injection such as intravenous injection, suppository and the like.
  • parenteral administration it can be prepared as a mixture with excipients such as starch, mannitol, lactose, magnesium stearate, and cellulose.
  • the vaccine of the present invention is administered in a therapeutically effective amount.
  • the dose to be administered depends on the subject to be treated and the immune system, and the required dose is determined by the judgment of the clinician. In general, the appropriate dose is 1 to 100 mg of CTL epitope peptide and 10 6 to 10 9 CTL epitope peptide pulsed cells per patient.
  • the administration interval can be set according to the subject and purpose.
  • the CTL epitope peptide of the present invention can be used for the preparation of a passive immunotherapeutic agent.
  • the CTL specific for EBV LMP2 or the CTL specific for EBV EBNA1 obtained as described below can be suspended in human albumin-containing PBS or the like and used as a passive immunotherapy for EBV.
  • the CTL specific for EBV contained in the passive immunotherapeutic agent can be obtained by the following preparation method, and can be purified and used to increase the purity of CTL.
  • PBMC is reacted with an appropriate concentration of EBV-specific MHC-tetramer reagent. Since the EBV-specific CTL bound to the MHC-tetramer reagent is stained with a labeling dye, only the stained CTL is isolated using a cell sorter, a microscope or the like. EBV-specific CTL isolated in this way are T cell stimulating drugs such as anti-CD3 antibodies, PHA, IL-2, and antigen-presenting cells whose proliferation ability has been lost by X-ray irradiation or mitomycin treatment. Stimulate growth to ensure the number of cells required for passive immunotherapy.
  • T cell stimulating drugs such as anti-CD3 antibodies, PHA, IL-2, and antigen-presenting cells whose proliferation ability has been lost by X-ray irradiation or mitomycin treatment. Stimulate growth to ensure the number of cells required for passive immunotherapy.
  • CTL preparation method 2 EBV-specific MHC-monomer and / or MHC-tetramer reagent is immobilized on a sterile plate and PBMC is cultured on the immobilized plate.
  • PBMC PBMC is cultured on the immobilized plate.
  • EBV-specific CTL bound to MHC-monomer and / or MHC-tetramer reagent immobilized on the plate other cells floating without being bound are washed off on the plate. Suspend only the specific CTL remaining in the fresh medium.
  • EBV-specific CTLs isolated in this way are stimulated with anti-CD3 antibodies, PHA, IL-2 and other T cell stimulating agents, and antigen-presenting cells whose proliferation ability has been lost by X-ray irradiation or mitomycin treatment. Proliferate to ensure the number of cells required for passive immunotherapy.
  • CTL preparation method 3 Acts agonistically on EBV-specific MHC-monomers and / or MHC-tetramer reagents and costimulatory molecules such as CD80, CD83, CD86, or CD28, a T cell ligand that binds to costimulatory molecules
  • the antibody to be immobilized is immobilized on a sterile plate, and PBMC is cultured on the immobilized plate.
  • PBMC is cultured on the immobilized plate.
  • IL-2 is added to the medium and cultured in a 5% CO 2 constant temperature bath at 37 ° C. for 7 to 14 days.
  • the cultured cells are collected and cultured on a new solid phase plate. By repeating this operation, CTLs with the number of cells necessary for passive immunotherapy are secured.
  • CTL preparation method 4 Stimulate PBMC or T cells directly with the CTL epitope peptide of the present invention, or with antigen-presenting cells pulsed with the peptide, gene-introduced antigen-presenting cells, or artificially prepared antigen-presenting cells with antigen-presenting ability To do. Stimulation can be in vitro, but may also be in vivo. When stimulated in vitro, CTL induced by stimulation is cultured at 37 ° C for 7 to 14 days in a 5% CO 2 thermostat. In culture, CTL epitope peptide and IL-2, or antigen-presenting cells and IL-2 stimulation are repeated once a week to secure the number of CTLs necessary for passive immunotherapy.
  • a magnetically labeled secondary antibody and a magnetically labeled cell separation device are available from, for example, Dynal and Miltenyi Biotec GmbH.
  • the EBV-specific CTL isolated in this way is stimulated and proliferated with a T cell stimulating agent such as anti-CD3 antibody, PHA, IL-2, and the number of cells required for passive immunotherapy is ensured.
  • EBV-specific CTLs can be purified by utilizing cytokines released by EBV-specific CTLs.
  • the cytokine released from the CTL is captured on the cell surface with a specific antibody, stained with an anti-cytokine-labeled antibody, and then magnetically labeled for the labeling substance-specific After reacting with the antibody, it can be purified using a magnetically labeled cell separator.
  • the EBV-specific CTL isolated in this way is stimulated and proliferated with a T cell stimulating agent such as anti-CD3 antibody, PHA, IL-2, and the number of cells required for passive immunotherapy is ensured.
  • Cell surface proteins eg CD137, CD107a, CD107b, CD63, CD69, etc.
  • Cell surface proteins eg CD137, CD107a, CD107b, CD63, CD69, etc.
  • CTLs Betts MR , Brenchley JM, Price DA, De Rosa SC, Douek DC, Roederer M, Koup RA.Sensitive and viable identification of antigen-specific CD8 + T cells by a flow cytometric assay for degranulation.
  • J Immunol Methods.2003; 281: 65-78 Trimble LA, Shankar P, Patterson M, Daily JP, Lieberman J.
  • Human immunodeficiency virus-specific circulating CD8 T lymphocytes have down-modulated CD3zeta and CD28, key signaling molecules for T-cell activation. J Virol. 2000; 74: 7320 -7330).
  • CTL can be similarly purified by magnetically labeling such an anti-IgG antibody against the specific antibody.
  • specific CTLs can be purified by coating these specific antibodies onto a plastic plate for culturing, culturing stimulated PBMC using this plate, and washing away the cell population that did not bind to the plate. It is.
  • the EBV-specific CTL isolated in this way is stimulated and proliferated with a T cell stimulating agent such as anti-CD3 antibody, PHA, IL-2, and the number of cells required for passive immunotherapy is ensured.
  • Quantification of EBV-specific CTL Knowing whether EBV-specific CTLs are present in the peripheral blood of cancer patients or the variation in their amounts is important information for predicting EBV-specific CTL epitope peptides. Quantification of EBV-specific CTL can be performed by the following three methods using the CTL epitope peptide of the present invention.
  • Quantitation method 1 CTL specific for EBV in peripheral blood can be quantified using the MHC-tetramer reagent produced using the CTL epitope peptide of the present invention.
  • the quantification can be performed, for example, as follows. Peripheral blood or PBMC are reacted with an appropriate concentration of MHC-tetramer reagent. Since the CTL bound to the MHC-tetramer reagent is stained with a labeling dye, it is counted using a flow cytometer, a microscope or the like. When reacting with MHC-tetramer reagent, anti-CD3 antibody, anti-CD4 antibody, anti-CD8 antibody, etc. labeled with a different dye from MHC-tetramer reagent can be reacted to simultaneously determine T cell subsets of EBV-specific CTLs. it can.
  • Quantitation method 2 This is a method for quantifying cytokines and / or chemokines such as IFN ⁇ (interferon gamma), TNF ⁇ (tumor necrosis factor alpha), and interleukin produced by CTL by stimulating PBMC with the CTL epitope peptide of the present invention.
  • IFN ⁇ interferon gamma
  • TNF ⁇ tumor necrosis factor alpha
  • interleukin produced by CTL by stimulating PBMC with the CTL epitope peptide of the present invention.
  • PBMCs are suspended in a suitable medium at a cell concentration of approximately 2 ⁇ 10 6 / mL, and the CTL epitope peptide of the present invention is added. Further, an intracellular protein transport inhibitor (eg, Brefeldin A, Monensin, etc.) is added, and the cells are cultured at 37 ° C. for 5 to 16 hours in a 5% CO 2 constant temperature bath.
  • an intracellular protein transport inhibitor eg, Brefeldin A, Monensin, etc.
  • the cells After culturing, the cells are reacted with a T cell marker antibody (anti-CD3 antibody, anti-CD4 antibody, anti-CD8 antibody) or MHC-tetramer reagent, and after fixing the cells, membrane permeation treatment is performed, and a dye-labeled anti-IFN ⁇ antibody is reacted. Analysis is performed using a flow cytometer or the like, and the IFN ⁇ positive cell rate in total cells, T cells, or MHC-tetramer reagent positive cells is quantified.
  • a T cell marker antibody anti-CD3 antibody, anti-CD4 antibody, anti-CD8 antibody
  • MHC-tetramer reagent MHC-tetramer reagent
  • PBMC PBMC are plated on a 96-well MultiScreen-HA plate (Millipore) on which an anti-IFN ⁇ antibody is immobilized. Thereafter, the CTL epitope peptide is placed in each well and cultured in a 5% CO 2 thermostat incubator at 37 ° C. for 20 hours. On the next day, the plate is washed and reacted with anti-IFN ⁇ antibody and peroxidase-labeled anti-IgG antibody in this order. Further, a substrate of peroxidase is added, the IFN ⁇ spot is visualized by color development, and quantified by counting using a stereomicroscope or ELISPOT analyzer (CTL).
  • CTL ELISPOT analyzer
  • PBMCs are suspended in a suitable medium at a cell concentration of approximately 2 ⁇ 10 6 / mL, and the CTL epitope peptide of the present invention is added. Incubate for 24-48 hours at 37 ° C in a 5% CO 2 oven. After the culture, the supernatant is collected, and the IFN ⁇ concentration contained therein is quantified using a commercially available ELISA kit (for example, Quantikine ELISA Human IFN ⁇ Immunoassay from R & D Systems).
  • a commercially available ELISA kit for example, Quantikine ELISA Human IFN ⁇ Immunoassay from R & D Systems.
  • Quantitation method 3 Quantification is performed using cell surface protein specific antibodies.
  • CTLs specific for CTL epitope peptides have been reported to enhance the expression of cell surface proteins (eg, CD137, CD107a, CD107b, CD63, CD69, etc.) by specific stimulation. Therefore, by mixing PBMC stimulated with a CTL epitope peptide and a labeled antibody that specifically recognizes a cell surface protein, CTL binds to the labeled antibody and is stained with a labeled dye. Stained CTL can be counted and quantified using a flow cytometer, a microscope or the like. Furthermore, by adding an anti-CD3 antibody, an anti-CD4 antibody, an anti-CD8 antibody or the like labeled with a dye different from the labeled antibody, the T cell subset of specific CTL can be determined simultaneously.
  • the number of cells is counted, 10/11 amount of cells are suspended in RPMI1640 medium, and culture plasma is added to a final concentration of 10%.
  • CTL epitope peptide followed, injected 37 ° C. in the culture bag using a luer lock syringe (CultiLife215 TAKARA BIO Inc.), to stand at CO 2 thermostat at 5% CO 2 (CTL induction Bag) .
  • 1/11 amount of cells were suspended in RPMI1640 medium, culture plasma was added to a final concentration of 10%, anti-CD3 antibody was added to a final concentration of 1 ⁇ g / mL, and then a luer lock syringe was used.
  • both antigen-specific CTL and antigen-presenting cells can be induced in about 14 days from the start of culture. Approximately 14 days later, cells in the antigen-presenting cell induction bag are collected, the number of cells is counted, centrifuged, suspended in RPMI1640 medium, CTL epitope peptide is added, and cultured at room temperature for 1 hour. After centrifugation, the supernatant is removed by suction and suspended in a medium containing IL-2 (AlyS505N IL-2 100 IU / mL 10% plasma) (peptide pulse antigen-presenting cells). Similarly, the cells in the CTL induction bag are collected, counted and centrifuged, and the supernatant is removed by aspiration.
  • IL-2 AlyS505N IL-2 100 IU / mL 10% plasma
  • the cells are suspended in an IL-2 containing medium (AlyS505N IL-2 100 IU / mL 10% plasma).
  • Peptide pulse antigen-presenting cells in an amount equal to the number of cells in the CTL induction bag are mixed and injected into a culture bag using a luer lock syringe. Thereafter, the culture bag is transferred to a CO 2 thermostatic bath at 37 ° C. and 5% CO 2 to start the culture.
  • the growth medium (AlyS505N IL-2 1000 IU / mL) is added to the culture bag. After culturing for 3 days in a CO 2 thermostatic bath, the growth medium is added to the culture bag. Thereafter, a growth medium is added every two days.
  • the CTL epitope candidate peptide specific for CKAP4 of the present invention is a peptide comprising 8 to 12 amino acids having a binding motif for the target HLA class I molecule with respect to the amino acid sequence of the CKAP4 protein.
  • Multiple software published on the Internet that can be searched (Lundegaard C, Lund O, Buus S, Nielsen M, Major histocompatibility complex class I binding predictions as a tool in epitope discovery. Immunology., 2010; 130: 309- 318) can be selected.
  • HLA class I molecules mainly include HLA-A, HLA-B, and HLA-C, and the epitope peptides that are displayed by binding to these consist of 8 to 10 amino acids.
  • the second, ninth or tenth amino acid from the N-terminal side of the epitope peptide is the most important amino acid for binding to the HLA class I molecule, and is called an anchor motif. It has been reported that this anchor motif varies depending on the type of each HLA class I molecule. For example, as a peptide that binds to the HLA-A2 molecule, the most studied in the world, Leu is placed at the second position from the N-terminus, and Leu or Val is placed at the 9th or 10th position.
  • the CTL epitope candidate peptides shown in SEQ ID NOs: 36 to 47 of the present invention can be prepared by various conventional peptide synthesis methods.
  • organic chemical synthesis methods such as solid phase peptide synthesis methods, or nucleic acids encoding peptides can be prepared and prepared using recombinant DNA technology.
  • combination by a commercially available chemical synthesizer is also possible.
  • the CTL epitope is composed of peptide fragments having a length of 8 to 12 amino acid residues, and these are produced by various degradation of antigen proteins in cells. Specifically, the antigen protein is first degraded by the proteasome in the cytoplasm to form the C-terminus of the peptide. Thereafter, the peptide fragment is transported to the endoplasmic reticulum lumen by a TAP (transporter-associated-with-antigen-processing) molecule, where it becomes a peptide fragment of 8 to 12 amino acid residues only after the N-terminus is formed by the protease ERAP1.
  • TAP transporter-associated-with-antigen-processing
  • candidate peptides obtained using the prediction software include those that cannot actually constitute peptide fragments having a length of 8 to 12 amino acid residues in the cell.
  • T cells that react strongly with self-antigen-derived peptide fragments induce apoptosis in the thymus by negative selection and are eliminated.
  • T cells that react with foreign antigens are selected by positive selection. From such a T cell differentiation process, T cells that react with a self-antigen-derived peptide fragment are usually removed by the thymus, and it is thought that only a small part is present in peripheral blood.
  • peptide fragments derived from autoantigens are presented on HLA molecules expressed on the membrane surface of all nucleated cells and platelets, and there are innumerable peptide fragments that bind to HLA.
  • CTL recognizes only a part of the peptide fragments derived from HLA on the cell membrane surface that are recognized by HLA, and most of the CTL epitope candidate peptides by the prediction software are not recognized by CTL. It is believed that. That is, it is considered that there is no antigenicity.
  • obtaining a CTL epitope candidate peptide by simply using prediction software is greatly different from identifying a CTL epitope peptide responsible for an immune response.
  • the inventors have identified a CTL epitope peptide by a method of directly detecting in vivo CTL specific for a candidate peptide using an MHC-tetramer reagent.
  • the detection of specific CTLs from a sample such as peripheral blood by the MHC-tetramer reagent means that a candidate peptide-specific immune response has been induced in vivo, and the candidate peptide is a CTL epitope. Indicates that it is a peptide.
  • the CTL epitope candidate peptide selected by the above-described method can be a CKAP4-specific CTL epitope peptide only after the following studies (1) to (3).
  • a TAP gene-deficient cell line deficient in this TAP molecule cannot express peptide fragments, which are degradation products of endogenous proteins, on the cell membrane surface.
  • human lymphoblastoid cell line T2 which is a typical TAP gene-deficient cell line, or a cell line in which HLA-A24 molecule is introduced into T2 (T2-A24) is expressed on the cell membrane surface. Very unstable. However, when bound to an externally supplied peptide, the HLA molecule is stabilized on the cell membrane surface. Using this property, the TAP gene-deficient cell line can be used in experiments for verifying the binding property between HLA molecules and externally supplied peptides.
  • the target HLA molecule and The binding of CTL epitope candidate peptides can be examined.
  • the CTL epitope candidate peptide added to the HLA molecule expressed by the TAP gene-deficient cell line binds, the HLA molecule-peptide complex is stabilized on the cell membrane surface, and when stained with an anti-HLA antibody, the expression of the HLA molecule is enhanced. Is observed.
  • MHC-tetramer reagent is a ternary complex (MHC-monomer) consisting of MHC (HLA for humans), ⁇ 2-microglobulin and peptide fragments in vitro. It is an incorporated reagent.
  • the MHC-tetramer reagent is the only reagent that can selectively detect antigen-specific CTLs that are MHC restricted.
  • MHC-tetramer reagent can not only quantify the amount of CTL by analyzing with flow cytometry after co-staining with anti-CD (cluster of differentiation) antibody, anti-cytokine antibody, etc., but also its activation state and differentiation stage It is possible to evaluate each cell individually.
  • the first step in MHC-tetramer reagent production begins with folding where the raw materials MHC, ⁇ 2-microglobulin and peptide are mixed in a suitable solution in a test tube. In the folding solution, a three-component complex (MHC-monomer) is formed by the association reaction of these three raw materials.
  • the used CTL epitope candidate peptide can be identified as an antigenic peptide (epitope peptide) having CTL inducing ability.
  • T cells naive T cells
  • T cells transferred from the thymus are activated and differentiated into effector T cells only upon antigen stimulation by dendritic cells, macrophages and other antigen-presenting cells.
  • naive T cells in peripheral blood were differentiated because they did not use artificially prepared antigen-presenting cells. It is thought that effector / memory T cells are proliferating by peptide stimulation.
  • MHC-monomer and MHC-tetramer reagent using a CKAP4-specific CTL epitope candidate peptide can be prepared by a known method (US Patent Number 5,635,363, French Application Number FR9911133).
  • An MHC-monomer that is a complex of three of a HLA class I molecule purified from a recombinant host for protein expression, ⁇ 2-microglobulin, and a CKAP4-specific CTL epitope candidate peptide of the present invention is formed in a folding solution.
  • a biotin binding site is added to the C-terminus of the recombinant HLA class I molecule in advance, and biotin is added to this site after MHC-monomer formation.
  • a MHC-tetramer reagent can be prepared by mixing commercially available dye-labeled streptavidin and biotinylated MHC-monomer at a molar ratio of 1: 4. It can also be used in combination with antibodies against cell surface proteins (CD62L, CCR7, CD45RA, etc.) to examine the differentiation stage of CTL (Seder RA, Ahmed R. Similarities and differences in CD4 + and CD8 + effector and memory T cell generation) Nat Immunol. 2003; 4: 835-842).
  • CTL against HCV Hepatitis C virus
  • HCV Hepatitis C virus
  • CTL against HCV exists as one of the causes for maintaining persistent infection, but CTL does not produce cytokines, or the proportion of CTL produced is extremely low.
  • anomaly Gaener NH, Lechner F, Jung MC, Diepolder H, Gerlach T, Lauer G, Walker B, Sullivan J, Phillips R, Pape GR , Klenerman P. Sustained dysfunction of antiviral CD8 + T lymphocytes after infection with hepatitis C virus. J Virol. 2001; 75: 5550-5558).
  • HCMV-specific CTL after bone marrow transplantation it is considered effective not only to examine the presence or absence of CTL but also to examine the strength of cytokine production in order to measure the timing of administration of antiviral drugs, etc.
  • Cytomegalovirus reactivation following allogeneic stem cell transplantation is associated with the presence of dysfunctional antigen-specific CD8 + T cells.Blood. 2002; 100: 3690-3697).
  • the CTL epitope peptide of the present invention can be used as a peptide vaccine in active immunotherapy. That is, a vaccine comprising the CTL epitope peptide of the present invention is administered to a patient, and CKAP4-specific CTL is proliferated in the body, so that treatment for malignant tumor can be expected.
  • Vaccine using antigen-presenting cell The antigen-presenting cell on which the CTL epitope peptide of the present invention is presented can be used as a vaccine in active immunotherapy.
  • Antigen-presenting cells with CTL epitope peptides presented 1.
  • CTL epitope peptide pulse antigen-presenting cells in which antigen-presenting cells and CTL epitope peptides are mixed for 30 minutes to 1 hour in an appropriate culture medium.
  • the antigen-presenting cell means, for example, a dendritic cell, a B cell, a macrophage, a certain type of T cell, etc., and is a cell that expresses an HLA molecule to which the peptide can bind on its cell membrane surface, It means something that has stimulating ability.
  • Artificial antigen-presenting cells with antigen-presenting ability are artificially prepared by immobilizing a ternary complex of HLA molecule, CTL epitope peptide and ⁇ 2-microglobulin on beads such as lipid bilayer membrane, plastic or latex.
  • costimulatory molecules such as CD80, CD83, and CD86 that can stimulate CTLs
  • fix antibodies that act agonistically on CD28, a T cell ligand that binds to costimulatory molecules.
  • Cutting edge predetermined avidity of human CD8 T cells expanded on calibrated MHC / anti -CD28-coated microspheres. J Immunol. 2003; 171: 4974-49 78, Oosten LE, Blokland E, van Halteren AG, Curtsinger J, Mescher MF, Falkenburg JH, Mutis T, Goulmy E. Artificial antigen-presenting constructs efficiently stimulate minor histocompatibility antigen-specific cytotoxic T lymphocytes.Blood. 2004; 104: 224 -226).
  • the nucleic acid of the CTL epitope peptide of the present invention can be used for DNA vaccines, recombinant virus vector vaccines and the like in active immunotherapy.
  • it is desirable to change the nucleic acid sequence of the CTL epitope peptide to codon usage suitable for the host producing the recombinant vaccine or the recombinant virus vaccine (Casimiro, DR et al. Comparative Immunogenicity in Rhesus Monkeys of DNA Plasmid , Recombinant Vaccinia Virus, and Replication-Defective Adenovirus Vectors Expressing a Human Immunodeficiency Virus Type 1 gag Gene. J.
  • a vaccine comprising a CTL epitope peptide of the present invention or an antigen-presenting cell on which a CTL epitope peptide is presented can be prepared using methods known in the art.
  • a vaccine includes an injection or a solid preparation containing the CTL epitope peptide of the present invention as an active ingredient.
  • the CTL epitope peptide can be formulated in a neutral or salt form.
  • pharmaceutically acceptable salts include inorganic salts such as hydrochloric acid and phosphoric acid, and organic acids such as acetic acid and tartaric acid. .
  • the antigen-presenting cell on which the CTL epitope peptide of the present invention is presented is a pharmaceutically acceptable excipient compatible with the peptide or the activity of the cell, such as water, saline, dextrose, ethanol, It can be used by mixing with glycerol, DMSO (dimethyl sulphoxide), other adjuvants, or a combination thereof. Furthermore, you may add adjuvants, such as albumin, a wetting agent, and an emulsifier, as needed.
  • the vaccine of the present invention can be administered by parenteral administration or oral administration, but parenteral administration is generally preferred.
  • parenteral administration include nasal administration, subcutaneous / intradermal injection, intramuscular injection, intravenous injection and other suppositories, and suppositories.
  • oral administration it can be prepared as a mixture with excipients such as starch, mannitol, lactose, magnesium stearate, and cellulose.
  • the vaccine of the present invention is administered in a therapeutically effective amount.
  • the dose to be administered depends on the subject to be treated and the immune system, and the required dose is determined by the judgment of the clinician. In general, the appropriate dose is 1 to 100 mg of CTL epitope peptide and 10 6 to 10 9 CTL epitope peptide pulsed cells per patient.
  • the administration interval can be set according to the subject and purpose.
  • the CTL epitope peptide of the present invention can be used for the preparation of a passive immunotherapeutic agent.
  • the CTL specific for CKAP4 obtained as described below can be suspended in human albumin-containing PBS or the like and used as a passive immunotherapeutic agent for malignant tumors expressing CKAP4.
  • CTL specific for CKAP4 contained in the passive immunotherapeutic agent can be obtained by the following preparation method, and can be purified and used to increase the purity of CTL.
  • CTL preparation method 1 PBMC is reacted with an appropriate concentration of CKAP4-specific MHC-tetramer reagent. Since the CKAP4-specific CTL bound to the MHC-tetramer reagent is stained with the labeling dye, only the stained CTL is isolated using a cell sorter, a microscope or the like. CTLs specific for CKAP4 isolated in this way are anti-CD3 antibodies, PHA, IL-2 and other T cell stimulating agents, and antigen-presenting cells whose proliferation ability has been lost by X-ray irradiation or mitomycin treatment. Stimulate growth to ensure the number of cells required for passive immunotherapy.
  • CTL preparation method 2 CKAP4-specific MHC-monomer and / or MHC-tetramer reagent is immobilized on a sterile plate and PBMC is cultured on the immobilized plate.
  • PBMC is cultured on the immobilized plate.
  • CKAP4-specific CTL bound to the MHC-monomer and / or MHC-tetramer reagent immobilized on the plate after washing off other cells that are not bound, Only the remaining CKAP4-specific CTL is suspended in fresh medium.
  • CKAP4-specific CTL isolated in this way is stimulated to proliferate on T-cell stimulating drugs such as anti-CD3 antibodies, PHA, IL-2, and antigen-presenting cells whose proliferation ability has been lost by treatment with X irradiation or mitomycin. And secure the number of cells required for passive immunotherapy.
  • T-cell stimulating drugs such as anti-CD3 antibodies, PHA, IL-2, and antigen-presenting cells whose proliferation ability has been lost by treatment with X irradiation or mitomycin. And secure the number of cells required for passive immunotherapy.
  • CTL preparation method 3 Acts agonistically on CKAP4-specific MHC-monomers and / or MHC-tetramer reagents and costimulatory molecules such as CD80, CD83, CD86, or CD28, a T cell ligand that binds to costimulatory molecules
  • the antibody to be immobilized is immobilized on a sterile plate, and PBMC is cultured on the immobilized plate.
  • IL-2 is added to the medium and cultured in a 5% CO 2 constant temperature bath at 37 ° C for 7 to 10 days.
  • the cultured cells are collected and cultured on a new solid phase plate. By repeating this operation, CTLs with the number of cells necessary for passive immunotherapy are secured.
  • CTL preparation method 4 Stimulate PBMC or T cells directly with the CTL epitope peptide of the present invention, or with antigen-presenting cells pulsed with the peptide, gene-introduced antigen-presenting cells, or artificially prepared antigen-presenting cells with antigen-presenting ability To do. Stimulation can be in vitro, but may also be in vivo. When stimulated in vitro, CTL induced by stimulation is cultured at 37 ° C for 7 to 14 days in a 5% CO 2 thermostat. In culture, CTL of the number of cells necessary for passive immunotherapy is ensured by repeating stimulation with CTL epitope peptide and IL-2 or antigen-presenting cells and IL-2 once a week.
  • CKAP4-specific MHC-tetramer reagent reacts with CTL induced by the CTL preparation method, and a secondary antibody magnetically labeled with an antibody against a labeled dye labeled with MHC-tetramer reagent And can be separated.
  • a magnetically labeled secondary antibody and a magnetically labeled cell separation device are available from, for example, Dynal and Miltenyi Biotec GmbH.
  • the CKAP4-specific CTL isolated in this manner is stimulated and proliferated with a T cell stimulating agent such as anti-CD3 antibody, PHA, IL-2, etc., and the number of cells necessary for passive immunotherapy is ensured.
  • Purification by secreted cytokine CKAP4-specific CTLs can be purified by using cytokines released by CKAP4-specific CTLs.
  • cytokines released by CKAP4-specific CTLs For example, by using a kit available from Miltenyi Biotec GmbH, the cytokine released from CTL is supplemented with a specific antibody on the cell surface, stained with a cytokine-specific labeled antibody, and then magnetically labeled labeling substance specific It is also possible to purify using a magnetically labeled cell separation apparatus after reacting with a typical antibody.
  • the CKAP4-specific CTL isolated in this manner is stimulated and proliferated with a T cell stimulating agent such as anti-CD3 antibody, PHA, IL-2, etc., and the number of cells necessary for passive immunotherapy is ensured.
  • Cell surface proteins eg CD137, CD107a, CD107b, CD63, CD69, etc.
  • Cell surface proteins eg CD137, CD107a, CD107b, CD63, CD69, etc.
  • CTLs Betts MR , Brenchley JM, Price DA, De Rosa SC, Douek DC, Roederer M, Koup RA.Sensitive and viable identification of antigen-specific CD8 + T cells by a flow cytometric assay for degranulation.
  • J Immunol Methods.2003; 281: 65-78 Trimble LA, Shankar P, Patterson M, Daily JP, Lieberman J.
  • CKAP4-specific CTL can be similarly purified by magnetically labeling such an anti-IgG antibody against the specific antibody.
  • these specific antibodies can be coated on a plastic plate for culture, and PBMCs can be cultured using this plate, and the CKAP4-specific CTL can be purified by washing away the cell population that did not bind to the plate. Is possible.
  • the CKAP4-specific CTL isolated in this manner is stimulated and proliferated with a T cell stimulating agent such as anti-CD3 antibody, PHA, IL-2, etc., and the number of cells necessary for passive immunotherapy is ensured.
  • Quantitation method 1 CTL specific for CKAP4 in peripheral blood can be quantified using the MHC-tetramer reagent produced using the CTL epitope peptide of the present invention.
  • the quantification can be performed, for example, as follows. Peripheral blood or PBMC are reacted with an appropriate concentration of MHC-tetramer reagent. Since the CTL bound to the MHC-tetramer reagent is stained with a labeling dye, it is counted using a flow cytometer, a microscope or the like. When reacting with MHC-tetramer reagent, anti-CD3 antibody, anti-CD4 antibody, anti-CD8 antibody, etc. labeled with a different dye from MHC-tetramer reagent can be reacted to simultaneously determine T cell subsets of CKAP4-specific CTL it can.
  • Quantitation method 2 This is a method for quantifying cytokines and / or chemokines such as IFN ⁇ (interferon gamma), TNF ⁇ (tumor necrosis factor alpha), and interleukin produced by CTL by stimulating PBMC with the CTL epitope peptide of the present invention.
  • IFN ⁇ interferon gamma
  • TNF ⁇ tumor necrosis factor alpha
  • interleukin produced by CTL by stimulating PBMC with the CTL epitope peptide of the present invention.
  • PBMCs are suspended in a suitable medium at a cell concentration of approximately 2 ⁇ 10 6 / mL, and the CTL epitope peptide of the present invention is added. Furthermore, an intracellular protein transport inhibitor (for example, Brefeldin A, Monensin, etc.) is added, and cultured at 37 ° C. for 5 to 16 hours in a 5% CO 2 thermostat.
  • an intracellular protein transport inhibitor for example, Brefeldin A, Monensin, etc.
  • the cells After culturing, the cells are reacted with a T cell marker antibody (anti-CD3 antibody, anti-CD4 antibody, anti-CD8 antibody) or MHC-tetramer reagent, and after fixing the cells, membrane permeation treatment is performed, and a dye-labeled anti-IFN ⁇ antibody is reacted. Analysis is performed using a flow cytometer or the like, and the IFN ⁇ positive cell rate in total cells, T cells, or MHC-tetramer reagent positive cells is quantified.
  • a T cell marker antibody anti-CD3 antibody, anti-CD4 antibody, anti-CD8 antibody
  • MHC-tetramer reagent MHC-tetramer reagent
  • PBMC PBMC are plated on a 96-well MultiScreen-HA plate (Millipore) on which an anti-IFN ⁇ antibody is immobilized. Thereafter, the CTL epitope peptide is placed in each well and cultured in a 5% CO 2 thermostat incubator at 37 ° C. for 20 hours. On the next day, the plate is washed and reacted with anti-IFN ⁇ antibody and peroxidase-labeled anti-IgG antibody in this order. Further, a substrate of peroxidase is added, the IFN ⁇ spot is visualized by color development, and quantified by counting using a stereomicroscope or ELISPOT analyzer (CTL).
  • CTL ELISPOT analyzer
  • PBMCs are suspended in a suitable medium at a cell concentration of approximately 2 ⁇ 10 6 / mL, and the CTL epitope peptide of the present invention is added. Incubate for 24-48 hours at 37 ° C in a 5% CO 2 oven. After the culture, the supernatant is collected, and the IFN ⁇ concentration contained therein is quantified using a commercially available ELISA kit (for example, Quantikine ELISA Human IFN ⁇ Immunoassay from R & D Systems).
  • a commercially available ELISA kit for example, Quantikine ELISA Human IFN ⁇ Immunoassay from R & D Systems.
  • Quantitation method 3 Quantification is performed using cell surface protein specific antibodies.
  • CTL specific for CTL epitope peptide has been reported to increase the expression of cell surface proteins (eg CD137, CD107a, CD107b, CD63, CD69, etc.) by specific stimulation (Watanabe K, Suzuki S, Kamei M , Toji S, Kawase T, Takahashi T, Kuzushima K, and Akatsuka Y. CD137-guided isolation and expansion of antigen-specific CD8 cells for potential use in adoptive immunotherapy. Int J Hematol, 2008; 88; 311-320).
  • CTL binds to the labeled antibody and is stained with a labeled dye. Stained CTL can be counted and quantified using a flow cytometer, a microscope or the like. Furthermore, by adding an anti-CD3 antibody, an anti-CD4 antibody, an anti-CD8 antibody or the like labeled with a dye different from the labeled antibody, the T cell subset of specific CTL can be determined simultaneously.
  • pMHC antibody The identified monoclonal antibody specific for the complex of cancer antigen epitope peptide and MHC (hereinafter referred to as pMHC antibody) can specifically detect cancer cells presenting the epitope peptide on the surface of the cell membrane. For this reason, pMHC antibodies can be used as diagnostic agents for cancer immunotherapy, and can also be used as highly specific therapeutic antibodies by binding antibody-dependent cytotoxicity (ADCC activity) or anticancer drugs. There is utility. In general, pMHC antibodies are obtained by the phage display method.
  • the phage display method is a system for expressing a foreign gene as a fusion protein so as not to lose the infectivity of the phage.
  • a cancer antigen epitope peptide and MHC complex (MHC-monomer) is immobilized on an ELISA plate or immobilized with a biotin-avidin bond, and this is reacted with a phage library.
  • MHC-monomer a cancer antigen epitope peptide and MHC complex
  • the obtained antibody can be evaluated by adding an epitope peptide to the aforementioned TAP gene-deficient strain T2, reacting the antibody, and measuring the average fluorescence intensity with FCM.
  • EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. Unless otherwise noted, the experimental methods were conducted with reference to the book (Immune Experiment Method, Shunsuke Ueda, Susumu Hamada, Honjo, Toshiyuki Sasaoka, Nanedo 1995).
  • Example 1 [Selection of EBV-specific CTL epitope candidate peptides] EBV is classified into type 1 and type 2 depending on the difference in the expressed protein. Type 1 infections, including AG876, are rare in Asia, most of which are infected / hidden in humans (Dambaugh T, Hennessy K, Chamnankit L, Kieff E.
  • Epstein-Barr DNA may encode Epstein-Barr nuclear antigen 2. Proc Natl Acad Sci US A. 1984 Dec; 81 (23): 7632-6). However, cases of co-infection of EBV in the same individual have been reported, and race- and region-dependent diversity of EBV-infected strains have been reported (Apolloni A, Sculley TB. Detection of A-type and B- type Epstein-Barr virus in throat washings and lymphocytes.Virology.
  • Selection of LMP2 and EBNA1-specific CTL epitope candidate peptides of the present invention is based on the amino acid sequence of B95.8 (GenBank: V01555.2), the most representative strain belonging to EBV type 1, and other strains. This was carried out with reference to amino acid mutations in. Specifically, it was carried out by collating with a plurality of software published on the Internet, which can search for a CTL epitope candidate peptide consisting of 8 to 10 amino acids having a binding motif for the HLA-A11 molecule.
  • CTL epitope candidate peptides consisting of 9 or 10 amino acids having a binding motif of HLA-A11 molecule from the amino acid sequences of EBVEBLMP2 and EBNA1 were selected, a total of 33 types including 22 types for LMP2 and 11 types for EBNA1. These peptides were synthesized and shown below as CTL epitope candidate peptides. Amino acid mutation sites in different EBV strains are underlined. In the present invention, the B95.8 strain is a wild strain, and amino acid substitutions in other strains are called mutations.
  • HLA-A * 11 01 restricted epitope peptide (ATVQGQNLK, SEQ ID NO: 34) derived from pp65 protein of human cytomegalovirus (CMV) was synthesized.
  • CMV human cytomegalovirus
  • survivin-2B HLA-A * 24: 02 restricted epitope peptide AYACNTSTL, SEQ ID NO: 35 was synthesized.
  • Tables 1, 2, and 3 show the characteristics of the synthesized LMP2 and EBNA1 HLA-A11: 01 restricted CTL epitope peptides and the peptides synthesized for control.
  • the peptide name is indicated by three amino acid sequences from the N-terminal side of the synthesized peptide.
  • peptide name (a in the table), amino acid sequence (b in the table), position on the amino acid sequence of the derived protein, number of amino acids, NetMHC3.4 used for analysis (http://www.cbs.dtu.dk / Services / NetMHC /) HLA Peptide Binding Predictions (Nielsen M, Lundegaard C, Worning P, Lauemoller SL, Lamberth K, Buus S, Brunak S, Lund O. Reliable prediction vel ations-no . Protein Sci. 2003 May; 12 (5): 1007-17, Lundegaard C, Lamberth K, Harndahl M, Buus S, Lund O, Nielsen M.
  • NetMHC-3.0 accurate web accessible predictions of human, mouse HC I affinities for peptides of length 8-11. Nucleic Acids Res. 2008 Jul 1; 36 (Web Server issue): W509-12., Lundegaard C, Lund O, Nielsen M. Accurate approximation method for predictionforHC peptides of length 8, 10 and 11 using prediction tools tra Ined (on 9mers. Bioinformatics. 2008 Jun 1; 24 (11): 1397-8.), the scores (c in the table) are shown in descending order. This score is a numerical value that predicts the affinity between HLA-A11 and the peptide. The higher the score, the more likely the HLA and peptide may form a stable complex.
  • the scores of NetMHC 3.4 shown in Table 1, Table 2 and Table 3 are shown as representative examples obtained with 11 types of analysis software used in the analysis.
  • [Folding test of EBV-specific CTL epitope candidate peptide] The inventors conducted a folding test using 35 types of peptides described in Tables 1, 2 and 3. Specifically, HLA-A * 11: 01, ⁇ 2-microglobulin expressed using E. coli expression system and ⁇ 2-microglobulin, and synthetic peptide were added to the folding solution, mixed, and the folding solution was collected over time. The analysis was performed with a gel filtration column.
  • MHC-monomer When gel filtration column analysis shows the formation of a ternary complex (MHC-monomer) of HLA-A * 11: 01, ⁇ 2-microglobulin, and EBV-specific CTL epitope candidate peptide, MHC-monomer Since the molecular weight is large, the elution time in the gel filtration column analysis is shortened. Further, the amount of MHC-monomer formation can be calculated from the peak area obtained by the absorption wavelength of 280 nm. On the other hand, MHC-monomer formation is not confirmed with candidate peptides that do not bind to HLA molecules. A typical gel filtration column analysis example in which MHC-monomer formation is observed is shown in FIG.
  • HLA molecules and ⁇ 2-microglobulin were solubilized in 8M urea after purification of the insoluble fraction as inclusion bodies when purified using the E. coli expression system. Soluble HLA molecules that do not lead to MHC-monomer formation are detected as aggregates in 7-8 minutes. However, most of the aggregates are removed by filter filtration, which is a pretreatment step of gel filtration column analysis.
  • ⁇ 2-microglobulin is a soluble protein, solubilized in a folding solution, and is detected in the vicinity of 14 minutes when using Superdex 75GL10 / 300GL (GE Healthcare). After 15 minutes, the folding solution composition and peptide are detected. The peak of MHC-monomer is not confirmed immediately after the start of the folding test (day 0), but the peak increases after 1 day (day 1) and 3 days (day (3), and MHC-monomer formation is progressing smoothly. Shows things.
  • HLA-A * 11 01 restricted epitope peptide derived from CMV pp65 protein (ATVQGQNLK, SEQ ID NO: 34)
  • survivin-2B derived HLA-A * 24 02 restricted epitope peptide ( AYACNTSTL, SEQ ID NO: 35) was used for comparison.
  • the area of the peak indicating MHC-monomer formation is shown as a bar graph.
  • Tables 4 and 5 show the results of comparing SEQ ID NOs: 1 to 22 (LMP2) and SEQ ID NOs: 23 to 33 (EBNA1) with SEQ ID NOs: 34 to 35, which are positive control peptides and negative controls, respectively.
  • Tables 4 and 5 show HLA-A * 11: 01 binding properties of peptide candidates.
  • the presence / absence of binding is indicated by ⁇ when the value exceeding the highest binding value of the negative control (135,674 ⁇ V * sec) is considered as having a binding property, and by ⁇ when the lower value is not binding.
  • the HLA-A * 11: 01 binding determined by the experimental values does not necessarily match the predicted value obtained by the computer algorithm, and the experimental values of the folding test are the candidate peptides and HLA-A in in vitro.
  • * Represents the binding with 11:01.
  • the results of the folding test showed HLA-A * 11: 01 binding for all of the lower eight peptide candidates predicted by the computer algorithm (predicted value ⁇ 0.400).
  • the predicted values of the four peptides that do not show the HLA-A * 11: 01 binding property as a result of the folding test are as follows. VML: 0.417; LVL (9mer): 0.439; TTM: 0.477; KIL: 0.602. It can be seen that although neither predicted value is higher than 0.400, it does not bind to HLA-A * 11: 01. Thus, the binding between the epitope candidate peptide and the HLA molecule cannot be judged only by the computer algorithm.
  • EBV LMP2-specific MHC-tetramer reagent Based on the results of the folding test, a PE-labeled MHC-tetramer reagent was prepared using HLA-A * 11: 01-binding EBV LMP2-specific or EBV EBNA1-specific CTL epitope candidate peptides.
  • the MHC-tetramer reagent produced in the present invention is abbreviated as, for example, ASS (10mer) -Tet, which is HLA-A * 11: 01, ASS (10mer) peptide (ASSYAAAQRK, SEQ ID NO: 1) and ⁇ 2 -Indicates one produced using a microglobulin ternary complex.
  • MHC-monomer which is a complex of HLA class I molecule purified from a recombinant host for protein expression, ⁇ 2-microglobulin and EBV LMP2 or EBV EBNA1-specific CTL epitope candidate peptide of the present invention in an appropriate folding solution To form.
  • a biotin binding site is added to the C-terminus of the recombinant HLA class I molecule in advance, and biotin is added to this site after MHC-monomer formation.
  • a MHC-tetramer reagent can be prepared by mixing commercially available dye-labeled streptavidin and biotinylated MHC-monomer at a molar ratio of 1: 4.
  • EBV-specific CTL epitope peptide [Identification of EBV-specific CTL epitope peptide] (Selection of specimen HLA type) As candidate peptides for EBV-specific CTL epitopes, 33 types of candidate peptides having a binding motif for HLA-A * 11: 01 were selected. Furthermore, a folding test revealed that HLA-A * 11: 01, ⁇ 2-microglobulin and 29 EBV-specific CTL epitope candidate peptides bind to each other to form MHC-monomers in vitro.
  • EBV-infected B cell line Kuzushima K, Yamamoto M, Kimura H, Ando Y, Kudo T, Tsuge I, Morishima T.
  • EBV Epstein-Barr virus
  • EBV-infected LCL EBV-infected B cell line
  • NIH-CD40L NIH3T3 cells
  • NIH-CD40L NIH3T3 cells
  • NIH-CD40L inhibited growth by 96 Gy X-ray irradiation and repeated co-culture every 3-4 days
  • Kiem HP Kiem HP
  • Obata Y Morishima Y
  • Kuzushima K Tanimoto M
  • Harada M Takahashi T
  • Akatsuka Y Efficient generation of antigen-specific cytotoxic T cells using retrovirally transduced CD40-activated B cells. J Immunol. 2002; 169: 2164-2171).
  • HLA molecule expression and CD80, CD83 and CD86 expression were confirmed.
  • PBMC dendritic cells
  • GM-CSF and IL-4 were added thereto, and cultured for 24 hours.
  • TNF ⁇ , IL-1 ⁇ and PGE2 Prostaglandin E2 were added, and cultured for 24 to 48 hours.
  • the cells recovered by washing gently with an appropriate medium were used as dendritic cells (Kondo E, Topp MS, Kiem HP, Obata Y, Morishima Y, Kuzushima K, Tanimoto M, Harada M, Takahashi T, Akatsuka Y.
  • EBV-specific CTL 1) Induction using antigen-presenting cells
  • the above-described antigen-presenting cells (EBV-infected LCL, CD40-B cells, dendritic cells) were prepared in advance from PBMC holding HLA-A * 11: 01.
  • Antigen-presenting cells are suspended in pulse medium (0.1% human serum albumin / 55 ⁇ M 2-mercaptoethanol / RPMI 1640) or AIM-V medium (Invitrogen), and CTL epitope candidate peptides are added at a concentration of 10 ⁇ g / mL.
  • peptide pulse antigen-presenting cell Peptide pulse antigen-presenting cells were treated with a lethal dose of X-ray irradiation or mitomycin C treatment to lose their ability to grow.
  • This induction method is a method for inducing CTL by introducing a peptide into a PBMC culture solution. It is considered that the peptide is presented to antigen-presenting cells present in PBMC, such as dendritic cells, B cells, macrophages, and certain T cells, and CTL precursor cells contained in PBMC are stimulated to proliferate. Unlike the above-described induction method using antigen-presenting cells, the method is distinguished in that it is not necessary to prepare antigen-presenting cells in advance and can be easily carried out. It is a system that stimulates and proliferates memory / effector type CTL circulating in peripheral blood without using antigen presenting cells.
  • Peripheral blood collected from healthy adults holding HLA-A * 11: 01 was centrifuged at 3,000 rpm for 5-10 minutes, and the plasma portion of the supernatant was collected.
  • PBMCs were separated according to the conventional method except for the plasma portion. It is characterized by adding several percent of plasma to the medium used for induction. In the present invention, good results were obtained when 5% plasma was added.
  • the medium is generally supplemented with appropriate additives and antibiotics for the medium used for cell culture.
  • RPMI1640 Hepes modify Sigma was added with 2-mercaptoethanol, L-glutamine, and antibiotics streptomycin and penicillin.
  • PBMCs were suspended in 1 to 2.5 mL of medium.
  • the concentration of the peptide can be varied depending on the solubility of the peptide. In the present invention, it was carried out at 10 ⁇ g / mL.
  • IL-2 was added at a final concentration of 20-100 U / mL.
  • a polypropylene 14 mL round-bottom tube (BD Biosciences) or 96-well U-bottom cell culture is used.
  • a micro test plate (BD Biosciences) was used. Confirmation of EBV-specific CTL was performed after 2 weeks and 4 weeks of culture. After 2 weeks of culture, stimulation with 10 ⁇ g / mL peptide was performed again. When induction of EBV-specific CTL was confirmed, stimulation was performed using peptide pulse antigen-presenting cells to establish a CTL line.
  • FIG. 4 shows the results of examining specific CTLs using a positive control peptide by an induction method that does not use antigen-presenting cells and examined by an intracellular IFN ⁇ -producing cell quantification method.
  • PBMC isolated from healthy adult peripheral blood that retains HLA-A * 11: 01 but does not retain HLA-A * 24: 02 is an epitope peptide derived from HLA-A * 11: 01-restricted CMV pp65 (ATVQGQNLK, SEQ ID NO: 34)
  • stimulation with HLA-A * 24: 02-restricted survivin-2B-derived epitope peptide AYACNTSTL, SEQ ID NO: 35
  • the result of triple staining with PE-labeled MHC-tetramer reagent (MBL), PC5-labeled anti-CD8 antibody and FITC-labeled anti-IFN ⁇ antibody, and analysis using a flow cytometer are shown.
  • the numbers in the dot plot development view indicate the ratio (%) of the cells present in the four divided regions to the whole living cells.
  • the four-divided area will be referred to as UL (upper left), UR (upper right), LL (lower left), and LR (lower right).
  • IFN ⁇ -producing cells were induced by restimulation in PBMC cultured with the HLA-restricted CTL epitope peptide retained by the donor, and these cells were stained with MHC-tetramer reagent. It is clear that the CTL is specific to the added CTL epitope peptide. Whether or not specific CTLs are induced in this way can also be determined by an intracellular IFN ⁇ -producing cell quantification method. Similarly, an investigation was performed on five healthy adults to determine whether IFN ⁇ -producing cells were induced using EBV LMP2-specific CTL epitope candidate peptides. The ratio of live IFN ⁇ -producing cells present in CD8-positive cells is quantified and shown in FIG. FIG. 6 shows representative results of quantifying intracellular IFN ⁇ -producing cells.
  • peripheral blood of five healthy adults (donor ID numbers: * 11-13, * 11-16, * 11-8, * 11-11, * 11-2) was used, and 21 types of peptides were used. Intracellular IFN ⁇ producing cells were quantified. The percentage (%) of the number of CD8 positive IFN ⁇ positive cells in PBMC is shown on the X axis.
  • Peptide candidates that showed a positive result compared with the negative control are ASS (10mer) (SEQ ID NO: 1) and the positive control peptide CMV pp65. The detailed result of the peptide which showed positive is demonstrated in FIG.
  • Fig. 6 is a dot plot development showing the fluorescence intensity for CD8 on the X-axis and IFN ⁇ on the Y-axis on a log scale, and quantifies intracellular IFN ⁇ -producing cells by restimulation with the same peptide used for induction. The results were shown. The ratio (%) of the number of CD8-positive IFN ⁇ -positive cells to PBMC in UR is shown as a numerical value.
  • peripheral blood To 200 ⁇ L of collected peripheral blood, 10 ⁇ L of PE-labeled MHC-tetramer reagent, 20 ⁇ L of FITC-labeled anti-T cell surface antibody (eg, CD8, CD4, CD3) and the like were added. Furthermore, an anti-CD45 antibody labeled with PC5 or the like may be added in order to exclude non-specific fluorescence due to mixed red blood cells. Gently mixed and left at room temperature for 30 minutes. OptiLyse B (Beckam coulter) was added, and hemolysis fixation was performed according to the instructions. After adding 2 mL of PBS and stirring, it was centrifuged at 400 ⁇ g for 5 minutes. After discarding the supernatant by aspiration, the cells were resuspended in 500 ⁇ L of PBS and analyzed with a flow cytometer within 24 hours.
  • FITC-labeled anti-T cell surface antibody eg, CD8, CD4, CD3
  • CTL lines derived using PBMC or CTL epitope peptide 10 ⁇ L of PE-labeled MHC for an appropriate amount of PBMC (10 5 to 10 6 cells) or an appropriate amount of CTL line derived using CTL epitope peptide -Tetramer reagent and 20 ⁇ L of FITC-labeled anti-T cell surface antibody (eg CD8, CD4, CD3) etc. were added.
  • FITC-labeled anti-T cell surface antibody eg CD8, CD4, CD3
  • an anti-CD45 antibody labeled with PC5 or the like may be added in order to exclude non-specific fluorescence due to mixed red blood cells. Gently mixed and left at room temperature for 30 minutes. After adding 3 mL of PBS and stirring, it was centrifuged at 400 ⁇ g for 5 minutes.
  • EBV-specific CTL has been difficult with existing methods because the presence of EBV-specific CTL has decreased. If an EBV-specific MHC-tetramer reagent is used, there is a possibility that the presence of EBV-specific CTL can be determined in about 1 hour after blood collection. Therefore, we examined whether EBV-specific CTL could be detected using healthy adult peripheral blood. The result is shown in FIG.
  • peripheral blood of donor ID * 11-11 three types of EBV-specific MHC-tetramer reagent and positive control CMV pp65 MHC-tetramer reagent (MBL) and negative control survivin-2B HLA-A * 24: 02 Stained with MHC-tetramer reagent (MBL).
  • the X-axis is CD8, and the Y-axis is a dot plot development drawing analyzing the fluorescence intensity for the MHC-tetramer reagent on a log scale.
  • the numerical value in the dot plot development diagram represents the ratio of CD8 positive MHC-tetramer reagent positive cells in CD8 positive cells as a positive rate (%).
  • the positive cell population obtained from the negative control HLA-A * 24: 02-restricted survivin-2B MHC-tetramer reagent was 0.17%. It can be said that. From these results, it became clear that EBV LMP2-specific CTLs are present in healthy adult peripheral blood and can grow to such an extent that the presence or absence of CTLs can be determined after 2 weeks of culture. This means that the induction method that does not use antigen-presenting cells, which is carried out in the present invention, is effective for the detection of EBV-specific CTL.
  • ASS (10mer) derived from EBV LMP2 (SEQ ID NO: 1) identified in the present invention has a function of proliferating EBV LMP2-specific CTL in peripheral blood, and these cell populations are ASS (10mer) -Tet.
  • HLA-A * 11: 01-restricted EBV LMP2-specific CTL epitope peptide was found to be an HLA-A * 11: 01-restricted EBV LMP2-specific CTL epitope peptide.
  • the X-axis is CD8
  • the Y-axis is a dot plot developed by analyzing the fluorescence intensity for Tetramer on a log scale.
  • the numerical value in the dot plot development diagram represents the ratio of the MHC-tetramer reagent positive cells in the CD8 positive cells in the living cells as a positive rate (%).
  • the cell population derived from the three mixed peptides (HRG + GVF + KTS) was synthesized using each of the same three peptides and the three mixed MHC-tetramer reagents (HRG) -Tet + GVF-Tet + KTS-Tet), 0.38% positive cells were detected.
  • detection was performed separately using each of the three types of MHC-tetramer reagents. As a result, when stained with HRG-Tet alone, HRG-Tet positive cells were detected with a positive rate of 0.42%.
  • HRG (SEQ ID NO: 26) is an EBV EBNA1-specific CTL epitope peptide showing HLA-A * 11: 01 restriction It has been shown.
  • Intracellular IFN ⁇ production is used as an indicator of the cytotoxic activity of CTL.
  • the inventors performed intracellular IFN ⁇ -producing cell quantification. The result is shown in FIG.
  • the upper part of FIG. 10 is a dot plot development view showing the fluorescence intensity for CD8 on the X-axis and IFN ⁇ on the Y-axis on a log scale. Restimulation with the same peptide as that used for induction was performed to increase the IFN ⁇ production ability. The verified result is shown. The ratio (%) of the number of IFN ⁇ -positive cells in CD8-positive cells to PBMC in UR is shown as a numerical value. The lower part of FIG. 10 shows the result of staining with tetramer when the IFN ⁇ production ability was verified.
  • the X-axis is a dot plot development showing the fluorescence intensity for CD8 on the X-axis and the tetramer on the Y-axis on a log scale.
  • the HRG derived from EBV EBNA1 (SEQ ID NO: 26) identified in the present invention has a function of proliferating EBV EBNA1-specific CTL in peripheral blood, and these cell populations have cytotoxic activity and Since it was detectable with HRG-Tet, it was revealed that it is an HLA-A * 11: 01-restricted EBV EBNA1-specific CTL epitope peptide.
  • the CTL epitope peptide presented on the HLA class I molecule consists of 8 to 10 amino acids, and the 2nd, 9th and 10th amino acids from the N-terminal side are the most important for binding to the HLA class I molecule. It is an amino acid and is called an anchor motif.
  • an anchor motif As a peptide that binds to the HLA-A11 molecule, either Ile, Met, Ser, Thr, or Val is arranged at the second position from the N-terminus, and either Lys or Arg is located at the ninth or tenth position.
  • Peptides consisting of 9 to 10 amino acids are best known (Chang CX, Tan AT, Or MY, Toh KY, Lim PY, Chia AS, Froesig TM, Nadua KD, Oh HL, Leong HN, Hadrup SR, Gehring AJ, Tan YJ, Bertoletti A, Grotenbreg GM.Conditional ligands for Asian HLA variants facilitate the definition of CD8 + T-cell responses in acute and chronic viral diseases.Eur J Immunol. 2013 Apr; 43 (4): 1109-20.
  • the HLA-A * 11: 01-restricted EBV LMP2-specific CTL epitope peptide ASS (10mer) provided by the present invention consists of 10 amino acids, Ala Ser Ser Tyr Ala Ala Ala Gln Arg Lys (SEQ ID NO: 1). It has Ser as the anchor motif, 2nd and 3rd from the N-terminal side, 9th Arg, and 10th Lys. Therefore, for the purpose of clarifying the embodiment of the present invention, a peptide in which one amino acid residue was deleted from the N-terminal side or the C-terminal was synthesized and verified.
  • amino acid sequence of SEQ ID NO: 6 from which N-terminal Ala has been deleted is Ser Ser Tyr Ala Ala Ala Gln Arg Lys
  • amino acid sequence of SEQ ID NO: 5 from which C-terminal Lys has been deleted is Ala Ser Ser Tyr Ala Ala Ala Gln Arg.
  • FIG. 11 a folding test was conducted to examine the ability to form a complex with HLA-A * 11: 01.
  • the MHC-monomer formation rate is ASS (9mer) (337,803 ⁇ V * second), SSY (294,932 ⁇ V * second), ASS (10mer) (238,655 ⁇ V * second) in descending order.
  • the ability to form MHC-monomer was confirmed by comparison with the peptide of the negative control (83,587 ⁇ V * sec).
  • a CTL induction experiment was performed using three types of peptides by the above-described induction method without using antigen-presenting cells. 14 days after induction, specific CTLs were detected using three types of MHC-tetramer reagents.
  • CTL was induced using ASS (10mer), and this was stained using ASS (10mer) -Tet, ASS (9mer) -Tet, and SSY-Tet.
  • ASS (10mer) -Tet positive CD8 positive specific CTL was detected when stained with ASS (10mer) -Tet, but ASS (9mer) -Tet or SSY-Tet positive CD8 positive was detected.
  • ASS (9mer) and SSY peptides have the ability to bind to HLA-A * 11: 01 molecules, they are EBV LMP2-specific CTL precursors ( ASS (10mer) means that there is no ability to stimulate proliferation of effector / memory cells) and CTL induction even if either Ala residue on the N-terminal side or Lys residue on the C-terminal side is deleted And CTL detectability disappeared.
  • IFN ⁇ production ability is detected when restimulated with the same peptide as the peptide used for induction in the cell population induced by CTL using each peptide of ASS (10mer), ASS (9mer), and SSY.
  • ASS 10mer
  • ASS (9mer) ASS
  • SSY SSY
  • 40.52% of ATV-Tet positive cells are present in the cell population induced using HLA-A * 11: 01 restricted epitope peptide (ATVQGQNLK, SEQ ID NO: 34) derived from CMV pp65 protein, which is a peptide for positive control, 28% of cells produced IFN ⁇ upon restimulation with ATV peptide.
  • survivin-2B HLA-A * 24: 02 restricted epitope peptide (AYACNTSTL, SEQ ID NO: 35) used as a negative control peptide 0.17% of AYA-Tet positive cells were detected. The cell population is not detected as a clear spot and is considered to be a non-specific reaction.
  • 8.67% of IFN ⁇ -positive cells were detected by restimulation with AYA peptide, which is a level of non-specific staining that is common in intracellular IFN ⁇ staining.
  • the cell population induced by using the EBV LMP2-derived HLA-A * 11: 01-restricted ASS (10mer) identified in the present invention has 53.31% ASS (10mer) -Tet-specific CTL, and the ASS (10mer) 68% of the cell population produced IFN ⁇ by restimulation.
  • ASS in the case of SSY lacking the N-terminal Ala residue, no SSY-Tet positive cells were detected, and IFN ⁇ production was also lower than that of the negative control. From this, even if it is a peptide having an amino acid corresponding to an anchor motif and also forms an MHC-monomer, it cannot always specifically induce CTL as an epitope peptide. It has been shown that an epitope peptide capable of inducing CTL cannot be easily conceived.
  • This solution includes a method using a plurality of CTL epitopes for one type of HLA and a method using each CTL epitope for a plurality of HLA types. is there. For example, when the subject patient holds HLA-A2 and HLA-A11, it is desirable that a plurality of HLA-restricted CTL epitopes are selected for treatment. This is one of the problems to be solved by the present invention.
  • the results are shown in FIG.
  • the new epitope ASS (10mer) is GD2 (from Guangdong, China) and HKNPC1 (from a Hong Kong NPC patient), with the second and fourth Tyr residues mutated to Asn and Ser residues, respectively. (S2N Y4S) was found.
  • the novel epitope HRG was found to be mutated in two strains.
  • EBV genomic DNA was extracted from PBMC of 5 donors or B95.8 cell line (ATCC) using GeneJET Viral DNA and RNA Purification Kit (Thermo scientific). Using this as a template and the above primers, the Exon 2 fragment was amplified by PCR reaction and cloned using TOPO (registered trademark) TA cloning Kit (Life technologies). Three clones were selected from each specimen and sequence analysis was performed. The results of the sequence are shown in FIG. In FIG.
  • ASSYAAAQRK (base sequence: GCCAGCTCATATGCCGCTGCACAAAGGAAA (SEQ ID NO: 48), GCCAGCTCATATGCCGCTGCACAGAGGAAA (SEQ ID NO: 49)) observed between EBV strains are shown in close-up.
  • Table 6 shows the ASS (10mer) sequence results. Compared to B95.8, donor * 11-11 in the DNA sequence, but was seen (CA G from CAA) single base substitution was not an amino acid substitution. The other 4 individuals had the same sequence as B95.8. From these results, five Japanese donors used in the present invention were infected with the most widely distributed B95.8 strain, and mutations in the ASS (10mer) CTL epitope could not be detected.
  • HLA-A * 11 01-restricted EBV LMP2 ASS (10mer) -specific CTL was detected by ANS (S2N) -Tet as shown in FIG. 17, ANS (S2N) -Tet was detected by ASS (10mer ) -Tet cross-reactivity was maintained (26.87% vs. 27.63%), but ASS (Y4S) -Tet could hardly detect positive cells and lost its binding to TCR ( 0.49%). ASN (S2N, Y4S) -Tet retained some ability to bind to TCR (5.93%).
  • this epitope is functionally complementary, that is, it is possible to avoid a decrease in immune response due to amino acid mutation caused by the difference between GD2 strain and HKNPC1 strain and other infected EBV strains when both are used in combination.
  • novel epitope HRG derived from HLA-A * 11: 01-restricted EBV EBNA1 includes HRG derived from AG876 strain (Q4E, N8S, P9Q) and HRG derived from Mutu strain (P9Q).
  • HRG derived from AG876 strain Q4E, N8S, P9Q
  • HRG derived from Mutu strain P9Q
  • the present invention has succeeded in identifying a novel CTL epitope specific to EBV LMP2 or EBV EBNA1, and can realize antigen-specific cytotoxic T cell therapy (CTL therapy) targeting HLA-A11 carriers. It was. CTL therapy is expected as a next generation immunotherapy.
  • CTL therapy is expected as a next generation immunotherapy.
  • CPC medical grade cultured cell processing center
  • FIG. 18 shows the result of observing cells during the culture period with a microscope. PBMCs stimulated with anti-CD3 antibody were observed to activate T cell masses on day 7 and PBMCs stimulated with peptide on day 14; one week after starting mixed culture (day 21), activated T cell masses Further growth was shown.
  • FIG. 19 shows the total number of cells during the culture period and the number of CTLs proliferated by induction of four types of peptides.
  • the CTL number was calculated from the tetramer staining result of FIG.
  • FIG. 19 is a dot plot development view showing the fluorescence intensity for CD8 on the X axis and the tetramer on the Y axis on a log scale, and was stained with a tetramer of the same peptide as that used for induction.
  • the numerical value in the dot plot development diagram represents the ratio of the MHC-tetramer reagent positive cells in the CD8 positive cells in the living cells as a positive rate (%).
  • the above culture system examined by the inventors is characterized in that it is performed in a closed system instead of a conventional open system. Therefore, it is considered that operability, economy and safety in preparation of antigen-specific CTL can be realized, and the practical use of CTL therapy can be promoted.
  • Each peptide of SEQ ID NO: 1 was dissolved in DMSO to a final concentration of 20 mg / ml, and sterilized by filtration. The obtained peptide-containing solution was dispensed and sealed in 1 mL sterilized vials to obtain a vaccine injection.
  • CKAP4 is a type II membrane protein composed of 602 amino acids in total length, and no isoform has been reported. Selection of CKAP4-specific CTL epitope candidate peptides of the present invention was performed against HLA-A * 24: 02 possessed by about 60% of Japanese. Specifically, we collated with multiple software published on the Internet that can search for CTL epitope candidate peptides consisting of 8 to 12 amino acids having a binding motif for HLA-A * 24: 02. Carried out.
  • CTL epitope candidate peptides consisting of 9 to 10 amino acids having a binding motif of HLA-A * 24: 02 were selected from the amino acid sequence of CKAP4 and synthesized.
  • the synthesized CTL epitope candidate peptides are shown below.
  • Table 7 shows the characteristics of the synthesized HLA-A * 24: 02-binding CKAP4-specific CTL epitope candidate peptides.
  • Three or four amino acid sequences from the N-terminal side of the synthesized CKAP4-specific CTL epitope candidate peptide are abbreviated as peptide names. From left, peptide name, amino acid sequence, position on CKAP4 amino acid sequence, number of amino acids, HLASPeptide of BIMAS (BioInformatics & Molecular Analysis Section / http://thr.cit.nih.gov/index.shtml) used for analysis The score calculated by Binding Predictions (http://thr.cit.nih.gov/molbio/hla_bind/) is shown.
  • This score is a numerical value that predicts the affinity between HLA-A * 24: 02 and the peptide. The higher the score, the more likely the HLA molecule and peptide may form a stable complex.
  • analysis software BIMAS described in Table 7 the inventors selected 10 types (SEQ ID NOs: 36 to 45) of CTL epitope candidate peptides using analysis software such as SYFPEITHI, Rankpep, IEDB Bind prediction, and NetCTL.
  • [Folding test of CKAP4-specific CTL epitope candidate peptide] The inventor conducted a folding test using ten types of artificially synthesized CKAP4-specific CTL epitope candidate peptides. Specifically, HLA-A * 24: 02 expressed and purified using an E. coli expression system, ⁇ 2-microglobulin, and CKAP4-specific CTL epitope candidate peptide are added to the folding solution, mixed, and then folded over time. The solution was collected and analyzed with a gel filtration column.
  • MHC-monomer When gel filtration column analysis shows formation of a ternary complex (MHC-monomer) of HLA-A * 24: 02, ⁇ 2-microglobulin, and CKAP4-specific CTL epitope candidate peptide, MHC-monomer Since the molecular weight is large, the elution time in the gel filtration column analysis is shortened. Further, the amount of MHC-monomer formation can be calculated from the peak area obtained by the absorption wavelength of 280 nm. On the other hand, MHC-monomer formation is not confirmed with candidate peptides that do not bind to HLA molecules. A typical gel filtration column analysis example in which MHC-monomer formation is observed is shown in FIG.
  • HLA molecules and ⁇ 2-microglobulin are purified as inclusion bodies, which are insoluble fractions, and are solubilized with 8M urea when purified using the E. coli expression system.
  • HLA molecules that are hardly soluble those that do not lead to MHC-monomer formation are detected as aggregates in 7 to 8 minutes. However, most of the aggregates are removed by filter filtration before gel filtration column analysis.
  • ⁇ 2-microglobulin is a soluble protein that is solubilized in the folding solution and detected around 14 minutes. After 15 minutes, the folding solution composition and peptide are detected.
  • the peak of MHC-monomer is not confirmed immediately after the start of the folding test (day 0), but the peak increases after 1 day (day 1) and 3 days (day (3), and MHC-monomer formation is progressing smoothly. Shows things.
  • FIG. 22 shows the analysis results after 4 days of the folding test performed on 10 kinds of CKAP4-specific CTL epitope candidate peptides.
  • a positive control peptide consisting of 9 amino acids SEQ ID NO: 46
  • a negative control SEQ ID NO: 47
  • Control peptide used for folding test Ala Tyr Ala Cys Asn Thr Ser Thr Leu (SEQ ID NO: 46) Ser Ser Tyr Arg Arg Pro Val Gly Ile (SEQ ID NO: 47)
  • the graph shows the peak area indicating MHC-monomer formation as a bar graph.
  • CKAP4-specific MHC-tetramer reagent [Production of CKAP4-specific MHC-tetramer reagent] Based on the results of the folding test, PE (phycoerythrin) -labeled MHC-tetramer using CKAP4-specific CTL epitope candidate peptides of SEQ ID NOs: 36, 40, 42 and 43, HLA-A * 24: 02, and ⁇ 2-microglobulin Reagents were manufactured.
  • the MHC-tetramer reagent produced in the present invention is abbreviated as, for example, KVQE-Tet. It shows what was manufactured using the person complex.
  • MHC-monomer a complex of HLA class I molecule purified from a recombinant host for protein expression, ⁇ 2-microglobulin, and a CKAP4-specific CTL epitope candidate peptide of the present invention is formed in an appropriate folding solution.
  • a biotin binding site is added to the C-terminus of the recombinant HLA class I molecule in advance, and biotin is added to this site after MHC-monomer formation.
  • a MHC-tetramer reagent can be prepared by mixing commercially available dye-labeled streptavidin and biotinylated MHC-monomer at a molar ratio of 1: 4.
  • HLA-A * 24 It is desirable to verify using the peripheral blood of the donor who holds: 02. First, whether or not a donor has HLA-A * 24: 02 was confirmed by genotyping of HLA-A using Genosearch (trademark) HLA-A Ver.2 (MBL). Subsequent examinations were performed using PBMCs of 7 healthy adults with HLA-A * 24: 02.
  • MLPC Mated Lymphocyte-Peptide Cultures
  • the MLPC method is a method of inducing CTL by adding a peptide to a PBMC culture solution (Karanikas V, Lurquin C, Colau D, van Baren N, De Smet C, Lethe B, Connerotte T, Corbiere V, Demoitie MA , Lienard D, Dreno B, Velu T, Boon T, Coulie PG.Monoclonal anti-MAGE-3 CTL responses in melanoma patients displaying tumor regression after vaccination with a recombinant canarypox virus.J Immunol.
  • Peripheral blood collected from healthy adults carrying HLA-A * 24: 02 was centrifuged at 3,000 rpm for 5-10 minutes, and the plasma portion of the supernatant was collected. Except for the plasma portion, PBMCs were separated by the conventional density gradient centrifugation method. In the present invention, good results were obtained using a medium supplemented with 5% plasma. The medium is generally supplemented with appropriate additives and antibiotics for the medium used for cell culture.
  • the CTL induction medium used in the present invention a medium in which RPMI1640 Hepes modify (Sigam) was added with 2-mercaptoethanol, L-glutamine, and streptomycin and penicillin as antibiotics was used.
  • PBMCs peripheral blood mononuclear cells
  • CKAP4-specific CTL epitope candidate peptides SEQ ID NOs: 36, 40, 42, and 43
  • concentration of the peptide can be varied depending on the solubility of the peptide. In the present invention, it was carried out at 10 ⁇ g / mL.
  • a 96-well U-bottom cell culture microtest plate (BECTON DICKINSON) was used. The cells were cultured in a 37 ° C., 5% CO 2 constant temperature bath. Two days later, IL-2 was added at a final concentration of 20-100 U / mL. Thereafter, the IL-2 added CTL induction medium was appropriately replaced. Confirmation of CKAP4-specific CTL was carried out within 2 weeks of culture. When induction of CKAP4-specific CTL was confirmed, stimulation with peptide pulse antigen-presenting cells or direct stimulation with a peptide was attempted to establish a CTL line.
  • CKAP4-specific CTL Whether or not CKAP4-specific CTL is present in the cell population cultured by the above-described method was examined by the MHC-tetramer method. After culturing, 10 ⁇ L of PE-labeled MHC-tetramer reagent, 20 ⁇ L of FITC (fluorescein isothiocyanate) -labeled T cell surface antibody (eg, CD8, CD4, CD3) and the like were added to an appropriate amount of cells. Furthermore, a CD45 antibody labeled with PC5 (phycoerythrin-Cy5) or the like may be added in order to exclude non-specific fluorescence due to contaminated erythrocytes.
  • FITC fluorescein isothiocyanate
  • the mixture was gently mixed and allowed to stand at 2-8 ° C. for 60 minutes or at room temperature for 30 minutes. After adding 1.5 mL of PBS and stirring, the mixture was centrifuged at 3,000 rpm for 5 minutes. After discarding the supernatant, the cells were resuspended in 400 ⁇ L of PBS. At this time, 7-AAD viability dye (dead cell detection reagent, MBL) may be added in order to exclude non-specific fluorescence due to dead cells. The analysis was performed with a flow cytometer within 24 hours.
  • 7-AAD viability dye dead cell detection reagent, MBL
  • the first step is to collect some of the cells from each of the 8 wells in a 96-well U-bottom cell culture microtest plate and pool them as one sample (lane pool) to check for the induction of CKAP4-specific CTL. This was confirmed by the MHC-tetramer method.
  • the second stage cells in each well were individually collected in the lane pool in which the induction of CKAP4-specific CTL was confirmed in the first stage, and the presence or absence of induction of CKAP4-specific CTL was confirmed by the MHC-tetramer method. By using such a method, it was confirmed in which well of the 96-well U-bottom cell culture microtest plate that CKAP4-specific CTL was induced.
  • FIG. 23 and FIG. 25 show typical results of confirmation at the first stage after induction of CKAP4-specific CTL by MLPC method.
  • PBMCs of specimen numbers A24-37 (FIG. 23) and A24-39 (FIG. 25) were cultured with SEQ ID NO: 43 of a CKAP4-specific CTL epitope candidate peptide for 14 days.
  • the numbers in the dot plot development diagram are (UR + LR) for the area obtained by dividing the development quadrant into UL (upper left), UR (upper right), LL (lower left), and LR (lower right). Shows the percentage of UR.
  • the X-axis is CD8, and the Y-axis is a dot plot development view showing the fluorescence intensity for the MHC-tetramer reagent on a log scale.
  • IYT-Tet confirmed the induction of the specific CTL of SEQ ID NO: 43.
  • Species number A24-37 was lane 7, A24-39 was lane 11 UR, CD8 positive IYT-Tet positive cells A population was detected. This indicates that SEQ ID NO: 43 is a CKAP4-specific CTL epitope peptide and memory type CKAP4-specific CTL was present in the peripheral blood of specimens A24-37 and A24-39.
  • FIG. 26 show the results of the second step in which the CTL specific for SEQ ID NO: 43 was induced by MLPC method and detected by MHC-tetramer method.
  • FIG. 23 and FIG. 25 show the results of confirming the presence or absence of induction of CKAP4-specific CTL in each well by MHC-tetramer method in each lane where the induction of CKAP4-specific CTL was confirmed.
  • the sample number A24-37 lane 7 G well (7-G) shown in FIG. 24 and the sample number A24-39 lane 11 B well (11-B) shown in FIG. CTL was detected.
  • SEQ ID NO: 43 is a CKAP4-specific CTL epitope peptide exhibiting HLA-A * 24: 02 restriction.
  • SEQ ID NO: 43-specific CTL was detected in 1 of 96 wells, respectively. Therefore, the abundance ratio of SEQ ID NO: 43-specific CTL in peripheral blood PBMC was It is calculated by the following formula.
  • the limit of detection of specific CTLs by the 96-well MLPC method is usually 1.6 to 3.3 ⁇ 10 ⁇ 7 assuming that the CD8 positive cell rate before induction is 10 to 20%.
  • the standard ratio of specific CTL detected is 1 per 3-6 ⁇ 10 6 CD8 positive cells.
  • the present invention was carried out in the same manner for 7 blood donors using SEQ ID NOs: 36, 40, 42, and 43 as shown in Table 8, but specific CTLs were detected except for SEQ ID NO: 43. I could't. Even with SEQ ID NO: 43, only 2 out of 7 were detected. This indicates that it is difficult to predict a CKAP4-specific HLA-A * 24: 02-restricted epitope peptide, and it is more difficult to predict whether the epitope peptide has the ability to induce specific CTLs. ing.
  • EBV-infected B cell lines Kuzushima K, Yamamoto M, Kimura H, Ando Y, Kudo T, Tsuge I, Morishima T.
  • EBV Epstein-Barr virus
  • EBV-infected LCL EBV-infected B cell line
  • [Amplification of specific CTL using antigen-presenting cells] Suspend the antigen-presenting cells (EBV-infected LCL) in pulse medium (0.5% human serum albumin / RPMI1640) or AIM-V medium (Invitrogen), and add CTL epitope candidate peptide at a concentration of 10 ⁇ g / mL The mixture was allowed to stand at room temperature for 30 to 60 minutes with gentle mixing at intervals of approximately 15 minutes, and then washed three times with an excessive amount of pulse medium to wash away unbound peptides to HLA molecules. By performing this operation, it is considered that the CTL epitope candidate peptide binds to the HLA molecule on the antigen-presenting cell.
  • the antigen-presenting cell subjected to this operation is called a peptide pulse antigen-presenting cell.
  • Peptide pulse antigen-presenting cells were treated with a lethal dose of X-rays or mitomycin to lose their ability to grow. This was mixed with a cell population containing CKAP4-specific CTL derived from the same person and cultured in a 37 ° C., 5% CO 2 constant temperature bath.
  • RPMI1640 medium containing 10% fetal calf serum (FCS), RPMI1640 medium containing 10% human serum, or RPMI1640 medium containing 1-10% human plasma was examined. In this method, Good results were obtained with RPMI1640 medium containing 5% human plasma.
  • IL-2 (Shionogi Pharmaceutical Co., Ltd.) was added at 50 U / mL for the purpose of maintaining the survival of T cells and assisting proliferation. Evaluation of CKAP4-specific CTL induction was performed 10 to 16 days after the start of the culture. When induction of CKAP4-specific CTL was confirmed, stimulation was further performed using peptide pulse antigen-presenting cells to establish a CTL line.
  • FITC-labeled anti-IFN ⁇ antibody manufactured by MBL was added and allowed to react at room temperature for 15-30 minutes. After washing, the IFN ⁇ positive cell rate in T cells or the IFN ⁇ positive cell rate in MHC-tetramer reagent positive cells was quantified using a flow cytometer.
  • FIG. 27 shows the results of examination by an intracellular IFN ⁇ producing cell quantification method of CKAP4-specific CTL induced.
  • PBMC of specimen number A24-39 was stimulated with SEQ ID NO: 43, which is an HLA-A * 24: 02-restricted CKAP4-specific CTL epitope peptide.
  • SEQ ID NO: 43 which is an HLA-A * 24: 02-restricted CKAP4-specific CTL epitope peptide.
  • MBL PE-labeled MHC-tetramer reagent
  • PC5-labeled CD8 antibody PC5-labeled CD8 antibody
  • FITC-labeled IFN ⁇ antibody PE-labeled IFN ⁇ antibody
  • IFN ⁇ -positive MHC-tetramer reagent-positive cells appear in UR only when stimulated with a specific peptide, and hardly appear when no peptide is added.
  • the presence of IYT-Tet-specific CTLs in both the cell population with and without the peptide indicates that the fluorescence intensity for CD8 on the X axis and the MHC-tetramer reagent on the Y axis is log. It is clear from the dot plot development shown on the scale that the CD8 positive MHC-tetramer reagent positive cell population is seen in the UR.
  • CKAP4-specific CTL having cytotoxic activity to produce IFN ⁇ was induced by restimulation in PBMC cultured with CKAP4-specific CTL epitope peptide, and these cells were stained with MHC-tetramer reagent. From this, it was revealed that the CTL was specific to the HLA-A * 24: 02-restricted CKAP4-derived peptide IYTEVRELV (SEQ ID NO: 43).
  • the present invention makes it possible to treat or prevent EBV infection and a virus-positive cancer using a cytotoxic T cell epitope peptide specific to Epstein-Barr virus.
  • CTL specific for EBV can be quantified.
  • HLA-A * 24: 02-restricted epitope peptide comprising the sequence of IYTEVRELV (SEQ ID NO: 43) of the present invention it becomes possible to treat diseases dependent on malignant tumor cells that highly express CKAP4. .

Abstract

The present invention provides a cytotoxic T-cell (cytotoxic T lymphocyte, abbreviated hereinafter as CTL) epitope peptide specific to the Epstein-Barr virus (described hereinafter as EBV), a vaccine for treating or preventing EBV infection or EBV-positive cancer using this peptide, a passive immunotherapeutic agent for EBV, and a method for assaying CTL specific to EBV. The present invention also provides an HLA-A*24:02-restricted epitope peptide comprising an IYTEVRELV sequence (SEQ ID NO: 43) from a cytoskeleton-associated protein (cytoskeleton-associated protein 4: CKAP4 hereinafter, also known as: CLIMP-63, ERGIC-63, P63). The peptide-specific cytotoxic T-cells (CTL hereinafter) can attack malignant tumor cells that express a high level of CKAP4.

Description

細胞傷害性T細胞エピトープペプチド及びその用途Cytotoxic T cell epitope peptide and use thereof
 本発明は、エプスタイン-バールウイルス(Epstein-Barr virus、以後EBVと記載する)に特異的な細胞傷害性T細胞(cytotoxic T lymphocyte、以後、CTLと称する)エピトープペプチド、該ペプチドを用いたEBVの感染および同ウイルス陽性の癌を治療又は予防するワクチン、EBVに対する受動免疫療法剤、およびEBVに特異的なCTLの定量方法に関する。さらに、本発明は、がん細胞を標的とするCTLを誘導することができるペプチドに関する。また本発明は、前記ペプチドを含むがんワクチン及び抗がん剤に関する。更に本発明は、がん細胞を標的とするCTLを誘導するための前記ペプチドの使用、得られたCTL及び前記CTLを含む抗がん剤に関する。 The present invention relates to a cytotoxic T cell (cytotoxic T T lymphocyte, hereinafter referred to as CTL) epitope peptide specific to Epstein-Barr virus (hereinafter referred to as EBV), and EBV using the peptide. The present invention relates to a vaccine for treating or preventing infection and virus-positive cancer, a passive immunotherapeutic agent for EBV, and a method for quantifying EBV-specific CTL. Furthermore, the present invention relates to a peptide capable of inducing CTL targeting cancer cells. Moreover, this invention relates to the cancer vaccine and anticancer agent containing the said peptide. The present invention further relates to the use of the peptide for inducing CTL targeting cancer cells, the obtained CTL and an anticancer agent comprising the CTL.
 1964年、EpsteinとBarrによってバーキットリンパ腫組織由来の培養細胞から新しいヘルペスウイルスが発見され、Epstein-Barr virus(EBV)と命名された(非特許文献1)。EBVは8種類あるヒトヘルペスウイルス(HHV)のひとつであるHHV-4に分類され、全世界で広範に潜伏感染しているウイルスである(非特許文献2)。通常小児期に唾液を介して口腔・咽頭粘膜に感染が成立し、口腔・咽頭粘膜上皮細胞で産生されたウイルスは、さらに上皮間を通過するB細胞に感染して全身に広がる。主に細胞傷害性T細胞(CTL)による免疫監視機構により感染B細胞は傷害をうけて殺傷排除されるが、一部はウイルスを産生しない潜伏感染状態となる。 In 1964, Epstein and Barr discovered a new herpes virus from cultured cells derived from Burkitt lymphoma tissue and named it Epstein-Barr virus (EBV) (Non-patent Document 1). EBV is classified into HHV-4, which is one of eight types of human herpesviruses (HHV), and is a virus that is widely latently infected worldwide (Non-patent Document 2). Usually, infection occurs in the oral and pharyngeal mucosa via saliva in childhood, and the virus produced in the oral and pharyngeal mucosal epithelial cells further infects B cells that pass between the epithelia and spreads throughout the body. Infected B cells are injured and killed mainly by the immune surveillance mechanism with cytotoxic T cells (CTL), but some become latent infections that do not produce viruses.
 1970年に鼻咽頭癌の組織からEBVウイルス由来のDNA断片が見つかったことから、ヒトに感染するウイルスの中で、EBVが初めての腫瘍ウイルスと呼ばれるようになった(非特許文献3、4)。EBVの他にも腫瘍ウイルスの代表的な例としては、肝癌の原因となるC型肝炎ウイルス(HCV)、子宮頸癌の原因となるヒトパピローマウイルス(HPV)、成人T細胞白血病の原因となるヒトT細胞白血病ウイルス(HTLV-1)などが挙げられる。 Since EBV virus-derived DNA fragments were found in nasopharyngeal carcinoma tissues in 1970, EBV has been called the first tumor virus among viruses that infect humans (Non-Patent Documents 3 and 4). . In addition to EBV, typical examples of tumor viruses include hepatitis C virus (HCV) that causes liver cancer, human papilloma virus (HPV) that causes cervical cancer, and humans that cause adult T-cell leukemia. Examples include T cell leukemia virus (HTLV-1).
 EBVはヒトのリンパ球成分の一つであるB細胞に主に感染するが、B細胞以外に上皮細胞、T細胞、NK細胞などにも感染し、その多様な細胞向性が多彩な腫瘍発生と関わっていると考えられている。例えば、EBV感染が原因と考えられている癌は、バーキットリンパ腫(BL)、ホジキンリンパ腫(HL)、NK/T細胞リンパ腫、鼻咽頭癌(NPC)、胃癌(MK)などの悪性腫瘍が挙げられる。また、EBVは複数の免疫不全疾患にも深く関わっており、例えばリンパ球増殖性疾患(LPD)、伝染性単核球症(IM)、移植後リンパ球増殖性疾患(PTLD)などが知られている(非特許文献4)。 EBV mainly infects B cells, one of the human lymphocyte components, but it also infects epithelial cells, T cells, NK cells, etc. in addition to B cells, and its diverse cell tropism causes various tumor development Is thought to be involved. For example, cancers that are thought to be caused by EBV infection include malignant tumors such as Burkitt lymphoma (BL), Hodgkin lymphoma (HL), NK / T cell lymphoma, nasopharyngeal cancer (NPC), and gastric cancer (MK). It is done. EBV is also deeply involved in multiple immunodeficiency diseases, such as lymphoproliferative disease (LPD), infectious mononucleosis (IM), and post-transplant lymphoproliferative disease (PTLD). (Non-Patent Document 4).
 最近の研究によって、EBVは自己免疫疾患にも関与することが明らかになりつつある。多発性硬化症(MS)、全身性エリテマトーデス(SLE)、関節リウマチ(RA)、シェーグレン症候群(SS)などの患者では、EBVのウイルス量の高値化が報告されている。また、EBV由来の小分子 RNA(EBV encoded small RNA, EBER)やいくつかのタンパク質が、自己免疫疾患の発症と進行に深く関連していると考えられており、そのメカニズムの解明が進められている(非特許文献5、6、7)。 Recent research is revealing that EBV is also involved in autoimmune diseases. Increased viral load of EBV has been reported in patients with multiple sclerosis (MS), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and Sjogren's syndrome (SS). In addition, EBV-derived small RNA (EBV encoded small RNA, EBER) and some proteins are thought to be deeply related to the onset and progression of autoimmune diseases, and the mechanism is being elucidated. (Non-Patent Documents 5, 6, and 7).
 このように、EBVが癌及び免疫不全疾患と密接に関連していると考えられている事から、EBVをターゲットにした免疫細胞療法の臨床研究はここ十数年で大きく進展し、輝かしい成果が収められている。例えば、EBV関連のリンパ球増殖性疾患(LPD)、移植後リンパ球増殖性疾患(PTLD)に対し、原因となるウイルス感染細胞を排除し得る免疫担当細胞を患者体内に輸注する、いわゆる免疫細胞療法が実施され、その治療効果が証明された(非特許文献8、9、10)。また、ホジキンリンパ腫や、鼻咽頭癌等のEBV関連悪性腫瘍に対しても免疫細胞療法の有効性が報告されている(非特許文献11、12、13、14、15)。 Thus, since EBV is considered to be closely related to cancer and immunodeficiency diseases, clinical research on immune cell therapy targeting EBV has made great progress in the last decades and has achieved brilliant results. It is stored. For example, for EBV-related lymphoproliferative disease (LPD) and post-transplant lymphoproliferative disease (PTLD), so-called immune cells that transfuse immunocompetent cells that can eliminate the causative virus-infected cells into the patient's body Therapy was performed and the therapeutic effect was proved (Non-patent Documents 8, 9, and 10). The effectiveness of immune cell therapy has also been reported for EBV-related malignant tumors such as Hodgkin lymphoma and nasopharyngeal cancer (Non-Patent Documents 11, 12, 13, 14, 15).
 それらの効果的な臨床研究によって、免疫細胞療法は新たな癌治療戦略として大きな関心が寄せられている。従来の外科的措置、放射線療法、化学療法では難治性の悪性腫瘍、免疫不全疾患において、免疫細胞療法は有力な治療法になりうると考えられている。 Due to their effective clinical research, immune cell therapy is gaining great interest as a new cancer treatment strategy. Immune cell therapy is considered to be a powerful treatment for malignant tumors and immunodeficiency diseases that are refractory to conventional surgical procedures, radiation therapy, and chemotherapy.
 免疫細胞療法は患者に備わっている免疫力を賦活化させ、標的となる癌細胞あるいはウイルス感染細胞を特異的に攻撃・排除することを利用した治療方法であり、従来の治療方法にない特徴がある。これらの標的となる細胞を特異的に攻撃する中心的な役割を果たしているのは細胞傷害性T細胞(CTL)である。CTLが癌細胞あるいはウイルス感染細胞といった標的細胞を認識する際には、CTL細胞膜表面上に発現しているT細胞受容体(TCR)が重要な役割を担っている。TCRは癌抗原分子やウイルス粒子そのものを直接認識するわけではなく、標的細胞の膜表面上に発現しているHLA(ヒト白血球型抗原)と、腫瘍細胞の場合は癌抗原由来の、或いはウイルス感染細胞の場合はウイルス由来の8~10個のアミノ酸からなるペプチド(エピトープペプチド)との複合体に結合することでCTLは標的細胞を認識して殺傷効果を発揮する。HLAはクラス Iとクラス IIに大別され、HLA クラス Iとペプチドの複合体はCD8陽性T細胞に発現するTCRに認識され、HLA クラス IIとペプチドの複合体はCD4陽性T細胞に発現するTCRに認識されて免疫応答が惹起される。HLA クラス Iは更にHLA-A, B, Cと呼ばれる古典的分類と、HLA-E, F, Gと呼ばれる非古典的分類に区別される。移植医療におけるドナーとレシピエントのHLA適合性は、HLA-A, BとHLA クラス IIに分類されるHLA-DRBの6座適合性が重要であり、特に非血縁者間での移植では、拒絶におけるリスクファクターとして考えられている。現在IMGTのHLAデータベース(http://www.imgt.org/)によると、HLA-Aは2,041種類、HLA-Bは2,688種類、HLA-Cは1,677種類のタンパク質が登録されている。しかしながら人種間で偏りがあることが知られており、例えば日本人の約60%の人がHLA-A24を保持しており、HLA-A2は白人の50%以上で、日本人も約20%が保持している。発明者らが同定したEBV由来LMP2およびEBNA1特異的CTLエピトープペプチドはHLA-A11に特異的に結合し、これを認識するCTLによってEBV感染細胞は殺傷排除される。HLA-A11の保有率は日本人では約10%であるが、東南アジアでは保有率第3位のアリルとして広い人口分布を示す。東南アジアにおけるHLA-A24、 HLA-A2及びHLA-A11のアリル頻度は、それぞれ32.1%、24.5%、23.7%である(http://www.ncbi.nlm.nih.gov/projects/gv/mhc/ihwg.cgi)。 Immune cell therapy is a treatment method that activates the immune power of patients and specifically attacks and eliminates target cancer cells or virus-infected cells. is there. Cytotoxic T cells (CTL) play a central role in specifically attacking these target cells. When CTL recognizes target cells such as cancer cells or virus-infected cells, the T cell receptor (TCR) expressed on the surface of the CTL cell membrane plays an important role. TCR does not directly recognize cancer antigen molecules or virus particles themselves, but HLA (human leukocyte type antigen) expressed on the membrane surface of target cells and, in the case of tumor cells, cancer antigen-derived or viral infection In the case of cells, CTL recognizes a target cell and exerts a killing effect by binding to a complex with a peptide (epitope peptide) consisting of 8 to 10 amino acids derived from a virus. HLA is broadly classified into class I and class II. Complexes of HLA class I and peptides are recognized by TCR expressed on CD8 + T cells, and complexes of HLA class II and peptides are TCR expressed on CD4 + T cells. And an immune response is elicited. HLA class I is further divided into a classical classification called HLA-A, B, C and a non-classical classification called HLA-E, F, G. HLA compatibility between donors and recipients in transplantation therapy is important for HLA-A, B and HLA-DRB class 6 HLA-DRB classification, especially for transplants between unrelated individuals. It is considered as a risk factor. According to the IMGT HLA database (http://www.imgt.org/), 2,041 types of HLA-A, 2,688 types of HLA-B, and 1,677 types of proteins are registered for HLA-C. However, it is known that there is a bias among races, for example, about 60% of Japanese people have HLA-A24, HLA-A2 is over 50% of white people, and about 20 Japanese people % Holds. The EBV-derived LMP2 and EBNA1-specific CTL epitope peptides identified by the inventors specifically bind to HLA-A11, and EBV-infected cells are killed and eliminated by CTLs that recognize them. The ownership rate of HLA-A11 is about 10% in the Japanese, but in Southeast Asia, it has a wide population distribution as the third largest allele. The allele frequencies of HLA-A24, HLA-A2 and HLA-A11 in Southeast Asia are 32.1%, 24.5% and 23.7%, respectively (http://www.ncbi.nlm.nih.gov/projects/gv/mhc/ ihwg.cgi).
 これまで報告されている免疫細胞療法の多くは、世界的にはHLA-A2を対象とした臨床試験が最も多く、日本国内ではHLA-A24を対象者としている場合が多い。アジア圏では平均寿命の延伸によりさらに癌患者が増加すると予想されおり、免疫細胞療法はこれまで以上に治療対象となるHLA型を多くすることが求められている。これまでに報告されたHLA-A11拘束性のCTLエピトープ数は、HLA-A2やHLA-A24に比べて極端に少なく、HLA-A11を保有する患者を対象者とした臨床試験の報告例が殆ど存在しない事からも、本発明のHLA-A11拘束性を示すEBV LMP2およびEBV EBNA1特異的CTLエピトープの同定の意義は大きいと思われる。 «Many of the immuno-cell therapies that have been reported so far are the most clinical trials targeting HLA-A2 in the world, and in many cases the target is HLA-A24 in Japan. In Asia, the number of cancer patients is expected to increase due to the extension of life expectancy, and immune cell therapy is required to increase the number of HLA types to be treated more than ever. The number of HLA-A11-restricted CTL epitopes reported so far is extremely small compared to HLA-A2 and HLA-A24, and there are almost no reports of clinical trials targeting patients with HLA-A11. From the fact that it does not exist, the identification of EBV LMP2 and EBV EBNA1-specific CTL epitopes exhibiting the HLA-A11 restriction of the present invention seems to be significant.
 EBV関連悪性腫瘍において、特筆すべきは鼻咽頭癌(Nasopharyngeal Carcinoma、以後NPCと記載する)である。NPCは中国南部、香港地域、シンガポール、ベトナム、マレーシア、フィリピンなどを含む東南アジアで高い発症率を有する。また、北アフリカなどの地域でも比較的高い発症率である。2012年には世界中で新規に86,691人がNPCと診断され、死亡数は50,828人にも及んでいる(GLOBOCAN2012)。また、放射線治療後、1,3,5,10年生存率はそれぞれ、89.86%,60.60%,47%,33.03%だったことが報告されている(非特許文献18)。興味深いことに、NPCの発症リスクのひとつとしてHLA型が報告されている(非特許文献17)。例えば、NPC患者のHLA-A型の頻度を統計学的に分析した結果で上位を示したHLA-A型の頻度は、A11保持者が50 %、A2保持者が50 %、A24保持者が30 %、B40保持者32%であったと報告されている(非特許文献15)。または、違う研究グループの調査結果では、A11保持者が58%、A2保持者が53%、A24保持者が30%、B40保持者が43%であったと報告されている(非特許文献16)。最近になって、次世代シークエンサー技術を用いて、HLAのアミノ酸配列のバリアントとSNPsを網羅的に調べた結果、HLA-A11がNPCの発症と深く関わるHLA型として報告されている(非特許文献19)。この様にNPCではHLA-A11保持者の発症率が高く、本発明のHLA-A11拘束性を示すEBV LMP2およびEBV EBNA1特異的CTLエピトープを用いた治療法を提供できる意義は深いと思われる。 Among EBV-related malignant tumors, noteworthy is nasopharyngeal cancer (Nasopharyngeal Carcinoma, hereinafter referred to as NPC). NPC has a high incidence in Southeast Asia including South China, Hong Kong, Singapore, Vietnam, Malaysia, and the Philippines. In addition, the incidence is relatively high in areas such as North Africa. In 2012, 86,691 people were newly diagnosed with NPCs worldwide and the death toll has reached 50,828 (GLOBOCAN2012). In addition, it has been reported that the survival rates for 1, 3, 5, and 10 years after radiation therapy were 89.86%, 60.60%, 47%, and 33.03%, respectively (Non-patent Document 18). Interestingly, HLA type has been reported as one of the onset risks of NPC (Non-patent Document 17). For example, the frequency of HLA-A, which is the highest in the results of statistical analysis of HLA-A frequency in NPC patients, is 50% for A11 holders, 50% for A2 holders, and A24 holders. 30% and B40 holders were reported to be 32% (Non-patent Document 15). Or, according to the survey results of different research groups, it was reported that A11 holders were 58%, A2 holders were 53%, A24 holders were 30%, and B40 holders were 43% (Non-patent Document 16). . Recently, as a result of exhaustive examination of HLA amino acid sequence variants and SNPs using next-generation sequencer technology, HLA-A11 has been reported to be closely related to the onset of NPC (Non-patent literature). 19). In this way, NPC has a high incidence of HLA-A11 carriers, and it is probable that it is profound to provide a treatment method using EBV LMP2 and EBV EBNA1-specific CTL epitopes exhibiting HLA-A11 restriction according to the present invention.
 NPCは難治性の悪性腫瘍であることから、外科的措置、化学療法、放射線療法に続く第4の治療法としてインビトロで活性化されたEBV特異的CTLを利用した免疫細胞治療に対する関心は非常に大きくなっており、複数の臨床試験で有効性が報告されている。しかしながら、それらの臨床試験で使用されているCTLエピトープペプチドは、主にHLA-A2、HLA-A24拘束性のペプチドであり、HLA-A11拘束性CTLエピトープペプチドの臨床試験報告例はほとんど存在しない。その理由として、HLA-A11拘束性CTLエピトープペプチドの同定が世界的にも殆ど試みられていなかった事と、NPCで発現しているEBNA1由来のCTLエピトープの同定が非常に困難であることなどが挙げられる。 Because NPC is a refractory malignant tumor, there is a great interest in immune cell therapy using EBV-specific CTL activated in vitro as the fourth treatment following surgical treatment, chemotherapy, and radiation therapy It is growing and has been reported in several clinical trials. However, CTL epitope peptides used in these clinical trials are mainly HLA-A2 and HLA-A24 restricted peptides, and there are almost no clinical trial reports of HLA-A11 restricted CTL epitope peptides. The reason for this is that almost no attempt has been made worldwide to identify HLA-A11-restricted CTL epitope peptides and it is very difficult to identify EBNA1-derived CTL epitopes expressed in NPCs. Can be mentioned.
 本発明では後述の同定手法を用い、EBV関連悪性腫瘍、特にNPC患者で最も保有率の高いHLA-A11に対して拘束性を示すCTLエピトープペプチドの同定を鋭意検討した。 In the present invention, the identification method described later was used to intensively investigate the identification of CTL epitope peptides that are restricted to EBV-related malignant tumors, particularly HLA-A11, which has the highest prevalence in NPC patients.
 EBVは約85個の遺伝子産物をコードする約170kbpの2本鎖DNAを持っているが、NPCの癌患部では、EBV由来のタンパク質であるLMP1、LMP2、EBNA1の発現が報告されている。LMP1は一部の患者でしか検出できないのに対し、LMP2とEBNA1はNPCで恒常的に発現しており(非特許文献20、21)、この二つのタンパク質は細胞傷害性T細胞エピトープペプチド同定のための魅力的な標的である。しかしながら、これまでの報告では、CTLの免疫応答はLMP2に優先的に向けられ、EBNA1はCTLに認識されないと信じられてきた(非特許文献22、23、24、25)。その理由は、EBNA1は全長641個のアミノ酸で構成されているが、その中心領域(101番目から324番目のアミノ酸)に約200個のアミノ酸からなるグリシン-アラニン反復配列(GAr)が存在しており、MHCクラス Iエピトープを産生する主要な触媒機構であるプロテアソームによる処理を妨げることが判明している(非特許文献26、27、28)。さらに、同じ中心領域がEBNA1 mRNAの翻訳を妨げることが明らかとなっており、EBNA1タンパク質の発現そのものが低い事が報告されているからである(非特許文献29、30)。 EBV has about 170kbp double-stranded DNA encoding about 85 gene products, but the expression of LMP1, LMP2, and EBNA1, which are EBV-derived proteins, has been reported in NPC cancer affected areas. While LMP1 can be detected only in some patients, LMP2 and EBNA1 are constitutively expressed in NPC (Non-patent Documents 20 and 21), and these two proteins are used to identify cytotoxic T cell epitope peptides. Is an attractive target for. However, in previous reports, it has been believed that the immune response of CTL is preferentially directed to LMP2, and that EBNA1 is not recognized by CTL (Non-patent Documents 22, 23, 24, 25). The reason is that EBNA1 is composed of 641 amino acids in total length, but there is a glycine-alanine repetitive sequence (GAr) consisting of about 200 amino acids in the central region (101st to 324th amino acids). Thus, it has been found that the treatment by the proteasome, which is the main catalytic mechanism for producing the MHC class 妨 げ る I epitope, is prevented (Non-patent Documents 26, 27 and 28). Furthermore, it is clear that the same central region prevents translation of EBNA1 mRNA, and it is reported that the expression of EBNA1 protein itself is low (Non-patent Documents 29 and 30).
 一方で、LMP2のCTLエピトープは、複数の研究グループから報告されている。全長497アミノ酸(B95.8株由来)で構成されるLMP2タンパク質に対してオーバーラッピングペプチドライブラリーを作製し、HLA-A2、HLA-A24、HLA-A11等を標的としたCTLエピトープ探索が行われ、HLA-A2、HLA-A24拘束性のペプチドが数多く同定されたのに対し、HLA-A11拘束性のペプチドは今日にいたるまで、1つしか同定されていなかった(非特許文献15)。EBVは全世界で成人の90%以上に潜伏感染しているウイルスであるにもかかわらず、NPCの罹患率には強い地域性が存在している。たとえば、東南アジア、北アフリカ、アラスカなどの地域では、NPCの発生率は他の地域の100倍ほど高いことが疫学調査により明らかになっている(Rickinson, A. B., and E. Kieff. 1996. Epstein-Barr virus, p. 2397-2446. In B. N. Fields, D. M. Knipe, and P. M. Howley (ed.), Fields virology, 3rd ed.,vol. 2. Lippincott-Raven, Philadelphia, Pa)。この強い地域性が生じる原因には、環境、遺伝、生活習慣などの要因が挙げられてきたが、EBV株の違いにより、発癌性タンパク質の発現量の違いや、アミノ酸の変異による免疫応答の違いも考えられ、感染株の違いがNPCの発症に関わるもう一つの重要な因子であろうと考えられる。注目すべき点は、NPCの罹患率が非常に高い地域のひとつは中国の広東省でり、ここで広く伝播しているEBV株の一種はGD1であることである(Zeng MS, Li DJ, Liu QL, Song LB, Li MZ, Zhang RH, Yu XJ, Wang HM, Ernberg I, Zeng YX. Genomic sequence analysis of Epstein-Barr virus strain GD1 from a nasopharyngeal carcinoma patient. J Virol. 2005 Dec;79(24):15323-30)。ここで、EBV株間、例えば、B95.8株とGD1株では、特異的CTLエピトープペプチドに相当する配列が異なる場合があり、そのことによりCTL誘導能やMHC-テトラマー試薬での検出能が影響を受ける可能性がある。このことは、2種類以上のペプチドを混合して誘導されたCTLを治療に利用する事で、感染者の株種に依存しない治療用のCTLを調製できる事を意味している。 On the other hand, the CTL epitope of LMP2 has been reported by several research groups. An overlapping peptide library was created for the LMP2 protein consisting of 497 amino acids in total length (derived from B95.8 strain), and CTL epitope search targeting HLA-A2, HLA-A24, HLA-A11, etc. was performed. While many HLA-A2 and HLA-A24-restricted peptides were identified, only one HLA-A11-restricted peptide was identified to date (Non-patent Document 15). Despite the fact that EBV is a virus that infects over 90% of adults worldwide, there is a strong regionality in the prevalence of NPCs. For example, in areas such as Southeast Asia, North Africa, and Alaska, epidemiological studies have shown that the incidence of NPC is about 100 times higher than in other areas (Rickinson, A. B., and E. Kieff. 1996). . Epstein-Barr virus, p. 2397-2446. In B. N. Fields, D. M. Knipe, and P. M. Howley (ed.), Fields virology, 3rd ed., Vol. 2. Lippincott-Raven , Philadelphia, Pa). The causes of this strong locality have been factors such as environment, heredity and lifestyle habits, but due to differences in EBV strains, differences in the expression level of oncogenic proteins and differences in immune responses due to amino acid mutations It is also considered that the difference of the infected strain may be another important factor involved in the development of NPC. It should be noted that one of the regions where the prevalence of NPC is very high is Guangdong Province in China, and one of the widely transmitted EBV strains here is GD1 (Zeng MS, Li DJ, Liu QL, Song LB, Li MZ, Zhang RH, Yu XJ, Wang HM, Ernberg I, Zeng YX. Genomic sequence analysis of Epstein-Barr virus strain GD1 from a nasopharyngeal carcinoma patient. : 15323-30). Here, sequences corresponding to specific CTL epitope peptides may differ between EBV strains, for example, B95.8 strain and GD1 strain, which may affect CTL induction ability and detection ability with MHC-tetramer reagent. There is a possibility of receiving. This means that a CTL for treatment independent of the strain type of an infected person can be prepared by using CTL derived by mixing two or more peptides for treatment.
 一方、細胞性免疫を担うCTLが、様々なウイルスや病原菌感染細胞を特異的に認識し、これを攻撃・排除することは古くから知られている。これは、感染細胞が主要組織適合性抗原複合体(major histocompatibility complex, 以下MHC、ヒトではHLA)を介してウイルス、病原菌由来の抗原ペプチドを提示し、それをT細胞が認識して、免疫応答が惹起されるためである。具体的には、MHCにはclass Iとclass IIがあり、MHC class I(以下MHC-I)はすべての有核細胞の細胞膜表面に発現して、主にウイルスタンパク質由来の非自己ペプチドをCTLに提示して活性化させる。一方で、MHC class II(以下MHC-II)は樹状細胞などの抗原提示細胞の細胞膜表面に発現し、非自己ペプチドをCD4T細胞に提示して、サイトカインの分泌・抗体の産生を誘導する。つまり、生体を感染から防御する機構として、MHC-I-CTLとMHC-II-CD4T細胞の二つの経路が備わっている。 On the other hand, it has long been known that CTLs responsible for cell-mediated immunity specifically recognize cells infected with various viruses and pathogens, and attack and eliminate them. This is because the infected cell presents the antigen peptide derived from the virus or pathogen through the major histocompatibility complex (hereinafter referred to as MHC, HLA in humans), which is recognized by the T cell and the immune response This is because Specifically, MHC has class I and class II. MHC class I (hereinafter referred to as MHC-I) is expressed on the cell membrane surface of all nucleated cells, and CTLs mainly express non-self peptides derived from viral proteins. Present and activate. On the other hand, MHC class II (hereinafter referred to as MHC-II) is expressed on the cell membrane surface of antigen-presenting cells such as dendritic cells, and presents non-self peptides to CD4 + T cells to induce cytokine secretion and antibody production To do. In other words, there are two pathways, MHC-I-CTL and MHC-II-CD4 + T cells, as a mechanism for protecting the living body from infection.
 1991年に、悪性黒色腫に特異的に発現しているMAGE抗原由来のペプチドが、CTLに認識されることが報告された(非特許文献31)。これは、MHC-Iが、がん細胞由来の自己の抗原ペプチドをCTLに提示し、特異的に細胞傷害活性を誘導することを初めて示した例である。つまり、CTLは自己抗原にも反応でき、そのはたらきを利用することで、がんを治療できる可能性が示されたことになる。それ以降、がんに特異的に発現しているタンパク質(以下がん抗原)と、そのタンパク質由来のペプチド断片の同定が盛んに進められている。これらの発見と並行し、がん免疫療法の開発が盛んに進められている。がん免疫療法とは、がん細胞を殺傷・排除するCTLなどの免疫担当細胞を生体内外で増殖させ、がんの治療を行う方法である。がん免疫療法には幾つかの方法が考えられる。 In 1991, it was reported that a peptide derived from MAGE antigen specifically expressed in malignant melanoma was recognized by CTL (Non-patent Document 31). This is the first example that shows that MHC-I specifically induces cytotoxic activity by presenting its own antigenic peptide derived from cancer cells to CTL. In other words, CTL can also react with self-antigens, and it has been shown that cancer can be treated by using its function. Since then, identification of proteins specifically expressed in cancer (hereinafter referred to as cancer antigens) and peptide fragments derived from the proteins has been actively promoted. In parallel with these discoveries, development of cancer immunotherapy has been actively promoted. Cancer immunotherapy is a method for treating cancer by proliferating immunocytes such as CTLs that kill and eliminate cancer cells in vivo and in vivo. There are several possible methods for cancer immunotherapy.
1.患者のがん組織を液体窒素等で粉砕処理し、これを免疫賦活剤と共に患者に接種する自己がん免疫療法
2.患者のがん組織を液体窒素等で粉砕処理し、これを患者末梢血から分離培養した樹状細胞と共培養後、患者に接種する自己がん樹状細胞療法
3.患者のがん組織を液体窒素等で粉砕処理し、これを患者末梢血から分離培養したリンパ球と混合培養し、患者体内に戻す自己がん感作リンパ球移入療法
1. 1. Auto-cancer immunotherapy in which a patient's cancer tissue is pulverized with liquid nitrogen or the like and inoculated to the patient together with an immunostimulant. 2. Autologous cancer dendritic cell therapy in which a patient's cancer tissue is crushed with liquid nitrogen or the like, co-cultured with a dendritic cell separated and cultured from the peripheral blood of the patient, and then inoculated to the patient. Patient cancer tissue is pulverized with liquid nitrogen, etc., mixed and cultured with lymphocytes separated from the patient's peripheral blood, and returned to the patient's body.
 1~3は、必ずしもがん抗原特異的な免疫応答が惹起されているとは言えず、非特異的ながん免疫療法である。また、がん患者からがん患部を切除するなどの外科的処置が必要になるという欠点がある。 1 to 3 are non-specific cancer immunotherapy, which is not necessarily an immune response specific to cancer antigens. In addition, there is a drawback that a surgical procedure such as excision of a cancer affected part from a cancer patient becomes necessary.
4.がん抗原特異的CTLエピトープペプチドと免疫賦活剤を患者に接種するがんペプチドワクチン療法
5.がん抗原特異的CTLエピトープペプチドを患者末梢血から分離培養した樹状細胞にパルス後、患者に接種するペプチドパルス樹状細胞療法
6.がん抗原特異的CTLエピトープペプチドを用いて患者末梢血から分離培養したリンパ球を刺激培養し特異的CTLを誘導し、これを患者体内に戻すCTL移入療法
7.4と6のコンビネーション療法。がん抗原特異的CTLエピトープペプチドと免疫賦活剤を患者に接種する。この患者末梢血から分離したリンパ球をがん抗原特異的CTLエピトープペプチドで刺激培養する事で特異的CTLを誘導し、これを患者体内に戻す方法。
8.がん抗原特異的CTLからT細胞受容体(TCR)遺伝子を抽出し、これを患者末梢血から分離培養したリンパ球に遺伝子導入する事で人工CTLを作製し、患者体内に戻す人工CTL移入療法。
4). 4. Cancer peptide vaccine therapy in which a patient is inoculated with a cancer antigen-specific CTL epitope peptide and an immunostimulant. 5. Peptide pulse dendritic cell therapy in which a cancer antigen-specific CTL epitope peptide is pulsed to a dendritic cell isolated and cultured from peripheral blood of a patient and then inoculated to the patient. Combination therapy of CTL transfer therapy 7.4 and 6 that induces specific CTL by stimulating culture of lymphocytes isolated from patient's peripheral blood using cancer antigen-specific CTL epitope peptide and returns this to the patient's body. The patient is inoculated with a cancer antigen-specific CTL epitope peptide and an immunostimulant. This method induces specific CTLs by stimulating the lymphocytes isolated from the patient's peripheral blood with a cancer antigen-specific CTL epitope peptide and returns it to the patient's body.
8). Artificial CTL transfer therapy by extracting T cell receptor (TCR) gene from cancer antigen-specific CTL and introducing it into lymphocytes isolated and cultured from the patient's peripheral blood to produce artificial CTL and return it to the patient's body .
 4~8は、いずれもがん抗原特異的な免疫応答を惹起・利用するものであり、特異的ながん免疫療法である。ただし、これらを実施するためには、がん抗原特異的CTLエピトープを同定し、これを認識するCTLの存在を証明することが第一の要件である。 4-8 are all specific cancer immunotherapy that elicits and uses cancer antigen-specific immune responses. However, in order to implement these, the first requirement is to identify a cancer antigen-specific CTL epitope and prove the presence of CTLs that recognize it.
 上記の通り、がん抗原特異的な免疫応答を惹起・利用する様々ながん免疫療法が開発されているが、それらの治療効果は必ずしも高くはなく、多くの臨床試験が第II相、第III相で失敗している。これらの失敗から、がん免疫療法の実施にあたり以下の注意点が考えられる。 As described above, various cancer immunotherapy that elicits and uses a cancer antigen-specific immune response has been developed, but their therapeutic effect is not necessarily high, and many clinical trials have been conducted in Phase II and Phase II. Failed in Phase III. Due to these failures, the following points should be considered when implementing cancer immunotherapy.
(1)適切なCTLモニタリング
 がん免疫療法は、生体内でがんを認識して、攻撃するCTLの増幅を期待して行われる治療法であり、効果成分であるCTLのモニタリングが重要である。CTLのモニタリング法としては、細胞内サイトカイン染色法や、細胞傷害活性の測定などがあるが、これらはCTLを間接的に検出する方法である。例えば、細胞内サイトカイン染色法はペプチド刺激に対するIFNγ(interferon gamma)やTNFα(tumor necrosis factor-alpha)の産生を測定する方法であり、抗原ペプチド特異的な免疫応答以外の反応も検出する可能性がある。一方で、より適切な方法として、MHC-テトラマー試薬を用いた方法がある。MHC-テトラマー試薬は、MHCとβ2-ミクログロブリン(以下、β2m)及びペプチド断片の3者複合体(MHC-モノマー)を試験管内で製造し、MHC-モノマーを4量体化した試薬である。
(1) Appropriate CTL monitoring Cancer immunotherapy is a treatment method that recognizes cancer in vivo and expects amplification of CTL that attacks, and monitoring of CTL, which is an effective component, is important . Methods for monitoring CTL include intracellular cytokine staining and measurement of cytotoxic activity. These are methods for indirectly detecting CTL. For example, intracellular cytokine staining is a method that measures the production of IFNγ (interferon gamma) and TNFα (tumor necrosis factor-alpha) in response to peptide stimulation, and may detect reactions other than antigen peptide-specific immune responses. is there. On the other hand, as a more appropriate method, there is a method using an MHC-tetramer reagent. The MHC-tetramer reagent is a reagent in which a ternary complex (MHC-monomer) of MHC, β2-microglobulin (hereinafter β2m) and a peptide fragment is produced in a test tube, and the MHC-monomer is tetramerized.
 この試薬がなぜCTLのモニタリングに適切であるかを以下に説明する。MHC-モノマーを構成するMHCは多様性に富む分子であり、IMGTのHLAデータベース(http://hla.alleles.org/nomenclature/stats.html)によると、HLA-Aは2077種類、HLA-Bは2741種類、HLA-Cは1739種類のタンパク質が登録されている(2014年10月時点)。また、それぞれのMHCのアリル型によって、結合するペプチド断片(8~12アミノ酸残基長)の特徴も異なる。つまり、MHC/ペプチド複合体の組み合わせは、MHCのアリル型と、ペプチド断片の種類だけあり、膨大な数が存在する。一方で、CTLは、MHC-Iが提示するペプチドをTCRで認識する。個々のTCRは、TCR遺伝子の再編成により生み出され、1個体におけるTCRのレパートリー数は1018にも上ると言われている。つまり、標的細胞のMHC/ペプチド複合体と、CTL側のTCRは、ともに膨大な多様性を備えている。そして、個々のCTLは一般的に一種類のTCRを細胞膜表面上に発現し、それに対する特異的なMHC/ペプチド複合体のみを認識して活性化する。MHC-テトラマー試薬はこの仕組みを利用した試薬である。すなわち、MHC-テトラマー試薬は、標的細胞膜上のMHC/ペプチド複合体の構造を模倣した試薬であり、それによって特異的なTCRをもつCTLのみを選択的に検出できるのである。この点から、MHC-テトラマー試薬は、CTLのモニタリングには理想的な試薬であると考えられる。なお、MHC-モノマーを4量体化しているのは、CTLが発現するTCRとの結合力を増強し、フローサイトメーターなどの機器で検出できるようにするためである。
(2)がん細胞の抗原提示分子(HLAおよびβ2m)の変異
 がん細胞のHLAとβ2mの変異は、がん細胞の免疫逃避機構として知られている。これらが生じると、がん細胞が抗原ペプチドを提示しなくなるため、CTLはがん細胞を認識できず、攻撃できない。HLAの変異としては、同一遺伝子座の片側が欠損するLOH型変異(loss of heterozygosity)が知られている。また、β2mの変異はフレームシフト変異などが知られている。β2mの変異に対しては、β2m遺伝子をアデノウイルスベクターにより遺伝子導入することで、β2mの発現を補い、がん細胞に抗原ペプチドを提示させる試みがなされている。
(3)がん細胞の標的抗原の発現
 がん抗原には、様々な種類があり、どのがん抗原を発現しているかは、がん種や、個人によって差がある。このため、がん免疫療法を行うにあたり、患者のがん抗原の発現を確認することは非常に重要である。例えば、ペプチドワクチンの由来のがん抗原が患者のがん患部において全く発現していない場合は、がん細胞を標的にできないため、がんペプチドワクチン療法の治療効果は望めない。近年では、幾つかのがんペプチドワクチン療法の臨床試験において、がん抗原特異的抗体を用いた組織染色などにより、患者のがん細胞がペプチドワクチンの由来抗原を発現しているか確認している。一方で、悪性神経膠芽腫などの場合、がん細胞サンプルの取得が難しいため、がん患部でのがん抗原の発現を確認することは難しい。
(4)免疫抑制分子の作用
 CTLは標的細胞が提示する抗原ペプチドを特異的に認識すると活性化し、細胞傷害活性を発揮する。一方で、CTLの活性化を阻害する分子の存在が知られており、TGFβ、PD-1、CTLA-4などがある。TGFβはがん細胞が分泌する抑制性のサイトカインであり、CTLやCD4+T細胞の増殖・分化が阻害される。PD-1、CTLA-4は共にT細胞の細胞膜上の分子であり、それぞれがん細胞が発現するリガンドと結合すると、抑制性のシグナルが伝達され、CTLが不活性化される。近年、抗PD-1抗体や抗CTLA-4抗体により、これらの免疫抑制分子のはたらきを阻害することで、CTLのはたらきが促進されることが報告されている。
(5)患者のHLA型
 エピトープペプチドは、基本的に1種類のHLAにしか提示されない。これをHLA拘束性という。このため、エピトープペプチドを提示できるHLA型を保有しない患者に対して、がん免疫療法を行っても、その患者においてがん細胞がエピトープペプチドを提示しないため、治療効果は望めない。つまり、がん免疫療法の対象患者は、使用するエピトープペプチドのHLA拘束性に限定される。実際、がん免疫療法の臨床試験においては、抗HLA抗体を用いた血清型判定や遺伝子型判定により患者のHLA型が事前に判定され、使用されるエピトープのHLA拘束性に合う患者が試験に登録される。
The reason why this reagent is suitable for CTL monitoring is described below. MHC-MHC that constitutes a monomer is a diverse molecule. According to the IMGT HLA database (http://hla.alleles.org/nomenclature/stats.html), there are 2077 types of HLA-A and HLA-B. There are 2741 types of proteins registered for HLA-C and 1739 types for HLA-C (as of October 2014). In addition, the characteristics of peptide fragments (8 to 12 amino acid residues in length) to be bound differ depending on the allyl type of MHC. In other words, there are an enormous number of combinations of MHC / peptide complexes, which include only the allyl form of MHC and the types of peptide fragments. On the other hand, CTL recognizes the peptide presented by MHC-I by TCR. Individual TCRs are created by rearrangement of the TCR gene, and the number of TCR repertoires in one individual is said to be as high as 10 18 . That is, both the MHC / peptide complex of the target cell and the TCR on the CTL side have a great variety. Each CTL generally expresses one type of TCR on the cell membrane surface and recognizes and activates only a specific MHC / peptide complex. MHC-tetramer reagent is a reagent using this mechanism. That is, the MHC-tetramer reagent is a reagent that mimics the structure of the MHC / peptide complex on the target cell membrane, whereby only CTL having a specific TCR can be selectively detected. In this respect, the MHC-tetramer reagent is considered to be an ideal reagent for CTL monitoring. The reason that tetramerization of MHC-monomer is to enhance the binding force with TCR expressed by CTLs so that they can be detected by a device such as a flow cytometer.
(2) Mutations in antigen-presenting molecules (HLA and β2m) in cancer cells Mutations in HLA and β2m in cancer cells are known as the immune escape mechanism of cancer cells. When these occur, the cancer cells no longer present the antigenic peptide, so the CTL cannot recognize and attack the cancer cells. As an HLA mutation, an LOH type mutation (loss of heterozygosity) in which one side of the same locus is deleted is known. Further, β2m mutation is known as frameshift mutation. For β2m mutations, attempts have been made to compensate for β2m expression by introducing the β2m gene with an adenoviral vector and to present antigenic peptides to cancer cells.
(3) Expression of cancer cell target antigens There are various types of cancer antigens, and which cancer antigen is expressed varies depending on the type of cancer and the individual. For this reason, it is very important to confirm the expression of a cancer antigen in a patient when performing cancer immunotherapy. For example, when the cancer antigen derived from the peptide vaccine is not expressed at all in the cancerous part of the patient, the cancer cells cannot be targeted, so the therapeutic effect of the cancer peptide vaccine therapy cannot be expected. In recent years, several cancer peptide vaccine therapy clinical trials have confirmed whether cancer cells of patients express peptide vaccine-derived antigens by tissue staining using cancer antigen-specific antibodies. . On the other hand, in the case of malignant glioblastoma, it is difficult to confirm the expression of a cancer antigen in a cancer affected part because it is difficult to obtain a cancer cell sample.
(4) Action of immunosuppressive molecule CTL activates when it specifically recognizes an antigenic peptide presented by a target cell, and exhibits cytotoxic activity. On the other hand, the existence of molecules that inhibit CTL activation is known, such as TGFβ, PD-1, and CTLA-4. TGFβ is a suppressive cytokine secreted by cancer cells and inhibits the proliferation and differentiation of CTL and CD4 + T cells. Both PD-1 and CTLA-4 are molecules on the cell membrane of T cells. When each binds to a ligand expressed by cancer cells, an inhibitory signal is transmitted and CTL is inactivated. In recent years, it has been reported that the action of CTL is promoted by inhibiting the action of these immunosuppressive molecules by anti-PD-1 antibody and anti-CTLA-4 antibody.
(5) HLA type of patient Epitope peptide is basically presented to only one type of HLA. This is called HLA restraint. For this reason, even if cancer immunotherapy is performed on a patient who does not have an HLA type capable of presenting an epitope peptide, no therapeutic effect can be expected because cancer cells do not present the epitope peptide in that patient. That is, the target patient of cancer immunotherapy is limited to the HLA restriction | limiting of the epitope peptide to be used. In fact, in clinical trials of cancer immunotherapy, patients' HLA types are determined in advance by serotyping or genotyping using anti-HLA antibodies, and patients who meet the HLA restriction of the epitope used are included in the study. be registered.
 以上から、がん免疫療法によって治療効果を得るためには、適切なCTLモニタリングを実施すること、抗原提示分子の発現を確認すること、がん患部におけるがん抗原の発現を確認すること、免疫抑制分子のはたらきを阻害すること、患者のHLA型に適合するがん抗原エピトープペプチドを選択することが重要である。中でも、患者のHLA型に適合するがん抗原エピトープペプチドを選択するためには、様々なHLA拘束性エピトープペプチドが同定されていることが前提となる。従って、多様ながん患者に幅広く対応するためには、複数のがん抗原においてできるだけ複数のHLA拘束性のエピトープペプチドが同定されていることが望ましい。このため、エピトープペプチドの同定には多大な意義がある。HLA-A*24:02は日本人において最も保有率の高いHLA-Aアリルであり、約60%が保有する。そこで、本発明では特異的ながん免疫療法に使用しうるHLA-A*24:02拘束性の新規がん抗原エピトープペプチド、それを用いたがんワクチン及び抗がん剤、およびエピトープペプチド特異的CTLを検出する試薬を提供することを目的とする。 Based on the above, in order to obtain therapeutic effects by cancer immunotherapy, appropriate CTL monitoring, confirmation of antigen-presenting molecule expression, confirmation of cancer antigen expression in the affected cancer area, immunity It is important to inhibit the function of the suppressor molecule and select a cancer antigen epitope peptide that matches the HLA type of the patient. Above all, in order to select a cancer antigen epitope peptide that matches the patient's HLA type, it is premised that various HLA-restricted epitope peptides have been identified. Therefore, in order to deal with a wide variety of cancer patients, it is desirable to identify as many HLA-restricted epitope peptides as possible in a plurality of cancer antigens. For this reason, identification of epitope peptides has great significance. HLA-A * 24: 02 is the most common HLA-A allylate in Japanese, with about 60%. Therefore, in the present invention, HLA-A * 24: 02-restricted novel cancer antigen epitope peptide that can be used for specific cancer immunotherapy, cancer vaccine and anticancer agent using the same, and epitope peptide specific An object of the present invention is to provide a reagent that detects CTL.
 CKAP4は分子量63 kDa、全長602個のアミノ酸で構成されるII型膜貫通タンパク質である。N末端側から、106個のアミノ酸で構成される細胞質内領域、21個のアミノ酸で構成される膜貫通領域、475個のアミノ酸で構成される細胞外領域の3つの領域が存在する(非特許文献32)。CKAP4は、細胞周期の間期において、細胞質内領域で、小胞体と微小管に結合し、小胞体を微小管に固着させる機能をもつ(非特許文献33)。細胞が有糸分裂に入る前には、CKAP4のN末端側から100番目のアミノ酸であるシステイン残基が、可逆的にパルミトイル化され(非特許文献34)、このパルミトイル化により、CKAP4の局在が細胞膜へと変わり(非特許文献35)、微小管との相互作用が阻害される。また、有糸分裂期にCKAP4はリン酸化され、微小管との結合能を失うことも報告されている(非特許文献36)。一方で、微小管は有糸分裂期に染色体を分配して細胞を正しく二分する役割を持つ紡錘体を構成することが知られている。これらから、CKAP4は有糸分裂期において、適切に微小管と解離することで正常な有糸分裂の制御に関与すると考えられている。また、CKAP4は、肺胞細胞の表面において界面活性剤(肺表面活性物質)の除去を担うsurfactant protein-A (以下、SP-A)の受容体としてもはたらくことが知られている(非特許文献32)。肺胞細胞表面において、脂質から成る界面活性剤は、表面を覆う水分の表面張力を減少させることで、肺胞の伸展に寄与する。SP-Aは界面活性剤を除去する機能をもち、受容体であるCKAP4と共に機能することで、肺胞細胞の恒常性の維持を担っている。 CKAP4 is a type II transmembrane protein composed of a molecular weight of 63 kDa and a total length of 602 amino acids. From the N-terminal side, there are three regions: a cytoplasmic region composed of 106 amino acids, a transmembrane region composed of 21 amino acids, and an extracellular region composed of 475 amino acids (non-patented) Reference 32). CKAP4 has a function of binding to the endoplasmic reticulum and microtubules in the intercytoplasmic region in the interphase of the cell cycle and fixing the endoplasmic reticulum to the microtubules (Non-patent Document 33). Before the cell enters mitosis, the cysteine residue, which is the 100th amino acid from the N-terminal side of CKAP4, is reversibly palmitoylated (Non-patent Document 34). By this palmitoylation, localization of CKAP4 Turns into a cell membrane (Non-patent Document 35), and the interaction with microtubules is inhibited. It has also been reported that CKAP4 is phosphorylated during mitosis and loses its ability to bind to microtubules (Non-patent Document 36). On the other hand, it is known that microtubules constitute a spindle that plays a role in correctly dividing a cell by distributing chromosomes during mitosis. Thus, CKAP4 is thought to be involved in the control of normal mitosis by dissociating appropriately from microtubules during mitosis. CKAP4 is also known to act as a receptor for surfactant-protein-A (hereinafter referred to as SP-A), which is responsible for the removal of surfactant (pulmonary surfactant) on the surface of alveolar cells (non-patented). Reference 32). On the surface of alveolar cells, a surfactant composed of lipids contributes to alveolar extension by reducing the surface tension of water covering the surface. SP-A has the function of removing a surfactant and is responsible for maintaining alveolar cell homeostasis by functioning with the receptor CKAP4.
 CKAP4は正常細胞でも発現しているが、乳がん、中枢神経系腫瘍、肺がん、腎臓がん、悪性黒色腫など様々ながん由来の細胞株で高発現している(http://129.187.44.58:7070/NCI60/protein/show/10796)。また、CKAP4は、骨肉腫患者において高発現であること(http://www.ebi.ac.uk/gxa/experiments/E-MEXP-3628?geneQuery=ENSG00000136026&queryFactorValues=g2_g1&_specific=on)や、肝臓がん患者において高発現であることが報告されている(非特許文献37)。これらから、CKAP4はがん細胞で高発現する過剰発現型のがん抗原である可能性が考えられる(非特許文献38)。過剰発現型のがん抗原としては、例えばHer-2などが知られており、Her-2由来ペプチドを用いたがんペプチドワクチンの臨床試験も実施されている(非特許文献39、40)。 Although CKAP4 is expressed in normal cells, it is highly expressed in cell lines derived from various cancers such as breast cancer, central nervous system tumor, lung cancer, kidney cancer, and malignant melanoma (http://129.187.44.58 : 7070 / NCI60 / protein / show / 10796). CKAP4 is highly expressed in osteosarcoma patients (http://www.ebi.ac.uk/gxa/experiments/E-MEXP-3628?geneQuery=ENSG00000136026&queryFactorValues=g2_g1&_specific=on) It has been reported that it is highly expressed in patients (Non-patent Document 37). From these, it is possible that CKAP4 is an overexpressed cancer antigen that is highly expressed in cancer cells (Non-patent Document 38). As an overexpressed cancer antigen, for example, Her-2 is known, and clinical trials of cancer peptide vaccines using Her-2 derived peptides have been conducted (Non-patent Documents 39 and 40).
 上記の通り、CKAP4は様々ながんで高発現していると考えられるが、CKAP4のがん細胞における抗原性については明らかにされていない。すなわち、CKAP4ががん抗原として免疫系の標的になっているのかどうか、つまり、CKAP4由来のペプチドががん細胞表面のHLAに提示され、これを特異的に認識するCTLによってがん細胞が攻撃されているかどうかという点については不明である。 As described above, CKAP4 is considered to be highly expressed in various cancers, but the antigenicity of CKAP4 in cancer cells has not been clarified. That is, whether CKAP4 is a target of the immune system as a cancer antigen, that is, CKAP4-derived peptides are presented on the HLA on the surface of cancer cells, and cancer cells attack by CTLs that specifically recognize this It is unclear as to whether or not it has been done.
 本発明はこのような状況に鑑みてなされたものであり、標的をEBVのLMP2とEBNA1に絞り、その目的は、LMP2特異的な細胞傷害性T細胞エピトープペプチド、およびEBNA1特異的な細胞傷害性T細胞エピトープペプチドを同定し、該ペプチドを用いたNPCをはじめとするEBV関連悪性腫瘍および免疫不全を治療又は予防するワクチン、EBVに対する受動免疫療法剤、およびEBVに特異的な細胞傷害性T細胞の定量方法を提供することにある。また、本発明者等は、種々のCKAP4由来のペプチドについてがん抗原性、すなわちCTL誘導能について鋭意検討を重ねた。その結果、配列番号:43に示す、CKAP4の細胞外領域内の特定のペプチドがHLA-A*24:02拘束性のCKAP4特異的CTLを誘導し、該特異的CTLが細胞傷害活性を示すことを見いだした。本発明はこれらの知見に基づいてなされたものである。 The present invention has been made in view of such a situation, and the target is limited to LMP2 and EBNA1 of EBV, and the purpose thereof is LMP2-specific cytotoxic T cell epitope peptide, and EBNA1-specific cytotoxicity. A vaccine for identifying a T cell epitope peptide and treating or preventing EBV-related malignant tumors and immunodeficiencies including NPC using the peptide, a passive immunotherapeutic agent for EBV, and cytotoxic T cells specific to EBV It is to provide a quantitative method. In addition, the present inventors have conducted extensive studies on cancer antigenicity, that is, CTL inducing ability of various CKAP4-derived peptides. As a result, a specific peptide in the extracellular region of CKAP4 shown in SEQ ID NO: 43 induces HLA-A * 24: 02-restricted CKAP4-specific CTL, and the specific CTL exhibits cytotoxic activity. I found. The present invention has been made based on these findings.
 本発明はこのような知見に基づいてなされたものであり、具体的な態様において、例えば以下の発明に関する。
〔1〕Epstein-Barr virus(EBV)に特異的な細胞傷害性T細胞の誘導活性を有する、エピトープペプチドであって、ここで、該エピトープペプチドが、配列番号:1、配列番号:2、配列番号:3、配列番号:4、配列番号:5、配列番号:6、配列番号:26、配列番号:27及び配列番号:28からなる群から選択されるアミノ酸配列からなる、エピトープペプチド、
〔2〕Epstein-Barr virus(EBV)に特異的な細胞傷害性T細胞の誘導活性を有する、エピトープペプチドであって、ここで、該エピトープペプチドが、配列番号:1、配列番号:2、配列番号:3、配列番号:4、配列番号:5、配列番号:6、配列番号:26、配列番号:27又は配列番号:28に記載のアミノ酸配列において、1もしくは複数のアミノ酸が置換、欠失、挿入及び/又は付加された、エピトープペプチド、
〔3〕〔1〕~〔2〕のいずれかに記載のエピトープペプチドをコードする核酸、
〔4〕〔1〕~〔2〕のいずれかに記載のエピトープペプチドをコードする核酸を含む発現ベクター、
〔5〕〔1〕~〔2〕のいずれかに記載のエピトープペプチドを有効成分として含む、EBVの感染又はEBV陽性の癌を治療、又は予防するためのワクチン、
〔6〕EBVが、AKata株、GD1株、GD2株、HKNPC1株、AG876株、Mutu株及びB95.8株から選択される、〔5〕記載のワクチン、
〔7〕〔3〕~〔4〕のいずれかに記載の核酸又は発現ベクターを有効成分として含む、EBVの感染又はEBV陽性の癌を治療、又は予防するためのワクチン、
〔8〕EBVが、AKata株、GD1株、GD2株、HKNPC1株、AG876株、Mutu株及びB95.8株から選択される、〔7〕記載のワクチン、
〔9〕〔1〕~〔2〕のいずれかに記載のエピトープペプチドをHLAに提示した抗原提示細胞を有効成分として含む、EBVの感染又はEBVウイルス陽性の癌を治療、又は予防するためのワクチン、
〔10〕EBVが、AKata株、GD1株、GD2株、HKNPC1株、AG876株、Mutu株及びB95.8株から選択される、〔9〕記載のワクチン、
〔11〕〔1〕~〔2〕のいずれかに記載のエピトープペプチド又は該エピトープペプチドをHLAに提示した抗原提示細胞により末梢血リンパ球を刺激して得られるEBV特異的な細胞傷害性T細胞を含む、EBVに対する受動免疫療法剤、
〔12〕〔1〕~〔2〕のいずれかに記載のエピトープペプチドから調製した主要組織適合性抗原複合体及び/又は主要組織適合性抗原複合体-テトラマーと末梢血リンパ球とを接触させ、該主要組織適合性抗原複合体及び/又は主要組織適合性抗原複合体-テトラマーに細胞傷害性T細胞が結合した結合体を形成させ、該結合体から単離して得られる細胞傷害性T細胞を含む、EBVに対する受動免疫療法剤、
〔13〕〔1〕~〔2〕のいずれかに記載のエピトープペプチドで対象由来の末梢血を刺激する工程、
 前記工程により生じたEBV特異的な細胞傷害性T細胞を得る工程、及び
 得られた細胞傷害性T細胞が産生するサイトカイン及び/又はケモカイン及び/又は細胞表面分子を測定する工程
を含む、EBVに特異的な細胞傷害性T細胞の定量方法、
〔14〕〔1〕~〔2〕のいずれかに記載のエピトープペプチドと主要組織適合性抗原複合体とβ2-ミクログロブリンを混合する工程及び
 調製した主要組織適合性抗原複合体-テトラマーと対象由来の末梢血とを接触させる工程
を含む、該末梢血中のEBVに特異的な細胞傷害性T細胞の定量方法、
〔15〕〔1〕~〔2〕のいずれかに記載のエピトープペプチドと抗原提示細胞を接触させる工程を含む、EBVに特異的な細胞傷害性T細胞の誘導方法、
〔16〕〔1〕~〔2〕のいずれかに記載のエピトープペプチドを構成要素として含む、細胞傷害性T細胞の誘導のためのキット、
〔17〕〔1〕~〔2〕のいずれかに記載のペプチドと、末梢血単核球を、血漿を含む培地中で接触させる工程を含む、EBV特異的CTLを生産する方法、
〔18〕配列番号:43に記載のアミノ酸配列からなる、CKAP4に特異的なCTLエピトープペプチド、
〔19〕配列番号:43に記載のアミノ酸配列において、1もしくは複数のアミノ酸が置換、欠失、挿入及び/又は付加された、CKAP4に特異的なCTLエピトープペプチド、
〔20〕HLA-A*24:02分子拘束性の抗原ペプチドであって、HLA-A*24:02分子との複合体を細胞表面に提示する細胞を特異的に認識するT細胞受容体を有するCTLを誘導することを特徴とする、〔18〕又は〔19〕のいずれかに記載のエピトープペプチド、
〔21〕〔18〕~〔19〕のいずれかに記載のエピトープペプチドをコードする核酸、〔22〕〔18〕~〔19〕のいずれかに記載のエピトープペプチドをコードする核酸を含む発現ベクター、
〔23〕〔18〕~〔19〕のいずれかに記載のエピトープペプチドを有効成分として含む、がん治療および予防のためのワクチン、
〔24〕〔21〕~〔22〕のいずれかに記載の核酸を有効成分として含む、がん治療又は予防のためのワクチン、
〔25〕〔18〕~〔19〕のいずれかに記載のエピトープペプチドをHLAに提示した抗原提示細胞を有効成分として含む、がん治療又は予防のためのワクチン、
〔26〕〔18〕~〔19〕のいずれかに記載のエピトープペプチドもしくは該エピトープペプチドをHLAに提示した抗原提示細胞により末梢血リンパ球を刺激して得られるCKAP4特異的なCTLを有効成分として含む、がん治療のための受動免疫療法剤、
〔27〕〔18〕~〔19〕のいずれかに記載のエピトープペプチドから調製した主要組織適合性抗原複合体及び/又は主要組織適合性抗原複合体-テトラマーと末梢血リンパ球とを接触させ、該主要組織適合性抗原複合体及び/又は主要組織適合性抗原複合体-テトラマーにCTLが結合した結合体を形成させ、該結合体から単離して得られるCTLを有効成分として含む、がん治療のための受動免疫療法剤、
〔28〕〔18〕~〔19〕のいずれかに記載のエピトープペプチドで対象由来の末梢血を刺激する工程、
 前記工程により生じたCKAP4に特異的なCTLを取得する工程、及び
 該取得したCTLが産生するサイトカイン及び/又はケモカイン及び/又は細胞表面分子を測定する工程、
を含む、CKAP4に特異的なCTLの定量方法、
〔29〕〔18〕~〔19〕のいずれかに記載のエピトープペプチドから主要組織適合性抗原複合体-テトラマーを調製する工程、及び
 主要組織適合性抗原複合体-テトラマーと対象由来の末梢血とを接触させる工程
を含む、該末梢血中のCKAP4に特異的なCTLの定量方法、
〔30〕〔18〕~〔19〕のいずれかに記載のエピトープペプチドと、対象由来の末梢血単核球を接触させる工程を含む、CKAP4特異的CTLの誘導方法、
〔31〕〔18〕~〔19〕のいずれかに記載のエピトープペプチドもしくは該エピトープペプチドをHLAに提示した抗原提示細胞により末梢血リンパ球を刺激してCKAP4特異的なCTLを取得する工程を含む、がん治療のための受動免疫療法剤の製造方法、
〔32〕〔18〕~〔19〕のいずれかに記載のエピトープペプチドから調製した主要組織適合性抗原複合体及び/又は主要組織適合性抗原複合体-テトラマーと末梢血リンパ球とを接触させる工程、
 該主要組織適合性抗原複合体及び/又は主要組織適合性抗原複合体-テトラマーにCTLが結合した結合体を形成させる工程、及び
 該結合体から単離して得られるCTLを取得する工程
を含む、がん治療のための受動免疫療法剤の製造方法、
〔33〕〔18〕~〔19〕のいずれかに記載のエピトープペプチドから調製した主要組織適合性抗原複合体に特異的な抗体、
〔A1〕EBVの感染又はEBV陽性の癌を治療、又は予防するための薬剤の製造における、〔1〕~〔2〕のいずれかに記載のエピトープペプチドの使用、
〔A2〕EBVが、AKata株、GD1株、GD2株、HKNPC1株、AG876株、Mutu株及びB95.8株から選択される、〔A1〕記載の使用、
〔A3〕EBVの感染又はEBV陽性の癌を治療、又は予防するための薬剤の製造における、〔3〕~〔4〕のいずれかに記載の核酸又は発現ベクターの使用、
〔A4〕EBVが、AKata株、GD1株、GD2株、HKNPC1株、AG876株、Mutu株及びB95.8株から選択される、〔A3〕記載の使用、
〔A5〕EBVの感染又はEBVウイルス陽性の癌を治療、又は予防するための薬剤の製造における、〔1〕~〔2〕のいずれかに記載のエピトープペプチドをHLAに提示した抗原提示細胞の使用、
〔A6〕EBVが、AKata株、GD1株、GD2株、HKNPC1株、AG876株、Mutu株及びB95.8株から選択される、〔A5〕記載の使用、
〔A7〕EBVに対する受動免疫療法剤の製造のための、〔1〕~〔2〕のいずれかに記載のエピトープペプチド又は該エピトープペプチドをHLAに提示した抗原提示細胞により末梢血リンパ球を刺激して得られるEBV特異的な細胞傷害性T細胞の使用、
〔A8〕EBVに対する受動免疫療法剤の製造における、〔1〕~〔2〕のいずれかに記載のエピトープペプチドから調製した主要組織適合性抗原複合体及び/又は主要組織適合性抗原複合体-テトラマーと末梢血リンパ球とを接触させ、該主要組織適合性抗原複合体及び/又は主要組織適合性抗原複合体-テトラマーに細胞傷害性T細胞が結合した結合体を形成させ、該結合体から単離して得られる細胞傷害性T細胞の使用、
〔A9〕がん治療又は予防のための薬剤の製造における、〔18〕~〔19〕のいずれかに記載のエピトープペプチドの使用、
〔A10〕がん治療又は予防のための薬剤の製造における、〔21〕~〔22〕のいずれかに記載の核酸又は発現ベクターの使用、
〔A11〕がん治療又は予防のための薬剤の製造における、〔18〕~〔19〕のいずれかに記載のエピトープペプチドをHLAに提示した抗原提示細胞の使用、
〔A12〕がん治療のための受動免疫療法剤の製造における、〔18〕~〔19〕のいずれかに記載のエピトープペプチドもしくは該エピトープペプチドをHLAに提示した抗原提示細胞により末梢血リンパ球を刺激して得られるCKAP4特異的なCTLの使用、
〔A13〕がん治療のための受動免疫療法剤の製造における、〔18〕~〔19〕のいずれかに記載のエピトープペプチドから調製した主要組織適合性抗原複合体及び/又は主要組織適合性抗原複合体-テトラマーと末梢血リンパ球とを接触させ、該主要組織適合性抗原複合体及び/又は主要組織適合性抗原複合体-テトラマーにCTLが結合した結合体を形成させ、該結合体から単離して得られるCTLの使用、
〔B1〕EBVの感染又はEBV陽性の癌を治療、又は予防するための、〔1〕~〔2〕のいずれかに記載のエピトープペプチドを有効成分として含む、ワクチン組成物、
〔B2〕EBVが、AKata株、GD1株、GD2株、HKNPC1株、AG876株、Mutu株及びB95.8株から選択される、〔B1〕記載のワクチン組成物、
〔B3〕EBVの感染又はEBV陽性の癌を治療、又は予防するための、〔3〕~〔4〕のいずれかに記載の核酸又は発現ベクターを有効成分として含む、ワクチン組成物、
〔B4〕EBVが、AKata株、GD1株、GD2株、HKNPC1株、AG876株、Mutu株及びB95.8株から選択される、〔B3〕記載のワクチン組成物、
〔B5〕EBVの感染又はEBVウイルス陽性の癌を治療、又は予防するための、〔1〕~〔2〕のいずれかに記載のエピトープペプチドをHLAに提示した抗原提示細胞を有効成分として含む、ワクチン組成物、
〔B6〕EBVが、AKata株、GD1株、GD2株、HKNPC1株、AG876株、Mutu株及びB95.8株から選択される、〔B5〕記載のワクチン組成物、
〔B7〕EBVに対する受動免疫療法のための、〔1〕~〔2〕のいずれかに記載のエピトープペプチド又は該エピトープペプチドをHLAに提示した抗原提示細胞により末梢血リンパ球を刺激して得られるEBV特異的な細胞傷害性T細胞を含む、組成物、
〔B8〕EBVに対する受動免疫療法のための、〔1〕~〔2〕のいずれかに記載のエピトープペプチドから調製した主要組織適合性抗原複合体及び/又は主要組織適合性抗原複合体-テトラマーと末梢血リンパ球とを接触させ、該主要組織適合性抗原複合体及び/又は主要組織適合性抗原複合体-テトラマーに細胞傷害性T細胞が結合した結合体を形成させ、該結合体から単離して得られる細胞傷害性T細胞を含む、組成物、
〔B9〕がん治療又は予防のための、〔18〕~〔19〕のいずれかに記載のエピトープペプチドを有効成分として含む、ワクチン組成物、
〔B10〕がん治療又は予防のための、〔21〕~〔22〕のいずれかに記載の核酸又は発現ベクターを有効成分として含む、ワクチン組成物、
〔B11〕がん治療又は予防のための、〔18〕~〔19〕のいずれかに記載のエピトープペプチドをHLAに提示した抗原提示細胞を有効成分として含む、ワクチン組成物、
〔B12〕受動免疫療法によりがんを治療のための、〔18〕~〔19〕のいずれかに記載のエピトープペプチドもしくは該エピトープペプチドをHLAに提示した抗原提示細胞により末梢血リンパ球を刺激して得られるCKAP4特異的なCTLを有効成分として含む、組成物、
〔B13〕受動免疫療法によりがんを治療のための、〔18〕~〔19〕のいずれかに記載のエピトープペプチドから調製した主要組織適合性抗原複合体及び/又は主要組織適合性抗原複合体-テトラマーと末梢血リンパ球とを接触させ、該主要組織適合性抗原複合体及び/又は主要組織適合性抗原複合体-テトラマーにCTLが結合した結合体を形成させ、該結合体から単離して得られるCTLを有効成分として含む、組成物、
〔C1〕〔1〕~〔2〕のいずれかに記載のエピトープペプチドを、それを必要とする個体へ投与する工程を含む、EBVの感染又はEBV陽性の癌を治療、又は予防するための方法、
〔C2〕EBVが、AKata株、GD1株、GD2株、HKNPC1株、AG876株、Mutu株及びB95.8株から選択される、〔C1〕記載の方法、
〔C3〕〔3〕~〔4〕のいずれかに記載の核酸又は発現ベクターを、それを必要とする個体へ投与する工程を含む、EBVの感染又はEBV陽性の癌を治療、又は予防するための方法、〔C4〕EBVが、AKata株、GD1株、GD2株、HKNPC1株、AG876株、Mutu株及びB95.8株から選択される、〔C3〕記載の方法、
〔C5〕〔1〕~〔2〕のいずれかに記載のエピトープペプチドをHLAに提示した抗原提示細胞を、それを必要とする個体へ投与する工程を含む、EBVの感染又はEBVウイルス陽性の癌を治療、又は予防するための方法、
〔C6〕EBVが、AKata株、GD1株、GD2株、HKNPC1株、AG876株、Mutu株及びB95.8株から選択される、〔C5〕記載の方法、
〔C7〕〔1〕~〔2〕のいずれかに記載のエピトープペプチド又は該エピトープペプチドをHLAに提示した抗原提示細胞により末梢血リンパ球を刺激して得られるEBV特異的な細胞傷害性T細胞を、それを必要とする個体へ投与する工程を含む、EBVに対する受動免疫療法、
〔C8〕〔1〕~〔2〕のいずれかに記載のエピトープペプチドから調製した主要組織適合性抗原複合体及び/又は主要組織適合性抗原複合体-テトラマーと末梢血リンパ球とを接触させる工程、
 該主要組織適合性抗原複合体及び/又は主要組織適合性抗原複合体-テトラマーに細胞傷害性T細胞が結合した結合体を形成させる工程、
 該結合体から単離して得られる細胞傷害性T細胞を、それを必要とする個体へ投与する工程を含む、EBVに対する受動免疫療法、
〔C9〕〔18〕~〔19〕のいずれかに記載のエピトープペプチドを、それを必要とする個体へ投与する工程を含む、がん治療又は予防のための方法、
〔C10〕〔21〕~〔22〕のいずれかに記載の核酸又は発現ベクターを、それを必要とする個体へ投与する工程を含む、がん治療又は予防のための方法、
〔C11〕〔18〕~〔19〕のいずれかに記載のエピトープペプチドをHLAに提示した抗原提示細胞を、それを必要とする個体へ投与する工程を含む、がん治療又は予防のための方法、
〔C12〕〔18〕~〔19〕のいずれかに記載のエピトープペプチドもしくは該エピトープペプチドをHLAに提示した抗原提示細胞により末梢血リンパ球を刺激して得られるCKAP4特異的なCTLを、それを必要とする個体へ投与する工程を含む、がん治療のための受動免疫療法、
〔C13〕〔18〕~〔19〕のいずれかに記載のエピトープペプチドから調製した主要組織適合性抗原複合体及び/又は主要組織適合性抗原複合体-テトラマーと末梢血リンパ球とを接触させる工程、
 該主要組織適合性抗原複合体及び/又は主要組織適合性抗原複合体-テトラマーにCTLが結合した結合体を形成させる工程、
 該結合体から単離して得られるCTLを、それを必要とする個体へ投与する工程を含む、がん治療のための受動免疫療法。
The present invention has been made based on such findings, and in a specific aspect, for example, relates to the following invention.
[1] An epitope peptide having cytotoxic T cell-inducing activity specific to Epstein-Barr virus (EBV), wherein the epitope peptide is SEQ ID NO: 1, SEQ ID NO: 2, sequence An epitope peptide consisting of an amino acid sequence selected from the group consisting of SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 26, SEQ ID NO: 27 and SEQ ID NO: 28;
[2] An epitope peptide having cytotoxic T cell-inducing activity specific to Epstein-Barr virus (EBV), wherein the epitope peptide is SEQ ID NO: 1, SEQ ID NO: 2, sequence In the amino acid sequence set forth in SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 26, SEQ ID NO: 27 or SEQ ID NO: 28, one or more amino acids are substituted or deleted An epitope peptide inserted and / or added,
[3] a nucleic acid encoding the epitope peptide according to any one of [1] to [2],
[4] An expression vector comprising a nucleic acid encoding the epitope peptide according to any one of [1] to [2],
[5] A vaccine for treating or preventing EBV infection or EBV-positive cancer comprising the epitope peptide according to any one of [1] to [2] as an active ingredient,
[6] The vaccine according to [5], wherein EBV is selected from AKata strain, GD1 strain, GD2 strain, HKNPC1 strain, AG876 strain, Mutu strain and B95.8 strain,
[7] A vaccine for treating or preventing EBV infection or EBV positive cancer comprising the nucleic acid or expression vector according to any one of [3] to [4] as an active ingredient,
[8] The vaccine according to [7], wherein EBV is selected from AKata strain, GD1 strain, GD2 strain, HKNPC1 strain, AG876 strain, Mutu strain and B95.8 strain,
[9] A vaccine for treating or preventing EBV infection or EBV virus-positive cancer, comprising as an active ingredient antigen-presenting cells presenting the epitope peptide of any one of [1] to [2] on HLA ,
[10] The vaccine according to [9], wherein EBV is selected from AKata strain, GD1 strain, GD2 strain, HKNPC1 strain, AG876 strain, Mutu strain and B95.8 strain,
[11] EBV-specific cytotoxic T cells obtained by stimulating peripheral blood lymphocytes with the epitope peptide according to any one of [1] to [2] or antigen-presenting cells presenting the epitope peptide on HLA A passive immunotherapy for EBV, including
[12] A major histocompatibility antigen complex and / or a major histocompatibility antigen complex-tetramer prepared from the epitope peptide according to any one of [1] to [2] is contacted with peripheral blood lymphocytes, A cytotoxic T cell obtained by forming a conjugate in which cytotoxic T cells are bound to the major histocompatibility antigen complex and / or major histocompatibility antigen complex-tetramer and isolating from the conjugate is obtained. Including passive immunotherapy for EBV,
[13] A step of stimulating peripheral blood derived from a subject with the epitope peptide according to any one of [1] to [2],
EBV comprising the steps of obtaining EBV-specific cytotoxic T cells generated by the above steps, and measuring cytokines and / or chemokines and / or cell surface molecules produced by the obtained cytotoxic T cells. A method for quantifying specific cytotoxic T cells;
[14] A step of mixing the epitope peptide according to any one of [1] to [2], a major histocompatibility antigen complex and β2-microglobulin, and the prepared major histocompatibility antigen complex-tetramer and subject-derived A method of quantifying cytotoxic T cells specific for EBV in the peripheral blood, comprising a step of contacting the peripheral blood with
[15] A method for inducing cytotoxic T cells specific to EBV, comprising the step of contacting the epitope peptide according to any one of [1] to [2] with an antigen-presenting cell,
[16] A kit for inducing cytotoxic T cells comprising the epitope peptide according to any one of [1] to [2] as a constituent element,
[17] A method for producing EBV-specific CTL comprising the step of contacting the peptide according to any one of [1] to [2] with peripheral blood mononuclear cells in a medium containing plasma,
[18] CTL epitope peptide specific for CKAP4 consisting of the amino acid sequence set forth in SEQ ID NO: 43,
[19] A CTL epitope peptide specific for CKAP4, wherein one or more amino acids are substituted, deleted, inserted and / or added in the amino acid sequence of SEQ ID NO: 43,
[20] An HLA-A * 24: 02 molecule-restricted antigen peptide that specifically recognizes a cell that presents a complex with the HLA-A * 24: 02 molecule on the cell surface. An epitope peptide according to any one of [18] or [19], characterized by inducing CTL
[21] a nucleic acid encoding the epitope peptide according to any one of [18] to [19], an expression vector comprising a nucleic acid encoding the epitope peptide according to any of [22] [18] to [19],
[23] A vaccine for cancer treatment and prevention comprising the epitope peptide of any one of [18] to [19] as an active ingredient,
[24] A vaccine for treating or preventing cancer comprising the nucleic acid according to any one of [21] to [22] as an active ingredient,
[25] A vaccine for treating or preventing cancer, comprising, as an active ingredient, an antigen-presenting cell presenting the epitope peptide of any one of [18] to [19] on HLA,
[26] The epitope peptide according to any one of [18] to [19] or a CKAP4-specific CTL obtained by stimulating peripheral blood lymphocytes with antigen-presenting cells presenting the epitope peptide on HLA as an active ingredient Passive immunotherapy agents for cancer treatment, including
[27] A major histocompatibility antigen complex and / or a major histocompatibility antigen complex-tetramer prepared from the epitope peptide according to any one of [18] to [19] is contacted with peripheral blood lymphocytes, Cancer treatment comprising, as an active ingredient, CTL obtained by forming a conjugate of CTL bound to the major histocompatibility antigen complex and / or major histocompatibility antigen complex-tetramer, and isolating from the conjugate Passive immunotherapy agent for,
[28] A step of stimulating peripheral blood derived from a subject with the epitope peptide according to any one of [18] to [19],
Obtaining CTL specific for CKAP4 produced by the step, and measuring cytokine and / or chemokine and / or cell surface molecule produced by the obtained CTL,
A method for quantifying CTL specific for CKAP4,
[29] a step of preparing a major histocompatibility antigen complex-tetramer from the epitope peptide according to any one of [18] to [19], and a major histocompatibility antigen complex-tetramer and peripheral blood from a subject; A method for quantifying CTL specific for CKAP4 in the peripheral blood, comprising the step of contacting
[30] A method for inducing CKAP4-specific CTL comprising the step of contacting the epitope peptide according to any one of [18] to [19] with peripheral blood mononuclear cells derived from a subject,
[31] including a step of obtaining CKAP4-specific CTL by stimulating peripheral blood lymphocytes with the epitope peptide according to any one of [18] to [19] or an antigen-presenting cell presenting the epitope peptide on HLA , A method for producing a passive immunotherapeutic agent for cancer treatment,
[32] A step of bringing a major histocompatibility antigen complex and / or a major histocompatibility antigen complex-tetramer prepared from the epitope peptide of any one of [18] to [19] into contact with peripheral blood lymphocytes ,
Forming a major histocompatibility antigen complex and / or a major histocompatibility antigen complex-tetramer with a CTL-bound conjugate, and obtaining a CTL obtained by isolation from the conjugate. A method for producing a passive immunotherapeutic agent for cancer treatment,
[33] an antibody specific for a major histocompatibility antigen complex prepared from the epitope peptide of any one of [18] to [19],
[A1] Use of the epitope peptide according to any one of [1] to [2] in the manufacture of a medicament for treating or preventing EBV infection or EBV positive cancer,
[A2] Use according to [A1], wherein EBV is selected from AKata strain, GD1 strain, GD2 strain, HKNPC1 strain, AG876 strain, Mutu strain and B95.8 strain,
[A3] Use of the nucleic acid or expression vector according to any one of [3] to [4] in the manufacture of a medicament for treating or preventing EBV infection or EBV positive cancer,
[A4] Use according to [A3], wherein EBV is selected from AKata strain, GD1 strain, GD2 strain, HKNPC1 strain, AG876 strain, Mutu strain and B95.8 strain,
[A5] Use of an antigen-presenting cell in which the epitope peptide according to any one of [1] to [2] is presented to HLA in the manufacture of a medicament for treating or preventing EBV infection or EBV virus-positive cancer ,
[A6] Use according to [A5], wherein EBV is selected from AKata strain, GD1 strain, GD2 strain, HKNPC1 strain, AG876 strain, Mutu strain and B95.8 strain,
[A7] For the production of a passive immunotherapeutic agent for EBV, peripheral blood lymphocytes are stimulated with the epitope peptide according to any one of [1] to [2] or antigen-presenting cells presenting the epitope peptide on HLA. Use of EBV-specific cytotoxic T cells obtained by
[A8] Major histocompatibility antigen complex and / or major histocompatibility antigen complex-tetramer prepared from the epitope peptide according to any one of [1] to [2] in the production of a passive immunotherapeutic agent for EBV And peripheral blood lymphocytes are contacted to form a conjugate in which cytotoxic T cells are bound to the major histocompatibility antigen complex and / or major histocompatibility complex-tetramer. Use of cytotoxic T cells obtained separately,
[A9] Use of the epitope peptide according to any one of [18] to [19] in the manufacture of a medicament for treating or preventing cancer,
[A10] Use of the nucleic acid or expression vector according to any one of [21] to [22] in the manufacture of a medicament for treating or preventing cancer,
[A11] Use of an antigen-presenting cell in which the epitope peptide according to any one of [18] to [19] is presented to HLA in the manufacture of a medicament for treating or preventing cancer,
[A12] In the production of a passive immunotherapeutic agent for cancer treatment, peripheral blood lymphocytes are produced by the epitope peptide according to any one of [18] to [19] or antigen-presenting cells presenting the epitope peptide on HLA. Use of CKAP4-specific CTL obtained by stimulation,
[A13] Major histocompatibility complex and / or major histocompatibility antigen prepared from the epitope peptide of any one of [18] to [19] in the production of a passive immunotherapeutic agent for cancer treatment The complex-tetramer is contacted with peripheral blood lymphocytes to form the major histocompatibility antigen complex and / or the conjugate with CTL bound to the major histocompatibility antigen complex-tetramer. Use of CTL obtained separately,
[B1] A vaccine composition comprising the epitope peptide according to any one of [1] to [2] as an active ingredient for treating or preventing EBV infection or EBV positive cancer,
[B2] The vaccine composition according to [B1], wherein EBV is selected from AKata strain, GD1 strain, GD2 strain, HKNPC1 strain, AG876 strain, Mutu strain and B95.8 strain,
[B3] A vaccine composition comprising the nucleic acid or expression vector according to any one of [3] to [4] as an active ingredient for treating or preventing EBV infection or EBV-positive cancer,
[B4] The vaccine composition according to [B3], wherein EBV is selected from AKata strain, GD1 strain, GD2 strain, HKNPC1 strain, AG876 strain, Mutu strain, and B95.8 strain,
[B5] containing, as an active ingredient, an antigen-presenting cell presenting the epitope peptide according to any one of [1] to [2] for HLA for treating or preventing EBV infection or EBV virus-positive cancer, Vaccine composition,
[B6] The vaccine composition according to [B5], wherein EBV is selected from AKata strain, GD1 strain, GD2 strain, HKNPC1 strain, AG876 strain, Mutu strain and B95.8 strain,
[B7] Obtained by stimulating peripheral blood lymphocytes with the epitope peptide according to any one of [1] to [2] or antigen-presenting cells presenting the epitope peptide on HLA for passive immunotherapy against EBV A composition comprising EBV-specific cytotoxic T cells;
[B8] Major histocompatibility antigen complex and / or major histocompatibility antigen complex-tetramer prepared from the epitope peptide according to any one of [1] to [2] for passive immunotherapy against EBV Contact with peripheral blood lymphocytes to form a conjugate of cytotoxic T cells bound to the major histocompatibility complex and / or major histocompatibility complex-tetramer and isolated from the conjugate. A composition comprising cytotoxic T cells obtained by
[B9] A vaccine composition comprising the epitope peptide according to any one of [18] to [19] as an active ingredient for cancer treatment or prevention,
[B10] A vaccine composition comprising the nucleic acid or expression vector according to any one of [21] to [22] as an active ingredient for cancer treatment or prevention,
[B11] A vaccine composition comprising, as an active ingredient, an antigen-presenting cell presenting the epitope peptide according to any one of [18] to [19] on HLA for cancer treatment or prevention,
[B12] For treating cancer by passive immunotherapy, the peripheral blood lymphocytes are stimulated by the epitope peptide according to any one of [18] to [19] or antigen-presenting cells presenting the epitope peptide on HLA. A composition comprising CKAP4-specific CTL obtained as an active ingredient,
[B13] Major histocompatibility complex and / or major histocompatibility complex prepared from the epitope peptide of any one of [18] to [19] for treating cancer by passive immunotherapy Contacting the tetramer with peripheral blood lymphocytes to form a major histocompatibility antigen complex and / or a major histocompatibility antigen complex-a conjugate in which CTL is bound to the tetramer, and isolated from the conjugate A composition comprising the obtained CTL as an active ingredient,
[C1] A method for treating or preventing EBV infection or EBV-positive cancer, comprising a step of administering the epitope peptide according to any one of [1] to [2] to an individual in need thereof ,
[C2] EBV is selected from AKata strain, GD1 strain, GD2 strain, HKNPC1 strain, AG876 strain, Mutu strain and B95.8 strain,
[C3] To treat or prevent EBV infection or EBV-positive cancer, comprising the step of administering the nucleic acid or expression vector according to any one of [3] to [4] to an individual in need thereof. The method of [C4] EBV is selected from AKata strain, GD1 strain, GD2 strain, HKNPC1 strain, AG876 strain, Mutu strain and B95.8 strain,
[C5] EBV-infected or EBV virus-positive cancer, comprising a step of administering an antigen-presenting cell presenting the epitope peptide of any one of [1] to [2] to HLA to an individual in need thereof A method for treating or preventing
[C6] The method according to [C5], wherein EBV is selected from AKata strain, GD1 strain, GD2 strain, HKNPC1 strain, AG876 strain, Mutu strain and B95.8 strain,
[C7] EBV-specific cytotoxic T cells obtained by stimulating peripheral blood lymphocytes with the epitope peptide according to any one of [1] to [2] or antigen-presenting cells presenting the epitope peptide on HLA Passive immunotherapy against EBV, comprising the step of administering to an individual in need thereof,
[C8] A step of bringing a major histocompatibility antigen complex and / or a major histocompatibility antigen complex-tetramer prepared from the epitope peptide according to any one of [1] to [2] into contact with peripheral blood lymphocytes ,
Forming a conjugate of cytotoxic T cells bound to the major histocompatibility complex and / or major histocompatibility complex-tetramer;
Passive immunotherapy against EBV comprising the step of administering cytotoxic T cells obtained by isolation from said conjugate to an individual in need thereof,
[C9] a method for treating or preventing cancer comprising the step of administering the epitope peptide according to any one of [18] to [19] to an individual in need thereof;
[C10] a method for treating or preventing cancer, comprising the step of administering the nucleic acid or expression vector according to any one of [21] to [22] to an individual in need thereof;
[C11] A method for treating or preventing cancer, comprising a step of administering an antigen-presenting cell presenting the epitope peptide of any one of [18] to [19] to HLA to an individual in need thereof ,
[C12] The epitope peptide according to any one of [18] to [19] or a CKAP4-specific CTL obtained by stimulating peripheral blood lymphocytes with antigen-presenting cells presenting the epitope peptide on HLA, Passive immunotherapy for cancer treatment, including the step of administering to an individual in need thereof,
[C13] A step of bringing a major histocompatibility antigen complex and / or a major histocompatibility antigen complex-tetramer prepared from the epitope peptide of any one of [18] to [19] into contact with peripheral blood lymphocytes ,
Forming a conjugate of CTL bound to the major histocompatibility antigen complex and / or major histocompatibility antigen complex-tetramer;
A passive immunotherapy for cancer treatment, comprising a step of administering CTL obtained by isolation from the conjugate to an individual in need thereof.
MHC-モノマー形成が認められる場合の代表的なゲル濾過カラム分析例を示す図である。It is a figure which shows the typical example of a gel filtration column analysis in case MHC-monomer formation is recognized. EBV LMP2特異的CTLエピトープ候補ペプチドのフォールディングテスト結果を示す図である。It is a figure which shows the folding test result of EBV LMP2-specific CTL epitope candidate peptide. EBV EBNA1特異的CTLエピトープ候補ペプチドのフォールディングテスト結果を示す図である。It is a figure which shows the folding test result of EBV EBNA1-specific CTL epitope candidate peptide. コントロールペプチドを用いた細胞内IFNγ産生細胞定量法の検討結果を示す図である。It is a figure which shows the examination result of the intracellular IFNγ production cell quantification method using a control peptide. 細胞内IFNγ産生細胞定量法によるEBV LMP2特異的CTL誘導を確認し、CD8陽性細胞中に存在するIFNγ産生生細胞の割合を数値化した図である。FIG. 4 is a diagram showing the quantification of the proportion of live IFNγ-producing cells present in CD8-positive cells after confirming EBVEBLMP2-specific CTL induction by the intracellular IFNγ-producing cell quantification method. 細胞内IFNγ産生細胞定量法によるLMP2特異的CTL誘導を確認した(ドナー ID *11-11)。X軸にCD8、Y軸にIFNγに対する蛍光強度をlogスケールで示したドットプロット展開図で、誘導に用いたペプチドと同じペプチドを用いて再刺激して細胞内IFNγ産生細胞を定量した結果を示した図である。LMP2-specific CTL induction was confirmed by quantification of intracellular IFNγ-producing cells (donor ID * 11-11). This is a dot plot development showing the fluorescence intensity for CD8 on the X-axis and IFNγ on the Y-axis in log scale, and shows the result of quantification of intracellular IFNγ-producing cells by restimulation with the same peptide used for induction. It is a figure. 作製したMHC-テトラマー試薬によるLMP2特異的CTLの検出結果を示す図である(ドナー ID *11-11)。FIG. 11 is a view showing the detection result of LMP2-specific CTL by the prepared MHC-tetramer reagent (donor ID * 11-11). 作製したMHC-テトラマー試薬によるEBNA1特異的CTLの検出結果 (1) を示す図である。FIG. 6 is a diagram showing the detection result (1) of EBNA1-specific CTL by the prepared MHC-tetramer reagent. 作製したMHC-テトラマー試薬によるEBNA1特異的CTLの検出結果 (2) を示す図である。FIG. 6 is a diagram showing the detection result (2) of EBNA1-specific CTL by the prepared MHC-tetramer reagent. 細胞内IFNγ産生細胞定量法によるEBNA1特異的CTL誘導の確認結果を示す図である(ドナー ID *11-8)。It is a figure which shows the confirmation result of EBNA1 specific CTL induction | guidance | derivation by the intracellular IFNγ production cell quantification method (donor ID * 11-8). ASS(10mer)のN末端とC末端のアミノ酸を欠失したことによるMHC親和性の変化を示す図である。It is a figure which shows the change of MHC affinity by having deleted the N terminal and C terminal amino acid of ASS (10mer). ASS(10mer)のN末端とC末端のアミノ酸を欠失したことによるCTL誘導能の変化を示す図である(ドナー ID *11-11)。It is a figure which shows the change of CTL induction ability by deleting the amino acid of the N terminal and C terminal of ASS (10mer) (donor ID * 11-11). ASS(10mer)のN末端とC末端のアミノ酸を欠失したことによるTCR結合性の変化を示す図である(ドナー ID *11-11)。It is a figure which shows the change of TCR binding property by having deleted the amino acid of the N terminal and C terminal of ASS (10mer) (donor ID * 11-11). ASS(10mer)およびHRGのEBV株間のアミノ酸の変異比較を示す図である。It is a figure which shows the variation | mutation comparison of the amino acid between the EBV strain | stump | stock of ASS (10mer) and HRG. ASS(10mer) CTLエピトープのシークエンスの結果を示す図である。It is a figure which shows the result of a sequence of an ASS (10mer) CTL epitope. ASS(10mer)のアミノ酸変異による誘導能の違いを示す図である(ドナー ID:*11-11)。It is a figure which shows the difference in the induction ability by the amino acid variation | mutation of ASS (10mer) (donor ID: * 11-11). ASS(10mer)のアミノ酸置換によるTCR結合性の変化を示す図である(ドナー ID:*11-11)。It is a figure which shows the change of TCR binding property by amino acid substitution of ASS (10mer) (donor ID: * 11-11). 培養バッグを用いたCTLの大量培養(1)の結果を示す図である。It is a figure which shows the result of mass culture (1) of CTL using a culture bag. 培養バッグを用いたCTLの大量培養(2)の結果を示す図である。It is a figure which shows the result of mass culture (2) of CTL using a culture bag. 培養バッグを用いたCTLの大量培養(3)の結果を示す図である。It is a figure which shows the result of mass culture (3) of CTL using a culture bag. MHC-モノマー形成が認められる場合の代表的なゲル濾過カラム分析例を示す図である。It is a figure which shows the typical example of a gel filtration column analysis in case MHC-monomer formation is recognized. CKAP4特異的CTLエピトープ候補ペプチドのフォールディングテスト結果を示す図である。It is a figure which shows the folding test result of a CKAP4-specific CTL epitope candidate peptide. CKAP4特異的CTLの誘導結果を示す図である(検体番号;A24-37, 1段階目)。It is a figure which shows the induction | guidance | derivation result of CKAP4-specific CTL (specimen number; A24-37, 1st stage). CKAP4特異的CTLの誘導結果を示す図である(検体番号;A24-37, 2段階目, lane 7)。It is a figure which shows the induction | guidance | derivation result of CKAP4-specific CTL (specimen number; A24-37, 2nd stage, lane 7). CKAP4特異的CTLの誘導結果を示す図である(検体番号;A24-39, 1段階目)。It is a figure which shows the induction | guidance | derivation result of CKAP4-specific CTL (specimen number; A24-39, 1st stage). CKAP4特異的CTLの誘導結果を示す図である(検体番号;A24-39, 2段階目, lane 10・11)。It is a figure which shows the induction | guidance | derivation result of CKAP4-specific CTL (specimen number; A24-39, 2nd stage, lane 10/11). CKAP4特異的CTLにおけるIFNγ産生細胞の定量結果を示す図である。It is a figure which shows the fixed_quantity | quantitative_assay result of the IFNγ production cell in CKAP4-specific CTL.
 本発明についてさらに詳細に説明する。 The present invention will be described in further detail.
〔エピトープペプチド〕
 本発明でいうペプチドは、生理活性を有し、隣接するアミノ酸残基のα-アミノ基とカルボキシル基間のペプチド結合により相互に結合した線状のアミノ酸の分子鎖を意味する。ペプチドは特定長のものを意味するものではなく、種々の長さであり得る。また、無電荷又は塩の形態であってもよく、場合によっては、グリコシル化、アミド化、ホスホリル化、カルボキシル化、リン酸化等により修飾されていてもよい。さらには、本発明のエピトープペプチドは、生理活性及び免疫活性を実質的に改変せず、投与した場合に有害な活性を有するものでない限り、1個又は数個(例えば、1~10個)のアミノ酸またはアミノ酸アナログの挿入、付加、置換、欠失等が生じたペプチドも本発明に含まれる。このようなアミノ酸の変更目的は、例えば、
 1.HLAとの親和性を高める為の変更(Rosenberg SA, Yang JC, Schwartzentruber DJ, Hwu P, Marincola FM, Topalian SL, Restifo NP, Dudley ME, Schwarz SL, Spiess PJ, Wunderlich JR, Parkhurst MR, Kawakami Y, Seipp CA, Einhorn JH, White DE. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med. 1998;4:321-327、Berzofsky JA, Ahlers JD, Belyakov IM. Strategies for designing and optimizing new generation vaccines. Nat Rev Immunol. 2001;1:209-219)、
 2.TCRの認識性を向上させるための変更(Fong L, Hou Y, Rivas A, Benike C, Yuen A, Fisher GA, Davis MM, Engleman EG. Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc Natl Acad Sci U S A. 2001;98:8809-8814、Rivoltini L, Squarcina P, Loftus DJ, Castelli C, Tarsini P, Mazzocchi A, Rini F, Viggiano V, Belli F, Parmiani G. A superagonist variant of peptide MART1/Melan A27-35 elicits anti-melanoma CD8+ T cells with enhanced functional characteristics: implication for more effective immunotherapy. Cancer Res. 1999;59:301-306)、 
 3.血清中のペプチド分解酵素等による代謝を回避する為の変更(Berzofsky JA, Ahlers JD, Belyakov IM. Strategies for designing and optimizing new generation vaccines. Nat Rev Immunol. 2001;1:209-219、 Parmiani G, Castelli C, Dalerba P, Mortarini R, Rivoltini L, Marincola FM, Anichini A. Cancer immunotherapy with peptide-based vaccines: what have we achieved? Where are we going? J Natl Cancer Inst. 2002;94:805-818、Brinckerhoff LH, Kalashnikov VV, Thompson LW, Yamshchikov GV, Pierce RA, Galavotti HS, Engelhard VH, Slingluff CL Jr. Terminal modifications inhibit proteolytic degradation of an immunogenic MART-1(27-35) peptide: implications for peptide vaccines. Int J Cancer. 1999;83:326-334)等が挙げられる。
[Epitope peptide]
The peptide referred to in the present invention means a molecular chain of linear amino acids having physiological activity and bound to each other by a peptide bond between an α-amino group and a carboxyl group of adjacent amino acid residues. Peptides are not meant to be of a specific length and can be of various lengths. Further, it may be in an uncharged or salt form, and may be modified by glycosylation, amidation, phosphorylation, carboxylation, phosphorylation or the like in some cases. Further, the epitope peptide of the present invention may be one or several (for example, 1 to 10) unless the physiological peptide and the immune activity are substantially modified and has no harmful activity when administered. Peptides in which insertion, addition, substitution, deletion or the like of amino acids or amino acid analogs have occurred are also included in the present invention. The purpose of changing such amino acids is, for example,
1. Changes to increase affinity with HLA (Rosenberg SA, Yang JC, Schwartzentruber DJ, Hwu P, Marincola FM, Topalian SL, Restifo NP, Dudley ME, Schwarz SL, Spiess PJ, Wunderlich JR, Parkhurst MR, Kawakami Y, Seipp CA, Einhorn JH, White DE.Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med. 1998; 4: 321-327, Berzofsky JA, Ahlers JD, Belyakov IM. Strategies for designing and optimizing new generation vaccines. Nat Rev Immunol. 2001; 1: 209-219),
2. Changes to improve TCR recognition (Fong L, Hou Y, Rivas A, Benike C, Yuen A, Fisher GA, Davis MM, Engleman EG. Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc Natl Acad Sci US A. 2001; 98: 8809-8814, Rivoltini L, Squarcina P, Loftus DJ, Castelli C, Tarsini P, Mazzocchi A, Rini F, Viggiano V, Belli F, Parmiani G. A superagonist variant of peptide MART1 / Melan A27-35 elicits anti-melanoma CD8 + T cells with enhanced functional characteristics: implication for more effective immunotherapy. Cancer Res. 1999; 59: 301-306),
3. Changes to avoid metabolism by peptide degrading enzymes in serum (Berzofsky JA, Ahlers JD, Belyakov IM. Strategies for designing and optimizing new generation vaccines. Nat Rev Immunol. 2001; 1: 209-219, Parmiani G, Castelli C, Dalerba P, Mortarini R, Rivoltini L, Marincola FM, Anichini A. Cancer immunotherapy with peptide-based vaccines: what have we achieved? Where are we going? J Natl Cancer Inst. 2002; 94: 805-818, Brinckerhoff LH , Kalashnikov VV, Thompson LW, Yamshchikov GV, Pierce RA, Galavotti HS, Engelhard VH, Slingluff CL Jr.Terminal modifications inhibit proteolytic degradation of an immunogenic MART-1 (27-35) peptide: implications for peptide vaccines. Int J Cancer. 1999; 83: 326-334).
 このような目的の為にペプチドのN末端又はC末端に付加的アミノ酸配列が介在するものも含まれる。また、本発明のペプチドは、糖類、ポリエチレングリコール、脂質等が付加された複合体、放射性同位元素等による誘導体、あるいは重合体等の形態として用いることができる。前記アミノ酸アナログとしては、種々のアミノ酸のN-アシル化物、O-アシル化物、エステル化物、酸アミド化物、アルキル化物等が挙げられる。 Included are those in which an additional amino acid sequence is interposed at the N-terminus or C-terminus of the peptide for such purposes. In addition, the peptide of the present invention can be used in the form of a complex to which saccharides, polyethylene glycol, lipids and the like are added, a derivative with a radioisotope, or a polymer. Examples of the amino acid analogs include N-acylated products, O-acylated products, esterified products, acid amidated products, and alkylated products of various amino acids.
 また、HLA分子とβ2-ミクログロブリン、エピトープペプチドとの3者複合体を細胞表面に提示する細胞を、CTLが特異的に認識できる範囲内であれば、抗原ペプチドのN末端や遊離のアミノ基には、ホルミル基、アセチル基、t-ブトキシカルボニル(t-Boc)基等が結合していてもよく、抗原ペプチドのC末端や遊離のカルボキシル基には、メチル基、エチル基、t-ブチル基、ベンジル基等が結合していてもよい。 In addition, if the cells presenting the ternary complex of HLA molecule, β2-microglobulin, and epitope peptide on the cell surface are within the range that CTL can specifically recognize, the N-terminus of the antigen peptide or free amino group May be bound with a formyl group, an acetyl group, a t-butoxycarbonyl (t-Boc) group, and the C-terminus of the antigen peptide and a free carboxyl group include a methyl group, an ethyl group, and a t-butyl group. Group, benzyl group and the like may be bonded.
 また、本発明のエピトープペプチドは、生体内への導入を容易にしうる各種修飾を施されたものであってもよい。生体内への導入を容易にしうる各種修飾の例としては、PT(Protein Transduction)ドメインが有名である。HIVのPTドメインは、Tatタンパク質の49~57番目のアミノ酸(Arg Lys Lys Arg Arg Gln Arg Arg Arg)で構成されたペプチドである。このPTドメインを目的とするタンパク質あるいはペプチドのN末端とC末端の両方、またはいずれかに付加することで、容易に細胞内に導入できることが報告されている(Ryu J, Han K, Park J, Choi SY. Enhanced uptake of a heterologous protein with an HIV-1 Tat protein transduction domains (PTD) at both termini. Mol Cells. 2003;16:385-391、Kim DT, Mitchell DJ, Brockstedt DG, Fong L, Nolan GP, Fathman CG, Engleman EG, Rothbard JB. Introduction of soluble proteins into the MHC class I pathway by conjugation to an HIV tat peptide. J Immunol. 1997;159:1666-1668)。 Further, the epitope peptide of the present invention may be subjected to various modifications that can facilitate introduction into the living body. The PT (Protein Transduction) domain is famous as an example of various modifications that can facilitate introduction into the living body. The PT domain of HIV is a peptide composed of the 49th to 57th amino acids (Arg Lys Lys Arg Arg Gln Arg Arg Arg) of the Tat protein. It has been reported that this PT domain can be easily introduced into cells by adding it to the N-terminal and / or C-terminal of the target protein or peptide (Ryu J, Han K, Park J, Choi SY. Enhanced uptake of a heterologous protein with an HIV-1 Tat protein transduction domains (PTD) at both termini. Mol Cells. 2003; 16: 385-391, Kim DT, Mitchell DJ, Brockstedt DG, Fong L , Fathman CG, Engleman EG, Rothbard JB. Introduction of soluble proteins into the MHC class I pathway by conjugation to an HIV tat peptide. J Immunol. 1997; 159: 1666-1668).
 HLAクラスI分子を介して提示されるほとんどの抗原は、細胞質内のプロテアソームにより分解された後、TAP(transporter in antigen processing)へと移送され、粗面小胞体内においてTAPに会合しているHLAクラス I分子とβ2-ミクログロブリンの複合体と結合し、ゴルジ装置を経てエクソサイトーシスにより細胞表面へと運搬される。これら一連の抗原提示経路にて作用するシャペロンであるHSP(heat shock prtein)70やHSP90、またはgp96と目的とするペプチドやタンパク質を融合させることで、効率的に抗原提示させることが可能である(Basu S, Binder RJ, Ramalingam T, Srivastava PK. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity. 2001;14:303-313)。 Most antigens presented via HLA class I molecules are broken down by cytoplasmic proteasomes, then transferred to TAP (transporter ingengen processing), and associated with TAP in the rough endoplasmic reticulum. It binds to a complex of class I molecule and β2-microglobulin and is transported to the cell surface by exocytosis via the Golgi apparatus. By fusing HSP (heat shock prtein) 70, HSP90, or gp96, which are chaperones acting in a series of these antigen presentation pathways, with the desired peptide or protein, it is possible to efficiently present the antigen ( Basu S, Binder RJ, Ramalingam T, Srivastava PK. CD91 is a common receptor for heat shock proteins gp96, hsp70, and calreticulin. Immunity. 2001; 14: 303-313).
〔エピトープペプチドをコードする核酸〕
 エピトープペプチドをコードする核酸は、遺伝子組換え技術を用いて、エピトープペプチドを宿主内で産生させる為に重要である。この場合、宿主間でアミノ酸コドンの使用頻度(codon usage)が異なる為、産生させる宿主のcodon usageに適合するようアミノ酸のコドンを変更することが望ましい。エピトープペプチドをコードする核酸は、ワクチンとしても重要で、むき出しの核酸として移送することも、適切なウイルスもしくは細菌ベクターを用いて移送することもできる(Berzofsky JA, Ahlers JD, Janik J, Morris J, Oh S, Terabe M, Belyakov IM Progress on new vaccine strategies against chronic viral infections. J Clin Invest. 2004;114:450-462、Berzofsky JA, Terabe M, Oh S, Belyakov IM, Ahlers JD, Janik JE, Morris JC. Progress on new vaccine strategies for the immunotherapy and prevention of cancer. J Clin Invest. 2004;113:1515-1525)。適切な細菌ベクターはサルモネラ属亜種の細菌である。適切なウイルスベクターは、例えば、レトロウイルスベクター、EBVベクター、ワクシニアベクター、センダイウイルスベクター、レンチウイルスベクターである。適切なワクシニアベクターの1例は、改変ワクシニア・アンカラベクターである。
[Nucleic acid encoding epitope peptide]
The nucleic acid encoding the epitope peptide is important for producing the epitope peptide in the host using genetic recombination techniques. In this case, since the usage frequency (codon usage) of the amino acid codon differs between hosts, it is desirable to change the codon of the amino acid so as to match the codon usage of the host to be produced. Nucleic acids encoding epitope peptides are also important as vaccines and can be transported as bare nucleic acids or using appropriate viral or bacterial vectors (Berzofsky JA, Ahlers JD, Janik J, Morris J, Oh S, Terabe M, Belyakov IM Progress on new vaccine strategies against chronic viral infections.J Clin Invest. 2004; 114: 450-462, Berzofsky JA, Terabe M, Oh S, Belyakov IM, Ahlers JD, Janik JE, Morris JC Progress on new vaccine strategies for the immunotherapy and prevention of cancer. J Clin Invest. 2004; 113: 1515-1525). Suitable bacterial vectors are Salmonella subspecies bacteria. Suitable viral vectors are, for example, retroviral vectors, EBV vectors, vaccinia vectors, Sendai virus vectors, lentiviral vectors. One example of a suitable vaccinia vector is a modified vaccinia ankara vector.
〔CTLエピトープ候補ペプチドの選択〕
1.コンピュータ予測アルゴリズムを用いた分析
 本発明のEBV に特異的なCTLエピトープ候補ペプチドは、LMP2およびEBNA1のアミノ酸配列について、目的とするHLAクラス I分子に対して結合モチーフを有する8~10個のアミノ酸よりなるペプチドを検索し得る、インターネット上に公開されている複数のエピトープ予測ソフトウェア(Pingping Guan, Irini A. Doytchinova, Christianna Zygouri, and Darren R. Flower MHCPred: a server for quantitative prediction of peptide? MHC binding Nucleic Acids Res., 2003;31:3621-3624、Karosiene E, Lundegaard C, Lund O, Nielsen M. NetMHCcons: a consensus method for the major histocompatibility complex class I predictions. Immunogenetics. 2012 Mar;64(3):177-86. 、Jorgensen KW, Rasmussen M, Buus S, Nielsen M.NetMHCstab - predicting stability of peptide-MHC-I complexes; impacts for cytotoxic T lymphocyte epitope discovery. Immunology. 2014 Jan;141(1):18-26. )に照合して選択することができる。
[Selection of CTL epitope candidate peptide]
1. Analysis using Computer Prediction Algorithm The CTL epitope candidate peptide specific for EBV of the present invention consists of 8 to 10 amino acids having a binding motif for the target HLA class I molecule with respect to the amino acid sequences of LMP2 and EBNA1. MHC binding Nucleic Acids Multiple epitope prediction software published on the Internet (Pingping Guan, Irini A. Doytchinova, Christianna Zygouri, and Darren R. Flower MHCPred: a server for quantitative prediction of peptide? Res., 2003; 31: 3621-3624, Karosiene E, Lundegaard C, Lund O, Nielsen M. NetMHCcons: a consensus method for the major histocompatibility complex class I predictions. Immunogenetics. 2012 Mar; 64 (3): 177-86 , Jorgensen KW, Rasmussen M, Buus S, Nielsen M. NetMHCstab-predicting stability of peptide-MHC-I complexes; impacts for cytotoxic T lymphocyte epitope discovery. Immunology. 2014 Jan; 141 (1): 18-26. ) Can be selected.
2.アンカーモチーフを用いた検討
 HLAクラスI分子は、主としてHLA-A、HLA-B、HLA-Cがあり、これらに結合して提示されるエピトープペプチドは、8~10個のアミノ酸からなる。エピトープペプチドのN末端側から2番目と、9あるいは10番目のアミノ酸はHLAクラスI分子との結合に対して最も重要なアミノ酸であり、アンカーモチーフと呼ばれている。このアンカーモチーフは、各々のHLAクラスI分子の種類によって異なることが報告されている。例えば、世界的に最も研究が進められているHLA-A2に結合するペプチドとしては、N末端より2番目の位置にLeuが配置され、9あるいは10番目の位置にLeu又はValが配置されたペプチドであって、9~10個のアミノ酸からなるペプチドが最も良く知られている(T Sudo, N Kamikawaji, A Kimura, Y Date, CJ Savoie, H Nakashima, E Furuichi, S Kuhara, and T Sasazuki Differences in MHC class I self peptide repertoires among HLA-A2 subtypes J. Immunol., 1995;155:4749-4756)。また、日本人を含む東南アジアの人種に多いHLA-A11(Chang CX, Tan AT, Or MY, Toh KY, Lim PY, Chia AS, Froesig TM, Nadua KD, Oh HL, Leong HN, Hadrup SR, Gehring AJ, Tan YJ, Bertoletti A, Grotenbreg GM. Conditional ligands for Asian HLA variants facilitate the definition of CD8+ T-cell responses in acute and chronic viral diseases. Eur J Immunol. 2013 Apr;43(4):1109-20. )に結合するペプチドとしては、N末端より2番目の位置にIle、Met、Ser、Thr、又はValのいずれかが配置され、9あるいは10番目の位置にLys又はArgのいずれかが配置されたペプチドであって、9~10個のアミノ酸からなるペプチドが最もよく知られている(Rapin N, Hoof I, Lund O, Nielsen M. The MHC motif viewer: a visualization tool for MHC binding motifs. Curr Protoc Immunol. 2010 Feb;Chapter 18:Unit 18.17. )。タンパク質のアミノ酸配列中からこのアンカーモチーフを有する8~10個のアミノ酸配列を検索し、CTLエピトープ候補ペプチドを選択することができる。
2. Examination using anchor motifs HLA class I molecules mainly include HLA-A, HLA-B, and HLA-C, and the epitope peptides that are displayed by binding to these consist of 8 to 10 amino acids. The second, ninth or tenth amino acid from the N-terminal side of the epitope peptide is the most important amino acid for binding to the HLA class I molecule, and is called an anchor motif. It has been reported that this anchor motif varies depending on the type of each HLA class I molecule. For example, as the peptide that binds to HLA-A2 that is the most studied worldwide, Leu is located at the second position from the N-terminus, and Leu or Val is located at the 9th or 10th position. Peptides of 9 to 10 amino acids are best known (T Sudo, N Kamikawaji, A Kimura, Y Date, CJ Savoie, H Nakashima, E Furuichi, S Kuhara, and T Sasazuki Differences in MHC class I self peptide repertoires among HLA-A2 subtypes J. Immunol., 1995; 155: 4749-4756). HLA-A11 (Chang CX, Tan AT, Or MY, Toh KY, Lim PY, Chia AS, Froesig TM, Nadua KD, Oh HL, Leong HN, Hadrup SR, Gehring AJ, Tan YJ, Bertoletti A, Grotenbreg GM. Conditional ligands for Asian HLA variants facilitate the definition of CD8 + T-cell responses in acute and chronic viral diseases. Eur J Immunol. 2013 Apr; 43 (4): 1109-20. As a peptide that binds to the peptide, either Ile, Met, Ser, Thr, or Val is placed at the second position from the N-terminus, and either Lys or Arg is placed at the 9th or 10th position A peptide consisting of 9 to 10 amino acids is best known (Rapin N, Hoof I, Lund O, Nielsen M. The MHC motif viewer: a visualization tool for MHC binding motifs. Curr Protoc Immunol. 2010 Feb; Chapter 18: Unit 18.17. A candidate CTL epitope peptide can be selected by searching 8 to 10 amino acid sequences having this anchor motif in the amino acid sequence of the protein.
3.ペプチドライブラリーの作製
 EBVを構成するタンパク質のうち、目的とするタンパク質全体を網羅する20個程度のアミノ酸配列よりなるペプチドライブラリーを合成する。20個程度のアミノ酸のうち、10個程度のアミノ酸配列は、前後のペプチドと重複するようにライブラリーを作製する。これによりタンパク質全体を網羅的に検索することが可能になり、一度ライブラリーを作製すればHLA拘束性も網羅的に検討することが可能になる。
3. Preparation of peptide library A peptide library consisting of about 20 amino acid sequences covering the entire target protein among the proteins constituting EBV is synthesized. A library is prepared so that about 10 amino acid sequences out of about 20 amino acids overlap with preceding and subsequent peptides. As a result, the entire protein can be searched comprehensively, and once the library is prepared, the HLA restriction can be comprehensively examined.
〔ペプチドの合成〕
 本発明の配列番号:1~35に示されるCTLエピトープ候補ペプチドは、従来の各種のペプチド合成方法によって調製され得る。例えば、固相ペプチド合成法等の有機化学的合成法、あるいは、ペプチドをコードする核酸を調製し、組換えDNA技術を用いて調製することも可能である。また、市販の化学合成装置(例えば、アプライドバイオシステムズ社のペプチド合成装置)による合成も可能である。
(Peptide synthesis)
The CTL epitope candidate peptides represented by SEQ ID NOs: 1 to 35 of the present invention can be prepared by various conventional peptide synthesis methods. For example, organic chemical synthesis methods such as solid phase peptide synthesis methods, or nucleic acids encoding peptides can be prepared and prepared using recombinant DNA technology. Moreover, the synthesis | combination by a commercially available chemical synthesizer (For example, the peptide synthesizer of Applied Biosystems) is also possible.
〔CTLエピトープ候補ペプチドの検討〕
 前述の方法にて選択されたCTLエピトープ候補ペプチドは必ずしもCTLエピトープペプチドになり得る訳ではなく、以下に示す検討を経て初めてEBV LMP2特異的CTLエピトープペプチドおよびEBV EBNA1特異的CTLエピトープペプチドになり得る。
[Examination of CTL epitope candidate peptides]
The CTL epitope candidate peptide selected by the above-mentioned method does not necessarily become a CTL epitope peptide, and can only become an EBV LMP2-specific CTL epitope peptide and an EBV EBNA1-specific CTL epitope peptide after the following examination.
(1)培養細胞株を用いた検討
 プロテアソームによるタンパク質分解で生じたペプチド断片はTAP(transporter associated with antigen processing)分子により小胞体内腔へと導かれ、HLAクラスI分子とβ2-ミクログロブリンとの複合体に結合し、細胞膜表面へ輸送される。このTAP分子を欠損した、TAP遺伝子欠損細胞株は、内在性タンパク質の分解産物であるペプチド断片を細胞膜表面に発現できない。また、代表的なTAP遺伝子欠損細胞株であるヒトリンパ芽球様細胞株T2、あるいはT2にHLA-A11分子を遺伝子導入した細胞株(T2-A11)のHLA分子は、細胞膜表面上での発現が非常に不安定である。しかし、外部から供給したペプチドと結合した場合、HLA分子は細胞膜表面上で安定化する。この性質を利用して、TAP遺伝子欠損細胞株は、HLA分子と外部から供給したペプチドの結合性を検証する実験に使用することが可能である。具体的には、TAP遺伝子欠損細胞株とCTLエピトープ候補ペプチドを混合培養後、抗HLA抗体で染色し、フローサイトメトリーでHLA分子の発現強度の変化を算出することで、目的とするHLA分子とCTLエピトープ候補ペプチドの結合性を検討できる。TAP遺伝子欠損細胞株が発現するHLA分子に添加したCTLエピトープ候補ペプチドが結合した場合、HLA分子とペプチドの複合体は細胞膜表面上で安定化し、抗HLA抗体で染色した場合、HLA分子の発現増強が観察される。一方、添加したCTLエピトープ候補ペプチドがHLA分子と結合性を示さない場合は、細胞膜表面上のHLA分子は不安定であり、抗HLA抗体で染色してもHLA分子の発現増強は確認されない。この様な方法を用いて、HLA分子とCTLエピトープ候補ペプチドの結合性を検証することが可能である。
(1) Examination using cultured cell lines Peptide fragments generated by proteasomal proteolysis are introduced into the endoplasmic reticulum lumen by TAP (transporter associated with antigen processing) molecules, and HLA class I molecules and β2-microglobulin It binds to the complex and is transported to the cell membrane surface. A TAP gene-deficient cell line deficient in this TAP molecule cannot express peptide fragments, which are degradation products of endogenous proteins, on the cell membrane surface. In addition, human lymphoblastoid cell line T2, which is a typical TAP gene-deficient cell line, or a cell line (T2-A11) in which HLA-A11 molecule is introduced into T2 is expressed on the cell membrane surface. Very unstable. However, when bound to an externally supplied peptide, the HLA molecule is stabilized on the cell membrane surface. Utilizing this property, the TAP gene-deficient cell line can be used in experiments for verifying the binding properties of HLA molecules and externally supplied peptides. Specifically, mixed culture of TAP gene-deficient cell line and CTL epitope candidate peptide, staining with anti-HLA antibody, and calculating change in expression intensity of HLA molecule by flow cytometry The binding of CTL epitope candidate peptides can be examined. When the CTL epitope candidate peptide added to the HLA molecule expressed by the TAP gene-deficient cell line binds, the HLA molecule-peptide complex is stabilized on the cell membrane surface, and when stained with an anti-HLA antibody, the expression of the HLA molecule is enhanced. Is observed. On the other hand, if the added CTL epitope candidate peptide does not bind to the HLA molecule, the HLA molecule on the cell membrane surface is unstable, and even when stained with an anti-HLA antibody, enhanced expression of the HLA molecule is not confirmed. Using such a method, it is possible to verify the binding between the HLA molecule and the CTL epitope candidate peptide.
(2)フォールディングテスト
 MHC-テトラマー試薬は、MHC(ヒトの場合はHLA)とβ2-ミクログロブリン及びペプチド断片の3者複合体(MHC-モノマー)を試験管内で製造し、MHC-モノマーを4量体化した試薬である。MHC-テトラマー試薬は、MHC拘束性を示す抗原特異的な細胞傷害性T細胞(CTL)を選択的に検出できる唯一の試薬である。またMHC-テトラマー試薬は、抗CD(cluster of differentiation)抗体や抗サイトカイン抗体等と共染色後、フローサイトメトリーで分析することでCTLの数を定量できるだけでなく、その活性化状態や分化段階を一つ一つの細胞毎に評価することが可能である。MHC-テトラマー試薬製造の最初のステップは、原料であるMHCとβ2-ミクログロブリンとペプチドを試験管内の適切な溶液中で混合するフォールディングから始まる。フォールディング溶液中では、この3種類の原料の会合反応により3者複合体(MHC-モノマー)を形成する。この際、MHCとペプチドの結合力が高ければ、この会合反応はスムーズに進行し、ゲル濾過カラムで分析することで、3種類の原料の複合体(MHC-モノマー)の検出が可能になる。一方、MHCとペプチドの結合力が無い場合は、MHC-モノマーは殆ど検出されない。従って、フォールディング溶液を経時的に分析することで、或いは熱処理等を行うことで、MHCとペプチドの結合性と安定性を検証することが可能である。
(2) Folding test The MHC-tetramer reagent is a three-component complex (MHC-monomer) of MHC (HLA in the case of humans), β2-microglobulin and peptide fragments in vitro. It is an incorporated reagent. The MHC-tetramer reagent is the only reagent that can selectively detect antigen-specific cytotoxic T cells (CTLs) that are MHC restricted. In addition, MHC-tetramer reagent can not only quantify the number of CTLs by co-staining with anti-CD (cluster of differentiation) antibody, anti-cytokine antibody, etc., but also by analyzing with flow cytometry. It is possible to evaluate every single cell. The first step in MHC-tetramer reagent production begins with folding where the raw materials MHC, β2-microglobulin and peptide are mixed in a suitable solution in a test tube. In the folding solution, a three-component complex (MHC-monomer) is formed by the association reaction of these three raw materials. At this time, if the binding force between the MHC and the peptide is high, this association reaction proceeds smoothly, and analysis with a gel filtration column makes it possible to detect a complex of three kinds of raw materials (MHC-monomer). On the other hand, when there is no binding force between MHC and peptide, MHC-monomer is hardly detected. Therefore, it is possible to verify the binding properties and stability of MHC and peptide by analyzing the folding solution over time or by performing heat treatment or the like.
(3)エピトープペプチド特異的CTLの検出
(3-1)エピトープペプチド決定方法
 EBV感染歴がある人から分離した末梢血単核球(peripheral blood mononuclear cells;PBMC)、あるいはPBMCから分離したT細胞を適切な培地に0.1~2×106/mL の細胞濃度で浮遊させる。これに同じ人からあらかじめ分離培養しておいたEBV感染細胞1×105/mLを加え、5% 炭酸ガス(CO2)恒温槽にて37℃で7日間培養する。培養7日後にEBV感染細胞とインターロイキン2(IL-2)を添加し、以後、EBV感染細胞とIL-2による刺激を毎週繰返すことによりCTLを誘導する。このようにして誘導したCTLがエピトープ候補ペプチドに対して特異性があるかどうかの検討は、MHC-テトラマー法、エリスポットアッセイ、クロムリリースアッセイ、細胞内サイトカイン染色法等で判定する(Current Protocols in Immunology Edited by: John E. Coligan, Ada M. Kruisbeek, David H. Margulies, Ethan M. Shevach, Warren Strober 6.19 ELISPOT Assay to Detect Cytokine-Secreting Murine and Human Cells 6.24 Detection of Intracellular Cytokines by Flow Cytometry published by John Wiley & Sons, Inc.)。
(3) Epitope peptide-specific CTL detection (3-1) Epitope peptide determination method Peripheral blood mononuclear cells (PBMC) isolated from a person with a history of EBV infection, or T cells isolated from PBMC Suspend in a suitable medium at a cell concentration of 0.1-2 x 10 6 / mL. To this, 1 × 10 5 / mL of EBV-infected cells previously separated and cultured from the same person is added, and cultured at 37 ° C. for 7 days in a 5% carbon dioxide (CO 2 ) thermostat. After culturing for 7 days, EBV-infected cells and interleukin 2 (IL-2) are added, and then CTL are induced by repeated stimulation with EBV-infected cells and IL-2 every week. Whether or not the CTL thus induced is specific for the epitope candidate peptide is determined by MHC-tetramer method, elicitor assay, chromium release assay, intracellular cytokine staining method, etc. (Current Protocols in Immunology Edited by: John E. Coligan, Ada M. Kruisbeek, David H. Margulies, Ethan M. Shevach, Warren Strober 6.19 ELISPOT Assay to Detect Cytokine-Secreting Murine and Human Cells 6.24 Detection of Intracellular Cytokines by Flow Cytometry published by John Wiley & Sons, Inc.).
(3-2)エピトープペプチド決定方法2
 EBV感染歴がある人から分離したPBMCを適切な培地に0.1~2×106/mL の細胞濃度で浮遊させ、これにエピトープ候補ペプチドの任意の1種を0.01~100 μg/mLの濃度で加える。5% CO2恒温槽にて37℃で培養し、2日後にIL-2を添加する。以後、前記ペプチドとIL-2による刺激を週に1度あるいは2週間に1度繰返すことによりCTLを誘導する。このようにして誘導したCTLがエピトープ候補ペプチドに対して特異性があるかどうかの検討は、MHC-テトラマー法、エリスポットアッセイ、クロムリリースアッセイ、細胞内サイトカイン染色法等で判定する。
(3-2) Epitope peptide determination method 2
PBMCs isolated from a person with a history of EBV infection are suspended in an appropriate medium at a cell concentration of 0.1-2 × 10 6 / mL, and any one of the epitope candidate peptides at a concentration of 0.01-100 μg / mL Add. Incubate at 37 ° C in a 5% CO 2 constant temperature bath, and add IL-2 after 2 days. Thereafter, CTL is induced by repeating stimulation with the peptide and IL-2 once a week or once every two weeks. Whether the CTL thus induced is specific for the epitope candidate peptide is determined by MHC-tetramer method, elyspot assay, chromium release assay, intracellular cytokine staining method and the like.
(3-3)エピトープペプチド決定方法3
 EBV感染歴がある人から分離したPBMCを適切な培地に0.1~2×106/mL の細胞濃度で浮遊させ、これに合成したペプチドライブラリーを適当な数(例えば10種類ずつ)にプールした物を加える。5% CO2恒温槽にて37℃で培養し、2日後にIL-2を添加する。以後、プールペプチドとIL-2による刺激を週に1度あるいは2週間に1度繰返すことにより、CTLを誘導する。このようにして誘導したCTLがエピトープ候補ペプチドに対して特異性があるかどうかの検討は、エリスポットアッセイ、クロムリリースアッセイ、細胞内サイトカイン染色法等で判定する。良好な結果を示したプールペプチドに対しては、1種類ずつペプチドを加えて上記実験を繰返せば、CTL誘導能を有するペプチドを選択することが可能である。反応したペプチドについて順次短くし、最終的に8~10個のアミノ酸からなるエピトープペプチドを得て本発明のエピトープペプチドとする。
(3-3) Epitope peptide determination method 3
PBMCs isolated from a person with a history of EBV infection were suspended in an appropriate medium at a cell concentration of 0.1 to 2 × 10 6 / mL, and the peptide libraries synthesized in this were pooled to an appropriate number (for example, 10 types each). Add things. Incubate at 37 ° C in a 5% CO 2 constant temperature bath, and add IL-2 after 2 days. Thereafter, CTL is induced by repeating stimulation with the pool peptide and IL-2 once a week or once every two weeks. Whether or not the CTL thus induced is specific for the epitope candidate peptide is determined by an Elispot assay, a chromium release assay, an intracellular cytokine staining method, or the like. For pooled peptides that showed good results, it is possible to select peptides having CTL inducing ability by repeating the above experiment with one peptide added at a time. The reacted peptides are shortened in order, and finally an epitope peptide consisting of 8 to 10 amino acids is obtained as the epitope peptide of the present invention.
〔EBV LMP2とEBNA1特異的MHC-モノマー及びMHC-テトラマー試薬の製造〕
 EBV LMP2特異的CTLエピトープ候補ペプチドとEBV EBNA1特異的CTLエピトープ候補ペプチドを使用したMHC-モノマー及びMHC-テトラマー試薬は、公知の方法(US Patent Number 5,635,363、French Application Number FR9911133)により調製することができる。タンパク質発現用の遺伝子組換え宿主から精製したHLAクラス I分子、β2-ミクログロブリン及び本発明のLMP2特異的CTLエピトープ候補ペプチド、またはEBNA1特異的CTLエピトープ候補ペプチドの3者の複合体であるMHC-モノマーをフォールディング溶液内で形成させる。組換えHLAクラスI分子のC末端には予めビオチン結合部位を付加しておき、MHC-モノマー形成後この部位にビオチンを付加する。市販の色素標識されたストレプトアビジンとビオチン化MHC-モノマーをモル比1:4で混合することによってMHC-テトラマー試薬を製造することができる。MHC-テトラマー試薬と細胞表面タンパク質に対する抗体(CD62L、CCR7やCD45RA等)と組み合わせて用いることで、CTLの分化段階を調べることができる(Seder RA, Ahmed R. Similarities and differences in CD4+ and CD8+ effector and memory T cell generation. Nat Immunol. 2003;4:835-842.)。あるいは細胞内サイトカイン染色法と組み合わせることで、CTLの機能性評価に用いることも可能である。例えば、C型肝炎では持続感染が維持される原因のひとつとして、HCV(Hepatitis C virus)に対するCTLは存在するが、CTLがサイトカイン等を産生していない、あるいは産生するCTLの割合が極めて低く免疫学的に不応答性(anergy)になっている可能性が報告されている(Gruener NH, Lechner F, Jung MC, Diepolder H, Gerlach T, Lauer G, Walker B, Sullivan J, Phillips R, Pape GR, Klenerman P. Sustained dysfunction of antiviral CD8+ T lymphocytes after infection with hepatitis C virus. J Virol. 2001;75:5550-5558.)。また骨髄移植後のCMV特異的CTLについては、そのCTL存在の有無を調べるだけでなく、サイトカイン産生能の強弱を調べることが、抗ウイルス薬投与等のタイミングを計るために有効であると考えられ始めている(Ozdemir E, St John LS, Gillespie G, Rowland-Jones S, Champlin RE, Molldrem JJ, Komanduri KV. Cytomegalovirus reactivation following allogeneic stem cell transplantation is associated with the presence of dysfunctional antigen-specific CD8+ T cells. Blood. 2002 ;100 : 3690-3697.)。このように特異的なCTLエピトープペプチドを同定し、MHC-テトラマー試薬を製造すれば、特異的なCTLの定量と定性が可能になり、診断情報を得る上で多大な貢献が可能になる。
[Production of EBV LMP2 and EBNA1-specific MHC-monomers and MHC-tetramer reagents]
MHC-monomer and MHC-tetramer reagent using EBV LMP2-specific CTL epitope candidate peptide and EBV EBNA1-specific CTL epitope candidate peptide can be prepared by known methods (US Patent Number 5,635,363, French Application Number FR9911133) . MHC-, which is a triple complex of an HLA class I molecule, β2-microglobulin and LMP2-specific CTL epitope candidate peptide of the present invention, or EBNA1-specific CTL epitope candidate peptide purified from a recombinant host for protein expression Monomers are formed in the folding solution. A biotin binding site is added to the C-terminus of the recombinant HLA class I molecule in advance, and biotin is added to this site after MHC-monomer formation. A MHC-tetramer reagent can be prepared by mixing commercially available dye-labeled streptavidin and biotinylated MHC-monomer at a molar ratio of 1: 4. The combination of MHC-tetramer reagent and antibodies against cell surface proteins (CD62L, CCR7, CD45RA, etc.) can be used to examine the differentiation stage of CTL (Seder RA, Ahmed R. Similarities and differences in CD4 + and CD8 + effector and memory T cell generation. Nat Immunol. 2003; 4: 835-842.). Alternatively, it can be used for functional evaluation of CTL by combining with intracellular cytokine staining method. For example, in hepatitis C, CTL against HCV (Hepatitis C virus) exists as one of the causes for maintaining persistent infection, but CTL does not produce cytokines, or the proportion of CTL produced is extremely low. It has been reported that there is a possibility of anomaly (Gruener NH, Lechner F, Jung MC, Diepolder H, Gerlach T, Lauer G, Walker B, Sullivan J, Phillips R, Pape GR , Klenerman P. Sustained dysfunction of antiviral CD8 + T lymphocytes after infection with hepatitis C virus. J Virol. 2001; 75: 5550-5558.). In addition, regarding CMV-specific CTL after bone marrow transplantation, it is considered effective not only to examine the presence or absence of CTL but also to examine the level of cytokine production ability in order to measure the timing of administration of antiviral drugs, etc. Cytomegalovirus reactivation following allogeneic stem cell transplantation is associated with the presence of dysfunctional antigen-specific CD8 + T cells.Blood. 2002; 100: 3690-3697.). Thus, if a specific CTL epitope peptide is identified and an MHC-tetramer reagent is produced, it becomes possible to quantify and qualify specific CTLs, and to make a great contribution to obtaining diagnostic information.
〔能動免疫ワクチン〕
ペプチドワクチン
 本発明のCTLエピトープペプチドは、能動免疫療法においてペプチドワクチンとして用いることができる。すなわち、本発明のCTLエピトープペプチドを含んでなるワクチンを患者に投与し、EBV LMP2特異的CTLあるいはEBV EBNA1特異的CTLを体内で増殖させ、感染に対する予防、及び感染症並びにEBV陽性腫瘍に対する治療に役立てることができる。使用するエピトープペプチドは1種のみの使用であっても、あるいはワクチンの使用目的に応じて2種以上のペプチドを組み合わせ、混合して使用することもできる。
[Active immune vaccine]
Peptide vaccine The CTL epitope peptide of the present invention can be used as a peptide vaccine in active immunotherapy. That is, a vaccine comprising the CTL epitope peptide of the present invention is administered to a patient, and EBV LMP2-specific CTL or EBV EBNA1-specific CTL is proliferated in the body to prevent infection and treat infection and EBV positive tumor. Can be useful. Only one type of epitope peptide may be used, or two or more types of peptides may be combined and mixed according to the intended use of the vaccine.
抗原提示細胞を利用したワクチン
 本発明のCTLエピトープペプチドが提示された抗原提示細胞は、能動免疫療法においてワクチンとして用いることができる。CTLエピトープペプチドが提示された抗原提示細胞とは、
  1.適当な培養液中で、抗原提示細胞とCTLエピトープペプチドを30分から1時間混合したCTLエピトープペプチドパルス抗原提示細胞
  2.CTLエピトープペプチドをコードする核酸を用い、遺伝子導入等で抗原提示細胞にCTLエピトープペプチドを提示させた細胞
  3.人工的に調製した抗原提示能を有する人工抗原提示細胞
を意味する。抗原提示細胞とは、例えば、樹状細胞、B細胞、マクロファージ、ある種のT細胞等を意味するが、該ペプチドが結合し得るHLA分子をその細胞表面上に発現する細胞であって、CTL刺激能を有するものを意味する。人工的に調製した抗原提示能を有する人工抗原提示細胞とは、例えば脂質二重膜やプラスティックあるいはラテックス等のビーズにHLA分子とCTLエピトープペプチドとβ2-ミクログロブリンとの三者複合体を固定し、CTLを刺激し得るCD80、CD83やCD86等の共刺激分子を固定するか、もしくは、共刺激分子と結合するT細胞側のリガンドであるCD28に対してアゴニスティックに作用する抗体等を固定することで調製可能である(Oelke M, Maus MV, Didiano D, June CH, Mackensen A, Schneck JP. Ex vivo induction and expansion of antigen-specific cytotoxic T cells by HLA-Ig-coated artificial antigen-presenting cells. Nat Med. 2003;9:619-624、Walter S, Herrgen L, Schoor O, Jung G, Wernet D, Buhring HJ, Rammensee HG, Stevanovic S. Cutting edge: predetermined avidity of human CD8 T cells expanded on calibrated MHC/anti-CD28-coated microspheres. J Immunol. 2003;171:4974-4978、Oosten LE, Blokland E, van Halteren AG, Curtsinger J, Mescher MF, Falkenburg JH, Mutis T, Goulmy E. Artificial antigen-presenting constructs efficiently stimulate minor histocompatibility antigen-specific cytotoxic T lymphocytes. Blood. 2004;104:224-226)。
Vaccine using antigen-presenting cell The antigen-presenting cell on which the CTL epitope peptide of the present invention is presented can be used as a vaccine in active immunotherapy. Antigen-presenting cells with CTL epitope peptides presented
1. 1. CTL epitope peptide pulse antigen-presenting cells in which antigen-presenting cells and CTL epitope peptides are mixed for 30 minutes to 1 hour in an appropriate culture medium. 2. A cell in which a CTL epitope peptide is presented to an antigen-presenting cell by gene transfer or the like using a nucleic acid encoding a CTL epitope peptide. It means an artificial antigen-presenting cell having an antigen-presenting ability prepared artificially. An antigen-presenting cell means, for example, a dendritic cell, a B cell, a macrophage, a certain type of T cell, etc., and is a cell that expresses on its cell surface an HLA molecule to which the peptide can bind, It means something that has stimulating ability. Artificial antigen-presenting cells with antigen-presenting ability are artificially prepared by immobilizing a ternary complex of HLA molecule, CTL epitope peptide and β2-microglobulin on beads such as lipid bilayer membrane, plastic or latex. Immobilize costimulatory molecules such as CD80, CD83, and CD86 that can stimulate CTLs, or fix antibodies that act agonistically on CD28, a T cell ligand that binds to costimulatory molecules. (Oelke M, Maus MV, Didiano D, June CH, Mackensen A, Schneck JP. Ex vivo induction and expansion of antigen-specific cytotoxic T cells by HLA-Ig-coated artificial antigen-presenting cells. Nat Med. 2003; 9: 619-624, Walter S, Herrgen L, Schoor O, Jung G, Wernet D, Buhring HJ, Rammensee HG, Stevanovic S. Cutting edge: predetermined avidity of human CD8 T cells expanded on calibrated MHC / anti -CD28-coated microspheres. J Immunol. 2003; 171: 4974- 4978, Oosten LE, Blokland E, van Halteren AG, Curtsinger J, Mescher MF, Falkenburg JH, Mutis T, Goulmy E. Artificial antigen-presenting constructs efficiently stimulate minor histocompatibility antigen-specific cytotoxic T lymphocytes.Blood. 2004; 104: 224 -226).
遺伝子ワクチン
 本発明のCTLエピトープペプチドの核酸は、能動免疫療法においてDNAワクチンや組換えウイルスベクターワクチン等に用いることができる。この場合、CTLエピトープペプチドの核酸配列は、組換えワクチンや、組換えウイルスワクチンを産生させる宿主に適合したcodon usageに変更することが望ましい(Casimiro, D.R. et al. Comparative Immunogenicity in Rhesus Monkeys of DNA Plasmid, Recombinant Vaccinia Virus, and Replication-Defective Adenovirus Vectors Expressing a Human Immunodeficiency Virus Type 1 gag Gene J. Virol., 2003;77:6305-6313、Berzofsky JA, Ahlers JD, Janik J, Morris J, Oh S, Terabe M, Belyakov IM. Progress on new vaccine strategies against chronic viral infections. J Clin Invest. 2004;114:450-462)。
Gene Vaccine The nucleic acid of the CTL epitope peptide of the present invention can be used for DNA vaccines, recombinant virus vector vaccines and the like in active immunotherapy. In this case, it is desirable to change the nucleic acid sequence of the CTL epitope peptide to codon usage suitable for the host producing the recombinant vaccine or the recombinant virus vaccine (Casimiro, DR et al. Comparative Immunogenicity in Rhesus Monkeys of DNA Plasmid , Recombinant Vaccinia Virus, and Replication-Defective Adenovirus Vectors Expressing a Human Immunodeficiency Virus Type 1 gag Gene J. Virol., 2003; 77: 6305-6313, Berzofsky JA, Ahlers JD, Janik J, Morris J, Oh S, Terabe M , Belyakov IM. Progress on new vaccine strategies against chronic viral infections. J Clin Invest. 2004; 114: 450-462).
 本発明のCTLエピトープペプチド、又はCTLエピトープペプチドが提示された抗原提示細胞を含んでなるワクチンは、当分野において公知の方法を用いて調製することができる。例えば、かかるワクチンとしては、本発明のCTLエピトープペプチドを有効成分として含有する注射剤又は固形剤等がある。CTLエピトープペプチドは、中性又は塩の形態で処方することができ、例えば、薬学上許容され得る塩としては、塩酸、リン酸などの無機塩、又は、酢酸、酒石酸などの有機酸が挙げられる。また、本発明のCTLエピトープペプチドが提示された抗原提示細胞は、製薬上許容され、該ペプチド又は該細胞の活性と相容性を有する賦形剤、例えば、水、食塩水、デキストロース、エタノール、グリセロール、DMSO(dimethyl sulphoxide)、及びその他のアジュバント等、又はこれらの組み合わせと混合して用いることができる。さらに、必要に応じて、アルブミン、湿潤剤、乳化剤等の補助剤を添加してもよい。 A vaccine comprising a CTL epitope peptide of the present invention or an antigen-presenting cell on which a CTL epitope peptide is presented can be prepared using methods known in the art. For example, such a vaccine includes an injection or a solid preparation containing the CTL epitope peptide of the present invention as an active ingredient. The CTL epitope peptide can be formulated in a neutral or salt form. Examples of pharmaceutically acceptable salts include inorganic salts such as hydrochloric acid and phosphoric acid, and organic acids such as acetic acid and tartaric acid. . Further, the antigen-presenting cell on which the CTL epitope peptide of the present invention is presented is a pharmaceutically acceptable excipient compatible with the peptide or the activity of the cell, such as water, saline, dextrose, ethanol, It can be used by mixing with glycerol, DMSO (dimethyl sulphoxide), other adjuvants, or a combination thereof. Furthermore, you may add adjuvants, such as albumin, a wetting agent, and an emulsifier, as needed.
 本発明のワクチンは、非経口投与及び経口投与により投与することができるが、一般的には非経口投与が好ましい。非経口投与としては経鼻投与や皮下注射、筋肉内注射、静脈内注射等の注射剤、座薬等がある。また、経口投与としては、スターチ、マンニトール、ラクトース、ステアリン酸マグネシウム、セルロース等の賦形剤との混合物として調製することができる。 The vaccine of the present invention can be administered by parenteral administration or oral administration, but parenteral administration is generally preferred. Parenteral administration includes nasal administration, subcutaneous injection, intramuscular injection, injection such as intravenous injection, suppository and the like. For oral administration, it can be prepared as a mixture with excipients such as starch, mannitol, lactose, magnesium stearate, and cellulose.
 本発明のワクチンは、治療上有効な量で投与する。投与される量は、治療対象、免疫系に依存し、必要とする投与量は臨床医の判断により決定される。通常、適当な投与量は、患者一人当たり、CTLエピトープペプチドは1~100 mg、CTLエピトープペプチドパルス細胞では106~109個の含有量とする。また、投与間隔は、対象、目的により設定することができる。 The vaccine of the present invention is administered in a therapeutically effective amount. The dose to be administered depends on the subject to be treated and the immune system, and the required dose is determined by the judgment of the clinician. In general, the appropriate dose is 1 to 100 mg of CTL epitope peptide and 10 6 to 10 9 CTL epitope peptide pulsed cells per patient. In addition, the administration interval can be set according to the subject and purpose.
〔受動免疫ワクチン〕
 本発明のCTLエピトープペプチドは、受動免疫治療剤の調製に用いることができる。下記のようにして得られたEBV LMP2に特異的なCTLまたはEBV EBNA1に特異的なCTLはヒトアルブミン含有PBS等に懸濁させて、EBVに対する受動免疫療法剤とすることができる。受動免疫療法剤に含まれるEBVに特異的なCTLは、以下のような調製方法によって得ることができ、CTLの純度を高める為に精製して用いることも可能である。
[Passive immunization vaccine]
The CTL epitope peptide of the present invention can be used for the preparation of a passive immunotherapeutic agent. The CTL specific for EBV LMP2 or the CTL specific for EBV EBNA1 obtained as described below can be suspended in human albumin-containing PBS or the like and used as a passive immunotherapy for EBV. The CTL specific for EBV contained in the passive immunotherapeutic agent can be obtained by the following preparation method, and can be purified and used to increase the purity of CTL.
CTL調製方法1
 PBMCと、適当な濃度のEBV特異的MHC-テトラマー試薬を反応させる。MHC-テトラマー試薬と結合したEBV特異的CTLは標識色素により染色されるので、セルソーター、顕微鏡などを用いて染色されたCTLのみを単離する。このようにして単離されたEBV特異的なCTLは、抗CD3抗体、PHA、IL-2等のT細胞刺激薬剤や、X線照射あるいはマイトマイシン処理等で増殖能を損失させた抗原提示細胞で刺激増殖させ、受動免疫療法に必要な細胞数を確保する。
CTL preparation method 1
PBMC is reacted with an appropriate concentration of EBV-specific MHC-tetramer reagent. Since the EBV-specific CTL bound to the MHC-tetramer reagent is stained with a labeling dye, only the stained CTL is isolated using a cell sorter, a microscope or the like. EBV-specific CTL isolated in this way are T cell stimulating drugs such as anti-CD3 antibodies, PHA, IL-2, and antigen-presenting cells whose proliferation ability has been lost by X-ray irradiation or mitomycin treatment. Stimulate growth to ensure the number of cells required for passive immunotherapy.
CTL調製方法2
 EBV特異的MHC-モノマー及び/又はMHC-テトラマー試薬を無菌プレートなどに固相化し、PBMCを固相化プレートで培養する。プレートに固相化されたMHC-モノマー及び/又はMHC-テトラマー試薬に結合したEBV特異的CTLを単離するためには、結合せずに浮遊している他の細胞を洗い流した後に、プレート上に残った特異的CTLだけを新しい培地に懸濁する。このようにして単離されたEBV特異的CTLは、抗CD3抗体、PHA、IL-2等のT細胞刺激薬剤や、X線照射あるいはマイトマイシン処理等で増殖能を損失させた抗原提示細胞で刺激増殖させ、受動免疫療法に必要な細胞数を確保する。
CTL preparation method 2
EBV-specific MHC-monomer and / or MHC-tetramer reagent is immobilized on a sterile plate and PBMC is cultured on the immobilized plate. In order to isolate EBV-specific CTL bound to MHC-monomer and / or MHC-tetramer reagent immobilized on the plate, other cells floating without being bound are washed off on the plate. Suspend only the specific CTL remaining in the fresh medium. EBV-specific CTLs isolated in this way are stimulated with anti-CD3 antibodies, PHA, IL-2 and other T cell stimulating agents, and antigen-presenting cells whose proliferation ability has been lost by X-ray irradiation or mitomycin treatment. Proliferate to ensure the number of cells required for passive immunotherapy.
CTL調製方法3
 EBV特異的MHC-モノマー及び/又はMHC-テトラマー試薬と、CD80、CD83、CD86等の共刺激分子か、もしくは、共刺激分子と結合するT細胞側のリガンドであるCD28に対してアゴニスティックに作用する抗体等を無菌プレートなどに固相化し、PBMCを固相化プレートで培養する。2日後にIL-2を培地に添加し5% CO2恒温槽にて37℃で7~14日培養する。培養した細胞を回収し新たな固相化プレート上で培養を続ける。この操作を繰り返すことで受動免疫療法に必要な細胞数のCTLを確保する。
CTL preparation method 3
Acts agonistically on EBV-specific MHC-monomers and / or MHC-tetramer reagents and costimulatory molecules such as CD80, CD83, CD86, or CD28, a T cell ligand that binds to costimulatory molecules The antibody to be immobilized is immobilized on a sterile plate, and PBMC is cultured on the immobilized plate. Two days later, IL-2 is added to the medium and cultured in a 5% CO 2 constant temperature bath at 37 ° C. for 7 to 14 days. The cultured cells are collected and cultured on a new solid phase plate. By repeating this operation, CTLs with the number of cells necessary for passive immunotherapy are secured.
CTL調製方法4
 PBMCあるいはT細胞を本発明のCTLエピトープペプチドで直接刺激するか、該ペプチドをパルスした抗原提示細胞、遺伝子導入した抗原提示細胞、または人工的に調製した抗原提示能を有する人工抗原提示細胞で刺激する。刺激は、in vitroですることができるが、in vivoでしてもよい。in vitroで刺激した場合は、刺激によって誘導されたCTLを5% CO2恒温槽にて37℃で7~14日培養する。培養においてCTLエピトープペプチドとIL-2、又は抗原提示細胞とIL-2による刺激を週に1度繰り返すことで受動免疫療法に必要な細胞数のCTLを確保する。
CTL preparation method 4
Stimulate PBMC or T cells directly with the CTL epitope peptide of the present invention, or with antigen-presenting cells pulsed with the peptide, gene-introduced antigen-presenting cells, or artificially prepared antigen-presenting cells with antigen-presenting ability To do. Stimulation can be in vitro, but may also be in vivo. When stimulated in vitro, CTL induced by stimulation is cultured at 37 ° C for 7 to 14 days in a 5% CO 2 thermostat. In culture, CTL epitope peptide and IL-2, or antigen-presenting cells and IL-2 stimulation are repeated once a week to secure the number of CTLs necessary for passive immunotherapy.
CTLの精製法
 CTL調製方法において、特異的CTLの割合が低い場合は、随時以下の方法を用いることで特異的CTLを高純度で回収することが可能である。
Purification method of CTL In the CTL preparation method, when the ratio of specific CTL is low, the specific CTL can be recovered with high purity by using the following method as needed.
MHC-テトラマー試薬による精製
 EBV特異的MHC-テトラマー試薬と、CTL調製方法にて誘導されたCTLを反応させ、MHC-テトラマー試薬を標識している標識色素に対する抗体等を磁気標識した2次抗体を用いて分離することが可能である。このような磁気標識した2次抗体と、磁気標識細胞分離装置は、例えばDynal社やMiltenyi Biotec GmbH社から入手可能である。このようにして単離されたEBV特異的CTLは、抗CD3抗体、PHA、IL-2等のT細胞刺激薬剤で刺激増殖させ、受動免疫療法に必要な細胞数を確保する。
Purification with MHC-tetramer reagent Reacting EBV-specific MHC-tetramer reagent with CTL induced by the CTL preparation method, a secondary antibody magnetically labeled with an antibody against a labeled dye labeled with MHC-tetramer reagent And can be separated. Such a magnetically labeled secondary antibody and a magnetically labeled cell separation device are available from, for example, Dynal and Miltenyi Biotec GmbH. The EBV-specific CTL isolated in this way is stimulated and proliferated with a T cell stimulating agent such as anti-CD3 antibody, PHA, IL-2, and the number of cells required for passive immunotherapy is ensured.
分泌されるサイトカインによる精製
 EBV特異的CTLが、放出するサイトカイン等を利用して、EBV特異的CTLを精製することができる。例えば、Miltenyi Biotec GmbH社から入手可能なキットを用いることで、CTLから放出されるサイトカインを細胞表面で特異抗体により捕捉し、抗サイトカイン標識抗体で染色し、続いて磁気標識した標識物質特異的な抗体で反応させた後、磁気標識細胞分離装置を用いて精製することも可能である。このようにして単離されたEBV特異的CTLは、抗CD3抗体、PHA、IL-2等のT細胞刺激薬剤で刺激増殖させ、受動免疫療法に必要な細胞数を確保する。
Purification by secreted cytokines EBV-specific CTLs can be purified by utilizing cytokines released by EBV-specific CTLs. For example, by using a kit available from Miltenyi Biotec GmbH, the cytokine released from the CTL is captured on the cell surface with a specific antibody, stained with an anti-cytokine-labeled antibody, and then magnetically labeled for the labeling substance-specific After reacting with the antibody, it can be purified using a magnetically labeled cell separator. The EBV-specific CTL isolated in this way is stimulated and proliferated with a T cell stimulating agent such as anti-CD3 antibody, PHA, IL-2, and the number of cells required for passive immunotherapy is ensured.
細胞表面タンパク質特異的抗体を用いた精製
 特異的CTLの細胞表面では、特異的刺激により発現が増強する細胞表面タンパク質(例えばCD137、CD107a、CD107b、CD63、CD69など)が報告されている(Betts MR, Brenchley JM, Price DA, De Rosa SC, Douek DC, Roederer M, Koup RA. Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J Immunol Methods. 2003;281:65-78、Trimble LA, Shankar P, Patterson M, Daily JP, Lieberman J. Human immunodeficiency virus-specific circulating CD8 T lymphocytes have down-modulated CD3zeta and CD28, key signaling molecules for T-cell activation. J Virol. 2000;74:7320-7330)。このようなタンパク質の特異抗体を磁気標識することで、磁気分離装置等を用いてCTLを精製することが可能である。また、このような特異抗体に対する抗IgG抗体等を磁気標識することでも同様にCTLの精製が可能である。あるいは、これら特異抗体を培養用のプラスティックプレートにコートし、このプレートを用いて刺激を加えたPBMCを培養し、プレートに結合しなかった細胞集団を洗い流すことで特異的CTLを精製することも可能である。このようにして単離されたEBV特異的CTLは、抗CD3抗体、PHA、IL-2等のT細胞刺激薬剤で刺激増殖させ、受動免疫療法に必要な細胞数を確保する。
Purification using cell surface protein-specific antibodies Cell surface proteins (eg CD137, CD107a, CD107b, CD63, CD69, etc.) whose expression is enhanced by specific stimulation have been reported on the cell surface of specific CTLs (Betts MR , Brenchley JM, Price DA, De Rosa SC, Douek DC, Roederer M, Koup RA.Sensitive and viable identification of antigen-specific CD8 + T cells by a flow cytometric assay for degranulation.J Immunol Methods.2003; 281: 65-78 , Trimble LA, Shankar P, Patterson M, Daily JP, Lieberman J. Human immunodeficiency virus-specific circulating CD8 T lymphocytes have down-modulated CD3zeta and CD28, key signaling molecules for T-cell activation. J Virol. 2000; 74: 7320 -7330). By magnetically labeling such a protein-specific antibody, it is possible to purify CTL using a magnetic separation apparatus or the like. In addition, CTL can be similarly purified by magnetically labeling such an anti-IgG antibody against the specific antibody. Alternatively, specific CTLs can be purified by coating these specific antibodies onto a plastic plate for culturing, culturing stimulated PBMC using this plate, and washing away the cell population that did not bind to the plate. It is. The EBV-specific CTL isolated in this way is stimulated and proliferated with a T cell stimulating agent such as anti-CD3 antibody, PHA, IL-2, and the number of cells required for passive immunotherapy is ensured.
〔EBV特異的CTLの定量〕
 EBV特異的CTLが、癌患者の末梢血に存在するか否か、あるいはその量の変動を知ることは、EBV特異的CTLエピトープペプチドを予測するために重要な情報である。EBV特異的CTLの定量は、本発明のCTLエピトープペプチドを用いた以下の3つの方法によって行うことができる。
[Quantification of EBV-specific CTL]
Knowing whether EBV-specific CTLs are present in the peripheral blood of cancer patients or the variation in their amounts is important information for predicting EBV-specific CTL epitope peptides. Quantification of EBV-specific CTL can be performed by the following three methods using the CTL epitope peptide of the present invention.
定量方法1(MHC-テトラマー法)
 本発明のCTLエピトープペプチドを使用して製造したMHC-テトラマー試薬を用いて、末梢血中のEBVに特異的なCTLを定量することができる。定量は、例えば、以下のようにして実施することができる。末梢血あるいはPBMCを、適当な濃度のMHC-テトラマー試薬と反応させる。該MHC-テトラマー試薬と結合したCTLは標識色素により染色されるので、フローサイトメーター、顕微鏡等を用いてカウントする。MHC-テトラマー試薬と反応させる時に、MHC-テトラマー試薬と異なる色素で標識された抗CD3抗体、抗CD4抗体、抗CD8抗体等を反応させることで、EBV特異的なCTLのT細胞サブセットも同時に判定できる。
Quantitation method 1 (MHC-tetramer method)
CTL specific for EBV in peripheral blood can be quantified using the MHC-tetramer reagent produced using the CTL epitope peptide of the present invention. The quantification can be performed, for example, as follows. Peripheral blood or PBMC are reacted with an appropriate concentration of MHC-tetramer reagent. Since the CTL bound to the MHC-tetramer reagent is stained with a labeling dye, it is counted using a flow cytometer, a microscope or the like. When reacting with MHC-tetramer reagent, anti-CD3 antibody, anti-CD4 antibody, anti-CD8 antibody, etc. labeled with a different dye from MHC-tetramer reagent can be reacted to simultaneously determine T cell subsets of EBV-specific CTLs. it can.
定量方法2
 PBMCを本発明のCTLエピトープペプチドで刺激することによってCTLが産生するIFNγ(interferon gamma)、TNFα(tumor necrosis factor alpha)、インターロイキン等のサイトカイン及び/又はケモカインを定量する方法である。以下にIFNγを例にとり具体的に方法を示す。
Quantitation method 2
This is a method for quantifying cytokines and / or chemokines such as IFNγ (interferon gamma), TNFα (tumor necrosis factor alpha), and interleukin produced by CTL by stimulating PBMC with the CTL epitope peptide of the present invention. A specific method will be described below using IFNγ as an example.
2-1 サイトカイン定量による方法1(細胞内IFNγ産生細胞定量法)
 PBMCを適当な培地におよそ2×106/mLの細胞濃度で浮遊させ、本発明のCTLエピトープペプチドを加える。さらに細胞内タンパク質輸送阻止剤(例えば、Brefeldin AやMonensin等)を加え、5% CO2恒温槽にて37℃で5~16時間培養する。培養後、T細胞マーカー抗体(抗CD3抗体、抗CD4抗体、抗CD8抗体)あるいは、MHC-テトラマー試薬と反応させ、細胞を固定後、膜透過処理を行い、色素標識抗IFNγ抗体を反応させる。フローサイトメーター等を用いて解析し、全細胞中、T細胞中あるいはMHC-テトラマー試薬陽性細胞中のIFNγ陽性細胞率を定量する。
2-1 Method 1 based on cytokine quantification (intracellular IFNγ producing cell quantification method)
PBMCs are suspended in a suitable medium at a cell concentration of approximately 2 × 10 6 / mL, and the CTL epitope peptide of the present invention is added. Further, an intracellular protein transport inhibitor (eg, Brefeldin A, Monensin, etc.) is added, and the cells are cultured at 37 ° C. for 5 to 16 hours in a 5% CO 2 constant temperature bath. After culturing, the cells are reacted with a T cell marker antibody (anti-CD3 antibody, anti-CD4 antibody, anti-CD8 antibody) or MHC-tetramer reagent, and after fixing the cells, membrane permeation treatment is performed, and a dye-labeled anti-IFNγ antibody is reacted. Analysis is performed using a flow cytometer or the like, and the IFNγ positive cell rate in total cells, T cells, or MHC-tetramer reagent positive cells is quantified.
2-2 サイトカイン定量による方法2(エリスポットアッセイ)
 抗IFNγ抗体を固相化した96ウェルMultiScreen-HAプレート (Millipore社)にPBMCをまく。その後、CTLエピトープペプチドを各ウェルに入れ37℃の5% CO2恒温槽培養器にて20時間培養する。翌日、プレートを洗浄し、抗IFNγ抗体、ペルオキシダーゼ標識抗IgG抗体の順で反応させる。さらにペルオキシダーゼの基質を加え、発色によりIFNγスポットを可視化し、実体顕微鏡かELISPOTアナライザー(C.T.L.社)を用いてカウントすることで定量する。
2-2 Method 2 by cytokine quantification (Elispot assay)
PBMC are plated on a 96-well MultiScreen-HA plate (Millipore) on which an anti-IFNγ antibody is immobilized. Thereafter, the CTL epitope peptide is placed in each well and cultured in a 5% CO 2 thermostat incubator at 37 ° C. for 20 hours. On the next day, the plate is washed and reacted with anti-IFNγ antibody and peroxidase-labeled anti-IgG antibody in this order. Further, a substrate of peroxidase is added, the IFNγ spot is visualized by color development, and quantified by counting using a stereomicroscope or ELISPOT analyzer (CTL).
2-3 サイトカイン定量による方法3(培養上清中に分泌されたIFNγを定量する方法)
 PBMCを適当な培地におよそ2×106/mLの細胞濃度で浮遊させ、本発明のCTLエピトープペプチドを加える。5% CO2恒温槽にて37℃で24~48時間培養する。培養後、上清を回収し、その中に含まれるIFNγ濃度を市販のELISAキット(例えばR&Dシステムズ社のQuantikine ELISA Human IFNγ Immunoassay)を使用して定量する。
2-3 Method 3 by cytokine quantification (method of quantifying IFNγ secreted into the culture supernatant)
PBMCs are suspended in a suitable medium at a cell concentration of approximately 2 × 10 6 / mL, and the CTL epitope peptide of the present invention is added. Incubate for 24-48 hours at 37 ° C in a 5% CO 2 oven. After the culture, the supernatant is collected, and the IFNγ concentration contained therein is quantified using a commercially available ELISA kit (for example, Quantikine ELISA Human IFNγ Immunoassay from R & D Systems).
定量方法3
 細胞表面タンパク質特異的抗体を用いて定量を行う。CTLエピトープペプチドに特異的なCTLは、特異的刺激により細胞表面タンパク質(例えばCD137、CD107a、CD107b、CD63、CD69など)の発現が増強することが報告されている。従って、CTLエピトープペプチド等で刺激したPBMCと細胞表面タンパク質を特異的に認識する標識抗体を混合することで、CTLは標識抗体と結合し、標識色素により染色される。染色されたCTLは、フローサイトメーター、顕微鏡等を用いてカウントし、定量することができる。さらに、標識抗体と異なる色素で標識された抗CD3抗体、抗CD4抗体、抗CD8抗体等を加えることで、特異的CTLのT細胞サブセットも同時に判定できる。
Quantitation method 3
Quantification is performed using cell surface protein specific antibodies. CTLs specific for CTL epitope peptides have been reported to enhance the expression of cell surface proteins (eg, CD137, CD107a, CD107b, CD63, CD69, etc.) by specific stimulation. Therefore, by mixing PBMC stimulated with a CTL epitope peptide and a labeled antibody that specifically recognizes a cell surface protein, CTL binds to the labeled antibody and is stained with a labeled dye. Stained CTL can be counted and quantified using a flow cytometer, a microscope or the like. Furthermore, by adding an anti-CD3 antibody, an anti-CD4 antibody, an anti-CD8 antibody or the like labeled with a dye different from the labeled antibody, the T cell subset of specific CTL can be determined simultaneously.
〔培養バックを用いたCTL大量培養〕
 本培養工程は従来法である抗原特異的な細胞傷害性T細胞(CTL)の誘導に樹状細胞を利用せず、自己血漿を用いることから安価にかつ簡便な操作で大量のCTLを調製できる事を特徴とする。技術の詳細は発明者らの出願特許に詳しく記載されている(特許出願第2009-166630号)。
[Large CTL culture using culture bag]
This culture process does not use dendritic cells for the induction of antigen-specific cytotoxic T cells (CTLs), which is a conventional method, and can produce large quantities of CTLs at low cost and with simple operations because it uses autologous plasma. It is characterized by things. Details of the technology are described in detail in the patent application filed by the inventors (Patent Application No. 2009-166630).
 HLA-A11陽性健康成人末梢血20~200 mLをヘパリン採血管に採取し、室温で3,000 rpmで10分間遠心処理する。上清の血漿を分取し、非働化処理(56℃、20分間)する。再度室温で3,000 rpmで10分間遠心処理し上清を回収後、小分け分注して-30℃に保存して随時溶解して培養用血漿として用いる。上清の血漿を分取した残りは、RPMI1640培地を等量加えフィコール比重遠心分離法にてPBMCを単離する。細胞数を計測し、10/11量の細胞をRPMI1640培地に懸濁させ、培養用血漿を終濃度10%になるように加える。続けてCTLエピトープペプチドを添加して、ルアーロックシリンジを用いて培養用バッグ(CultiLife215 TAKARA BIO社)に注入し37℃、5% CO2のCO2恒温槽にて静置する(CTL誘導バッグ)。1/11量の細胞はRPMI1640培地に懸濁させ、培養用血漿を終濃度10%になるように加え、抗CD3抗体を終濃度1μg/mLとなるように添加した後にルアーロックシリンジを用いて培養用バッグに注入し37℃、5% CO2のCO2恒温槽にて静置する(抗原提示細胞誘導バッグ)。2日後に等量のIL-2含有培地(RPMI1640 IL-2 100 IU/mL)を培養用バッグに注入する。CO2恒温槽内で5日間培養した後、等量のIL-2含有培地(AlyS505N IL-2 100 IU/mL)を培養用バッグに注入する。その後、3日おきに、等量のIL-2含有培地(AlyS505N IL-2 100 IU/mL)を注入する(ここでの間隔を必ずしも統一する必要はない)。以上の操作によって、培養開始から約14日間で抗原特異的CTLと抗原提示細胞の両者を誘導できる。およそ14日後に抗原提示細胞誘導バッグの細胞を回収し細胞数を数えて遠心処理後、RPMI1640培地に懸濁し、CTLエピトープペプチドを添加して1時間室温にて培養する。遠心後上清を吸引除去し、IL-2含有培地(AlyS505N IL-2 100 IU/mL 10%血漿)に懸濁する(ペプチドパルス抗原提示細胞)。同じくCTL誘導バッグの細胞を回収し細胞数を数えて遠心処理後、上清を吸引除去し細胞はIL-2含有培地(AlyS505N IL-2 100 IU/mL 10%血漿)に懸濁する。CTL誘導バッグの細胞数と等量のペプチドパルス抗原提示細胞を混合しルアーロックシリンジを用いて、培養用バッグに注入する。その後、培養用バッグを37℃、5% CO2のCO2恒温槽内に移し、培養開始させる。1日後に培養用バッグに増殖用培地(AlyS505N IL-2 1000 IU/mL)を追加する。CO2恒温槽内で3日間培養した後、増殖用培地を培養用バッグに追加する。その後、2日おきに、増殖用培地の追加を行う。以上の操作により、培養開始から約20~24日間という短時間で抗原特異的CTLが得られる。 Collect 20-200 mL of HLA-A11 positive healthy adult peripheral blood in a heparin blood collection tube and centrifuge at 3,000 rpm for 10 minutes at room temperature. The supernatant plasma is collected and inactivated (56 ° C., 20 minutes). Centrifuge again at 3,000 rpm for 10 minutes at room temperature, collect the supernatant, aliquot, store at -30 ° C, dissolve at any time and use as culture plasma. For the remainder of the supernatant plasma fractionated, an equal amount of RPMI1640 medium is added, and PBMC is isolated by Ficoll specific gravity centrifugation. The number of cells is counted, 10/11 amount of cells are suspended in RPMI1640 medium, and culture plasma is added to a final concentration of 10%. By adding CTL epitope peptide followed, injected 37 ° C. in the culture bag using a luer lock syringe (CultiLife215 TAKARA BIO Inc.), to stand at CO 2 thermostat at 5% CO 2 (CTL induction Bag) . 1/11 amount of cells were suspended in RPMI1640 medium, culture plasma was added to a final concentration of 10%, anti-CD3 antibody was added to a final concentration of 1 μg / mL, and then a luer lock syringe was used. It is poured into a culture bag and allowed to stand in a CO 2 constant temperature bath at 37 ° C. and 5% CO 2 (antigen-presenting cell induction bag). Two days later, an equal volume of IL-2 containing medium (RPMI1640 IL-2 100 IU / mL) is injected into the culture bag. After culturing in a CO 2 thermostat for 5 days, an equal volume of IL-2 containing medium (AlyS505N IL-2 100 IU / mL) is injected into the culture bag. Then, every 3 days, an equal volume of IL-2 containing medium (AlyS505N IL-2 100 IU / mL) is injected (the interval here is not necessarily uniform). By the above operation, both antigen-specific CTL and antigen-presenting cells can be induced in about 14 days from the start of culture. Approximately 14 days later, cells in the antigen-presenting cell induction bag are collected, the number of cells is counted, centrifuged, suspended in RPMI1640 medium, CTL epitope peptide is added, and cultured at room temperature for 1 hour. After centrifugation, the supernatant is removed by suction and suspended in a medium containing IL-2 (AlyS505N IL-2 100 IU / mL 10% plasma) (peptide pulse antigen-presenting cells). Similarly, the cells in the CTL induction bag are collected, counted and centrifuged, and the supernatant is removed by aspiration. The cells are suspended in an IL-2 containing medium (AlyS505N IL-2 100 IU / mL 10% plasma). Peptide pulse antigen-presenting cells in an amount equal to the number of cells in the CTL induction bag are mixed and injected into a culture bag using a luer lock syringe. Thereafter, the culture bag is transferred to a CO 2 thermostatic bath at 37 ° C. and 5% CO 2 to start the culture. One day later, the growth medium (AlyS505N IL-2 1000 IU / mL) is added to the culture bag. After culturing for 3 days in a CO 2 thermostatic bath, the growth medium is added to the culture bag. Thereafter, a growth medium is added every two days. By the above operation, antigen-specific CTL can be obtained in a short time of about 20 to 24 days from the start of culture.
〔CTLエピトープ候補ペプチドの選択〕
1.コンピュータを用いた分析
 本発明のCKAP4に特異的なCTLエピトープ候補ペプチドは、CKAP4タンパク質のアミノ酸配列について、目的とするHLAクラスI分子に対して結合モチーフを有する8~12個のアミノ酸よりなるペプチドを検索し得る、インターネット上に公開されている複数のソフトウェア(Lundegaard C, Lund O, Buus S, Nielsen M, Major histocompatibility complex class I binding predictions as a tool in epitope discovery. Immunology., 2010;130:309-318)に照合して選択する事ができる。
[Selection of CTL epitope candidate peptide]
1. Analysis using computer The CTL epitope candidate peptide specific for CKAP4 of the present invention is a peptide comprising 8 to 12 amino acids having a binding motif for the target HLA class I molecule with respect to the amino acid sequence of the CKAP4 protein. Multiple software published on the Internet that can be searched (Lundegaard C, Lund O, Buus S, Nielsen M, Major histocompatibility complex class I binding predictions as a tool in epitope discovery. Immunology., 2010; 130: 309- 318) can be selected.
2.アンカーモチーフを用いた検討
 HLAクラスI分子は、主としてHLA-A、HLA-B、HLA-Cがあり、これらに結合して提示されるエピトープペプチドは、8~10個のアミノ酸からなる。エピトープペプチドのN末端側から2番目と、9あるいは10番目のアミノ酸はHLAクラスI分子との結合に対して最も重要なアミノ酸であり、アンカーモチーフと呼ばれている。このアンカーモチーフは、各々のHLAクラスI分子の種類によって異なることが報告されている。例えば、世界的に最も研究が進められているHLA-A2分子に結合するペプチドとしては、N末端より2番目の位置にLeuが配置され、9あるいは10番目の位置にLeu又はValが配置されたペプチドであって、9~10個のアミノ酸からなるペプチドが最も良く知られている(T Sudo, N Kamikawaji, A Kimura, Y Date, CJ Savoie, H Nakashima, E Furuichi, S Kuhara, and T Sasazuki Differences in MHC class I self peptide repertoires among HLA-A2 subtypes. J. Immunol., 1995;155:4749-4756)。また、日本人を含むアジアの人種に多いHLA-A24分子に結合するペプチドとしては、N末端より2番目の位置にTyr、Phe、Met又はTrpのいずれかが配置され、9あるいは10番目の位置にLeu、Ile、Trp又はPheのいずれかが配置されたペプチドであって、9~10個のアミノ酸からなるペプチドが最もよく知られている(A Kondo, J Sidney, S Southwood, MF del Guercio, E Appella, H Sakamoto, E Celis, HM Grey, RW Chesnut, and RT Kubo, Prominent roles of secondary anchor residues in peptide binding to HLA-A24 human class I molecules., J. Immunol., 1995;155:4307-4312)。タンパク質のアミノ酸配列中からこのアンカーモチーフを有する8~12個のアミノ酸からなる配列を検索し、CTLエピトープ候補ペプチドを選択する事ができる。
2. Examination using anchor motifs HLA class I molecules mainly include HLA-A, HLA-B, and HLA-C, and the epitope peptides that are displayed by binding to these consist of 8 to 10 amino acids. The second, ninth or tenth amino acid from the N-terminal side of the epitope peptide is the most important amino acid for binding to the HLA class I molecule, and is called an anchor motif. It has been reported that this anchor motif varies depending on the type of each HLA class I molecule. For example, as a peptide that binds to the HLA-A2 molecule, the most studied in the world, Leu is placed at the second position from the N-terminus, and Leu or Val is placed at the 9th or 10th position. Peptides consisting of 9-10 amino acids are best known (T Sudo, N Kamikawaji, A Kimura, Y Date, CJ Savoie, H Nakashima, E Furuichi, S Kuhara, and T Sasazuki Differences in MHC class I self peptide repertoires among HLA-A2 subtypes. J. Immunol., 1995; 155: 4749-4756). In addition, as a peptide that binds to the HLA-A24 molecule, which is common in Asian races including Japanese, either Tyr, Phe, Met or Trp is placed at the second position from the N-terminus, and the 9th or 10th peptide Peptides with any of Leu, Ile, Trp or Phe at the position and consisting of 9 to 10 amino acids are best known (A Kondo, J Sidney, S Southwood, MF del Guercio , E Appella, H Sakamoto, E Celis, HM Gray, RW Chesnut, and RT Kubo, Prominent roles of secondary anchor residues in peptide binding to HLA-A24 human class I molecules., J. Immunol., 1995; 155: 4307- 4312). By searching a sequence consisting of 8 to 12 amino acids having this anchor motif from the amino acid sequence of the protein, a CTL epitope candidate peptide can be selected.
〔ペプチドの合成〕
 本発明の配列番号:36~47に示されるCTLエピトープ候補ペプチドは、従来の各種のペプチド合成方法によって調製され得る。例えば、固相ペプチド合成法等の有機化学的合成法、あるいは、ペプチドをコードする核酸を調製し、組換えDNA技術を用いて調製することも可能である。また、市販の化学合成装置(例えば、アプライドバイオシステムズ社のペプチド合成装置)による合成も可能である。
(Peptide synthesis)
The CTL epitope candidate peptides shown in SEQ ID NOs: 36 to 47 of the present invention can be prepared by various conventional peptide synthesis methods. For example, organic chemical synthesis methods such as solid phase peptide synthesis methods, or nucleic acids encoding peptides can be prepared and prepared using recombinant DNA technology. Moreover, the synthesis | combination by a commercially available chemical synthesizer (For example, the peptide synthesizer of Applied Biosystems) is also possible.
〔CTLエピトープ候補ペプチドの検討〕
 上記の通り、予測ソフトを用いることで、タンパク質を構成するアミノ酸配列を短時間で分析し、CTLエピトープ候補ペプチドとHLAとの結合力や解離の半減期を予測する事が可能である。しかしながら、この様な予測ソフトを用いて得られた候補ペプチドは、必ずしもCTLエピトープとして生体内で機能しているわけではない。
[Examination of CTL epitope candidate peptides]
As described above, by using the prediction software, it is possible to analyze the amino acid sequence constituting the protein in a short time, and predict the binding force and the half-life of dissociation between the CTL epitope candidate peptide and HLA. However, candidate peptides obtained using such prediction software do not necessarily function in vivo as CTL epitopes.
 第一の理由として、これらの分析ソフトが、タンパク質の分解によるペプチド断片産生の効率をほとんど加味していないことが挙げられる。CTLエピトープは8~12アミノ酸残基長のペプチド断片で構成されるが、これらは細胞内で抗原タンパク質が種々の分解を受けて産生される。具体的には、まず抗原タンパク質が細胞質内でプロテアソームにより分解を受けて、ペプチドのC末端が形成される。その後、TAP(transporter associated with antigen processing)分子により小胞体内腔に輸送され、そこでさらにERAP1というプロテアーゼによりN末端が形成されてはじめて、8~12アミノ酸残基長のペプチド断片になる。CTLエピトープ候補ペプチドの予測には、これらの細胞内におけるペプチド断片の産生過程・効率が考慮されなければならないが、現在これを正確に予測することはできない。このため、予測ソフトを用いて得られた候補ペプチドの中には、実際には細胞内で8~12アミノ酸残基長のペプチド断片を構成できないものが含まれる。 The first reason is that these analysis softwares hardly take into account the efficiency of peptide fragment production by protein degradation. The CTL epitope is composed of peptide fragments having a length of 8 to 12 amino acid residues, and these are produced by various degradation of antigen proteins in cells. Specifically, the antigen protein is first degraded by the proteasome in the cytoplasm to form the C-terminus of the peptide. Thereafter, the peptide fragment is transported to the endoplasmic reticulum lumen by a TAP (transporter-associated-with-antigen-processing) molecule, where it becomes a peptide fragment of 8 to 12 amino acid residues only after the N-terminus is formed by the protease ERAP1. The prediction of CTL epitope candidate peptides must take into account the production process and efficiency of peptide fragments in these cells, but this cannot be accurately predicted at present. For this reason, candidate peptides obtained using the prediction software include those that cannot actually constitute peptide fragments having a length of 8 to 12 amino acid residues in the cell.
 第二の理由は、T細胞の選択的分化過程にある。がん抗原は自己抗原であり、自己抗原由来のペプチド断片に強く反応するT細胞はネガティブセレクションにより胸腺内でアポトーシスが誘導され、排除される。一方で、外来抗原に反応するT細胞はポジティブセレクションにより選択される。この様なT細胞の分化過程から、自己抗原由来のペプチド断片と反応するT細胞は、通常は胸腺で除去されており、末梢血中にはごく一部しか存在しないと考えられている。また、全ての有核細胞、血小板の膜表面に発現しているHLA分子には自己抗原由来のペプチド断片が提示されており、HLAに結合するペプチド断片は無数に存在する。つまり、細胞膜表面上でHLAが提示する自己抗原由来のペプチド断片のうち、CTLが認識するものはほんの一部にすぎず、予測ソフトによるCTLエピトープ候補ペプチドのほとんどは、CTLによって認識されないものであると考えられている。即ち、抗原性が無いと考えられている。 The second reason is the selective differentiation process of T cells. Cancer antigens are self-antigens, and T cells that react strongly with self-antigen-derived peptide fragments induce apoptosis in the thymus by negative selection and are eliminated. On the other hand, T cells that react with foreign antigens are selected by positive selection. From such a T cell differentiation process, T cells that react with a self-antigen-derived peptide fragment are usually removed by the thymus, and it is thought that only a small part is present in peripheral blood. In addition, peptide fragments derived from autoantigens are presented on HLA molecules expressed on the membrane surface of all nucleated cells and platelets, and there are innumerable peptide fragments that bind to HLA. In other words, CTL recognizes only a part of the peptide fragments derived from HLA on the cell membrane surface that are recognized by HLA, and most of the CTL epitope candidate peptides by the prediction software are not recognized by CTL. It is believed that. That is, it is considered that there is no antigenicity.
 これらの理由から、単に予測ソフトでCTLエピトープ候補ペプチドを得る事と、免疫応答を担うCTLエピトープペプチドを同定する事は大きく異なるといえる。発明者らは、MHC-テトラマー試薬を用いて、候補ペプチドに特異的な生体内のCTLを直接的に検出する手法によりCTLエピトープペプチドの同定を行っている。すなわち、末梢血などの試料から、MHC-テトラマー試薬によって特異的CTLが検出されるという事は、候補ペプチド特異的な免疫応答が生体内で惹起されている事を意味し、候補ペプチドがCTLエピトープペプチドである事を示す。 For these reasons, it can be said that obtaining a CTL epitope candidate peptide by simply using prediction software is greatly different from identifying a CTL epitope peptide responsible for an immune response. The inventors have identified a CTL epitope peptide by a method of directly detecting in vivo CTL specific for a candidate peptide using an MHC-tetramer reagent. In other words, the detection of specific CTLs from a sample such as peripheral blood by the MHC-tetramer reagent means that a candidate peptide-specific immune response has been induced in vivo, and the candidate peptide is a CTL epitope. Indicates that it is a peptide.
 以上から、前述の方法にて選択されたCTLエピトープ候補ペプチドは、以下に示す(1)~(3)の検討を経て初めてCKAP4特異的CTLエピトープペプチドになり得る。
(1)培養細胞株を用いた検討
 プロテアソームによるタンパク質分解で生じたペプチド断片はTAP分子により小胞体内腔へと導かれ、HLAクラスI分子とβ2-ミクログロブリンとの複合体に結合し、細胞膜表面へ輸送される。このTAP分子を欠損した、TAP遺伝子欠損細胞株は、内在性タンパク質の分解産物であるペプチド断片を細胞膜表面に発現できない。また、代表的なTAP遺伝子欠損細胞株であるヒトリンパ芽球様細胞株T2、あるいはT2にHLA-A24分子を遺伝子導入した細胞株(T2-A24)のHLA分子は、細胞膜表面上での発現が非常に不安定である。しかし、外部から供給したペプチドと結合した場合、HLA分子は細胞膜表面上で安定化する。この性質を利用して、TAP遺伝子欠損細胞株は、HLA分子と外部から供給したペプチドの結合性を検証する実験に使用する事が可能である。具体的には、TAP遺伝子欠損細胞株とCTLエピトープ候補ペプチドを混合培養後、抗HLA抗体で染色し、フローサイトメトリーでHLA分子の発現強度の変化を算出する事で、目的とするHLA分子とCTLエピトープ候補ペプチドの結合性を検討できる。TAP遺伝子欠損細胞株が発現するHLA分子に添加したCTLエピトープ候補ペプチドが結合した場合、HLA分子とペプチドの複合体は細胞膜表面上で安定化し、抗HLA抗体で染色した場合、HLA分子の発現増強が観察される。一方、添加したCTLエピトープ候補ペプチドがHLA分子と結合性を示さない場合は、細胞膜表面上のHLA分子は不安定であり、抗HLA抗体で染色してもHLA分子の発現増強は確認されない。この様な方法を用いて、HLA分子とCTLエピトープ候補ペプチドの結合性を検証する事が可能である。
(2)フォールディングテスト
 MHC-テトラマー試薬は、MHC(ヒトの場合はHLA)とβ2-ミクログロブリン及びペプチド断片の3者複合体(MHC-モノマー)を試験管内で製造し、MHC-モノマーを4量体化した試薬である。MHC-テトラマー試薬は、MHC拘束性を示す抗原特異的なCTLを選択的に検出できる唯一の試薬である。またMHC-テトラマー試薬は、抗CD(cluster of differentiation)抗体や抗サイトカイン抗体等と共染色後、フローサイトメトリーで分析する事でCTLの量を定量できるだけでなく、その活性化状態や分化段階を一つ一つの細胞毎に評価する事が可能である。MHC-テトラマー試薬製造の最初のステップは、原料であるMHCとβ2-ミクログロブリンとペプチドを試験管内の適切な溶液中で混合するフォールディングから始まる。フォールディング溶液中では、この3種類の原料の会合反応により3者複合体(MHC-モノマー)を形成する。この際、MHCとペプチドの結合力が高ければ、この会合反応はスムーズに進行し、ゲル濾過カラムで分析する事で、3種類の原料の複合体(MHC-モノマー)の検出が可能になる。一方、MHCとペプチドの結合力が無い場合は、MHC-モノマーは殆ど検出されない。従って、フォールディング溶液を経時的に分析する事で、或いは熱処理等を行う事で、MHCとペプチドの結合性と安定性を検証する事が可能である。
(3)エピトープペプチド特異的CTLの検出
 健常人から分離した末梢血単核球(peripheral blood mononuclear cells;PBMC)を適切な培地に1~3×106/mLの細胞濃度で浮遊させ、これに合成したCTLエピトープ候補ペプチド(配列番号:36~47)のいずれか、または数種類を1~100 μg/mLの濃度となるように加え、96ウェル培養プレートに100μL/ウェルとなるように分注する。5% CO2恒温槽にて37℃で培養し、2日後にIL-2を添加する。以後、ペプチドとIL-2による刺激を7~14日に1度行うことによりCTLを誘導する。このようにして誘導したCTLがCTLエピトープ候補ペプチドに対して特異性があるかどうかの検討は、MHC-テトラマー法で判定する。MHC-テトラマー試薬で染色可能なCTLが検出された場合、使用したCTLエピトープ候補ペプチドはCTL誘導能を有する抗原性ペプチド(エピトープペプチド)と同定する事が可能である。一般的に胸腺から移出したT細胞(ナイーブT細胞)は樹状細胞やマクロファージ等の抗原提示細胞による抗原刺激を受けて初めて活性化してエフェクターT細胞に分化する。単純にPBMCとペプチドを混合培養するこの方法では、特に人為的に調製した抗原提示細胞を用いていないため、末梢血のナイーブT細胞が分化している可能性は低く、PBMCに存在していたエフェクター/メモリーT細胞がペプチド刺激により増殖していると考えられる。従って、MHC-テトラマー試薬で染色可能なCTLが検出された場合は、もともと供血者末梢血PBMCにエフェクター/メモリータイプのCTLが存在している事を意味しており、恒常的に抗原性ペプチドを介する免疫応答が生体内で惹起されていることを示唆している。
From the above, the CTL epitope candidate peptide selected by the above-described method can be a CKAP4-specific CTL epitope peptide only after the following studies (1) to (3).
(1) Examination using cultured cell lines Peptide fragments generated by proteasomal proteolysis are guided to the endoplasmic reticulum lumen by TAP molecules, bound to the complex of HLA class I molecules and β2-microglobulin, and the cell membrane Transported to the surface. A TAP gene-deficient cell line deficient in this TAP molecule cannot express peptide fragments, which are degradation products of endogenous proteins, on the cell membrane surface. In addition, human lymphoblastoid cell line T2, which is a typical TAP gene-deficient cell line, or a cell line in which HLA-A24 molecule is introduced into T2 (T2-A24) is expressed on the cell membrane surface. Very unstable. However, when bound to an externally supplied peptide, the HLA molecule is stabilized on the cell membrane surface. Using this property, the TAP gene-deficient cell line can be used in experiments for verifying the binding property between HLA molecules and externally supplied peptides. Specifically, after mixing culture of TAP gene-deficient cell line and CTL epitope candidate peptide, staining with anti-HLA antibody, and calculating the change in expression intensity of HLA molecule by flow cytometry, the target HLA molecule and The binding of CTL epitope candidate peptides can be examined. When the CTL epitope candidate peptide added to the HLA molecule expressed by the TAP gene-deficient cell line binds, the HLA molecule-peptide complex is stabilized on the cell membrane surface, and when stained with an anti-HLA antibody, the expression of the HLA molecule is enhanced. Is observed. On the other hand, if the added CTL epitope candidate peptide does not bind to the HLA molecule, the HLA molecule on the cell membrane surface is unstable, and even when stained with an anti-HLA antibody, enhanced expression of the HLA molecule is not confirmed. Using such a method, it is possible to verify the binding between the HLA molecule and the CTL epitope candidate peptide.
(2) Folding test MHC-tetramer reagent is a ternary complex (MHC-monomer) consisting of MHC (HLA for humans), β2-microglobulin and peptide fragments in vitro. It is an incorporated reagent. The MHC-tetramer reagent is the only reagent that can selectively detect antigen-specific CTLs that are MHC restricted. In addition, MHC-tetramer reagent can not only quantify the amount of CTL by analyzing with flow cytometry after co-staining with anti-CD (cluster of differentiation) antibody, anti-cytokine antibody, etc., but also its activation state and differentiation stage It is possible to evaluate each cell individually. The first step in MHC-tetramer reagent production begins with folding where the raw materials MHC, β2-microglobulin and peptide are mixed in a suitable solution in a test tube. In the folding solution, a three-component complex (MHC-monomer) is formed by the association reaction of these three raw materials. At this time, if the binding force between the MHC and the peptide is high, this association reaction proceeds smoothly, and analysis with a gel filtration column makes it possible to detect a complex of three kinds of raw materials (MHC-monomer). On the other hand, when there is no binding force between MHC and peptide, MHC-monomer is hardly detected. Therefore, it is possible to verify the binding properties and stability of MHC and peptide by analyzing the folding solution over time or by performing heat treatment or the like.
(3) Detection of epitope peptide-specific CTL Peripheral blood mononuclear cells (PBMC) isolated from healthy individuals are suspended in an appropriate medium at a cell concentration of 1 to 3 × 10 6 / mL. Add any one or several of the synthesized CTL epitope candidate peptides (SEQ ID NO: 36 to 47) to a concentration of 1 to 100 μg / mL, and dispense into a 96-well culture plate at 100 μL / well. . Incubate at 37 ° C in a 5% CO 2 constant temperature bath, and add IL-2 after 2 days. Thereafter, CTL is induced by stimulation with peptide and IL-2 once every 7 to 14 days. Whether the CTL thus induced is specific for the CTL epitope candidate peptide is determined by the MHC-tetramer method. When CTL that can be stained with the MHC-tetramer reagent is detected, the used CTL epitope candidate peptide can be identified as an antigenic peptide (epitope peptide) having CTL inducing ability. In general, T cells (naive T cells) transferred from the thymus are activated and differentiated into effector T cells only upon antigen stimulation by dendritic cells, macrophages and other antigen-presenting cells. In this method of simply culturing PBMC and peptide in a mixed manner, it was unlikely that naive T cells in peripheral blood were differentiated because they did not use artificially prepared antigen-presenting cells. It is thought that effector / memory T cells are proliferating by peptide stimulation. Therefore, when CTL that can be stained with MHC-tetramer reagent is detected, it means that effector / memory type CTL is originally present in the donor's peripheral blood PBMC. This suggests that the mediated immune response is elicited in vivo.
〔CKAP4特異的MHC-モノマー及びMHC-テトラマー試薬の製造〕
 CKAP4特異的CTLエピトープ候補ペプチドを使用したMHC-モノマー及びMHC-テトラマー試薬は、公知の方法(US Patent Number 5,635,363、French Application Number FR9911133)により調製することができる。タンパク質発現用の遺伝子組換え宿主から精製したHLAクラスI分子、β2-ミクログロブリン及び本発明のCKAP4特異的CTLエピトープ候補ペプチドの3者の複合体であるMHC-モノマーをフォールディング溶液内で形成させる。組換えHLAクラスI分子のC末端には予めビオチン結合部位を付加しておき、MHC-モノマー形成後この部位にビオチンを付加する。市販の色素標識されたストレプトアビジンとビオチン化MHC-モノマーをモル比1:4で混合することによってMHC-テトラマー試薬を製造することができる。また細胞表面タンパク質に対する抗体(CD62L、CCR7やCD45RA等)と組み合わせて用いる事で、CTLの分化段階を調べる事ができる(Seder RA, Ahmed R. Similarities and differences in CD4+ and CD8+ effector and memory T cell generation. Nat Immunol. 2003;4:835-842)。あるいは細胞内サイトカイン染色法と組み合わせることで、CTLの機能性評価に用いる事も可能である。例えば、C型肝炎では持続感染が維持される原因のひとつとして、HCV(Hepatitis C virus)に対するCTLは存在するが、CTLがサイトカイン等を産生していない、あるいは産生するCTLの割合が極めて低く免疫学的に不応答性(anergy)になっている可能性が報告されている(Gruener NH, Lechner F, Jung MC, Diepolder H, Gerlach T, Lauer G, Walker B, Sullivan J, Phillips R, Pape GR, Klenerman P. Sustained dysfunction of antiviral CD8+ T lymphocytes after infection with hepatitis C virus. J Virol. 2001;75:5550-5558)。また骨髄移植後のHCMV特異的CTLについては、そのCTL存在の有無を調べるだけでなく、サイトカイン産生能の強弱を調べる事が、抗ウイルス薬投与等のタイミングを計るために有効であると考えられ始めている(Ozdemir E, St John LS, Gillespie G, Rowland-Jones S, Champlin RE, Molldrem JJ, Komanduri KV. Cytomegalovirus reactivation following allogeneic stem cell transplantation is associated with the presence of dysfunctional antigen-specific CD8+ T cells. Blood. 2002;100:3690-3697)。このように特異的なCTLエピトープペプチドを同定し、MHC-テトラマー試薬を製造すれば、特異的なCTLの定量と定性が可能になり、診断情報を得る上で多大な貢献が可能になる。
[Production of CKAP4-specific MHC-monomer and MHC-tetramer reagent]
MHC-monomer and MHC-tetramer reagent using a CKAP4-specific CTL epitope candidate peptide can be prepared by a known method (US Patent Number 5,635,363, French Application Number FR9911133). An MHC-monomer that is a complex of three of a HLA class I molecule purified from a recombinant host for protein expression, β2-microglobulin, and a CKAP4-specific CTL epitope candidate peptide of the present invention is formed in a folding solution. A biotin binding site is added to the C-terminus of the recombinant HLA class I molecule in advance, and biotin is added to this site after MHC-monomer formation. A MHC-tetramer reagent can be prepared by mixing commercially available dye-labeled streptavidin and biotinylated MHC-monomer at a molar ratio of 1: 4. It can also be used in combination with antibodies against cell surface proteins (CD62L, CCR7, CD45RA, etc.) to examine the differentiation stage of CTL (Seder RA, Ahmed R. Similarities and differences in CD4 + and CD8 + effector and memory T cell generation) Nat Immunol. 2003; 4: 835-842). Alternatively, it can be used for functional evaluation of CTL by combining with intracellular cytokine staining method. For example, in hepatitis C, CTL against HCV (Hepatitis C virus) exists as one of the causes for maintaining persistent infection, but CTL does not produce cytokines, or the proportion of CTL produced is extremely low. It has been reported that there is a possibility of anomaly (Gruener NH, Lechner F, Jung MC, Diepolder H, Gerlach T, Lauer G, Walker B, Sullivan J, Phillips R, Pape GR , Klenerman P. Sustained dysfunction of antiviral CD8 + T lymphocytes after infection with hepatitis C virus. J Virol. 2001; 75: 5550-5558). In addition, for HCMV-specific CTL after bone marrow transplantation, it is considered effective not only to examine the presence or absence of CTL but also to examine the strength of cytokine production in order to measure the timing of administration of antiviral drugs, etc. Cytomegalovirus reactivation following allogeneic stem cell transplantation is associated with the presence of dysfunctional antigen-specific CD8 + T cells.Blood. 2002; 100: 3690-3697). Thus, if a specific CTL epitope peptide is identified and an MHC-tetramer reagent is produced, it becomes possible to quantify and qualify specific CTLs, and to make a great contribution to obtaining diagnostic information.
〔能動免疫ワクチン〕
ペプチドワクチン
 本発明のCTLエピトープペプチドは、能動免疫療法においてペプチドワクチンとして用いることができる。すなわち、本発明のCTLエピトープペプチドを含んでなるワクチンを患者に投与し、CKAP4特異的CTLを体内で増殖させ、悪性腫瘍に対する治療が期待できる。
[Active immune vaccine]
Peptide vaccine The CTL epitope peptide of the present invention can be used as a peptide vaccine in active immunotherapy. That is, a vaccine comprising the CTL epitope peptide of the present invention is administered to a patient, and CKAP4-specific CTL is proliferated in the body, so that treatment for malignant tumor can be expected.
抗原提示細胞を利用したワクチン
 本発明のCTLエピトープペプチドが提示された抗原提示細胞は、能動免疫療法においてワクチンとして用いることができる。CTLエピトープペプチドが提示された抗原提示細胞とは、
  1.適当な培養液中で、抗原提示細胞とCTLエピトープペプチドを30分から1時間混合したCTLエピトープペプチドパルス抗原提示細胞
  2.CTLエピトープペプチドをコードする核酸を用い、遺伝子導入等で抗原提示細胞にCTLエピトープペプチドを提示させた細胞
  3.人工的に調製した抗原提示能を有する人工抗原提示細胞
を意味する。抗原提示細胞とは、例えば、樹状細胞、B細胞、マクロファージ、ある種のT細胞等を意味するが、該ペプチドが結合し得るHLA分子をその細胞膜表面上に発現する細胞であって、CTL刺激能を有するものを意味する。人工的に調製した抗原提示能を有する人工抗原提示細胞とは、例えば脂質二重膜やプラスティックあるいはラテックス等のビーズにHLA分子とCTLエピトープペプチドとβ2-ミクログロブリンとの3者複合体を固定し、CTLを刺激し得るCD80、CD83やCD86等の共刺激分子を固定するか、もしくは、共刺激分子と結合するT細胞側のリガンドであるCD28に対してアゴニスティックに作用する抗体等を固定することで調製可能である(Oelke M, Maus MV, Didiano D, June CH, Mackensen A, Schneck JP. Ex vivo induction and expansion of antigen-specific cytotoxic T cells by HLA-Ig-coated artificial antigen-presenting cells. Nat Med. 2003;9:619-624、Walter S, Herrgen L, Schoor O, Jung G, Wernet D, Buhring HJ, Rammensee HG, Stevanovic S. Cutting edge: predetermined avidity of human CD8 T cells expanded on calibrated MHC/anti-CD28-coated microspheres. J Immunol. 2003;171:4974-4978、Oosten LE, Blokland E, van Halteren AG, Curtsinger J, Mescher MF, Falkenburg JH, Mutis T, Goulmy E. Artificial antigen-presenting constructs efficiently stimulate minor histocompatibility antigen-specific cytotoxic T lymphocytes. Blood. 2004;104:224-226)。
Vaccine using antigen-presenting cell The antigen-presenting cell on which the CTL epitope peptide of the present invention is presented can be used as a vaccine in active immunotherapy. Antigen-presenting cells with CTL epitope peptides presented
1. 1. CTL epitope peptide pulse antigen-presenting cells in which antigen-presenting cells and CTL epitope peptides are mixed for 30 minutes to 1 hour in an appropriate culture medium. 2. A cell in which a CTL epitope peptide is presented to an antigen-presenting cell by gene transfer or the like using a nucleic acid encoding a CTL epitope peptide. It means an artificial antigen-presenting cell having an antigen-presenting ability prepared artificially. The antigen-presenting cell means, for example, a dendritic cell, a B cell, a macrophage, a certain type of T cell, etc., and is a cell that expresses an HLA molecule to which the peptide can bind on its cell membrane surface, It means something that has stimulating ability. Artificial antigen-presenting cells with antigen-presenting ability are artificially prepared by immobilizing a ternary complex of HLA molecule, CTL epitope peptide and β2-microglobulin on beads such as lipid bilayer membrane, plastic or latex. Immobilize costimulatory molecules such as CD80, CD83, and CD86 that can stimulate CTLs, or fix antibodies that act agonistically on CD28, a T cell ligand that binds to costimulatory molecules. (Oelke M, Maus MV, Didiano D, June CH, Mackensen A, Schneck JP. Ex vivo induction and expansion of antigen-specific cytotoxic T cells by HLA-Ig-coated artificial antigen-presenting cells. Nat Med. 2003; 9: 619-624, Walter S, Herrgen L, Schoor O, Jung G, Wernet D, Buhring HJ, Rammensee HG, Stevanovic S. Cutting edge: predetermined avidity of human CD8 T cells expanded on calibrated MHC / anti -CD28-coated microspheres. J Immunol. 2003; 171: 4974-49 78, Oosten LE, Blokland E, van Halteren AG, Curtsinger J, Mescher MF, Falkenburg JH, Mutis T, Goulmy E. Artificial antigen-presenting constructs efficiently stimulate minor histocompatibility antigen-specific cytotoxic T lymphocytes.Blood. 2004; 104: 224 -226).
遺伝子ワクチン
 本発明のCTLエピトープペプチドの核酸は、能動免疫療法においてDNAワクチンや組換えウイルスベクターワクチン等に用いる事ができる。この場合、CTLエピトープペプチドの核酸配列は、組換えワクチンや、組換えウイルスワクチンを産生させる宿主に適合したcodon usageに変更する事が望ましい(Casimiro, D.R. et al. Comparative Immunogenicity in Rhesus Monkeys of DNA Plasmid, Recombinant Vaccinia Virus, and Replication-Defective Adenovirus Vectors Expressing a Human Immunodeficiency Virus Type 1 gag Gene. J. Virol., 2003;77:6305-6313、Berzofsky JA, Ahlers JD, Janik J, Morris J, Oh S, Terabe M, Belyakov IM. Progress on new vaccine strategies against chronic viral infections. J Clin Invest. 2004;114:450-462)。
Gene Vaccine The nucleic acid of the CTL epitope peptide of the present invention can be used for DNA vaccines, recombinant virus vector vaccines and the like in active immunotherapy. In this case, it is desirable to change the nucleic acid sequence of the CTL epitope peptide to codon usage suitable for the host producing the recombinant vaccine or the recombinant virus vaccine (Casimiro, DR et al. Comparative Immunogenicity in Rhesus Monkeys of DNA Plasmid , Recombinant Vaccinia Virus, and Replication-Defective Adenovirus Vectors Expressing a Human Immunodeficiency Virus Type 1 gag Gene. J. Virol., 2003; 77: 6305-6313, Berzofsky JA, Ahlers JD, Janik J, Morris J, Oh S, Terabe M, Belyakov IM. Progress on new vaccine strategies against chronic viral infections. J Clin Invest. 2004; 114: 450-462).
 本発明のCTLエピトープペプチド、又はCTLエピトープペプチドが提示された抗原提示細胞を含んでなるワクチンは、当分野において公知の方法を用いて調製することができる。例えば、かかるワクチンとしては、本発明のCTLエピトープペプチドを有効成分として含有する注射剤又は固形剤等がある。CTLエピトープペプチドは、中性又は塩の形態で処方することができ、例えば、薬学上許容され得る塩としては、塩酸、リン酸などの無機塩、又は、酢酸、酒石酸などの有機酸が挙げられる。また、本発明のCTLエピトープペプチドが提示された抗原提示細胞は、製薬上許容され、該ペプチド又は該細胞の活性と相容性を有する賦形剤、例えば、水、食塩水、デキストロース、エタノール、グリセロール、DMSO(dimethyl sulphoxide)、及びその他のアジュバント等、又はこれらの組み合わせと混合して用いることができる。さらに、必要に応じて、アルブミン、湿潤剤、乳化剤等の補助剤を添加してもよい。 A vaccine comprising a CTL epitope peptide of the present invention or an antigen-presenting cell on which a CTL epitope peptide is presented can be prepared using methods known in the art. For example, such a vaccine includes an injection or a solid preparation containing the CTL epitope peptide of the present invention as an active ingredient. The CTL epitope peptide can be formulated in a neutral or salt form. Examples of pharmaceutically acceptable salts include inorganic salts such as hydrochloric acid and phosphoric acid, and organic acids such as acetic acid and tartaric acid. . Further, the antigen-presenting cell on which the CTL epitope peptide of the present invention is presented is a pharmaceutically acceptable excipient compatible with the peptide or the activity of the cell, such as water, saline, dextrose, ethanol, It can be used by mixing with glycerol, DMSO (dimethyl sulphoxide), other adjuvants, or a combination thereof. Furthermore, you may add adjuvants, such as albumin, a wetting agent, and an emulsifier, as needed.
 本発明のワクチンは、非経口投与及び経口投与により投与することができるが、一般的には非経口投与が好ましい。非経口投与としては経鼻投与や皮下・皮内注射、筋肉内注射、静脈内注射等の注射剤、座薬等がある。また、経口投与としては、スターチ、マンニトール、ラクトース、ステアリン酸マグネシウム、セルロース等の賦形剤との混合物として調製することができる。 The vaccine of the present invention can be administered by parenteral administration or oral administration, but parenteral administration is generally preferred. Examples of parenteral administration include nasal administration, subcutaneous / intradermal injection, intramuscular injection, intravenous injection and other suppositories, and suppositories. For oral administration, it can be prepared as a mixture with excipients such as starch, mannitol, lactose, magnesium stearate, and cellulose.
 本発明のワクチンは、治療上有効な量で投与する。投与される量は、治療対象、免疫系に依存し、必要とする投与量は臨床医の判断により決定される。通常、適当な投与量は、患者一人当たり、CTLエピトープペプチドは1~100 mg、CTLエピトープペプチドパルス細胞では106~109個の含有量とする。また、投与間隔は、対象、目的により設定することができる。 The vaccine of the present invention is administered in a therapeutically effective amount. The dose to be administered depends on the subject to be treated and the immune system, and the required dose is determined by the judgment of the clinician. In general, the appropriate dose is 1 to 100 mg of CTL epitope peptide and 10 6 to 10 9 CTL epitope peptide pulsed cells per patient. In addition, the administration interval can be set according to the subject and purpose.
〔受動免疫ワクチン〕
 本発明のCTLエピトープペプチドは、受動免疫治療剤の調製に用いることができる。下記のようにして得られたCKAP4に特異的なCTLはヒトアルブミン含有PBS等に懸濁させて、CKAP4を発現している悪性腫瘍に対する受動免疫療法剤とすることができる。受動免疫療法剤に含まれるCKAP4に特異的なCTLは、以下のような調製方法によって得ることができ、CTLの純度を高める為に精製して用いる事も可能である。
[Passive immunization vaccine]
The CTL epitope peptide of the present invention can be used for the preparation of a passive immunotherapeutic agent. The CTL specific for CKAP4 obtained as described below can be suspended in human albumin-containing PBS or the like and used as a passive immunotherapeutic agent for malignant tumors expressing CKAP4. CTL specific for CKAP4 contained in the passive immunotherapeutic agent can be obtained by the following preparation method, and can be purified and used to increase the purity of CTL.
CTL調製方法1
 PBMCと、適当な濃度のCKAP4特異的MHC-テトラマー試薬を反応させる。MHC-テトラマー試薬と結合したCKAP4特異的CTLは標識色素により染色されるので、セルソーター、顕微鏡などを用いて染色されたCTLのみを単離する。このようにして単離されたCKAP4特異的なCTLは、抗CD3抗体、PHA、IL-2等のT細胞刺激薬剤や、X線照射あるいはマイトマイシン処理等で増殖能を損失させた抗原提示細胞で刺激増殖させ、受動免疫療法に必要な細胞数を確保する。
CTL preparation method 1
PBMC is reacted with an appropriate concentration of CKAP4-specific MHC-tetramer reagent. Since the CKAP4-specific CTL bound to the MHC-tetramer reagent is stained with the labeling dye, only the stained CTL is isolated using a cell sorter, a microscope or the like. CTLs specific for CKAP4 isolated in this way are anti-CD3 antibodies, PHA, IL-2 and other T cell stimulating agents, and antigen-presenting cells whose proliferation ability has been lost by X-ray irradiation or mitomycin treatment. Stimulate growth to ensure the number of cells required for passive immunotherapy.
CTL調製方法2
 CKAP4特異的MHC-モノマー及び/又はMHC-テトラマー試薬を無菌プレートなどに固相化し、PBMCを固相化プレートで培養する。プレートに固相化されたMHC-モノマー及び/又はMHC-テトラマー試薬に結合したCKAP4特異的CTLを単離するためには、結合せずに浮遊している他の細胞を洗い流した後に、プレート上に残ったCKAP4特異的CTLだけを新しい培地に懸濁する。このようにして単離されたCKAP4特異的CTLは、抗CD3抗体、PHA、IL-2等のT細胞刺激薬剤や、X照射あるいはマイトマイシン処理等で増殖能を損失させた抗原提示細胞で刺激増殖させ、受動免疫療法に必要な細胞数を確保する。
CTL preparation method 2
CKAP4-specific MHC-monomer and / or MHC-tetramer reagent is immobilized on a sterile plate and PBMC is cultured on the immobilized plate. In order to isolate the CKAP4-specific CTL bound to the MHC-monomer and / or MHC-tetramer reagent immobilized on the plate, after washing off other cells that are not bound, Only the remaining CKAP4-specific CTL is suspended in fresh medium. CKAP4-specific CTL isolated in this way is stimulated to proliferate on T-cell stimulating drugs such as anti-CD3 antibodies, PHA, IL-2, and antigen-presenting cells whose proliferation ability has been lost by treatment with X irradiation or mitomycin. And secure the number of cells required for passive immunotherapy.
CTL調製方法3
 CKAP4特異的MHC-モノマー及び/又はMHC-テトラマー試薬と、CD80、CD83、CD86等の共刺激分子か、もしくは、共刺激分子と結合するT細胞側のリガンドであるCD28に対してアゴニスティックに作用する抗体等を無菌プレートなどに固相化し、PBMCを固相化プレートで培養する。2日後にIL-2を培地に添加し5% CO2恒温槽にて37℃で7~10日培養する。培養した細胞を回収し、新たな固相化プレート上で培養を続ける。この操作を繰り返す事で受動免疫療法に必要な細胞数のCTLを確保する。
CTL preparation method 3
Acts agonistically on CKAP4-specific MHC-monomers and / or MHC-tetramer reagents and costimulatory molecules such as CD80, CD83, CD86, or CD28, a T cell ligand that binds to costimulatory molecules The antibody to be immobilized is immobilized on a sterile plate, and PBMC is cultured on the immobilized plate. Two days later, IL-2 is added to the medium and cultured in a 5% CO 2 constant temperature bath at 37 ° C for 7 to 10 days. The cultured cells are collected and cultured on a new solid phase plate. By repeating this operation, CTLs with the number of cells necessary for passive immunotherapy are secured.
CTL調製方法4
 PBMCあるいはT細胞を本発明のCTLエピトープペプチドで直接刺激するか、該ペプチドをパルスした抗原提示細胞、遺伝子導入した抗原提示細胞、または人工的に調製した抗原提示能を有する人工抗原提示細胞で刺激する。刺激は、in vitroですることができるが、in vivoでしてもよい。in vitroで刺激した場合は、刺激によって誘導されたCTLを5% CO2恒温槽にて37℃で7~14日培養する。培養においてCTLエピトープペプチドとIL-2、又は抗原提示細胞とIL-2による刺激を週に1度繰り返す事で受動免疫療法に必要な細胞数のCTLを確保する。
CTL preparation method 4
Stimulate PBMC or T cells directly with the CTL epitope peptide of the present invention, or with antigen-presenting cells pulsed with the peptide, gene-introduced antigen-presenting cells, or artificially prepared antigen-presenting cells with antigen-presenting ability To do. Stimulation can be in vitro, but may also be in vivo. When stimulated in vitro, CTL induced by stimulation is cultured at 37 ° C for 7 to 14 days in a 5% CO 2 thermostat. In culture, CTL of the number of cells necessary for passive immunotherapy is ensured by repeating stimulation with CTL epitope peptide and IL-2 or antigen-presenting cells and IL-2 once a week.
CTLの精製法
 CTL調製方法において、特異的CTLの割合が低い場合は、随時以下の方法を用いる事で特異的CTLを高純度で回収する事が可能である。
Purification method of CTL In the CTL preparation method, when the ratio of specific CTL is low, it is possible to recover the specific CTL with high purity by using the following method as needed.
MHC-テトラマー試薬による精製
 CKAP4特異的MHC-テトラマー試薬と、CTL調製方法にて誘導されたCTLを反応させ、MHC-テトラマー試薬を標識している標識色素に対する抗体等を磁気標識した2次抗体を用いて分離する事が可能である。このような磁気標識した2次抗体と、磁気標識細胞分離装置は、例えばDynal社やMiltenyi Biotec GmbH社から入手可能である。このようにして単離されたCKAP4特異的CTLは、抗CD3抗体、PHA、IL-2等のT細胞刺激薬剤で刺激増殖させ、受動免疫療法に必要な細胞数を確保する。
Purification with MHC-tetramer reagent CKAP4-specific MHC-tetramer reagent reacts with CTL induced by the CTL preparation method, and a secondary antibody magnetically labeled with an antibody against a labeled dye labeled with MHC-tetramer reagent And can be separated. Such a magnetically labeled secondary antibody and a magnetically labeled cell separation device are available from, for example, Dynal and Miltenyi Biotec GmbH. The CKAP4-specific CTL isolated in this manner is stimulated and proliferated with a T cell stimulating agent such as anti-CD3 antibody, PHA, IL-2, etc., and the number of cells necessary for passive immunotherapy is ensured.
分泌されるサイトカインによる精製
 CKAP4特異的CTLが、放出するサイトカイン等を利用して、CKAP4特異的CTLを精製する事ができる。例えば、Miltenyi Biotec GmbH社から入手可能なキットを用いる事で、CTLから放出されるサイトカインを細胞表面で特異抗体により補足し、サイトカイン特異的な標識抗体で染色し、続いて磁気標識した標識物質特異的な抗体を反応させた後、磁気標識細胞分離装置を用いて精製する事も可能である。このようにして単離されたCKAP4特異的CTLは、抗CD3抗体、PHA、IL-2等のT細胞刺激薬剤で刺激増殖させ、受動免疫療法に必要な細胞数を確保する。
Purification by secreted cytokine CKAP4-specific CTLs can be purified by using cytokines released by CKAP4-specific CTLs. For example, by using a kit available from Miltenyi Biotec GmbH, the cytokine released from CTL is supplemented with a specific antibody on the cell surface, stained with a cytokine-specific labeled antibody, and then magnetically labeled labeling substance specific It is also possible to purify using a magnetically labeled cell separation apparatus after reacting with a typical antibody. The CKAP4-specific CTL isolated in this manner is stimulated and proliferated with a T cell stimulating agent such as anti-CD3 antibody, PHA, IL-2, etc., and the number of cells necessary for passive immunotherapy is ensured.
細胞表面タンパク質特異的抗体を用いた精製
 特異的CTLの細胞表面では、特異的刺激により発現が増強する細胞表面タンパク質(例えばCD137, CD107a、CD107b、CD63、CD69など)が報告されている(Betts MR, Brenchley JM, Price DA, De Rosa SC, Douek DC, Roederer M, Koup RA. Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J Immunol Methods. 2003;281:65-78、Trimble LA, Shankar P, Patterson M, Daily JP, Lieberman J. Human immunodeficiency virus-specific circulating CD8 T lymphocytes have down-modulated CD3zeta and CD28, key signaling molecules for T-cell activation. J Virol. 2000;74:7320-7330、Watanabe K, Suzuki S, Kamei M, Toji S, Kawase T, Takahashi T, Kuzushima K, and Akatsuka Y. CD137-guided isolation and expansion of antigen-specific CD8 cells for potential use in adoptive immunotherapy. Int J Hematol, 2008;88;311-320)。このようなタンパク質に対する特異抗体を磁気標識する事で、磁気分離装置等を用いてCKAP4特異的CTLを精製する事が可能である。また、このような特異抗体に対する抗IgG抗体等を磁気標識する事でも同様にCKAP4特異的CTLの精製が可能である。あるいは、これら特異抗体を培養用のプラスティックプレートにコートし、このプレートを用いて刺激を加えたPBMCを培養し、プレートに結合しなかった細胞集団を洗い流す事でCKAP4特異的CTLを精製することも可能である。このようにして単離されたCKAP4特異的CTLは、抗CD3抗体、PHA、IL-2等のT細胞刺激薬剤で刺激増殖させ、受動免疫療法に必要な細胞数を確保する。
Purification using cell surface protein specific antibodies Cell surface proteins (eg CD137, CD107a, CD107b, CD63, CD69, etc.) whose expression is enhanced by specific stimulation have been reported on the cell surface of specific CTLs (Betts MR , Brenchley JM, Price DA, De Rosa SC, Douek DC, Roederer M, Koup RA.Sensitive and viable identification of antigen-specific CD8 + T cells by a flow cytometric assay for degranulation.J Immunol Methods.2003; 281: 65-78 , Trimble LA, Shankar P, Patterson M, Daily JP, Lieberman J. Human immunodeficiency virus-specific circulating CD8 T lymphocytes have down-modulated CD3zeta and CD28, key signaling molecules for T-cell activation. J Virol. 2000; 74: 7320 -7330, Watanabe K, Suzuki S, Kamei M, Toji S, Kawase T, Takahashi T, Kuzushima K, and Akatsuka Y.CD137-guided isolation and expansion of antigen-specific CD8 cells for potential use in adoptive immunotherapy.Int J Hematol , 2008; 88; 311-320). By magnetically labeling a specific antibody against such a protein, it is possible to purify CKAP4-specific CTL using a magnetic separator or the like. In addition, CKAP4-specific CTL can be similarly purified by magnetically labeling such an anti-IgG antibody against the specific antibody. Alternatively, these specific antibodies can be coated on a plastic plate for culture, and PBMCs can be cultured using this plate, and the CKAP4-specific CTL can be purified by washing away the cell population that did not bind to the plate. Is possible. The CKAP4-specific CTL isolated in this manner is stimulated and proliferated with a T cell stimulating agent such as anti-CD3 antibody, PHA, IL-2, etc., and the number of cells necessary for passive immunotherapy is ensured.
〔CKAP4特異的CTLの定量〕
 CKAP4特異的CTLが、がん患者の末梢血に存在するか否か、あるいはその量の変動を知ることは、CKAP4 特異的CTLエピトープペプチドを利用した能動免疫および受動免疫ワクチンの有効性を予測するために重要な情報である。また受動免疫ワクチンでは製剤中のCKAP4特異的CTLの含有量をあらかじめ測定する必要がある。CKAP4特異的CTLの定量は、本発明のCTLエピトープペプチドを用いた以下の3つの方法によって行うことができる。
[Quantification of CKAP4-specific CTL]
Knowing whether CKAP4-specific CTLs are present in the peripheral blood of cancer patients or the variation in their amounts predicts the effectiveness of active and passive immunity vaccines using CKAP4-specific CTL epitope peptides Because it is important information. In passive immunization vaccines, the content of CKAP4-specific CTL in the preparation must be measured in advance. Quantification of CKAP4-specific CTL can be performed by the following three methods using the CTL epitope peptide of the present invention.
定量方法1(MHC-テトラマー法)
 本発明のCTLエピトープペプチドを使用して製造したMHC-テトラマー試薬を用いて、末梢血中のCKAP4に特異的なCTLを定量することができる。定量は、例えば、以下のようにして実施することができる。末梢血あるいはPBMCを、適当な濃度のMHC-テトラマー試薬と反応させる。該MHC-テトラマー試薬と結合したCTLは標識色素により染色されるので、フローサイトメーター、顕微鏡等を用いてカウントする。MHC-テトラマー試薬と反応させる時に、MHC-テトラマー試薬と異なる色素で標識された抗CD3抗体、抗CD4抗体、抗CD8抗体等を反応させる事で、CKAP4特異的なCTLのT細胞サブセットも同時に判定できる。
Quantitation method 1 (MHC-tetramer method)
CTL specific for CKAP4 in peripheral blood can be quantified using the MHC-tetramer reagent produced using the CTL epitope peptide of the present invention. The quantification can be performed, for example, as follows. Peripheral blood or PBMC are reacted with an appropriate concentration of MHC-tetramer reagent. Since the CTL bound to the MHC-tetramer reagent is stained with a labeling dye, it is counted using a flow cytometer, a microscope or the like. When reacting with MHC-tetramer reagent, anti-CD3 antibody, anti-CD4 antibody, anti-CD8 antibody, etc. labeled with a different dye from MHC-tetramer reagent can be reacted to simultaneously determine T cell subsets of CKAP4-specific CTL it can.
定量方法2
 PBMCを本発明のCTLエピトープペプチドで刺激することによってCTLが産生するIFNγ(interferon gamma)、TNFα(tumor necrosis factor alpha)、インターロイキン等のサイトカイン及び/又はケモカインを定量する方法である。以下にIFNγを例にとり具体的に方法を示す。
Quantitation method 2
This is a method for quantifying cytokines and / or chemokines such as IFNγ (interferon gamma), TNFα (tumor necrosis factor alpha), and interleukin produced by CTL by stimulating PBMC with the CTL epitope peptide of the present invention. A specific method will be described below using IFNγ as an example.
2-1 サイトカイン定量による方法1(細胞内IFNγ産生細胞定量法)
 PBMCを適当な培地におよそ2×106/mLの細胞濃度で浮遊させ、本発明のCTLエピトープペプチドを加える。さらに細胞内蛋白輸送阻止剤(例えば、Brefeldin AやMonensin等)を加え、5% CO2恒温槽にて37℃で5~16時間培養する。培養後、T細胞マーカー抗体(抗CD3抗体、抗CD4抗体、抗CD8抗体)あるいは、MHC-テトラマー試薬と反応させ、細胞を固定後、膜透過処理を行い、色素標識抗IFNγ抗体を反応させる。フローサイトメーター等を用いて解析し、全細胞中、T細胞中あるいはMHC-テトラマー試薬陽性細胞中のIFNγ陽性細胞率を定量する。
2-1 Method 1 based on cytokine quantification (intracellular IFNγ producing cell quantification method)
PBMCs are suspended in a suitable medium at a cell concentration of approximately 2 × 10 6 / mL, and the CTL epitope peptide of the present invention is added. Furthermore, an intracellular protein transport inhibitor (for example, Brefeldin A, Monensin, etc.) is added, and cultured at 37 ° C. for 5 to 16 hours in a 5% CO 2 thermostat. After culturing, the cells are reacted with a T cell marker antibody (anti-CD3 antibody, anti-CD4 antibody, anti-CD8 antibody) or MHC-tetramer reagent, and after fixing the cells, membrane permeation treatment is performed, and a dye-labeled anti-IFNγ antibody is reacted. Analysis is performed using a flow cytometer or the like, and the IFNγ positive cell rate in total cells, T cells, or MHC-tetramer reagent positive cells is quantified.
2-2 サイトカイン定量による方法2(エリスポットアッセイ)
 抗IFNγ抗体を固相化した96ウェルMultiScreen-HAプレート(Millipore社)にPBMCをまく。その後、CTLエピトープペプチドを各ウェルに入れ37℃の5% CO2恒温槽培養器にて20時間培養する。翌日、プレートを洗浄し、抗IFNγ抗体、ペルオキシダーゼ標識抗IgG抗体の順で反応させる。さらにペルオキシダーゼの基質を加え、発色によりIFNγスポットを可視化し、実体顕微鏡かELISPOTアナライザー(C.T.L.社)を用いてカウントすることで定量する。
2-2 Method 2 by cytokine quantification (Elispot assay)
PBMC are plated on a 96-well MultiScreen-HA plate (Millipore) on which an anti-IFNγ antibody is immobilized. Thereafter, the CTL epitope peptide is placed in each well and cultured in a 5% CO 2 thermostat incubator at 37 ° C. for 20 hours. On the next day, the plate is washed and reacted with anti-IFNγ antibody and peroxidase-labeled anti-IgG antibody in this order. Further, a substrate of peroxidase is added, the IFNγ spot is visualized by color development, and quantified by counting using a stereomicroscope or ELISPOT analyzer (CTL).
2-3 サイトカイン定量による方法3(培養上清中に分泌されたIFNγを定量する方法)
 PBMCを適当な培地におよそ2×106/mLの細胞濃度で浮遊させ、本発明のCTLエピトープペプチドを加える。5% CO2恒温槽にて37℃で24~48時間培養する。培養後、上清を回収し、その中に含まれるIFNγ濃度を市販のELISAキット(例えばR&Dシステムズ社のQuantikine ELISA Human IFNγ Immunoassay)を使用して定量する。
2-3 Method 3 by cytokine quantification (method of quantifying IFNγ secreted into the culture supernatant)
PBMCs are suspended in a suitable medium at a cell concentration of approximately 2 × 10 6 / mL, and the CTL epitope peptide of the present invention is added. Incubate for 24-48 hours at 37 ° C in a 5% CO 2 oven. After the culture, the supernatant is collected, and the IFNγ concentration contained therein is quantified using a commercially available ELISA kit (for example, Quantikine ELISA Human IFNγ Immunoassay from R & D Systems).
定量方法3
 細胞表面タンパク質特異的抗体を用いて定量を行う。CTLエピトープペプチドに特異的なCTLは、特異的刺激により細胞表面タンパク質(例えばCD137, CD107a、CD107b、CD63、CD69など)の発現が増強する事が報告されている(Watanabe K, Suzuki S, Kamei M, Toji S, Kawase T, Takahashi T, Kuzushima K, and Akatsuka Y. CD137-guided isolation and expansion of antigen-specific CD8 cells for potential use in adoptive immunotherapy. Int J Hematol, 2008;88;311-320)。従って、CTLエピトープペプチド等で刺激したPBMCと細胞表面タンパク質を特異的に認識する標識抗体を混合することで、CTLは、標識抗体と結合し標識色素により染色される。染色されたCTLは、フローサイトメーター、顕微鏡等を用いてカウントし、定量することができる。さらに、標識抗体と異なる色素で標識された抗CD3抗体、抗CD4抗体、抗CD8抗体等を加える事で、特異的CTLのT細胞サブセットも同時に判定できる。
Quantitation method 3
Quantification is performed using cell surface protein specific antibodies. CTL specific for CTL epitope peptide has been reported to increase the expression of cell surface proteins (eg CD137, CD107a, CD107b, CD63, CD69, etc.) by specific stimulation (Watanabe K, Suzuki S, Kamei M , Toji S, Kawase T, Takahashi T, Kuzushima K, and Akatsuka Y. CD137-guided isolation and expansion of antigen-specific CD8 cells for potential use in adoptive immunotherapy. Int J Hematol, 2008; 88; 311-320). Therefore, by mixing PBMC stimulated with a CTL epitope peptide and a labeled antibody that specifically recognizes a cell surface protein, CTL binds to the labeled antibody and is stained with a labeled dye. Stained CTL can be counted and quantified using a flow cytometer, a microscope or the like. Furthermore, by adding an anti-CD3 antibody, an anti-CD4 antibody, an anti-CD8 antibody or the like labeled with a dye different from the labeled antibody, the T cell subset of specific CTL can be determined simultaneously.
〔ペプチド-MHC複合体に特異的な抗体〕
 同定したがん抗原エピトープペプチドとMHCの複合体に特異的なモノクローナル抗体(以下pMHC抗体)は、エピトープペプチドを細胞膜表面に提示するがん細胞を特異的に検出することができる。このため、pMHC抗体はがん免疫療法の診断薬として使用できるほか、抗体依存性細胞傷害活性(以下ADCC活性)や抗がん剤を結合させることなどにより、特異性の高い治療用抗体としても有用性がある。pMHC抗体の取得は一般的に、ファージディスプレイ法によって行われる。ファージディスプレイ法とは、ファージの感染力を失わせないように外来遺伝子を融合タンパク質として発現させるシステムのことである。これを利用し、ファージに抗体可変領域を発現させスクリーニングすることで、特異的なモノクローナル抗体を分離できることが知られている(Tsukahara T, Emori M, Murata K, Hirano T, Muroi N, Kyono M, Toji S, Watanabe K, Torigoe T, Kochin V, Asanuma H, Matsumiya H, Yamashita K, Himi T, Ichimiya S, Wada T, Yamashita T, Hasegawa T, Sato N. Specific targeting of a naturally presented osteosarcoma antigen, papillomavirus binding factor peptide, using an artificial monoclonal antibody. J Biol Chem. 2014;289(32):22035-22047)。pMHC抗体の取得は、抗体ライブラリーの作製、パニング、抗体の単離、評価といった流れで行われる。パニングには、がん抗原エピトープペプチドとMHCの複合体(MHC-モノマー)をELISAプレートなどに固相化、あるいはビオチン-アビジン結合で固定したものを使用し、これにファージライブラリーを反応させ、洗浄・溶出を繰り返すことで、エピトープペプチドとMHCの複合体に特異的な、結合力の高い抗体を単離できる。得られた抗体は、前述のTAP遺伝子欠損株T2にエピトープペプチドを添加し、抗体を反応させ、FCMで平均蛍光強度を測定することなどにより評価可能である。
[Antibodies specific to peptide-MHC complexes]
The identified monoclonal antibody specific for the complex of cancer antigen epitope peptide and MHC (hereinafter referred to as pMHC antibody) can specifically detect cancer cells presenting the epitope peptide on the surface of the cell membrane. For this reason, pMHC antibodies can be used as diagnostic agents for cancer immunotherapy, and can also be used as highly specific therapeutic antibodies by binding antibody-dependent cytotoxicity (ADCC activity) or anticancer drugs. There is utility. In general, pMHC antibodies are obtained by the phage display method. The phage display method is a system for expressing a foreign gene as a fusion protein so as not to lose the infectivity of the phage. It is known that specific monoclonal antibodies can be isolated by expressing and screening antibody variable regions on phages (Tsukahara T, Emori M, Murata K, Hirano T, Muroi N, Kyono M, Toji S, Watanabe K, Torigoe T, Kochin V, Asanuma H, Matsumiya H, Yamashita K, Himi T, Ichimiya S, Wada T, Yamashita T, Hasegawa T, Sato N. Specific targeting of a naturally presented osteosarcoma antigen, papillomavirus binding factor peptide, using an artificial monoclonal antibody. J Biol Chem. 2014; 289 (32): 22035-22047). Acquisition of a pMHC antibody is performed in the flow of preparation of an antibody library, panning, antibody isolation, and evaluation. For panning, a cancer antigen epitope peptide and MHC complex (MHC-monomer) is immobilized on an ELISA plate or immobilized with a biotin-avidin bond, and this is reacted with a phage library. By repeating washing and elution, it is possible to isolate an antibody having a high binding force that is specific for the complex of epitope peptide and MHC. The obtained antibody can be evaluated by adding an epitope peptide to the aforementioned TAP gene-deficient strain T2, reacting the antibody, and measuring the average fluorescence intensity with FCM.
 なお、本明細書において引用された全ての先行技術文献は、参照として本明細書に組み入れられる。 Note that all prior art documents cited in this specification are incorporated herein by reference.
 以下に実施例を示し、本発明を具体的に説明するが、本発明はこれらに限定されるものではない。特に断りがない限り、実験法は成書(免疫実験操作法、右田俊介、紺田進、本庶佑、濱岡利之、南江堂 1995)を参考に行った。
〔実施例1〕
〔EBV特異的CTLエピトープ候補ペプチドの選択〕
 EBVは、発現するタンパクの違いなどによって、タイプ1とタイプ2に分類されている。ヒトに感染・潜伏しているのはほとんどがタイプ1であり、AG876をはじめとするタイプ2の感染はアジアでは稀である(Dambaugh T, Hennessy K, Chamnankit L, Kieff E. U2 region of Epstein-Barr virus DNA may encode Epstein-Barr nuclear antigen 2. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7632-6)。しかし、同一個体でのEBVの共感染例も報告されており、EBV感染株の人種・地域依存的な多様性が報告されている(Apolloni A, Sculley TB. Detection of A-type and B-type Epstein-Barr virus in throat washings and lymphocytes. Virology. 1994 Aug 1;202(2):978-81、Correa RM, Fellner MD, Alonio LV, Durand K, Teyssie AR, Picconi MA. Epstein-barr virus (EBV) in healthy carriers: Distribution of genotypes and 30 bp deletion in latent membrane protein-1 (LMP-1) oncogene. J Med Virol. 2004 Aug;73(4):583-8、 Klemenc P, Marin J, Soba E, Gale N, Koren S, Strojan P. Distribution of Epstein-Barr virus genotypes in throat washings, sera, peripheral blood lymphocytes and in EBV positive tumor biopsies from Slovenian patients with nasopharyngeal carcinoma. J Med Virol. 2006 Aug;78(8):1083-90、Trimeche M, Bonnet C, Korbi S, Boniver J, de Leval L. Association between Epstein-Barr virus and Hodgkin's lymphoma in Belgium: a pathological and virological study. Leuk Lymphoma. 2007 Jul;48(7):1323-31、Tiwawech D, Srivatanakul P, Karalak A, Ishida T. Association between EBNA2 and LMP1 subtypes of Epstein-Barr virus and nasopharyngeal carcinoma in Thais.
J Clin Virol. 2008 May;42(1):1-6. )。これまでに、複数のEBV株が単離されているが、共感染や株の多様性の問題で、塩基配列の解析に困難をきたし、全塩基配列が決定されたのはB95.8, AG876, MUTU, GD1, GD2, HKNPC1およびAKATAの計7種の株のみである(Baer R, Bankier AT, Biggin MD, Deininger PL, Farrell PJ, Gibson TJ, Hatfull G, Hudson GS, Satchwell SC, Seguin C, et al. DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature. 1984 Jul 19-25;310(5974):207-11、Zeng MS, Li DJ, Liu QL, Song LB, Li MZ, Zhang RH, Yu XJ, Wang HM, Ernberg I, Zeng YX. Genomic sequence analysis of Epstein-Barr virus strain GD1 from a nasopharyngeal carcinoma patient. J Virol. 2005 Dec;79(24):15323-30、Dolan A, Addison C, Gatherer D, Davison AJ, McGeoch DJ. The genome of Epstein-Barr virus type 2 strain AG876.
Virology. 2006 Jun 20;350(1):164-70、Liu P, Fang X, Feng Z, Guo YM, Peng RJ, Liu T, Huang Z, Feng Y, Sun X, Xiong Z, Guo X, Pang SS, Wang B, Lv X, Feng FT, Li DJ, Chen LZ, Feng QS, Huang WL, Zeng MS, Bei JX, Zhang Y, Zeng YX. Direct sequencing and characterization of a clinical isolate of Epstein-Barr virus from nasopharyngeal carcinoma tissue by using next-generation sequencing technology. J Virol. 2011 Nov;85(21):11291-9. 、Kwok H, Tong AH, Lin CH, Lok S, Farrell PJ, Kwong DL, Chiang AK. Genomic sequencing and comparative analysis of Epstein-Barr virus genome isolated from primary nasopharyngeal carcinoma biopsy. PLoS One. 2012;7(5):e36939. 、Lin Z, Wang X, Strong MJ, Concha M, Baddoo M, Xu G, Baribault C, Fewell C, Hulme W, Hedges D, Taylor CM, Flemington EK. Whole-genome sequencing of the Akata and Mutu Epstein-Barr virus strains. J Virol. 2013 Jan;87(2):1172-82. )。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. Unless otherwise noted, the experimental methods were conducted with reference to the book (Immune Experiment Method, Shunsuke Ueda, Susumu Hamada, Honjo, Toshiyuki Sasaoka, Nanedo 1995).
[Example 1]
[Selection of EBV-specific CTL epitope candidate peptides]
EBV is classified into type 1 and type 2 depending on the difference in the expressed protein. Type 1 infections, including AG876, are rare in Asia, most of which are infected / hidden in humans (Dambaugh T, Hennessy K, Chamnankit L, Kieff E. U2 region of Epstein- Barr virus DNA may encode Epstein-Barr nuclear antigen 2. Proc Natl Acad Sci US A. 1984 Dec; 81 (23): 7632-6). However, cases of co-infection of EBV in the same individual have been reported, and race- and region-dependent diversity of EBV-infected strains have been reported (Apolloni A, Sculley TB. Detection of A-type and B- type Epstein-Barr virus in throat washings and lymphocytes.Virology. 1994 Aug 1; 202 (2): 978-81, Correa RM, Fellner MD, Alonio LV, Durand K, Teyssie AR, Picconi MA.Epstein-barr virus (EBV ) in healthy carriers: Distribution of genotypes and 30 bp deletion in latent membrane protein-1 (LMP-1) oncogene.J Med Virol. 2004 Aug; 73 (4): 583-8, Klemenc P, Marin J, Soba E, Gale N, Koren S, Strojan P. Distribution of Epstein-Barr virus genotypes in throat washings, sera, peripheral blood lymphocytes and in EBV positive tumor biopsies from Slovenian patients with nasopharyngeal carcinoma.J Med Virol. 2006 Aug; 78 (8): 1083-90, Trimeche M, Bonnet C, Korbi S, Boniver J, de Leval L. Association between Epstein-Barr virus and Hodgkin's lymphoma in Belgium: a pathological and virological study.Leuk Ly 2007 Jul; 48 (7): 1323-31, Tiwawech D, Srivatanakul P, Karalak A, Ishida T. Association between EBNA2 and LMP1 subtypes of Epstein-Barr virus and nasopharyngeal carcinoma in Thais.
J Clin Virol. 2008 May; 42 (1): 1-6. Several EBV strains have been isolated so far, but due to co-infection and strain diversity problems, it has become difficult to analyze the base sequence, and the total base sequence was determined to be B95.8, AG876 , MUTU, GD1, GD2, HKNPC1 and AKATA, only 7 strains in total (Baer R, Bankier AT, Biggin MD, Deininger PL, Farrell PJ, Gibson TJ, Hatfull G, Hudson GS, Satchwell SC, Seguin C, et al. DNA sequence and expression of the B95-8 Epstein-Barr virus genome.Nature. 1984 Jul 19-25; 310 (5974): 207-11, Zeng MS, Li DJ, Liu QL, Song LB, Li MZ, Zhang RH, Yu XJ, Wang HM, Ernberg I, Zeng YX.Genomic sequence analysis of Epstein-Barr virus strain GD1 from a nasopharyngeal carcinoma patient.J Virol. 2005 Dec; 79 (24): 15323-30, Dolan A, Addison C, Gatherer D, Davison AJ, McGeoch DJ.The genome of Epstein-Barr virus type 2 strain AG876.
Virology. 2006 Jun 20; 350 (1): 164-70, Liu P, Fang X, Feng Z, Guo YM, Peng RJ, Liu T, Huang Z, Feng Y, Sun X, Xiong Z, Guo X, Pang SS , Wang B, Lv X, Feng FT, Li DJ, Chen LZ, Feng QS, Huang WL, Zeng MS, Bei JX, Zhang Y, Zeng YX.Direct sequencing and characterization of a clinical isolate of Epstein-Barr virus from nasopharyngeal carcinoma tissue by using next-generation sequencing technology.J Virol. 2011 Nov; 85 (21): 11291-9., Kwok H, Tong AH, Lin CH, Lok S, Farrell PJ, Kwong DL, Chiang AK.Genomic sequencing and comparative analysis of Epstein-Barr virus genome isolated from primary nasopharyngeal carcinoma biopsy.PLoS One. 2012; 7 (5): e36939., Lin Z, Wang X, Strong MJ, Concha M, Baddoo M, Xu G, Baribault C, Fewell C , Hulme W, Hedges D, Taylor CM, Flemington EK. Whole-genome sequencing of the Akata and Mutu Epstein-Barr virus strains. J Virol. 2013 Jan; 87 (2): 1172-82.
 それらの株間における主なタンパク質の発現の違い、アミノ酸配列の相違が部分的に解析されており、LMP2とEBNA1についてもいくつかの報告がなされている(Midgley RS, Bell AI, Yao QY, Croom-Carter D, Hislop AD, Whitney BM, Chan AT, Johnson PJ, Rickinson AB. HLA-A11-restricted epitope polymorphism among Epstein-Barr virus strains in the highly HLA-A11-positive Chinese population: incidence and immunogenicity of variant epitope sequences. J Virol. 2003 Nov;77(21):11507-16、Wang X, Liu X, Jia Y, Chao Y, Xing X, Wang Y, Luo B. Widespread sequence variation in the Epstein-Barr virus latent membrane protein 2A gene among northern Chinese isolates. J Gen Virol. 2010 Oct;91(Pt 10):2564-73. 、Han J, Chen JN, Zhang ZG, Li HG, Ding YG, Du H, Shao CK. Sequence variations of latent membrane protein 2A in Epstein-Barr virus-associated gastric carcinomas from Guangzhou, southern China. PLoS One. 2012;7(3):e34276. )。 Differences in the expression of major proteins and amino acid sequences among these strains have been partially analyzed, and several reports have been made on LMP2 and EBNA1 (Midgley RS, Bell AI, Yao QY, Croom- Carter D, Hislop AD, Whitney BM, Chan AT, Johnson PJ, Rickinson AB. HLA-A11-restricted epitope polymorphism among Epstein-Barr virus strains in the HLA-A11-positive Chinesegenic J Virol. 2003 Nov; 77 (21): 11507-16, Wang X, Liu X, Jia Y, Chao Y, Xing X, Wang Y, Luo B. Widespread sequence variation in the Epstein-Barr virus latent membrane protein 2A gene among northern Chinese isolates. J Gen Virol. 2010 Oct; 91 (Pt 10): 2564-73., Han J, Chen JN, Zhang ZG, Li HG, Ding YG, Du H, Shao CK. Sequence variations membrane protein 2A in Epstein-Barr virus-associated gastri c carcinomas from Guangzhou, southern China. PLoS One. 2012; 7 (3): e34276.).
 本発明のLMP2およびEBNA1特異的なCTLエピトープ候補ペプチドの選択は、EBVタイプ1に属する最も代表的な株であるB95.8(GenBank:V01555.2)のアミノ酸配列をもとに、他の株におけるアミノ酸の変異を参照したうえで実施した。具体的には、HLA-A11分子に対して結合モチーフを有する8~10個のアミノ酸よりなるCTLエピトープ候補ペプチドを検索し得る、インターネット上に公開されている複数のソフトウェアに照合して実施した。その結果、EBV LMP2およびEBNA1のアミノ酸配列よりHLA-A11分子の結合モチーフを有する9個または10個のアミノ酸よりなるCTLエピトープ候補ペプチドを、LMP2では22種類、EBNA1では11種類の合計33種類選択し、これらのペプチドを合成し、以下にCTLエピトープ候補ペプチドとして示した。異なるEBV株でのアミノ酸変異箇所を下線で示した。本発明ではB95.8株を野生株とし、他の株でのアミノ酸の置換を変異と呼ぶ。陽性コントロール用のペプチドとしてはhuman cytomegalovirus(CMV)のpp65タンパク質由来のHLA-A*11:01拘束性エピトープペプチド(ATVQGQNLK、配列番号:34)を合成した。陰性コントロール用のペプチドとしては、survivin-2BのHLA-A*24:02拘束性エピトープペプチド(AYACNTSTL、配列番号:35)を合成した。 Selection of LMP2 and EBNA1-specific CTL epitope candidate peptides of the present invention is based on the amino acid sequence of B95.8 (GenBank: V01555.2), the most representative strain belonging to EBV type 1, and other strains. This was carried out with reference to amino acid mutations in. Specifically, it was carried out by collating with a plurality of software published on the Internet, which can search for a CTL epitope candidate peptide consisting of 8 to 10 amino acids having a binding motif for the HLA-A11 molecule. As a result, CTL epitope candidate peptides consisting of 9 or 10 amino acids having a binding motif of HLA-A11 molecule from the amino acid sequences of EBVEBLMP2 and EBNA1 were selected, a total of 33 types including 22 types for LMP2 and 11 types for EBNA1. These peptides were synthesized and shown below as CTL epitope candidate peptides. Amino acid mutation sites in different EBV strains are underlined. In the present invention, the B95.8 strain is a wild strain, and amino acid substitutions in other strains are called mutations. As a positive control peptide, HLA-A * 11: 01 restricted epitope peptide (ATVQGQNLK, SEQ ID NO: 34) derived from pp65 protein of human cytomegalovirus (CMV) was synthesized. As a peptide for negative control, survivin-2B HLA-A * 24: 02 restricted epitope peptide (AYACNTSTL, SEQ ID NO: 35) was synthesized.
(1)合成したEBV LMP2由来のHLA-A*11:01拘束性CTLエピトープペプチド候補
Ala Ser Ser Tyr Ala Ala Ala Gln Arg Lys(配列番号:1)
Ala Asn Ser Tyr Ala Ala Ala Gln Arg Lys(配列番号:2)
Ala Ser Ser Ser Ala Ala Ala Gln Arg Lys(配列番号:3)
Ala Asn Ser Ser Ala Ala Ala Gln Arg Lys(配列番号:4)
Ala Ser Ser Tyr Ala Ala Ala Gln Arg(配列番号:5)
Ser Ser Tyr Ala Ala Ala Gln Arg Lys(配列番号:6)
Val Met Leu Val Leu Leu Ile Leu Ala Tyr(配列番号:7)
Leu Val Leu Leu Ile Leu Ala Tyr Arg(配列番号:8)
Leu Val Leu Leu Ile Leu Ala Tyr Arg Arg(配列番号:9)
Leu Ala Tyr Arg Arg Arg Trp Arg Arg(配列番号:10)
Thr Thr Met Phe Leu Leu Met Leu Leu(配列番号:11)
Lys Ile Leu Leu Ala Arg Leu Phe Leu Tyr(配列番号:12)
Lys Val Leu Leu Ala Arg Leu Phe Leu Tyr(配列番号:13)
Ile Leu Leu Ala Arg Leu Phe Leu Tyr(配列番号:14)
Val Leu Leu Ala Arg Leu Phe Leu Tyr(配列番号:15)
Gly Ser Ile Leu Gln Thr Asn Phe Lys(配列番号:16)
Leu Thr Glu Trp Gly Ser Gly Asn Arg(配列番号:17)
Arg Thr Tyr Gly Pro Val Phe Met Cys Leu(配列番号:18)
Arg Thr Tyr Gly Pro Val Phe Met Ser Leu(配列番号:19)
Thr Val Met Ser Asn Thr Leu Leu Ser(配列番号:20)
Thr Val Met Thr Asn Thr Leu Leu Ser(配列番号:21)
Ala Leu Phe Gly Val Ile Arg Cys Cys Arg(配列番号:22)
(1) Synthesized EBV LMP2-derived HLA-A * 11: 01 restricted CTL epitope peptide candidate
Ala Ser Ser Tyr Ala Ala Ala Gln Arg Lys (SEQ ID NO: 1)
Ala Asn Ser Tyr Ala Ala Ala Gln Arg Lys (SEQ ID NO: 2)
Ala Ser Ser Ser Ala Ala Ala Gln Arg Lys (SEQ ID NO: 3)
Ala Asn Ser Ser Ala Ala Ala Gln Arg Lys (SEQ ID NO: 4)
Ala Ser Ser Tyr Ala Ala Ala Gln Arg (SEQ ID NO: 5)
Ser Ser Tyr Ala Ala Ala Gln Arg Lys (SEQ ID NO: 6)
Val Met Leu Val Leu Leu Ile Leu Ala Tyr (SEQ ID NO: 7)
Leu Val Leu Leu Ile Leu Ala Tyr Arg (SEQ ID NO: 8)
Leu Val Leu Leu Ile Leu Ala Tyr Arg Arg (SEQ ID NO: 9)
Leu Ala Tyr Arg Arg Arg Trp Arg Arg (SEQ ID NO: 10)
Thr Thr Met Phe Leu Leu Met Leu Leu (SEQ ID NO: 11)
Lys Ile Leu Leu Ala Arg Leu Phe Leu Tyr (SEQ ID NO: 12)
Lys Val Leu Leu Ala Arg Leu Phe Leu Tyr (SEQ ID NO: 13)
Ile Leu Leu Ala Arg Leu Phe Leu Tyr (SEQ ID NO: 14)
Val Leu Leu Ala Arg Leu Phe Leu Tyr (SEQ ID NO: 15)
Gly Ser Ile Leu Gln Thr Asn Phe Lys (SEQ ID NO: 16)
Leu Thr Glu Trp Gly Ser Gly Asn Arg (SEQ ID NO: 17)
Arg Thr Tyr Gly Pro Val Phe Met Cys Leu (SEQ ID NO: 18)
Arg Thr Tyr Gly Pro Val Phe Met Ser Leu (SEQ ID NO: 19)
Thr Val Met Ser Asn Thr Leu Leu Ser (SEQ ID NO: 20)
Thr Val Met Thr Asn Thr Leu Leu Ser (SEQ ID NO: 21)
Ala Leu Phe Gly Val Ile Arg Cys Cys Arg (SEQ ID NO: 22)
(2)合成したEBV EBNA1由来のHLA-A*11:01拘束性CTLエピトープペプチド候補
 Gly Pro Gly Asn Gly Leu Gly Glu Lys(配列番号:23)
 Ser Ser Ser Ser Gly Ser Pro Pro Arg Arg(配列番号:24)
 Gly Gln Gly Asp Gly Gly Arg Arg Lys(配列番号:25)
 His Arg Gly Gln Gly Gly Ser Asn Pro Lys(配列番号:26)
 His Arg Gly Glu Gly Gly Ser Ser Gln Lys(配列番号:27)
 His Arg Gly Gln Gly Gly Ser Asn Gln Lys(配列番号:28)
 Gly Val Phe Val Tyr Gly Gly Ser Lys(配列番号:29)
 Lys Thr Ser Leu Tyr Asn Leu Arg Arg(配列番号:30)
 Gln Thr His Ile Phe Ala Glu Val Leu Lys(配列番号:31)
 Gly Arg Gly Arg Gly Arg Gly Glu Lys(配列番号:32)
 Ala Ile Lys Asp Leu Val Met Thr Lys(配列番号:33)
(2) HLA-A * 11: 01 restricted CTL epitope peptide candidate derived from synthesized EBV EBNA1 Gly Pro Gly Asn Gly Leu Gly Glu Lys (SEQ ID NO: 23)
Ser Ser Ser Ser Gly Ser Pro Pro Arg Arg (SEQ ID NO: 24)
Gly Gln Gly Asp Gly Gly Arg Arg Lys (SEQ ID NO: 25)
His Arg Gly Gln Gly Gly Ser Asn Pro Lys (SEQ ID NO: 26)
His Arg Gly Glu Gly Gly Ser Ser Gln Lys (SEQ ID NO: 27)
His Arg Gly Gln Gly Gly Ser Asn Gln Lys (SEQ ID NO: 28)
Gly Val Phe Val Tyr Gly Gly Ser Lys (SEQ ID NO: 29)
Lys Thr Ser Leu Tyr Asn Leu Arg Arg (SEQ ID NO: 30)
Gln Thr His Ile Phe Ala Glu Val Leu Lys (SEQ ID NO: 31)
Gly Arg Gly Arg Gly Arg Gly Glu Lys (SEQ ID NO: 32)
Ala Ile Lys Asp Leu Val Met Thr Lys (SEQ ID NO: 33)
(3)コントロール用に合成したプペプチド
 Ala Thr Val Gln Gly Gln Asn Leu Lys(配列番号:34)
 Ala Tyr Ala Cys Asn Thr Ser Thr Leu(配列番号:35)
(3) Peptide synthesized for control Ala Thr Val Gln Gly Gln Asn Leu Lys (SEQ ID NO: 34)
Ala Tyr Ala Cys Asn Thr Ser Thr Leu (SEQ ID NO: 35)
 表1、表2、表3に合成したLMP2およびEBNA1のHLA-A11:01拘束性CTLエピトープペプチド候補とコントロール用に合成したペプチドの特徴を示す。ペプチド名は合成したペプチドのN末端側から3つのアミノ酸配列で示す。左から、ペプチド名(表中a)、アミノ酸配列(表中b)、由来タンパク質のアミノ酸配列上の位置、アミノ酸数、解析に用いたNetMHC3.4(http://www.cbs.dtu.dk/services/NetMHC/)のHLA Peptide Binding Predictions (Nielsen M, Lundegaard C, Worning P, Lauemoller SL, Lamberth K, Buus S, Brunak S, Lund O. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci. 2003 May;12(5):1007-17、Lundegaard C, Lamberth K, Harndahl M, Buus S, Lund O, Nielsen M. NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11. Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W509-12. 、Lundegaard C, Lund O, Nielsen M. Accurate approximation method for prediction of class I MHC affinities for peptides of length 8, 10 and 11 using prediction tools trained on 9mers. Bioinformatics. 2008 Jun 1;24(11):1397-8. )で算出されたスコア(表中c)が高い順に示した。このスコアは、HLA-A11とペプチドとの親和性を予測する数値で、スコアが高い程、HLAとペプチドが安定した複合体を形成する可能性があることを意味する。なお表1、表2と表3に示したNetMHC 3.4のスコアは、分析に用いた11種類の分析ソフトで得られた代表例として示す。 Tables 1, 2, and 3 show the characteristics of the synthesized LMP2 and EBNA1 HLA-A11: 01 restricted CTL epitope peptides and the peptides synthesized for control. The peptide name is indicated by three amino acid sequences from the N-terminal side of the synthesized peptide. From left, peptide name (a in the table), amino acid sequence (b in the table), position on the amino acid sequence of the derived protein, number of amino acids, NetMHC3.4 used for analysis (http://www.cbs.dtu.dk / Services / NetMHC /) HLA Peptide Binding Predictions (Nielsen M, Lundegaard C, Worning P, Lauemoller SL, Lamberth K, Buus S, Brunak S, Lund O. Reliable prediction vel ations-no . Protein Sci. 2003 May; 12 (5): 1007-17, Lundegaard C, Lamberth K, Harndahl M, Buus S, Lund O, Nielsen M. NetMHC-3.0: accurate web accessible predictions of human, mouse HC I affinities for peptides of length 8-11. Nucleic Acids Res. 2008 Jul 1; 36 (Web Server issue): W509-12., Lundegaard C, Lund O, Nielsen M. Accurate approximation method for predictionforHC peptides of length 8, 10 and 11 using prediction tools tra Ined (on 9mers. Bioinformatics. 2008 Jun 1; 24 (11): 1397-8.), the scores (c in the table) are shown in descending order. This score is a numerical value that predicts the affinity between HLA-A11 and the peptide. The higher the score, the more likely the HLA and peptide may form a stable complex. The scores of NetMHC 3.4 shown in Table 1, Table 2 and Table 3 are shown as representative examples obtained with 11 types of analysis software used in the analysis.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 〔EBV特異的CTLエピトープ候補ペプチドのフォールディングテスト〕
 発明者らは、表1、表2と表3に記載した35種類のペプチドを用いてフォールディングテストを実施した。具体的には、大腸菌発現系を利用して発現精製したHLA-A*11:01とβ2-ミクログロブリン、および合成ペプチドをフォールディング溶液に添加して混合後、フォールディング溶液を経時的に分取し、ゲル濾過カラムにて分析を行った。ゲル濾過カラム分析では、HLA-A*11:01とβ2-ミクログロブリン、およびEBV特異的CTLエピトープ候補ペプチドの3者複合体(MHC-モノマー)の形成が認められる場合、MHC-モノマーは原料よりも分子量が大きいため、ゲル濾過カラム分析での溶出時間が早くなる。また、MHC-モノマー形成量は、280 nmの吸収波長によって得られるピーク面積から算出可能である。一方、HLA分子との結合性の無い候補ペプチドではMHC-モノマー形成が確認されない。MHC-モノマー形成が認められる場合の代表的なゲル濾過カラム分析例を図1に示した。
[Folding test of EBV-specific CTL epitope candidate peptide]
The inventors conducted a folding test using 35 types of peptides described in Tables 1, 2 and 3. Specifically, HLA-A * 11: 01, β2-microglobulin expressed using E. coli expression system and β2-microglobulin, and synthetic peptide were added to the folding solution, mixed, and the folding solution was collected over time. The analysis was performed with a gel filtration column. When gel filtration column analysis shows the formation of a ternary complex (MHC-monomer) of HLA-A * 11: 01, β2-microglobulin, and EBV-specific CTL epitope candidate peptide, MHC-monomer Since the molecular weight is large, the elution time in the gel filtration column analysis is shortened. Further, the amount of MHC-monomer formation can be calculated from the peak area obtained by the absorption wavelength of 280 nm. On the other hand, MHC-monomer formation is not confirmed with candidate peptides that do not bind to HLA molecules. A typical gel filtration column analysis example in which MHC-monomer formation is observed is shown in FIG.
 ゲル濾過カラム分析の結果では、HLA分子とβ2-ミクログロブリンは、大腸菌発現系を利用して発現精製する際に、封入体として不溶性分画を精製後8M尿素に可溶化させているが、難溶性であるHLA分子は、MHC-モノマー形成に至らないものが凝集体として7~8分に検出される。但し、凝集体の多くはゲル濾過カラム分析の前処理工程であるフィルター濾過により除去されている。β2-ミクログロブリンは、可溶性タンパク質であり、フォールディング溶液中で可溶化され、Superdex75 10/300GL(GE Healthcare社)を用いた場合、14分付近に検出される。15分以降にはフォールディング溶液の組成物やペプチドが検出される。フォールディングテスト開始直後(day 0)にはMHC-モノマーのピークは確認されないが、1日後(day 1)、3日後(day 3)とピークが大きくなり、MHC-モノマー形成が順調に進行している事を示している。 As a result of gel filtration column analysis, HLA molecules and β2-microglobulin were solubilized in 8M urea after purification of the insoluble fraction as inclusion bodies when purified using the E. coli expression system. Soluble HLA molecules that do not lead to MHC-monomer formation are detected as aggregates in 7-8 minutes. However, most of the aggregates are removed by filter filtration, which is a pretreatment step of gel filtration column analysis. β2-microglobulin is a soluble protein, solubilized in a folding solution, and is detected in the vicinity of 14 minutes when using Superdex 75GL10 / 300GL (GE Healthcare). After 15 minutes, the folding solution composition and peptide are detected. The peak of MHC-monomer is not confirmed immediately after the start of the folding test (day 0), but the peak increases after 1 day (day 1) and 3 days (day (3), and MHC-monomer formation is progressing smoothly. Shows things.
 図2および図3に35種類のペプチドに対して実施したフォールディングテストの1、3、7日後の分析結果を示した。陽性コントロールペプチドとして、CMVのpp65タンパク質由来HLA-A*11:01拘束性エピトープペプチド(ATVQGQNLK、配列番号:34)、陰性コントロールとして、survivin-2B由来HLA-A*24:02拘束性エピトープペプチド(AYACNTSTL、配列番号:35)を比較対象に用いた。MHC-モノマー形成を示すピークの面積を棒グラフで示した。配列番号:1~22(LMP2)と配列番号:23~33(EBNA1)を陽性コントロールペプチドと陰性コントロールである配列番号:34~35と比較した結果をそれぞれ表4と表5に示す。 2 and 3 show the analysis results after 1, 3 and 7 days of the folding test performed on 35 types of peptides. As a positive control peptide, HLA-A * 11: 01 restricted epitope peptide derived from CMV pp65 protein (ATVQGQNLK, SEQ ID NO: 34), and as a negative control, survivin-2B derived HLA-A * 24: 02 restricted epitope peptide ( AYACNTSTL, SEQ ID NO: 35) was used for comparison. The area of the peak indicating MHC-monomer formation is shown as a bar graph. Tables 4 and 5 show the results of comparing SEQ ID NOs: 1 to 22 (LMP2) and SEQ ID NOs: 23 to 33 (EBNA1) with SEQ ID NOs: 34 to 35, which are positive control peptides and negative controls, respectively.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表4と表5にペプチド候補のHLA-A*11:01結合性を示す。結合性の有無はフォールディングテストにおいて、陰性コントロールの結合性の最も高い値(135,674 μV*秒)を上回るものを結合性の有るものとして○、下回るものを結合性のないものとして×で表記する。このように実験値で判定したHLA-A*11:01結合性はコンピューターアルゴリズムで得られた予測値とは必ずしも一致するわけではなく、フォールディングテストの実験値はin vitroにおける候補ペプチドとHLA-A*11:01との結合性を表す。コンピューターアルゴリズムで予測した下位(予測値<0.400)8個のペプチド候補のいずれも、フォールディングテストの実験の結果では、HLA-A*11:01結合性が示された。一方、フォールディングテストの実験の結果でHLA-A*11:01結合性が示さない4個のペプチドの予測値は以下である。VML:0.417;LVL(9mer):0.439;TTM:0.477;KIL:0.602。いずれの予測値も0.400より高いにもかかわらず、HLA-A*11:01と結合しないことがわかる。このように、コンピューターアルゴリズムだけではエピトープ候補ペプチドとHLA分子との結合性は判断できない。 Tables 4 and 5 show HLA-A * 11: 01 binding properties of peptide candidates. In the folding test, the presence / absence of binding is indicated by ○ when the value exceeding the highest binding value of the negative control (135,674 μV * sec) is considered as having a binding property, and by × when the lower value is not binding. Thus, the HLA-A * 11: 01 binding determined by the experimental values does not necessarily match the predicted value obtained by the computer algorithm, and the experimental values of the folding test are the candidate peptides and HLA-A in in vitro. * Represents the binding with 11:01. The results of the folding test showed HLA-A * 11: 01 binding for all of the lower eight peptide candidates predicted by the computer algorithm (predicted value <0.400). On the other hand, the predicted values of the four peptides that do not show the HLA-A * 11: 01 binding property as a result of the folding test are as follows. VML: 0.417; LVL (9mer): 0.439; TTM: 0.477; KIL: 0.602. It can be seen that although neither predicted value is higher than 0.400, it does not bind to HLA-A * 11: 01. Thus, the binding between the epitope candidate peptide and the HLA molecule cannot be judged only by the computer algorithm.
〔EBV LMP2特異的MHC-テトラマー試薬の製造〕
 フォールディングテストの結果に基づき、HLA-A*11:01結合性のEBV LMP2特異的あるいはEBV EBNA1特異的CTLエピトープ候補ペプチドを用いてPE標識MHC-テトラマー試薬を製造した。本発明で製造したMHC-テトラマー試薬は例えば、ASS(10mer)-Tetと略号で示すが、これは、HLA-A*11:01とASS(10mer)ペプチド(ASSYAAAQRK、配列番号:1)とβ2-ミクログロブリンの3者複合体を用いて製造されたものを示す。タンパク質発現用の遺伝子組換え宿主から精製したHLAクラス I分子、β2-ミクログロブリン及び本発明のEBV LMP2またはEBV EBNA1特異的CTLエピトープ候補ペプチドの複合体である、MHC-モノマーを適切なフォールディング溶液中で形成させる。組換えHLAクラスI分子のC末端には予めビオチン結合部位を付加しておき、MHC-モノマー形成後この部位にビオチンを付加する。市販の色素標識されたストレプトアビジンとビオチン化MHC-モノマーをモル比1:4で混合することによってMHC-テトラマー試薬を製造することができる。
[Production of EBV LMP2-specific MHC-tetramer reagent]
Based on the results of the folding test, a PE-labeled MHC-tetramer reagent was prepared using HLA-A * 11: 01-binding EBV LMP2-specific or EBV EBNA1-specific CTL epitope candidate peptides. The MHC-tetramer reagent produced in the present invention is abbreviated as, for example, ASS (10mer) -Tet, which is HLA-A * 11: 01, ASS (10mer) peptide (ASSYAAAQRK, SEQ ID NO: 1) and β2 -Indicates one produced using a microglobulin ternary complex. MHC-monomer, which is a complex of HLA class I molecule purified from a recombinant host for protein expression, β2-microglobulin and EBV LMP2 or EBV EBNA1-specific CTL epitope candidate peptide of the present invention in an appropriate folding solution To form. A biotin binding site is added to the C-terminus of the recombinant HLA class I molecule in advance, and biotin is added to this site after MHC-monomer formation. A MHC-tetramer reagent can be prepared by mixing commercially available dye-labeled streptavidin and biotinylated MHC-monomer at a molar ratio of 1: 4.
〔EBV特異的CTLエピトープペプチドの同定〕
(検体のHLA型の選定)
 EBV特異的CTLエピトープ候補ペプチドには、HLA-A*11:01に対して結合モチーフを有する33種類の候補ペプチドを選択した。更にフォールディングテストにより、試験管内でHLA-A*11:01とβ2-ミクログロブリンと29種類のEBV特異的CTLエピトープ候補ペプチドが結合しMHC-モノマーを形成する事が判明した。実際にこの29種類のEBV LMP2特異的あるいはEBNA1特異的CTLエピトープ候補ペプチドがHLA-A*11:01に結合し、これを認識するCTLが生体内に存在するかどうかを確認するためには、HLA-A*11:01を保持する供血者の末梢血を用いて、末梢血中に存在するEBV特異的CTLを増幅する事が可能であるかどうか検討する必要がある。最初に、供血者がHLA-A*11:01を保持するかどうかは、ジェノサーチ(商標)HLA-A Ver.2(MBL社)を用いてHLA-Aの遺伝子型判定にて確認した。以降の検討は、HLA-A*11:01を保有する5名の健康成人のPBMCを用いて行った。
[Identification of EBV-specific CTL epitope peptide]
(Selection of specimen HLA type)
As candidate peptides for EBV-specific CTL epitopes, 33 types of candidate peptides having a binding motif for HLA-A * 11: 01 were selected. Furthermore, a folding test revealed that HLA-A * 11: 01, β2-microglobulin and 29 EBV-specific CTL epitope candidate peptides bind to each other to form MHC-monomers in vitro. In order to confirm whether these 29 kinds of EBV LMP2-specific or EBNA1-specific CTL epitope candidate peptides actually bind to HLA-A * 11: 01 and CTLs that recognize them exist in vivo, It is necessary to examine whether it is possible to amplify EBV-specific CTLs present in peripheral blood using the peripheral blood of donors carrying HLA-A * 11: 01. First, whether or not a blood donor holds HLA-A * 11: 01 was confirmed by genotyping of HLA-A using Genosearch (trademark) HLA-A Ver.2 (MBL). Subsequent examinations were conducted using PBMCs of 5 healthy adults with HLA-A * 11: 01.
〔抗原提示細胞の調製〕
(1)EBV感染B細胞株の調製
 定法(Kuzushima K, Yamamoto M, Kimura H, Ando Y, Kudo T, Tsuge I, Morishima T. Establishment of anti-Epstein-Barr virus (EBV) cellular immunity by adoptive transfer of virus-specific cytotoxic T lymphocytes from an HLA-matched sibling to a patient with severe chronic active EBV infection. Clin Exp Immunol. 1996;103:192-198)に従い、EBV産生細胞株であるB95.8細胞株(JCRB Cell Bankより入手)の培養上清(生EBVウイルスを含む)とPBMCを混合培養し、EBV感染B細胞株(Lymphoblastoid cell line、以下、EBV感染LCLと称する)を樹立した。約2週間後にHLA分子の発現、CD80、CD83、CD86およびCD20の発現を確認した。
(Preparation of antigen-presenting cells)
(1) Preparation of EBV-infected B cell line (Kuzushima K, Yamamoto M, Kimura H, Ando Y, Kudo T, Tsuge I, Morishima T. Establishment of anti-Epstein-Barr virus (EBV) cellular immunity by adoptive transfer of In accordance with virus-specific cytotoxic T lymphocytes from an HLA-matched sibling to a patient with severe chronic active EBV infection. Clin Exp Immunol. 1996; 103: 192-198), the B95.8 cell line (JCRB Cell) The culture supernatant (including live EBV virus) and PBMC were mixed and cultured to establish an EBV-infected B cell line (hereinafter referred to as EBV-infected LCL). About 2 weeks later, the expression of HLA molecules and the expression of CD80, CD83, CD86 and CD20 were confirmed.
(2)CD40-B細胞の調製
 ヒトCD40Lを遺伝子導入し、安定的に発現させたNIH3T3細胞(NIH-CD40L)とPBMCを、IL-4存在下で共培養した。NIH-CD40Lは96 GyのX線照射により増殖阻害し、3~4日毎に共培養を繰り返した(Kondo E, Topp MS, Kiem HP, Obata Y, Morishima Y, Kuzushima K, Tanimoto M, Harada M, Takahashi T, Akatsuka Y. Efficient generation of antigen-specific cytotoxic T cells using retrovirally transduced CD40-activated B cells. J Immunol. 2002;169:2164-2171)。約2週間後にHLA分子の発現、CD80、CD83とCD86の発現を確認した。
(2) Preparation of CD40-B cells NIH3T3 cells (NIH-CD40L) into which human CD40L was introduced and stably expressed were co-cultured in the presence of IL-4. NIH-CD40L inhibited growth by 96 Gy X-ray irradiation and repeated co-culture every 3-4 days (Kondo E, Topp MS, Kiem HP, Obata Y, Morishima Y, Kuzushima K, Tanimoto M, Harada M, Takahashi T, Akatsuka Y. Efficient generation of antigen-specific cytotoxic T cells using retrovirally transduced CD40-activated B cells. J Immunol. 2002; 169: 2164-2171). About 2 weeks later, HLA molecule expression and CD80, CD83 and CD86 expression were confirmed.
(3)樹状細胞の調製
 PBMCをプラスティック製の培養皿で37℃、5% CO2恒温槽内にて2時間培養し、培養皿に接着しなかった細胞を軽く洗い流した。これにGM-CSFとIL-4を加え24時間培養後、続けてTNFαとIL-1βおよびPGE2(Prostaglandin E2)を加え、24~48時間培養した。適当な培地等で軽く洗い流して回収できた細胞を樹状細胞とした(Kondo E, Topp MS, Kiem HP, Obata Y, Morishima Y, Kuzushima K, Tanimoto M, Harada M, Takahashi T, Akatsuka Y. Efficient generation of antigen-specific cytotoxic T cells using retrovirally transduced CD40-activated B cells. J Immunol. 2002;169:2164-2171)。48時間後にHLA分子の発現、CD80、CD83とCD86の発現を確認した。
(3) Preparation of dendritic cells PBMC were cultured in a plastic culture dish at 37 ° C. in a 5% CO 2 constant temperature bath for 2 hours, and the cells that did not adhere to the culture dish were gently washed away. GM-CSF and IL-4 were added thereto, and cultured for 24 hours. Subsequently, TNFα, IL-1β and PGE2 (Prostaglandin E2) were added, and cultured for 24 to 48 hours. The cells recovered by washing gently with an appropriate medium were used as dendritic cells (Kondo E, Topp MS, Kiem HP, Obata Y, Morishima Y, Kuzushima K, Tanimoto M, Harada M, Takahashi T, Akatsuka Y. Efficient generation of antigen-specific cytotoxic T cells using retrovirally transduced CD40-activated B cells. J Immunol. 2002; 169: 2164-2171). After 48 hours, HLA molecule expression and CD80, CD83 and CD86 expression were confirmed.
〔EBV特異的CTLの誘導〕
1)抗原提示細胞を利用した誘導
 HLA-A*11:01を保持するPBMCより、前述の抗原提示細胞(EBV感染LCL、CD40-B細胞、樹状細胞)を予め調製した。抗原提示細胞をパルス用培地(0.1% ヒト血清アルブミン/55 μM 2-メルカプトエタノール/RPMI 1640)あるいは、AIM-V medium (Invitrogen社)に浮遊させ、10 μg/mLの濃度でCTLエピトープ候補ペプチドを加え、およそ15分間隔で穏やかに混合しながら室温にて30~60分間放置後、過剰量の洗浄液(2% ウシ胎児血清(FCS)/PBS)にて3回洗浄し、HLA分子に未結合のペプチドを洗い流した。この操作を行うことで、抗原提示細胞上のHLA分子にCTLエピトープ候補ペプチドが結合すると考えられる。この操作を行った抗原提示細胞をペプチドパルス抗原提示細胞と呼ぶ。ペプチドパルス抗原提示細胞は、増殖能を失わせる為に、致死量のX線照射、またはマイトマイシンC処理を行った。これを同一人物から分離したPBMC、あるいはCD8陽性またはCD4陽性のT細胞と混和し37℃、5% CO2恒温槽にて培養を行った。用いる培地は、10%FCS含有RPMI1640培地、あるいは10%ヒト血清含有RPMI1640培地、または、1~10%のヒト血漿含有RPMI1640培地等の検討を行ったが、本方法においては、10%ヒト血清含有RPMI1640培地で良好な結果が得られた。T細胞の生存の維持と、増殖を補助する目的でIL-2(シオノギ製薬社)を添加したが、そのタイミングは通常混合培養開始後7~14日目とする報告が多く、本発明でIL-2は培養開始時、培養開始2日後、6日後等の検討を行ったが培養開始2日後に投与した場合に良好な結果が得られた為、培養開始2日後に50 U/mLの濃度で加えた。培養開始10~14日後に再度ペプチドパルス抗原提示細胞を用いて刺激を加えた。10~14日毎にペプチドパルス抗原提示細胞を用いて刺激を加え、CTL誘導の評価は、およそ2週間後と4週間後に実施した。EBV特異的CTLの誘導が確認できた場合は、更にペプチドパルス抗原提示細胞を用いて刺激を加えCTLラインを樹立した。
[Induction of EBV-specific CTL]
1) Induction using antigen-presenting cells The above-described antigen-presenting cells (EBV-infected LCL, CD40-B cells, dendritic cells) were prepared in advance from PBMC holding HLA-A * 11: 01. Antigen-presenting cells are suspended in pulse medium (0.1% human serum albumin / 55 μM 2-mercaptoethanol / RPMI 1640) or AIM-V medium (Invitrogen), and CTL epitope candidate peptides are added at a concentration of 10 μg / mL. In addition, leave it for 30 to 60 minutes at room temperature with gentle mixing at approximately 15 minute intervals, then wash 3 times with an excess amount of washing solution (2% fetal calf serum (FCS) / PBS) and do not bind to HLA molecules. The peptide was washed away. By performing this operation, it is considered that the CTL epitope candidate peptide binds to the HLA molecule on the antigen-presenting cell. The antigen-presenting cell subjected to this operation is called a peptide pulse antigen-presenting cell. Peptide pulse antigen-presenting cells were treated with a lethal dose of X-ray irradiation or mitomycin C treatment to lose their ability to grow. This was mixed with PBMC isolated from the same person, or CD8 positive or CD4 positive T cells and cultured in a 37 ° C., 5% CO 2 constant temperature bath. As the medium to be used, RPMI1640 medium containing 10% FCS, RPMI1640 medium containing 10% human serum, or RPMI1640 medium containing 1 to 10% human plasma was examined. In this method, 10% human serum is contained. Good results were obtained with RPMI1640 medium. IL-2 (Shionogi Pharmaceutical Co., Ltd.) was added for the purpose of maintaining the survival of T cells and assisting proliferation. However, there are many reports that the timing is usually 7 to 14 days after the start of mixed culture. -2 was examined at the start of culture, 2 days after the start of culture, 6 days after the start of the culture, but good results were obtained when administered 2 days after the start of the culture. Added in. Stimulation was again applied using peptide pulse antigen-presenting cells 10-14 days after the start of culture. Stimulation was performed every 10 to 14 days using peptide pulse antigen-presenting cells, and evaluation of CTL induction was performed approximately 2 weeks and 4 weeks later. When induction of EBV-specific CTL was confirmed, stimulation was further performed using peptide pulse antigen-presenting cells to establish a CTL line.
2)抗原提示細胞を利用しない誘導法
 本誘導法は、PBMC培養液中にペプチドを投入してCTLを誘導する方法である。PBMC中に存在する抗原提示細胞、例えば、樹状細胞、B細胞、マクロファージ、ある種のT細胞にペプチドが提示され、PBMCに含まれるCTL前駆細胞が刺激を受け増殖すると考えられる。前述の抗原提示細胞を利用した誘導法と異なり、前もって抗原提示細胞を調製する必要が無い点で区別され、簡便に実施できることが利点である。あえて抗原提示細胞を利用しない事で末梢血中を循環しているメモリー/エフェクター型のCTLを刺激増殖させるシステムである。
2) Induction method without using antigen-presenting cells This induction method is a method for inducing CTL by introducing a peptide into a PBMC culture solution. It is considered that the peptide is presented to antigen-presenting cells present in PBMC, such as dendritic cells, B cells, macrophages, and certain T cells, and CTL precursor cells contained in PBMC are stimulated to proliferate. Unlike the above-described induction method using antigen-presenting cells, the method is distinguished in that it is not necessary to prepare antigen-presenting cells in advance and can be easily carried out. It is a system that stimulates and proliferates memory / effector type CTL circulating in peripheral blood without using antigen presenting cells.
 HLA-A*11:01を保持する健康成人より採血した末梢血を3,000 rpmで5~10分間遠心処理し、上清の血漿部分を回収した。血漿部分以外は従来法に従いPBMCを分離した。誘導に用いる培地に数%の血漿を加えることが特徴である。本発明では5%の血漿を加えた場合に良好な結果が得られた。培地は一般に細胞培養に用いる培地に適切な添加物と抗生物質を加える。本発明に用いたCTL誘導培地は、RPMI1640 Hepes modify(Sigma社)に2-メルカプトエタノール、L-グルタミン、抗生物質としてストレプトマイシンとペニシリンを加えた培地を使用した。これ以外にインスリン、トランスフェリン、亜セレン酸、ピルビン酸、ヒト血清アルブミン、非必須アミノ酸溶液等を加えることもできる。PBMC 1~3×106個を培地1~2.5 mLに浮遊させた。これに1~20 μg/mLの濃度で候補ペプチドを加えた。ペプチドの濃度は、ペプチドの溶解度に応じて変更できる。本発明では10 μg/mLにて実施した。2日後に20~100 U/mLの最終濃度でIL-2の添加を行った。PBMCとペプチドの混合培養は、炭酸ガス交換可能な丸底の培養皿を用いることが望ましく、本発明においては、ポリプロピレン製14 mLの丸底チューブ(BD Biosciences社)または、96穴U底細胞培養用マイクロテストプレート(BD Biosciences社)を用いた。EBV特異的CTLの確認は、培養2週間および4週間後を目処に実施した。培養2週間後を目処に、再度10 μg/mLのペプチドで刺激した。EBV特異的CTLの誘導が確認できた場合は、ペプチドパルス抗原提示細胞を用いて刺激を加えCTLラインを樹立した。 Peripheral blood collected from healthy adults holding HLA-A * 11: 01 was centrifuged at 3,000 rpm for 5-10 minutes, and the plasma portion of the supernatant was collected. PBMCs were separated according to the conventional method except for the plasma portion. It is characterized by adding several percent of plasma to the medium used for induction. In the present invention, good results were obtained when 5% plasma was added. The medium is generally supplemented with appropriate additives and antibiotics for the medium used for cell culture. As the CTL induction medium used in the present invention, RPMI1640 Hepes modify (Sigma) was added with 2-mercaptoethanol, L-glutamine, and antibiotics streptomycin and penicillin. In addition, insulin, transferrin, selenious acid, pyruvic acid, human serum albumin, a non-essential amino acid solution, and the like can be added. 1 to 3 × 10 6 PBMCs were suspended in 1 to 2.5 mL of medium. To this was added the candidate peptide at a concentration of 1-20 μg / mL. The concentration of the peptide can be varied depending on the solubility of the peptide. In the present invention, it was carried out at 10 μg / mL. Two days later, IL-2 was added at a final concentration of 20-100 U / mL. In the mixed culture of PBMC and peptide, it is desirable to use a round-bottom culture dish capable of carbon dioxide exchange. In the present invention, a polypropylene 14 mL round-bottom tube (BD Biosciences) or 96-well U-bottom cell culture is used. A micro test plate (BD Biosciences) was used. Confirmation of EBV-specific CTL was performed after 2 weeks and 4 weeks of culture. After 2 weeks of culture, stimulation with 10 μg / mL peptide was performed again. When induction of EBV-specific CTL was confirmed, stimulation was performed using peptide pulse antigen-presenting cells to establish a CTL line.
〔EBV特異的CTLの確認〕
 前述の方法で培養した細胞集団にEBV特異的なCTLが存在するかどうかの検討は、細胞内IFNγ産生細胞定量法、MHC-テトラマー法検討により実施した。
[Confirmation of EBV-specific CTL]
Whether EBV-specific CTL is present in the cell population cultured by the above-described method was examined by an intracellular IFNγ-producing cell quantification method and MHC-tetramer method.
細胞内IFNγ産生細胞定量法による特異的CTL誘導の確認
 前述の方法で誘導した細胞集団の約1/10~全量を96穴U底細胞培養用マイクロテストプレートに移し、誘導に用いたペプチドを最終0.01~0.05 μg/mLの濃度で加えた。さらに細胞内タンパク質輸送阻止剤(例えば、Brefeldin AやMonensin等)を加え、5% CO2恒温槽にて37℃で5~16時間培養した。培養後、細胞を洗浄し、PE(phycoerythrin)標識MHC-テトラマー試薬とPC5(phycoerythrin-Cy5)標識抗CD8抗体(Beckman Coulter社)を加え、室温にて15~30分間放置した。洗浄後、4% ホルムアルデヒドにて、4℃、15分間固定後、過剰量の洗浄液にて洗った。0.1%サポニンにて膜透過処理後、FITC標識抗IFNγ抗体(Beckman Coulter社)を加え、室温にて15~30分間反応させた。洗浄後、フローサイトメーターを用いて、T細胞中のIFNγ陽性細胞率あるいはMHC-テトラマー試薬陽性細胞中のIFNγ陽性細胞率を定量した。
Confirmation of specific CTL induction by intracellular IFNγ-producing cell quantification method Transfer about 1/10 to the total amount of the cell population induced by the above method to a 96-well U-bottom cell culture microtest plate, and finally use the peptide used for induction. It was added at a concentration of 0.01-0.05 μg / mL. Further, an intracellular protein transport inhibitor (eg, Brefeldin A, Monensin, etc.) was added, and the cells were cultured at 37 ° C. for 5 to 16 hours in a 5% CO 2 thermostat. After culturing, the cells were washed, PE (phycoerythrin) -labeled MHC-tetramer reagent and PC5 (phycoerythrin-Cy5) -labeled anti-CD8 antibody (Beckman Coulter) were added, and left at room temperature for 15 to 30 minutes. After washing, it was fixed with 4% formaldehyde at 4 ° C. for 15 minutes, and then washed with an excessive amount of washing solution. After membrane permeabilization with 0.1% saponin, FITC-labeled anti-IFNγ antibody (Beckman Coulter) was added and allowed to react at room temperature for 15-30 minutes. After washing, the IFNγ positive cell rate in T cells or the IFNγ positive cell rate in MHC-tetramer reagent positive cells was quantified using a flow cytometer.
 図4に陽性コントロールペプチドを用いて、抗原提示細胞を利用しない誘導法にて特異的CTLを誘導し、細胞内IFNγ産生細胞定量法にて検討した結果を示す。HLA-A*11:01を保持しHLA-A*24:02を保持しない健康成人末梢血から分離したPBMCをHLA-A*11:01拘束性CMV pp65由来のエピトープペプチド(ATVQGQNLK、配列番号:34)または陰性コントロールペプチドとしてHLA-A*24:02拘束性survivin-2B由来のエピトープペプチド(AYACNTSTL、配列番号:35)で13日間刺激後、刺激に用いたそれぞれのペプチドでBrefeldin A存在下14時間再刺激した。これを、PE標識MHC-テトラマー試薬(MBL社)、PC5標識抗CD8抗体、FITC標識抗IFNγ抗体で3重染色しフローサイトメーターを用いて解析した結果を示す。ドットプロット展開図中の数字は、四分割した領域に存在する細胞が全生細胞に占める割合(%)を示す。四分割した領域は今後、UL(左上)、UR(右上)、LL(左下)、LR(右下)と表記する。X軸にCD8、Y軸にINFγに対する蛍光強度をlogスケールで示したドットプロット展開図では、陽性コントロールペプチドで再刺激された場合にURにIFNγ陽性CD8陽性細胞が出現し、陰性コントロールペプチドで再刺激されても殆ど出現しない。陽性コントロールペプチドで13日間刺激培養した細胞集団では、CMV pp65特異的CTLが存在していることは、X軸にCD8、Y軸にMHC-テトラマー試薬に対する蛍光強度をlogスケールで示したドットプロット展開図でURにCD8陽性MHC-テトラマー試薬陽性細胞集団が存在することから明らかである。一方で、ドナーアリルと異なる拘束性の陰性コントロールペプチドを加えた細胞集団では、survivin-2B特異的CTLが出現しないことも明らかである。すなわち、HLA-A*11:01拘束性CMV pp65由来のエピトープペプチドを加えた細胞集団では29.37%の特異的CTLが誘導され、survivin-2B由来の HLA-A*24:02拘束性エピトープペプチドを加えた細胞集団では特異的CTLが誘導されない。この結果は、上記のIFNγの測定結果と合致している。更に、X軸にIFNγ、Y軸にMHC-テトラマー試薬に対する蛍光強度をlogスケールで示したドットプロット展開図では、陰性コントロールペプチドを加えた場合、MHC-テトラマー試薬陽性かつIFNγ陽性の細胞は殆ど存在しないが、HLA-A*11:01拘束性CMV pp65由来の陽性コントロールペプチドの刺激により誘導された特異的CTLは全細胞集団の29.39%を占めており、その内の73%がIFNγを産生(UR)する事、言い換えると細胞傷害性活性を有する事が明らになった。 FIG. 4 shows the results of examining specific CTLs using a positive control peptide by an induction method that does not use antigen-presenting cells and examined by an intracellular IFNγ-producing cell quantification method. PBMC isolated from healthy adult peripheral blood that retains HLA-A * 11: 01 but does not retain HLA-A * 24: 02 is an epitope peptide derived from HLA-A * 11: 01-restricted CMV pp65 (ATVQGQNLK, SEQ ID NO: 34) Or as a negative control peptide, stimulation with HLA-A * 24: 02-restricted survivin-2B-derived epitope peptide (AYACNTSTL, SEQ ID NO: 35) for 13 days, followed by each peptide used for stimulation in the presence of Brefeldin 14 Restimulated for hours. The result of triple staining with PE-labeled MHC-tetramer reagent (MBL), PC5-labeled anti-CD8 antibody and FITC-labeled anti-IFNγ antibody, and analysis using a flow cytometer are shown. The numbers in the dot plot development view indicate the ratio (%) of the cells present in the four divided regions to the whole living cells. The four-divided area will be referred to as UL (upper left), UR (upper right), LL (lower left), and LR (lower right). In the dot plot development diagram showing the fluorescence intensity for CD8 on the X-axis and INFγ on the Y-axis in log scale, IFNγ-positive CD8-positive cells appeared in the UR when re-stimulated with the positive control peptide, and regenerated with the negative control peptide. It hardly appears even when stimulated. The presence of CMV 培養 pp65-specific CTL in the cell population stimulated with the positive control peptide for 13 days indicates that the X-axis shows CD8 on the X-axis and the fluorescence intensity for the MHC-tetramer reagent on the Y-axis on a log scale. In the figure, it is clear from the presence of CD8 positive MHC-tetramer reagent positive cell population in UR. On the other hand, it is also clear that survivin-2B-specific CTLs do not appear in the cell population to which a restrictive negative control peptide different from the donor allele is added. That is, 29.37% of specific CTLs were induced in the cell population to which HLA-A * 11: 01-restricted CMV pp65-derived epitope peptide was added, and survivin-2B-derived HLA-A * 24: 02-restricted epitope peptide Specific CTLs are not induced in the added cell population. This result is consistent with the above-mentioned measurement result of IFNγ. Furthermore, in the dot plot development diagram showing the fluorescence intensity for IFNγ on the X-axis and the MHC-tetramer reagent on the Y-axis in log scale, when a negative control peptide is added, there are almost MHC-tetramer reagent-positive and IFNγ-positive cells. However, specific CTLs induced by stimulation with HLA-A * 11: 01-restricted CMV pp65-derived positive control peptides accounted for 29.39% of the total cell population, 73% of which produced IFNγ ( UR), in other words, has cytotoxic activity.
 この結果より、ドナーが保持するHLA拘束性のCTLエピトープペプチドを加えて培養したPBMC中には、再刺激によりIFNγを産生する細胞が誘導され、この細胞はMHC-テトラマー試薬で染色されることから加えたCTLエピトープペプチドに特異的なCTLであることが明らかである。この様に特異的なCTLが誘導されているか否かは、細胞内IFNγ産生細胞定量法にて判断することも可能である。同様にEBV LMP2特異的CTLエピトープ候補ペプチドを用いてIFNγ産生細胞が誘導されるか否かの検討を5名の健康成人で実施した。CD8陽性細胞中に存在するIFNγ産生生細胞の割合を数値化し図5に示した。図6に細胞内IFNγ産生細胞を定量した代表的な結果を示した。 As a result, IFNγ-producing cells were induced by restimulation in PBMC cultured with the HLA-restricted CTL epitope peptide retained by the donor, and these cells were stained with MHC-tetramer reagent. It is clear that the CTL is specific to the added CTL epitope peptide. Whether or not specific CTLs are induced in this way can also be determined by an intracellular IFNγ-producing cell quantification method. Similarly, an investigation was performed on five healthy adults to determine whether IFNγ-producing cells were induced using EBV LMP2-specific CTL epitope candidate peptides. The ratio of live IFNγ-producing cells present in CD8-positive cells is quantified and shown in FIG. FIG. 6 shows representative results of quantifying intracellular IFNγ-producing cells.
 図5では、5名の健康成人(ドナー ID番号:*11-13, *11-16, *11-8, *11-11, *11-2)の末梢血を用い、21種類のペプチドで、細胞内IFNγ産生細胞定量をした。X軸にCD8陽性IFNγ陽性細胞数がPBMCに占める割合(%)を数値で示す。陰性コントロールと比較し、陽性を示したペプチド候補はASS(10mer)(配列番号:1)と陽性コントロールペプチドCMV pp65である。陽性を示したペプチドの詳細結果は図6で説明する。 In Fig. 5, peripheral blood of five healthy adults (donor ID numbers: * 11-13, * 11-16, * 11-8, * 11-11, * 11-2) was used, and 21 types of peptides were used. Intracellular IFNγ producing cells were quantified. The percentage (%) of the number of CD8 positive IFNγ positive cells in PBMC is shown on the X axis. Peptide candidates that showed a positive result compared with the negative control are ASS (10mer) (SEQ ID NO: 1) and the positive control peptide CMV pp65. The detailed result of the peptide which showed positive is demonstrated in FIG.
 図6では、X軸にCD8、Y軸にIFNγに対する蛍光強度をlogスケールで示したドットプロット展開図で、誘導に用いたペプチドと同じペプチドを用いて再刺激して細胞内IFNγ産生細胞を定量した結果を示した。URにCD8陽性IFNγ陽性細胞数がPBMCに占める割合(%)を数値で示した。 Fig. 6 is a dot plot development showing the fluorescence intensity for CD8 on the X-axis and IFNγ on the Y-axis on a log scale, and quantifies intracellular IFNγ-producing cells by restimulation with the same peptide used for induction. The results were shown. The ratio (%) of the number of CD8-positive IFNγ-positive cells to PBMC in UR is shown as a numerical value.
 陽性コントロールのCMV pp65では、28.0%のCD8陽性IFNγ陽性(産生)細胞がURに検出された。陰性コントロールのsurvivin-2Bの場合の陽性率(8.67%)と比較し有意な差が認められた。これらの結果を元に、MHC-テトラマー試薬を合成し、その有用性に関する検討を実施した。 In the positive control CMV pp65, 28.0% of CD8-positive IFNγ-positive (producing) cells were detected in UR. A significant difference was observed compared to the positive rate (8.67%) of the negative control survivin-2B. Based on these results, we synthesized MHC-tetramer reagents and examined their usefulness.
〔EBV特異的MHC-テトラマー試薬を用いた検討〕
(MHC-テトラマー試薬の合成)
 発明者らは、EBV 特異的なCTLエピトープペプチドとHLA-A*11:01分子を用いてPE標識MHC-テトラマー試薬を作製した。本発明で作製したMHC-テトラマー試薬は例えば、ASS(10mer)-Tetと略号で示すが、これは、HLA-A*11:01分子とペプチドASS(10mer)(ASSYAAAQRK、配列番号:1)とβ2-ミクログロブリンの3者複合体を用いて合成されたものを示す。
[Examination using EBV-specific MHC-tetramer reagent]
(Synthesis of MHC-tetramer reagent)
The inventors made a PE-labeled MHC-tetramer reagent using EBV-specific CTL epitope peptide and HLA-A * 11: 01 molecule. The MHC-tetramer reagent prepared in the present invention is indicated by an abbreviation, for example, ASS (10mer) -Tet, which is an HLA-A * 11: 01 molecule and a peptide ASS (10mer) (ASSYAAAQRK, SEQ ID NO: 1). A compound synthesized using a ternary complex of β2-microglobulin is shown.
〔MHC-テトラマー試薬を用いた定量法〕
 本発明のCTLエピトープペプチドを使用して作製したMHC-テトラマー試薬を用いて、末梢血あるいは末梢血から分離したPBMCにCTLエピトープペプチドを添加誘導して得られたCTLラインを試料として、EBV特異的なCTLの定量を行った。以下にPE標識MHC-テトラマー試薬を用いた場合を例に実施例を示す。用いるフローサイトメーターの機種に合わせ標識色素は適切な組合せで用いれば良く、下記に限定されるものではない。
[Quantitative method using MHC-tetramer reagent]
Using the MHC-tetramer reagent prepared using the CTL epitope peptide of the present invention as a sample, the CTL line obtained by adding and inducing CTL epitope peptide to peripheral blood or PBMC separated from peripheral blood is used as a sample. CTL was quantified. Examples are shown below using PE labeled MHC-tetramer reagent as an example. The labeling dyes may be used in an appropriate combination according to the type of flow cytometer used, and are not limited to the following.
末梢血の場合
 採血した末梢血200 μLに対して、10 μLのPE標識MHC-テトラマー試薬と、20 μLのFITC標識抗T細胞表面抗体(例えばCD8、CD4、CD3)等を加えた。さらに、混入した赤血球による非特異的な蛍光を除外するために、PC5等で標識された抗CD45抗体を加えても良い。穏やかに混合し室温にて30分間放置した。OptiLyse B (Beckam coulter社)を加え能書に従い溶血固定処理を行った。2 mLのPBSを加え攪拌後、400×gで5分間遠心分離した。上澄みを吸引廃棄後、細胞を500 μLのPBSに再懸濁し、24時間以内にフローサイトメーターにて解析した。
In the case of peripheral blood To 200 μL of collected peripheral blood, 10 μL of PE-labeled MHC-tetramer reagent, 20 μL of FITC-labeled anti-T cell surface antibody (eg, CD8, CD4, CD3) and the like were added. Furthermore, an anti-CD45 antibody labeled with PC5 or the like may be added in order to exclude non-specific fluorescence due to mixed red blood cells. Gently mixed and left at room temperature for 30 minutes. OptiLyse B (Beckam coulter) was added, and hemolysis fixation was performed according to the instructions. After adding 2 mL of PBS and stirring, it was centrifuged at 400 × g for 5 minutes. After discarding the supernatant by aspiration, the cells were resuspended in 500 μL of PBS and analyzed with a flow cytometer within 24 hours.
 PBMCまたはCTLエピトープペプチドを使用して誘導したCTLラインの場合
 適量のPBMC(105~106個)または、CTLエピトープペプチドを使用して誘導した適量のCTLラインに対して10 μLのPE標識MHC-テトラマー試薬と、20 μLのFITC標識抗T細胞表面抗体(例えばCD8、CD4、CD3)等を加えた。さらに、混入した赤血球による非特異的な蛍光を除外するために、PC5等で標識された抗CD45抗体を加えても良い。穏やかに混合し室温にて30分放置した。3 mLのPBSを加え攪拌後、400×gで5分間遠心分離した。上澄みを吸引廃棄後、細胞を500 μLのPBSに再懸濁した。CTLラインの場合は、死細胞による非特異的な蛍光を除外するために、7-AAD viability Dye(死細胞検出試薬、MBL社)を加えてもよい。24時間以内にフローサイトメーターにて解析した。
For CTL lines derived using PBMC or CTL epitope peptide 10 μL of PE-labeled MHC for an appropriate amount of PBMC (10 5 to 10 6 cells) or an appropriate amount of CTL line derived using CTL epitope peptide -Tetramer reagent and 20 μL of FITC-labeled anti-T cell surface antibody (eg CD8, CD4, CD3) etc. were added. Furthermore, an anti-CD45 antibody labeled with PC5 or the like may be added in order to exclude non-specific fluorescence due to mixed red blood cells. Gently mixed and left at room temperature for 30 minutes. After adding 3 mL of PBS and stirring, it was centrifuged at 400 × g for 5 minutes. The supernatant was aspirated and discarded, and the cells were resuspended in 500 μL of PBS. In the case of the CTL line, 7-AAD viability Dye (dead cell detection reagent, MBL) may be added to exclude non-specific fluorescence due to dead cells. The analysis was performed with a flow cytometer within 24 hours.
〔MHC-テトラマー試薬による健康成人末梢血中のEBV LMP2特異的CTLの検出〕
 何らかの原因により免疫能が低下した人、先天性免疫不全症患者、または骨髄移植、造血幹細胞移植、臍帯血移植、固形臓器移植を受けて拒絶予防のために免疫抑制剤の投与を受けている患者、慢性ウイルス感染症患者、エイズ患者、高齢者、幼小児、妊婦等のハイリスクの患者、または移植ドナーの末梢血中にEBV特異的CTLが存在するか否かを知ることは、抗ウイルス剤や免疫抑制剤の適正な使用を含めた感染症管理の上で重要である。しかし、これらの患者の免疫能は低下していることから、EBV特異的CTL の存在も少なくなっているため、既存の方法ではEBV特異的CTLが存在することは困難であった。EBV特異的MHC-テトラマー試薬を用いれば、採血から1時間程度でEBV特異的CTLの存在を判定できる可能性がある。そこで我々は、健康成人末梢血を用いてEBV特異的CTLが検出できるか検討した。その結果を図7に示す。ドナーID*11-11の末梢血を用いて3種類のEBV特異的MHC-テトラマー試薬と陽性コントロールであるCMV pp65 MHC-テトラマー試薬(MBL社)および陰性コントロールsurvivin-2B HLA-A*24:02 MHC-テトラマー試薬(MBL社)にて染色した。X軸にCD8、Y軸にMHC-テトラマー試薬に対する蛍光強度をlogスケールで解析したドットプロット展開図にて示した。ドットプロット展開図中の数値は、CD8陽性MHC-テトラマー試薬陽性細胞がCD8陽性細胞中に占める割合を陽性率(%)として示した。その結果、採血直後(day 0)においてCD8陽性MHC-テトラマー試薬陽性の細胞集団は、陰性コントロールと比較して有意に差があるとは言えなかった。これは、用いた末梢血がいずれも健康成人で、EBVあるいはCMVによる日和見感染症を発症している可能性が低いことが原因として挙げられる。続けて、PBMCをそれぞれのペプチドで14日間刺激培養後(day 14)、同様にMHC-テトラマー試薬にて染色した。その結果14日間の培養で、ASS(10mer)は44.47%、CMV pp65は40.52%の陽性率が検出された。陰性コントロールであるHLA-A*24:02拘束性survivin-2B MHC-テトラマー試薬で得られた陽性率が0.17%であった事からも陽性を示した細胞集団は各ペプチドに特異的なCTL集団であると言える。これらの結果から、EBV LMP2特異的CTLは健康成人末梢血中に存在し、2週間の培養でCTL存在の有無を判定できる程度の増殖が可能であることが明らかになった。このことは、本発明で実施した、抗原提示細胞を利用しない誘導法がEBV特異的CTLの検出の為に有効であることを意味している。また、本発明で同定されたEBV LMP2由来のASS(10mer)(配列番号:1)は末梢血中のEBV LMP2特異的CTLを増殖させる機能をもち、これらの細胞集団がASS(10mer)-Tetで検出可能であったことからHLA-A*11:01拘束性のEBV LMP2特異的CTLエピトープペプチドであることが判明した。
[Detection of EBV LMP2-specific CTL in healthy adult peripheral blood using MHC-tetramer reagent]
Persons whose immune system is reduced for some reason, patients with congenital immunodeficiency, or patients who have received bone marrow transplantation, hematopoietic stem cell transplantation, umbilical cord blood transplantation, solid organ transplantation and are receiving immunosuppressants to prevent rejection To know whether EBV-specific CTLs are present in the peripheral blood of high-risk patients such as chronic viral infection patients, AIDS patients, elderly people, infants and pregnant women, or transplant donors It is important in the management of infectious diseases including proper use of immunosuppressants. However, since the immunocompetence of these patients has declined, the presence of EBV-specific CTL has been difficult with existing methods because the presence of EBV-specific CTL has decreased. If an EBV-specific MHC-tetramer reagent is used, there is a possibility that the presence of EBV-specific CTL can be determined in about 1 hour after blood collection. Therefore, we examined whether EBV-specific CTL could be detected using healthy adult peripheral blood. The result is shown in FIG. Using peripheral blood of donor ID * 11-11, three types of EBV-specific MHC-tetramer reagent and positive control CMV pp65 MHC-tetramer reagent (MBL) and negative control survivin-2B HLA-A * 24: 02 Stained with MHC-tetramer reagent (MBL). The X-axis is CD8, and the Y-axis is a dot plot development drawing analyzing the fluorescence intensity for the MHC-tetramer reagent on a log scale. The numerical value in the dot plot development diagram represents the ratio of CD8 positive MHC-tetramer reagent positive cells in CD8 positive cells as a positive rate (%). As a result, immediately after blood collection (day 0), the CD8 positive MHC-tetramer reagent positive cell population was not significantly different from the negative control. This is because the peripheral blood used is a healthy adult and is less likely to develop an opportunistic infection caused by EBV or CMV. Subsequently, PBMC were stimulated with each peptide for 14 days (day 14) and then stained with MHC-tetramer reagent in the same manner. As a result, the positive rate of 44.47% for ASS (10mer) and 40.52% for CMV pp65 was detected after 14 days of culture. The positive cell population obtained from the negative control HLA-A * 24: 02-restricted survivin-2B MHC-tetramer reagent was 0.17%. It can be said that. From these results, it became clear that EBV LMP2-specific CTLs are present in healthy adult peripheral blood and can grow to such an extent that the presence or absence of CTLs can be determined after 2 weeks of culture. This means that the induction method that does not use antigen-presenting cells, which is carried out in the present invention, is effective for the detection of EBV-specific CTL. In addition, ASS (10mer) derived from EBV LMP2 (SEQ ID NO: 1) identified in the present invention has a function of proliferating EBV LMP2-specific CTL in peripheral blood, and these cell populations are ASS (10mer) -Tet. Thus, it was found to be an HLA-A * 11: 01-restricted EBV LMP2-specific CTL epitope peptide.
〔MHC-テトラマー試薬による健康成人末梢血中のEBV EBNA1特異的CTLの検出〕
 続けて発明者らは、EBV EBNA1由来HLA-A*11:01拘束性のCTLエピトープの同定を実施した。先のLMP2で得られた検証結果から、細胞内IFNγ産生細胞定量法では図6に示した通り、陰性コントロールのsurvivin-2Bでも8.67%の非特異反応が検出された。一方図7に示した通り、MHC-テトラマー試薬を用いたCTLの検出では、非特異反応が殆どない事が明らかとなった。
[Detection of EBV EBNA1-specific CTL in healthy adult peripheral blood using MHC-tetramer reagent]
Subsequently, the inventors identified CTL epitopes restricted to EBV EBNA1-derived HLA-A * 11: 01. From the verification results obtained with the previous LMP2, 8.67% non-specific reaction was detected even in the negative control survivin-2B as shown in FIG. On the other hand, as shown in FIG. 7, it was revealed that there was almost no non-specific reaction in the detection of CTL using the MHC-tetramer reagent.
 HLA-A*11:01拘束性EBV EBNA1由来のCTLエピトープの報告が過去には存在しない事から、より非特異染色の少ないMHC-テトラマー染色法にて検証を行う事とした。 Since there has been no report of CTL epitopes derived from HLA-A * 11: 01-restricted EBV EBNA1 in the past, we decided to verify with the MHC-tetramer staining method with less nonspecific staining.
 表5に示した通り、フォールディングテストの結果、11個のEBV EBNA1特異的CTLエピトープ候補ペプチドはすべてHLA*11:01結合性を示した。そのため、発明者らはEBV EBNA1特異的CTL エピトープペプチドを同定する為に、11個のEBV EBNA1のCTLエピトープ候補ペプチドを用いてMHC-テトラマー試薬を作製した。続けて健康成人末梢血を用いてEBNA1特異的CTLが検出できるか検討した。その結果を図8と図9に示す。まずは、3種類ずつ混合したペプチドを用いて、5名の健康成人(ドナーID番号:*11-13, *11-16, *11-8, *11-11, *11-2)の末梢血を用いてCTL誘導を行った。2週間後、誘導用ペプチドに相応した3種類の混合MHC-テトラマー試薬を用いて検出を行った。図8では、X軸にCD8、Y軸にTetramerに対する蛍光強度をlogスケールで解析したドットプロット展開図にて示した。ドットプロット展開図中の数値は、CD8陽性細胞中のMHC-テトラマー試薬陽性細胞が生細胞中に占める割合を陽性率(%)として表す。その結果、ドナー *11-8では、(HRG+GVF+KTS)の3種混合ペプチドを用いて誘導した細胞集団を同じ3種類のペプチドのそれぞれを用いて合成した3種類のMHC-テトラマー試薬の混合試薬(HRG-Tet+GVF-Tet+KTS-Tet)で染色した場合に0.38%の陽性細胞が検出された。3種類のペプチドの内、どのペプチドに対して特異性があるのか検証するために、図9では、3種類それぞれのMHC-テトラマー試薬を用いて別々に検出を実施した。その結果、HRG-Tet単独で染色した場合に、0.42%の陽性率でHRG-Tet陽性細胞が検出された。Tet-GVF-TetとKTS-Tetでは全く陽性細胞が検出されなかったことから、HRG(配列番号:26)はHLA-A*11:01拘束性を示すEBV EBNA1特異的CTLエピトープペプチドであることが示された。 As shown in Table 5, as a result of the folding test, all 11 EBV EBNA1-specific CTL epitope candidate peptides showed HLA * 11: 01 binding properties. Therefore, the inventors prepared an MHC-tetramer reagent using 11 EBV EBNA1 CTL epitope candidate peptides in order to identify EBV EBNA1-specific CTL epitope peptides. We next examined whether EBNA1-specific CTL could be detected using healthy adult peripheral blood. The results are shown in FIGS. First, peripheral blood of five healthy adults (donor ID numbers: * 11-13, * 11-16, * 11-8, * 11-11, * 11-2) using three types of mixed peptides Was used to induce CTL. Two weeks later, detection was performed using three types of mixed MHC-tetramer reagents corresponding to the induction peptide. In FIG. 8, the X-axis is CD8, and the Y-axis is a dot plot developed by analyzing the fluorescence intensity for Tetramer on a log scale. The numerical value in the dot plot development diagram represents the ratio of the MHC-tetramer reagent positive cells in the CD8 positive cells in the living cells as a positive rate (%). As a result, in the donor * 11-8, the cell population derived from the three mixed peptides (HRG + GVF + KTS) was synthesized using each of the same three peptides and the three mixed MHC-tetramer reagents (HRG) -Tet + GVF-Tet + KTS-Tet), 0.38% positive cells were detected. In order to verify which peptide has specificity among the three types of peptides, in FIG. 9, detection was performed separately using each of the three types of MHC-tetramer reagents. As a result, when stained with HRG-Tet alone, HRG-Tet positive cells were detected with a positive rate of 0.42%. Since no positive cells were detected in Tet-GVF-Tet and KTS-Tet, HRG (SEQ ID NO: 26) is an EBV EBNA1-specific CTL epitope peptide showing HLA-A * 11: 01 restriction It has been shown.
〔細胞内IFNγ産生細胞定量法によるEBV EBNA1特異的CTL誘導の確認〕
 細胞内IFNγの産生はCTLの細胞傷害性活性のひとつの指標として用いられている。発明者らは上記のMHC-テトラマー試薬により同定されたEBV EBNA1特異的CTLエピトープペプチドで誘導されたCTLの機能性を評価するために、細胞内IFNγ産生細胞定量を実施した。その結果を図10で示す。
[Confirmation of EBV EBNA1-specific CTL induction by quantification of intracellular IFNγ producing cells]
Intracellular IFNγ production is used as an indicator of the cytotoxic activity of CTL. In order to evaluate the functionality of CTL induced by the EBV EBNA1-specific CTL epitope peptide identified by the above MHC-tetramer reagent, the inventors performed intracellular IFNγ-producing cell quantification. The result is shown in FIG.
 図10の上段では、X軸にCD8、Y軸にIFNγに対する蛍光強度をlogスケールで示したドットプロット展開図で、誘導に用いたペプチドと同じペプチドを用いて再刺激して、IFNγ産生能を検証した結果を示した。URにCD8陽性細胞中のIFNγ陽性細胞数がPBMCに占める割合(%)を数値で示した。図10の下段では、IFNγ産生能を検証した際にテトラマーで染色した結果である。X軸にCD8、Y軸にテトラマーに対する蛍光強度をlogスケールで示したドットプロット展開図で、URにCD8陽性細胞中のテトラマー陽性細胞数がPBMCに占める割合(%)を数値で示した。 The upper part of FIG. 10 is a dot plot development view showing the fluorescence intensity for CD8 on the X-axis and IFNγ on the Y-axis on a log scale. Restimulation with the same peptide as that used for induction was performed to increase the IFNγ production ability. The verified result is shown. The ratio (%) of the number of IFNγ-positive cells in CD8-positive cells to PBMC in UR is shown as a numerical value. The lower part of FIG. 10 shows the result of staining with tetramer when the IFNγ production ability was verified. The X-axis is a dot plot development showing the fluorescence intensity for CD8 on the X-axis and the tetramer on the Y-axis on a log scale.
 HRGで誘導されたCTLに対し、HRGペプチドあるいは陰性コントロールのsurvivin-2Bペプチドを用いて14時間再刺激を行った。その結果、陰性コントロールのsurvivin-2Bで再刺激した場合と未刺激の場合ではCD8陽性IFNγ陽性(産生)細胞(再刺激:0.08%;未刺激:0.06%)がほとんど出なかったのに対し、HRG(配列番号:26)ペプチドを用いた再刺激では、0.68%のCD8陽性IFNγ陽性(産生)細胞がURに出現した(0.98%のCD8陽性テトラマー陽性細胞)。 The HRG-induced CTLs were restimulated with HRG peptide or negative control survivin-2B peptide for 14 hours. As a result, CD8 positive IFNγ positive (producing) cells (re-stimulated: 0.08%; unstimulated: 0.06%) did not appear when restimulated with the negative control survivin-2B and when unstimulated. In restimulation with HRG (SEQ ID NO: 26) peptide, 0.68% of CD8 positive IFNγ positive (producing) cells appeared in UR (0.98% CD8 positive tetramer positive cells).
 以上より、本発明で同定されたEBV EBNA1由来のHRG(配列番号:26)は末梢血中のEBV EBNA1特異的CTLを増殖させる機能をもち、これらの細胞集団が細胞傷害性活性を有しかつHRG-Tetで検出可能であったことからHLA-A*11:01拘束性のEBV EBNA1特異的CTLエピトープペプチドであることが判明した。 As described above, the HRG derived from EBV EBNA1 (SEQ ID NO: 26) identified in the present invention has a function of proliferating EBV EBNA1-specific CTL in peripheral blood, and these cell populations have cytotoxic activity and Since it was detectable with HRG-Tet, it was revealed that it is an HLA-A * 11: 01-restricted EBV EBNA1-specific CTL epitope peptide.
〔ASS(10mer)配列N末端とC末端のアミノ酸の重要性についての検討〕
 HLAクラスI分子に提示されるCTLエピトープペプチドは、8~10個のアミノ酸からなり、N末端側から2番目と、9あるいは10番目のアミノ酸はHLAクラスI分子との結合に対して最も重要なアミノ酸であり、アンカーモチーフと呼ばれている。HLA-A11分子に結合するペプチドとしては、N末端より2番目の位置にIle、Met、Ser、Thr、又はValのいずれかが配置され、9あるいは10番目の位置にLys又はArgのいずれかが配置されたペプチドであって、9~10個のアミノ酸からなるペプチドが最もよく知られている(Chang CX, Tan AT, Or MY, Toh KY, Lim PY, Chia AS, Froesig TM, Nadua KD, Oh HL, Leong HN, Hadrup SR, Gehring AJ, Tan YJ, Bertoletti A, Grotenbreg GM. Conditional ligands for Asian HLA variants facilitate the definition of CD8+ T-cell responses in acute and chronic viral diseases. Eur J Immunol. 2013 Apr;43(4):1109-20. )。本発明で提供されるHLA-A*11:01拘束性EBV LMP2特異的CTLエピトープペプチドASS(10mer)は、Ala Ser Ser Tyr Ala Ala Ala Gln Arg Lys(配列番号:1)という10個のアミノ酸から構成され、アンカーモチーフとしてN末端側から2番目と3番目にSerを、9番目にArgと10番目にLysを有する。このため、本発明の実施形態をより明確にする目的で、N末端側から、或いはC末端から1個のアミノ酸残基を削ったペプチドを合成して検証を行った。N末端側のAlaを削除した配列番号:6のアミノ酸配列は、Ser Ser Tyr Ala Ala Ala Gln Arg Lysであり、C末端側のLysを削除した配列番号:5のアミノ酸配列は、Ala Ser Ser Tyr Ala Ala Ala Gln Argである。これらを用いた比較実験の結果は図11、12、13に示す。
[Study on the importance of amino acids at N-terminal and C-terminal of ASS (10mer) sequence]
The CTL epitope peptide presented on the HLA class I molecule consists of 8 to 10 amino acids, and the 2nd, 9th and 10th amino acids from the N-terminal side are the most important for binding to the HLA class I molecule. It is an amino acid and is called an anchor motif. As a peptide that binds to the HLA-A11 molecule, either Ile, Met, Ser, Thr, or Val is arranged at the second position from the N-terminus, and either Lys or Arg is located at the ninth or tenth position. Peptides consisting of 9 to 10 amino acids are best known (Chang CX, Tan AT, Or MY, Toh KY, Lim PY, Chia AS, Froesig TM, Nadua KD, Oh HL, Leong HN, Hadrup SR, Gehring AJ, Tan YJ, Bertoletti A, Grotenbreg GM.Conditional ligands for Asian HLA variants facilitate the definition of CD8 + T-cell responses in acute and chronic viral diseases.Eur J Immunol. 2013 Apr; 43 (4): 1109-20. The HLA-A * 11: 01-restricted EBV LMP2-specific CTL epitope peptide ASS (10mer) provided by the present invention consists of 10 amino acids, Ala Ser Ser Tyr Ala Ala Ala Gln Arg Lys (SEQ ID NO: 1). It has Ser as the anchor motif, 2nd and 3rd from the N-terminal side, 9th Arg, and 10th Lys. Therefore, for the purpose of clarifying the embodiment of the present invention, a peptide in which one amino acid residue was deleted from the N-terminal side or the C-terminal was synthesized and verified. The amino acid sequence of SEQ ID NO: 6 from which N-terminal Ala has been deleted is Ser Ser Tyr Ala Ala Ala Gln Arg Lys, and the amino acid sequence of SEQ ID NO: 5 from which C-terminal Lys has been deleted is Ala Ser Ser Tyr Ala Ala Ala Gln Arg. The results of comparative experiments using these are shown in FIGS.
Ala Ser Ser Tyr Ala Ala Ala Gln Arg Lys  ASS(10mer)  配列番号:1
Ala Ser Ser Tyr Ala Ala Ala Gln Arg    ASS(9mer)  配列番号:5
  Ser Ser Tyr Ala Ala Ala Gln Arg Lys  SSY     配列番号:6
Ala Ser Ser Tyr Ala Ala Ala Gln Arg Lys ASS (10mer) SEQ ID NO: 1
Ala Ser Ser Tyr Ala Ala Ala Gln Arg ASS (9mer) SEQ ID NO: 5
Ser Ser Tyr Ala Ala Ala Gln Arg Lys SSY SEQ ID NO: 6
 図11では、HLA-A*11:01との複合体形成能を調べるためにフォールディングテストを実施した。その結果、7日間のフォールディングテストの結果では、MHC-モノマー形成率は、高い順にASS(9mer)(337,803 μV*秒)、SSY(294,932 μV*秒)、ASS(10mer)(238,655 μV*秒)の順番であったが、いずれの配列も陰性コントロール(83,587 μV*秒)のペプチドとの比較からMHC-モノマーの形成能が認められた。 In FIG. 11, a folding test was conducted to examine the ability to form a complex with HLA-A * 11: 01. As a result, according to the results of the 7-day folding test, the MHC-monomer formation rate is ASS (9mer) (337,803 μV * second), SSY (294,932 μV * second), ASS (10mer) (238,655 μV * second) in descending order. However, in any of the sequences, the ability to form MHC-monomer was confirmed by comparison with the peptide of the negative control (83,587 μV * sec).
 図12の実験では、前述の抗原提示細胞を利用しない誘導法にて3種類のペプチドを用いてそれぞれCTL誘導実験を実施した。誘導から14日後に3種類のMHC-テトラマー試薬を用いてそれぞれ特異的なCTLの検出を実施した。図12の上段は、ASS(10mer)を用いてCTLを誘導し、これをASS(10mer)-Tet、ASS(9mer)-Tet、SSY-Tetを用いて染色した。その結果、ASS(10mer)-Tetで染色した場合に53.31%のASS(10mer)-Tet陽性CD8陽性の特異的CTLが検出されたが、ASS(9mer)-TetあるいはSSY-Tet陽性CD8陽性の特異的CTLは検出されなかった(上段中央および上段左)。上段の細胞集団には、ASS(10mer)-Tet陽性CD8陽性の細胞集団が53.31%存在するにも関わらず、これらの細胞集団をASS(9mer)-TetあるいはSSY-Tetでは検出できない事から、ASS(10mer)-Tet陽性CD8陽性の細胞集団は、HLA-A*11:01分子に提示されたASS(9mer)とSSYを認識できない事が判明した。同様の実験を、ASS(9mer)とSSYのペプチドでCTLを誘導した細胞集団で実施したが、いずれの細胞集団でもASS(10mer)-Tet、ASS(9mer)-Tet、SSY-Tetに反応性を示す細胞集団は検出されなかった(中段および下段)。この事は、図11で示した通り、ASS(9mer)とSSYの両ペプチドはHLA-A*11:01分子に結合する能力はあるものの、血中に存在するEBV LMP2特異的CTL前駆体(エフェクター/メモリー細胞)を刺激増殖させる能力が無い事を意味していおりASS(10mer)はN末端側のAla残基、あるいはC末端側のLys残基のいずれか一つが欠損してもCTL誘導能とCTL検出能が無くなることが明らかになった。 In the experiment of FIG. 12, a CTL induction experiment was performed using three types of peptides by the above-described induction method without using antigen-presenting cells. 14 days after induction, specific CTLs were detected using three types of MHC-tetramer reagents. In the upper part of FIG. 12, CTL was induced using ASS (10mer), and this was stained using ASS (10mer) -Tet, ASS (9mer) -Tet, and SSY-Tet. As a result, 53.31% ASS (10mer) -Tet positive CD8 positive specific CTL was detected when stained with ASS (10mer) -Tet, but ASS (9mer) -Tet or SSY-Tet positive CD8 positive was detected. Specific CTLs were not detected (upper middle and upper left). In the upper cell population, although 53.31% of ASS (10mer) -Tet positive CD8 positive cell population exists, these cell populations cannot be detected by ASS (9mer) -Tet or SSY-Tet. The ASS (10mer) -Tet positive CD8 positive cell population was found to be unable to recognize ASS (9mer) and SSY presented in the HLA-A * 11: 01 molecule. A similar experiment was performed on cell populations in which CTL was induced with ASS (9mer) and SSY peptides, but all cell populations were reactive to ASS (10mer) -Tet, ASS (9mer) -Tet, and SSY-Tet. No cell population showing was detected (middle and lower). As shown in FIG. 11, although both ASS (9mer) and SSY peptides have the ability to bind to HLA-A * 11: 01 molecules, they are EBV LMP2-specific CTL precursors ( ASS (10mer) means that there is no ability to stimulate proliferation of effector / memory cells) and CTL induction even if either Ala residue on the N-terminal side or Lys residue on the C-terminal side is deleted And CTL detectability disappeared.
 図13では、ASS(10mer)、ASS(9mer)、SSYのそれぞれのペプチドを用いてCTL誘導した細胞集団に、誘導に用いたペプチドと同じぺプチドで再刺激した場合のIFNγの産出能を検出した結果を示した。陽性コントロール用のペプチドであるCMV pp65タンパク質由来のHLA-A*11:01拘束性エピトープペプチド(ATVQGQNLK、配列番号:34)を用いて誘導した細胞集団ではATV-Tet陽性細胞が40.52%存在し、ATVペプチドによる再刺激で28%の細胞がIFNγを産生した。 In FIG. 13, IFNγ production ability is detected when restimulated with the same peptide as the peptide used for induction in the cell population induced by CTL using each peptide of ASS (10mer), ASS (9mer), and SSY. The results were shown. 40.52% of ATV-Tet positive cells are present in the cell population induced using HLA-A * 11: 01 restricted epitope peptide (ATVQGQNLK, SEQ ID NO: 34) derived from CMV pp65 protein, which is a peptide for positive control, 28% of cells produced IFNγ upon restimulation with ATV peptide.
 一方陰性コントロール用のペプチドとして用いたsurvivin-2BのHLA-A*24:02拘束性エピトープペプチド(AYACNTSTL、配列番号:35)の場合は、AYA-Tet陽性細胞が0.17%検出されたが、この細胞集団は明確なスポットとして検出されておらず非特異的な反応と考えられる。またAYAペプチドを用いた再刺激で8.67%のIFNγ陽性細胞が検出されたが、これは細胞内IFNγ染色法では一般的な非特異染色のレベルである。本発明で同定されたEBV LMP2由来HLA-A*11:01拘束性ASS(10mer)を用いて誘導した細胞集団にはASS(10mer)-Tet特異的CTLが53.31%存在し、ASS(10mer)の再刺激により68%の細胞集団がIFNγを産生した。これに対してN末端のAla残基を欠失したSSYの場合、SSY-Tet陽性細胞は検出されず、IFNγの産生も陰性コントロールよりも低かった。このことから、アンカーモチーフに該当するアミノ酸を有するペプチドであって、かつ、MHC-モノマーを形成する場合であっても、エピトープペプチドとして特異的にCTLを誘導できるとは限らず、なお、特異的にCTLを誘導できるエピトープペプチドは、容易に想到できないことが示された。 On the other hand, in the case of survivin-2B HLA-A * 24: 02 restricted epitope peptide (AYACNTSTL, SEQ ID NO: 35) used as a negative control peptide, 0.17% of AYA-Tet positive cells were detected. The cell population is not detected as a clear spot and is considered to be a non-specific reaction. In addition, 8.67% of IFNγ-positive cells were detected by restimulation with AYA peptide, which is a level of non-specific staining that is common in intracellular IFNγ staining. The cell population induced by using the EBV LMP2-derived HLA-A * 11: 01-restricted ASS (10mer) identified in the present invention has 53.31% ASS (10mer) -Tet-specific CTL, and the ASS (10mer) 68% of the cell population produced IFNγ by restimulation. In contrast, in the case of SSY lacking the N-terminal Ala residue, no SSY-Tet positive cells were detected, and IFNγ production was also lower than that of the negative control. From this, even if it is a peptide having an amino acid corresponding to an anchor motif and also forms an MHC-monomer, it cannot always specifically induce CTL as an epitope peptide. It has been shown that an epitope peptide capable of inducing CTL cannot be easily conceived.
〔EBV株多様性によるCTLエピトープのアミノ酸の変異からペプチドカクテル療法へ〕
(EBV株間におけるASS(10mer)のCTLエピトープのアミノ酸変異)
 EBV株の多様性に起因するCTLエピトープのアミノ酸変異は免疫応答の低下や免疫逃避を引き起こし、CTLエピトープを用いた免疫療法の潜在的な問題点となる。この問題を解決するために、複数のCTLエピトープを混合したペプチドカクテル療法が提起されはじめている。これは、1種類のエピトープを用いた場合、仮に変異等が原因で免疫不応答であった場合には他のエピトープで補う事が可能であることを期待した解決策と言える。この解決策には、1種類のHLA型に対して複数のCTLエピトープを用いる方法と、複数のHLA型に対してそれぞれのCTLエピトープを用いる方法が考えられるが、望ましくは、両者を組み合わせる事である。例えば、対象となる患者がHLA-A2とHLA-A11を保持する場合、それぞれのHLA拘束性の複数のCTLエピトープが治療に選択される事が望ましい。これは本発明が解決しようとしている課題の一つである。
[From amino acid mutation of CTL epitope due to EBV strain diversity to peptide cocktail therapy]
(Amino acid mutation of CTL epitope of ASS (10mer) between EBV strains)
Amino acid mutations in the CTL epitope resulting from the diversity of EBV strains cause a decrease in immune response and immune escape, which is a potential problem for immunotherapy using CTL epitopes. In order to solve this problem, peptide cocktail therapy in which a plurality of CTL epitopes are mixed has been proposed. This can be said to be a solution that expects that if one type of epitope is used and if it is immune unresponsive due to mutation or the like, it can be supplemented with another epitope. This solution includes a method using a plurality of CTL epitopes for one type of HLA and a method using each CTL epitope for a plurality of HLA types. is there. For example, when the subject patient holds HLA-A2 and HLA-A11, it is desirable that a plurality of HLA-restricted CTL epitopes are selected for treatment. This is one of the problems to be solved by the present invention.
 前述のように、NPC患者ではHLA-A11保持者がもっとも多いことがこれまでの複数の研究グループの調査で明らかになっている。しかしながら、LMP2およびEBNA1のHLA-A11拘束性CTLエピトープは、今まで、SSCのみの一つしか報告されていない。 As mentioned above, it has been clarified by surveys of several research groups so far that NPC patients have the largest number of HLA-A11 holders. However, only one SSC has been reported so far for the HLA-A11 restricted CTL epitopes of LMP2 and EBNA1.
 発明者らはHLA-A*11:01拘束性LMP2由来CTLエピトープであるASS(10mer)およびHLA-A*11:01拘束性EBNA1由来CTLエピトープであるHRGについて、株間のアミノ酸の変異を調べた結果を図14で示す。新規のエピトープASS(10mer)はGD2(中国広東省由来)とHKNPC1(香港NPC患者由来)で、2番目のSer残基と4番目のTyr残基がそれぞれ、Asn残基とSer残基に変異(S2N Y4S)している事が判明した。さらに、新規のエピトープHRGは2つの株での変異が判明した。AG876(西アフリカ由来 タイプ2)で4番目のGln残基がGlu残基に、8番目のAsn残基がSer残基に、9番目のPro残基をGln残基に変異している。Mutu(アジア由来)で、9番目のPro残基がGln残基に変異している。 The inventors investigated amino acid mutations between strains of HLA-A * 11: 01-restricted LMP2-derived CTL epitope ASS (10mer) and HLA-A * 11: 01-restricted EBNA1-derived CTL epitope HRG The results are shown in FIG. The new epitope ASS (10mer) is GD2 (from Guangdong, China) and HKNPC1 (from a Hong Kong NPC patient), with the second and fourth Tyr residues mutated to Asn and Ser residues, respectively. (S2N Y4S) was found. Furthermore, the novel epitope HRG was found to be mutated in two strains. In AG876 (from West Africa type 2), the 4th Gln residue is mutated to Glu residue, the 8th Asn residue is mutated to Ser residue, and the 9th Pro residue is mutated to Gln residue. In Mutu (from Asia), the 9th Pro residue is mutated to a Gln residue.
〔各検体におけるASS(10mer) CTLエピトープのシークエンス〕
 本発明で新規同定したASS(10mer)のCTLエピトープの変異を詳細に調べるために、発明者らは本発明で用いた5名のドナー(*11-2、*11-8、*11-11、*11-13、*11-16)に対し、ASS(10mer)を含むEBV LMP2由来DNA配列の解析を実施した。DNA配列解析用のプライマーは、LMP2のExon 2内に設計し増幅される遺伝子産物は292 bpである。
 5'primer:TTGCTCTATTCACCCTTACT (配列番号:50)
 3'primer:ATGCATTGTAAATGGTGCGT (配列番号:51)
[Sequence of ASS (10mer) CTL epitope in each sample]
In order to examine in detail the mutations of the CTL epitope of ASS (10mer) newly identified in the present invention, the inventors used 5 donors (* 11-2, * 11-8, * 11-11) used in the present invention. , * 11-13, * 11-16), EBV LMP2-derived DNA sequences including ASS (10mer) were analyzed. Primers for DNA sequence analysis are designed within LMP2 Exon 2 and the amplified gene product is 292 bp.
5'primer: TTGCTCTATTCACCCTTACT (SEQ ID NO: 50)
3'primer: ATGCATTGTAAATGGTGCGT (SEQ ID NO: 51)
 5名のドナー のPBMCあるいはB95.8細胞株(ATCC社)からGeneJET Viral DNA and RNA Purification Kit(Thermo scientific社)を用いて、EBVゲノムDNAを抽出した。これを鋳型に用いて上記のプライマーを使い、PCR反応にてExon 2断片を増幅し、TOPO(登録商標)TA cloning Kit(Life technologies社)を用いてクローニングした。各検体からそれぞれ3個のクローンを選択してシークエンス分析を行った。シークエンスの結果を図15と表6に示す。図15では、EBV株間で見られたASSYAAAQRK(配列番号:1)(塩基配列:GCCAGCTCATATGCCGCTGCACAAAGGAAA(配列番号:48)、GCCAGCTCATATGCCGCTGCACAGAGGAAA(配列番号:49))の変異位置をクローズアップして示した。表6は、ASS(10mer)のシークエンス結果である。B95.8と比較し、ドナー*11-11ではDNA配列上、一塩基の置換(CAAからCAG)が見られたが、アミノ酸置換はなかった。また、他の4名はB95.8と同一の配列であった。この結果から、本発明で用いられた日本人のドナー5名は、最も広範に分布するB95.8株に感染しており、ASS(10mer) CTLエピトープの変異が検出できなかった。上記のシークエンスの結果を踏まえ、発明者らはEBV株間で見られるASS(10mer) CTLエピトープの変異によるCTL誘導能に与える影響を調べた。合成したペプチドASS(10mer)(配列番号:1)、ANS(S2N)(配列番号:2)、ASS(Y4S)(配列番号:3)、ANS(S2N;Y4S)(配列番号:4)および陰性コントロールペプチドとしてsurvivin-2Bを用いて、ドナー*11-11のPBMCを用いてCTL誘導を行った。その結果を図16で示す。ASS(10mer)を用いた誘導では、ASS(10mer)-Tet陽性細胞が27.63%検出されたが、各変異ペプチドではCTLの誘導が認められなかった。これは、ドナー*11-11はEBV LMP2のシークエンス解析からB95.8株の感染者でありASS(10mer)にはアミノ酸の変異が認められないからだと考えられる。B95.8株感染者に対してANS(S2N)(配列番号:2)、ASS(Y4S)(配列番号:3)およびGD2株とHKNPC1株のANS(S2N;Y4S)を用いても、特異的CTLが誘導できなかったことから、S2NとY4Sの変異がTCRの認識に重要な変異であることが明確になった。従って、EBV特異的CTLの誘導を行う場合は、ASS(10mer)の領域に予め変異が無いか検討する事が重要で、仮に変異がある場合は、ANS(S2N)、ASS(Y4S)、ANS(S2N;Y4S)を用いることが好ましいと考えられる。 EBV genomic DNA was extracted from PBMC of 5 donors or B95.8 cell line (ATCC) using GeneJET Viral DNA and RNA Purification Kit (Thermo scientific). Using this as a template and the above primers, the Exon 2 fragment was amplified by PCR reaction and cloned using TOPO (registered trademark) TA cloning Kit (Life technologies). Three clones were selected from each specimen and sequence analysis was performed. The results of the sequence are shown in FIG. In FIG. 15, the mutation positions of ASSYAAAQRK (SEQ ID NO: 1) (base sequence: GCCAGCTCATATGCCGCTGCACAAAGGAAA (SEQ ID NO: 48), GCCAGCTCATATGCCGCTGCACAGAGGAAA (SEQ ID NO: 49)) observed between EBV strains are shown in close-up. Table 6 shows the ASS (10mer) sequence results. Compared to B95.8, donor * 11-11 in the DNA sequence, but was seen (CA G from CAA) single base substitution was not an amino acid substitution. The other 4 individuals had the same sequence as B95.8. From these results, five Japanese donors used in the present invention were infected with the most widely distributed B95.8 strain, and mutations in the ASS (10mer) CTL epitope could not be detected. Based on the results of the above sequence, the inventors examined the influence of ASS (10mer) CTL epitope mutations on CTL inducibility, which is observed among EBV strains. Synthesized peptides ASS (10mer) (SEQ ID NO: 1), ANS (S2N) (SEQ ID NO: 2), ASS (Y4S) (SEQ ID NO: 3), ANS (S2N; Y4S) (SEQ ID NO: 4) and negative CTL induction was performed using survivin-2B as a control peptide and PBMC of donor * 11-11. The result is shown in FIG. In the induction using ASS (10mer), 27.63% of ASS (10mer) -Tet positive cells were detected, but CTL induction was not observed in each mutant peptide. This is probably because donor * 11-11 was infected with B95.8 strain from EBV LMP2 sequence analysis and ASS (10mer) showed no amino acid mutation. Even if ANS (S2N) (SEQ ID NO: 2), ASS (Y4S) (SEQ ID NO: 3) and ANS (S2N; Y4S) of GD2 and HKNPC1 strains were used for B95.8 strain infected individuals Since CTL could not be induced, it became clear that S2N and Y4S mutations are important mutations for TCR recognition. Therefore, when inducing EBV-specific CTL, it is important to examine whether there is a mutation in the ASS (10mer) region beforehand. If there is a mutation, ANS (S2N), ASS (Y4S), ANS It is considered preferable to use (S2N; Y4S).
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
〔ASS(10mer)CTLエピトープの変異によるCTL誘導能とTCR結合性の違い〕
 S2NとY4Sの変異によりTCR結合能に与える影響を詳細に調べるために、発明者らは3種類の変異配列ペプチドを用いて、ANS(S2N)-Tet、ASS(Y4S)-Tet、ANS(S2N, Y4S)-Tetの3種類のMHCテトラマー試薬を作製した。本発明で提供されるASS(10mer)エピトープペプチド(配列番号:1)を用いてPBMCから誘導したHLA-A*11:01拘束性EBV LMP2特異的CTLに対するテトラマー染色を実施した。結果を図17に示す。
[Difference in CTL inducibility and TCR binding by mutation of ASS (10mer) CTL epitope]
In order to investigate in detail the effects of S2N and Y4S mutations on TCR binding ability, the inventors used three mutant peptide sequences, ANS (S2N) -Tet, ASS (Y4S) -Tet, ANS (S2N , Y4S) -Tet MHC tetramer reagents were prepared. Tetramer staining for HLA-A * 11: 01-restricted EBV LMP2-specific CTL derived from PBMC was performed using the ASS (10mer) epitope peptide provided in the present invention (SEQ ID NO: 1). The results are shown in FIG.
 HLA-A*11:01拘束性EBV LMP2 ASS(10mer)特異的CTLは図17で示したように、ANS (S2N)-Tetで検出されたことから、ANS(S2N)-TetはASS(10mer)-Tetとの交差反応性が保持されていたのに対し(26.87%対27.63%)、ASS(Y4S)-Tetでは陽性細胞が殆ど検出できず、TCRとの結合性がほぼ失われた(0.49%)。ASN (S2N, Y4S)-Tetでは、TCRとの結合能が若干保持された(5.93%)。これは、S2NとY4Sの両置換とY4Sの単独の置換によるアミノ酸の疎水性・親水性の変化の程度および側鎖の立体配置の違いによるものだと考えられる。この2つのアミノ酸変異について、EBV株間で単独の置換がなく、共置換しか見られなかった(GD2、HKNPC1)。しかし、注目すべきは、本発明で提供されるASS(10mer)の変異はGD2株とHKNPC1株でしか見られないことである。このことから、このエピトープが機能的に相補する、すなわち、両者の混合使用でGD2株及びHKNPC1株とそれら以外の感染EBV株の違いで生じるアミノ酸変異による免疫応答の低下は回避できると考えられる。 Since HLA-A * 11: 01-restricted EBV LMP2 ASS (10mer) -specific CTL was detected by ANS (S2N) -Tet as shown in FIG. 17, ANS (S2N) -Tet was detected by ASS (10mer ) -Tet cross-reactivity was maintained (26.87% vs. 27.63%), but ASS (Y4S) -Tet could hardly detect positive cells and lost its binding to TCR ( 0.49%). ASN (S2N, Y4S) -Tet retained some ability to bind to TCR (5.93%). This is thought to be due to the degree of change in hydrophobicity / hydrophilicity of amino acids and the difference in the side chain configuration due to both substitution of S2N and Y4S and substitution of Y4S alone. For these two amino acid mutations, there was no single substitution between EBV strains, and only co-substitution was observed (GD2, HKNPC1). However, it should be noted that the ASS (10mer) mutation provided in the present invention is found only in the GD2 and HKNPC1 strains. From this fact, it is considered that this epitope is functionally complementary, that is, it is possible to avoid a decrease in immune response due to amino acid mutation caused by the difference between GD2 strain and HKNPC1 strain and other infected EBV strains when both are used in combination.
 さらに、HLA-A*11:01拘束性EBV EBNA1由来の新規のエピトープHRG(配列番号:26)に関しても、AG876株由来HRG(Q4E, N8S, P9Q)とMutu株由来のHRG(P9Q)を含めて、図3に示したようにHLA-A*11:01に対する結合性があり、それぞれのMHC-テトラマー試薬の合成に成功した。ASS(10mer)と同様の検証をすることで、それぞれの感染株によって、誘導効率の違いが明らかになると思われる。 In addition, the novel epitope HRG derived from HLA-A * 11: 01-restricted EBV EBNA1 (SEQ ID NO: 26) includes HRG derived from AG876 strain (Q4E, N8S, P9Q) and HRG derived from Mutu strain (P9Q). Thus, as shown in FIG. 3, it has binding ability to HLA-A * 11: 01, and each MHC-tetramer reagent was successfully synthesized. By conducting the same verification as ASS (10mer), the difference in induction efficiency will be clarified for each infected strain.
〔培養バッグを用いたCTLの大量培養〕
 本発明でEBV LMP2特異的あるいはEBV EBNA1特異的な新規CTLエピトープの同定に成功し、HLA-A11保持者を対象とした抗原特異的細胞傷害性T細胞療法(CTL療法)の実現が可能となった。CTL療法は次世代の免疫療法として期待されている。しかし、生体外で抗原特異的CTLを調製するため、複雑且つ煩雑な操作を伴うことから、開放系培養システムに頼らざるを得なかった。そのため、医療用グレードの培養細胞加工センター(CPC)内にクラス100レベルの清浄環境を保つ施設を整備、管理しなければならず、多大な費用を必要としていた。
[Large-scale culture of CTL using culture bags]
The present invention has succeeded in identifying a novel CTL epitope specific to EBV LMP2 or EBV EBNA1, and can realize antigen-specific cytotoxic T cell therapy (CTL therapy) targeting HLA-A11 carriers. It was. CTL therapy is expected as a next generation immunotherapy. However, in order to prepare antigen-specific CTLs in vitro, complicated and complicated operations are involved, so it has been necessary to rely on an open culture system. For this reason, facilities that maintain a clean environment of class 100 level within a medical grade cultured cell processing center (CPC) had to be maintained and managed, which required a great deal of money.
 また、従来の方法では種々のサイトカインを使用することから、調製時に要する費用も相当なものとなる。さらに、クラス100レベルに保った施設のなかで調製するとはいえ、開放系による培養は安全面でのリスクを伴う。このように、従来の抗原特異的CTL調製法では操作性、経済性及び安全性が実用化の大きな妨げとなり、限られた施設でのみ実施可能であった。上記の問題点を解決すべく、発明者らはCTLの大量培養方法を研鑽し、簡便性と安全性を兼ね備え、且つ低コストで実施可能なEBV特異的CTL培養システムを検討した。市販のガス通気性培養用バッグを用いて、わずか三週間程度でEBV LMP2特異的CTLの大量培養に成功した。 In addition, since various cytokines are used in the conventional method, the cost required for preparation becomes considerable. In addition, culture in an open system carries a safety risk, although it is prepared in a facility maintained at class 100 level. As described above, in the conventional antigen-specific CTL preparation method, operability, economy, and safety greatly hinder practical application, and can be performed only in a limited facility. In order to solve the above problems, the inventors studied a method for mass-culturing CTL, and examined an EBV-specific CTL culture system that has both simplicity and safety and can be carried out at low cost. Using a commercially available gas-permeable culture bag, we succeeded in culturing EBV LMP2-specific CTL in a large amount in just 3 weeks.
 図18は培養期間中の細胞を顕微鏡で観察した結果である。抗CD3抗体で刺激したPBMCはday 7、ペプチドで刺激したPBMCはday 14で活性化したT細胞塊が観察され、混合培養を開始した一週間後(day 21)では、活性化T細胞塊がさらに増殖したことが示された。 FIG. 18 shows the result of observing cells during the culture period with a microscope. PBMCs stimulated with anti-CD3 antibody were observed to activate T cell masses on day 7 and PBMCs stimulated with peptide on day 14; one week after starting mixed culture (day 21), activated T cell masses Further growth was shown.
 前述のように、混合ペプチドの使用が癌免疫療法の有効性を高めるための解決策の一つである。本実施例では、新規同定したCTLエピトープASS(10mer)(配列番号:1)とその変異配列ASN(S2N)(配列番号:2)の4種類のペプチドを混同し、CTL大量培養を実施した。その結果を図19と20に示す。 As mentioned above, the use of mixed peptides is one of the solutions for enhancing the effectiveness of cancer immunotherapy. In this example, four types of peptides, the newly identified CTL epitope ASS (10mer) (SEQ ID NO: 1) and its mutant sequence ASN (S2N) (SEQ ID NO: 2) were confused and CTL mass culture was performed. The results are shown in FIGS.
 図19は培養期間中の総細胞および4種類のペプチド誘導で増殖したCTL数を示した。CTL数は図20のテトラマー染色結果により算出した。図19はX軸にCD8、Y軸にテトラマーに対する蛍光強度をlogスケールで示したドットプロット展開図で、誘導に用いたペプチドと同じペプチドのテトラマーで染色した。ドットプロット展開図中の数値は、CD8陽性細胞中のMHC-テトラマー試薬陽性細胞が生細胞中に占める割合を陽性率(%)として表す。 FIG. 19 shows the total number of cells during the culture period and the number of CTLs proliferated by induction of four types of peptides. The CTL number was calculated from the tetramer staining result of FIG. FIG. 19 is a dot plot development view showing the fluorescence intensity for CD8 on the X axis and the tetramer on the Y axis on a log scale, and was stained with a tetramer of the same peptide as that used for induction. The numerical value in the dot plot development diagram represents the ratio of the MHC-tetramer reagent positive cells in the CD8 positive cells in the living cells as a positive rate (%).
 ASS(10mer)とANS(S2N)については、大量培養前、分離したPBMC中のMHC-テトラマー試薬陽性細胞数はわずか0.04%以下であったが、陽性細胞が検出されたday 7からday 24の間で、ASS(10mer)は、1.3×103個から2.3×105へ、ANSは3.2×103個から3.1×105個へ約100倍の増殖が確認された。これにより、新規CTLエピトープペプチドを用いた前記ペプチドカクテル療法の有効性が示された。さらに、新規CTLエピトープペプチドを用いたCTLの大量増殖に成功は、臨床への実用性が示すものである。 For ASS (10mer) and ANS (S2N), the number of MHC-tetramer reagent positive cells in the separated PBMCs before mass culture was only 0.04% or less, but from day 7 to day 24 when positive cells were detected. In the meantime, ASS (10mer) increased from about 1.3 × 10 3 to 2.3 × 10 5 , and ANS increased from about 3.2 × 10 3 to 3.1 × 10 5 about 100 times. Thereby, the effectiveness of the peptide cocktail therapy using the novel CTL epitope peptide was shown. Furthermore, the success in mass proliferation of CTLs using novel CTL epitope peptides is indicated by clinical utility.
 発明者らが検討した上記培養システムは、従来の開放系ではなく閉鎖系で行うことが特徴である。そのために、抗原特異的CTLの調製における操作性、経済性及び安全性が実現でき、CTL療法の実用化を推進できるものと考えられる。 The above culture system examined by the inventors is characterized in that it is performed in a closed system instead of a conventional open system. Therefore, it is considered that operability, economy and safety in preparation of antigen-specific CTL can be realized, and the practical use of CTL therapy can be promoted.
 これまでの癌免疫療法の臨床試験では、一種類のHLA型に対して、一つのエピトープを用いて行うケースが多かったが、有効性が認められたものの、個人差を否定できない。前述のように、カクテルペプチド療法は解決策の一つである。しかし、EBV LMP2抗原特異的およびEBNA1抗原特異的HLA-A11拘束性エピトープペプチドはこれまで1個しか同定されていなかった。EBV株間でのアミノ酸変異により起こりうる免疫応答の低下は、臨床における潜在的な問題点だと指摘すべきところである。この問題点を看過できないと考え、本発明で鋭意検討した結果、新たなエピトープASS(10mer)(配列番号:1)およびHRG(配列番号:26)を同定した。この新規のCTLエピトープはEBV関連癌・免疫不全、特にHLA-A11患者の多いNPCの治療には、今後大きく貢献するはずであると考えられる。 In previous clinical trials of cancer immunotherapy, there were many cases in which one epitope was used for one type of HLA type, but although effectiveness was confirmed, individual differences cannot be denied. As mentioned above, cocktail peptide therapy is one solution. However, only one EBV LMP2 antigen-specific and EBNA1 antigen-specific HLA-A11 restricted epitope peptide has been identified so far. It should be pointed out that the reduced immune response that can be caused by amino acid mutations between EBV strains is a potential clinical problem. As this problem cannot be overlooked, and as a result of intensive studies in the present invention, new epitopes ASS (10mer) (SEQ ID NO: 1) and HRG (SEQ ID NO: 26) were identified. This novel CTL epitope is expected to greatly contribute to the treatment of EBV-related cancers and immunodeficiencies, especially NPCs with many HLA-A11 patients.
〔ワクチン注射剤〕
 DMSOに、配列番号:1のペプチドを最終濃度20 mg/mlとなるように各々溶解し、ろ過滅菌した。得られたペプチド含有溶液を滅菌バイアル瓶に1 mLずつ分注密栓し、ワクチン注射剤とした。
[Vaccine injection]
Each peptide of SEQ ID NO: 1 was dissolved in DMSO to a final concentration of 20 mg / ml, and sterilized by filtration. The obtained peptide-containing solution was dispensed and sealed in 1 mL sterilized vials to obtain a vaccine injection.
〔実施例2〕
〔CKAP4特異的HLA-A*24:02拘束性エピトープペプチドの予測〕
 CKAP4は全長602個のアミノ酸で構成されるII型膜タンパク質であり、アイソフォームの報告はない。本発明のCKAP4特異的CTLエピトープ候補ペプチドの選択は、日本人の約60%が保有するHLA-A*24:02に対して実施した。具体的には、HLA-A*24:02に対して結合モチーフを有する8~12個のアミノ酸よりなるCTLエピトープ候補ペプチドを検索し得る、インターネット上に公開されている複数のソフトウェアに照合して実施した。その結果、CKAP4のアミノ酸配列よりHLA-A*24:02の結合モチーフを有する9~10個のアミノ酸よりなるCTLエピトープ候補ペプチドを10種類選択しペプチドを合成した。以下に合成したCTLエピトープ候補ペプチドを示す。
[Example 2]
(Prediction of CKAP4-specific HLA-A * 24: 02 restricted epitope peptide)
CKAP4 is a type II membrane protein composed of 602 amino acids in total length, and no isoform has been reported. Selection of CKAP4-specific CTL epitope candidate peptides of the present invention was performed against HLA-A * 24: 02 possessed by about 60% of Japanese. Specifically, we collated with multiple software published on the Internet that can search for CTL epitope candidate peptides consisting of 8 to 12 amino acids having a binding motif for HLA-A * 24: 02. Carried out. As a result, ten types of CTL epitope candidate peptides consisting of 9 to 10 amino acids having a binding motif of HLA-A * 24: 02 were selected from the amino acid sequence of CKAP4 and synthesized. The synthesized CTL epitope candidate peptides are shown below.
 合成したHLA-A*24:02結合性CKAP4特異的CTLエピトープ候補ペプチド
Arg Leu Gly Arg Ala Leu Asn Phe Leu Phe (配列番号:36)
Phe Tyr Leu Ala Leu Val Ala Ala Ala Ala (配列番号:37)
Tyr Leu Ala Leu Val Ala Ala Ala Ala Phe (配列番号:38)
Asp Phe Ser Arg Gln Arg Glu Glu Leu   (配列番号:39)
Lys Val Gln Ser Leu Gln Ala Thr Phe   (配列番号:40)
Ser Leu Gln Ala Thr Phe Gly Thr Phe   (配列番号:41)
Thr Phe Gly Thr Phe Glu Ser Ile Leu   (配列番号:42)
Ile Tyr Thr Glu Val Arg Glu Leu Val   (配列番号:43)
Lys Val Gln Glu Gln Val His Thr Leu Leu (配列番号:44)
Asp Phe Leu Asp Arg Leu Ser Ser Leu   (配列番号:45)
Synthesized HLA-A * 24: 02-binding CKAP4-specific CTL epitope candidate peptide
Arg Leu Gly Arg Ala Leu Asn Phe Leu Phe (SEQ ID NO: 36)
Phe Tyr Leu Ala Leu Val Ala Ala Ala Ala (SEQ ID NO: 37)
Tyr Leu Ala Leu Val Ala Ala Ala Ala Phe (SEQ ID NO: 38)
Asp Phe Ser Arg Gln Arg Glu Glu Leu (SEQ ID NO: 39)
Lys Val Gln Ser Leu Gln Ala Thr Phe (SEQ ID NO: 40)
Ser Leu Gln Ala Thr Phe Gly Thr Phe (SEQ ID NO: 41)
Thr Phe Gly Thr Phe Glu Ser Ile Leu (SEQ ID NO: 42)
Ile Tyr Thr Glu Val Arg Glu Leu Val (SEQ ID NO: 43)
Lys Val Gln Glu Gln Val His Thr Leu Leu (SEQ ID NO: 44)
Asp Phe Leu Asp Arg Leu Ser Ser Leu (SEQ ID NO: 45)
 表7に合成したHLA-A*24:02結合性CKAP4特異的CTLエピトープ候補ペプチドの特徴を示す。合成したCKAP4特異的CTLエピトープ候補ペプチドのN末端側から3つまたは4つのアミノ酸配列をペプチド名として略号で示す。左から、ペプチド名、アミノ酸配列、CKAP4アミノ酸配列上の位置、アミノ酸数、分析に用いたBIMAS(BioInformatics & Molecular Analysis Section/ http://thr.cit.nih.gov/index.shtml)のHLA Peptide Binding Predictions (http://thr.cit.nih.gov/molbio/hla_bind/)で算出されたスコアを示した。このスコアは、HLA-A*24:02とペプチドとの親和性を予測する数値で、スコアが高い程、HLA分子とペプチドが安定した複合体を形成する可能性がある事を意味する。発明者らは表7に記載した分析ソフトBIMAS以外にもSYFPEITHI、Rankpep、IEDB Bind prediction、NetCTL等の分析ソフトを用いてCTLエピトープ候補ペプチドを10種類(配列番号:36~45)選択した。 Table 7 shows the characteristics of the synthesized HLA-A * 24: 02-binding CKAP4-specific CTL epitope candidate peptides. Three or four amino acid sequences from the N-terminal side of the synthesized CKAP4-specific CTL epitope candidate peptide are abbreviated as peptide names. From left, peptide name, amino acid sequence, position on CKAP4 amino acid sequence, number of amino acids, HLASPeptide of BIMAS (BioInformatics & Molecular Analysis Section / http://thr.cit.nih.gov/index.shtml) used for analysis The score calculated by Binding Predictions (http://thr.cit.nih.gov/molbio/hla_bind/) is shown. This score is a numerical value that predicts the affinity between HLA-A * 24: 02 and the peptide. The higher the score, the more likely the HLA molecule and peptide may form a stable complex. In addition to the analysis software BIMAS described in Table 7, the inventors selected 10 types (SEQ ID NOs: 36 to 45) of CTL epitope candidate peptides using analysis software such as SYFPEITHI, Rankpep, IEDB Bind prediction, and NetCTL.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
〔CKAP4特異的CTLエピトープ候補ペプチドのフォールディングテスト〕
 発明者は、人工的に合成した10種類のCKAP4特異的CTLエピトープ候補ペプチドを用いて、フォールディングテストを実施した。具体的には、大腸菌発現系を利用して発現精製したHLA-A*24:02とβ2-ミクログロブリン、およびCKAP4特異的CTLエピトープ候補ペプチドをフォールディング溶液に添加して混合後、経時的にフォールディング溶液を分取し、ゲル濾過カラムにて分析を行った。ゲル濾過カラム分析では、HLA-A*24:02とβ2-ミクログロブリン、およびCKAP4特異的CTLエピトープ候補ペプチドの3者複合体(MHC-モノマー)の形成が認められる場合、MHC-モノマーは原料よりも分子量が大きいため、ゲル濾過カラム分析での溶出時間が早くなる。また、MHC-モノマー形成量は、280 nmの吸収波長によって得られるピーク面積から算出可能である。一方、HLA分子との結合性の無い候補ペプチドではMHC-モノマー形成が確認されない。MHC-モノマー形成が認められる場合の代表的なゲル濾過カラム分析例を図21に示した。
[Folding test of CKAP4-specific CTL epitope candidate peptide]
The inventor conducted a folding test using ten types of artificially synthesized CKAP4-specific CTL epitope candidate peptides. Specifically, HLA-A * 24: 02 expressed and purified using an E. coli expression system, β2-microglobulin, and CKAP4-specific CTL epitope candidate peptide are added to the folding solution, mixed, and then folded over time. The solution was collected and analyzed with a gel filtration column. When gel filtration column analysis shows formation of a ternary complex (MHC-monomer) of HLA-A * 24: 02, β2-microglobulin, and CKAP4-specific CTL epitope candidate peptide, MHC-monomer Since the molecular weight is large, the elution time in the gel filtration column analysis is shortened. Further, the amount of MHC-monomer formation can be calculated from the peak area obtained by the absorption wavelength of 280 nm. On the other hand, MHC-monomer formation is not confirmed with candidate peptides that do not bind to HLA molecules. A typical gel filtration column analysis example in which MHC-monomer formation is observed is shown in FIG.
 HLA分子とβ2-ミクログロブリンは、大腸菌発現系を利用して発現精製する際に、不溶性画分である封入体として精製し、8M尿素で可溶化されているが、ゲル濾過カラム分析の結果では、難溶性であるHLA分子は、MHC-モノマー形成に至らないものが凝集体として7~8分に検出される。但し、凝集体の多くはゲル濾過カラム分析前のフィルター濾過処理により除去されている。β2-ミクログロブリンは、可溶性タンパク質であり、フォールディング溶液中で可溶化され14分付近に検出される。15分以降にはフォールディング溶液の組成物やペプチドが検出される。フォールディングテスト開始直後(day 0)にはMHC-モノマーのピークは確認されないが、1日後(day 1)、3日後(day 3)とピークが大きくなり、MHC-モノマー形成が順調に進行している事を示している。 HLA molecules and β2-microglobulin are purified as inclusion bodies, which are insoluble fractions, and are solubilized with 8M urea when purified using the E. coli expression system. As for HLA molecules that are hardly soluble, those that do not lead to MHC-monomer formation are detected as aggregates in 7 to 8 minutes. However, most of the aggregates are removed by filter filtration before gel filtration column analysis. β2-microglobulin is a soluble protein that is solubilized in the folding solution and detected around 14 minutes. After 15 minutes, the folding solution composition and peptide are detected. The peak of MHC-monomer is not confirmed immediately after the start of the folding test (day 0), but the peak increases after 1 day (day 1) and 3 days (day (3), and MHC-monomer formation is progressing smoothly. Shows things.
 図22に10種類のCKAP4特異的CTLエピトープ候補ペプチドに対して実施したフォールディングテスト4日後の分析結果を示した。同時に、9個のアミノ酸からなる陽性コントロールペプチド(配列番号:46)と陰性コントロール(配列番号:47)を比較対象に用いた。 FIG. 22 shows the analysis results after 4 days of the folding test performed on 10 kinds of CKAP4-specific CTL epitope candidate peptides. At the same time, a positive control peptide consisting of 9 amino acids (SEQ ID NO: 46) and a negative control (SEQ ID NO: 47) were used for comparison.
フォールディングテストに用いたコントロールペプチド
 Ala Tyr Ala Cys Asn Thr Ser Thr Leu(配列番号:46)
 Ser Ser Tyr Arg Arg Pro Val Gly Ile(配列番号:47)
Control peptide used for folding test Ala Tyr Ala Cys Asn Thr Ser Thr Leu (SEQ ID NO: 46)
Ser Ser Tyr Arg Arg Pro Val Gly Ile (SEQ ID NO: 47)
 グラフは、MHC-モノマー形成を示すピーク面積を棒グラフで示した。配列番号:36~45を陽性コントロールペプチドと陰性コントロール(79,031 μV*秒)と比較した結果、配列番号:36、40、42、43はMHC-モノマー形成が良好であり、以降の解析を進めた。 The graph shows the peak area indicating MHC-monomer formation as a bar graph. As a result of comparing SEQ ID NOS: 36 to 45 with a positive control peptide and a negative control (79,031 μV * sec), SEQ ID NOS: 36, 40, 42 and 43 showed good MHC-monomer formation, and the subsequent analysis was advanced. .
〔CKAP4特異的MHC-テトラマー試薬の製造〕
 フォールディングテストの結果に基づき、配列番号:36、40、42、43のCKAP4特異的CTLエピトープ候補ペプチドとHLA-A*24:02、およびβ2-ミクログロブリンを用いてPE(phycoerythrin)標識MHC-テトラマー試薬を製造した。本発明で製造したMHC-テトラマー試薬は例えば、KVQE-Tetと略号で示すが、これは、HLA-A*24:02とペプチドKVQE(KVQEQVHTLL(配列番号:44))とβ2-ミクログロブリンの3者複合体を用いて製造されたものを示す。タンパク質発現用の遺伝子組換え宿主から精製したHLAクラスI分子、β2-ミクログロブリン及び本発明のCKAP4特異的CTLエピトープ候補ペプチドの複合体である、MHC-モノマーを適切なフォールディング溶液中で形成させる。組換えHLAクラスI分子のC末端には予めビオチン結合部位を付加しておき、MHC-モノマー形成後この部位にビオチンを付加する。市販の色素標識されたストレプトアビジンとビオチン化MHC-モノマーをモル比1:4で混合することによってMHC-テトラマー試薬を製造することができる。
[Production of CKAP4-specific MHC-tetramer reagent]
Based on the results of the folding test, PE (phycoerythrin) -labeled MHC-tetramer using CKAP4-specific CTL epitope candidate peptides of SEQ ID NOs: 36, 40, 42 and 43, HLA-A * 24: 02, and β2-microglobulin Reagents were manufactured. The MHC-tetramer reagent produced in the present invention is abbreviated as, for example, KVQE-Tet. It shows what was manufactured using the person complex. MHC-monomer, a complex of HLA class I molecule purified from a recombinant host for protein expression, β2-microglobulin, and a CKAP4-specific CTL epitope candidate peptide of the present invention is formed in an appropriate folding solution. A biotin binding site is added to the C-terminus of the recombinant HLA class I molecule in advance, and biotin is added to this site after MHC-monomer formation. A MHC-tetramer reagent can be prepared by mixing commercially available dye-labeled streptavidin and biotinylated MHC-monomer at a molar ratio of 1: 4.
〔CKAP4特異的CTLエピトープペプチドの同定〕
(検体のHLA型の選定)
 CKAP4特異的CTLエピトープ候補ペプチドには、HLA-A*24:02に対して結合モチーフを有する10種類の候補ペプチドを選択した。更にフォールディングテストにより、試験管内でHLA-A*24:02とβ2-ミクログロブリンと4種類のCKAP4特異的CTLエピトープ候補ペプチド(配列番号:36、40、42、43)が結合しMHC-モノマーを良好に形成する事が判明した。実際にこの4種類のCKAP4特異的CTLエピトープ候補ペプチドがHLA-A*24:02に結合し、これを認識するCTLが生体内に存在するかどうかを確認するためには、HLA-A*24:02を保有する供血者の末梢血を用いて検証する事が望ましい。最初に、供血者がHLA-A*24:02を保有するかどうかは、ジェノサーチ(商標)HLA-A Ver.2(MBL社)を用いてHLA-Aの遺伝子型判定にて確認した。以降の検討は、HLA-A*24:02を保有する7名の健康成人のPBMCを用いて行った。
[Identification of CKAP4-specific CTL epitope peptide]
(Selection of HLA type of specimen)
Ten candidate peptides having a binding motif for HLA-A * 24: 02 were selected as CKAP4-specific CTL epitope candidate peptides. Furthermore, by a folding test, HLA-A * 24: 02, β2-microglobulin and 4 types of CKAP4-specific CTL epitope candidate peptides (SEQ ID NOs: 36, 40, 42, 43) were bound in vitro to bind MHC-monomer. It was found to form well. In order to confirm whether these four types of CKAP4-specific CTL epitope candidate peptides actually bind to HLA-A * 24: 02 and CTLs that recognize them are present in vivo, HLA-A * 24 It is desirable to verify using the peripheral blood of the donor who holds: 02. First, whether or not a donor has HLA-A * 24: 02 was confirmed by genotyping of HLA-A using Genosearch (trademark) HLA-A Ver.2 (MBL). Subsequent examinations were performed using PBMCs of 7 healthy adults with HLA-A * 24: 02.
〔CKAP4特異的CTLの誘導〕
〔MLPC (Mixed Lymphocyte-Peptide Cultures)法を用いたCKAP4特異的CTLの誘導〕
 MLPC法は、PBMC培養液中にペプチドを添加してCTLを誘導する方法である(Karanikas V, Lurquin C, Colau D, van Baren N, De Smet C, Lethe B, Connerotte T, Corbiere V, Demoitie MA, Lienard D, Dreno B, Velu T, Boon T, Coulie PG. Monoclonal anti-MAGE-3 CTL responses in melanoma patients displaying tumor regression after vaccination with a recombinant canarypox virus. J Immunol. 2003;171(9):4898-904、Tsukahara T, Kawaguchi S, Torigoe T, Takahashi A, Murase M, Kano M, Wada T, Kaya M, Nagoya S, Yamashita T, Sato N. HLA-A*0201-restricted CTL epitope of a novel osteosarcoma antigen,papillomavirus binding factor. J Transl Med. 2009;7:44)。PBMC中に存在する抗原提示細胞、例えば、樹状細胞、B細胞、マクロファージ、ある種のT細胞にペプチドが提示され、PBMCに含まれるメモリータイプのCTLが刺激を受け増殖すると考えられる。HLA-A*24:02を保有する健康成人より採血した末梢血を3,000 rpmで5~10分間遠心処理し、上清の血漿部分を回収した。血漿部分以外は従来法である密度勾配遠心法にてPBMCを分離した。本発明では5%の血漿を加えた培地を用いて良好な結果が得られた。培地は一般に細胞培養に用いる培地に適切な添加物と抗生物質を加える。本発明に用いたCTL誘導培地は、RPMI1640 Hepes modify(Sigam社)に2-メルカプトエタノール、L-グルタミン、抗生物質としてストレプトマイシンとペニシリンを加えた培地を使用した。これ以外にインスリン、トランスフェリン、亜セレン酸、ピルビン酸、人血清アルブミン、非必須アミノ酸溶液等を加える事もできる。約3×107個のPBMC を10 mLの培地に浮遊させた。これに4種類のCKAP4特異的CTLエピトープ候補ペプチド(配列番号:36、40、42、43)の内、1~2種類のペプチドをそれぞれ10 μg/mLの濃度で加えた。ペプチドの濃度は、ペプチドの溶解度に応じて変更できる。本発明では10μg/mLにて実施した。PBMCとペプチドの混合培養は、96ウェルU底細胞培養用マイクロテストプレート(BECTON DICKINSON社)を用いた。細胞は37℃、5% CO2恒温槽にて培養した。2日後に20~100 U/mLの最終濃度でIL-2の添加を行った。その後適宜IL-2添加CTL誘導培地の交換を行った。CKAP4特異的CTLの確認は、培養2週間を目処に実施した。CKAP4特異的CTLの誘導が確認できた場合は、ペプチドパルス抗原提示細胞を用いた刺激または直接ペプチドで刺激し、CTLラインの樹立を試みた。
[Induction of CKAP4-specific CTL]
[Induction of CKAP4-specific CTL using MLPC (Mixed Lymphocyte-Peptide Cultures) method]
The MLPC method is a method of inducing CTL by adding a peptide to a PBMC culture solution (Karanikas V, Lurquin C, Colau D, van Baren N, De Smet C, Lethe B, Connerotte T, Corbiere V, Demoitie MA , Lienard D, Dreno B, Velu T, Boon T, Coulie PG.Monoclonal anti-MAGE-3 CTL responses in melanoma patients displaying tumor regression after vaccination with a recombinant canarypox virus.J Immunol. 2003; 171 (9): 4898- 904, Tsukahara T, Kawaguchi S, Torigoe T, Takahashi A, Murase M, Kano M, Wada T, Kaya M, Nagoya S, Yamashita T, Sato N. HLA-A * 0201-restricted CTL epitope of a novel osteosarcoma antigen, papillomavirus binding factor. J Transl Med. 2009; 7: 44). Peptides are presented to antigen-presenting cells present in PBMC, such as dendritic cells, B cells, macrophages, and certain T cells, and memory-type CTLs contained in PBMC are thought to proliferate upon stimulation. Peripheral blood collected from healthy adults carrying HLA-A * 24: 02 was centrifuged at 3,000 rpm for 5-10 minutes, and the plasma portion of the supernatant was collected. Except for the plasma portion, PBMCs were separated by the conventional density gradient centrifugation method. In the present invention, good results were obtained using a medium supplemented with 5% plasma. The medium is generally supplemented with appropriate additives and antibiotics for the medium used for cell culture. As the CTL induction medium used in the present invention, a medium in which RPMI1640 Hepes modify (Sigam) was added with 2-mercaptoethanol, L-glutamine, and streptomycin and penicillin as antibiotics was used. In addition, insulin, transferrin, selenious acid, pyruvic acid, human serum albumin, a non-essential amino acid solution, and the like can be added. About 3 × 10 7 PBMCs were suspended in 10 mL of medium. One or two of the four types of CKAP4-specific CTL epitope candidate peptides (SEQ ID NOs: 36, 40, 42, and 43) were added at a concentration of 10 μg / mL. The concentration of the peptide can be varied depending on the solubility of the peptide. In the present invention, it was carried out at 10 μg / mL. For the mixed culture of PBMC and peptide, a 96-well U-bottom cell culture microtest plate (BECTON DICKINSON) was used. The cells were cultured in a 37 ° C., 5% CO 2 constant temperature bath. Two days later, IL-2 was added at a final concentration of 20-100 U / mL. Thereafter, the IL-2 added CTL induction medium was appropriately replaced. Confirmation of CKAP4-specific CTL was carried out within 2 weeks of culture. When induction of CKAP4-specific CTL was confirmed, stimulation with peptide pulse antigen-presenting cells or direct stimulation with a peptide was attempted to establish a CTL line.
〔CKAP4特異的CTLの確認〕
 前述の方法で培養した細胞集団にCKAP4特異的なCTLが存在するか否かの検討は、MHC-テトラマー法により実施した。培養後、適量の細胞数に対して10 μLのPE標識MHC-テトラマー試薬と、20 μLのFITC(fluorescein isothiocyanate)標識T細胞表面抗体(例えばCD8, CD4, CD3)等を加えた。さらに、混入した赤血球による非特異的な蛍光を除外するために、PC5(phycoerythrin-Cy5)等で標識されたCD45抗体を加えても良い。その後、穏やかに混合し2~8℃で60分間または、室温にて30分間静置した。1.5 mLのPBSを加え攪拌後、3,000 rpmで5分間遠心分離した。上澄みを吸引廃棄後、細胞を400 μLのPBSに再懸濁した。この際、死細胞による非特異的な蛍光を除外するために、7-AAD viability Dye(死細胞検出試薬、MBL社)を加えてもよい。24時間以内にフローサイトメーターにて解析した。
[Confirmation of CKAP4-specific CTL]
Whether or not CKAP4-specific CTL is present in the cell population cultured by the above-described method was examined by the MHC-tetramer method. After culturing, 10 μL of PE-labeled MHC-tetramer reagent, 20 μL of FITC (fluorescein isothiocyanate) -labeled T cell surface antibody (eg, CD8, CD4, CD3) and the like were added to an appropriate amount of cells. Furthermore, a CD45 antibody labeled with PC5 (phycoerythrin-Cy5) or the like may be added in order to exclude non-specific fluorescence due to contaminated erythrocytes. Thereafter, the mixture was gently mixed and allowed to stand at 2-8 ° C. for 60 minutes or at room temperature for 30 minutes. After adding 1.5 mL of PBS and stirring, the mixture was centrifuged at 3,000 rpm for 5 minutes. After discarding the supernatant, the cells were resuspended in 400 μL of PBS. At this time, 7-AAD viability dye (dead cell detection reagent, MBL) may be added in order to exclude non-specific fluorescence due to dead cells. The analysis was performed with a flow cytometer within 24 hours.
 CKAP4特異的CTLの確認は2段階で行った。まず1段階目は、96ウェルU底細胞培養用マイクロテストプレートの縦列の8ウェルそれぞれの一部の細胞を回収して1サンプルとしてプールし(レーンプール)、CKAP4特異的CTLの誘導の有無をMHC-テトラマー法で確認した。2段階目は、1段階目でCKAP4特異的CTLの誘導が確認されたレーンプールにおいて、各ウェルの細胞を個別に回収してCKAP4特異的CTLの誘導の有無をMHC-テトラマー法で確認した。この様な方法を用いることで、96ウェルU底細胞培養用マイクロテストプレートの何処のウェルにCKAP4特異的CTLが誘導されているかを確認した。 Confirmation of CKAP4-specific CTL was performed in two stages. The first step is to collect some of the cells from each of the 8 wells in a 96-well U-bottom cell culture microtest plate and pool them as one sample (lane pool) to check for the induction of CKAP4-specific CTL. This was confirmed by the MHC-tetramer method. In the second stage, cells in each well were individually collected in the lane pool in which the induction of CKAP4-specific CTL was confirmed in the first stage, and the presence or absence of induction of CKAP4-specific CTL was confirmed by the MHC-tetramer method. By using such a method, it was confirmed in which well of the 96-well U-bottom cell culture microtest plate that CKAP4-specific CTL was induced.
 図23、図25にMLPC法にてCKAP4特異的CTLを誘導後、1段階目の確認を行った代表的な結果を示す。検体番号A24-37(図23)およびA24-39(図25)のPBMCをCKAP4特異的CTLエピトープ候補ペプチドの配列番号:43で14日間培養した。ドットプロット展開図中の数字は、展開図を四分割した領域を、UL(左上)、UR(右上)、LL(左下)、LR(右下)と表記した場合、(UR + LR)分のURの百分率を示す。X軸にCD8、Y軸にMHC-テトラマー試薬に対する蛍光強度をlogスケールで示したドットプロット展開図で示す。IYT-Tetで、配列番号:43の特異的CTLの誘導を確認したところ、検体番号A24-37ではlane 7の、A24-39ではlane 11のURに、明らかなCD8陽性IYT-Tet陽性の細胞集団が検出された。この事は、配列番号:43がCKAP4特異的CTLエピトープペプチドであり、検体番号A24-37およびA24-39の末梢血にメモリータイプのCKAP4特異的CTLが存在した事を示している。図24、図26にMLPC法で配列番号:43特異的CTLを誘導し、MHC-テトラマー法で検出した2段階目の結果を示す。図23、図25にてCKAP4特異的CTLの誘導が確認されたそれぞれのlaneにおいて、各ウェルのCKAP4特異的CTLの誘導の有無をMHC―テトラマー法で確認した結果を示した。その結果、図24に示す検体番号A24-37 lane 7のGウェル(7-G)と、図26に示す検体番号A24-39 lane 11のBウェル(11-B)で、配列番号:43特異的CTLが検出された。これらの事は、配列番号:43がHLA-A*24:02拘束性を示すCKAP4特異的CTLエピトープペプチドである事を証明している。検体番号A24-37および、A24-39において、それぞれ96ウェル中1ウェルで配列番号:43特異的CTLが検出されたことから、配列番号:43特異的CTLの末梢血PBMC中での存在比率は以下の式で算出される。 FIG. 23 and FIG. 25 show typical results of confirmation at the first stage after induction of CKAP4-specific CTL by MLPC method. PBMCs of specimen numbers A24-37 (FIG. 23) and A24-39 (FIG. 25) were cultured with SEQ ID NO: 43 of a CKAP4-specific CTL epitope candidate peptide for 14 days. The numbers in the dot plot development diagram are (UR + LR) for the area obtained by dividing the development quadrant into UL (upper left), UR (upper right), LL (lower left), and LR (lower right). Shows the percentage of UR. The X-axis is CD8, and the Y-axis is a dot plot development view showing the fluorescence intensity for the MHC-tetramer reagent on a log scale. IYT-Tet confirmed the induction of the specific CTL of SEQ ID NO: 43. Species number A24-37 was lane 7, A24-39 was lane 11 UR, CD8 positive IYT-Tet positive cells A population was detected. This indicates that SEQ ID NO: 43 is a CKAP4-specific CTL epitope peptide and memory type CKAP4-specific CTL was present in the peripheral blood of specimens A24-37 and A24-39. FIG. 24 and FIG. 26 show the results of the second step in which the CTL specific for SEQ ID NO: 43 was induced by MLPC method and detected by MHC-tetramer method. FIG. 23 and FIG. 25 show the results of confirming the presence or absence of induction of CKAP4-specific CTL in each well by MHC-tetramer method in each lane where the induction of CKAP4-specific CTL was confirmed. As a result, the sample number A24-37 lane 7 G well (7-G) shown in FIG. 24 and the sample number A24-39 lane 11 B well (11-B) shown in FIG. CTL was detected. These facts prove that SEQ ID NO: 43 is a CKAP4-specific CTL epitope peptide exhibiting HLA-A * 24: 02 restriction. In specimen numbers A24-37 and A24-39, SEQ ID NO: 43-specific CTL was detected in 1 of 96 wells, respectively. Therefore, the abundance ratio of SEQ ID NO: 43-specific CTL in peripheral blood PBMC was It is calculated by the following formula.
検体番号A24-37の配列番号:43特異的CTLの頻度
=(MHC-テトラマー試薬陽性ウェル数)/(実験に用いたPBMCの数×誘導前のCD8陽性率)
=1/(3×107×0.311)
=1.07×10-7

検体番号A24-39の配列番号:43特異的CTLの頻度
= 1/(3×107×0.155)
= 2.15×10-7
Sample No. A24-37 SEQ ID NO: 43 Frequency of specific CTL
= (Number of MHC-tetramer reagent positive wells) / (number of PBMCs used in experiment x CD8 positive rate before induction)
= 1 / (3 × 10 7 × 0.311)
= 1.07 × 10 -7

SEQ ID NO: 43 of specimen No. A24-39 Frequency of specific CTL
= 1 / (3 × 10 7 × 0.155)
= 2.15 × 10 -7
 通常96ウェルのMLPC法にて特異的CTLが検出できる限界は、誘導前のCD8陽性細胞率を10~20%と仮定した場合、1.6~3.3×10-7となる。言い換えると、この場合の96ウェルのMLPC法において、検出される特異的CTLの標準的な割合は、3~6×106個のCD8陽性細胞につき1個である。 The limit of detection of specific CTLs by the 96-well MLPC method is usually 1.6 to 3.3 × 10 −7 assuming that the CD8 positive cell rate before induction is 10 to 20%. In other words, in the 96-well MLPC method in this case, the standard ratio of specific CTL detected is 1 per 3-6 × 10 6 CD8 positive cells.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 さらに、本発明は表8の通り、配列番号36、40、42、43を用いて、7人の供血者を対象に同様の検討を実施したが、配列番号:43以外では特異的CTLの検出はできなかった。配列番号:43でも7名中2名で検出できただけであった。このことは、CKAP4特異的HLA-A*24:02拘束性エピトープペプチドの予測が困難であり、そのエピトープペプチドが特異的CTLの誘導能を有するか予測することは、さらに困難であることを示している。 Furthermore, the present invention was carried out in the same manner for 7 blood donors using SEQ ID NOs: 36, 40, 42, and 43 as shown in Table 8, but specific CTLs were detected except for SEQ ID NO: 43. I couldn't. Even with SEQ ID NO: 43, only 2 out of 7 were detected. This indicates that it is difficult to predict a CKAP4-specific HLA-A * 24: 02-restricted epitope peptide, and it is more difficult to predict whether the epitope peptide has the ability to induce specific CTLs. ing.
〔抗原提示細胞の調製〕
EBV感染B細胞株の調製
 定法(Kuzushima K, Yamamoto M, Kimura H, Ando Y, Kudo T, Tsuge I, Morishima T. Establishment of anti-Epstein-Barr virus (EBV) cellular immunity by adoptive transfer of virus-specific cytotoxic T lymphocytes from an HLA-matched sibling to a patient with severe chronic active EBV infection. Clin Exp Immunol. 1996;103:192-198)に従い、EBV産生細胞株であるB95-8細胞(JCRB Cell Bankより入手)の培養上清(生EBVウイルスを含む)とPBMCを混合培養し、EBV感染B細胞株(Lymphoblastoid cell line、以下、EBV感染LCLと称する)を樹立した。
(Preparation of antigen-presenting cells)
Preparation of EBV-infected B cell lines (Kuzushima K, Yamamoto M, Kimura H, Ando Y, Kudo T, Tsuge I, Morishima T. Establishment of anti-Epstein-Barr virus (EBV) cellular immunity by adoptive transfer of virus-specific cytotoxic T lymphocytes from an HLA-matched sibling to a patient with severe chronic active EBV infection. Clin Exp Immunol. 1996; 103: 192-198), B95-8 cells (obtained from JCRB Cell Bank) The culture supernatant (including live EBV virus) and PBMC were mixed and cultured to establish an EBV-infected B cell line (hereinafter referred to as EBV-infected LCL).
〔抗原提示細胞を用いた特異的CTLの増幅〕
 前述の抗原提示細胞(EBV感染LCL)をパルス用培地(0.5%ヒト血清アルブミン/RPMI1640)あるいは、AIM-V medium (Invitrogen社)に浮遊させ、10 μg/mLの濃度でCTLエピトープ候補ペプチドを加え、およそ15分間隔で穏やかに混合させながら室温にて30~60分間放置後、過剰量のパルス用培地にて3回洗浄し、HLA分子に未結合のペプチドを洗い流した。この操作を行う事で、抗原提示細胞上のHLA分子にCTLエピトープ候補ペプチドが結合すると考えられる。この操作を行った抗原提示細胞をペプチドパルス抗原提示細胞と呼ぶ。ペプチドパルス抗原提示細胞は、増殖能を失わせる為に、致死量のX線照射、またはマイトマイシン処理を行った。これを同一人物から誘導したCKAP4特異的CTLを含む細胞集団と混和し37℃、5% CO2恒温槽にて培養を行った。用いる培地は、10%ウシ胎児血清(FCS)含有RPMI1640培地、あるいは10%ヒト血清含有RPMI1640培地、または、1~10%のヒト血漿含有RPMI1640培地等の検討を行ったが、本方法においては、5%ヒト血漿含有RPMI1640培地で良好な結果が得られた。T細胞の生存の維持と、増殖を補助する目的でIL-2(シオノギ製薬社)を50 U/mLで添加した。培養開始10~16日後にCKAP4特異的CTL誘導の評価を実施した。CKAP4特異的CTLの誘導が確認できた場合は、更にペプチドパルス抗原提示細胞を用いて刺激を加えCTLラインを樹立した。
[Amplification of specific CTL using antigen-presenting cells]
Suspend the antigen-presenting cells (EBV-infected LCL) in pulse medium (0.5% human serum albumin / RPMI1640) or AIM-V medium (Invitrogen), and add CTL epitope candidate peptide at a concentration of 10 μg / mL The mixture was allowed to stand at room temperature for 30 to 60 minutes with gentle mixing at intervals of approximately 15 minutes, and then washed three times with an excessive amount of pulse medium to wash away unbound peptides to HLA molecules. By performing this operation, it is considered that the CTL epitope candidate peptide binds to the HLA molecule on the antigen-presenting cell. The antigen-presenting cell subjected to this operation is called a peptide pulse antigen-presenting cell. Peptide pulse antigen-presenting cells were treated with a lethal dose of X-rays or mitomycin to lose their ability to grow. This was mixed with a cell population containing CKAP4-specific CTL derived from the same person and cultured in a 37 ° C., 5% CO 2 constant temperature bath. As the medium to be used, RPMI1640 medium containing 10% fetal calf serum (FCS), RPMI1640 medium containing 10% human serum, or RPMI1640 medium containing 1-10% human plasma was examined. In this method, Good results were obtained with RPMI1640 medium containing 5% human plasma. IL-2 (Shionogi Pharmaceutical Co., Ltd.) was added at 50 U / mL for the purpose of maintaining the survival of T cells and assisting proliferation. Evaluation of CKAP4-specific CTL induction was performed 10 to 16 days after the start of the culture. When induction of CKAP4-specific CTL was confirmed, stimulation was further performed using peptide pulse antigen-presenting cells to establish a CTL line.
〔細胞内IFNγ産生細胞定量法による特異的CTLの機能解析〕
 前述の方法で誘導したCKAP4特異的CTLを含む細胞集団の約1/10~全量を96ウェルU底細胞培養用マイクロテストプレートに移し、誘導に用いたペプチドを最終0.1~10 μg/mLの濃度で加えた。さらに細胞内蛋白輸送阻止剤(例えば、Brefeldin AやMonensin等)を加え、5% CO2恒温槽にて37℃で5~16時間培養した。培養後、細胞を洗浄し、PE標識MHC-テトラマー試薬とPC5標識CD8抗体(Beckman Coulter社)を加え、室温にて15~30分放置した。洗浄後、4%ホルムアルデヒドにて、4℃、15分固定後、過剰量の洗浄液にて洗った。0.1%サポニンにて膜透過処理後、FITC標識抗IFNγ抗体(MBL社製)を加え、室温にて15~30分反応させた。洗浄後、フローサイトメーターを用いて、T細胞中のIFNγ陽性細胞率あるいはMHC-テトラマー試薬陽性細胞中のIFNγ陽性細胞率を定量した。
[Functional analysis of specific CTLs by quantification of intracellular IFNγ-producing cells]
About 1/10 to the total amount of the cell population containing CKAP4-specific CTL induced by the above method is transferred to a 96-well U-bottom cell culture microtest plate. Added in. Further, an intracellular protein transport inhibitor (for example, Brefeldin A, Monensin, etc.) was added, and the cells were cultured at 37 ° C. for 5 to 16 hours in a 5% CO 2 constant temperature bath. After culturing, the cells were washed, PE-labeled MHC-tetramer reagent and PC5-labeled CD8 antibody (Beckman Coulter) were added, and left at room temperature for 15-30 minutes. After washing, it was fixed with 4% formaldehyde at 4 ° C. for 15 minutes, and then washed with an excessive amount of washing solution. After membrane permeabilization with 0.1% saponin, FITC-labeled anti-IFNγ antibody (manufactured by MBL) was added and allowed to react at room temperature for 15-30 minutes. After washing, the IFNγ positive cell rate in T cells or the IFNγ positive cell rate in MHC-tetramer reagent positive cells was quantified using a flow cytometer.
 図27に誘導したCKAP4特異的CTLの細胞内IFNγ産生細胞定量法にて検討した結果を示す。検体番号A24-39のPBMCをHLA-A*24:02拘束性CKAP4特異的CTLエピトープペプチドである配列番号:43で刺激した。これを、PE標識MHC-テトラマー試薬(MBL社)、PC5標識CD8抗体、FITC標識IFNγ抗体で3重染色しフローサイトメーターを用いて解析した結果を示す。ドットプロット展開図中の数字は、四分割した領域に存在する細胞が全生細胞に占める百分率を示す。図27は、特異的ペプチドで刺激された場合にのみURにIFNγ陽性MHC-テトラマー試薬陽性細胞が出現し、ペプチドを加えない場合は殆ど出現しない。しかしながら、ペプチドを加えた場合と加えない場合のどちらの細胞集団にも、IYT-Tet特異的CTLが存在している事は、X軸にCD8、Y軸にMHC-テトラマー試薬に対する蛍光強度をlogスケールで示したドットプロット展開図で、URにCD8陽性MHC-テトラマー試薬陽性細胞集団を見れば明らかである。 FIG. 27 shows the results of examination by an intracellular IFNγ producing cell quantification method of CKAP4-specific CTL induced. PBMC of specimen number A24-39 was stimulated with SEQ ID NO: 43, which is an HLA-A * 24: 02-restricted CKAP4-specific CTL epitope peptide. This shows the results of triple staining with PE-labeled MHC-tetramer reagent (MBL), PC5-labeled CD8 antibody, and FITC-labeled IFNγ antibody, and analysis using a flow cytometer. The numbers in the dot plot development diagram indicate the percentage of the living cells occupied by cells present in the quadrant. FIG. 27 shows that IFNγ-positive MHC-tetramer reagent-positive cells appear in UR only when stimulated with a specific peptide, and hardly appear when no peptide is added. However, the presence of IYT-Tet-specific CTLs in both the cell population with and without the peptide indicates that the fluorescence intensity for CD8 on the X axis and the MHC-tetramer reagent on the Y axis is log. It is clear from the dot plot development shown on the scale that the CD8 positive MHC-tetramer reagent positive cell population is seen in the UR.
 この結果より、CKAP4特異的CTLエピトープペプチドを加えて培養したPBMC中には、再刺激によりIFNγを産生する細胞傷害活性を有するCKAP4特異的CTLが誘導され、この細胞はMHC-テトラマー試薬で染色される事からHLA-A*24:02拘束性CKAP4由来ペプチドIYTEVRELV(配列番号:43)に特異的なCTLであることが明らかになった。 From this result, CKAP4-specific CTL having cytotoxic activity to produce IFNγ was induced by restimulation in PBMC cultured with CKAP4-specific CTL epitope peptide, and these cells were stained with MHC-tetramer reagent. From this, it was revealed that the CTL was specific to the HLA-A * 24: 02-restricted CKAP4-derived peptide IYTEVRELV (SEQ ID NO: 43).
 本発明により、エプスタイン-バールウイルスに特異的な細胞傷害性T細胞エピトープペプチドを用いたEBVの感染および同ウイルス陽性の癌を治療又は予防することができる。また、EBVに特異的なCTLの定量が可能となる。また、本発明のIYTEVRELV(配列番号:43)の配列からなるHLA-A*24:02拘束性エピトープペプチドを用いることによって、CKAP4を高発現する悪性腫瘍細胞に依拠する疾患の治療が可能となる。 The present invention makes it possible to treat or prevent EBV infection and a virus-positive cancer using a cytotoxic T cell epitope peptide specific to Epstein-Barr virus. In addition, CTL specific for EBV can be quantified. Further, by using the HLA-A * 24: 02-restricted epitope peptide comprising the sequence of IYTEVRELV (SEQ ID NO: 43) of the present invention, it becomes possible to treat diseases dependent on malignant tumor cells that highly express CKAP4. .

Claims (33)

  1.  Epstein-Barr virus(EBV)に特異的な細胞傷害性T細胞の誘導活性を有する、エピトープペプチドであって、ここで、該エピトープペプチドが、配列番号:1、配列番号:2、配列番号:3、配列番号:4、配列番号:5、配列番号:6、配列番号:26、配列番号:27及び配列番号:28からなる群から選択されるアミノ酸配列からなる、エピトープペプチド。 Epitope peptide having cytotoxic T cell-inducing activity specific to Epstein-Barr virus (EBV), wherein the epitope peptide is SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 An epitope peptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 26, SEQ ID NO: 27, and SEQ ID NO: 28.
  2.  Epstein-Barr virus(EBV)に特異的な細胞傷害性T細胞の誘導活性を有する、エピトープペプチドであって、ここで、該エピトープペプチドが、配列番号:1、配列番号:2、配列番号:3、配列番号:4、配列番号:5、配列番号:6、配列番号:26、配列番号:27又は配列番号:28に記載のアミノ酸配列において、1もしくは複数のアミノ酸が置換、欠失、挿入及び/又は付加された、エピトープペプチド。 Epitope peptide having cytotoxic T cell-inducing activity specific to Epstein-Barr virus (EBV), wherein the epitope peptide is SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 In the amino acid sequence described in SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 26, SEQ ID NO: 27, or SEQ ID NO: 28, one or more amino acids are substituted, deleted, inserted, and Epitope peptide added / or added.
  3.  請求項1~2のいずれかに記載のエピトープペプチドをコードする核酸。 A nucleic acid encoding the epitope peptide according to any one of claims 1 to 2.
  4. 請求項1~2のいずれかに記載のエピトープペプチドをコードする核酸を含む発現ベクター。 An expression vector comprising a nucleic acid encoding the epitope peptide according to any one of claims 1 to 2.
  5.  請求項1~2のいずれかに記載のエピトープペプチドを有効成分として含む、EBVの感染又はEBV陽性の癌を治療、又は予防するためのワクチン。 A vaccine for treating or preventing EBV infection or EBV-positive cancer comprising the epitope peptide according to any one of claims 1 and 2 as an active ingredient.
  6.  EBVが、AKata株、GD1株、GD2株、HKNPC1株、AG876株、Mutu株及びB95.8株から選択される、請求項5記載のワクチン。 The vaccine according to claim 5, wherein the EBV is selected from AKata strain, GD1 strain, GD2 strain, HKNPC1 strain, AG876 strain, Mutu strain and B95.8 strain.
  7.  請求項3~4のいずれかに記載の核酸又は発現ベクターを有効成分として含む、EBVの感染又はEBV陽性の癌を治療、又は予防するためのワクチン。 A vaccine for treating or preventing EBV infection or EBV positive cancer comprising the nucleic acid or expression vector according to any one of claims 3 to 4 as an active ingredient.
  8.  EBVが、AKata株、GD1株、GD2株、HKNPC1株、AG876株、Mutu株及びB95.8株から選択される、請求項7記載のワクチン。 The vaccine according to claim 7, wherein the EBV is selected from AKata strain, GD1 strain, GD2 strain, HKNPC1 strain, AG876 strain, Mutu strain and B95.8 strain.
  9.  請求項1~2のいずれかに記載のエピトープペプチドをHLAに提示した抗原提示細胞を有効成分として含む、EBVの感染又はEBVウイルス陽性の癌を治療、又は予防するためのワクチン。 A vaccine for treating or preventing EBV infection or EBV virus-positive cancer comprising, as an active ingredient, an antigen-presenting cell presenting the epitope peptide according to any one of claims 1 and 2 on HLA.
  10.  EBVが、AKata株、GD1株、GD2株、HKNPC1株、AG876株、Mutu株及びB95.8株から選択される、請求項9記載のワクチン。 The vaccine according to claim 9, wherein the EBV is selected from AKata strain, GD1 strain, GD2 strain, HKNPC1 strain, AG876 strain, Mutu strain and B95.8 strain.
  11.  請求項1~2のいずれかに記載のエピトープペプチド又は該エピトープペプチドをHLAに提示した抗原提示細胞により末梢血リンパ球を刺激して得られるEBV特異的な細胞傷害性T細胞を含む、EBVに対する受動免疫療法剤。 3. An EBV-specific cytotoxic T cell obtained by stimulating peripheral blood lymphocytes with the epitope peptide according to claim 1 or the antigen-presenting cell presenting the epitope peptide on HLA. Passive immunotherapy agent.
  12.  請求項1~2のいずれかに記載のエピトープペプチドから調製した主要組織適合性抗原複合体及び/又は主要組織適合性抗原複合体-テトラマーと末梢血リンパ球とを接触させ、該主要組織適合性抗原複合体及び/又は主要組織適合性抗原複合体-テトラマーに細胞傷害性T細胞が結合した結合体を形成させ、該結合体から単離して得られる細胞傷害性T細胞を含む、EBVに対する受動免疫療法剤。 A major histocompatibility is prepared by bringing a major histocompatibility antigen complex and / or a major histocompatibility antigen complex-tetramer prepared from the epitope peptide according to any one of claims 1 and 2 into contact with peripheral blood lymphocytes. Antigen complex and / or major histocompatibility antigen complex-passive against EBV, comprising cytotoxic T cells obtained by forming a conjugate in which a cytotoxic T cell is bound to a tetramer and isolated from the conjugate. Immunotherapy agent.
  13.  請求項1~2のいずれかに記載のエピトープペプチドで対象由来の末梢血を刺激する工程、
     前記工程により生じたEBV特異的な細胞傷害性T細胞を得る工程、及び
     得られた細胞傷害性T細胞が産生するサイトカイン及び/又はケモカイン及び/又は細胞表面分子を測定する工程
    を含む、EBVに特異的な細胞傷害性T細胞の定量方法。
    Stimulating peripheral blood from a subject with the epitope peptide according to claim 1 or 2,
    EBV comprising the steps of obtaining EBV-specific cytotoxic T cells generated by the above steps, and measuring cytokines and / or chemokines and / or cell surface molecules produced by the obtained cytotoxic T cells. Specific cytotoxic T cell quantification method.
  14.  請求項1~2のいずれかに記載のエピトープペプチドと主要組織適合性抗原複合体とβ2-ミクログロブリンを混合する工程及び
     調製した主要組織適合性抗原複合体-テトラマーと対象由来の末梢血とを接触させる工程
    を含む、該末梢血中のEBVに特異的な細胞傷害性T細胞の定量方法。
    A step of mixing the epitope peptide according to any one of claims 1 to 2, a major histocompatibility antigen complex, and β2-microglobulin, and the prepared major histocompatibility antigen complex-tetramer and peripheral blood derived from a subject. A method for quantifying cytotoxic T cells specific to EBV in the peripheral blood, comprising a step of contacting.
  15.  請求項1~2のいずれかに記載のエピトープペプチドと抗原提示細胞を接触させる工程を含む、EBVに特異的な細胞傷害性T細胞の誘導方法。 A method of inducing cytotoxic T cells specific for EBV, comprising the step of bringing the epitope peptide according to any one of claims 1 and 2 into contact with an antigen-presenting cell.
  16.  請求項1~2のいずれかに記載のエピトープペプチドを構成要素として含む、細胞傷害性T細胞の誘導のためのキット。 A kit for inducing cytotoxic T cells comprising the epitope peptide according to any one of claims 1 and 2 as a constituent element.
  17.  請求項1~2のいずれかに記載のペプチドと、末梢血単核球を、血漿を含む培地中で接触させる工程を含む、EBV特異的CTLを生産する方法。 A method for producing EBV-specific CTL comprising the step of contacting the peptide according to any one of claims 1 and 2 with peripheral blood mononuclear cells in a medium containing plasma.
  18.  配列番号:43に記載のアミノ酸配列からなる、CKAP4に特異的なCTLエピトープペプチド。 CTL epitope peptide specific for CKAP4 consisting of the amino acid sequence set forth in SEQ ID NO: 43.
  19.  配列番号:43に記載のアミノ酸配列において、1もしくは複数のアミノ酸が置換、欠失、挿入及び/又は付加された、CKAP4に特異的なCTLエピトープペプチド。 CTL epitope peptide specific to CKAP4, wherein one or more amino acids are substituted, deleted, inserted and / or added in the amino acid sequence set forth in SEQ ID NO: 43.
  20.  HLA-A*24:02分子拘束性の抗原ペプチドであって、HLA-A*24:02分子との複合体を細胞表面に提示する細胞を特異的に認識するT細胞受容体を有するCTLを誘導することを特徴とする、請求項18又は19のいずれかに記載のエピトープペプチド。 HLA-A * 24: 02 molecule-restricted antigen peptide that has a T cell receptor that specifically recognizes cells that present a complex with the HLA-A * 24: 02 molecule on the cell surface The epitope peptide according to claim 18 or 19, wherein the epitope peptide is induced.
  21.  請求項18~19のいずれかに記載のエピトープペプチドをコードする核酸。 A nucleic acid encoding the epitope peptide according to any one of claims 18 to 19.
  22.  請求項18~19のいずれかに記載のエピトープペプチドをコードする核酸を含む発現ベクター。 An expression vector comprising a nucleic acid encoding the epitope peptide according to any one of claims 18 to 19.
  23.  請求項18~19のいずれかに記載のエピトープペプチドを有効成分として含む、がん治療又は予防のためのワクチン。 A vaccine for treating or preventing cancer, comprising the epitope peptide according to any one of claims 18 to 19 as an active ingredient.
  24.  請求項21~22のいずれかに記載の核酸又は発現ベクターを有効成分として含む、がん治療又は予防のためのワクチン。 A vaccine for treating or preventing cancer comprising the nucleic acid or expression vector according to any one of claims 21 to 22 as an active ingredient.
  25.  請求項18~19のいずれかに記載のエピトープペプチドをHLAに提示した抗原提示細胞を有効成分として含む、がん治療又は予防のためのワクチン。 A vaccine for treating or preventing cancer, comprising, as an active ingredient, antigen-presenting cells presenting the epitope peptide according to any one of claims 18 to 19 on HLA.
  26.  請求項18~19のいずれかに記載のエピトープペプチドもしくは該エピトープペプチドをHLAに提示した抗原提示細胞により末梢血リンパ球を刺激して得られるCKAP4特異的なCTLを有効成分として含む、がん治療のための受動免疫療法剤。 A cancer treatment comprising, as an active ingredient, the epitope peptide according to any one of claims 18 to 19 or a CKAP4-specific CTL obtained by stimulating peripheral blood lymphocytes with an antigen-presenting cell presenting the epitope peptide on HLA Passive immunotherapy agent for.
  27.  請求項18~19のいずれかに記載のエピトープペプチドから調製した主要組織適合性抗原複合体及び/又は主要組織適合性抗原複合体-テトラマーと末梢血リンパ球とを接触させ、該主要組織適合性抗原複合体及び/又は主要組織適合性抗原複合体-テトラマーにCTLが結合した結合体を形成させ、該結合体から単離して得られるCTLを有効成分として含む、がん治療のための受動免疫療法剤。 A major histocompatibility is prepared by bringing a major histocompatibility antigen complex and / or a major histocompatibility antigen complex-tetramer prepared from the epitope peptide according to any one of claims 18 to 19 into contact with peripheral blood lymphocytes. Antigen complex and / or major histocompatibility antigen complex-passive immunization for cancer treatment comprising as an active ingredient CTL obtained by forming a conjugate in which CTL is bound to a tetramer Therapeutic agent.
  28.  請求項18~19のいずれかに記載のエピトープペプチドで対象由来の末梢血を刺激する工程、
     前記工程により生じたCKAP4に特異的なCTLを取得する工程、及び
     該取得したCTLが産生するサイトカイン及び/又はケモカイン及び/又は細胞表面分子を測定する工程、
    を含む、CKAP4に特異的なCTLの定量方法。
    Stimulating peripheral blood from a subject with the epitope peptide according to any of claims 18 to 19,
    Obtaining CTL specific for CKAP4 produced by the step, and measuring cytokine and / or chemokine and / or cell surface molecule produced by the obtained CTL,
    A method for quantifying CTL specific for CKAP4.
  29.  請求項18~19のいずれかに記載のエピトープペプチドから主要組織適合性抗原複合体-テトラマーを調製する工程、及び
     主要組織適合性抗原複合体-テトラマーと対象由来の末梢血とを接触させる工程
    を含む、該末梢血中のCKAP4に特異的なCTLの定量方法。
    A step of preparing a major histocompatibility antigen complex-tetramer from the epitope peptide according to any one of claims 18 to 19, and a step of bringing the major histocompatibility antigen complex-tetramer into contact with peripheral blood from a subject. A method for quantifying CTL specific for CKAP4 in the peripheral blood.
  30.  請求項18~19のいずれかに記載のエピトープペプチドと、対象由来の末梢血単核球を接触させる工程を含む、CKAP4特異的CTLの誘導方法。 A method for inducing CKAP4-specific CTL, comprising a step of contacting the epitope peptide according to any one of claims 18 to 19 with a peripheral blood mononuclear cell derived from a subject.
  31.  請求項18~19のいずれかに記載のエピトープペプチドもしくは該エピトープペプチドをHLAに提示した抗原提示細胞により末梢血リンパ球を刺激してCKAP4特異的なCTLを取得する工程を含む、がん治療のための受動免疫療法剤の製造方法。 A method for treating cancer, comprising a step of stimulating peripheral blood lymphocytes with the epitope peptide according to any one of claims 18 to 19 or an antigen-presenting cell presenting the epitope peptide on HLA to obtain CKAP4-specific CTL. For producing a passive immunotherapeutic agent.
  32.  請求項18~19のいずれかに記載のエピトープペプチドから調製した主要組織適合性抗原複合体及び/又は主要組織適合性抗原複合体-テトラマーと末梢血リンパ球とを接触させる工程、
     該主要組織適合性抗原複合体及び/又は主要組織適合性抗原複合体-テトラマーにCTLが結合した結合体を形成させる工程、及び
     該結合体から単離して得られるCTLを取得する工程
    を含む、がん治療のための受動免疫療法剤の製造方法。
    A step of bringing a major histocompatibility antigen complex prepared from the epitope peptide according to any one of claims 18 to 19 and / or a major histocompatibility antigen complex-tetramer with peripheral blood lymphocytes;
    Forming a major histocompatibility antigen complex and / or a major histocompatibility antigen complex-tetramer with a CTL-bound conjugate, and obtaining a CTL obtained by isolation from the conjugate. A method for producing a passive immunotherapeutic agent for cancer treatment.
  33.  請求項18~19のいずれかに記載のエピトープペプチドから調製した主要組織適合性抗原複合体に特異的な抗体。 An antibody specific for a major histocompatibility antigen complex prepared from the epitope peptide according to any one of claims 18 to 19.
PCT/JP2015/067469 2015-06-17 2015-06-17 Cytotoxic t-cell epitope peptide and use thereof WO2016203577A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017524207A JPWO2016203577A1 (en) 2015-06-17 2015-06-17 Cytotoxic T cell epitope peptide and use thereof
PCT/JP2015/067469 WO2016203577A1 (en) 2015-06-17 2015-06-17 Cytotoxic t-cell epitope peptide and use thereof
CN201580080723.XA CN107709351A (en) 2015-06-17 2015-06-17 Cytotoxic t cell epitope peptide for sars and application thereof
TW105119067A TW201708248A (en) 2015-06-17 2016-06-17 Cytotoxic t-cell epitope peptide and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/067469 WO2016203577A1 (en) 2015-06-17 2015-06-17 Cytotoxic t-cell epitope peptide and use thereof

Publications (1)

Publication Number Publication Date
WO2016203577A1 true WO2016203577A1 (en) 2016-12-22

Family

ID=57545291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067469 WO2016203577A1 (en) 2015-06-17 2015-06-17 Cytotoxic t-cell epitope peptide and use thereof

Country Status (4)

Country Link
JP (1) JPWO2016203577A1 (en)
CN (1) CN107709351A (en)
TW (1) TW201708248A (en)
WO (1) WO2016203577A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108997481A (en) * 2017-06-07 2018-12-14 中国科学院广州生物医药与健康研究院 Antigen small peptide from LMP1
KR20190017705A (en) * 2017-08-10 2019-02-20 주식회사 굳티셀 Method for activating T cells to treat cancer
WO2019054409A1 (en) * 2017-09-12 2019-03-21 国立大学法人北海道大学 Screening method and screening kit for substance that interacts with hla proteins
CN113597430A (en) * 2019-02-08 2021-11-02 古德T细胞有限公司 Methods of activating T cells for cancer treatment
WO2021232048A1 (en) * 2020-05-11 2021-11-18 Board Of Regents, The University Of Texas System Sars-cov-2-specific t cells

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109294983A (en) * 2018-09-30 2019-02-01 北京鼎成肽源生物技术有限公司 A kind of LFF2 cell
CN110007071A (en) * 2019-04-01 2019-07-12 河南省生物工程技术研究中心有限公司 A kind of preparation method and applications of CKAP4 labelled antibody-fluorescent microsphere compound
CN110054663B (en) * 2019-04-01 2023-10-03 河南省生物工程技术研究中心 CKAP4 epitope peptide, antigen, monoclonal antibody, application of monoclonal antibody and CKAP4 detection test strip
CN110638787B (en) * 2019-07-31 2021-11-05 中山大学 Subunit nano vaccine for preventing and treating nasopharyngeal carcinoma and preparation method thereof
CN113419067A (en) * 2021-05-26 2021-09-21 广州医科大学 Polypeptide composition for evaluating immunity state of hematopoietic stem cell transplantation patient after CMV infection and detection kit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007117023A (en) * 2005-10-28 2007-05-17 Igaku Seibutsugaku Kenkyusho:Kk Cytotoxic t-cell epitope peptide capable of specifically attacking cell infected with epstein-barr virus and use thereof
WO2009105152A2 (en) * 2008-01-31 2009-08-27 University Of Massachusetts Medical School Virus-like particles as vaccines for paramyxovirus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007117023A (en) * 2005-10-28 2007-05-17 Igaku Seibutsugaku Kenkyusho:Kk Cytotoxic t-cell epitope peptide capable of specifically attacking cell infected with epstein-barr virus and use thereof
WO2009105152A2 (en) * 2008-01-31 2009-08-27 University Of Massachusetts Medical School Virus-like particles as vaccines for paramyxovirus

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BAO Y. N. ET AL.: "Integrating transcriptome profiling and in silico pathway analysis toward reduction of therapeutic dimensionality in nasopharyngeal carcinoma", CANCER RES., vol. 71, no. 8, 2011 *
CHEUNG W. H. ET AL.: "Conjugation of latent membrane protein (LMP)-2 epitope to gold nanoparticles as highly immunogenic multiple antigenic peptides for induction of Epstein- Barr virus-specific cytotoxic T-lymphocyte responses in vitro", BIOCONJUG. CHEM., vol. 20, no. 1, 2009, pages 24 - 31 *
LI S. X. ET AL.: "Prognostic significance of cytoskeleton-associated membrane protein 4 and its palmitoyl acyltransferase DHHC2 in hepatocellular carcinoma.", CANCER, vol. 120, no. 10, 2014, pages 1520 - 31 *
MURRAY R. J. ET AL.: "Epstein-Barr virus- specific cytotoxic T- cell recognition of transfectants expressing the virus-coded latent membrane protein LMP", J. VIROL., vol. 62, no. 10, 1988, pages 3747 - 55 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108997481A (en) * 2017-06-07 2018-12-14 中国科学院广州生物医药与健康研究院 Antigen small peptide from LMP1
CN108997481B (en) * 2017-06-07 2022-06-03 中国科学院广州生物医药与健康研究院 Antigen short peptide derived from LMP1
WO2019031939A3 (en) * 2017-08-10 2019-07-18 주식회사 굳티셀 Method for activating t cells for cancer treatment
CN110997903A (en) * 2017-08-10 2020-04-10 古德T细胞有限公司 Method of activating T cells for cancer therapy
CN111433355A (en) * 2017-08-10 2020-07-17 古德T细胞有限公司 Method of activating T cells for cancer therapy
KR102148866B1 (en) 2017-08-10 2020-10-14 주식회사 굳티셀 Method for activating T cells to treat cancer
KR20190017705A (en) * 2017-08-10 2019-02-20 주식회사 굳티셀 Method for activating T cells to treat cancer
US11918634B2 (en) 2017-08-10 2024-03-05 Good T Cells, Inc. Method for activating T cells for cancer treatment
CN110997903B (en) * 2017-08-10 2024-03-29 古德T细胞有限公司 Method of activating T cells for cancer treatment
CN111433355B (en) * 2017-08-10 2024-03-29 古德T细胞有限公司 Method of activating T cells for cancer treatment
US11969463B2 (en) 2017-08-10 2024-04-30 Good T Cells, Inc. Method for activating T cells for cancer treatment
WO2019054409A1 (en) * 2017-09-12 2019-03-21 国立大学法人北海道大学 Screening method and screening kit for substance that interacts with hla proteins
CN113597430A (en) * 2019-02-08 2021-11-02 古德T细胞有限公司 Methods of activating T cells for cancer treatment
WO2021232048A1 (en) * 2020-05-11 2021-11-18 Board Of Regents, The University Of Texas System Sars-cov-2-specific t cells

Also Published As

Publication number Publication date
TW201708248A (en) 2017-03-01
CN107709351A (en) 2018-02-16
JPWO2016203577A1 (en) 2018-04-12

Similar Documents

Publication Publication Date Title
WO2016203577A1 (en) Cytotoxic t-cell epitope peptide and use thereof
US11707512B2 (en) Cancer vaccine composition
JP4824389B2 (en) Cytotoxic T cell epitope peptide that specifically attacks Epstein-Barr virus infected cells and uses thereof
AU2015343239B2 (en) Methods of selecting T cell line and donor thereof for adoptive cellular therapy
JP4976294B2 (en) Cytotoxic T cell epitope peptide and use thereof
CA2777821A1 (en) Tumor-associated peptides that bind to mhc-molecules
Kuzushima et al. Tetramer-assisted identification and characterization of epitopes recognized by HLA A* 2402–restricted Epstein-Barr virus–specific CD8+ T cells
CA2431500A1 (en) Long peptides of 22-45 amino acid residues that induce and/or enhance antigen specific immune responses
US20130217122A1 (en) Expansion of Interferon-Gamma-Producing T-Cells Using Glypican-3 Peptide Library
TWI374031B (en)
JP2019110909A (en) Epitope peptides of cytotoxic t lymphocyte and uses thereof
Zentz et al. Activated B cells mediate efficient expansion of rare antigen-specific T cells
WO2017086354A1 (en) Hla-a11 restrictive cytotoxic t cell epitope peptide
Provenzano et al. The matrix protein pp65341‐350: a peptide that induces ex vivo stimulation and in vitro expansion of CMV‐specific CD8+ T cells in subjects bearing either HLA‐A* 2402 or A* 0101 allele
WO2022244891A1 (en) T CELL EPITOPE PEPTIDE DERIVED FROM SARS-CoV-2
JP2017132745A (en) Hla-a24 restrictive ctl epitope peptide derived from hhv-6b-specific antigen u54 and use thereof
WO2004111080A1 (en) Epitopes of the cytomegalovirus pp65 protein
Meckiff Evolution of the human CD4+ T cell response to Epstein-Barr virus infection-analysis of systemic and local immune responses
JP2011239787A (en) Cytotoxic t cell epitope peptide specifically attacking epstein-barr virus infected cell and use thereof
Preece Harnessing CD4+ T cell effectors for lymphoma therapy
ZHENYING Amino acid substitutions in the epstein-barr virus associated oncogene latent membrane protein 1 impact upon the immunogenicity of Nasopharyngeal carcinoma cells
Burrows et al. The Immune Response to Epstein–Barr Virus
Provenzano et al. TRANSPLANTATION AND CELLULAR ENGINEERING

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15895598

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017524207

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15895598

Country of ref document: EP

Kind code of ref document: A1