WO2016203511A1 - Fluid stirring device and heat pump system - Google Patents
Fluid stirring device and heat pump system Download PDFInfo
- Publication number
- WO2016203511A1 WO2016203511A1 PCT/JP2015/067140 JP2015067140W WO2016203511A1 WO 2016203511 A1 WO2016203511 A1 WO 2016203511A1 JP 2015067140 W JP2015067140 W JP 2015067140W WO 2016203511 A1 WO2016203511 A1 WO 2016203511A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fluid
- end plate
- housing
- tubular body
- heat pump
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
Definitions
- the present invention relates to a fluid agitation device installed on a piping path for agitating a fluid and a heat pump system using the fluid agitation device.
- the pipe length for measuring COP is 7.5 m, but the actual pipe is long, There are also various installation conditions.
- the heat pump cycle includes a compressor, a condenser, an expander, and an evaporator as main devices.
- the refrigerant circulates through piping connecting these devices.
- Refrigerating machine oil is mixed with the refrigerant as lubricating oil for the compressor.
- the compressor is provided with a refrigerator oil sump.
- the refrigeration oil is discharged from the compressor in a state dissolved in the refrigerant, circulates through the heat pump cycle together with the refrigerant, and returns to the compressor.
- the refrigerant with specific chlorofluorocarbons containing chlorine was excellent in compatibility with refrigerating machine oil.
- specific chlorofluorocarbons had ozone layer destruction problems, they were switched to refrigerants with alternative chlorofluorocarbons (hereinafter referred to as non-fluorocarbon refrigerants). It was.
- non-fluorocarbon refrigerants are not more compatible with refrigeration oil than specific fluorocarbons. For this reason, the refrigerating machine oil discharged together with the refrigerant from the compressor is separated from the non-fluorocarbon refrigerant and stays in equipment such as a condenser of the heat pump cycle and piping, and the lubricating oil of the compressor tends to be insufficient. Insufficient lubrication leads to compressor burn-in.
- non-fluorocarbon refrigerants that are not compatible with refrigerating machine oil have their own fluidity lowered, and the refrigerating machine oil that has accumulated in equipment and piping such as condensers can be flown smoothly through the refrigerant and the condenser and Inhibits heat exchange in the evaporator. As a result, the heat exchange efficiency of the heat pump system is reduced.
- various chemically synthesized oils are added to the non-fluorocarbon refrigerant, but this is not sufficient.
- Patent Document 1 discloses a bubble removing device that removes bubbles remaining in a radical state when a refrigerant is liquefied in a condenser to completely liquefy the refrigerant.
- This apparatus includes a cylindrical container and is installed on the outlet side of a condenser (outdoor unit) during cooling. By forming a spiral swirl flow in the cylindrical container, the refrigerant is stirred to remove bubbles.
- the air bubble removing device described in Patent Document 1 aims at air bubble removal, but also has an effect of promoting the dissolution of refrigerating machine oil in the refrigerant because the refrigerant is agitated.
- the bubble removal apparatus described in Patent Document 1 forms a spiral swirl flow with a long coil, the cylindrical container becomes long and has a large capacity. For this reason, when installing a bubble removal apparatus, a large installation place is required and it is necessary to add a lot of refrigerant
- An object of the present invention is to provide a fluid agitation device that can be miniaturized as much as possible and a heat pump system using the fluid agitation device.
- the fluid stirring device of the present invention comprises: A fluid agitation device installed on a piping path for agitating a fluid containing refrigerant and refrigeration oil in a heat pump cycle, A case in which one is closed by the first end plate and the other is closed by the second end plate; One end is connectable to one of the pipes, penetrates the first end plate in a direction parallel to the center axis at a position away from the center axis of the housing, and the other end is the second end plate A first tube opening in the direction of One end is connectable to another one of the pipes, passes through the second end plate in the direction of the center axis on the center axis of the housing, and the other end in the direction of the first end plate A second tubular body that opens; The winding is wound in a conical shape, the second tubular body is inserted into the inside from the opening on the apex side, and is installed in the housing around the central axis of the housing.
- a spring including a conical portion in which
- the fluid stirring device of the present invention comprises: The first tube extends to the vicinity of the bottom surface of the first end plate; The second tubular body extends to the vicinity of the bottom surface of the first end plate; It is characterized by that.
- the fluid stirring device of the present invention comprises: The winding on the bottom surface of the conical portion of the spring is located near the bottom surface of the second end plate.
- the fluid stirring device of the present invention comprises:
- the housing has a cylindrical body between the first end plate and the second end plate,
- the spring is installed on the inner surface of the body portion of the housing around the central axis of the housing, and includes a cylindrical portion that can vibrate a winding wound in a cylindrical shape. It is characterized by that.
- the fluid stirring device of the present invention comprises: The edge of the opening at the other end of the first tubular body is inclined so that the central axis side of the housing is long and the peripheral edge side is short.
- the fluid stirring device of the present invention comprises:
- the outer surface of the second tubular body is formed with irregularities formed by spiral threads and screw grooves alternately in the axial direction.
- the fluid stirring device of the present invention comprises: At the time of indoor cooling, it is installed so that the fluid flows in from the first tube and the fluid flows out from the second tube, and the first tube is a condensation unit that is an outdoor unit in the heat pump cycle. It is connected to the fluid outlet side of the part.
- the fluid stirring device of the present invention comprises: At the time of indoor heating, it is installed so that fluid flows in from the second tubular body and fluid flows out of the first tubular body, and the first tubular body is an outdoor unit in the heat pump cycle. It is connected to the fluid inlet side of the part.
- the heat pump system of the present invention is The fluid agitation apparatus described above is installed on a pipe route.
- the fluid stirring device can be made as small as possible.
- FIG. 3 (a) is a longitudinal sectional view
- FIG. 3 (b) is an AA view of FIG. 3 (a)
- FIG. 3 (c) is a BB sectional view of FIG. 3 (a)
- FIG. ) Is a CC view of FIG.
- FIG. 5A is a plan view of the coil spring
- FIG. 5B is a cross-sectional view taken along the line DD in FIG. 5A.
- FIG. 6A is an external perspective view of an example of the lower tubular body
- FIG. 6B is an external perspective view of another example of the lower tubular body.
- It is a graph which shows an example of the change of the power consumption at the time of installing a fluid stirring apparatus in an indoor air conditioner and removing after 6 days.
- FIG. 8A is a longitudinal sectional view
- FIG. 8B is an EE view of FIG.
- FIG. 8A, and FIG. 8C is an FF view of FIG. 8A.
- the fluid agitation apparatus described in this specification agitates a fluid flowing through a heat pump system using a heat pump cycle.
- the heat pump system includes various forms such as an air conditioner, a refrigerator, a refrigerator, a water heater, a freezer warehouse, and a chiller. These fluid agitation devices can be applied to any heat pump system. Moreover, these fluid stirring apparatuses are applicable not only to a new system but also to an existing system.
- the heat pump system in this specification means “an apparatus that absorbs heat from a low-temperature object such as water or air and applies the heat to an object such as high-temperature water or air”. Therefore, the case where it is used for either the purpose of further cooling the low-temperature object or the purpose of further warming the high-temperature object, and the case where it is used for both purposes by switching are included.
- a device that performs only cooling and a device that performs both cooling and heating by switching are included in the heat pump system of the present invention.
- “fluid” means a fluid that circulates in the heat pump cycle, and includes at least a refrigerant and refrigerating machine oil.
- the “fluid” may be in a gas state, a liquid state, or a mixed state of gas and liquid depending on which process in the heat pump cycle is present.
- FIG. 1 and 2 schematically show an example of a heat pump cycle when the heat pump system is an air conditioner.
- fluid circulates between an outdoor unit installed outdoors and an indoor unit installed indoors.
- FIG. 1 is an example of a cycle during indoor cooling.
- FIG. 2 is an example of a cycle during indoor heating.
- the heat pump cycle includes a fluid stirring device 1, a compression unit 2, a condensing unit 3, an expansion unit 4, and an evaporation unit 5. Sealed piping connects these components. Fluid circulates in these pipes.
- the arrows on the piping path in FIGS. 1 and 2 indicate the direction of fluid flow.
- White arrows indicate heat transfer in the condenser 3 and the evaporator 5 which are heat exchangers. Dotted arrows indicate the air flow indoors and outdoors.
- a fluid agitation apparatus 1A as a comparative example, a fluid agitation apparatus 1B according to the first embodiment of the present invention, a fluid agitation apparatus 1C according to the second embodiment of the present invention, A fluid stirring device 1D according to a third embodiment of the present invention will be described later.
- FIGS. 1 and 2 The capital letters in FIGS. 1 and 2 are used as follows. However, in a mixed state of gas and liquid, it is referred to as “gas state” or “liquid state” based on the dominant one of gas and liquid.
- gas state or “liquid state” based on the dominant one of gas and liquid.
- the meanings of “high” and “low” in “high temperature” and “low temperature” and “high pressure” and “low pressure” are not absolute, but in the preceding process or the subsequent process of the part indicated in capital letters It is only a rough representation of the relative difference from the temperature or pressure of the fluid.
- GS (HT, HP) means “high temperature, high pressure gas state”
- LQ (LT, LP)” means “low temperature, low pressure liquid state”. The meaning of each symbol is shown below.
- GS Gas state refrigerant
- LQ Liquid state refrigerant HT: High temperature LT: Low temperature
- HP High pressure LP: Low pressure
- the compression unit 2 includes a compressor for compressing a low-pressure gaseous refrigerant in a sealed container.
- An oil reservoir 11a for storing refrigerating machine oil is usually provided in the sealed container containing the compressor.
- the gaseous refrigerant is compressed into a high-pressure and higher-temperature gas.
- This gaseous refrigerant is mixed with the refrigerating machine oil and then discharged from the compression unit 2 to the condensation unit 3 (outdoor unit).
- the condensing unit 3 includes a capacitor. During cooling, the outdoor unit performs heat exchange as the condensing unit 3.
- the high-temperature and high-pressure gas fluid that has flowed into the condensing unit 3 is condensed by releasing heat to the outside, and becomes a low-temperature liquid fluid.
- the liquid fluid is ideally a liquid refrigerant in which refrigeration oil is dissolved.
- refrigeration oil does not dissolve in mixed refrigerant systems such as R410 and non-fluorocarbon refrigerants. Refrigerant and refrigeration oil are likely to be separated. For this reason, when the refrigerant changes from gas to liquid in the condensing unit 3, a part of the refrigerating machine oil may be separated without being dissolved in the refrigerant. In addition, the oil phase of the combined refrigerating machine oil may trap the liquid refrigerant. Furthermore, the refrigerant that has almost passed through the condensing unit 3 may remain as a high-temperature gas. Due to such a phenomenon, the liquid fluid flowing out from the condensing unit 3 may include separated refrigeration oil, liquid refrigerant and / or gas refrigerant trapped in the oil phase of the refrigeration oil.
- the fluid stirring device 1 is inserted between the condensing unit 3 and the expansion unit 4.
- the inflow port of the fluid agitation apparatus 1 is connected to the outlet side of the condensing unit 3 that is an outdoor unit.
- the outlet of the fluid agitation device 1 is connected to the inlet side of the expansion part 4.
- the fluid that has flowed out of the condensing unit 3 is sufficiently stirred in the fluid stirring device 1.
- the separated refrigerating machine oil is dissolved in the liquid refrigerant, the liquid solvent trapped in the oil phase of the refrigerating machine oil is released, and the remaining gas refrigerant is lowered in temperature to become a liquid refrigerant.
- the fluid that has flowed out of the fluid agitator 1 is sent to the expansion unit 4.
- the expansion part 4 includes an expansion valve or a capillary tube.
- the low-temperature and high-pressure liquid fluid becomes a low-pressure and further low-temperature liquid by being passed through narrow holes and pipes. Then, this fluid is sent to the evaporation part 5 (indoor unit).
- the evaporation unit 5 includes an evaporator. During indoor cooling, the indoor unit performs heat exchange as the evaporation unit 5.
- the low-temperature and low-pressure liquid fluid that has flowed into the evaporator 5 evaporates by absorbing heat from the outside, and becomes a high-temperature gas fluid. Thereby, indoor air is cooled. Thereafter, the gaseous fluid is returned to the compression unit 2.
- the fluid circulation direction is opposite to that of the cooling of FIG. Since a valve for switching the direction of fluid circulation in a heat pump system is well known, illustration and description thereof are omitted.
- the high-temperature and high-pressure gas fluid discharged from the compression unit 2 is sent to the indoor unit that performs heat exchange as the condensing unit 3.
- the high-temperature and high-pressure gas fluid that has flowed into the condensing unit 3 (indoor unit) condenses into a low-temperature liquid fluid by releasing heat to the outside. Thereby, indoor air is warmed.
- the liquid fluid flowing out from the condensing unit 3 is captured by the separated refrigerating machine oil and the oil phase of the refrigerating machine oil, as in the cooling cycle of FIG. Liquid refrigerant and / or gaseous refrigerant.
- the liquid fluid flowing out from the condensing unit 3 is further sent to the expansion unit 4 and becomes a low-pressure and further low-temperature liquid. Even after passing through the expansion part 4, there is a possibility that separated refrigeration oil, trapped liquid refrigerant and / or gas refrigerant remain.
- the fluid agitation device 1 is inserted between the expansion unit 4 and the evaporation unit 5 (outdoor unit).
- the inflow port of the fluid agitation apparatus 1 is connected to the outlet side of the expansion unit 4.
- the outlet of the fluid agitation apparatus 1 is connected to the inlet side of the evaporator 5 that is an outdoor unit.
- the fluid that has flowed out of the expansion part 4 is sufficiently stirred in the fluid stirring device 1.
- the separated refrigerating machine oil is dissolved in the liquid refrigerant, the liquid solvent trapped in the oil phase of the refrigerating machine oil is released, and the remaining gas refrigerant is lowered in temperature to become a liquid refrigerant.
- the fluid flowing out from the fluid stirring device 1 is sent to the evaporation unit 5.
- the outdoor unit performs heat exchange as the evaporation unit 5.
- the low-temperature and low-pressure liquid fluid that has flowed into the evaporator 5 evaporates by absorbing heat from the outside, and becomes a high-temperature gas fluid. Thereafter, the gaseous fluid is returned to the compression unit 2.
- the fluid agitation device 1 is inserted on the piping path constituting the heat pump system. Since the actual piping is formed by connecting a plurality of pipe members, for example, by removing one pipe member and replacing it with the fluid stirring apparatus 1, the fluid stirring apparatus 1 can be easily attached. it can. As shown in FIGS. 1 and 2, for example, the fluid stirring device 1 can be installed in an outdoor pipe near the outdoor unit.
- the fluid agitation device 1 is applied to the basic form of the heat pump system. There are many applications for actual heat pump systems.
- the fluid agitation apparatus 1 can also be applied to a heat pump system in which various components are added to the basic form.
- FIG. 3 shows an example of the configuration of a fluid stirring apparatus 1A that is a comparative example.
- 3 (a) is a longitudinal sectional view
- FIG. 3 (b) is an AA view of FIG. 3 (a)
- FIG. 3 (c) is a BB sectional view of FIG. 3 (a)
- FIG. 4 Is a CC view of FIG.
- FIG. 4 is a left side view of the fluid agitating apparatus 1A shown in FIG.
- the fluid agitation apparatus 1 ⁇ / b> A has a housing 11.
- the casing 11 includes a cylindrical body portion 11a having a central axis in the vertical direction, a hemispherical upper end plate 11b1 that closes the upper end side of the body portion 11a, and a hemispherical lower portion that closes the lower end side of the body portion 11a. And an end plate 11b2.
- the “end plate” generally means a lid member that closes the pressure vessel. Since the fluid in the present embodiment is also a pressure fluid discharged from the compressor at a predetermined pressure, the housing 11 can also be regarded as a kind of pressure vessel.
- the cross section of the upper end plate 11b1 and the lower end plate 11b2 shown in FIG. 3A is a semicircle having a central angle of 180 degrees, and the radius thereof is equal to the radius of the cylindrical body portion 11a.
- FIG. 3A shows a side surface, not a cross section of these tubes.
- the upper pipe 12 serves as an inlet during cooling and serves as an outlet during heating. Although illustration of the upper part of the upper tubular body 12 is abbreviate
- the upper tubular body 12 penetrates the upper end plate 11b1 in the vertical direction at a position away from the central axis of the housing 11.
- the upper tubular body 12 extends downward to the vicinity of the upper end of the body portion 11a in the casing 11, and the lower end 12a is opened downward.
- the edge of the opening of the lower end 12a of the upper tubular body 12 is preferably inclined so that the central axis side is low and the peripheral side is high. This inclination is intended to facilitate the formation of a good flow of fluid.
- the lower pipe 13 serves as an outlet during cooling and serves as an inlet during heating. Although illustration of the lower part of the lower pipe 13 is abbreviate
- the lower tubular body 13 penetrates the lower end plate 11b2 in the vertical direction on the central axis.
- the lower tubular body 13 extends upward in the casing 11 along the central axis to the vicinity of the upper end of the body portion 11a, and the upper end 13a is opened upward.
- a coil spring 14 is installed on the inner surface of the body portion 11a.
- the axis of the coil spring 14 coincides with the central axis of the body portion 11a.
- Each winding of the coil spring 14 is not fixed to the inner surface of the body portion 11a and can move up and down.
- FIG. 5A is a plan view of the coil spring 14 shown in FIG. 3, and FIG. 5B is a cross-sectional view taken along the line DD of FIG. 5A.
- the coil spring 14 is an unequal pitch coil spring, and the pitch gradually increases from one end to the other end. “The pitch becomes gradually longer” includes two meanings as schematically shown by two different dotted lines in FIG. One is a case where the pitch in each of a plurality of regions (for example, three regions p1, p2, and p3) is constant and the pitch of each region is in a relationship of p1 ⁇ p2 ⁇ p3. The other is a case where the pitch px is continuously increased over the entire length of the coil spring. Furthermore, the case where these two cases are combined is also included. In addition, if the pitch is different, the resonance frequency (natural frequency) is different. The resonance frequency is high in the long pitch region, and the resonance frequency is low in the short pitch region.
- the fluid flows into the housing 11 from the lower end 12 a of the upper tube 12 or the upper end of the lower tube 13. Then, after the fluid goes straight downward, the fluid is turned upward (U-turn) by the lower end plate 11b2. In addition, the fluid travels straight upward and is then turned downward (U-turn) by the upper end plate 11b1. In this way, a strong vertical flow is formed.
- the vertical flow collides with the upper tube body 12 and the lower tube body 13 when the direction is changed between the upper and lower end plates 11b1 and 11b2. This imparts complex motion to the fluid.
- the fluid flowing in the vertical direction with the complicated motion applied causes collision and friction with the coil spring 14.
- the winding of the coil spring 14 resonates in the local area where these collisions and friction are received, and generates vertical vibration.
- the fluid also causes vertical vibration locally. This vertical vibration causes a shearing force to act on the fluid.
- a shearing force acts on the fluid also by the unevenness of the coil spring 14 itself.
- the refrigerant and the refrigerating machine oil contained in the fluid are greatly agitated and made uniform.
- FIG. 6A is an external perspective view of an example of the lower tubular body 13 shown in FIG. 3, and FIG. 6B is an external perspective view of another example of the lower tubular body 13.
- FIG. 6 (a) by forming the lower tubular body 13 with a parallel threaded steel pipe, a shape in which irregularities due to spiral threads and thread grooves are alternately repeated on the outer surface in the axial direction is obtained. It is done. Circumferential peaks and grooves may be alternately formed instead of spiral. Moreover, you may give a knurling process on an outer surface.
- FIG. 7 is a graph showing an example of a change in power consumption when the fluid stirring device 1A is installed in the indoor cooling device and removed after 6 days.
- the indoor air conditioner was operated for 8 hours per day.
- a broken line indicates a case where the indoor cooling device is operated without the fluid stirring device 1A.
- a solid line indicates a case where the fluid cooling device 1A is installed and the indoor cooling device is operated. Power consumption was measured from the beginning to the middle of August 2014.
- the indoor cooling device was operated without the fluid stirring device 1A to measure the power consumption indicated by the broken line, and the fluid stirring device 1A was subsequently installed to operate the indoor cooling device to measure the power consumption indicated by the solid line.
- a non-fluorocarbon refrigerant is used, which is a mixture of a plurality of refrigerants.
- the refrigerating machine oil used with this refrigerant is partially synthetic oil or 100% synthetic oil. Synthetic oils are polymeric substances.
- the change in the power consumption shown in FIG. 7 can be explained as follows. After the fluid stirring device 1A is installed in the indoor cooling device, it takes about 16 hours until the non-fluorocarbon refrigerant and the refrigerating machine oil are turned into a polymer solution, and the indoor cooling device has low power consumption when in the polymer solution state. Even if the fluid stirring device 1A is removed from the indoor cooling device, the power consumption remains low while the polymer solution state of the non-fluorocarbon refrigerant and the refrigerating machine oil can be maintained. Although not shown in the graph of FIG. 7, it is considered that the power consumption increases because a polymer solution state cannot be maintained after a certain period of time.
- the resonance frequency of the coil spring 14 that is, the spring is the most important in order to refine the refrigerating machine oil in the non-fluorocarbon refrigerant. That is, as described above, the fluid resonates with the coil spring 14 and locally generates vertical vibration. This vertical vibration causes a shearing force to act on the fluid. Further, a shearing force acts on the fluid also by the unevenness of the coil spring 14 itself. It came to be considered that refrigerating machine oil was mainly refined by this shearing force. Furthermore, when the inventors continuously refine the refrigerating machine oil, the size and concentration of the refrigerating machine oil fluctuate. We believe that the resonance frequency of the non-fluorocarbon refrigerant changes as the size and concentration change.
- the coil spring 14 of the fluid agitator 1A has various pitches as shown in FIG. 5, it has various resonance frequencies. For this reason, even if the size and concentration of the refrigerating machine oil mass change, the coil spring 14 can efficiently convert the non-fluorocarbon refrigerant into a polymer solution. However, the coil spring 14 is long. Since the fluid agitator 1 ⁇ / b> A must accommodate the coil spring 14, the body portion 11 a becomes long. For this reason, the housing
- a non-fluorocarbon refrigerant must be added when the fluid agitating apparatus 1A is installed.
- the non-fluorocarbon refrigerant is a mixed refrigerant, and the concentration ratio is severely limited, so that addition is difficult.
- the entire amount of non-fluorocarbon refrigerant must be replaced, which is costly.
- FIG. 8 shows an example of the configuration of the fluid stirring device 1B according to the first embodiment of the present invention.
- 8A is a longitudinal sectional view
- FIG. 8B is an EE view of FIG. 8A
- FIG. 8C is an FF view of FIG. 8A.
- the fluid agitation device 1 ⁇ / b> B has a housing 21.
- the casing 21 has a spherical shape.
- the housing 21 includes a hemispherical right end panel 21b1 that closes the right side and a hemispherical left end panel 21b2 that closes the left side.
- the housing 21 can also be regarded as a kind of pressure vessel.
- the cross sections of the right end plate 21b1 and the left end plate 21b2 shown in FIG. 8 are preferably semicircles having a central angle of 180 degrees, and the radius of the right end plate 21b1 and the radius of the left end plate 21b2 are equal.
- the right end plate 21b1 and the left end plate 21b2 may have any shape that can change the direction of fluid flow (U-turn), and the cross-sectional shape is not necessarily a semicircle having a central angle of 180 degrees. Also good.
- the hemispherical shape in this specification includes a semi-elliptical cross-sectional shape in which an ellipse is cut along the long axis.
- the hemispherical right end panel 21b1 has the farthest distance from the bottom of the right end panel 21b1
- the hemispherical left end panel 21b2 has the farthest distance from the bottom.
- the axis passing through the apex of the end plate 21b2 is referred to as the central axis of the housing 21.
- the right end plate 21b1 is an example of the first end plate of the present invention
- the left end plate 21b2 is an example of the second end plate of the present invention.
- two tubes are provided for inflow or outflow of the fluid to the housing 21 (in FIG. 8A, side surfaces rather than cross sections of these tubes). Is shown).
- the fluid stirring device 1B When the fluid stirring device 1B is inserted on the piping path of the heat pump system, one tube is connected to one piping end at the insertion location, and the other tube is connected to the other piping end.
- the direction of fluid circulation is reversed between cooling and heating. Accordingly, the inlet of the fluid agitator 1B during cooling serves as an outlet during heating, and the outlet during cooling serves as an inlet during heating. Even if the cooling and heating of the air conditioner are switched, there is no need to change the mounting state of the fluid agitator 1B.
- the right tube 22 serves as an inlet during cooling and serves as an outlet during heating.
- illustration of the right portion of the right tubular body 22 is omitted, but connection to appropriate piping of the heat pump system is possible.
- the mounting state of the fluid agitator 1B is not changed between the cooling time and the heating time.
- the right tubular body 22 has the condensing unit 3 at the time of cooling shown in FIG. It is connected to the outlet side of the (outdoor unit) and is connected to the inlet side of the evaporator 5 (outdoor unit) during the heating shown in FIG.
- the right tubular body 22 penetrates the right end panel 21b1 in a direction parallel to the central axis at a position away from the central axis of the casing 21.
- the right tube 22 extends in the housing 21 to the vicinity of the bottom surface of the right end plate 21b1, and the left end 22a opens in the direction of the left end plate 21b2.
- the edge of the opening of the left end 22a of the right tube 22 is inclined so that the central axis side of the housing 21 is long and the peripheral side is short. This inclination is intended to facilitate the formation of a good flow of fluid.
- the right tubular body 22 is an example of the first tubular body of the present invention.
- the left tube 23 serves as an outlet during cooling and serves as an inlet during heating.
- the left portion of the left tubular body 23 is not shown, but is connected to an appropriate pipe of the heat pump system.
- the left tubular body 23 passes through the left end plate 21 b 2 in the direction of the central axis on the central axis of the housing 21.
- the left tube 23 extends in the housing 21 along the central axis to the vicinity of the bottom surface of the right end plate 21b1, and the right end thereof opens in the direction of the right end plate 21b1.
- the left tubular body 23 is formed of a parallel threaded steel pipe in the same manner as the lower tubular body 13 in the fluid agitating apparatus 1A of the comparative example, and irregularities due to spiral threads and thread grooves are alternately arranged on the outer surface in the axial direction. It is a shape repeated. These fine irregularities on the outer surface of the left tubular body 23 have an action of capturing fluid bubbles. By capturing the gaseous refrigerant that is not finally dissolved (not liquefied) even when stirring is performed by the fluid stirring device 1B, it can be separated from the liquid refrigerant, that is, the liquid fluid. Furthermore, the fine irregularities on the outer surface of the left tubular body 23 contribute to the agitation of the fluid when the fluid collides with these irregularities.
- the left tubular body 23 is an example of the second tubular body of the present invention.
- a conical spring 24 shown in FIG. 9 is installed inside the left end plate 21b2.
- the conical spring 24 has a conical portion 24a and a short cylindrical portion 24b.
- the conical portion 24a has a winding wound in a conical shape.
- the diameter of the winding in the opening 24c on the apex side of the conical portion 24a is slightly larger than the outer diameter of the left tubular body 23.
- the diameter of the winding of the cylindrical portion 24b is the same as the diameter of the winding of the bottom surface of the conical portion 24a.
- the outer diameter of the winding of the cylindrical portion 24 b is substantially the same as the inner diameter of the housing 21.
- the left tubular body 23 is inserted into the conical spring 24 from the apex side opening 24c.
- the conical spring 24 is installed inside the housing 21 with the central axis of the housing 21 as an axis.
- the winding on the bottom surface of the conical portion 24a of the conical spring 24 is located in the vicinity of the bottom surface of the left end plate 21b2.
- Each winding of the conical spring 24 is not fixed to the inner surface of the casing 21 and can vibrate.
- the conical spring 24 may be fixed to the left end plate 21b2 by the nut 25.
- the fluid flows into the housing 11 from the left end 22 a of the right tube 22 or the right end of the left tube 23.
- the fluid rotates along the inner surface of the casing 21.
- the fluid collides with the right tube 22 and the left tube 23 during rotation.
- the rotating fluid given the complicated motion causes collision and friction with the conical spring 24.
- the winding of the conical spring 24 resonates in a local area subjected to collision or friction, and generates left-right vibration.
- Resonating with the conical spring 24, the fluid also locally generates lateral vibration.
- a shearing force acts on the fluid.
- the fluid is greatly agitated, the refrigerating machine oil is refined and dissolved in the non-fluorocarbon refrigerant, and the fluid becomes a polymer solution to which a dilute polymer is added.
- the winding of the conical spring 24 has various diameters, it has various resonance frequencies like the coil spring 14 in the fluid stirring apparatus 1A of the comparative example. For this reason, even if the refrigerating machine oil is further miniaturized and the size and concentration of the refrigerating machine oil changes, the non-fluorocarbon refrigerant can be efficiently made into a polymer solution. Since the conical spring 24 is small, the casing 21 that accommodates the conical spring 24 is smaller than the casing 11 in the fluid agitating apparatus 1 ⁇ / b> A that is a comparative example. The casing 21 has a capacity of about 40 cc to 50 cc, for example. For this reason, the fluid stirring apparatus 1B can be easily installed in a narrow place. Further, when the capacity of the casing 21 is about 40 cc to 50 cc, it is not necessary to add a non-fluorocarbon refrigerant when the fluid agitating device 1B is installed in an installed indoor cooling device or the like.
- FIG. 10 shows an example of the configuration of a fluid stirring apparatus 1C according to the second embodiment of the present invention.
- the fluid agitation device 1 ⁇ / b> C includes a housing 31.
- the casing 31 includes a body portion 31a, a hemispherical right end panel 31b1 that closes the right side, and a hemispherical left end panel 31b2 that closes the left side.
- the shapes and sizes of the right end panel 31b1 and the left end panel 31b2 are the same as those of the right end panel 21b1 and the left end panel 21b2 according to the first embodiment, respectively.
- the body part 31a has a cylindrical shape.
- the axis of the body portion 31 a is referred to as the central axis of the housing 31. Similar to the fluid agitating apparatus 1B according to the first embodiment, the central axis passes through the apex of the right end plate 31b1 and the apex of the left end plate 31b2.
- the right end plate 31b1 is an example of the first end plate of the present invention
- the left end plate 31b2 is an example of the second end plate of the present invention.
- a conical coil spring 34 shown in FIG. 11 is installed inside the left end plate 31b2 and the body 31a.
- the coil spring 34 with a conical portion has a conical portion 34a and a cylindrical portion 34b.
- the shape and size of the conical part 34a are equal to the conical part 24a according to the first embodiment.
- the cylindrical portion 34b is wound in a cylindrical shape.
- the diameter of the winding of the cylindrical portion 34b is the same as the diameter of the winding of the bottom surface of the conical portion 34a.
- the outer diameter of the winding of the cylindrical portion 34 b is substantially the same as the inner diameter of the housing 31.
- the length of the cylindrical portion 34 b is substantially equal to the body portion 31 a of the housing 31.
- the left tubular body 23 is inserted into the conical coil spring 34 through the apex side opening 34c.
- the coil spring 34 with a conical portion is installed inside the housing 31 with the central axis of the housing 31 as an axis.
- the winding on the bottom surface of the conical portion 34a is located in the vicinity of the bottom surface of the left end plate 31b2.
- Each winding of the conical coil spring 34 is not fixed to the inner surface of the casing 31 and can vibrate.
- the conical coil spring 34 may be fixed to the left end plate 31b2 by the nut 25.
- the fluid agitating apparatus 1 ⁇ / b> C is related to the first embodiment in that the casing 31 has a trunk portion 31 a, and the length of the cylindrical portion 34 b of the conical coil spring 34 is substantially equal to the trunk portion 31 a of the casing 31. Different from the fluid stirring device 1B.
- the fluid agitator 1C is attached to an indoor cooling device or the like, a plurality of non-fluorocarbon refrigerants included in the cylindrical portion 34b when the resonance frequency of the non-fluorocarbon refrigerant coincides with the resonance frequency of the winding of the cylindrical portion 34b. Since the refrigerating machine oil in that region is refined by the winding of, the time until the non-fluorocarbon refrigerant becomes a polymer solution and the power consumption is reduced can be shortened.
- FIG. 12 shows an example of the configuration of a fluid stirring apparatus 1D according to the third embodiment of the present invention.
- the fluid agitating apparatus 1D is different from the fluid agitating apparatus 1C according to the second embodiment in that a conical spring 24 is provided instead of the conical coil spring 34.
- the conical spring 24 is the same as that used in the fluid agitator 1B according to the first embodiment. However, the installation direction of the conical spring 24 is opposite to the installation direction in the fluid stirring device 1B.
- the apex of the conical spring 24 faces the right end plate 31b1, and the winding on the bottom surface of the conical portion 24a is located near the bottom surface of the left end plate 31b2.
- the nut 25 suppresses the winding in the opening 24 c on the apex side of the conical spring 24 and fixes the conical spring 24.
- each component of fluid stirring apparatus 1A, 1B, 1C, 1D should just be a material which can be used for piping of a heat pump system, and is not specifically limited.
- it can be made of steel.
- the fluid stirring device can be miniaturized as much as possible.
- a heat pump system such as an air conditioner, the resistance in the liquid pipe of the heat pump system is reduced, so that the power consumption in the compressor can be reduced.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
- Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
Abstract
The purpose of the present invention is to miniaturize a fluid stirring device as much as possible. The fluid stirring device 1B is installed on the path of pipes so as to stir fluids including a refrigerant and refrigeration oil in a heat pump cycle. A housing 21 has one side closed by a right mirror plate 21b1 and the other side closed by a left mirror plate 21b2. A right pipe body 22 has one end which can be connected to one of the pipes, and, in a position separated from the center axis of the housing 21, passes through the right mirror plate 21b1 in a direction parallel to the center axis, and the other end which opens toward the left mirror plate 21b2. A left pipe body 23 has one end which can be connected to the other pipe and passes through the left mirror plate 21b2 in the direction of the center axis on the center axis of the housing 21, and the other end which opens toward the right mirror plate 21b1. A conical spring 24 includes a conical portion around which coils conically are wound and into which the left pipe body 23 is inserted through an opening on the vertex side, the conical portion being installed within the housing 21 with the center axis of the housing 21 as the axis therefor.
Description
本発明は、流体を撹拌するために配管の経路上に設置される流体撹拌装置およびそれを用いたヒートポンプシステムに関する。
The present invention relates to a fluid agitation device installed on a piping path for agitating a fluid and a heat pump system using the fluid agitation device.
業務用の冷凍サイクルシステムや空調システム等のヒートポンプサイクルを利用したヒートポンプシステムでは、COP(Coefficient Of Performance)を計測する際の配管長は7.5mとされているが、実際の配管は長く、その設置条件も多様である。ヒートポンプサイクルは、圧縮機、凝縮器、膨張器および蒸発器を主要機器として備える。冷媒は、これらの機器を接続する配管を通して循環する。冷媒には、圧縮機のための潤滑油として冷凍機油が混合されている。圧縮機には冷凍機油溜まりが設けられている。冷凍機油は、冷媒に溶解した状態で圧縮機から吐出され、ヒートポンプサイクルを冷媒とともに循環して圧縮機に戻る。
In heat pump systems that use heat pump cycles such as commercial refrigeration cycle systems and air conditioning systems, the pipe length for measuring COP (Coefficient of Performance) is 7.5 m, but the actual pipe is long, There are also various installation conditions. The heat pump cycle includes a compressor, a condenser, an expander, and an evaporator as main devices. The refrigerant circulates through piping connecting these devices. Refrigerating machine oil is mixed with the refrigerant as lubricating oil for the compressor. The compressor is provided with a refrigerator oil sump. The refrigeration oil is discharged from the compressor in a state dissolved in the refrigerant, circulates through the heat pump cycle together with the refrigerant, and returns to the compressor.
かつての塩素を含む特定フロンによる冷媒は冷凍機油との相溶性に優れていたが、特定フロンにはオゾン層破壊問題等があったため、代替フロンによる冷媒(以下、ノンフロン冷媒と称する。)に切り替えられた。しかし、ノンフロン冷媒は冷凍機油との相溶性が特定フロンよりもよくない。このため、圧縮機から冷媒と共に吐出された冷凍機油はノンフロン冷媒から分離し、ヒートポンプサイクルの凝縮器等の機器や配管内に滞留して圧縮機の潤滑油不足を生じやすくなった。潤滑油不足は圧縮機の焼き付きに繋がる。
The refrigerant with specific chlorofluorocarbons containing chlorine was excellent in compatibility with refrigerating machine oil. However, since specific chlorofluorocarbons had ozone layer destruction problems, they were switched to refrigerants with alternative chlorofluorocarbons (hereinafter referred to as non-fluorocarbon refrigerants). It was. However, non-fluorocarbon refrigerants are not more compatible with refrigeration oil than specific fluorocarbons. For this reason, the refrigerating machine oil discharged together with the refrigerant from the compressor is separated from the non-fluorocarbon refrigerant and stays in equipment such as a condenser of the heat pump cycle and piping, and the lubricating oil of the compressor tends to be insufficient. Insufficient lubrication leads to compressor burn-in.
また、冷凍機油との相溶性のよくないノンフロン冷媒は、それ自体の流動性も低下する上に、凝縮器等の機器や配管内に滞留した冷凍機油が、冷媒の円滑な流れならびに凝縮器および蒸発器における熱交換を阻害する。この結果、ヒートポンプシステムの熱交換効率を低下させる。ノンフロン冷媒と冷凍機油との相溶性を確保するために、ノンフロン冷媒に対して様々な化学合成油が添加されているが十分ではない。
In addition, non-fluorocarbon refrigerants that are not compatible with refrigerating machine oil have their own fluidity lowered, and the refrigerating machine oil that has accumulated in equipment and piping such as condensers can be flown smoothly through the refrigerant and the condenser and Inhibits heat exchange in the evaporator. As a result, the heat exchange efficiency of the heat pump system is reduced. In order to ensure compatibility between the non-fluorocarbon refrigerant and the refrigerating machine oil, various chemically synthesized oils are added to the non-fluorocarbon refrigerant, but this is not sufficient.
特許文献1では、冷媒が凝縮器において液化する際にラジカル状態で残存する気泡を除去して冷媒を完全に液化しようとする気泡除去装置が開示されている。この装置は、円筒容器を備えており、冷房時における凝縮器(室外機)の出口側に設置される。円筒容器内に螺旋状の旋回流を形成することで冷媒を撹拌し、気泡を除去する。
Patent Document 1 discloses a bubble removing device that removes bubbles remaining in a radical state when a refrigerant is liquefied in a condenser to completely liquefy the refrigerant. This apparatus includes a cylindrical container and is installed on the outlet side of a condenser (outdoor unit) during cooling. By forming a spiral swirl flow in the cylindrical container, the refrigerant is stirred to remove bubbles.
特許文献1に記載の気泡除去装置は、気泡除去を目的とするが、冷媒を撹拌するため、冷媒への冷凍機油の溶解を促進する効果も有する。
しかし、特許文献1に記載の気泡除去装置は、長いコイルにより螺旋状の旋回流を形成するため、円筒容器が長くなり、容量が大きい。このため、気泡除去装置を設置する際に、広い設置場所が必要であり、また、多量の冷媒と冷凍機油を追加する必要がある。 The air bubble removing device described inPatent Document 1 aims at air bubble removal, but also has an effect of promoting the dissolution of refrigerating machine oil in the refrigerant because the refrigerant is agitated.
However, since the bubble removal apparatus described inPatent Document 1 forms a spiral swirl flow with a long coil, the cylindrical container becomes long and has a large capacity. For this reason, when installing a bubble removal apparatus, a large installation place is required and it is necessary to add a lot of refrigerant | coolants and refrigerator oil.
しかし、特許文献1に記載の気泡除去装置は、長いコイルにより螺旋状の旋回流を形成するため、円筒容器が長くなり、容量が大きい。このため、気泡除去装置を設置する際に、広い設置場所が必要であり、また、多量の冷媒と冷凍機油を追加する必要がある。 The air bubble removing device described in
However, since the bubble removal apparatus described in
本発明の目的は、可能な限り小型化可能な流体撹拌装置およびそれを用いたヒートポンプシステムを提供することである。
An object of the present invention is to provide a fluid agitation device that can be miniaturized as much as possible and a heat pump system using the fluid agitation device.
上記目的を達成するために、本発明の流体撹拌装置は、
ヒートポンプサイクルにおいて冷媒と冷凍機油とを含む流体を撹拌するために配管の経路上に設置される流体撹拌装置であって、
一方を第1の鏡板により閉塞され、他方を第2の鏡板により閉塞された筐体と、
一端が前記配管の1つに接続可能であり、前記筐体の中心軸から離れた位置にて前記第1の鏡板を当該中心軸と並行な方向に貫通し、他端が前記第2の鏡板の方向に開口する第1の管体と、
一端が前記配管の別の1つに接続可能であり、前記筐体の中心軸上にて前記第2の鏡板を当該中心軸の方向に貫通し、他端が前記第1の鏡板の方向に開口する第2の管体と、
巻線が円錐形状に巻かれており、頂点側の開口から内部に前記第2の管体が挿入され、前記筐体の中心軸を軸として前記筐体の内部に設置されており、前記円錐形状に巻かれた巻線が振動可能である円錐部を含むスプリングと、
を備えることを特徴とする。
ここで、スプリングは固有振動数を持った物であり、流体運動により振動が生じる。 In order to achieve the above object, the fluid stirring device of the present invention comprises:
A fluid agitation device installed on a piping path for agitating a fluid containing refrigerant and refrigeration oil in a heat pump cycle,
A case in which one is closed by the first end plate and the other is closed by the second end plate;
One end is connectable to one of the pipes, penetrates the first end plate in a direction parallel to the center axis at a position away from the center axis of the housing, and the other end is the second end plate A first tube opening in the direction of
One end is connectable to another one of the pipes, passes through the second end plate in the direction of the center axis on the center axis of the housing, and the other end in the direction of the first end plate A second tubular body that opens;
The winding is wound in a conical shape, the second tubular body is inserted into the inside from the opening on the apex side, and is installed in the housing around the central axis of the housing. A spring including a conical portion in which a winding wound into a shape can vibrate;
It is characterized by providing.
Here, the spring has a natural frequency, and vibration is generated by fluid motion.
ヒートポンプサイクルにおいて冷媒と冷凍機油とを含む流体を撹拌するために配管の経路上に設置される流体撹拌装置であって、
一方を第1の鏡板により閉塞され、他方を第2の鏡板により閉塞された筐体と、
一端が前記配管の1つに接続可能であり、前記筐体の中心軸から離れた位置にて前記第1の鏡板を当該中心軸と並行な方向に貫通し、他端が前記第2の鏡板の方向に開口する第1の管体と、
一端が前記配管の別の1つに接続可能であり、前記筐体の中心軸上にて前記第2の鏡板を当該中心軸の方向に貫通し、他端が前記第1の鏡板の方向に開口する第2の管体と、
巻線が円錐形状に巻かれており、頂点側の開口から内部に前記第2の管体が挿入され、前記筐体の中心軸を軸として前記筐体の内部に設置されており、前記円錐形状に巻かれた巻線が振動可能である円錐部を含むスプリングと、
を備えることを特徴とする。
ここで、スプリングは固有振動数を持った物であり、流体運動により振動が生じる。 In order to achieve the above object, the fluid stirring device of the present invention comprises:
A fluid agitation device installed on a piping path for agitating a fluid containing refrigerant and refrigeration oil in a heat pump cycle,
A case in which one is closed by the first end plate and the other is closed by the second end plate;
One end is connectable to one of the pipes, penetrates the first end plate in a direction parallel to the center axis at a position away from the center axis of the housing, and the other end is the second end plate A first tube opening in the direction of
One end is connectable to another one of the pipes, passes through the second end plate in the direction of the center axis on the center axis of the housing, and the other end in the direction of the first end plate A second tubular body that opens;
The winding is wound in a conical shape, the second tubular body is inserted into the inside from the opening on the apex side, and is installed in the housing around the central axis of the housing. A spring including a conical portion in which a winding wound into a shape can vibrate;
It is characterized by providing.
Here, the spring has a natural frequency, and vibration is generated by fluid motion.
好ましくは、本発明の流体撹拌装置は、
前記第1の管体が、前記第1の鏡板の底面の近傍まで延在し、
前記第2の管体が、前記第1の鏡板の底面の近傍まで延在する、
ことを特徴とする。 Preferably, the fluid stirring device of the present invention comprises:
The first tube extends to the vicinity of the bottom surface of the first end plate;
The second tubular body extends to the vicinity of the bottom surface of the first end plate;
It is characterized by that.
前記第1の管体が、前記第1の鏡板の底面の近傍まで延在し、
前記第2の管体が、前記第1の鏡板の底面の近傍まで延在する、
ことを特徴とする。 Preferably, the fluid stirring device of the present invention comprises:
The first tube extends to the vicinity of the bottom surface of the first end plate;
The second tubular body extends to the vicinity of the bottom surface of the first end plate;
It is characterized by that.
好ましくは、本発明の流体撹拌装置は、
前記スプリングの円錐部の底面における巻線が前記第2の鏡板の底面の近傍に位置することを特徴とする。 Preferably, the fluid stirring device of the present invention comprises:
The winding on the bottom surface of the conical portion of the spring is located near the bottom surface of the second end plate.
前記スプリングの円錐部の底面における巻線が前記第2の鏡板の底面の近傍に位置することを特徴とする。 Preferably, the fluid stirring device of the present invention comprises:
The winding on the bottom surface of the conical portion of the spring is located near the bottom surface of the second end plate.
好ましくは、本発明の流体撹拌装置は、
前記筐体が、前記第1の鏡板と前記第2の鏡板の間に円筒形状の胴体部を有し、
前記スプリングが、前記筐体の中心軸を軸として前記筐体の胴体部の内面上に設置され、円筒形状に巻かれた巻線が振動可能である円筒部を含む、
ことを特徴とする。 Preferably, the fluid stirring device of the present invention comprises:
The housing has a cylindrical body between the first end plate and the second end plate,
The spring is installed on the inner surface of the body portion of the housing around the central axis of the housing, and includes a cylindrical portion that can vibrate a winding wound in a cylindrical shape.
It is characterized by that.
前記筐体が、前記第1の鏡板と前記第2の鏡板の間に円筒形状の胴体部を有し、
前記スプリングが、前記筐体の中心軸を軸として前記筐体の胴体部の内面上に設置され、円筒形状に巻かれた巻線が振動可能である円筒部を含む、
ことを特徴とする。 Preferably, the fluid stirring device of the present invention comprises:
The housing has a cylindrical body between the first end plate and the second end plate,
The spring is installed on the inner surface of the body portion of the housing around the central axis of the housing, and includes a cylindrical portion that can vibrate a winding wound in a cylindrical shape.
It is characterized by that.
好ましくは、本発明の流体撹拌装置は、
前記第1の管体の他端の開口の縁が、前記筐体の中心軸側が長く、周縁側が短くなるように傾斜していることを特徴とする。 Preferably, the fluid stirring device of the present invention comprises:
The edge of the opening at the other end of the first tubular body is inclined so that the central axis side of the housing is long and the peripheral edge side is short.
前記第1の管体の他端の開口の縁が、前記筐体の中心軸側が長く、周縁側が短くなるように傾斜していることを特徴とする。 Preferably, the fluid stirring device of the present invention comprises:
The edge of the opening at the other end of the first tubular body is inclined so that the central axis side of the housing is long and the peripheral edge side is short.
好ましくは、本発明の流体撹拌装置は、
前記第2の管体の外面上に螺旋状のネジ山とネジ溝による凹凸が軸方向に交互に形成されていることを特徴とする。 Preferably, the fluid stirring device of the present invention comprises:
The outer surface of the second tubular body is formed with irregularities formed by spiral threads and screw grooves alternately in the axial direction.
前記第2の管体の外面上に螺旋状のネジ山とネジ溝による凹凸が軸方向に交互に形成されていることを特徴とする。 Preferably, the fluid stirring device of the present invention comprises:
The outer surface of the second tubular body is formed with irregularities formed by spiral threads and screw grooves alternately in the axial direction.
好ましくは、本発明の流体撹拌装置は、
室内冷房時には、前記第1の管体から流体が流入するとともに、前記第2の管体から流体が流出するように設置され、前記第1の管体が、前記ヒートポンプサイクルにおける室外機である凝縮部の流体出口側に接続されることを特徴とする。 Preferably, the fluid stirring device of the present invention comprises:
At the time of indoor cooling, it is installed so that the fluid flows in from the first tube and the fluid flows out from the second tube, and the first tube is a condensation unit that is an outdoor unit in the heat pump cycle. It is connected to the fluid outlet side of the part.
室内冷房時には、前記第1の管体から流体が流入するとともに、前記第2の管体から流体が流出するように設置され、前記第1の管体が、前記ヒートポンプサイクルにおける室外機である凝縮部の流体出口側に接続されることを特徴とする。 Preferably, the fluid stirring device of the present invention comprises:
At the time of indoor cooling, it is installed so that the fluid flows in from the first tube and the fluid flows out from the second tube, and the first tube is a condensation unit that is an outdoor unit in the heat pump cycle. It is connected to the fluid outlet side of the part.
好ましくは、本発明の流体撹拌装置は、
室内暖房時には、前記第2の管体から流体が流入するとともに、前記第1の管体から流体が流出するように設置され、前記第1の管体が、前記ヒートポンプサイクルにおける室外機である蒸発部の流体入口側に接続されることを特徴とする。 Preferably, the fluid stirring device of the present invention comprises:
At the time of indoor heating, it is installed so that fluid flows in from the second tubular body and fluid flows out of the first tubular body, and the first tubular body is an outdoor unit in the heat pump cycle. It is connected to the fluid inlet side of the part.
室内暖房時には、前記第2の管体から流体が流入するとともに、前記第1の管体から流体が流出するように設置され、前記第1の管体が、前記ヒートポンプサイクルにおける室外機である蒸発部の流体入口側に接続されることを特徴とする。 Preferably, the fluid stirring device of the present invention comprises:
At the time of indoor heating, it is installed so that fluid flows in from the second tubular body and fluid flows out of the first tubular body, and the first tubular body is an outdoor unit in the heat pump cycle. It is connected to the fluid inlet side of the part.
また、本発明のヒートポンプシステムは、
上述した流体撹拌装置が、配管の経路上に設置されていることを特徴とする。 The heat pump system of the present invention is
The fluid agitation apparatus described above is installed on a pipe route.
上述した流体撹拌装置が、配管の経路上に設置されていることを特徴とする。 The heat pump system of the present invention is
The fluid agitation apparatus described above is installed on a pipe route.
本発明によれば、流体撹拌装置を可能な限り小型化することができる。
According to the present invention, the fluid stirring device can be made as small as possible.
以下、本発明の実施形態に係る流体撹拌装置およびヒートポンプシステムについて図面を参照しながら詳細に説明する。なお、比較例および実施形態を説明する全図において、共通の構成要素には同一の符号を付し、繰り返しの説明を省略する。
本明細書に記載の流体撹拌装置は、ヒートポンプサイクルを利用したヒートポンプシステムを流れる流体を撹拌する。ヒートポンプシステムには、空調機、冷凍機、冷蔵器、給湯機、冷凍倉庫、チラー等、多様な形態が含まれる。これらの流体撹拌装置は、いずれのヒートポンプシステムにも適用可能である。また、これらの流体撹拌装置は、新規システムに限らず、既設システムにも同様に適用可能である。 Hereinafter, a fluid stirring device and a heat pump system according to an embodiment of the present invention will be described in detail with reference to the drawings. In all the drawings for explaining the comparative example and the embodiment, common constituent elements are denoted by the same reference numerals, and repeated description is omitted.
The fluid agitation apparatus described in this specification agitates a fluid flowing through a heat pump system using a heat pump cycle. The heat pump system includes various forms such as an air conditioner, a refrigerator, a refrigerator, a water heater, a freezer warehouse, and a chiller. These fluid agitation devices can be applied to any heat pump system. Moreover, these fluid stirring apparatuses are applicable not only to a new system but also to an existing system.
本明細書に記載の流体撹拌装置は、ヒートポンプサイクルを利用したヒートポンプシステムを流れる流体を撹拌する。ヒートポンプシステムには、空調機、冷凍機、冷蔵器、給湯機、冷凍倉庫、チラー等、多様な形態が含まれる。これらの流体撹拌装置は、いずれのヒートポンプシステムにも適用可能である。また、これらの流体撹拌装置は、新規システムに限らず、既設システムにも同様に適用可能である。 Hereinafter, a fluid stirring device and a heat pump system according to an embodiment of the present invention will be described in detail with reference to the drawings. In all the drawings for explaining the comparative example and the embodiment, common constituent elements are denoted by the same reference numerals, and repeated description is omitted.
The fluid agitation apparatus described in this specification agitates a fluid flowing through a heat pump system using a heat pump cycle. The heat pump system includes various forms such as an air conditioner, a refrigerator, a refrigerator, a water heater, a freezer warehouse, and a chiller. These fluid agitation devices can be applied to any heat pump system. Moreover, these fluid stirring apparatuses are applicable not only to a new system but also to an existing system.
本明細書における「ヒートポンプシステム」とは、「水・空気などの低温の物体から熱を吸収し、その熱を高温の水・空気などの物体に与える装置」を意味する。よって、低温の物体をさらに冷やす目的および高温の物体をさらに温める目的のいずれかに用いる場合、ならびに、切替により双方の目的に用いる場合を含むものとする。例えば、空調機の場合、冷房のみを行う装置も、切り替えにより冷房と暖房の双方を行う装置も、本発明のヒートポンプシステムに含まれるものとする。また、本明細書において、「流体」は、ヒートポンプサイクルにおいて循環する流体を意味し、少なくとも冷媒と冷凍機油を含むものである。また、「流体」は、ヒートポンプサイクル内のどの工程に存在するかによって、気体状態、液体状態、または気体と液体の混合状態のいずれの状態もとりうる。
“The heat pump system” in this specification means “an apparatus that absorbs heat from a low-temperature object such as water or air and applies the heat to an object such as high-temperature water or air”. Therefore, the case where it is used for either the purpose of further cooling the low-temperature object or the purpose of further warming the high-temperature object, and the case where it is used for both purposes by switching are included. For example, in the case of an air conditioner, a device that performs only cooling and a device that performs both cooling and heating by switching are included in the heat pump system of the present invention. In the present specification, “fluid” means a fluid that circulates in the heat pump cycle, and includes at least a refrigerant and refrigerating machine oil. In addition, the “fluid” may be in a gas state, a liquid state, or a mixed state of gas and liquid depending on which process in the heat pump cycle is present.
図1および図2は、ヒートポンプシステムが空調機である場合に、ヒートポンプサイクルの一例を模式的に示す。空調機では、屋外に設置された室外機と、屋内に設置された室内機との間を流体が循環する。図1は、室内の冷房時のサイクルの例である。図2は、室内の暖房時のサイクルの例である。
1 and 2 schematically show an example of a heat pump cycle when the heat pump system is an air conditioner. In an air conditioner, fluid circulates between an outdoor unit installed outdoors and an indoor unit installed indoors. FIG. 1 is an example of a cycle during indoor cooling. FIG. 2 is an example of a cycle during indoor heating.
ヒートポンプサイクルは、流体撹拌装置1と、圧縮部2と、凝縮部3と、膨張部4と、蒸発部5とを備える。密閉された配管がこれらの構成要素同士を接続する。それらの配管内を流体が循環する。図1および図2中の配管経路上の矢印は流体の流れの方向を示す。白抜き矢印は、熱交換器である凝縮部3および蒸発部5における熱の移動を示す。点線の矢印は、室内および室外における空気の流れを示す。
流体撹拌装置1の例として、比較例である流体撹拌装置1Aと、本発明の第1の実施形態に係る流体撹拌装置1Bと、本発明の第2の実施形態に係る流体撹拌装置1Cと、本発明の第3の実施形態に係る流体撹拌装置1Dについて後で説明する。 The heat pump cycle includes afluid stirring device 1, a compression unit 2, a condensing unit 3, an expansion unit 4, and an evaporation unit 5. Sealed piping connects these components. Fluid circulates in these pipes. The arrows on the piping path in FIGS. 1 and 2 indicate the direction of fluid flow. White arrows indicate heat transfer in the condenser 3 and the evaporator 5 which are heat exchangers. Dotted arrows indicate the air flow indoors and outdoors.
As an example of thefluid agitation apparatus 1, a fluid agitation apparatus 1A as a comparative example, a fluid agitation apparatus 1B according to the first embodiment of the present invention, a fluid agitation apparatus 1C according to the second embodiment of the present invention, A fluid stirring device 1D according to a third embodiment of the present invention will be described later.
流体撹拌装置1の例として、比較例である流体撹拌装置1Aと、本発明の第1の実施形態に係る流体撹拌装置1Bと、本発明の第2の実施形態に係る流体撹拌装置1Cと、本発明の第3の実施形態に係る流体撹拌装置1Dについて後で説明する。 The heat pump cycle includes a
As an example of the
図1および図2中の英大文字は、次の意味で用いている。ただし、気体と液体の混合状態である場合は、気体か液体のいずれか支配的な方に基づいて「気体状態」または「液体状態」と称することとする。また、「高温」および「低温」と、「高圧」および「低圧」とにおける「高」および「低」の意味は、絶対的ではなく、英大文字で示された箇所の前工程または後工程における流体の温度または圧力との相対的な違いを大まかに表しているにすぎない。例えば、「GS(HT,HP)」は「高温、高圧の気体状態」を意味し、「LQ(LT,LP)」は「低温、低圧の液体状態」を意味する。各記号の意味を以下に示す。
GS:気体状態の冷媒
LQ:液体状態の冷媒
HT:高温
LT:低温
HP:高圧
LP:低圧 The capital letters in FIGS. 1 and 2 are used as follows. However, in a mixed state of gas and liquid, it is referred to as “gas state” or “liquid state” based on the dominant one of gas and liquid. In addition, the meanings of “high” and “low” in “high temperature” and “low temperature” and “high pressure” and “low pressure” are not absolute, but in the preceding process or the subsequent process of the part indicated in capital letters It is only a rough representation of the relative difference from the temperature or pressure of the fluid. For example, “GS (HT, HP)” means “high temperature, high pressure gas state”, and “LQ (LT, LP)” means “low temperature, low pressure liquid state”. The meaning of each symbol is shown below.
GS: Gas state refrigerant LQ: Liquid state refrigerant HT: High temperature LT: Low temperature HP: High pressure LP: Low pressure
GS:気体状態の冷媒
LQ:液体状態の冷媒
HT:高温
LT:低温
HP:高圧
LP:低圧 The capital letters in FIGS. 1 and 2 are used as follows. However, in a mixed state of gas and liquid, it is referred to as “gas state” or “liquid state” based on the dominant one of gas and liquid. In addition, the meanings of “high” and “low” in “high temperature” and “low temperature” and “high pressure” and “low pressure” are not absolute, but in the preceding process or the subsequent process of the part indicated in capital letters It is only a rough representation of the relative difference from the temperature or pressure of the fluid. For example, “GS (HT, HP)” means “high temperature, high pressure gas state”, and “LQ (LT, LP)” means “low temperature, low pressure liquid state”. The meaning of each symbol is shown below.
GS: Gas state refrigerant LQ: Liquid state refrigerant HT: High temperature LT: Low temperature HP: High pressure LP: Low pressure
図1の室内冷房時のサイクルにおいて、圧縮部2は、低圧の気体冷媒を圧縮するためのコンプレッサを密閉容器内に備えている。コンプレッサを収容した密閉容器内には、通常、冷凍機油を貯留するための油溜まり11aが設けられている。気体冷媒は、圧縮されて高圧かつさらに高温の気体となる。この気体冷媒は冷凍機油と混合された後、圧縮部2から凝縮部3(室外機)へ吐出される。凝縮部3はコンデンサを備える。冷房時は、室外機が凝縮部3として熱交換を行う。凝縮部3に流入した高温高圧の気体流体は、熱を外部に放出することにより凝縮して低温の液体流体となる。この液体流体は、理想的には、冷凍機油を溶解した液体冷媒である。
1, in the cycle at the time of indoor cooling in FIG. 1, the compression unit 2 includes a compressor for compressing a low-pressure gaseous refrigerant in a sealed container. An oil reservoir 11a for storing refrigerating machine oil is usually provided in the sealed container containing the compressor. The gaseous refrigerant is compressed into a high-pressure and higher-temperature gas. This gaseous refrigerant is mixed with the refrigerating machine oil and then discharged from the compression unit 2 to the condensation unit 3 (outdoor unit). The condensing unit 3 includes a capacitor. During cooling, the outdoor unit performs heat exchange as the condensing unit 3. The high-temperature and high-pressure gas fluid that has flowed into the condensing unit 3 is condensed by releasing heat to the outside, and becomes a low-temperature liquid fluid. The liquid fluid is ideally a liquid refrigerant in which refrigeration oil is dissolved.
しかしながら、R410など混合冷媒系でかつ非フロン系冷媒には、冷凍機油は溶けない。冷媒と冷凍機油は分離された状態になりやすい。このため、凝縮部3において冷媒が気体から液体となるとき、冷凍機油の一部が冷媒に溶解せずに分離する場合がある。また、融合した冷凍機油の油相が液体冷媒を閉じ込める場合がある。さらに、凝縮部3をほぼ素通りした冷媒が、高温気体のまま残存する場合がある。このような現象により、凝縮部3から流出する液体流体は、分離した冷凍機油、冷凍機油の油相に捕捉された液体冷媒および/または気体冷媒を含む可能性がある。
However, refrigeration oil does not dissolve in mixed refrigerant systems such as R410 and non-fluorocarbon refrigerants. Refrigerant and refrigeration oil are likely to be separated. For this reason, when the refrigerant changes from gas to liquid in the condensing unit 3, a part of the refrigerating machine oil may be separated without being dissolved in the refrigerant. In addition, the oil phase of the combined refrigerating machine oil may trap the liquid refrigerant. Furthermore, the refrigerant that has almost passed through the condensing unit 3 may remain as a high-temperature gas. Due to such a phenomenon, the liquid fluid flowing out from the condensing unit 3 may include separated refrigeration oil, liquid refrigerant and / or gas refrigerant trapped in the oil phase of the refrigeration oil.
実内冷房時には、流体撹拌装置1は凝縮部3と膨張部4の間に挿入される。流体撹拌装置1の流入口は、室外機である凝縮部3の出口側に接続される。流体撹拌装置1の流出口は、膨張部4の入口側に接続される。凝縮部3から流出した流体は、流体撹拌装置1内で十分に撹拌される。これにより、分離した冷凍機油は液体冷媒に溶解した状態となり、冷凍機油の油相に捕捉された液体溶媒は解放され、残存する気体冷媒は温度降下して液体冷媒となる。その後、流体撹拌装置1から流出した流体は、膨張部4に送られる。
During actual cooling, the fluid stirring device 1 is inserted between the condensing unit 3 and the expansion unit 4. The inflow port of the fluid agitation apparatus 1 is connected to the outlet side of the condensing unit 3 that is an outdoor unit. The outlet of the fluid agitation device 1 is connected to the inlet side of the expansion part 4. The fluid that has flowed out of the condensing unit 3 is sufficiently stirred in the fluid stirring device 1. As a result, the separated refrigerating machine oil is dissolved in the liquid refrigerant, the liquid solvent trapped in the oil phase of the refrigerating machine oil is released, and the remaining gas refrigerant is lowered in temperature to become a liquid refrigerant. Thereafter, the fluid that has flowed out of the fluid agitator 1 is sent to the expansion unit 4.
膨張部4はエキスパンションバルブまたはキャピラリーチューブ等を備える。低温高圧の液体流体は、細い孔や管に通されることにより、低圧かつさらに低温の液体となる。その後、この流体は、蒸発部5(室内機)へ送られる。蒸発部5はエバポレータを備える。室内冷房時は、室内機が蒸発部5として熱交換を行う。蒸発部5に流入した低温低圧の液体流体は、熱を外部から吸収することにより蒸発して高温の気体流体となる。これにより、室内の空気が冷やされる。その後、気体流体は圧縮部2へ戻される。
The expansion part 4 includes an expansion valve or a capillary tube. The low-temperature and high-pressure liquid fluid becomes a low-pressure and further low-temperature liquid by being passed through narrow holes and pipes. Then, this fluid is sent to the evaporation part 5 (indoor unit). The evaporation unit 5 includes an evaporator. During indoor cooling, the indoor unit performs heat exchange as the evaporation unit 5. The low-temperature and low-pressure liquid fluid that has flowed into the evaporator 5 evaporates by absorbing heat from the outside, and becomes a high-temperature gas fluid. Thereby, indoor air is cooled. Thereafter, the gaseous fluid is returned to the compression unit 2.
図2の室内暖房時のサイクルにおいては、図1の冷房時とは流体の循環方向が逆となる。ヒートポンプシステムにおいて流体の循環方向を切り替えるためのバルブは周知であるので、図示および説明を省略する。暖房時は、圧縮部2から吐出された高温高圧の気体流体は、凝縮部3として熱交換を行う室内機に送られる。凝縮部3(室内機)に流入した高温高圧の気体流体は、熱を外部に放出することにより凝縮して低温の液体流体となる。これにより、室内の空気が暖められる。
In the indoor heating cycle of FIG. 2, the fluid circulation direction is opposite to that of the cooling of FIG. Since a valve for switching the direction of fluid circulation in a heat pump system is well known, illustration and description thereof are omitted. During heating, the high-temperature and high-pressure gas fluid discharged from the compression unit 2 is sent to the indoor unit that performs heat exchange as the condensing unit 3. The high-temperature and high-pressure gas fluid that has flowed into the condensing unit 3 (indoor unit) condenses into a low-temperature liquid fluid by releasing heat to the outside. Thereby, indoor air is warmed.
ここで、凝縮部3において冷媒が気体から液体となるとき、図1の冷房時のサイクルと同様に、凝縮部3から流出する液体流体は、分離した冷凍機油、冷凍機油の油相に捕捉された液体冷媒および/または気体冷媒を含む可能性がある。暖房時には、凝縮部3から流出する液体流体は、さらに膨張部4に送られ、低圧かつさらに低温の液体となる。膨張部4の通過後にも、分離した冷凍機油、捕捉された液体冷媒および/または気体冷媒が残存している可能性がある。
Here, when the refrigerant changes from gas to liquid in the condensing unit 3, the liquid fluid flowing out from the condensing unit 3 is captured by the separated refrigerating machine oil and the oil phase of the refrigerating machine oil, as in the cooling cycle of FIG. Liquid refrigerant and / or gaseous refrigerant. At the time of heating, the liquid fluid flowing out from the condensing unit 3 is further sent to the expansion unit 4 and becomes a low-pressure and further low-temperature liquid. Even after passing through the expansion part 4, there is a possibility that separated refrigeration oil, trapped liquid refrigerant and / or gas refrigerant remain.
室内暖房時には、流体撹拌装置1は膨張部4と蒸発部5(室外機)の間に挿入される。流体撹拌装置1の流入口は、膨張部4の出口側に接続される。流体撹拌装置1の流出口は、室外機である蒸発部5の入口側に接続される。膨張部4から流出した流体は、流体撹拌装置1内で十分に撹拌される。分離した冷凍機油は液体冷媒に溶解した状態となり、冷凍機油の油相に捕捉された液体溶媒は解放され、残存する気体冷媒は温度降下して液体冷媒となる。その後、流体撹拌装置1から流出した流体は、蒸発部5に送られる。
実内暖房時は、室外機が蒸発部5として熱交換を行う。蒸発部5に流入した低温低圧の液体流体は、熱を外部から吸収することにより蒸発して高温の気体流体となる。その後、気体流体は圧縮部2へ戻される。 During indoor heating, thefluid agitation device 1 is inserted between the expansion unit 4 and the evaporation unit 5 (outdoor unit). The inflow port of the fluid agitation apparatus 1 is connected to the outlet side of the expansion unit 4. The outlet of the fluid agitation apparatus 1 is connected to the inlet side of the evaporator 5 that is an outdoor unit. The fluid that has flowed out of the expansion part 4 is sufficiently stirred in the fluid stirring device 1. The separated refrigerating machine oil is dissolved in the liquid refrigerant, the liquid solvent trapped in the oil phase of the refrigerating machine oil is released, and the remaining gas refrigerant is lowered in temperature to become a liquid refrigerant. Thereafter, the fluid flowing out from the fluid stirring device 1 is sent to the evaporation unit 5.
During actual heating, the outdoor unit performs heat exchange as theevaporation unit 5. The low-temperature and low-pressure liquid fluid that has flowed into the evaporator 5 evaporates by absorbing heat from the outside, and becomes a high-temperature gas fluid. Thereafter, the gaseous fluid is returned to the compression unit 2.
実内暖房時は、室外機が蒸発部5として熱交換を行う。蒸発部5に流入した低温低圧の液体流体は、熱を外部から吸収することにより蒸発して高温の気体流体となる。その後、気体流体は圧縮部2へ戻される。 During indoor heating, the
During actual heating, the outdoor unit performs heat exchange as the
図1および図2に示した通り、流体撹拌装置1は、ヒートポンプシステムを構成する配管の経路上に挿入される。実際の配管は、複数の管部材を接続して形成されているから、例えば1つの管部材を取り外して流体撹拌装置1と交換して接続することにより、流体撹拌装置1を容易に取り付けることができる。図1および図2に示した通り、例えば、流体撹拌装置1を室外機近傍の屋外配管に設置することができる。
As shown in FIGS. 1 and 2, the fluid agitation device 1 is inserted on the piping path constituting the heat pump system. Since the actual piping is formed by connecting a plurality of pipe members, for example, by removing one pipe member and replacing it with the fluid stirring apparatus 1, the fluid stirring apparatus 1 can be easily attached. it can. As shown in FIGS. 1 and 2, for example, the fluid stirring device 1 can be installed in an outdoor pipe near the outdoor unit.
上述した図1および図2では、ヒートポンプシステムの基本形態に対して流体撹拌装置1を適用した例を示した。実際のヒートポンプシステムには、多くの応用形態が存在する。流体撹拌装置1は、基本形態に種々の構成要素が付加されたヒートポンプシステムに対しても適用可能である。
1 and 2 described above show an example in which the fluid agitation device 1 is applied to the basic form of the heat pump system. There are many applications for actual heat pump systems. The fluid agitation apparatus 1 can also be applied to a heat pump system in which various components are added to the basic form.
図3は、比較例である流体撹拌装置1Aの構成の一例を示す。図3(a)は縦断面図、図3(b)は図3(a)のA-A視図、図3(c)は図3(a)のB-B断面図、図3(d)は図3(a)のC-C視図である。図4は、図3に示した流体撹拌装置1Aの左側面図である。
流体撹拌装置1Aは、筐体11を有する。筐体11は、上下方向の中心軸をもつ円筒形状の胴体部11aと、胴体部11aの上端側を閉塞する半球形状の上部鏡板11b1と、胴体部11aの下端側を閉塞する半球形状の下部鏡板11b2とを備える。ここで「鏡板」とは、一般的に圧力容器を閉塞する蓋部材を意味する。本実施形態における流体も、圧縮機から所定の圧力で吐出された圧力流体であるので、筐体11も圧力容器の一種とみなすことができる。図3(a)に示される上部鏡板11b1および下部鏡板11b2の断面は、中心角180度の半円であり、その半径は円筒形状の胴体部11aの半径と等しい。 FIG. 3 shows an example of the configuration of afluid stirring apparatus 1A that is a comparative example. 3 (a) is a longitudinal sectional view, FIG. 3 (b) is an AA view of FIG. 3 (a), FIG. 3 (c) is a BB sectional view of FIG. 3 (a), and FIG. ) Is a CC view of FIG. FIG. 4 is a left side view of the fluid agitating apparatus 1A shown in FIG.
Thefluid agitation apparatus 1 </ b> A has a housing 11. The casing 11 includes a cylindrical body portion 11a having a central axis in the vertical direction, a hemispherical upper end plate 11b1 that closes the upper end side of the body portion 11a, and a hemispherical lower portion that closes the lower end side of the body portion 11a. And an end plate 11b2. Here, the “end plate” generally means a lid member that closes the pressure vessel. Since the fluid in the present embodiment is also a pressure fluid discharged from the compressor at a predetermined pressure, the housing 11 can also be regarded as a kind of pressure vessel. The cross section of the upper end plate 11b1 and the lower end plate 11b2 shown in FIG. 3A is a semicircle having a central angle of 180 degrees, and the radius thereof is equal to the radius of the cylindrical body portion 11a.
流体撹拌装置1Aは、筐体11を有する。筐体11は、上下方向の中心軸をもつ円筒形状の胴体部11aと、胴体部11aの上端側を閉塞する半球形状の上部鏡板11b1と、胴体部11aの下端側を閉塞する半球形状の下部鏡板11b2とを備える。ここで「鏡板」とは、一般的に圧力容器を閉塞する蓋部材を意味する。本実施形態における流体も、圧縮機から所定の圧力で吐出された圧力流体であるので、筐体11も圧力容器の一種とみなすことができる。図3(a)に示される上部鏡板11b1および下部鏡板11b2の断面は、中心角180度の半円であり、その半径は円筒形状の胴体部11aの半径と等しい。 FIG. 3 shows an example of the configuration of a
The
筐体11に対する流体の流入または流出のために、2つの管体が設けられている(図3(a)では、これらの管体の断面ではなく側面を示している)。流体撹拌装置1Aをヒートポンプシステムの配管経路上に挿入する場合、挿入箇所において一方の管体を一方の配管端部に接続し、他方の管体を他方の配管端部に接続する。上述した図1および図2で示した通り、冷房時と暖房時とでは流体の循環方向は逆となる。従って、流体撹拌装置1Aの冷房時の流入口は、暖房時には流出口となり、冷房時の流出口は、暖房時には流入口となる。循環方向が逆となる暖房時にも流体撹拌装置1Aの効果は実証されている。従って、空調機の冷房と暖房を切り替えても、流体撹拌装置1Aの取り付け状態を変更する必要はない。
Two tubes are provided for inflow or outflow of fluid to the housing 11 (FIG. 3A shows a side surface, not a cross section of these tubes). When the fluid agitator 1A is inserted on the piping path of the heat pump system, one tube is connected to one piping end and the other tube is connected to the other piping end at the insertion location. As shown in FIG. 1 and FIG. 2 described above, the fluid circulation direction is reversed during cooling and during heating. Accordingly, the inlet of the fluid agitator 1A during cooling serves as an outlet during heating, and the outlet during cooling serves as an inlet during heating. The effect of the fluid agitating apparatus 1A has been demonstrated even during heating in which the circulation direction is reversed. Therefore, it is not necessary to change the attachment state of the fluid agitator 1A even when switching between cooling and heating of the air conditioner.
上部管体12は、冷房時には流入口となり、暖房時には流出口となる。図3では、上部管体12の上方部分の図示を省略しているが、ヒートポンプシステムの適切な配管に接続可能である。なお、冷房時と暖房時で流体撹拌装置1Aの取付状態を変更することはないが、流体の循環方向が逆となるので、上部管体12は、図1に示した冷房時には凝縮部3(室外機)の出口側に接続され、図2に示した暖房時には蒸発部5(室外機)の入口側に接続されることになる。
The upper pipe 12 serves as an inlet during cooling and serves as an outlet during heating. Although illustration of the upper part of the upper tubular body 12 is abbreviate | omitted in FIG. 3, it can be connected to suitable piping of a heat pump system. Although the mounting state of the fluid agitator 1A is not changed during cooling and heating, the circulation direction of the fluid is reversed, so that the upper tubular body 12 has the condensing unit 3 (during cooling as shown in FIG. It is connected to the outlet side of the outdoor unit) and is connected to the inlet side of the evaporator 5 (outdoor unit) during heating shown in FIG.
上部管体12は、筐体11の中心軸から離れた位置において上部鏡板11b1を上下方向に貫通している。上部管体12は、筐体11内で胴体部11aの上端近傍まで下方に延在し、その下端12aは下方に開口している。図3(a)に示すように、上部管体12の下端12aの開口の縁は、中心軸側が低く周縁側が高くなるように傾斜していることが好適である。この傾斜は、流体の良好な流れを形成し易くするためのものである。
The upper tubular body 12 penetrates the upper end plate 11b1 in the vertical direction at a position away from the central axis of the housing 11. The upper tubular body 12 extends downward to the vicinity of the upper end of the body portion 11a in the casing 11, and the lower end 12a is opened downward. As shown in FIG. 3A, the edge of the opening of the lower end 12a of the upper tubular body 12 is preferably inclined so that the central axis side is low and the peripheral side is high. This inclination is intended to facilitate the formation of a good flow of fluid.
下部管体13は、冷房時には流出口となり、暖房時には流入口となる。図3では、下部管体13の下方部分の図示を省略しているが、ヒートポンプシステムの適切な配管に接続される。
下部管体13は、中心軸上において下部鏡板11b2を上下方向に貫通している。下部管体13は、筐体11内で中心軸に沿って胴体部11aの上端近傍まで上方に延在し、その上端13aは上方に開口している。 Thelower pipe 13 serves as an outlet during cooling and serves as an inlet during heating. Although illustration of the lower part of the lower pipe 13 is abbreviate | omitted in FIG. 3, it connects to suitable piping of a heat pump system.
The lowertubular body 13 penetrates the lower end plate 11b2 in the vertical direction on the central axis. The lower tubular body 13 extends upward in the casing 11 along the central axis to the vicinity of the upper end of the body portion 11a, and the upper end 13a is opened upward.
下部管体13は、中心軸上において下部鏡板11b2を上下方向に貫通している。下部管体13は、筐体11内で中心軸に沿って胴体部11aの上端近傍まで上方に延在し、その上端13aは上方に開口している。 The
The lower
胴体部11aの内面上にはコイルスプリング14が設置されている。コイルスプリング14の軸は、胴体部11aの中心軸と一致している。コイルスプリング14の各巻線は、胴体部11aの内面に固定されておらず、上下動可能である。
A coil spring 14 is installed on the inner surface of the body portion 11a. The axis of the coil spring 14 coincides with the central axis of the body portion 11a. Each winding of the coil spring 14 is not fixed to the inner surface of the body portion 11a and can move up and down.
図5(a)は、図3に示したコイルスプリング14の平面図であり、図5(b)は図5(a)のD-D断面図である。
コイルスプリング14は、不等ピッチコイルスプリングであり、一方の端部から他方の端部へ向かってピッチが漸次長くなっている。「ピッチが漸次長くなる」とは、図5(b)に2本の異なる点線で模式的に示すように、2つの意味を含む。1つは、複数の領域(例えば3つの領域p1、p2、p3)の各々におけるピッチは一定であって各領域のピッチがp1<p2<p3の関係となっている場合である。もう1つは、コイルスプリングの長さ全体に亘って連続的にピッチpxが長くなっていく場合である。さらに、これら2つの場合を組み合わせた場合も含む。なお、ピッチが異なれば共振周波数(固有振動数)が異なる。ピッチの長い領域では共振周波数が高く、ピッチの短い領域では共振周波数が低い。 5A is a plan view of thecoil spring 14 shown in FIG. 3, and FIG. 5B is a cross-sectional view taken along the line DD of FIG. 5A.
Thecoil spring 14 is an unequal pitch coil spring, and the pitch gradually increases from one end to the other end. “The pitch becomes gradually longer” includes two meanings as schematically shown by two different dotted lines in FIG. One is a case where the pitch in each of a plurality of regions (for example, three regions p1, p2, and p3) is constant and the pitch of each region is in a relationship of p1 <p2 <p3. The other is a case where the pitch px is continuously increased over the entire length of the coil spring. Furthermore, the case where these two cases are combined is also included. In addition, if the pitch is different, the resonance frequency (natural frequency) is different. The resonance frequency is high in the long pitch region, and the resonance frequency is low in the short pitch region.
コイルスプリング14は、不等ピッチコイルスプリングであり、一方の端部から他方の端部へ向かってピッチが漸次長くなっている。「ピッチが漸次長くなる」とは、図5(b)に2本の異なる点線で模式的に示すように、2つの意味を含む。1つは、複数の領域(例えば3つの領域p1、p2、p3)の各々におけるピッチは一定であって各領域のピッチがp1<p2<p3の関係となっている場合である。もう1つは、コイルスプリングの長さ全体に亘って連続的にピッチpxが長くなっていく場合である。さらに、これら2つの場合を組み合わせた場合も含む。なお、ピッチが異なれば共振周波数(固有振動数)が異なる。ピッチの長い領域では共振周波数が高く、ピッチの短い領域では共振周波数が低い。 5A is a plan view of the
The
流体は、上部管体12の下端12aまたは下部管体13の上端から筐体11の内部に流入する。そして、流体は、下方に向かって直進した後、下部鏡板11b2により上方へ方向転換(Uターン)させられる。また、流体は、上方に向かって直進した後、上部鏡板11b1により下方へ方向転換(Uターン)させられる。このようにして、縦方向の強い流れが形成される。
縦方向の流れは、上部鏡板11b1と下部鏡板11b2で方向転換する際に、それぞれ上部管体12と下部管体13に衝突する。これにより流体に対して複雑な運動が付与される。 The fluid flows into thehousing 11 from the lower end 12 a of the upper tube 12 or the upper end of the lower tube 13. Then, after the fluid goes straight downward, the fluid is turned upward (U-turn) by the lower end plate 11b2. In addition, the fluid travels straight upward and is then turned downward (U-turn) by the upper end plate 11b1. In this way, a strong vertical flow is formed.
The vertical flow collides with theupper tube body 12 and the lower tube body 13 when the direction is changed between the upper and lower end plates 11b1 and 11b2. This imparts complex motion to the fluid.
縦方向の流れは、上部鏡板11b1と下部鏡板11b2で方向転換する際に、それぞれ上部管体12と下部管体13に衝突する。これにより流体に対して複雑な運動が付与される。 The fluid flows into the
The vertical flow collides with the
このように、複雑な運動が付与されて縦方向に流れる流体は、コイルスプリング14と衝突および摩擦を生じる。コイルスプリング14の巻線はこれらの衝突や摩擦を受けた局所において共振し、上下振動を生じる。このコイルスプリング14と共振して、流体もまた局所的に上下振動を生じる。この上下振動により、流体に剪断力が作用する。また、コイルスプリング14の凹凸自体によっても流体に剪断力が作用する。
これらの結果、流体に含まれる冷媒と冷凍機油は大きく撹拌されて均一化される。 As described above, the fluid flowing in the vertical direction with the complicated motion applied causes collision and friction with thecoil spring 14. The winding of the coil spring 14 resonates in the local area where these collisions and friction are received, and generates vertical vibration. Resonating with the coil spring 14, the fluid also causes vertical vibration locally. This vertical vibration causes a shearing force to act on the fluid. Further, a shearing force acts on the fluid also by the unevenness of the coil spring 14 itself.
As a result, the refrigerant and the refrigerating machine oil contained in the fluid are greatly agitated and made uniform.
これらの結果、流体に含まれる冷媒と冷凍機油は大きく撹拌されて均一化される。 As described above, the fluid flowing in the vertical direction with the complicated motion applied causes collision and friction with the
As a result, the refrigerant and the refrigerating machine oil contained in the fluid are greatly agitated and made uniform.
図6(a)は、図3に示した下部管体13の一例の外観斜視図であり、図6(b)は下部管体13の別の例を示す外観斜視図である。
下部管体13の外面上に複数の凹凸を交互に形成することが好適である。例えば、図6(a)に示すように、下部管体13を並行ネジ鋼管で形成することにより、外面上に螺旋状のネジ山とネジ溝による凹凸が軸方向に交互に繰り返される形状が得られる。螺旋状ではなく円周状の山と溝を交互に繰り返し形成してもよい。また、外面上にローレット加工を施してもよい。下部管体13の外面上のこれらの細かい凹凸は、流体の気泡を捕捉する作用がある。流体撹拌装置1Aによる撹拌を行っても最終的に溶解しない(液化されない)気体冷媒を捕捉することにより、液体冷媒すなわち液体流体と分離することができる。さらに、下部管体13の外面上の細かい凹凸は、これらの凹凸に流体が衝突することにより、流体の撹拌にも寄与する。
なお、図6(b)に示すように、下部管体13の外面上に凹凸がなくともよい。図6(b)の下部管体13を用いても、後述する電力消費量低減の効果に大きく影響しないことが確認されている。 6A is an external perspective view of an example of the lowertubular body 13 shown in FIG. 3, and FIG. 6B is an external perspective view of another example of the lower tubular body 13.
It is preferable to form a plurality of irregularities alternately on the outer surface of the lowertubular body 13. For example, as shown in FIG. 6 (a), by forming the lower tubular body 13 with a parallel threaded steel pipe, a shape in which irregularities due to spiral threads and thread grooves are alternately repeated on the outer surface in the axial direction is obtained. It is done. Circumferential peaks and grooves may be alternately formed instead of spiral. Moreover, you may give a knurling process on an outer surface. These fine irregularities on the outer surface of the lower tubular body 13 have an effect of capturing fluid bubbles. By capturing the gaseous refrigerant that is not finally dissolved (not liquefied) even when stirring is performed by the fluid stirring device 1A, it can be separated from the liquid refrigerant, that is, the liquid fluid. Furthermore, the fine unevenness on the outer surface of the lower tubular body 13 contributes to the stirring of the fluid when the fluid collides with the unevenness.
In addition, as shown in FIG.6 (b), an unevenness | corrugation does not need to be on the outer surface of the lowertubular body 13. FIG. It has been confirmed that even if the lower tubular body 13 of FIG. 6B is used, it does not significantly affect the effect of reducing power consumption, which will be described later.
下部管体13の外面上に複数の凹凸を交互に形成することが好適である。例えば、図6(a)に示すように、下部管体13を並行ネジ鋼管で形成することにより、外面上に螺旋状のネジ山とネジ溝による凹凸が軸方向に交互に繰り返される形状が得られる。螺旋状ではなく円周状の山と溝を交互に繰り返し形成してもよい。また、外面上にローレット加工を施してもよい。下部管体13の外面上のこれらの細かい凹凸は、流体の気泡を捕捉する作用がある。流体撹拌装置1Aによる撹拌を行っても最終的に溶解しない(液化されない)気体冷媒を捕捉することにより、液体冷媒すなわち液体流体と分離することができる。さらに、下部管体13の外面上の細かい凹凸は、これらの凹凸に流体が衝突することにより、流体の撹拌にも寄与する。
なお、図6(b)に示すように、下部管体13の外面上に凹凸がなくともよい。図6(b)の下部管体13を用いても、後述する電力消費量低減の効果に大きく影響しないことが確認されている。 6A is an external perspective view of an example of the lower
It is preferable to form a plurality of irregularities alternately on the outer surface of the lower
In addition, as shown in FIG.6 (b), an unevenness | corrugation does not need to be on the outer surface of the lower
図7は、室内冷房装置に流体撹拌装置1Aを設置し、6日後に取り外した場合の消費電力の変化の一例を示すグラフである。
室内冷房装置は1日当り8時間動作させた。破線は、流体撹拌装置1A無しで室内冷房装置を動作させた場合を示す。実線は、流体撹拌装置1Aを設置して室内冷房装置を動作させた場合を示す。2014年8月初旬から中旬にかけて消費電力を測定した。流体撹拌装置1A無しで室内冷房装置を動作させて破線で示される消費電力を測定し、続けて流体撹拌装置1Aを設置して室内冷房装置を動作させて実線で示される消費電力を測定した。
室内冷房装置に流体撹拌装置1Aを取り付けた後、8時間は流体撹拌装置1Aが無い場合よりも消費電力が高かった。8時間~16時間は、流体撹拌装置1Aを設置した場合と無い場合で消費電力はほぼ等しかった。16時間経過した後、流体撹拌装置1Aを設置した場合の方が流体撹拌装置1Aが無い場合よりも室内冷房装置は低消費電力となった。48時間経過した時、流体撹拌装置1Aを室内冷房装置から取り外したが、消費電力は低いままであった。 FIG. 7 is a graph showing an example of a change in power consumption when thefluid stirring device 1A is installed in the indoor cooling device and removed after 6 days.
The indoor air conditioner was operated for 8 hours per day. A broken line indicates a case where the indoor cooling device is operated without thefluid stirring device 1A. A solid line indicates a case where the fluid cooling device 1A is installed and the indoor cooling device is operated. Power consumption was measured from the beginning to the middle of August 2014. The indoor cooling device was operated without the fluid stirring device 1A to measure the power consumption indicated by the broken line, and the fluid stirring device 1A was subsequently installed to operate the indoor cooling device to measure the power consumption indicated by the solid line.
After attaching thefluid agitator 1A to the indoor cooling device, power consumption was higher for 8 hours than when the fluid agitator 1A was not provided. From 8 hours to 16 hours, the power consumption was almost the same with and without the fluid stirring device 1A. After 16 hours had passed, the room cooling device had lower power consumption when the fluid stirring device 1A was installed than when the fluid stirring device 1A was not provided. When 48 hours passed, the fluid stirring device 1A was removed from the room cooling device, but the power consumption remained low.
室内冷房装置は1日当り8時間動作させた。破線は、流体撹拌装置1A無しで室内冷房装置を動作させた場合を示す。実線は、流体撹拌装置1Aを設置して室内冷房装置を動作させた場合を示す。2014年8月初旬から中旬にかけて消費電力を測定した。流体撹拌装置1A無しで室内冷房装置を動作させて破線で示される消費電力を測定し、続けて流体撹拌装置1Aを設置して室内冷房装置を動作させて実線で示される消費電力を測定した。
室内冷房装置に流体撹拌装置1Aを取り付けた後、8時間は流体撹拌装置1Aが無い場合よりも消費電力が高かった。8時間~16時間は、流体撹拌装置1Aを設置した場合と無い場合で消費電力はほぼ等しかった。16時間経過した後、流体撹拌装置1Aを設置した場合の方が流体撹拌装置1Aが無い場合よりも室内冷房装置は低消費電力となった。48時間経過した時、流体撹拌装置1Aを室内冷房装置から取り外したが、消費電力は低いままであった。 FIG. 7 is a graph showing an example of a change in power consumption when the
The indoor air conditioner was operated for 8 hours per day. A broken line indicates a case where the indoor cooling device is operated without the
After attaching the
室内冷房装置に流体撹拌装置1Aを取り付けても最初の16時間は消費電力が下がらず、流体撹拌装置1Aを室内冷房装置から取り外した後も消費電力は低いまま維持された。この結果に基づいて、発明者らは、流体撹拌装置1Aの設置により消費電力が削減される理由について以下のように考えた。
近年はノンフロン冷媒が使用されるが、これは複数の冷媒が混合されたものである。この冷媒と共に使用される冷凍機油は、部分合成油または100%合成油である。合成油は高分子物質である。ノンフロン冷媒と冷凍機油が撹拌されることにより冷凍機油が微細化してノンフロン冷媒に溶け込み、流体は希薄な高分子が添加された高分子溶液となる。このため、配管を流れる流体に、乱流の摩擦抵抗が減少するトムズ効果が生じている。 Even if thefluid agitator 1A was attached to the indoor cooling device, the power consumption did not decrease for the first 16 hours, and the power consumption was kept low even after the fluid agitator 1A was removed from the indoor cooling device. Based on this result, the inventors considered the reason why the power consumption is reduced by installing the fluid agitator 1A as follows.
In recent years, a non-fluorocarbon refrigerant is used, which is a mixture of a plurality of refrigerants. The refrigerating machine oil used with this refrigerant is partially synthetic oil or 100% synthetic oil. Synthetic oils are polymeric substances. When the non-fluorocarbon refrigerant and the refrigeration oil are agitated, the refrigeration oil is refined and dissolved in the non-fluorocarbon refrigerant, and the fluid becomes a polymer solution to which a dilute polymer is added. For this reason, the Toms effect which the frictional resistance of a turbulent flow reduces is produced in the fluid which flows through piping.
近年はノンフロン冷媒が使用されるが、これは複数の冷媒が混合されたものである。この冷媒と共に使用される冷凍機油は、部分合成油または100%合成油である。合成油は高分子物質である。ノンフロン冷媒と冷凍機油が撹拌されることにより冷凍機油が微細化してノンフロン冷媒に溶け込み、流体は希薄な高分子が添加された高分子溶液となる。このため、配管を流れる流体に、乱流の摩擦抵抗が減少するトムズ効果が生じている。 Even if the
In recent years, a non-fluorocarbon refrigerant is used, which is a mixture of a plurality of refrigerants. The refrigerating machine oil used with this refrigerant is partially synthetic oil or 100% synthetic oil. Synthetic oils are polymeric substances. When the non-fluorocarbon refrigerant and the refrigeration oil are agitated, the refrigeration oil is refined and dissolved in the non-fluorocarbon refrigerant, and the fluid becomes a polymer solution to which a dilute polymer is added. For this reason, the Toms effect which the frictional resistance of a turbulent flow reduces is produced in the fluid which flows through piping.
この考えによれば、図7に示した消費電力の変化は次のように説明することができる。
室内冷房装置に流体撹拌装置1Aを設置した後、ノンフロン冷媒と冷凍機油が高分子溶液化されるまで約16時間かかり、高分子溶液状態のとき室内冷房装置は低消費電力となる。流体撹拌装置1Aを室内冷房装置から取り外しても、ノンフロン冷媒と冷凍機油の高分子溶液状態を維持できている間は、消費電力は低いままである。
図7のグラフには示されていないが、ある程度時間が経過すると、高分子溶液状態を維持できなくなるため、消費電力は高くなると考えられる。 According to this idea, the change in the power consumption shown in FIG. 7 can be explained as follows.
After thefluid stirring device 1A is installed in the indoor cooling device, it takes about 16 hours until the non-fluorocarbon refrigerant and the refrigerating machine oil are turned into a polymer solution, and the indoor cooling device has low power consumption when in the polymer solution state. Even if the fluid stirring device 1A is removed from the indoor cooling device, the power consumption remains low while the polymer solution state of the non-fluorocarbon refrigerant and the refrigerating machine oil can be maintained.
Although not shown in the graph of FIG. 7, it is considered that the power consumption increases because a polymer solution state cannot be maintained after a certain period of time.
室内冷房装置に流体撹拌装置1Aを設置した後、ノンフロン冷媒と冷凍機油が高分子溶液化されるまで約16時間かかり、高分子溶液状態のとき室内冷房装置は低消費電力となる。流体撹拌装置1Aを室内冷房装置から取り外しても、ノンフロン冷媒と冷凍機油の高分子溶液状態を維持できている間は、消費電力は低いままである。
図7のグラフには示されていないが、ある程度時間が経過すると、高分子溶液状態を維持できなくなるため、消費電力は高くなると考えられる。 According to this idea, the change in the power consumption shown in FIG. 7 can be explained as follows.
After the
Although not shown in the graph of FIG. 7, it is considered that the power consumption increases because a polymer solution state cannot be maintained after a certain period of time.
また、発明者らは、ノンフロン冷媒中の冷凍機油を微細化するためには、コイルスプリング14、すなわちバネの共振周波数が最も重要であると考えるようになった。すなわち、上述したように、流体はコイルスプリング14と共振して局所的に上下振動を生じる。この上下振動により、流体に剪断力が作用する。また、コイルスプリング14の凹凸自体によっても流体に剪断力が作用する。主として、この剪断力により、冷凍機油が微細化されると考えるようになった。
さらに、発明者らは、連続して冷凍機油の微細化を続けていると、冷凍機油の塊の大きさと濃度が変動する。その大きさと濃度が変わるとノンフロン冷媒の共振周波数が変わると考えている。 In addition, the inventors have come to consider that the resonance frequency of thecoil spring 14, that is, the spring is the most important in order to refine the refrigerating machine oil in the non-fluorocarbon refrigerant. That is, as described above, the fluid resonates with the coil spring 14 and locally generates vertical vibration. This vertical vibration causes a shearing force to act on the fluid. Further, a shearing force acts on the fluid also by the unevenness of the coil spring 14 itself. It came to be considered that refrigerating machine oil was mainly refined by this shearing force.
Furthermore, when the inventors continuously refine the refrigerating machine oil, the size and concentration of the refrigerating machine oil fluctuate. We believe that the resonance frequency of the non-fluorocarbon refrigerant changes as the size and concentration change.
さらに、発明者らは、連続して冷凍機油の微細化を続けていると、冷凍機油の塊の大きさと濃度が変動する。その大きさと濃度が変わるとノンフロン冷媒の共振周波数が変わると考えている。 In addition, the inventors have come to consider that the resonance frequency of the
Furthermore, when the inventors continuously refine the refrigerating machine oil, the size and concentration of the refrigerating machine oil fluctuate. We believe that the resonance frequency of the non-fluorocarbon refrigerant changes as the size and concentration change.
流体撹拌装置1Aのコイルスプリング14は、図5に示したように様々なピッチを持つため、様々な共振周波数を持つ。このため、冷凍機油の塊の大きさと濃度が変わっても、コイルスプリング14はノンフロン冷媒を効率よく高分子溶液化することができる。
しかし、コイルスプリング14は長い。流体撹拌装置1Aはコイルスプリング14を収容しなければならないため、胴体部11aが長くなる。このため、筐体11は大型化する。筐体11は、例えば630cc程度の容量である。
このため、流体撹拌装置1Aは、設置するために広い場所が必要となる。無理に狭い場所に設置すると、配管を曲げざるを得ない場合がある。配管の曲りは流れの抵抗を増加させ、その結果、消費電力を増加させる。 Since thecoil spring 14 of the fluid agitator 1A has various pitches as shown in FIG. 5, it has various resonance frequencies. For this reason, even if the size and concentration of the refrigerating machine oil mass change, the coil spring 14 can efficiently convert the non-fluorocarbon refrigerant into a polymer solution.
However, thecoil spring 14 is long. Since the fluid agitator 1 </ b> A must accommodate the coil spring 14, the body portion 11 a becomes long. For this reason, the housing | casing 11 becomes large. The housing 11 has a capacity of about 630 cc, for example.
For this reason, 1 A of fluid stirring apparatuses require a large place in order to install. If it is installed in a confined space, piping may be bent. Piping bends increase the flow resistance and consequently increase power consumption.
しかし、コイルスプリング14は長い。流体撹拌装置1Aはコイルスプリング14を収容しなければならないため、胴体部11aが長くなる。このため、筐体11は大型化する。筐体11は、例えば630cc程度の容量である。
このため、流体撹拌装置1Aは、設置するために広い場所が必要となる。無理に狭い場所に設置すると、配管を曲げざるを得ない場合がある。配管の曲りは流れの抵抗を増加させ、その結果、消費電力を増加させる。 Since the
However, the
For this reason, 1 A of fluid stirring apparatuses require a large place in order to install. If it is installed in a confined space, piping may be bent. Piping bends increase the flow resistance and consequently increase power consumption.
また、筐体11の容量が630cc程度であると、流体撹拌装置1Aの設置時にノンフロン冷媒を追加しなければならない。ところが、ノンフロン冷媒は混合冷媒であり、濃度比の制限が厳しいため、追加が困難である。設置済みの室内冷房装置等に流体撹拌装置1Aを追加するためには、ノンフロン冷媒を全量入れ換えざるを得ず、コストがかかる。
Further, if the capacity of the casing 11 is about 630 cc, a non-fluorocarbon refrigerant must be added when the fluid agitating apparatus 1A is installed. However, the non-fluorocarbon refrigerant is a mixed refrigerant, and the concentration ratio is severely limited, so that addition is difficult. In order to add the fluid agitating device 1A to the installed indoor air conditioner or the like, the entire amount of non-fluorocarbon refrigerant must be replaced, which is costly.
一方、バネの口径、材質、またはバネ材の径(鉄線のφ数)を変えることによっても共振周波数を変えることができる。例えば、口径が大きいと共振周波数は低く、口径が小さいと共振周波数は高い。
図8は、本発明の第1の実施形態に係る流体撹拌装置1Bの構成の一例を示す。図8(a)は縦断面図、図8(b)は図8(a)のE-E視図、図8(c)は図8(a)のF-F視図である。
流体撹拌装置1Bは、筐体21を有する。筐体21は、球形である。筐体21は、右側を閉塞する半球形状の右部鏡板21b1と、左側を閉塞する半球形状の左部鏡板21b2とを備える。筐体21も圧力容器の一種とみなすことができる。図8に示される右部鏡板21b1および左部鏡板21b2の断面は、好適には中心角180度の半円であり、右部鏡板21b1の半径と左部鏡板21b2の半径とは等しい。ただし、右部鏡板21b1および左部鏡板21b2は、流体の流れの方向を転換(Uターン)させることができる形状であればよく、必ずしもそれらの断面の形状は中心角180度の半円でなくともよい。本明細書における半球形状とは、楕円が長軸で切断された半楕円の断面形状のものを含むものとする。
なお、この第1の実施形態では、半球形状の右部鏡板21b1において底面からの距離が最も遠い右部鏡板21b1の頂点と、半球形状の左部鏡板21b2において底面からの距離が最も遠い左部鏡板21b2の頂点とを通る軸を筐体21の中心軸という。
右部鏡板21b1は本発明の第1の鏡板の例であり、左部鏡板21b2は本発明の第2の鏡板の例である。 On the other hand, the resonance frequency can also be changed by changing the diameter of the spring, the material, or the diameter of the spring material (the number of iron wires φ). For example, when the aperture is large, the resonance frequency is low, and when the aperture is small, the resonance frequency is high.
FIG. 8 shows an example of the configuration of thefluid stirring device 1B according to the first embodiment of the present invention. 8A is a longitudinal sectional view, FIG. 8B is an EE view of FIG. 8A, and FIG. 8C is an FF view of FIG. 8A.
Thefluid agitation device 1 </ b> B has a housing 21. The casing 21 has a spherical shape. The housing 21 includes a hemispherical right end panel 21b1 that closes the right side and a hemispherical left end panel 21b2 that closes the left side. The housing 21 can also be regarded as a kind of pressure vessel. The cross sections of the right end plate 21b1 and the left end plate 21b2 shown in FIG. 8 are preferably semicircles having a central angle of 180 degrees, and the radius of the right end plate 21b1 and the radius of the left end plate 21b2 are equal. However, the right end plate 21b1 and the left end plate 21b2 may have any shape that can change the direction of fluid flow (U-turn), and the cross-sectional shape is not necessarily a semicircle having a central angle of 180 degrees. Also good. The hemispherical shape in this specification includes a semi-elliptical cross-sectional shape in which an ellipse is cut along the long axis.
In the first embodiment, the hemispherical right end panel 21b1 has the farthest distance from the bottom of the right end panel 21b1, and the hemispherical left end panel 21b2 has the farthest distance from the bottom. The axis passing through the apex of the end plate 21b2 is referred to as the central axis of thehousing 21.
The right end plate 21b1 is an example of the first end plate of the present invention, and the left end plate 21b2 is an example of the second end plate of the present invention.
図8は、本発明の第1の実施形態に係る流体撹拌装置1Bの構成の一例を示す。図8(a)は縦断面図、図8(b)は図8(a)のE-E視図、図8(c)は図8(a)のF-F視図である。
流体撹拌装置1Bは、筐体21を有する。筐体21は、球形である。筐体21は、右側を閉塞する半球形状の右部鏡板21b1と、左側を閉塞する半球形状の左部鏡板21b2とを備える。筐体21も圧力容器の一種とみなすことができる。図8に示される右部鏡板21b1および左部鏡板21b2の断面は、好適には中心角180度の半円であり、右部鏡板21b1の半径と左部鏡板21b2の半径とは等しい。ただし、右部鏡板21b1および左部鏡板21b2は、流体の流れの方向を転換(Uターン)させることができる形状であればよく、必ずしもそれらの断面の形状は中心角180度の半円でなくともよい。本明細書における半球形状とは、楕円が長軸で切断された半楕円の断面形状のものを含むものとする。
なお、この第1の実施形態では、半球形状の右部鏡板21b1において底面からの距離が最も遠い右部鏡板21b1の頂点と、半球形状の左部鏡板21b2において底面からの距離が最も遠い左部鏡板21b2の頂点とを通る軸を筐体21の中心軸という。
右部鏡板21b1は本発明の第1の鏡板の例であり、左部鏡板21b2は本発明の第2の鏡板の例である。 On the other hand, the resonance frequency can also be changed by changing the diameter of the spring, the material, or the diameter of the spring material (the number of iron wires φ). For example, when the aperture is large, the resonance frequency is low, and when the aperture is small, the resonance frequency is high.
FIG. 8 shows an example of the configuration of the
The
In the first embodiment, the hemispherical right end panel 21b1 has the farthest distance from the bottom of the right end panel 21b1, and the hemispherical left end panel 21b2 has the farthest distance from the bottom. The axis passing through the apex of the end plate 21b2 is referred to as the central axis of the
The right end plate 21b1 is an example of the first end plate of the present invention, and the left end plate 21b2 is an example of the second end plate of the present invention.
比較例の流体撹拌装置1Aと同様に、筐体21に対する流体の流入または流出のために、2つの管体が設けられている(図8(a)では、これらの管体の断面ではなく側面を示している)。流体撹拌装置1Bをヒートポンプシステムの配管経路上に挿入する場合、挿入箇所において一方の管体を一方の配管端部に接続し、他方の管体を他方の配管端部に接続する。図1および図2で示した通り、冷房時と暖房時とでは流体の循環方向は逆となる。従って、流体撹拌装置1Bの冷房時の流入口は、暖房時には流出口となり、冷房時の流出口は、暖房時には流入口となる。空調機の冷房と暖房を切り替えても、流体撹拌装置1Bの取り付け状態を変更する必要はない。
Similar to the fluid agitating apparatus 1A of the comparative example, two tubes are provided for inflow or outflow of the fluid to the housing 21 (in FIG. 8A, side surfaces rather than cross sections of these tubes). Is shown). When the fluid stirring device 1B is inserted on the piping path of the heat pump system, one tube is connected to one piping end at the insertion location, and the other tube is connected to the other piping end. As shown in FIGS. 1 and 2, the direction of fluid circulation is reversed between cooling and heating. Accordingly, the inlet of the fluid agitator 1B during cooling serves as an outlet during heating, and the outlet during cooling serves as an inlet during heating. Even if the cooling and heating of the air conditioner are switched, there is no need to change the mounting state of the fluid agitator 1B.
右部管体22は、冷房時には流入口となり、暖房時には流出口となる。図8では、右部管体22の右方部分の図示を省略しているが、ヒートポンプシステムの適切な配管に接続可能である。なお、冷房時と暖房時で流体撹拌装置1Bの取付状態を変更することはないが、流体の循環方向が逆となるので、右部管体22は、図1に示した冷房時には凝縮部3(室外機)の出口側に接続され、図2に示した暖房時には蒸発部5(室外機)の入口側に接続されることになる。
右部管体22は、筐体21の中心軸から離れた位置において右部鏡板21b1を中心軸と並行な方向に貫通している。右部管体22は、筐体21内で右部鏡板21b1の底面の近傍まで延在し、その左端22aは左部鏡板21b2の方向に開口している。図8(b)に示すように、右部管体22の左端22aの開口の縁は、筐体21の中心軸側が長く、周縁側が短くなるように傾斜していることが好適である。この傾斜は、流体の良好な流れを形成し易くするためのものである。
なお、右部管体22は、本発明の第1の管体の例である。 Theright tube 22 serves as an inlet during cooling and serves as an outlet during heating. In FIG. 8, illustration of the right portion of the right tubular body 22 is omitted, but connection to appropriate piping of the heat pump system is possible. Note that the mounting state of the fluid agitator 1B is not changed between the cooling time and the heating time. However, since the fluid circulation direction is reversed, the right tubular body 22 has the condensing unit 3 at the time of cooling shown in FIG. It is connected to the outlet side of the (outdoor unit) and is connected to the inlet side of the evaporator 5 (outdoor unit) during the heating shown in FIG.
The righttubular body 22 penetrates the right end panel 21b1 in a direction parallel to the central axis at a position away from the central axis of the casing 21. The right tube 22 extends in the housing 21 to the vicinity of the bottom surface of the right end plate 21b1, and the left end 22a opens in the direction of the left end plate 21b2. As shown in FIG. 8B, it is preferable that the edge of the opening of the left end 22a of the right tube 22 is inclined so that the central axis side of the housing 21 is long and the peripheral side is short. This inclination is intended to facilitate the formation of a good flow of fluid.
The righttubular body 22 is an example of the first tubular body of the present invention.
右部管体22は、筐体21の中心軸から離れた位置において右部鏡板21b1を中心軸と並行な方向に貫通している。右部管体22は、筐体21内で右部鏡板21b1の底面の近傍まで延在し、その左端22aは左部鏡板21b2の方向に開口している。図8(b)に示すように、右部管体22の左端22aの開口の縁は、筐体21の中心軸側が長く、周縁側が短くなるように傾斜していることが好適である。この傾斜は、流体の良好な流れを形成し易くするためのものである。
なお、右部管体22は、本発明の第1の管体の例である。 The
The right
The right
左部管体23は、冷房時には流出口となり、暖房時には流入口となる。図8では、左部管体23の左方部分の図示を省略しているが、ヒートポンプシステムの適切な配管に接続される。
左部管体23は、筐体21の中心軸上において左部鏡板21b2を中心軸の方向に貫通している。左部管体23は、筐体21内で中心軸に沿って右部鏡板21b1の底面の近傍まで延在し、その右端は右部鏡板21b1の方向に開口している。
左部管体23は、比較例の流体撹拌装置1Aにおける下部管体13と同様に、並行ネジ鋼管で形成されており、外面上に螺旋状のネジ山とネジ溝による凹凸が軸方向に交互に繰り返される形状である。左部管体23の外面上のこれらの細かい凹凸は、流体の気泡を捕捉する作用がある。流体撹拌装置1Bによる撹拌を行っても最終的に溶解しない(液化されない)気体冷媒を捕捉することにより、液体冷媒すなわち液体流体と分離することができる。さらに、左部管体23の外面上の細かい凹凸は、これらの凹凸に流体が衝突することにより、流体の撹拌にも寄与する。
なお、左部管体23は、本発明の第2の管体の例である。 Theleft tube 23 serves as an outlet during cooling and serves as an inlet during heating. In FIG. 8, the left portion of the left tubular body 23 is not shown, but is connected to an appropriate pipe of the heat pump system.
The lefttubular body 23 passes through the left end plate 21 b 2 in the direction of the central axis on the central axis of the housing 21. The left tube 23 extends in the housing 21 along the central axis to the vicinity of the bottom surface of the right end plate 21b1, and the right end thereof opens in the direction of the right end plate 21b1.
The lefttubular body 23 is formed of a parallel threaded steel pipe in the same manner as the lower tubular body 13 in the fluid agitating apparatus 1A of the comparative example, and irregularities due to spiral threads and thread grooves are alternately arranged on the outer surface in the axial direction. It is a shape repeated. These fine irregularities on the outer surface of the left tubular body 23 have an action of capturing fluid bubbles. By capturing the gaseous refrigerant that is not finally dissolved (not liquefied) even when stirring is performed by the fluid stirring device 1B, it can be separated from the liquid refrigerant, that is, the liquid fluid. Furthermore, the fine irregularities on the outer surface of the left tubular body 23 contribute to the agitation of the fluid when the fluid collides with these irregularities.
The lefttubular body 23 is an example of the second tubular body of the present invention.
左部管体23は、筐体21の中心軸上において左部鏡板21b2を中心軸の方向に貫通している。左部管体23は、筐体21内で中心軸に沿って右部鏡板21b1の底面の近傍まで延在し、その右端は右部鏡板21b1の方向に開口している。
左部管体23は、比較例の流体撹拌装置1Aにおける下部管体13と同様に、並行ネジ鋼管で形成されており、外面上に螺旋状のネジ山とネジ溝による凹凸が軸方向に交互に繰り返される形状である。左部管体23の外面上のこれらの細かい凹凸は、流体の気泡を捕捉する作用がある。流体撹拌装置1Bによる撹拌を行っても最終的に溶解しない(液化されない)気体冷媒を捕捉することにより、液体冷媒すなわち液体流体と分離することができる。さらに、左部管体23の外面上の細かい凹凸は、これらの凹凸に流体が衝突することにより、流体の撹拌にも寄与する。
なお、左部管体23は、本発明の第2の管体の例である。 The
The left
The left
The left
左部鏡板21b2の内部には、図9に示す円錐状スプリング24が設置されている。円錐状スプリング24は、円錐部24aと、短い円筒部24bとを有する。
円錐部24aは巻線が円錐形状に巻かれている。円錐部24aの頂点側の開口24cにおける巻線の口径は、左部管体23の外径よりわずかに大きい。円筒部24bの巻線の直径は、円錐部24aの底面の巻線の直径と同一である。円筒部24bの巻線の外径は、筐体21の内径と略同じである。頂点側の開口24cから円錐状スプリング24の内部に左部管体23が挿入される。円錐状スプリング24は、筐体21の中心軸を軸として筐体21の内部に設置される。円錐状スプリング24の円錐部24aの底面における巻線は、左部鏡板21b2の底面の近傍に位置する。
円錐状スプリング24の各巻線は、筐体21の内面に固定されておらず、振動可能である。
なお、ナット25によって円錐状スプリング24を左部鏡板21b2に固定してもよい。 Aconical spring 24 shown in FIG. 9 is installed inside the left end plate 21b2. The conical spring 24 has a conical portion 24a and a short cylindrical portion 24b.
Theconical portion 24a has a winding wound in a conical shape. The diameter of the winding in the opening 24c on the apex side of the conical portion 24a is slightly larger than the outer diameter of the left tubular body 23. The diameter of the winding of the cylindrical portion 24b is the same as the diameter of the winding of the bottom surface of the conical portion 24a. The outer diameter of the winding of the cylindrical portion 24 b is substantially the same as the inner diameter of the housing 21. The left tubular body 23 is inserted into the conical spring 24 from the apex side opening 24c. The conical spring 24 is installed inside the housing 21 with the central axis of the housing 21 as an axis. The winding on the bottom surface of the conical portion 24a of the conical spring 24 is located in the vicinity of the bottom surface of the left end plate 21b2.
Each winding of theconical spring 24 is not fixed to the inner surface of the casing 21 and can vibrate.
Theconical spring 24 may be fixed to the left end plate 21b2 by the nut 25.
円錐部24aは巻線が円錐形状に巻かれている。円錐部24aの頂点側の開口24cにおける巻線の口径は、左部管体23の外径よりわずかに大きい。円筒部24bの巻線の直径は、円錐部24aの底面の巻線の直径と同一である。円筒部24bの巻線の外径は、筐体21の内径と略同じである。頂点側の開口24cから円錐状スプリング24の内部に左部管体23が挿入される。円錐状スプリング24は、筐体21の中心軸を軸として筐体21の内部に設置される。円錐状スプリング24の円錐部24aの底面における巻線は、左部鏡板21b2の底面の近傍に位置する。
円錐状スプリング24の各巻線は、筐体21の内面に固定されておらず、振動可能である。
なお、ナット25によって円錐状スプリング24を左部鏡板21b2に固定してもよい。 A
The
Each winding of the
The
流体は、右部管体22の左端22aまたは左部管体23の右端から筐体11の内部に流入する。そして、流体は、筐体21の内面に沿って回転する。そして、流体は、回転中に右部管体22と左部管体23に衝突する。これにより流体に対して複雑な運動が付与される。
このように、複雑な運動が付与されて回転する流体は、円錐状スプリング24と衝突および摩擦を生じる。円錐状スプリング24の巻線は衝突や摩擦を受けた局所において共振し、左右振動を生じる。この円錐状スプリング24と共振して、流体もまた局所的に左右振動を生じる。この左右振動により、流体に剪断力が作用する。
この結果、流体は大きく撹拌され、冷凍機油が微細化してノンフロン冷媒に溶け込み、流体は希薄な高分子が添加された高分子溶液となる。 The fluid flows into thehousing 11 from the left end 22 a of the right tube 22 or the right end of the left tube 23. The fluid rotates along the inner surface of the casing 21. Then, the fluid collides with the right tube 22 and the left tube 23 during rotation. This imparts complex motion to the fluid.
As described above, the rotating fluid given the complicated motion causes collision and friction with theconical spring 24. The winding of the conical spring 24 resonates in a local area subjected to collision or friction, and generates left-right vibration. Resonating with the conical spring 24, the fluid also locally generates lateral vibration. By this left-right vibration, a shearing force acts on the fluid.
As a result, the fluid is greatly agitated, the refrigerating machine oil is refined and dissolved in the non-fluorocarbon refrigerant, and the fluid becomes a polymer solution to which a dilute polymer is added.
このように、複雑な運動が付与されて回転する流体は、円錐状スプリング24と衝突および摩擦を生じる。円錐状スプリング24の巻線は衝突や摩擦を受けた局所において共振し、左右振動を生じる。この円錐状スプリング24と共振して、流体もまた局所的に左右振動を生じる。この左右振動により、流体に剪断力が作用する。
この結果、流体は大きく撹拌され、冷凍機油が微細化してノンフロン冷媒に溶け込み、流体は希薄な高分子が添加された高分子溶液となる。 The fluid flows into the
As described above, the rotating fluid given the complicated motion causes collision and friction with the
As a result, the fluid is greatly agitated, the refrigerating machine oil is refined and dissolved in the non-fluorocarbon refrigerant, and the fluid becomes a polymer solution to which a dilute polymer is added.
円錐状スプリング24の巻線は、様々な口径を持つため、比較例の流体撹拌装置1Aにおけるコイルスプリング14と同様に、様々な共振周波数を持つ。このため、冷凍機油の微細化が進んで冷凍機油の塊の大きさと濃度が変わってもノンフロン冷媒を効率よく高分子溶液化することができる。
円錐状スプリング24は小さいため、これを収容する筐体21は、比較例である流体撹拌装置1Aにおける筐体11に比べて小型である。筐体21は、例えば40cc~50cc程度の容量である。このため、流体撹拌装置1Bは、狭い場所に容易に設置することができる。
また、筐体21の容量が40cc~50cc程度であると、設置済みの室内冷房装置等に流体撹拌装置1Bを設置するときにノンフロン冷媒を追加しなくてもよい。 Since the winding of theconical spring 24 has various diameters, it has various resonance frequencies like the coil spring 14 in the fluid stirring apparatus 1A of the comparative example. For this reason, even if the refrigerating machine oil is further miniaturized and the size and concentration of the refrigerating machine oil changes, the non-fluorocarbon refrigerant can be efficiently made into a polymer solution.
Since theconical spring 24 is small, the casing 21 that accommodates the conical spring 24 is smaller than the casing 11 in the fluid agitating apparatus 1 </ b> A that is a comparative example. The casing 21 has a capacity of about 40 cc to 50 cc, for example. For this reason, the fluid stirring apparatus 1B can be easily installed in a narrow place.
Further, when the capacity of thecasing 21 is about 40 cc to 50 cc, it is not necessary to add a non-fluorocarbon refrigerant when the fluid agitating device 1B is installed in an installed indoor cooling device or the like.
円錐状スプリング24は小さいため、これを収容する筐体21は、比較例である流体撹拌装置1Aにおける筐体11に比べて小型である。筐体21は、例えば40cc~50cc程度の容量である。このため、流体撹拌装置1Bは、狭い場所に容易に設置することができる。
また、筐体21の容量が40cc~50cc程度であると、設置済みの室内冷房装置等に流体撹拌装置1Bを設置するときにノンフロン冷媒を追加しなくてもよい。 Since the winding of the
Since the
Further, when the capacity of the
図10は、本発明の第2の実施形態に係る流体撹拌装置1Cの構成の一例を示す。
流体撹拌装置1Cは、筐体31を有する。筐体31は、胴体部31aと、右側を閉塞する半球形状の右部鏡板31b1と、左側を閉塞する半球形状の左部鏡板31b2とを備える。
右部鏡板31b1と左部鏡板31b2の形状および大きさは、それぞれ第1の実施形態に係る右部鏡板21b1と左部鏡板21b2と同一である。胴体部31aは円筒形状である。なお、第2の実施形態では、胴体部31aの軸を筐体31の中心軸という。第1の実施形態に係る流体撹拌装置1Bと同様に、中心軸は、右部鏡板31b1の頂点と左部鏡板31b2の頂点を通る。
なお、右部鏡板31b1は本発明の第1の鏡板の例であり、左部鏡板31b2は本発明の第2の鏡板の例である。 FIG. 10 shows an example of the configuration of a fluidstirring apparatus 1C according to the second embodiment of the present invention.
Thefluid agitation device 1 </ b> C includes a housing 31. The casing 31 includes a body portion 31a, a hemispherical right end panel 31b1 that closes the right side, and a hemispherical left end panel 31b2 that closes the left side.
The shapes and sizes of the right end panel 31b1 and the left end panel 31b2 are the same as those of the right end panel 21b1 and the left end panel 21b2 according to the first embodiment, respectively. Thebody part 31a has a cylindrical shape. In the second embodiment, the axis of the body portion 31 a is referred to as the central axis of the housing 31. Similar to the fluid agitating apparatus 1B according to the first embodiment, the central axis passes through the apex of the right end plate 31b1 and the apex of the left end plate 31b2.
The right end plate 31b1 is an example of the first end plate of the present invention, and the left end plate 31b2 is an example of the second end plate of the present invention.
流体撹拌装置1Cは、筐体31を有する。筐体31は、胴体部31aと、右側を閉塞する半球形状の右部鏡板31b1と、左側を閉塞する半球形状の左部鏡板31b2とを備える。
右部鏡板31b1と左部鏡板31b2の形状および大きさは、それぞれ第1の実施形態に係る右部鏡板21b1と左部鏡板21b2と同一である。胴体部31aは円筒形状である。なお、第2の実施形態では、胴体部31aの軸を筐体31の中心軸という。第1の実施形態に係る流体撹拌装置1Bと同様に、中心軸は、右部鏡板31b1の頂点と左部鏡板31b2の頂点を通る。
なお、右部鏡板31b1は本発明の第1の鏡板の例であり、左部鏡板31b2は本発明の第2の鏡板の例である。 FIG. 10 shows an example of the configuration of a fluid
The
The shapes and sizes of the right end panel 31b1 and the left end panel 31b2 are the same as those of the right end panel 21b1 and the left end panel 21b2 according to the first embodiment, respectively. The
The right end plate 31b1 is an example of the first end plate of the present invention, and the left end plate 31b2 is an example of the second end plate of the present invention.
左部鏡板31b2と胴体部31aの内部には、図11に示す円錐部付きコイルスプリング34が設置されている。円錐部付きコイルスプリング34は、円錐部34aと、円筒部34bとを有する。
円錐部34aの形状および大きさは、第1の実施形態に係る円錐部24aと等しい。円筒部34bは巻線が円筒形状に巻かれている。円筒部34bの巻線の直径は、円錐部34aの底面の巻線の直径と同一である。円筒部34bの巻線の外径は、筐体31の内径と略同じである。円筒部34bの長さは、筐体31の胴体部31aと略等しい。頂点側の開口34cから円錐部付きコイルスプリング34の内部に左部管体23が挿入される。円錐部付きコイルスプリング34は、筐体31の中心軸を軸として筐体31の内部に設置される。円錐部34aの底面における巻線は、左部鏡板31b2の底面の近傍に位置する。
円錐部付きコイルスプリング34の各巻線は、筐体31の内面に固定されておらず、振動可能である。
なお、ナット25によって円錐部付きコイルスプリング34を左部鏡板31b2に固定してもよい。 Aconical coil spring 34 shown in FIG. 11 is installed inside the left end plate 31b2 and the body 31a. The coil spring 34 with a conical portion has a conical portion 34a and a cylindrical portion 34b.
The shape and size of theconical part 34a are equal to the conical part 24a according to the first embodiment. The cylindrical portion 34b is wound in a cylindrical shape. The diameter of the winding of the cylindrical portion 34b is the same as the diameter of the winding of the bottom surface of the conical portion 34a. The outer diameter of the winding of the cylindrical portion 34 b is substantially the same as the inner diameter of the housing 31. The length of the cylindrical portion 34 b is substantially equal to the body portion 31 a of the housing 31. The left tubular body 23 is inserted into the conical coil spring 34 through the apex side opening 34c. The coil spring 34 with a conical portion is installed inside the housing 31 with the central axis of the housing 31 as an axis. The winding on the bottom surface of the conical portion 34a is located in the vicinity of the bottom surface of the left end plate 31b2.
Each winding of theconical coil spring 34 is not fixed to the inner surface of the casing 31 and can vibrate.
Note that theconical coil spring 34 may be fixed to the left end plate 31b2 by the nut 25.
円錐部34aの形状および大きさは、第1の実施形態に係る円錐部24aと等しい。円筒部34bは巻線が円筒形状に巻かれている。円筒部34bの巻線の直径は、円錐部34aの底面の巻線の直径と同一である。円筒部34bの巻線の外径は、筐体31の内径と略同じである。円筒部34bの長さは、筐体31の胴体部31aと略等しい。頂点側の開口34cから円錐部付きコイルスプリング34の内部に左部管体23が挿入される。円錐部付きコイルスプリング34は、筐体31の中心軸を軸として筐体31の内部に設置される。円錐部34aの底面における巻線は、左部鏡板31b2の底面の近傍に位置する。
円錐部付きコイルスプリング34の各巻線は、筐体31の内面に固定されておらず、振動可能である。
なお、ナット25によって円錐部付きコイルスプリング34を左部鏡板31b2に固定してもよい。 A
The shape and size of the
Each winding of the
Note that the
流体撹拌装置1Cは、筐体31が胴体部31aを有し、円錐部付きコイルスプリング34の円筒部34bの長さが筐体31の胴体部31aと略等しい点が第1の実施形態に係る流体撹拌装置1Bと異なる。
室内冷房装置等に流体撹拌装置1Cを取り付けたとき、ノンフロン冷媒の中にその共振周波数が円筒部34bの巻線の共振周波数と一致している領域がある場合に、円筒部34bに含まれる複数の巻線でその領域の冷凍機油を微細化するため、ノンフロン冷媒が高分子溶液化して消費電力が低下するまでの時間を短くすることができる。 Thefluid agitating apparatus 1 </ b> C is related to the first embodiment in that the casing 31 has a trunk portion 31 a, and the length of the cylindrical portion 34 b of the conical coil spring 34 is substantially equal to the trunk portion 31 a of the casing 31. Different from the fluid stirring device 1B.
When thefluid agitator 1C is attached to an indoor cooling device or the like, a plurality of non-fluorocarbon refrigerants included in the cylindrical portion 34b when the resonance frequency of the non-fluorocarbon refrigerant coincides with the resonance frequency of the winding of the cylindrical portion 34b. Since the refrigerating machine oil in that region is refined by the winding of, the time until the non-fluorocarbon refrigerant becomes a polymer solution and the power consumption is reduced can be shortened.
室内冷房装置等に流体撹拌装置1Cを取り付けたとき、ノンフロン冷媒の中にその共振周波数が円筒部34bの巻線の共振周波数と一致している領域がある場合に、円筒部34bに含まれる複数の巻線でその領域の冷凍機油を微細化するため、ノンフロン冷媒が高分子溶液化して消費電力が低下するまでの時間を短くすることができる。 The
When the
図12は、本発明の第3の実施形態に係る流体撹拌装置1Dの構成の一例を示す。
流体撹拌装置1Dは、円錐部付きコイルスプリング34の代わりに円錐状スプリング24を備える点が第2の実施形態に係る流体撹拌装置1Cと異なる。
円錐状スプリング24は、第1の実施形態に係る流体撹拌装置1Bで用いられるものと同一である。ただし、円錐状スプリング24の設置方向は、流体撹拌装置1Bにおける設置方向と逆である。円錐状スプリング24の頂点は右部鏡板31b1を向いており、円錐部24aの底面における巻線は、左部鏡板31b2の底面の近傍に位置する。ナット25は、円錐状スプリング24の頂点側の開口24cにおける巻線を抑え、円錐状スプリング24を固定する。 FIG. 12 shows an example of the configuration of afluid stirring apparatus 1D according to the third embodiment of the present invention.
Thefluid agitating apparatus 1D is different from the fluid agitating apparatus 1C according to the second embodiment in that a conical spring 24 is provided instead of the conical coil spring 34.
Theconical spring 24 is the same as that used in the fluid agitator 1B according to the first embodiment. However, the installation direction of the conical spring 24 is opposite to the installation direction in the fluid stirring device 1B. The apex of the conical spring 24 faces the right end plate 31b1, and the winding on the bottom surface of the conical portion 24a is located near the bottom surface of the left end plate 31b2. The nut 25 suppresses the winding in the opening 24 c on the apex side of the conical spring 24 and fixes the conical spring 24.
流体撹拌装置1Dは、円錐部付きコイルスプリング34の代わりに円錐状スプリング24を備える点が第2の実施形態に係る流体撹拌装置1Cと異なる。
円錐状スプリング24は、第1の実施形態に係る流体撹拌装置1Bで用いられるものと同一である。ただし、円錐状スプリング24の設置方向は、流体撹拌装置1Bにおける設置方向と逆である。円錐状スプリング24の頂点は右部鏡板31b1を向いており、円錐部24aの底面における巻線は、左部鏡板31b2の底面の近傍に位置する。ナット25は、円錐状スプリング24の頂点側の開口24cにおける巻線を抑え、円錐状スプリング24を固定する。 FIG. 12 shows an example of the configuration of a
The
The
なお、流体撹拌装置1A、1B、1C、1Dの各構成要素の材料は、ヒートポンプシステムの配管に使用可能な材料であればよく、特に限定されない。例えば、鋼製とすることができる。
In addition, the material of each component of fluid stirring apparatus 1A, 1B, 1C, 1D should just be a material which can be used for piping of a heat pump system, and is not specifically limited. For example, it can be made of steel.
上述した実施形態では、第1の実施形態に係る流体撹拌装置1Bと第2の実施形態に係る流体撹拌装置1Cと第3の実施形態に係る流体撹拌装置1Dとを横置きする例を示したが、これらの設置方向に特に制限はない。例えば、これらを縦置きしてもよい。
In the embodiment described above, an example was shown in which the fluid agitator 1B according to the first embodiment, the fluid agitator 1C according to the second embodiment, and the fluid agitator 1D according to the third embodiment were placed horizontally. However, there are no particular restrictions on the direction of installation. For example, these may be placed vertically.
以上説明したように、本発明によれば、流体撹拌装置を可能な限り小型化することができる。
また、本発明の流体撹拌装置を空調機等のヒートポンプシステムに取り付けることにより、ヒートポンプシステムの液管配管内抵抗が軽減されるため、圧縮機での消費電力を低減することができる。 As described above, according to the present invention, the fluid stirring device can be miniaturized as much as possible.
In addition, by attaching the fluid stirring device of the present invention to a heat pump system such as an air conditioner, the resistance in the liquid pipe of the heat pump system is reduced, so that the power consumption in the compressor can be reduced.
また、本発明の流体撹拌装置を空調機等のヒートポンプシステムに取り付けることにより、ヒートポンプシステムの液管配管内抵抗が軽減されるため、圧縮機での消費電力を低減することができる。 As described above, according to the present invention, the fluid stirring device can be miniaturized as much as possible.
In addition, by attaching the fluid stirring device of the present invention to a heat pump system such as an air conditioner, the resistance in the liquid pipe of the heat pump system is reduced, so that the power consumption in the compressor can be reduced.
以上、本発明の実施形態について説明したが、設計上の都合やその他の要因によって必要となる様々な修正や組み合わせは、請求項に記載されている発明や発明の実施形態に記載されている具体例に対応する発明の範囲に含まれる。
Although the embodiments of the present invention have been described above, various modifications and combinations necessary for design reasons and other factors are described in the inventions described in the claims and the specific embodiments described in the embodiments of the invention. It is included in the scope of the invention corresponding to the example.
1A…流体撹拌装置、11…筐体、11a…胴体部、11b1…上部鏡板、11b2…下部鏡板、12…上部管体、13…下部管体、14…コイルスプリング、1B…流体撹拌装置、21…筐体、21b1…右部鏡板、21b2…左部鏡板、22…右部管体、23…左部管体、24…円錐状スプリング、24a…円錐部、24b…円筒部、25…ナット、1C…流体撹拌装置、31…筐体、31a…胴体部、31b1…右部鏡板、31b2…左部鏡板、34…円錐部付きコイルスプリング、34a…円錐部、34b…円筒部、1D…流体撹拌装置、2…圧縮部、3…凝縮部(冷房時:室外機、暖房時:室内機)、4…膨張部、5…蒸発部(冷房時:室内機、暖房時:室外機)
DESCRIPTION OF SYMBOLS 1A ... Fluid stirring apparatus, 11 ... Housing | casing, 11a ... Body part, 11b1 ... Upper end plate, 11b2 ... Lower end plate, 12 ... Upper pipe body, 13 ... Lower pipe body, 14 ... Coil spring, 1B ... Fluid stirring apparatus, 21 ... casing, 21b1 ... right end plate, 21b2 ... left end plate, 22 ... right tube, 23 ... left tube, 24 ... conical spring, 24a ... conical part, 24b ... cylindrical part, 25 ... nut, DESCRIPTION OF SYMBOLS 1C ... Fluid stirring apparatus, 31 ... Housing | casing, 31a ... Body part, 31b1 ... Right end plate, 31b2 ... Left end plate, 34 ... Coil spring with a cone part, 34a ... Conical part, 34b ... Cylindrical part, 1D ... Fluid stirring Apparatus, 2 ... Compression unit, 3 ... Condensing unit (cooling: outdoor unit, heating: indoor unit), 4 ... expansion unit, 5 ... evaporating unit (cooling: indoor unit, heating: outdoor unit)
Claims (9)
- ヒートポンプサイクルにおいて冷媒と冷凍機油とを含む流体を撹拌するために配管の経路上に設置される流体撹拌装置であって、
一方を第1の鏡板により閉塞され、他方を第2の鏡板により閉塞された筐体と、
一端が前記配管の1つに接続可能であり、前記筐体の中心軸から離れた位置にて前記第1の鏡板を当該中心軸と並行な方向に貫通し、他端が前記第2の鏡板の方向に開口する第1の管体と、
一端が前記配管の別の1つに接続可能であり、前記筐体の中心軸上にて前記第2の鏡板を当該中心軸の方向に貫通し、他端が前記第1の鏡板の方向に開口する第2の管体と、
巻線が円錐形状に巻かれており、頂点側の開口から内部に前記第2の管体が挿入され、前記筐体の中心軸を軸として前記筐体の内部に設置されており、前記円錐形状に巻かれた巻線が振動可能である円錐部を含むスプリングと、
を備えることを特徴とする流体撹拌装置。 A fluid agitation device installed on a piping path for agitating a fluid containing refrigerant and refrigeration oil in a heat pump cycle,
A case in which one is closed by the first end plate and the other is closed by the second end plate;
One end is connectable to one of the pipes, penetrates the first end plate in a direction parallel to the center axis at a position away from the center axis of the housing, and the other end is the second end plate A first tube opening in the direction of
One end is connectable to another one of the pipes, passes through the second end plate in the direction of the center axis on the center axis of the housing, and the other end in the direction of the first end plate A second tubular body that opens;
The winding is wound in a conical shape, the second tubular body is inserted into the inside from the opening on the apex side, and is installed in the housing around the central axis of the housing. A spring including a conical portion in which a winding wound into a shape can vibrate;
A fluid agitation device comprising: - 前記第1の管体が、前記第1の鏡板の底面の近傍まで延在し、
前記第2の管体が、前記第1の鏡板の底面の近傍まで延在する、
ことを特徴とする請求項1に記載の流体撹拌装置。 The first tube extends to the vicinity of the bottom surface of the first end plate;
The second tubular body extends to the vicinity of the bottom surface of the first end plate;
The fluid agitation apparatus according to claim 1. - 前記スプリングの円錐部の底面における巻線が前記第2の鏡板の底面の近傍に位置することを特徴とする請求項1または2に記載の流体撹拌装置。 The fluid stirring device according to claim 1 or 2, wherein the winding on the bottom surface of the conical portion of the spring is positioned in the vicinity of the bottom surface of the second end plate.
- 前記筐体が、前記第1の鏡板と前記第2の鏡板の間に円筒形状の胴体部を有し、
前記スプリングが、前記筐体の中心軸を軸として前記筐体の胴体部の内面上に設置され、円筒形状に巻かれた巻線が振動可能である円筒部を含む、
ことを特徴とする請求項1ないし3のいずれか1項に記載の流体撹拌装置。 The housing has a cylindrical body between the first end plate and the second end plate,
The spring is installed on the inner surface of the body portion of the housing around the central axis of the housing, and includes a cylindrical portion that can vibrate a winding wound in a cylindrical shape.
The fluid agitation apparatus according to claim 1, wherein the fluid agitation apparatus is used. - 前記第1の管体の他端の開口の縁が、前記筐体の中心軸側が長く、周縁側が短くなるように傾斜していることを特徴とする請求項1ないし4のいずれか1項に記載の流体撹拌装置。 The edge of the opening at the other end of the first tubular body is inclined so that the central axis side of the housing is long and the peripheral edge side is short. The fluid stirring apparatus described in 1.
- 前記第2の管体の外面上に螺旋状のネジ山とネジ溝による凹凸が軸方向に交互に形成されていることを特徴とする請求項1ないし5のいずれか1項に記載の流体撹拌装置。 6. Fluid agitation according to any one of claims 1 to 5, wherein irregularities due to spiral threads and thread grooves are alternately formed on the outer surface of the second tubular body in the axial direction. apparatus.
- 室内冷房時には、前記第1の管体から流体が流入するとともに、前記第2の管体から流体が流出するように設置され、前記第1の管体が、前記ヒートポンプサイクルにおける室外機である凝縮部の流体出口側に接続されることを特徴とする請求項1ないし6のいずれか1項に記載の流体撹拌装置。 At the time of indoor cooling, it is installed so that the fluid flows in from the first tube and the fluid flows out from the second tube, and the first tube is a condensation unit that is an outdoor unit in the heat pump cycle. The fluid agitation device according to claim 1, wherein the fluid agitation device is connected to a fluid outlet side of the unit.
- 室内暖房時には、前記第2の管体から流体が流入するとともに、前記第1の管体から流体が流出するように設置され、前記第1の管体が、前記ヒートポンプサイクルにおける室外機である蒸発部の流体入口側に接続されることを特徴とする請求項1ないし6のいずれか1項に記載の流体撹拌装置。 At the time of indoor heating, it is installed so that fluid flows in from the second tubular body and fluid flows out of the first tubular body, and the first tubular body is an outdoor unit in the heat pump cycle. The fluid agitation apparatus according to claim 1, wherein the fluid agitation apparatus is connected to a fluid inlet side of the unit.
- 請求項1ないし8のいずれか1項に記載の流体撹拌装置が、配管の経路上に設置されていることを特徴とするヒートポンプシステム。 A heat pump system, wherein the fluid agitation device according to any one of claims 1 to 8 is installed on a pipe path.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016500428A JP5945377B1 (en) | 2015-06-15 | 2015-06-15 | Fluid stirring device and heat pump system |
PCT/JP2015/067140 WO2016203511A1 (en) | 2015-06-15 | 2015-06-15 | Fluid stirring device and heat pump system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/067140 WO2016203511A1 (en) | 2015-06-15 | 2015-06-15 | Fluid stirring device and heat pump system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016203511A1 true WO2016203511A1 (en) | 2016-12-22 |
Family
ID=56289146
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/067140 WO2016203511A1 (en) | 2015-06-15 | 2015-06-15 | Fluid stirring device and heat pump system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5945377B1 (en) |
WO (1) | WO2016203511A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111566421A (en) * | 2018-01-04 | 2020-08-21 | Cpm控股有限公司 | Liquefaction promoting device with spring capable of vibrating and shaking |
EP3604976A4 (en) * | 2017-03-20 | 2021-04-28 | Hajime Odani | Fluid stirring-based liquefaction promoting apparatus installed on pipe path of heat pump system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7011847B2 (en) | 2019-12-27 | 2022-01-27 | Cpmホールディング株式会社 | Mixed refrigerant production equipment and mixed refrigerant production method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61150035U (en) * | 1985-03-06 | 1986-09-17 | ||
JPH06117730A (en) * | 1993-01-25 | 1994-04-28 | Toshiba Corp | Vapor-liquid two-phase flow distributer |
JP2001050613A (en) * | 1999-08-10 | 2001-02-23 | Daikin Ind Ltd | Refrigerant distributor |
JP2002277079A (en) * | 2001-03-21 | 2002-09-25 | Mitsubishi Electric Corp | Refrigerating cycle |
JP2005283010A (en) * | 2004-03-30 | 2005-10-13 | Mitsubishi Electric Corp | Passage device, refrigerating cycle device, pressure pulsation reducing device, and pressure pulsation reducing method |
WO2013099972A1 (en) * | 2011-12-26 | 2013-07-04 | 株式会社未来技術研究所 | Bubble-removal device, outdoor heat-exchange device, and refrigeration/air-conditioning system |
-
2015
- 2015-06-15 JP JP2016500428A patent/JP5945377B1/en active Active
- 2015-06-15 WO PCT/JP2015/067140 patent/WO2016203511A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61150035U (en) * | 1985-03-06 | 1986-09-17 | ||
JPH06117730A (en) * | 1993-01-25 | 1994-04-28 | Toshiba Corp | Vapor-liquid two-phase flow distributer |
JP2001050613A (en) * | 1999-08-10 | 2001-02-23 | Daikin Ind Ltd | Refrigerant distributor |
JP2002277079A (en) * | 2001-03-21 | 2002-09-25 | Mitsubishi Electric Corp | Refrigerating cycle |
JP2005283010A (en) * | 2004-03-30 | 2005-10-13 | Mitsubishi Electric Corp | Passage device, refrigerating cycle device, pressure pulsation reducing device, and pressure pulsation reducing method |
WO2013099972A1 (en) * | 2011-12-26 | 2013-07-04 | 株式会社未来技術研究所 | Bubble-removal device, outdoor heat-exchange device, and refrigeration/air-conditioning system |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3604976A4 (en) * | 2017-03-20 | 2021-04-28 | Hajime Odani | Fluid stirring-based liquefaction promoting apparatus installed on pipe path of heat pump system |
CN111566421A (en) * | 2018-01-04 | 2020-08-21 | Cpm控股有限公司 | Liquefaction promoting device with spring capable of vibrating and shaking |
CN111566421B (en) * | 2018-01-04 | 2022-06-14 | Cpm控股有限公司 | Liquefaction promoting device with spring capable of vibrating and shaking |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016203511A1 (en) | 2017-06-29 |
JP5945377B1 (en) | 2016-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6225069B2 (en) | Fluid agitation device in heat pump system | |
KR101780167B1 (en) | Liquefaction promoting device by fluid stirring installed on piping route of heat pump system | |
JP5945377B1 (en) | Fluid stirring device and heat pump system | |
WO2019135292A1 (en) | Liquefaction promoting device having springs capable of oscillating and rocking | |
JP6133003B1 (en) | Refrigerant processing apparatus and refrigeration air conditioning system | |
WO2014103436A1 (en) | Refrigeration cycle device | |
CN104011471A (en) | Air conditioner | |
JP4899641B2 (en) | Mixed fluid separator | |
JP2016035376A (en) | Evaporator | |
JP2008256350A (en) | Refrigerant cycle device | |
JP4078786B2 (en) | Refrigeration and air conditioning cycle equipment | |
JP2018096609A (en) | Compressor unit and outdoor unit including the same | |
EP2796822B1 (en) | Air conditioner | |
Carrillo et al. | Experimental performance analysis of a novel ultra-low charge ammonia air condensed chiller | |
KR20180095768A (en) | Fluid stirring device in heat pump system | |
JP4720510B2 (en) | Refrigerant cycle equipment | |
JP2015102301A (en) | Beverage cooling apparatus | |
JP2009047326A (en) | Air conditioning, freezing and refrigerating system | |
KR20150133487A (en) | Turbo chiller and chiller system comprising the same | |
JP4333556B2 (en) | Gas-liquid separator for ejector cycle | |
JP2017508943A (en) | Co-generation engine and method for operating the co-generation engine | |
JP7105516B2 (en) | Mixed refrigerant container with gas-liquid mixing function, How to use mixed refrigerant container with gas-liquid mixing function | |
WO2024127873A1 (en) | Liquefaction accelerator by fluid agitation to be disposed in piping of heat pump system | |
JP2006258413A (en) | Mixed fluid separation apparatus | |
US20220397315A1 (en) | Fluid stirring and liquefaction promoting apparatus disposed on pipeline of heat pump system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2016500428 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15895532 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15895532 Country of ref document: EP Kind code of ref document: A1 |