WO2016202869A1 - Inorganic cellular monobloc cation-exchange materials, preparation method thereof, and separation method using same - Google Patents

Inorganic cellular monobloc cation-exchange materials, preparation method thereof, and separation method using same Download PDF

Info

Publication number
WO2016202869A1
WO2016202869A1 PCT/EP2016/063772 EP2016063772W WO2016202869A1 WO 2016202869 A1 WO2016202869 A1 WO 2016202869A1 EP 2016063772 W EP2016063772 W EP 2016063772W WO 2016202869 A1 WO2016202869 A1 WO 2016202869A1
Authority
WO
WIPO (PCT)
Prior art keywords
monolith
cation
metal
solution
aqueous solution
Prior art date
Application number
PCT/EP2016/063772
Other languages
French (fr)
Inventor
Alicia SOMMER
Jérémy CAUSSE
Agnès GRANDJEAN
Xavier Deschanels
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Publication of WO2016202869A1 publication Critical patent/WO2016202869A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0045Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by a process involving the formation of a sol or a gel, e.g. sol-gel or precipitation processes
    • C04B38/0048Precipitation processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/36Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction
    • B01D15/361Ion-exchange
    • B01D15/362Cation-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0048Inorganic membrane manufacture by sol-gel transition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/147Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing embedded adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/027Silicium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/09Inorganic material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5007Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with salts or salty compositions, e.g. for salt glazing
    • C04B41/501Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with salts or salty compositions, e.g. for salt glazing containing carbon in the anion, e.g. carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • G21F9/301Processing by fixation in stable solid media
    • G21F9/302Processing by fixation in stable solid media in an inorganic matrix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2189Metal-organic compounds or complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/028321-10 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02833Pore size more than 10 and up to 100 nm
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/006Radioactive compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate

Definitions

  • the invention relates to a cationic exchanger alveolar inorganic monolithic material.
  • the invention relates to a material in the form of an alveolar monolith constituted by a matrix of an inorganic oxide with an open and interconnected hierarchical porosity, and nanoparticles of a metal hexa- or octacyanometallate. , namely an inorganic solid material exchanger of a metal cation, being distributed in said porosity.
  • the invention also relates to the process for preparing said material.
  • the present invention also relates to a process for separating metal cations, in particular radioactive cations, contained in a liquid using said material.
  • the technical field of the invention may, in general, be defined as that of the treatment of liquid effluents and especially as that of the treatment of radioactive liquid effluents, in particular to eliminate metal cations, such as cesium cations.
  • Nuclear facilities such as power reactors, spent nuclear fuel reprocessing plants, laboratories, research centers, and liquid effluent treatment plants generate radioactive liquid effluents.
  • the first step of a process for decontaminating liquid solutions, in particular low-concentration radioactive liquid solutions, on an industrial scale generally consists in carrying out the evaporation of these solutions in order to concentrate all the ions present in those in the form of a solid waste, which thus becomes a residue of the decontamination process.
  • the volumes of sludge formed are substantial and may pose problems of compatibility with the materials currently used to confine the waste, such as glasses or cementitious matrices.
  • the coprecipitation agents are often sensitive to the chemical composition and the ionic strength of the effluent, which causes a significant drop in the selectivity and therefore an increase in the volume of waste.
  • the inorganic ion exchange materials currently used to sorb the elements to be decontaminated are essentially in the form of relatively fine powders having grain sizes of the order of one micrometer, which are not compatible with a process implemented. continuously.
  • the inorganic ion exchange materials are no longer used in the form of loose powders but solid, compact powders, clogging problems are certainly avoided, but the micron size implies a low adsorption capacity because the adsorption occurs in area.
  • an inorganic solid ion exchange material more exactly for an inorganic cation exchange material that is compatible with a continuous implementation in a process for separating a metal cation. from a liquid medium, and which has a high adsorption capacity.
  • this inorganic solid ion exchange material must be chemically and mechanically stable in order to be packaged in a column allowing continuous operation without the occurrence of clogging or clogging phenomena.
  • This inorganic solid ion exchanger material must also have excellent fixing properties, in particular decontamination, that is to say similar, or even superior in particular to that of an inorganic ion exchange material in the form of loose powders.
  • the inorganic ion exchange material must also combine good mechanical stability with a high reaction rate as opposed to products in compact form whose low specific surface area leads to slow reaction rates.
  • this inorganic solid ion exchange material must have among others excellent mechanical and chemical stability, a high coefficient of affinity or decontamination, a high reactivity, as well as good selectivity.
  • the inorganic solid ion exchange material can be easily immobilized / safely conditioned in known matrices, and / or by known methods.
  • the material must have a perfectly reproducible and controlled composition and properties and must be prepared by a reliable process.
  • the object of the present invention is to provide an inorganic solid ion exchange material that meets these needs, among others.
  • the object of the present invention is still to provide an inorganic solid ion exchange material, which does not have the drawbacks, defects, disadvantages, and limitations of the inorganic solid ion exchange materials of the prior art, especially in the form of loose powders or compact, and which overcomes the problems of the materials of the prior art.
  • the object of the present invention is finally to provide a process for preparing such an inorganic solid ion exchange material.
  • a solid material in the form of an alveolar monolith consisting of a calcined matrix of an inorganic oxide with a hierarchical porosity. and open comprising macropores, mesopores, and micropores, defined by walls, with integrated transition metal atoms M and bonded to said walls, said macropores, mesopores and micropores being interconnected, wherein nanoparticles of a inorganic solid material exchanger of a metal cation selected from metal hexa- and octacyanometallates of formula [Alk + x ] M n + y [M '(CN) m ] t z " , where Alk + is a monovalent cation selected from alkali metal cations and the NH 4 + ammonium cation, x is 0, 1 or 2, M is a transition metal, n is 2 or 3, y is 1, 2 or 3,
  • Alk + may therefore represent a monovalent cation of an alkali metal such as Li, Na, or K, K being preferred; or an ammonium NH 4 + cation.
  • Said nanoparticles may also be called “nanocrystals”.
  • the term "monolith” means a solid object whose average dimension is at least 1 mm.
  • macropores are understood to mean pores whose average size, generally defined by the diameter of their cross section -because the pores generally have a circular cross-section, is from 4 ⁇ to 50 ⁇ ; "mesopores” means pores with an average size of 20 to 500 ⁇ , preferably 20 to 300 ⁇ ; and “micropores” means pores with an average size of less than 20 ⁇ , for example 5 to 10 ⁇ .
  • the material according to the invention is fundamentally different from the materials of the prior art in that it is in the specific form of an alveolar monolith, in that this monolith consists of a calcined matrix of an inorganic oxide, in that this monolith has a hierarchical porosity associating three types of pores, namely macropores, mesopores, and micropores, in that nanoparticles of a specific material which is an inorganic solid material exchanger of a chosen metal cation among the metal hexa- and octacyanometallates are distributed in this porosity, and finally in that the transition metal atoms M are integrated and bonded to said walls, and the nanoparticles are attached to an inner surface of said walls via said atoms. of transition metal.
  • the material according to the invention meets the needs listed above, it does not have the disadvantages of the materials of the prior art and it provides a solution to the problems posed by the materials of the prior art.
  • the material according to the invention which is in the specific form of a hierarchized porous alveolar monolith, has the advantage of greatly reducing the pressure drop. relative to a material consisting of a compact stack of particles.
  • the material according to the invention thus makes it possible to limit the risk of clogging of the treatment system, such as a column, due to the production of fine particles within the bed of particles.
  • the material according to the invention is in the form of a monolith gives it high mechanical strength and stability, while the fact that the monolith is mainly constituted by an inorganic oxide gives it a high chemical resistance and ensures hence the treatment of a wide variety of effluents.
  • the inorganic oxide matrix which constitutes the monolith is calcined, which further increases its mechanical strength and stability. Then, the presence of the inorganic metal cation exchanger solid material in the form of nanoparticles distributed in the porosity of the monolith greatly increases the amount of metal cations that can be absorbed relative to an inorganic solid cation exchange material which is under a massive form.
  • the transition metal atoms M are integrated and bonded to the walls of the pores and the nanoparticles are attached to the inner surface of said walls, that is to say inside the pores. through said transition metal atoms.
  • the nanoparticles are firmly bonded to the walls and their training, detachment, will be limited or even non-existent.
  • the quantity of active functions, in other words of nanoparticles, immobilized in the monolith is not dependent on the number of groups of the inorganic oxide, such as the silanol groups in the case of silica, which are present on the surface of the inorganic oxide such as silica.
  • the degree of functionalization of the materials according to the invention is therefore higher than in the case of post-functionalized porous solids, for example via a graft binding to the groups of the inorganic oxide such as silanols.
  • the materials according to the invention have both excellent mechanical strength especially because the monolith has been calcined, and excellent sorption properties.
  • WO-A1-2001 / 47855 [1] discloses the functionalization of a silica monolith with a silane in order to more efficiently produce ketene molecules.
  • the silane is thus bonded to the silica network by post-functionalization, that is to say by reaction with the silanol groups present on the surface of the silica.
  • This process consists of preparing a direct oil-in-water emulsion containing a majority of oil by volume.
  • a precursor of silica previously dissolved in aqueous phase reacts to form an inorganic network surrounding the drops of oil.
  • the oil phase is then removed by rinsing, which releases the macroporosity of the material.
  • surfactants are required. These surfactants can be either molecular organic surfactants or colloidal particles.
  • this process consists in preparing an emulsion by adding an oily phase to an aqueous solution of surfactant, adding to the aqueous solution of surfactant at least one precursor tetraalkoxide of the inorganic oxide polymer, before or after the preparation of the emulsion, to allow the reaction mixture to rest until the precursor is condensed, and then to dry the mixture to obtain a monolith.
  • At least one alkoxide carries an organic group.
  • this process comprises at least one step of mineralization of an oil-in-water emulsion, formed by droplets of an oily phase dispersed in a continuous aqueous phase, and in which colloidal solid particles are present at the interface. formed between the continuous aqueous phase and the droplets of the oily phase.
  • the colloidal solid particles may be inorganic or organic.
  • colloidal solid particles may be cation exchange nanoparticles.
  • the use of the monoliths of this document for removing cations from a liquid effluent, particularly for removing cations from radioactive effluent radioactive elements, is neither described nor suggested.
  • the role of the colloidal particles in this document is exclusively to stabilize the emulsion, more precisely the water-oil interface of the emulsion, to induce a monodisperse macroporosity of the material.
  • the macroporosity of the material derives directly from the size of the drops of the emulsion.
  • the size of the drops of the emulsion being monodisperse, the macroporosity of the material is consequently also very monodisperse.
  • the role of the particles in this document is in no way to functionalize the monolith in order to confer cation exchange properties, including selective adsorbent certain cations.
  • the sole and only role of the nanoparticles used is to functionalize the monolith, and not to stabilize the emulsion used during the preparation of the material, as will be seen below in the description of the preparation process of the material according to the invention.
  • cation exchange nanoparticles in particular ferrocyanides, used alone do not make it possible to stabilize the emulsion and to prepare the monolith. Therefore, in the process according to the invention set out below, a surfactant is needed to stabilize the emulsion.
  • the inorganic oxide is selected from oxides of at least one metal or metalloid selected from Si, Ti, Zr, Th, Nb, Ta, V, W, Y, Ca, Mg and Al.
  • the inorganic oxide is silica.
  • the matrix of an inorganic oxide is a calcined matrix.
  • this matrix has undergone a heat treatment at a temperature of 400 ° C to 1000 ° C, for example at a temperature of 500 ° C for a period of 1 to 10 hours, for example 6 hours .
  • the exchanger material is chosen from hexa and octacyanometallates of metal of formula given above. This choice is generally made according to the intended application, the nature of the liquid effluent to be treated, and in particular according to the metal cation or cations that are desired to separate.
  • M n + is Fe 2+ , Ni 2+ , Fe 3+ , Co 2+ , Cu 2+ , or Zn 2+ .
  • M 'is Fe 2+ or Fe 3+ or Co 3+ and m is 6; or M 'is Mo 5+ and m is 8.
  • [M '(CN) m ] z - is [Fe (CN) 6 ] 3 - , [Fe (CN) 6 ] 4 - , [Co (CN) 6 ] 3 or [Mo (CN) 8 ] 3 "
  • the inorganic solid material exchanger of a metal cation has the formula K 2 M Fe (CN) 6 , for example K 2 Cu Fe (CN) 6 , K 2 ZnFe (CN) 6 , or K 2 Co Fe (CN) 6 .
  • one of the main applications targeted for the materials according to the invention is that of radioactive cesium sorbents for nuclear decontamination purposes.
  • ferrocyanide (and ferricyanide) nanoparticles of copper (FCCu) of general formula [K + x ] Cu 2+ y [Fe (CN) 6] z " , for example K 2 Cu Fe (CN) 6 are very selective Their crystalline structure is cubic face-centered, and has the advantage of being able to selectively exchange a cesium atom with an unbound potassium atom present in the cell.
  • nanoparticles have a sphere or spheroidal shape.
  • the nanoparticles have an average size, such as a diameter, of 2 to 300 nm, preferably 2 to 100 nm, more preferably 2 to 50 nm.
  • the nanoparticle content of the at least one inorganic solid exchanger material of a metal cation is 0.5% to 15% by weight, preferably 0.5% to 5% by weight.
  • the invention further relates to a method for preparing the material according to the invention which comprises at least the following successive stages:
  • an aqueous solution A of an organic surfactant is prepared, and the pH of this solution is adjusted to a value of 1.5 to 2.5, preferably 1.8 to 2.2, more preferably of 2;
  • aqueous solution C dissolving a precursor of the inorganic oxide in solution B, whereby an aqueous solution C is obtained; d) optionally, the pH of the aqueous solution C is adjusted to a value of 1.5 to 2.5, preferably 1.8 to 2.2, more preferably 2, and an aqueous solution of at least one metal fluoride, preferably at least one alkali metal fluoride such as KF, LiF, or NaF in solution C, whereby an aqueous solution D is obtained;
  • step d an oil phase is added rapidly after the end of step d), with mechanical stirring with shear, to the aqueous solution D, whereby an oil-in-water emulsion E formed of droplets of the phase is obtained; oily dispersed in a continuous aqueous phase;
  • step f) maturation is carried out, mineralization of the emulsion E obtained in step e), whereby the monolith is formed;
  • transition metal M contained in the solution B will then serve as a nucleation point for the growth of the nanoparticles of at least one inorganic solid material exchanger of a metal cation at the end of the protocol.
  • the M n + ions are rather in the vicinity of the micelles of surfactants in the aqueous phase. They are not located at the water / oil interface.
  • step e By “rapidly add” in step e), it is generally meant that the oily phase is added to the aqueous solution D within less than 2 hours after the end of step d).
  • the method according to the invention comprises a specific sequence of specific steps which has never been described or suggested in the prior art.
  • the only role of the nanoparticles used which are obtained only in the final stage of the process, is to functionalize the monolith and not to stabilize the emulsion implemented during of the preparation of the material, as is the case in the process described in document [4].
  • the nanoparticles of cation exchangers, in particular ferrocyanides are obtained in the process according to the invention after the preparation of the emulsion and can not therefore stabilize the emulsion in order to prepare the monolith.
  • an organic, molecular surfactant is required to stabilize the emulsion.
  • the quantity of active functions, in other words of nanoparticles, immobilized in the monolith is not dependent on the number of groups inorganic oxide, such as silanol groups in the case of silica, which are present on the surface of the inorganic oxide such as silica.
  • the degree of functionalization of the materials according to the invention, prepared by the process according to the invention is therefore higher than in the case of post-functionalised porous solids, for example by means of a graft binding to the groups of inorganic oxide such as silanols.
  • the process according to the invention makes it possible to prepare materials which have both excellent mechanical strength, in particular because the monolith has been calcined, and excellent sorption properties.
  • the process according to the invention makes it possible to prepare a material comprising transition metal hexa- or octacyanometallate nanoparticles such as transition metal ferrocyanides in a calcined monolith while transition metal hexa- or octacyanometallates such as transition metal ferrocyanides can not be calcined since the transition metal hexa- or octacyanometalates such as transition metal ferrocyanides are sensitive to high temperatures and degraded beyond 100 ° C.
  • the process according to the invention because of its specific succession of specific steps, makes it possible to prepare a material with a calcined monolith comprising transition metal hexa- or octacyanometallate nanoparticles such as transition metal ferrocyanides, without having to having to post-functionalize this monolith via a graft binding to inorganic oxide groups such as silanols.
  • a solution containing the metal ions M n + is used as the precursor of the material.
  • the monolith for example the silica monolith, is then grown in this solution (Solution B), and a monolith containing M metals is thus obtained which will act as a growth point for the metal hexa- or octacyanometallate particles of the metal.
  • transitions such as ferrocyanide particles or transition metal ferricyanides.
  • transition metal ferrocyanides K 2 MFe (CN) 6 .
  • ferrocyanides are crystalline coordination polymers whose structure is cubic face-centered. These compounds have the particularity of being able to receive in the center of the crystal lattice a potassium atom which can then be exchanged with cesium. This ion exchange is very selective with respect to cesium. That's why ferrocyanides are one of the most efficient cesium exchangers.
  • the aqueous solution A containing the organic surfactant generally has an organic surfactant concentration of 10 to 30% by weight, for example 20% by weight.
  • the organic surfactant is preferably selected from cationic surfactants and nonionic surfactants such as Pluronics ® as Pluronic ® P 123 marketed by BASF or SIGMA-ALDRICH companies.
  • Solution A is an aqueous solution.
  • aqueous solution it is generally meant that the solvent of this solution is selected from water, and mixtures of water and one or more alcohols such as methanol, said mixtures containing a majority of water (more than 50 % water) by volume.
  • Solution A has a pH generally of 1.5 to 2.5, preferably 1.8 to 2.2, more preferably 2.
  • solution A contains generally an acid, preferably a mineral acid such as hydrochloric, nitric or sulfuric acid.
  • Solution B contains the M n + ion, such as M 2+ , generally in the form of a metal salt M.
  • This solution B is an aqueous solution.
  • the water of this aqueous solution is ultra pure water.
  • the salt of the metal M contained in this solution B is a salt whose metal M is generally selected from metals capable of giving a cyanometalate of this metal M, such as a hexacyanoferrate of this metal, which is insoluble.
  • This metal M may be chosen from all transition metals, for example from copper, cobalt, zinc, nickel and iron, etc.
  • the ion M n + may therefore be selected from Fe 2+ , Ni 2+ , Fe 3+ , Co 2+ , Cu 2+ , and Zn 2+ ions.
  • the salt of the metal M can be, for example, a nitrate, a sulphate, a chloride, an acetate, a tetrafluoroborate, optionally hydrated, of one of these metals M.
  • the preferred salts are, for example, nitrates of formula M (NO 3) 2.
  • the concentration of the salt of the metal M in solution B is preferably from 0.01 to 1 mol / L, more preferably from 0.01 to 0.05 mol / L.
  • the salt concentration of the metal M in the solution B is generally chosen as a function of the final concentration of nanoparticles in the solid material, monolith.
  • Solution B has a pH of 1.5 to 2.5, preferably 1.8 to 2.2, more preferably 2.
  • solution B generally contains an acid, preferably a mineral acid such as hydrochloric, nitric or sulfuric acid.
  • the aqueous solution C containing the ions M n + , an organic surfactant, and a precursor of the inorganic oxide is generally prepared by adding, dissolving, a given volume of precursor, generally liquid, to / in the solution B.
  • This addition is generally an addition that can be described as slow, preferably this addition is carried out drop by drop.
  • the inorganic oxide is generally chosen from oxides of metals and metalloids, and the precursor of this oxide is generally chosen from alkoxides of metals or metalloids, and salts of metals or metalloids, such as chlorides and nitrates of metals and metalloids.
  • the precursor (s) of the silica may be chosen from tetramethoxyorthosilane (TMOS), tetraethoxyorthosilane (TEOS), dimethyldiethoxysilane (DMDES), and mixtures thereof.
  • TMOS tetramethoxyorthosilane
  • TEOS tetraethoxyorthosilane
  • DMDES dimethyldiethoxysilane
  • the concentration of the surfactant in the aqueous solution C prepared in step c) is generally 10% to 30% by weight, and the concentration of the precursor is generally 1 to 500 g / L.
  • the pH of the aqueous solution C prepared in step c) may be 1.5 to 2.5, more preferably 1.8 to 2.2, more preferably 2.
  • step d) If the pH of the aqueous solution C prepared in step c) is not 1.5 to 2.5, preferably 1.8 to 2.2, more preferably 2, then the pH of the aqueous solution C is adjusted to a value of 1.5 to 2.5, preferably 1.8 to 2.2, more preferably 2 at the beginning of step d).
  • sodium fluoride is generally used as metal fluoride, especially when the inorganic oxide is silica.
  • the pH is 1.5 to 2.5, preferably 1.8 to 2.2, more preferably 2, especially when the inorganic oxide is silica. because the isoelectric point of the silica is at pH 2. It is indeed sought to decouple the hydrolysis and polycondensation steps of the silica, so that the protocols are "cleaner".
  • This alkali metal fluoride such as NaF, will act as a catalyst for the polycondensation reaction of silica. It is the addition of this alkali metal fluoride, such as NaF, which will initiate the reaction which will eventually lead to a silica-based material.
  • the pH of the preparation of the materials, or rather the pH of the aqueous phases used, and in particular of the aqueous phase of the emulsion is close to 0.
  • the nanoparticles of hexa- or metal octacyanometallate of formula [Alk + x ] M n + y [M '(CN) m ] z " exposed above are not stable
  • step e) When using such nanoparticles, therefore, it is necessary to place at a pH of the aqueous phase of the emulsion E prepared in the higher step e), generally from 1.5 to 2.5, preferably from 1.8 to 2.2, more preferably 2, and under these conditions, the addition of at least one metal fluoride, such as NaF, is essential, otherwise in step f) following the emulsion remains liquid, the reaction sol-gel evolves only too slowly to the solid, and one does not obtain a monolith.
  • at least one metal fluoride such as NaF
  • the solution of at least one metal fluoride, such as NaF generally has a concentration of 1 to 40 g / l, for example 8 g / l.
  • step d a given volume of this solution of at least one metal fluoride in solution C is added.
  • the solution D obtained therefore generally has a pH of 1.5 to 2.5, preferably 1.8 to 2.2, more preferably 2, and its concentration of metal fluoride such as NaF is generally from 1 to 100 mg / l, preferably 10 mg / l.
  • the oily phase added during step e) is generally constituted by one or more liquid alkanes chosen from linear or branched alkanes having from 5 to 22 carbon atoms, preferably from 7 to 22 carbon atoms, such as dodecane and hexadecane, or from cyclic alkanes of 5 to 22 carbon atoms such as cyclohexane.
  • the mass ratios of the constituents used to prepare the emulsion can be as follows: mM / m (surfactant solution, for example surfactant solution such as P123, at 20% by weight and pH 2) / m ( precursor, for example TEOS) / m (metal fluoride solution, for example NaF, at 8 g / l) / m (oily phase, for example cyclohexane): 0.02-0.2 / 1-3 / 0 , 5-2 / 9.10 3 -9.10- 2 / 3-9, for example 0.050 / 1.68 / 1 / 9,3.10 "3 / 3.98.
  • surfactant solution for example surfactant solution such as P123, at 20% by weight and pH 2
  • precursor for example TEOS
  • metal fluoride solution for example NaF
  • step e) The mechanical stirring carried out during step e) is generally carried out using an apparatus intended to emulsify, such as a dispersing-homogenizing apparatus Ultraturrax ® type.
  • Step e) can be described as an emulsification step of the system constituted by the solution D obtained in step d).
  • Mechanical agitation is mechanical stirring with shear.
  • the shear rate can range from 1 to 20000 rpm, preferably from 2000 to 15000 rpm, more preferably the shear rate is 3200 rpm.
  • the volume fraction of the oily phase of the emulsion E obtained during step e) is generally from 50% to 74%, preferably from 55% to 65% of the volume of the emulsion.
  • step f) the mineralization of the emulsion E obtained in step e) is carried out, whereby the monolith is formed.
  • This step can be carried out by leaving the emulsion E obtained in step e) at rest at a temperature of 10 to 60 ° C., for example at a temperature of 40 ° C. for a time sufficient for the monolith with hierarchical porosity. forms.
  • This duration can be for example from 2 hours to 3 weeks, for example 7 days.
  • step f the monolith is washed and / or dried during step g) -
  • the washing makes it possible to eliminate the organic residues originating from the oily phase and which are essentially in the macropores.
  • This washing can be carried out with an organic solvent such as THF, acetone and their mixtures.
  • This washing can be carried out for a period of 12 to 36 hours, for example 24 hours.
  • this washing is carried out by bringing the organic solvent to reflux.
  • an optimal washing treatment which makes it possible to obtain a final monolith having a minimum of fractures, is a washing treatment using supercritical CO 2 , in which case the drying step can be omitted. Drying can be carried out by allowing the organic solvent used for washing at room temperature to evaporate for a period generally of 5 to 10 days, for example 7 days.
  • Drying can also be performed using a supercritical fluid, such as supercritical CO 2 .
  • the steps of washing and then drying of the monolith which are usually carried out are replaced by a simple drying step which consists in exposing the monolith to the ambient air during which the alkane evaporates and releases the macroporosity of the material .
  • step g it is simply enough to dry the monolith.
  • the monolith which is loaded with transition metal is then calcined during step h), to improve its mechanical strength, and then cooled to room temperature.
  • This calcination is generally carried out by maintaining the monolith at a temperature, called the calcining temperature, of 500 to 650 ° C. for a period of 1 to 8 hours, for example at a temperature of 500 ° C. for a period of 6 hours.
  • a temperature called the calcining temperature
  • a thermal calcination cycle is carried out in which the temperature of the monolith is raised to the calcination temperature by carrying out one or more temperature ramps.
  • these ramps can be separated by temperature trays and these ramps can be made at the same rate of rise in temperature or at different rates of rise in temperature.
  • the thermal calcination cycle may comprise, for example, firstly a first temperature ramp during which the temperature of the monolith is raised at a rate of 0.5 ° C./min to reach a temperature of 200 ° C.
  • a first tray can then be observed at 200 ° C for 2 hours. Then it is possible to carry out a second temperature ramp during which the temperature of the monolith is raised at a rate of 0.2 ° C./min to reach a temperature of 500 ° C., which is the final calcination temperature.
  • the monolith is then allowed to cool to room temperature.
  • transition metal atoms for example Zn, Cu or Co, will then serve as growth points for the Prussian blue analog particles during the impregnation stage i).
  • the monolith is impregnated with an aqueous solution of [Alk + X ] [M '(CN) m ] z " , for example K 4 Fe (CN) 6 .
  • the concentration of this solution is generally 0.05 to 0.2 mol / l, preferably 0.1 mol / l.
  • This solution may be an acid solution or not.
  • this solution is an acid solution
  • the acid concentration is generally less than or equal to 1.5 mol / L.
  • the M n + ions react with [Alk + X ] [M '(CN) m ] t z ⁇ to form particles of [Alk + x] M n + y [M' (CN) m ] t z " . that is, Prussian blue analog particles.
  • the monoliths may be impregnated with an acidic or non-aqueous solution of K 4 Fe (CN) 6, the concentration of which is between 0.05M and 0.2M. Ideally, the concentration of K 4 Fe (CN) 6 is 0.1M.
  • the pH of the solution can be maintained using nitric acid, the concentration of which is between 0 and 1.5M.
  • M 2+ ions for example Co 2+ , Zn 2+ or Cu 2+
  • Fe (CN) 6 4 - ions react with Fe (CN) 6 4 - ions to form Prussian blue K2M Fe (CN) 6 analog particles, for example K 2 CoFe (CN) 6, K 2 ZnFe (CN) 6 or K 2 CuFe (CN) 6.
  • the material according to the invention as it has been obtained is obtained. described above.
  • the impregnated monolith is washed and dried during a step j). The washing can be carried out with water, and the drying can be carried out at a temperature of 40 ° C for 24 hours.
  • the material according to the invention can be used in particular, but not exclusively, in a process for separating at least one metal cation from a liquid medium containing it, wherein said liquid medium is brought into contact with the material according to the invention.
  • the materials according to the invention because of their excellent properties such as excellent exchange capacity, excellent selectivity, high reaction rate, are particularly suitable for such use.
  • the excellent properties of strength and mechanical stability of the material according to the invention resulting from its specific structure allow its packaging in column and the continuous implementation of the separation process, which can thus be easily integrated into an installation existing, for example in a chain or processing line comprising several steps.
  • said liquid medium may be an aqueous liquid medium, such as an aqueous solution.
  • Said liquid medium may be a process liquid or an industrial effluent.
  • said liquid medium may be a liquid medium containing radionuclides.
  • the liquid medium may be selected from liquids and effluents from the nuclear industry, and activities using radionuclides.
  • the liquid medium may be an aqueous solution containing, besides said metal cation, salts (of course different from the salts of said metal cation) such as NaCl at a high concentration, for example greater than 30 g / l.
  • the process according to the invention makes it possible surprisingly to effectively and selectively separate a metal cation such as a cesium cation, even from liquid media, such as aqueous solutions, which are heavily loaded with salts, in particular in NaCl.
  • liquid media such as aqueous solutions
  • salts in particular in NaCl.
  • Such media heavily loaded with NaCl are for example seawater and brackish water.
  • said metal cation may be present at a concentration of 0.1 picogram to 100 mg / L, preferably 0.1 picogram to 10 mg / L.
  • metal also covers the isotopes and in particular the radioactive isotopes of said metal.
  • the cation is a cation of an element selected from Cs, Co, Ag, Ru, Fe and Ti and the isotopes, especially radioactive thereof.
  • the cation is a 134 Cs, or 137 Cs cation.
  • the process according to the invention can be carried out advantageously with a liquid medium which is an aqueous solution, containing as a metal cation a cation of 134 Cs, and / or 137 Cs, and further containing salts, such as NaCl, at a high concentration, for example greater than 30 g / l.
  • a liquid medium which is an aqueous solution, containing as a metal cation a cation of 134 Cs, and / or 137 Cs, and further containing salts, such as NaCl, at a high concentration, for example greater than 30 g / l.
  • the process according to the invention makes it possible to effectively and selectively separate these metal cations from radioactive cesium from such highly saturated liquid media as salts such as NaCl. This effective and selective separation is possible thanks to the selectivity of the material according to the invention vis-à-vis the Cs in the presence of a competing ion such as Na.
  • FIG. 1 is a photograph of a silica monolith functionalized with cobalt ferrocyanide particles prepared by the method according to the invention.
  • Figure 2 is a photograph of a monolith functionalized with zinc ferrocyanide particles prepared by the process according to the invention.
  • Figure 3 is a photograph of a monolith functionalized with copper ferrocyanide particles prepared by the process according to the invention.
  • Figure 4 is a scanning electron microscope (M EB) photograph of a monolith functionalized with cobalt ferrocyanide particles called ABP particles (i.e. Prussian Blue Analogs. as well as the compounds of the ferro- and ferricyanide family).
  • ABP particles i.e. Prussian Blue Analogs. as well as the compounds of the ferro- and ferricyanide family.
  • the scale shown in FIG. 4 represents 10 ⁇ .
  • Figure 5 is a scanning electron microscope (M EB) photograph of a monolith functionalized with Zn ferrocyanide particles.
  • the scale shown in FIG. 5 represents 10 ⁇ .
  • Figure 6A is a scanning electron microscope (M EB) photograph of a monolith functionalized with copper ferrocyanide particles.
  • the scale shown in FIG. 6A represents 10 ⁇ .
  • Figure 6B is a scanning electron microscope (M EB) photograph of a monolith functionalized with copper ferrocyanide particles. This figure is an enlargement of the circled portion of Figure 6A.
  • the scale shown in FIG. 6B represents 3 ⁇ .
  • FIG. 7 is a graph which shows the curves obtained during analyzes by the small angle X ray scattering ("SAXS") technique performed on a monolith functionalized with particles of cobalt ferrocyanide, prepared by the process according to the invention (curve A), a monolith functionalized with zinc ferrocyanide particles, prepared by the process according to the invention (curve B), and a monolith functionalized with ferrocyanide particles of copper, prepared by the process according to the invention (curve C).
  • SAXS small angle X ray scattering
  • DPC is the distance between two pore centers.
  • FIG. 8 is a graph which shows the nitrogen adsorption isotherms obtained during nitrogen adsorption measurements carried out on a cobalt ferrocyanide functional monolith (“CoPBA") called monolith - CoPBA (curve A) , and on a monolith not functionalized by K 4 Fe (CN) 6 and simply loaded in Co called monolith - Co (curve B).
  • CoPBA cobalt ferrocyanide functional monolith
  • Curve A monolith - CoPBA
  • CN K 4 Fe
  • Curve B monolith not functionalized by K 4 Fe (CN) 6 and simply loaded in Co
  • P / Po the relative pressure
  • the ordinate is carried the amount of adsorbed nitrogen (in cm 3 / g STP).
  • FIG. 9 is a graph which gives the cesium adsorption isotherms carried out on a monolith functionalized with particles of cobalt ferrocyanide, prepared by the process according to the invention (curve A), a monolith functionalized with particles of ferrocyanide of zinc, prepared by the process according to the invention (curve B), and a monolith functionalized with copper ferrocyanide particles, prepared by the process according to the invention (curve C).
  • FIG. 10 is a graph which gives the sodium adsorption isotherms carried out on a monolith functionalized with particles of cobalt ferrocyanide, prepared by the process according to the invention (curve A), a monolith functionalized with particles of ferrocyanide of zinc, prepared by the process according to the invention (curve B), and a monolith functionalized with copper ferrocyanide particles, prepared by the process according to the invention (curve C).
  • silica monoliths containing nanoparticles of ferrocyanides according to the invention are prepared by the process according to the invention and these silica monoliths containing nanoparticles of ferrocyanides are used as ionic cesium (Cs + ) sorbents. .
  • Example 1 silica monoliths containing nanoparticles of ferrocyanides according to the invention are prepared by the process according to the invention and these silica monoliths containing nanoparticles of ferrocyanides are used as ionic cesium (Cs + ) sorbents. .
  • the general preparation protocol according to the invention of silica monoliths containing nanoparticles of transition metal ferrocyanides is prepared, and three silica monoliths containing nanoparticles of cobalt ferrocyanide and ferrocyanide are prepared. of zinc, and copper ferrocyanide by this protocol.
  • the protocol for preparing silica monoliths containing ferrocyanide nanoparticles comprises the following successive steps:
  • a solution containing a given weight of Pluronic ® P123 (surfactant commercially available from BASF ® or Sigma-Aldrich ®) so as to obtain a solution with a surfactant concentration of 20% by weight.
  • solution A The solution prepared in this step is called solution A. 2. To 50 mg of transition metal (M 2+ ) is added to 1.68 g of solution A.
  • the pH is adjusted to 2.
  • the acid used to rectify the pH at 2.0 is hydrochloric acid.
  • solution B The solution prepared in this step is called solution B.
  • solution D The solution prepared in this step is called solution D. 5. Rapidly, that is to say within 15 minutes after the addition of the solution of sodium fluoride which made it possible to prepare solution D, the solution is emulsified with 5.1 ml of cyclohexane. . For this, one uses a disperseur- homogenizer type Ultraturrax ® T25 device with a S25N probe and cyclohexane are slowly added in the solution D under shear.
  • the shear rate can range from 1 (if 0 no shear) to 20000 rpm, and is preferably 3200 rpm.
  • the mass ratios of the constituents used to prepare the emulsion may be as follows: m of M / m (surfactant solution, for example surfactant solution such as P123, at 20% by weight and pH 2) / m (TEOS) / m (8 g / l NaF solution) / m (cyclohexane): 0.08 / 1.6 / 1 / 9.3 ⁇ 3 / 3.98.
  • the monolith is prepared.
  • the emulsion E is left standing by placing it in an oven for 7 days, at a temperature between room temperature and 50.degree. C., preferably at 40.degree.
  • the monolith is formed.
  • the alkane used is cyclohexane.
  • the washing step can therefore be avoided. It is therefore sufficient to leave the monoliths at 25 ° C for 48 hours to evacuate cyclohexane.
  • the monolith is then calcined to improve its mechanical strength.
  • the thermal calcination cycle firstly comprises a first temperature ramp during which the temperature of the monolith is raised at a rate of 0.5 ° C./min to reach a temperature of 200 ° C.
  • a first plateau is then observed at 200 ° C. for 2 hours.
  • a second temperature ramp is carried out during which the temperature of the monolith is raised at 0.2 ° C / min to reach a temperature of 500 ° C which is the final calcination temperature.
  • the monolith is allowed to cool to room temperature.
  • the monoliths are impregnated with an aqueous solution of K 4 Fe (CN) 6 at 0.1M.
  • M 2+ ions react with Fe (CN) 6 4 - ions to form Prussian Blue (ABP) K 2 MFe (CN) 6 analog particles.
  • the materials are washed with water and with ethanol.
  • a silica monolith comprising nanoparticles of cobalt ferrocyanide, in other words a silica monolith functionalized with nanoparticles of cobalt ferrocyanide.
  • a silica monolith comprising nanoparticles of Zn ferrocyanide, in other words a silica monolith functionalized with Zn ferrocyanide nanoparticles.
  • a silica monolith comprising nanoparticles of copper ferrocyanide, in other words a silica monolith functionalized with copper ferrocyanide nanoparticles.
  • Example 1 a macroscopic observation is made of the three monoliths prepared in Example 1.
  • FIGS. 1, 2 and 3 are photographs showing the macroscopic appearance respectively of the silica monolith functionalized with particles of cobalt ferrocyanide, of the monolith functionalized with zinc ferrocyanide particles, and of the monolith functionalized with particles. of copper ferrocyanide prepared by the process according to the invention in Example 1.
  • the color of the monolith depends on the type of ferrocyanide that is present in the material.
  • Example 1 a scanning electron microscope (SEM) observation of the three monoliths prepared in Example 1 is carried out.
  • Figures 4, 5 and 6A, 6B respectively show the morphology of the monolith functionalized with cobalt ferrocyanide particles (Figure 4), the monolith functionalized with Zn ferrocyanide particles ( Figure 5), and the monolith functionalized with Copper ferrocyanide particles (FIGS. 6A and 6B).
  • the average ferrocyanide particle sizes are 80 to 400 nm for cobalt ferrocyanide, 300 nm for zinc ferrocyanide, and 20 to 100 nm for copper ferrocyanide.
  • ferrocyanide particles are lined with relatively aggregated ferrocyanide particles. Their sizes and polydispersities depend on the type of metal chosen. It turns out that zinc ferrocyanide particles are the most monodisperse and copper ferrocyanide particles are the smallest.
  • Example 1 an analysis of the three monoliths prepared in Example 1 is carried out by the technique of small angle X-ray scattering ("Small Angle X Ray Scatter Ring” or "SAXS" in English).
  • the monoliths according to the invention are macroporous because of their mode of synthesis which uses an emulsion as an imprint. They are also mesoporous because of the use of surfactant in the preparation process. These surfactants are organized in the form of micelles in aqueous phase. The typical size of these micelles reaches a few nanometers. During the monolith washing step, the surfactants are removed and release a cavity of a size close to that of the micelles, that is to say a mesopore.
  • the small-angle X-ray scattering technique probes the material at size scales to characterize the organization of these mesopores.
  • the results of the analyzes by this technique are shown in Figure 7.
  • the curves have an intense peak signifying that there is an average position between two centers of mesopores.
  • the position of this peak at q * makes it possible to evaluate the distance between two centers of pores DPC for each monolith which is equal to 2n / q *.
  • This distance is of the same order of magnitude for each type of monolith. More exactly, the value of DPC is 9.4 nm, respectively; 11.8 nm; and 11.2 nm for monoliths functionalized with ferrocyanides of cobalt, zinc or copper.
  • the variation in the value of this distance can be attributed to the metal-micelle interaction that can vary as the nature of the metal changes.
  • the mesopores are therefore weakly structured since an average distance can be determined without the arrangement being crystalline. If this were the case, the SAXS curves would show several peaks of Bragg.
  • Example 1 the three monoliths prepared in Example 1 are analyzed by the nitrogen adsorption measurement technique. This technique makes it possible to know the specific surface of the materials by applying the BET model.
  • the particles are localized in the macropores and block the access to the mesopores located in the silica shells (see Figures 4 to 6), or the particles precipitate directly in the mesopores.
  • adsorption tests for Cs + ionic cesium are carried out on the functionalized silica monoliths containing nanoparticles of copper, zinc or cobalt ferrocyanide prepared in Example 1.
  • the ferrocyanides contained in the monoliths are used as specific sorbents for Cs + ionic cesium.
  • ferrocyanides contain a potassium ion in the crystal mesh which is specifically exchanged with a cesium ion.
  • This protocol makes it possible to quantify the exchange capacity of the monoliths while ensuring the selectivity of materials for cesium vis-à-vis sodium.
  • FIGS. 9 and 10 show that the functionalized monoliths retain cesium primarily with respect to sodium.
  • the monolith containing nanoparticles of zinc ferrocyanide is the most efficient, with higher sorption or adsorption capacities than the other monoliths which contain nanoparticles of other ferrocyanides, namely nanoparticles of cobalt ferrocyanide or ferrocyanide. copper.
  • These cesium adsorption capacities are of the order of 22 mg / g, 10 mg / g and 7 mg / g for, respectively, the monoliths which contain ferrocyanide nanoparticles of zinc, copper and cobalt.
  • the monolithic materials according to the invention prepared by the process according to the invention have higher performances (22 mg / g for Zinc) in terms of adsorption capacity compared to the materials used in the documents. [5] and [6].

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Filtering Materials (AREA)

Abstract

The invention relates to a material in the form of a cellular monobloc consisting of a calcinated matrix of an inorganic oxide having open, progressive porosity comprising macropores, mesopores, and micropores, defined by walls, comprising atoms of a transition metal M integrated in and connected to said walls, said macropores, mesopores and micropores being interconnected, in which the nanoparticles of a solid inorganic metal-cation-exchange material selected from the metal hexacyanometallates and octacyanometallates are distributed in said porosity, and the nanoparticles are fixed at an internal surface of said walls by means of said atoms of transition metal M. Method for preparing said material. Method for separating at least one metal cation, such as a radioactive caesium cation, from a liquid medium containing same, in which said liquid medium is placed in contact with said material.

Description

MATERIAUX MONOLITHIQUES INORGANIQUES ALVEOLAIRES ECHANGEURS CATIONIQUES, LEUR PROCEDE DE PREPARATION, ET PROCEDE DE SEPARATION LES  INVERGANIC MONOLITHIC MATERIALS ALVEOLAR CATIONIC EXCHANGERS, PROCESS FOR THEIR PREPARATION, AND SEPARATION METHOD
METTANT EN ŒUVRE. DESCRIPTION DOMAINE TECHNIQUE  IMPLEMENTING. DESCRIPTION TECHNICAL FIELD
L'invention a trait à un matériau monolithique inorganique alvéolaire échangeur cationique.  The invention relates to a cationic exchanger alveolar inorganic monolithic material.
Plus précisément, l'invention a trait à un matériau se présentant sous la forme d'un monolithe alvéolaire constitué par une matrice d'un oxyde inorganique à porosité hiérarchisée, ouverte et interconnectée, et des nanoparticules d'un hexa- ou octacyanométallate de métal, à savoir un matériau solide inorganique échangeur d'un cation métallique, étant réparties dans ladite porosité.  More specifically, the invention relates to a material in the form of an alveolar monolith constituted by a matrix of an inorganic oxide with an open and interconnected hierarchical porosity, and nanoparticles of a metal hexa- or octacyanometallate. , namely an inorganic solid material exchanger of a metal cation, being distributed in said porosity.
L'invention a également trait au procédé de préparation dudit matériau.  The invention also relates to the process for preparing said material.
La présente invention concerne également un procédé de séparation des cations métalliques, notamment radioactifs, contenus dans un liquide mettant en œuvre ledit matériau.  The present invention also relates to a process for separating metal cations, in particular radioactive cations, contained in a liquid using said material.
Le domaine technique de l'invention peut, de manière générale, être défini comme celui du traitement des effluents liquides et notamment comme celui du traitement des effluents liquides radioactifs, en vue notamment d'en éliminer les cations métalliques, tels que les cations césium.  The technical field of the invention may, in general, be defined as that of the treatment of liquid effluents and especially as that of the treatment of radioactive liquid effluents, in particular to eliminate metal cations, such as cesium cations.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE STATE OF THE PRIOR ART
Les installations nucléaires telles que les réacteurs de puissance, les usines de retraitement du combustible nucléaire usé, les laboratoires, les centres de recherche, et les stations de traitement des effluents liquides, génèrent des effluents liquides radioactifs.  Nuclear facilities such as power reactors, spent nuclear fuel reprocessing plants, laboratories, research centers, and liquid effluent treatment plants generate radioactive liquid effluents.
Ces effluents, dont les volumes sont considérables, doivent être traités et décontaminés avant leur rejet dans l'environnement. Les polluants que contiennent ces effluents et qui doivent donc être éliminés sont principalement des particules solides et des radio-éléments essentiellement présents sous la forme de cations métalliques en solution. These effluents, whose volumes are considerable, must be treated and decontaminated before being released into the environment. The pollutants contained in these effluents and which must therefore be eliminated are mainly solid particles and radio-elements essentially present in the form of metal cations in solution.
Les procédés industriels de décontamination des effluents liquides, et notamment des effluents liquides radioactifs, sont cependant peu nombreux en raison de la composition complexe desdits effluents, de leur force ionique élevée, et également de la grande variété de valeurs de pH qu'ils peuvent présenter.  Industrial processes for the decontamination of liquid effluents, and in particular radioactive liquid effluents, are, however, few in number because of the complex composition of said effluents, their high ionic strength, and also the wide variety of pH values that they can present. .
Les traitements actuellement les plus répandus dans le cadre de la décontamination des effluents liquides sont l'évaporation et le traitement chimique par coprécipitation.  The most common treatments currently used for the decontamination of liquid effluents are evaporation and chemical treatment by coprecipitation.
Ainsi, la première étape d'un procédé de décontamination de solutions liquides, notamment de solutions liquides radioactives peu concentrées, à l'échelle industrielle, consiste généralement à réaliser l'évaporation de ces solutions afin de concentrer l'ensemble des ions présents dans celles-ci sous la forme d'un déchet solide, qui devient donc un résidu du procédé de décontamination.  Thus, the first step of a process for decontaminating liquid solutions, in particular low-concentration radioactive liquid solutions, on an industrial scale, generally consists in carrying out the evaporation of these solutions in order to concentrate all the ions present in those in the form of a solid waste, which thus becomes a residue of the decontamination process.
Néanmoins, ce traitement d'évaporation n'est pas envisageable pour des effluents salins car il se produit alors un entartrage de l'installation.  However, this evaporation treatment is not possible for saline effluents because it then occurs scaling of the installation.
De plus, la présence de certains ions dans les effluents liquides engendre une corrosion à chaud lors du traitement d'évaporation.  In addition, the presence of certain ions in the liquid effluents causes hot corrosion during the evaporation treatment.
Dans le cas d'effluents, notamment radioactifs fortement salins, un autre traitement possible est le traitement chimique par coprécipitation ou entraînement qui est un traitement par changement de phase. Il s'agit de transférer les radio-éléments présents d'une phase liquide à une phase solide soit par une coprécipitation soit par entraînement à partir de particules solides.  In the case of effluents, especially highly saline radioactive, another possible treatment is the chemical treatment by coprecipitation or entrainment which is a phase change treatment. It involves transferring the radio-elements present from a liquid phase to a solid phase either by coprecipitation or by entrainment from solid particles.
Ces particules solides sont alors riches en radio-éléments et sont ensuite récupérées par filtration ou décantation avant d'être confinées dans une matrice adéquate.  These solid particles are then rich in radioactive elements and are then recovered by filtration or decantation before being confined in a suitable matrix.
Ces procédés de coprécipitation (par exemple par du sulfate de baryum pour l'extraction du 90Sr) ou d'entraînement (à partir de particules de nickel-hexacyanoferrate de potassium pour le 137Cs) présentent un certain nombre d'inconvénients. These methods of coprecipitation (for example by barium sulfate for extraction of 90 Sr) or entrainment (from particles of nickel-potassium hexacyanoferrate for 137 Cs) have a number of disadvantages.
Tout d'abord, les volumes de boues formés sont conséquents et peuvent poser des problèmes de compatibilité avec les matériaux utilisés actuellement pour confiner les déchets, tels que les verres ou les matrices cimentaires. De plus, les agents de coprécipitation sont souvent sensibles à la composition chimique et à la force ionique de l'effluent, ce qui entraîne une chute importante de la sélectivité et donc une augmentation du volume de déchets. Firstly, the volumes of sludge formed are substantial and may pose problems of compatibility with the materials currently used to confine the waste, such as glasses or cementitious matrices. In addition, the coprecipitation agents are often sensitive to the chemical composition and the ionic strength of the effluent, which causes a significant drop in the selectivity and therefore an increase in the volume of waste.
Afin de surmonter les inconvénients énumérés plus haut des procédés de traitement, décontamination des effluents liquides, de nombreux chercheurs et industriels notamment dans l'industrie nucléaire recherchent actuellement d'autres voies pour le traitement de ces effluents.  In order to overcome the drawbacks enumerated above of treatment processes, decontamination of liquid effluents, many researchers and industrialists, particularly in the nuclear industry, are currently looking for other ways of treating these effluents.
Une des solutions étudiée est l'utilisation de matériaux inorganiques échangeurs ioniques, ou plus exactement de matériaux inorganiques échangeurs de cations qui présentent une grande sélectivité pour les ions à extraire. S'il existe une très vaste littérature sur les différents matériaux échangeurs ioniques inorganiques sélectifs du 90Sr, du 137Cs, ou du 60Co, la majorité des études concerne des essais réalisés en discontinu et mettant en œuvre des matériaux échangeurs sous forme de poudres. One of the solutions studied is the use of inorganic ion exchange materials, or more precisely inorganic cation exchange materials which have a high selectivity for the ions to be extracted. Although there is a very large literature on the various inorganic ionic exchange materials selective for 90 Sr, 137 Cs, or 60 Co, the majority of the studies concern discontinuous tests using powder-like exchange materials. .
En effet, les matériaux échangeurs ioniques inorganiques utilisés actuellement pour sorber les éléments à décontaminer se présentent essentiellement sous la forme de poudres relativement fines, présentant des tailles de grain de l'ordre du micromètre, qui ne sont pas compatibles avec un procédé mis en œuvre en continu.  Indeed, the inorganic ion exchange materials currently used to sorb the elements to be decontaminated are essentially in the form of relatively fine powders having grain sizes of the order of one micrometer, which are not compatible with a process implemented. continuously.
Ces poudres, lorsqu'elles sont utilisées dans un procédé mis en œuvre en continu, notamment dans des colonnes, peuvent entraîner une forte perte de charge dans ces colonnes, qui peut aller jusqu'à leur colmatage, bouchage, et à l'arrêt de l'installation.  These powders, when used in a continuous process, in particular in columns, can cause a high pressure drop in these columns, which can go as far as clogging, clogging, and stopping. installation.
Si les matériaux échangeurs ioniques inorganiques sont utilisés non plus sous la forme de poudres lâches mais de poudres massives, compactes, les problèmes de colmatages sont certes alors évités, mais la taille micronique implique une capacité d'adsorption faible car l'adsorption a lieu en surface.  If the inorganic ion exchange materials are no longer used in the form of loose powders but solid, compact powders, clogging problems are certainly avoided, but the micron size implies a low adsorption capacity because the adsorption occurs in area.
Il existe donc, au regard de ce qui précède, un besoin pour un matériau solide inorganique échangeur ionique, plus exactement pour un matériau inorganique échangeurs de cations qui soit compatible avec une mise en œuvre en continu dans un procédé de séparation d'un cation métallique à partir d'un milieu liquide, et qui possède une capacité d'adsorption élevée. En particulier, ce matériau solide inorganique échangeur ionique doit être chimiquement et mécaniquement stable pour pouvoir être conditionné en colonne permettant une mise en œuvre en continu sans que ne se produisent des phénomènes de bouchage, colmatage. There is therefore, in the light of the foregoing, a need for an inorganic solid ion exchange material, more exactly for an inorganic cation exchange material that is compatible with a continuous implementation in a process for separating a metal cation. from a liquid medium, and which has a high adsorption capacity. In particular, this inorganic solid ion exchange material must be chemically and mechanically stable in order to be packaged in a column allowing continuous operation without the occurrence of clogging or clogging phenomena.
Ce matériau solide inorganique échangeur ionique doit également avoir d'excellentes propriétés de fixation, en particulier de décontamination, c'est-à-dire analogues, voire supérieures notamment à celles d'un matériau inorganique échangeur ionique sous la forme de poudres lâches.  This inorganic solid ion exchanger material must also have excellent fixing properties, in particular decontamination, that is to say similar, or even superior in particular to that of an inorganic ion exchange material in the form of loose powders.
Le matériau inorganique échangeur ionique doit aussi associer une bonne stabilité mécanique à une vitesse de réaction élevée à l'opposé des produits sous forme compacte dont la faible surface spécifique conduit à des vitesses de réaction lentes.  The inorganic ion exchange material must also combine good mechanical stability with a high reaction rate as opposed to products in compact form whose low specific surface area leads to slow reaction rates.
Autrement dit, ce matériau solide inorganique échangeur ionique doit présenter entre autres des stabilités mécaniques et chimiques excellentes, un fort coefficient d'affinité ou de décontamination, une grande réactivité, ainsi qu'une bonne sélectivité.  In other words, this inorganic solid ion exchange material must have among others excellent mechanical and chemical stability, a high coefficient of affinity or decontamination, a high reactivity, as well as good selectivity.
Ces propriétés doivent être obtenues avec une quantité minimale de matériau solide inorganique échangeur ionique.  These properties must be obtained with a minimum amount of inorganic solid ion exchange material.
De plus, en particulier dans le cas de la fixation d'éléments radioactifs, il faut que le matériau solide inorganique échangeur ionique puisse être aisément immobilisé / conditionné sans risque dans des matrices connues, et/ou par les procédés connus.  In addition, particularly in the case of the attachment of radioactive elements, it is necessary that the inorganic solid ion exchange material can be easily immobilized / safely conditioned in known matrices, and / or by known methods.
Enfin, le matériau doit présenter une composition et des propriétés parfaitement reproductibles et contrôlées et doit être préparé par un procédé fiable.  Finally, the material must have a perfectly reproducible and controlled composition and properties and must be prepared by a reliable process.
Le but de la présente invention est de fournir un matériau solide inorganique échangeur ionique qui réponde entre autres à ces besoins.  The object of the present invention is to provide an inorganic solid ion exchange material that meets these needs, among others.
Le but de la présente invention est encore de fournir un matériau solide inorganique échangeur ionique, qui ne présente pas les inconvénients, défauts, désavantages, et limitations des matériaux solides inorganiques échangeurs ioniques de l'art antérieur, notamment sous la forme de poudres lâches ou compactes, et qui surmonte les problèmes des matériaux de l'art antérieur. Le but de la présente invention est enfin de fournir un procédé de préparation d'un tel matériau solide inorganique échangeur ionique. The object of the present invention is still to provide an inorganic solid ion exchange material, which does not have the drawbacks, defects, disadvantages, and limitations of the inorganic solid ion exchange materials of the prior art, especially in the form of loose powders or compact, and which overcomes the problems of the materials of the prior art. The object of the present invention is finally to provide a process for preparing such an inorganic solid ion exchange material.
EXPOSÉ DE L'INVENTION Ce but, et d'autres encore, sont atteints, conformément à l'invention, par un matériau solide se présentant sous la forme d'un monolithe alvéolaire constitué par une matrice calcinée d'un oxyde inorganique à porosité hiérarchisée et ouverte comprenant des macropores, des mésopores, et des micropores, définis par des parois, avec des atomes d'un métal de transition M intégrés et liés auxdites parois, lesdits macropores, mésopores et micropores étant interconnectés, dans lequel des nanoparticules d'un matériau solide inorganique échangeur d'un cation métallique choisi parmi les hexa- et octacyanométallates de métal de formule [Alk+ x]Mn+y[M'(CN)m]tz", où Alk+ est un cation monovalent choisi parmi les cations de métaux alcalins et le cation ammonium NH4 +, x est égal à 0, 1 ou 2, M est un métal de transition, n est égal à 2 ou 3, y est égal à 1, 2 ou 3, M' est un métal de transition, m est égal à 6 ou 8, z est égal à 3 ou 4, et t est égal à 1 ou 2, sont réparties dans ladite porosité, et les nanoparticules sont fixées à une surface interne desdites parois par l'intermédiaire desdits atomes de métal de transition M. SUMMARY OF THE INVENTION This and other objects are achieved, according to the invention, by a solid material in the form of an alveolar monolith consisting of a calcined matrix of an inorganic oxide with a hierarchical porosity. and open comprising macropores, mesopores, and micropores, defined by walls, with integrated transition metal atoms M and bonded to said walls, said macropores, mesopores and micropores being interconnected, wherein nanoparticles of a inorganic solid material exchanger of a metal cation selected from metal hexa- and octacyanometallates of formula [Alk + x ] M n + y [M '(CN) m ] t z " , where Alk + is a monovalent cation selected from alkali metal cations and the NH 4 + ammonium cation, x is 0, 1 or 2, M is a transition metal, n is 2 or 3, y is 1, 2 or 3, M 'is a transition metal, m is equal to 6 or 8, z is equal to 3 or 4, and t is 1 or 2, are distributed in said porosity, and the nanoparticles are attached to an inner surface of said walls through said transition metal atoms M.
Dans la formule donnée plus haut, Alk+ peut donc représenter un cation monovalent d'un métal alcalin tel que Li, Na, ou K, K étant préféré ; ou un cation ammonium NH4 +. In the formula given above, Alk + may therefore represent a monovalent cation of an alkali metal such as Li, Na, or K, K being preferred; or an ammonium NH 4 + cation.
La formule donnée ci-dessus pourrait éventuellement être écrite de manière simplifiée : [Alkx]M [M'(CN)m] où M est au degré d'oxydation 2 ou 3 et Alk est au degré d'oxydation 1. The formula given above could possibly be written in a simplified way: [Alk x ] M [M '(CN) m ] where M is at oxidation state 2 or 3 and Alk is at oxidation state 1.
Lesdites nanoparticules peuvent aussi être appelées éventuellement « nanocristaux ».  Said nanoparticles may also be called "nanocrystals".
Au sens de la présente invention, on entend par « monolithe » un objet solide dont la dimension moyenne est d'au moins 1 mm.  For the purposes of the present invention, the term "monolith" means a solid object whose average dimension is at least 1 mm.
Au sens de la présente invention, on entend par « macropores » des pores dont la dimension moyenne, généralement définie par le diamètre de leur section transversale -car les pores ont généralement une section transversale circulaire-, est de 4 μιη à 50 μιη ; on entend par « mésopores », des pores dont la dimension moyenne est de 20 à 500 Â, de préférence de 20 à 300 Â; et on entend par « micropores », des pores dont la dimension moyenne est inférieure à 20 Â, par exemple de 5 à 10 Â. For the purposes of the present invention, "macropores" are understood to mean pores whose average size, generally defined by the diameter of their cross section -because the pores generally have a circular cross-section, is from 4 μιη to 50 μιη; "mesopores" means pores with an average size of 20 to 500 Å, preferably 20 to 300 Å; and "micropores" means pores with an average size of less than 20 Å, for example 5 to 10 Å.
Le matériau selon l'invention se distingue fondamentalement des matériaux de l'art antérieur en ce qu'il se présente sous la forme spécifique d'un monolithe alvéolaire, en ce que ce monolithe est constitué par une matrice calcinée d'un oxyde inorganique, en ce que ce monolithe possède une porosité hiérarchisée associant trois types de pores, à savoir des macropores, des mésopores, et des micropores, en ce que des nanoparticules d'un matériau spécifique qui est un matériau solide inorganique échangeur d'un cation métallique choisi parmi les hexa- et octacyanométallates de métal sont réparties dans cette porosité, et enfin en ce que les atomes de métal de transition M sont intégrés et liés auxdites parois, et les nanoparticules sont fixées à une surface interne desdites parois par l'intermédiaire desdits atomes de métal de transition.  The material according to the invention is fundamentally different from the materials of the prior art in that it is in the specific form of an alveolar monolith, in that this monolith consists of a calcined matrix of an inorganic oxide, in that this monolith has a hierarchical porosity associating three types of pores, namely macropores, mesopores, and micropores, in that nanoparticles of a specific material which is an inorganic solid material exchanger of a chosen metal cation among the metal hexa- and octacyanometallates are distributed in this porosity, and finally in that the transition metal atoms M are integrated and bonded to said walls, and the nanoparticles are attached to an inner surface of said walls via said atoms. of transition metal.
Le matériau selon l'invention répond aux besoins énumérés plus haut, il ne présente pas les inconvénients des matériaux de l'art antérieur et il apporte une solution aux problèmes posés par les matériaux de l'art antérieur.  The material according to the invention meets the needs listed above, it does not have the disadvantages of the materials of the prior art and it provides a solution to the problems posed by the materials of the prior art.
Ainsi, dans le cas d'un procédé de traitement d'effluents en colonne, le matériau selon l'invention qui se présente sous la forme spécifique d'un monolithe alvéolaire à porosité hiérarchisée, présente l'avantage de réduire fortement la perte de charge par rapport à un matériau constitué par un empilement compact de particules.  Thus, in the case of a column effluent treatment method, the material according to the invention, which is in the specific form of a hierarchized porous alveolar monolith, has the advantage of greatly reducing the pressure drop. relative to a material consisting of a compact stack of particles.
Le matériau selon l'invention permet de ce fait de limiter le risque de bouchage du système de traitement, tel qu'une colonne, dû à la production de fines particules au sein du lit de particules.  The material according to the invention thus makes it possible to limit the risk of clogging of the treatment system, such as a column, due to the production of fine particles within the bed of particles.
Le fait que le matériau selon l'invention soit sous la forme d'un monolithe lui confère une grande résistance et une grande stabilité mécaniques, tandis que le fait que le monolithe soit principalement constitué par un oxyde inorganique lui confère une grande résistance chimique et assure de ce fait le traitement d'une grande variété d'effluents.  The fact that the material according to the invention is in the form of a monolith gives it high mechanical strength and stability, while the fact that the monolith is mainly constituted by an inorganic oxide gives it a high chemical resistance and ensures hence the treatment of a wide variety of effluents.
En outre selon l'invention, la matrice en oxyde inorganique qui constitue le monolithe est calcinée, ce qui accroît encore sa résistance et sa stabilité mécaniques. Ensuite, la présence du matériau solide inorganique échangeur d'un cation métallique sous la forme de nanoparticules réparties dans la porosité du monolithe accroît fortement la quantité de cations métalliques qui peuvent être absorbés par rapport à un matériau solide inorganique échangeur de cations qui est sous une forme massive. In addition according to the invention, the inorganic oxide matrix which constitutes the monolith is calcined, which further increases its mechanical strength and stability. Then, the presence of the inorganic metal cation exchanger solid material in the form of nanoparticles distributed in the porosity of the monolith greatly increases the amount of metal cations that can be absorbed relative to an inorganic solid cation exchange material which is under a massive form.
Ceci s'explique par le fait que lorsque l'échangeur de cations est sous forme nanométrique, la surface spécifique disponible pour les cations métalliques, tels que les cations césium, est plus élevée.  This is explained by the fact that when the cation exchanger is in nanometric form, the specific surface area available for metal cations, such as cesium cations, is higher.
Enfin, dans le matériau selon l'invention, les atomes de métal de transition M sont intégrés et liés aux parois des pores et les nanoparticules sont fixées à la surface interne desdites parois, c'est-à-dire à l'intérieur des pores, par l'intermédiaire desdits atomes de métal de transition. De ce fait, les nanoparticules sont solidement liées aux parois et leur entraînement, détachement, sera limité, voire inexistant. Cela constitue un avantage supplémentaire du matériau selon l'invention par rapport à des matériaux dans lesquels les nanoparticules sont simplement réparties dans la porosité mais sans être véritablement fixées aux parois via l'atome de métal de transition M.  Finally, in the material according to the invention, the transition metal atoms M are integrated and bonded to the walls of the pores and the nanoparticles are attached to the inner surface of said walls, that is to say inside the pores. through said transition metal atoms. As a result, the nanoparticles are firmly bonded to the walls and their training, detachment, will be limited or even non-existent. This constitutes an additional advantage of the material according to the invention with respect to materials in which the nanoparticles are simply distributed in the porosity but without being really fixed to the walls via the transition metal atom M.
Dans le matériau selon l'invention, la quantité de fonctions actives, en d'autres termes de nanoparticules, immobilisée dans le monolithe n'est pas tributaire du nombre de groupements de l'oxyde inorganique, tels que les groupements silanols dans le cas de la silice, qui sont présents à la surface de l'oxyde inorganique tel que la silice.  In the material according to the invention, the quantity of active functions, in other words of nanoparticles, immobilized in the monolith is not dependent on the number of groups of the inorganic oxide, such as the silanol groups in the case of silica, which are present on the surface of the inorganic oxide such as silica.
Le taux de fonctionnalisation des matériaux selon l'invention est donc plus élevé que dans le cas de solides poreux post-fonctionnalisés, par exemple par l'intermédiaire d'un greffon se liant aux groupements de l'oxyde inorganique tels que les silanols.  The degree of functionalization of the materials according to the invention is therefore higher than in the case of post-functionalized porous solids, for example via a graft binding to the groups of the inorganic oxide such as silanols.
Finalement, les matériaux selon l'invention possèdent à la fois une excellente tenue mécanique notamment car le monolithe a été calciné, et d'excellentes propriétés de sorption.  Finally, the materials according to the invention have both excellent mechanical strength especially because the monolith has been calcined, and excellent sorption properties.
Des monolithes à porosité hiérarchique sont disponibles dans le commerce. Il s'agit uniquement de monolithes de silice.  Monoliths with hierarchical porosity are commercially available. It is only silica monoliths.
L'incorporation de nanoparticules d'échangeurs de cations dans de tels monolithes n'a cependant été ni décrite ni suggérée, il en est de même de leur utilisation pour éliminer des cations d'un effluent liquide, en particulier pour décontaminer des effluents complexes contenant différents radio-éléments. The incorporation of nanoparticles of cation exchangers in such monoliths has however not been described or suggested, it is the same for their use to eliminate cations of a liquid effluent, in particular for decontaminating complex effluents containing different radio-elements.
De nombreux documents font état de la fonctionnalisation de monolithes inorganiques par des fonctions chimiques liées de façon covalente au matériau. Il ne s'agit donc pas de l'incorporation de nanoparticules et encore moins de nanoparticules d'un échangeur de cations dans la porosité de monolithes.  Numerous documents report on the functionalization of inorganic monoliths by chemical functions covalently bonded to the material. It is therefore not about the incorporation of nanoparticles and even fewer nanoparticles of a cation exchanger into the porosity of monoliths.
Par exemple, le document WO-A1-2001/47855 [1] présente la fonctionnalisation d'un monolithe de silice par un silane dans le but de produire plus efficacement des molécules de type cétène. Dans ce cas, le silane est donc lié au réseau de silice par post- fonctionnalisation, c'est-à-dire par réaction avec les groupements silanols présents à la surface de la silice.  For example, WO-A1-2001 / 47855 [1] discloses the functionalization of a silica monolith with a silane in order to more efficiently produce ketene molecules. In this case, the silane is thus bonded to the silica network by post-functionalization, that is to say by reaction with the silanol groups present on the surface of the silica.
De même, le document WO-A2-2008/031108 [2] présente une liste de précurseurs de type silanes destinés à la fonctionnalisation de silices poreuses pré-synthétisées. Les applications visées sont diverses et dépendent du type de silane considéré.  Similarly, the document WO-A2-2008 / 031108 [2] presents a list of silane precursors intended for the functionalization of pre-synthesized porous silicas. The targeted applications are diverse and depend on the type of silane considered.
Par ailleurs, on connaît un procédé de synthèse de monolithes qui a été mis au point par le groupe de R. BACKOV du Centre de Recherches Paul Pascal à Bordeaux.  Moreover, we know a method of monolith synthesis which was developed by R. BACKOV group of the Paul Pascal Research Center in Bordeaux.
Ce procédé consiste à préparer une émulsion directe huile dans l'eau contenant une majorité d'huile en volume. Un précurseur de silice préalablement dissous en phase aqueuse réagit pour former un réseau inorganique entourant les gouttes d'huile. La phase huile est ensuite éliminée par rinçage, ce qui libère la macroporosité du matériau.  This process consists of preparing a direct oil-in-water emulsion containing a majority of oil by volume. A precursor of silica previously dissolved in aqueous phase reacts to form an inorganic network surrounding the drops of oil. The oil phase is then removed by rinsing, which releases the macroporosity of the material.
Afin de stabiliser l'interface eau/huile, des agents tensio-actifs sont nécessaires. Ces agents tensio-actifs peuvent être soit des tensio-actifs organiques moléculaires, soit des particules colloïdales.  In order to stabilize the water / oil interface, surfactants are required. These surfactants can be either molecular organic surfactants or colloidal particles.
Le procédé mettant en œuvre des tensio-actifs organiques moléculaires a fait l'objet de la demande WO-A2-2008129151 [3]. Il permet d'obtenir un matériau sous forme d'un monolithe solide alvéolaire constitué par un polymère d'un oxyde inorganique porteur de groupements organiques, qui présente une porosité hiérarchisée avec des macropores, des mésopores et des micropores interconnectés. Plus précisément, ce procédé consiste à préparer une émulsion en ajoutant une phase huileuse à une solution aqueuse de tensio- actif, à ajouter à la solution aqueuse de tensio-actif au moins un tétraalkoxyde précurseur du polymère d'oxyde inorganique, avant ou après la préparation de l'émulsion, à laisser le mélange réactionnel au repos jusqu'à la condensation du précurseur, puis à sécher le mélange pour obtenir un monolithe. Au moins un alcoxyde est porteur d'un groupe organique. The process using molecular organic surfactants has been the subject of the application WO-A2-2008129151 [3]. It makes it possible to obtain a material in the form of a solid alveolar monolith consisting of a polymer of an inorganic oxide bearing organic groups, which has a hierarchical porosity with macropores, mesopores and interconnected micropores. More specifically, this process consists in preparing an emulsion by adding an oily phase to an aqueous solution of surfactant, adding to the aqueous solution of surfactant at least one precursor tetraalkoxide of the inorganic oxide polymer, before or after the preparation of the emulsion, to allow the reaction mixture to rest until the precursor is condensed, and then to dry the mixture to obtain a monolith. At least one alkoxide carries an organic group.
II n'y a aucune mention ni aucune suggestion dans ce document de l'incorporation de nanoparticules, et encore moins de nanoparticules d'échangeurs de cations, dans de tels monolithes. De la même manière, l'utilisation de ces monolithes pour éliminer des cations d'un effluent liquide, en particulier pour éliminer des cations de radio-éléments d'effluents radioactifs, n'est ni décrite ni suggérée dans ce document.  There is no mention or suggestion in this document of the incorporation of nanoparticles, let alone nanoparticles of cation exchangers, in such monoliths. In the same way, the use of these monoliths to remove cations from a liquid effluent, in particular to remove cations of radioactive effluent radioactive elements, is not described or suggested in this document.
Le procédé mettant en œuvre des particules solides colloïdales a fait l'objet de la demande WO-A2-2012/049412 [4]. Il permet d'obtenir un matériau purement macroporeux, monodisperse et non un matériau à porosité hiérarchisée.  The process employing colloidal solid particles has been the subject of the application WO-A2-2012 / 049412 [4]. It makes it possible to obtain a purely macroporous, monodisperse material and not a hierarchically porous material.
Plus précisément, ce procédé comprend au moins une étape de minéralisation d'une émulsion huile dans l'eau, formée de gouttelettes d'une phase huileuse dispersées dans une phase aqueuse continue, et dans laquelle des particules solides colloïdales sont présentes à l'interface formée entre la phase aqueuse continue et les gouttelettes de la phase huileuse.  More specifically, this process comprises at least one step of mineralization of an oil-in-water emulsion, formed by droplets of an oily phase dispersed in a continuous aqueous phase, and in which colloidal solid particles are present at the interface. formed between the continuous aqueous phase and the droplets of the oily phase.
Les particules solides colloïdales peuvent être minérales ou organiques.  The colloidal solid particles may be inorganic or organic.
Il n'y a aucune mention ni aucune suggestion dans ce document que les particules solides colloïdales puissent être des nanoparticules d'échangeurs de cations. De la même manière, l'utilisation des monolithes de ce document pour éliminer des cations d'un effluent liquide, en particulier pour éliminer des cations de radio-éléments d'effluents radioactifs n'est ni décrite ni suggérée.  There is no mention or suggestion in this document that the colloidal solid particles may be cation exchange nanoparticles. Similarly, the use of the monoliths of this document for removing cations from a liquid effluent, particularly for removing cations from radioactive effluent radioactive elements, is neither described nor suggested.
Le rôle des particules colloïdales est, dans ce document, exclusivement de stabiliser l'émulsion, plus exactement l'interface eau-huile de l'émulsion, pour induire une macroporosité monodisperse du matériau.  The role of the colloidal particles in this document is exclusively to stabilize the emulsion, more precisely the water-oil interface of the emulsion, to induce a monodisperse macroporosity of the material.
En effet, la macroporosité du matériau découle directement de la taille des gouttes de l'émulsion. La taille des gouttes de l'émulsion étant monodisperse, la macroporosité du matériau est en conséquence également très monodisperse. Le rôle des particules dans ce document n'est en aucune manière de fonctionnaliser le monolithe afin de lui conférer des propriétés d'échange de cations, et notamment d'adsorbant sélectif de certains cations. Indeed, the macroporosity of the material derives directly from the size of the drops of the emulsion. The size of the drops of the emulsion being monodisperse, the macroporosity of the material is consequently also very monodisperse. The role of the particles in this document is in no way to functionalize the monolith in order to confer cation exchange properties, including selective adsorbent certain cations.
L'objectif visé par le matériau selon l'invention qui est de fonctionnaliser les monolithes avec ces nanoparticules, n'est ni mentionné, ni suggéré dans ce document où le rôle des particules colloïdales est uniquement de stabiliser l'émulsion, et en aucune façon de rendre réactif le monolithe en vue de son utilisation pour l'élimination des cations d'une solution.  The objective of the material according to the invention which is to functionalize the monoliths with these nanoparticles, is neither mentioned nor suggested in this document where the role of the colloidal particles is only to stabilize the emulsion, and in no way to make the monolith reactive for use in removing cations from a solution.
Selon l'invention, le seul et unique rôle des nanoparticules utilisées est de fonctionnaliser le monolithe, et non de stabiliser l'émulsion mise en œuvre lors de la préparation du matériau, comme on le verra plus bas dans la description du procédé de préparation du matériau selon l'invention.  According to the invention, the sole and only role of the nanoparticles used is to functionalize the monolith, and not to stabilize the emulsion used during the preparation of the material, as will be seen below in the description of the preparation process of the material according to the invention.
En effet, les nanoparticules d'échangeurs de cations, notamment de ferrocyanures, utilisées seules ne permettent pas de stabiliser l'émulsion et de préparer le monolithe. C'est pourquoi, dans le procédé selon l'invention exposé plus bas, on a besoin d'un tensio- actif pour stabiliser l'émulsion.  In fact, cation exchange nanoparticles, in particular ferrocyanides, used alone do not make it possible to stabilize the emulsion and to prepare the monolith. Therefore, in the process according to the invention set out below, a surfactant is needed to stabilize the emulsion.
Avantageusement, l'oxyde inorganique est choisi parmi les oxydes d'au moins un métal ou métalloïde choisi parmi Si, Ti, Zr, Th, Nb, Ta, V, W, Y, Ca, Mg et Al.  Advantageously, the inorganic oxide is selected from oxides of at least one metal or metalloid selected from Si, Ti, Zr, Th, Nb, Ta, V, W, Y, Ca, Mg and Al.
De préférence, l'oxyde inorganique est la silice.  Preferably, the inorganic oxide is silica.
Selon l'invention, la matrice d'un oxyde inorganique est une matrice calcinée.  According to the invention, the matrix of an inorganic oxide is a calcined matrix.
Par « calcinée », on entend que cette matrice a subi un traitement thermique à une température de 400°C à 1000 °C, par exemple à une température de 500°C pendant une durée de 1 à 10 heures, par exemple de 6 heures.  By "calcined" is meant that this matrix has undergone a heat treatment at a temperature of 400 ° C to 1000 ° C, for example at a temperature of 500 ° C for a period of 1 to 10 hours, for example 6 hours .
Selon l'invention, le matériau échangeur est choisi parmi les hexa- et octacyanométallates de métal de formule
Figure imgf000011_0001
donnée plus haut. Ce choix est fait généralement en fonction de l'application visée, de la nature de l'effluent liquide à traiter, et notamment en fonction du ou des cations métalliques que l'on souhaite séparer.
According to the invention, the exchanger material is chosen from hexa and octacyanometallates of metal of formula
Figure imgf000011_0001
given above. This choice is generally made according to the intended application, the nature of the liquid effluent to be treated, and in particular according to the metal cation or cations that are desired to separate.
Avantageusement, Mn+ est Fe2+, Ni2+, Fe3+, Co2+, Cu2+, ou Zn2+. Avantageusement, M' est Fe2+ ou Fe3+ ou Co3+ et m est 6 ; ou bien M' est Mo5+ et m est 8. Advantageously, M n + is Fe 2+ , Ni 2+ , Fe 3+ , Co 2+ , Cu 2+ , or Zn 2+ . Advantageously, M 'is Fe 2+ or Fe 3+ or Co 3+ and m is 6; or M 'is Mo 5+ and m is 8.
Avantageusement, [M'(CN)m]z- est [Fe(CN)6]3", [Fe(CN)6]4", [Co(CN)6]3 ou [Mo(CN)8]3". Advantageously, [M '(CN) m ] z - is [Fe (CN) 6 ] 3 - , [Fe (CN) 6 ] 4 - , [Co (CN) 6 ] 3 or [Mo (CN) 8 ] 3 "
De préférence, le matériau solide inorganique échangeur d'un cation métallique répond à la formule K2M Fe(CN)6, par exemple K2Cu Fe(CN)6, K2ZnFe(CN)6, ou K2Co Fe(CN)6. Preferably, the inorganic solid material exchanger of a metal cation has the formula K 2 M Fe (CN) 6 , for example K 2 Cu Fe (CN) 6 , K 2 ZnFe (CN) 6 , or K 2 Co Fe (CN) 6 .
En effet, une des applications principales visée pour les matériaux selon l'invention est celle de sorbants du césium radioactif pour des besoins de décontamination nucléaire.  Indeed, one of the main applications targeted for the materials according to the invention is that of radioactive cesium sorbents for nuclear decontamination purposes.
Or, les nanoparticules de ferrocyanures (et ferricyanures) de cuivre (FCCu) de formule générale [K+ x]Cu2+ y[Fe(CN)6]z", par exemple K2Cu Fe(CN)6 sont très sélectives du césium. Leur structure cristalline est cubique face centrée, et présente l'avantage de pouvoir échanger sélectivement un atome de césium avec un atome de potassium non lié, présent dans la maille. However, ferrocyanide (and ferricyanide) nanoparticles of copper (FCCu) of general formula [K + x ] Cu 2+ y [Fe (CN) 6] z " , for example K 2 Cu Fe (CN) 6 are very selective Their crystalline structure is cubic face-centered, and has the advantage of being able to selectively exchange a cesium atom with an unbound potassium atom present in the cell.
Généralement, les nanoparticules ont une forme de sphère ou de sphéroïde.  Generally, nanoparticles have a sphere or spheroidal shape.
Généralement, les nanoparticules ont une taille moyenne, telle qu'un diamètre, de 2 à 300 nm, de préférence de 2 à 100 nm, de préférence encore de 2 à 50 nm.  Generally, the nanoparticles have an average size, such as a diameter, of 2 to 300 nm, preferably 2 to 100 nm, more preferably 2 to 50 nm.
Généralement, la teneur en nanoparticules du au moins un matériau solide inorganique échangeur d'un cation métallique est de 0,5% à 15 % en poids, de préférence 0,5% à 5% en poids.  Generally, the nanoparticle content of the at least one inorganic solid exchanger material of a metal cation is 0.5% to 15% by weight, preferably 0.5% to 5% by weight.
L'invention concerne, en outre, un procédé de préparation du matériau selon l'invention qui comprend au moins les étapes successives suivantes :  The invention further relates to a method for preparing the material according to the invention which comprises at least the following successive stages:
a) on prépare une solution aqueuse A d'un tensio-actif organique, et le pH de cette solution est ajusté à une valeur de 1,5 à 2,5, de préférence de 1,8 à 2,2, de préférence encore de 2 ;  a) an aqueous solution A of an organic surfactant is prepared, and the pH of this solution is adjusted to a value of 1.5 to 2.5, preferably 1.8 to 2.2, more preferably of 2;
b) on ajoute des ions Mn+ à la solution A, éventuellement le pH de cette solution à laquelle ont été ajoutés des ions Mn+ est ajusté à une valeur de 1,5 à 2,5, de préférence de 1,8 à 2,2, de préférence encore de 2, moyennant quoi on obtient une solution aqueuse B; b) adding M n + ions to solution A, optionally the pH of this solution to which M n + ions have been added is adjusted to a value of 1.5 to 2.5, preferably of 1.8 to 2 , 2, more preferably 2, whereby an aqueous solution B is obtained;
c) on dissout un précurseur de l'oxyde inorganique dans la solution B, moyennant quoi on obtient une solution aqueuse C ; d) éventuellement, le pH de la solution aqueuse C est ajusté à une valeur de 1,5 à 2,5, de préférence de 1,8 à 2,2, de préférence encore de 2 , et on ajoute une solution aqueuse d'au moins un fluorure de métal, de préférence d'au moins un fluorure de métal alcalin tel que le KF, le LiF, ou le NaF à la solution C, moyennant quoi on obtient une solution aqueuse D; c) dissolving a precursor of the inorganic oxide in solution B, whereby an aqueous solution C is obtained; d) optionally, the pH of the aqueous solution C is adjusted to a value of 1.5 to 2.5, preferably 1.8 to 2.2, more preferably 2, and an aqueous solution of at least one metal fluoride, preferably at least one alkali metal fluoride such as KF, LiF, or NaF in solution C, whereby an aqueous solution D is obtained;
e) on ajoute, rapidement après la fin de l'étape d), une phase huileuse, sous agitation mécanique avec cisaillement, à la solution aqueuse D, moyennant quoi on obtient une émulsion huile dans l'eau E formée de gouttelettes de la phase huileuse dispersée dans une phase aqueuse continue ;  e) an oil phase is added rapidly after the end of step d), with mechanical stirring with shear, to the aqueous solution D, whereby an oil-in-water emulsion E formed of droplets of the phase is obtained; oily dispersed in a continuous aqueous phase;
f) on réalise la maturation, minéralisation de l'émulsion E obtenue dans l'étape e), moyennant quoi le monolithe se forme ;  f) maturation is carried out, mineralization of the emulsion E obtained in step e), whereby the monolith is formed;
g) on lave, et/ou on sèche le monolithe ;  g) washing and / or drying the monolith;
h) on calcine le monolithe ;  h) the monolith is calcined;
i) on imprègne le monolithe avec une solution aqueuse de [Alk+ X] [M'(CN)m]tz~ ; j) on lave et on sèche le monolithe imprégné. i) impregnating the monolith with an aqueous solution of [Alk + X ] [M '(CN) m ] t z ~ ; j) washing and drying the impregnated monolith.
Il est à noter que le métal de transition M, contenu dans la solution B, va ensuite servir de point de nucléation pour la croissance des nanoparticules d'au moins un matériau solide inorganique échangeur d'un cation métallique en fin de protocole. It should be noted that the transition metal M contained in the solution B will then serve as a nucleation point for the growth of the nanoparticles of at least one inorganic solid material exchanger of a metal cation at the end of the protocol.
Dans l'émulsion E, les ions Mn+ sont plutôt au voisinage des micelles de tensio-actifs en phase aqueuse. Ils ne sont pas localisés à l'interface eau/huile. In the emulsion E, the M n + ions are rather in the vicinity of the micelles of surfactants in the aqueous phase. They are not located at the water / oil interface.
Par « ajouter rapidement », dans l'étape e), on entend généralement que la phase huileuse est ajoutée à la solution aqueuse D dans un délai inférieur à 2h après la fin de l'étape d).  By "rapidly add" in step e), it is generally meant that the oily phase is added to the aqueous solution D within less than 2 hours after the end of step d).
Le procédé selon l'invention comprend une suite spécifique d'étapes spécifiques qui n'a jamais été décrite ni suggérée dans l'art antérieur.  The method according to the invention comprises a specific sequence of specific steps which has never been described or suggested in the prior art.
Comme on l'a déjà exposé plus haut, selon l'invention le seul et unique rôle des nanoparticules utilisées qui sont obtenues seulement dans l'étape finale du procédé, est de fonctionnaliser le monolithe et non de stabiliser l'émulsion mise en œuvre lors de la préparation du matériau, comme c'est le cas dans le procédé décrit dans le document [4]. En effet, les nanoparticules d'échangeurs de cations, notamment de ferrocyanures, sont obtenues dans le procédé selon l'invention postérieurement à la préparation de l'émulsion et ne peuvent donc pas stabiliser l'émulsion en vue de préparer le monolithe. C'est pourquoi dans le procédé de préparation du matériau selon l'invention, on a besoin, au contraire du procédé décrit dans le document [4], d'un tensio-actif organique, moléculaire, pour stabiliser l'émulsion. As has already been explained above, according to the invention the only role of the nanoparticles used which are obtained only in the final stage of the process, is to functionalize the monolith and not to stabilize the emulsion implemented during of the preparation of the material, as is the case in the process described in document [4]. In fact, the nanoparticles of cation exchangers, in particular ferrocyanides, are obtained in the process according to the invention after the preparation of the emulsion and can not therefore stabilize the emulsion in order to prepare the monolith. This is why in the process for preparing the material according to the invention, unlike the process described in document [4], an organic, molecular surfactant is required to stabilize the emulsion.
Dans le procédé selon l'invention, il n'y a pas d'étape dite de post-fonctionnalisation, la quantité de fonctions actives, en d'autres termes de nanoparticules, immobilisée dans le monolithe n'est pas tributaire du nombre de groupements de l'oxyde inorganique, tels que les groupements silanols dans le cas de la silice, qui sont présents à la surface de l'oxyde inorganique tel que la silice.  In the process according to the invention, there is no so-called post-functionalization step, the quantity of active functions, in other words of nanoparticles, immobilized in the monolith is not dependent on the number of groups inorganic oxide, such as silanol groups in the case of silica, which are present on the surface of the inorganic oxide such as silica.
Le taux de fonctionnalisation des matériaux selon l'invention, préparés par le procédé selon l'invention est donc plus élevé que dans le cas de solides poreux post-fonctionnalisés, par exemple par l'intermédiaire d'un greffon se liant aux groupements de l'oxyde inorganique tels que les silanols.  The degree of functionalization of the materials according to the invention, prepared by the process according to the invention is therefore higher than in the case of post-functionalised porous solids, for example by means of a graft binding to the groups of inorganic oxide such as silanols.
Le procédé selon l'invention permet de préparer des matériaux qui possèdent à la fois une excellente tenue mécanique notamment car le monolithe a été calciné, et d'excellentes propriétés de sorption.  The process according to the invention makes it possible to prepare materials which have both excellent mechanical strength, in particular because the monolith has been calcined, and excellent sorption properties.
Le procédé selon l'invention permet de préparer un matériau comprenant des nanoparticules d'hexa- ou octacyanométallate de métal de transition tels que des ferrocyanures de métal de transition, dans un monolithe calciné alors que les hexa- ou octacyanométallates de métal de transition tels que les ferrocyanures de métal de transition ne peuvent pas être calcinés puisque les hexa- ou octacyanométallates de métal de transition tels que les ferrocyanures de métal de transition sont sensibles aux hautes températures et sont dégradés au-delà de 100°C.  The process according to the invention makes it possible to prepare a material comprising transition metal hexa- or octacyanometallate nanoparticles such as transition metal ferrocyanides in a calcined monolith while transition metal hexa- or octacyanometallates such as transition metal ferrocyanides can not be calcined since the transition metal hexa- or octacyanometalates such as transition metal ferrocyanides are sensitive to high temperatures and degraded beyond 100 ° C.
Le procédé selon l'invention, du fait de sa succession spécifique d'étapes spécifiques permet de préparer un matériau avec un monolithe calciné comprenant des nanoparticules d' hexa- ou octacyanométallate de métal de transition tels que des ferrocyanures de métal de transition, sans à avoir à post-fonctionnaliser ce monolithe par l'intermédiaire d'un greffon se liant aux groupements de l'oxyde inorganique tels que les silanols. Pour cela, selon l'invention, on se sert d'une solution contenant les ions métalliques Mn+ comme précurseur du matériau. The process according to the invention, because of its specific succession of specific steps, makes it possible to prepare a material with a calcined monolith comprising transition metal hexa- or octacyanometallate nanoparticles such as transition metal ferrocyanides, without having to having to post-functionalize this monolith via a graft binding to inorganic oxide groups such as silanols. For this purpose, according to the invention, a solution containing the metal ions M n + is used as the precursor of the material.
On fait ensuite croître le monolithe, par exemple le monolithe de silice, dans cette solution (Solution B), et on obtient ainsi un monolithe contenant des métaux M qui vont servir de point de croissance des particules d'hexa- ou octacyanométallate de métal de transition telles que des particules de ferrocyanures ou ferricyanures de métal de transition.  The monolith, for example the silica monolith, is then grown in this solution (Solution B), and a monolith containing M metals is thus obtained which will act as a growth point for the metal hexa- or octacyanometallate particles of the metal. transitions such as ferrocyanide particles or transition metal ferricyanides.
Il suffit ensuite d'imprégner le monolithe par exemple par une solution aqueuse acide de K4Fe(CN)6 pour provoquer la précipitation des particules d'hexa- ou octacyanométallate de métal de transition telles que des particules de ferrocyanures de métal de transition au sein même du monolithe. It then suffices to impregnate the monolith, for example with an acidic aqueous solution of K 4 Fe (CN) 6, to precipitate the transition metal hexa- or octacyanometallate particles such as transition metal ferrocyanide particles. even within the monolith.
La formule générale des ferrocyanures de métal de transition est la suivante, K2MFe(CN)6. The general formula for transition metal ferrocyanides is K 2 MFe (CN) 6 .
Ces ferrocyanures sont des polymères de coordination cristallins, dont la structure est cubique face centrée. Ces composés présentent la particularité de pouvoir accueillir au centre de la maille cristalline un atome de potassium qui peut ensuite s'échanger avec le césium. Cet échange ionique est très sélectif vis-à-vis du césium. C'est la raison pour laquelle les ferrocyanures comptent parmi les échangeurs de césium les plus efficaces.  These ferrocyanides are crystalline coordination polymers whose structure is cubic face-centered. These compounds have the particularity of being able to receive in the center of the crystal lattice a potassium atom which can then be exchanged with cesium. This ion exchange is very selective with respect to cesium. That's why ferrocyanides are one of the most efficient cesium exchangers.
Lors de l'étape a), la solution aqueuse A contenant le tensio-actif organique a généralement une concentration en tensio-actif organique de 10 à 30% en poids, par exemple de 20% en poids.  In step a), the aqueous solution A containing the organic surfactant generally has an organic surfactant concentration of 10 to 30% by weight, for example 20% by weight.
Le tensio-actif organique est choisi de préférence parmi les tensio-actifs cationiques et non ioniques, tels que les Pluronics® comme le Pluronic® P 123 commercialisé par les sociétés BASF ou SIGMA-ALDRICH. The organic surfactant is preferably selected from cationic surfactants and nonionic surfactants such as Pluronics ® as Pluronic ® P 123 marketed by BASF or SIGMA-ALDRICH companies.
La solution A est une solution aqueuse.  Solution A is an aqueous solution.
Par solution aqueuse, on entend généralement que le solvant de cette solution est choisi parmi l'eau, et les mélanges d'eau et d'un ou plusieurs alcools tel que le méthanol, lesdits mélanges contenant une majorité d'eau (plus de 50% d'eau) en volume.  By aqueous solution, it is generally meant that the solvent of this solution is selected from water, and mixtures of water and one or more alcohols such as methanol, said mixtures containing a majority of water (more than 50 % water) by volume.
La solution A a un pH généralement à une valeur de 1,5 à 2,5, de préférence de 1,8 à 2,2, de préférence encore de 2. Afin de régler le pH à cette valeur, la solution A contient généralement un acide, de préférence d'un acide minéral tel que l'acide chlorhydrique, nitrique ou sulfurique. Solution A has a pH generally of 1.5 to 2.5, preferably 1.8 to 2.2, more preferably 2. In order to adjust the pH to this value, solution A contains generally an acid, preferably a mineral acid such as hydrochloric, nitric or sulfuric acid.
La solution B contient l'ion Mn+, tel que M2+, généralement sous la forme d'un sel du métal M. Solution B contains the M n + ion, such as M 2+ , generally in the form of a metal salt M.
Cette solution B est une solution aqueuse.  This solution B is an aqueous solution.
De préférence, l'eau de cette solution aqueuse est de l'eau ultra pure.  Preferably, the water of this aqueous solution is ultra pure water.
Le sel du métal M contenu dans cette solution B est un sel dont le métal M est généralement choisi parmi les métaux susceptibles de donner un cyanométallate de ce métal M, tel qu'un hexacyanoferrate de ce métal, qui soit insoluble.  The salt of the metal M contained in this solution B is a salt whose metal M is generally selected from metals capable of giving a cyanometalate of this metal M, such as a hexacyanoferrate of this metal, which is insoluble.
Ce métal M peut être choisi parmi tous les métaux de transition, par exemple parmi le cuivre, le cobalt, le zinc, le nickel et le fer etc.  This metal M may be chosen from all transition metals, for example from copper, cobalt, zinc, nickel and iron, etc.
L'ion Mn+ pourra donc être choisi parmi les ions Fe2+, Ni2+, Fe3+, Co2+, Cu2+, et Zn2+.The ion M n + may therefore be selected from Fe 2+ , Ni 2+ , Fe 3+ , Co 2+ , Cu 2+ , and Zn 2+ ions.
Le sel du métal M peut être par exemple un nitrate, un sulfate, un chlorure, un acétate, un tétrafluoroborate, éventuellement hydraté, d'un de ces métaux M. The salt of the metal M can be, for example, a nitrate, a sulphate, a chloride, an acetate, a tetrafluoroborate, optionally hydrated, of one of these metals M.
Les sels préférés sont les nitrates par exemple de formule M(N03)2.  The preferred salts are, for example, nitrates of formula M (NO 3) 2.
La concentration du sel du métal M dans la solution B est de préférence de 0,01 à 1 mol/L, de préférence encore de 0,01 à 0,05 mol/L.  The concentration of the salt of the metal M in solution B is preferably from 0.01 to 1 mol / L, more preferably from 0.01 to 0.05 mol / L.
La concentration en sel du métal M dans la solution B est généralement choisie en fonction de la concentration finale en nanoparticules dans le matériau solide, monolithe.  The salt concentration of the metal M in the solution B is generally chosen as a function of the final concentration of nanoparticles in the solid material, monolith.
La solution B a un pH de 1,5 à 2,5, de préférence de 1,8 à 2,2, de préférence encore de 2. Afin de régler le pH à cette valeur, la solution B contient généralement un acide, de préférence un acide minéral tel que l'acide chlorhydrique, nitrique ou sulfurique.  Solution B has a pH of 1.5 to 2.5, preferably 1.8 to 2.2, more preferably 2. In order to adjust the pH to this value, solution B generally contains an acid, preferably a mineral acid such as hydrochloric, nitric or sulfuric acid.
La solution aqueuse C contenant les ions Mn+, un tensio-actif organique, et un précurseur de l'oxyde inorganique est généralement préparée en ajoutant, dissolvant, un volume donné de précurseur, généralement liquide, à/dans la solution B. The aqueous solution C containing the ions M n + , an organic surfactant, and a precursor of the inorganic oxide is generally prepared by adding, dissolving, a given volume of precursor, generally liquid, to / in the solution B.
Cette addition est généralement une addition que l'on peut qualifier de lente, de préférence cette addition est réalisée goutte à goutte.  This addition is generally an addition that can be described as slow, preferably this addition is carried out drop by drop.
L'oxyde inorganique est généralement choisi parmi les oxydes de métaux et de métalloïdes, et le précurseur de cet oxyde est généralement choisi parmi les alcoxydes de métaux ou de métalloïdes, et les sels de métaux ou de métalloïdes, tels que les chlorures et les nitrates de métaux et de métalloïdes. The inorganic oxide is generally chosen from oxides of metals and metalloids, and the precursor of this oxide is generally chosen from alkoxides of metals or metalloids, and salts of metals or metalloids, such as chlorides and nitrates of metals and metalloids.
Dans le cas où l'oxyde inorganique est la silice, le ou les précurseurs de la silice peuvent être choisis parmi le tétraméthoxyorthosilane (TMOS), le tétraéthoxyorthosilane (TEOS), le dimethyldiéthoxysilane (DMDES), et leurs mélanges.  In the case where the inorganic oxide is silica, the precursor (s) of the silica may be chosen from tetramethoxyorthosilane (TMOS), tetraethoxyorthosilane (TEOS), dimethyldiethoxysilane (DMDES), and mixtures thereof.
La concentration du tensio-actif dans la solution aqueuse C préparée dans l'étape c) est généralement de 10% à 30% en poids, et la concentration du précurseur est généralement de 1 à 500 g/L.  The concentration of the surfactant in the aqueous solution C prepared in step c) is generally 10% to 30% by weight, and the concentration of the precursor is generally 1 to 500 g / L.
Le pH de la solution aqueuse C préparée dans l'étape c) peut être de 1,5 à 2,5, de préférence encore de 1,8 à 2,2, mieux de 2.  The pH of the aqueous solution C prepared in step c) may be 1.5 to 2.5, more preferably 1.8 to 2.2, more preferably 2.
Si le pH de la solution aqueuse C, préparée dans l'étape c) n'est pas de 1,5 à 2,5, de préférence de 1,8 à 2,2, de préférence encore de 2, alors le pH de la solution aqueuse C est ajusté à une valeur de 1,5 à 2,5, de préférence de 1,8 à 2,2, de préférence encore de 2 au début de l'étape d).  If the pH of the aqueous solution C prepared in step c) is not 1.5 to 2.5, preferably 1.8 to 2.2, more preferably 2, then the pH of the aqueous solution C is adjusted to a value of 1.5 to 2.5, preferably 1.8 to 2.2, more preferably 2 at the beginning of step d).
Lors de l'étape d), le fluorure de sodium est généralement utilisé en tant que fluorure de métal notamment lorsque l'oxyde inorganique est la silice.  In step d), sodium fluoride is generally used as metal fluoride, especially when the inorganic oxide is silica.
Lors de l'étape d), on se place à un tel pH de 1,5 à 2,5, de préférence de 1,8 à 2,2, de préférence encore de 2, notamment lorsque l'oxyde inorganique est la silice, car le point isoélectrique de la silice se situe à pH 2. On cherche en effet à découpler les étapes d'hydrolyse et de polycondensation de la silice, pour que les protocoles soient « plus propres ».  In step d), the pH is 1.5 to 2.5, preferably 1.8 to 2.2, more preferably 2, especially when the inorganic oxide is silica. because the isoelectric point of the silica is at pH 2. It is indeed sought to decouple the hydrolysis and polycondensation steps of the silica, so that the protocols are "cleaner".
Comme on se place au point isoélectrique de la silice, on inhibe totalement la polycondensation de la silice. C'est pourquoi on a besoin d'ajouter un fluorure de métal alcalin tel que NaF.  As isoelectric point of the silica, the polycondensation of the silica is completely inhibited. This is why one needs to add an alkali metal fluoride such as NaF.
Ce fluorure de métal alcalin, tel que NaF, va jouer le rôle de catalyseur de la réaction de polycondensation de la silice. C'est l'ajout de ce fluorure de métal alcalin, tel que NaF qui va lancer la réaction qui conduira finalement à un matériau à base de silice.  This alkali metal fluoride, such as NaF, will act as a catalyst for the polycondensation reaction of silica. It is the addition of this alkali metal fluoride, such as NaF, which will initiate the reaction which will eventually lead to a silica-based material.
En outre, dans les demandes [3] et [4] citées plus haut, le pH de préparation des matériaux, ou plutôt le pH des phases aqueuses mises en œuvre, et notamment de la phase aqueuse de l'émulsion, est voisin de 0. Or à un tel pH, les nanoparticules d'hexa- ou octacyanométallate de métal de formule [Alk+ x]Mn+y[M'(CN)m]tz" exposée plus haut, ne sont pas stables In addition, in the applications [3] and [4] cited above, the pH of the preparation of the materials, or rather the pH of the aqueous phases used, and in particular of the aqueous phase of the emulsion, is close to 0. At such a pH, the nanoparticles of hexa- or metal octacyanometallate of formula [Alk + x ] M n + y [M '(CN) m ] z " exposed above, are not stable
Il faut donc, lorsque l'on utilise de telles nanoparticules, se placer à un pH de la phase aqueuse de l'émulsion E préparée dans l'étape e) plus élevé, généralement de 1,5 à 2,5, de préférence de 1,8 à 2,2, de préférence encore de 2, et dans ces conditions, l'ajout d'au moins un fluorure de métal, tel que NaF, est indispensable, sinon lors de l'étape f) suivante l'émulsion reste liquide, la réaction sol-gel n'évolue que trop lentement vers le solide, et l'on n'obtient pas de monolithe.  When using such nanoparticles, therefore, it is necessary to place at a pH of the aqueous phase of the emulsion E prepared in the higher step e), generally from 1.5 to 2.5, preferably from 1.8 to 2.2, more preferably 2, and under these conditions, the addition of at least one metal fluoride, such as NaF, is essential, otherwise in step f) following the emulsion remains liquid, the reaction sol-gel evolves only too slowly to the solid, and one does not obtain a monolith.
La solution d'au moins un fluorure de métal, tel que NaF, a généralement une concentration de 1 à 40 g/L, par exemple de 8 g/L.  The solution of at least one metal fluoride, such as NaF, generally has a concentration of 1 to 40 g / l, for example 8 g / l.
Lors de l'étape d), on ajoute un volume donné de cette solution d'au moins un fluorure de métal dans la solution C.  In step d), a given volume of this solution of at least one metal fluoride in solution C is added.
La solution D obtenue a donc généralement un pH de 1,5 à 2,5, de préférence de 1,8 à 2,2, de préférence encore de 2, et sa concentration en fluorure de métal tel que NaF est généralement de 1 à 100 mg/l, de préférence de 10 mg/l.  The solution D obtained therefore generally has a pH of 1.5 to 2.5, preferably 1.8 to 2.2, more preferably 2, and its concentration of metal fluoride such as NaF is generally from 1 to 100 mg / l, preferably 10 mg / l.
La phase huileuse ajoutée lors de l'étape e) est généralement constituée par un ou plusieurs alcanes liquides choisis parmi les alcanes linéaires ou ramifiés ayant de 5 à 22 atomes de carbone, de préférence de 7 à 22 atomes de carbone tels le dodécane et l'hexadécane, ou parmi les alcanes cycliques de 5 à 22 atomes de carbone tels que le cyclohexane.  The oily phase added during step e) is generally constituted by one or more liquid alkanes chosen from linear or branched alkanes having from 5 to 22 carbon atoms, preferably from 7 to 22 carbon atoms, such as dodecane and hexadecane, or from cyclic alkanes of 5 to 22 carbon atoms such as cyclohexane.
Les rapports massiques des constituants utilisés pour préparer l'émulsion peuvent être les suivants : mM / m (solution de tensio-actif, par exemple solution de tensio-actif tel que le P123, à 20% en poids et pH 2) / m (précurseur, par exemple TEOS) / m (solution de fluorure de métal, par exemple de NaF, à 8 g/1) / m (phase huileuse, par exemple cyclohexane) : 0,02-0,2 / 1-3 / 0,5-2 / 9.10 3-9.10-2 / 3-9, par exemple 0,050 / 1,68 / 1 / 9,3.10"3 / 3,98. The mass ratios of the constituents used to prepare the emulsion can be as follows: mM / m (surfactant solution, for example surfactant solution such as P123, at 20% by weight and pH 2) / m ( precursor, for example TEOS) / m (metal fluoride solution, for example NaF, at 8 g / l) / m (oily phase, for example cyclohexane): 0.02-0.2 / 1-3 / 0 , 5-2 / 9.10 3 -9.10- 2 / 3-9, for example 0.050 / 1.68 / 1 / 9,3.10 "3 / 3.98.
On obtient à l'issue de cette étape e) une émulsion blanchâtre E.  At the end of this step e) a whitish emulsion E is obtained.
L'agitation mécanique réalisée lors de l'étape e) est généralement réalisée en utilisant un appareil destiné à émulsionner, tel qu'un appareil disperseur-homogénéiseur de type Ultraturrax®. L'étape e) peut être qualifiée d'étape d'émulsification du système constitué par la solution D obtenue dans l'étape d). The mechanical stirring carried out during step e) is generally carried out using an apparatus intended to emulsify, such as a dispersing-homogenizing apparatus Ultraturrax ® type. Step e) can be described as an emulsification step of the system constituted by the solution D obtained in step d).
L'agitation mécanique est une agitation mécanique avec cisaillement.  Mechanical agitation is mechanical stirring with shear.
La vitesse de cisaillement peut aller de 1 à 20000 trs/min, de préférence de 2000 à 15000 trs/min, de préférence encore la vitesse de cisaillement est de 3200 trs/min.  The shear rate can range from 1 to 20000 rpm, preferably from 2000 to 15000 rpm, more preferably the shear rate is 3200 rpm.
Il est possible de contrôler la taille de la macroporosité des monolithes en agissant sur la vitesse de cisaillement de l'émulsion. La taille de la macroporosité diminue lorsque la vitesse de cisaillement augmente.  It is possible to control the size of the macroporosity of the monoliths by acting on the shear rate of the emulsion. The size of the macroporosity decreases as the shear rate increases.
La fraction volumique de la phase huileuse de l'émulsion E obtenue lors de l'étape e), est généralement de 50% à 74%, de préférence de 55% à 65% du volume de l'émulsion.  The volume fraction of the oily phase of the emulsion E obtained during step e) is generally from 50% to 74%, preferably from 55% to 65% of the volume of the emulsion.
Lors de l'étape f), on réalise la maturation, minéralisation de l'émulsion E obtenue dans l'étape e), moyennant quoi le monolithe se forme.  In step f), the mineralization of the emulsion E obtained in step e) is carried out, whereby the monolith is formed.
Cette étape peut être réalisée en laissant l'émulsion E obtenue dans l'étape e) au repos à une température de 10 à 60°C, par exemple à une température de 40°C pendant une durée suffisante pour que le monolithe à porosité hiérarchisée se forme. Cette durée peut être par exemple de 2 heures à 3 semaines, par exemple de 7 jours.  This step can be carried out by leaving the emulsion E obtained in step e) at rest at a temperature of 10 to 60 ° C., for example at a temperature of 40 ° C. for a time sufficient for the monolith with hierarchical porosity. forms. This duration can be for example from 2 hours to 3 weeks, for example 7 days.
Généralement à l'issue de l'étape f), le monolithe est lavé et/ou séché lors de l'étape g)- Generally at the end of step f), the monolith is washed and / or dried during step g) -
Le lavage permet d'éliminer les résidus organiques provenant de la phase huileuse et qui se trouvent essentiellement dans les macropores. The washing makes it possible to eliminate the organic residues originating from the oily phase and which are essentially in the macropores.
Ce lavage peut être réalisé avec un solvant organique tel que le THF, l'acétone et leurs mélanges.  This washing can be carried out with an organic solvent such as THF, acetone and their mixtures.
Ce lavage peut être réalisé pendant une durée de 12 à 36 heures, par exemple de 24 heures.  This washing can be carried out for a period of 12 to 36 hours, for example 24 hours.
De préférence, ce lavage est réalisé en portant le solvant organique à reflux.  Preferably, this washing is carried out by bringing the organic solvent to reflux.
Cependant, un traitement de lavage optimal, qui permet d'obtenir un monolithe final présentant un minimum de fractures est un traitement de lavage utilisant du C02 supercritique, auquel cas l'étape de séchage peut être omise. Le séchage peut être effectué en laissant s'évaporer le solvant organique utilisé pour le lavage à température ambiante pendant une durée généralement de 5 à 10 jours, par exemple de 7 jours. However, an optimal washing treatment, which makes it possible to obtain a final monolith having a minimum of fractures, is a washing treatment using supercritical CO 2 , in which case the drying step can be omitted. Drying can be carried out by allowing the organic solvent used for washing at room temperature to evaporate for a period generally of 5 to 10 days, for example 7 days.
Le séchage peut aussi être effectué en utilisant un fluide supercritique, tel que du C02 supercritique. Drying can also be performed using a supercritical fluid, such as supercritical CO 2 .
Il est à noter que si le monolithe a été préparé avec un alcane volatil tel que le cyclohexane (l'homme du métier n'a aucune peine à identifier, parmi les alcanes cités plus haut qui constituent la phase huileuse ceux qui sont volatils), les étapes de lavage puis de séchage du monolithe qui sont habituellement réalisées, sont remplacées par une simple étape de séchage qui consiste en une exposition du monolithe à l'air ambiant au cours de laquelle l'alcane s'évapore et libère la macroporosité du matériau.  It should be noted that if the monolith has been prepared with a volatile alkane such as cyclohexane (the person skilled in the art has no difficulty in identifying, among the alkanes mentioned above which constitute the oily phase, those which are volatile), the steps of washing and then drying of the monolith which are usually carried out, are replaced by a simple drying step which consists in exposing the monolith to the ambient air during which the alkane evaporates and releases the macroporosity of the material .
En d'autres termes dans ce cas, lors de l'étape g), on se contente simplement de sécher le monolithe.  In other words, in this case, in step g), it is simply enough to dry the monolith.
Le monolithe qui est chargé en métal de transition est ensuite calciné lors de l'étape h), pour améliorer sa tenue mécanique, puis refroidi jusqu'à la température ambiante.  The monolith which is loaded with transition metal is then calcined during step h), to improve its mechanical strength, and then cooled to room temperature.
Cette calcination est généralement réalisée en maintenant le monolithe à une température, dite température de calcination, de 500 à 650°C pendant une durée de 1 à 8 heures, par exemple à une température de 500°C pendant une durée de 6 heures.  This calcination is generally carried out by maintaining the monolith at a temperature, called the calcining temperature, of 500 to 650 ° C. for a period of 1 to 8 hours, for example at a temperature of 500 ° C. for a period of 6 hours.
Généralement, on réalise un cycle thermique de calcination au cours duquel on élève la température du monolithe jusqu'à la température de calcination en réalisant une ou plusieurs rampes de températures. Lorsque l'on réalise plusieurs rampes de températures, ces rampes peuvent être séparées par des plateaux de températures et ces rampes peuvent être réalisées à la même vitesse de montée en température ou bien à des vitesses de montée en température différentes.  Generally, a thermal calcination cycle is carried out in which the temperature of the monolith is raised to the calcination temperature by carrying out one or more temperature ramps. When several temperature ramps are carried out, these ramps can be separated by temperature trays and these ramps can be made at the same rate of rise in temperature or at different rates of rise in temperature.
Ainsi, le cycle thermique de calcination peut comprendre par exemple tout d'abord une première rampe de température au cours de laquelle on élève la température du monolithe à raison de 0,5°C/min pour atteindre une température de 200°C.  Thus, the thermal calcination cycle may comprise, for example, firstly a first temperature ramp during which the temperature of the monolith is raised at a rate of 0.5 ° C./min to reach a temperature of 200 ° C.
On peut observer ensuite un premier plateau à 200°C pendant 2 heures. Puis on peut réaliser une deuxième rampe de température au cours de laquelle on élève la température du monolithe à raison de 0,2°C/min pour atteindre une température de 500°C qui est la température finale de calcination. A first tray can then be observed at 200 ° C for 2 hours. Then it is possible to carry out a second temperature ramp during which the temperature of the monolith is raised at a rate of 0.2 ° C./min to reach a temperature of 500 ° C., which is the final calcination temperature.
On peut observer enfin un deuxième plateau à la température finale de calcination de 500°C pendant 6 heures.  Finally, a second plate can be observed at the final calcination temperature of 500 ° C. for 6 hours.
On laisse ensuite le monolithe refroidir jusqu'à la température ambiante.  The monolith is then allowed to cool to room temperature.
A l'issue de ces étapes de lavage et/ou séchage g), et calcination h), on obtient un monolithe chargé en métal de transition.  At the end of these washing and / or drying steps g), and calcining h), a monolith loaded with a transition metal is obtained.
Les atomes de métal de transition, par exemple Zn, Cu ou Co, vont ensuite servir de points de croissance pour les particules d'analogues du bleu de Prusse lors de l'étape d'imprégnation i).  The transition metal atoms, for example Zn, Cu or Co, will then serve as growth points for the Prussian blue analog particles during the impregnation stage i).
Lors de cette étape i) d'imprégnation, on imprègne le monolithe avec une solution aqueuse de [Alk+ X] [M'(CN )m]tz" , par exemple de K4Fe(CN)6. During this impregnation step i), the monolith is impregnated with an aqueous solution of [Alk + X ] [M '(CN) m ] z " , for example K 4 Fe (CN) 6 .
La concentration de cette solution est généralement de 0,05 à 0,2 mol/L., de préférence de 0,1 mol/L.  The concentration of this solution is generally 0.05 to 0.2 mol / l, preferably 0.1 mol / l.
Cette solution peut être une solution acide ou non.  This solution may be an acid solution or not.
Dans le cas où cette solution est une solution acide, la concentration en acide est généralement inférieure ou égale à 1,5 mol/L.  In the case where this solution is an acid solution, the acid concentration is generally less than or equal to 1.5 mol / L.
Les ions Mn+ réagissent avec [Alk+ X] [M'(CN)m]tz~ pour former des particules de [Alk+x]Mn+y[M'(CN)m]tz", c'est-à-dire des particules d'analogue de Bleu de Prusse. The M n + ions react with [Alk + X ] [M '(CN) m ] t z ~ to form particles of [Alk + x] M n + y [M' (CN) m ] t z " . that is, Prussian blue analog particles.
Par exemple au cours de cette étape, on peut imprégner les monolithes avec une solution aqueuse acide ou non de K4Fe(CN)6 dont la concentration est comprise entre 0,05M et 0,2M. Idéalement, la concentration en K4Fe(CN)6 est de 0,1M. Le pH de la solution peut être maintenu à l'aide d'acide nitrique dont la concentration est comprise entre 0 et 1,5M. For example, during this step, the monoliths may be impregnated with an acidic or non-aqueous solution of K 4 Fe (CN) 6, the concentration of which is between 0.05M and 0.2M. Ideally, the concentration of K 4 Fe (CN) 6 is 0.1M. The pH of the solution can be maintained using nitric acid, the concentration of which is between 0 and 1.5M.
Les ions M2+ , par exemple Co2+, Zn2+ ou Cu2+, réagissent avec les ions Fe(CN)64" pour former des particules d'analogue de bleu de Prusse K2M Fe(CN)6 par exemple K2CoFe(CN)6, K2ZnFe(CN)6, ou K2CuFe(CN)6. A l'issue de cette étape d'imprégnation, on obtient le matériau selon l'invention tel qu'il a été décrit plus haut. A l'issue de l'étape i), on lave et on sèche le monolithe imprégné lors d'une étape j). Le lavage peut être effectué à l'eau, et le séchage peut être réalisé à une température de 40°C pendant 24 heures. M 2+ ions, for example Co 2+ , Zn 2+ or Cu 2+ , react with Fe (CN) 6 4 - ions to form Prussian blue K2M Fe (CN) 6 analog particles, for example K 2 CoFe (CN) 6, K 2 ZnFe (CN) 6 or K 2 CuFe (CN) 6. At the end of this impregnation step, the material according to the invention as it has been obtained is obtained. described above. At the end of step i), the impregnated monolith is washed and dried during a step j). The washing can be carried out with water, and the drying can be carried out at a temperature of 40 ° C for 24 hours.
Le matériau selon l'invention peut être mis en œuvre notamment, mais non exclusivement, dans un procédé pour séparer au moins un cation métallique à partir d'un milieu liquide le contenant, dans lequel ledit milieu liquide est mis en contact avec le matériau selon l'invention.  The material according to the invention can be used in particular, but not exclusively, in a process for separating at least one metal cation from a liquid medium containing it, wherein said liquid medium is brought into contact with the material according to the invention.
Les matériaux selon l'invention, du fait de leurs excellentes propriétés telles qu'une excellente capacité d'échange, une excellente sélectivité, une vitesse de réaction élevée, conviennent particulièrement à un tel usage.  The materials according to the invention, because of their excellent properties such as excellent exchange capacity, excellent selectivity, high reaction rate, are particularly suitable for such use.
Cette excellente efficacité est obtenue avec des quantités réduites de matériau solide inorganique échangeur d'un cation métallique, tel qu'un hexacyanoferrate insoluble.  This excellent efficiency is obtained with reduced amounts of inorganic solid material exchanger of a metal cation, such as an insoluble hexacyanoferrate.
De plus, les excellentes propriétés de tenue et de stabilité mécaniques du matériau selon l'invention, résultant de sa structure spécifique permettent son conditionnement en colonne et la mise en œuvre en continu du procédé de séparation, qui peut ainsi être facilement intégré dans une installation existante, par exemple dans une chaîne ou ligne de traitement comprenant plusieurs étapes.  In addition, the excellent properties of strength and mechanical stability of the material according to the invention, resulting from its specific structure allow its packaging in column and the continuous implementation of the separation process, which can thus be easily integrated into an installation existing, for example in a chain or processing line comprising several steps.
Avantageusement, ledit milieu liquide peut être un milieu liquide aqueux, tel qu'une solution aqueuse.  Advantageously, said liquid medium may be an aqueous liquid medium, such as an aqueous solution.
Ledit milieu liquide peut être un liquide de procédé ou un effluent industriel.  Said liquid medium may be a process liquid or an industrial effluent.
Avantageusement, ledit milieu liquide peut être un milieu liquide contenant des radionucléides. Par exemple, le milieu liquide peut être choisi parmi les liquides et effluents issus de l'industrie nucléaire, et des activités mettant en œuvre des radionucléides.  Advantageously, said liquid medium may be a liquid medium containing radionuclides. For example, the liquid medium may be selected from liquids and effluents from the nuclear industry, and activities using radionuclides.
Avantageusement, le milieu liquide peut être une solution aqueuse contenant, outre ledit cation métallique, des sels (bien sûr différents des sels dudit cation métallique) tels que du NaCI à une concentration élevée, par exemple supérieure à 30 g/L.  Advantageously, the liquid medium may be an aqueous solution containing, besides said metal cation, salts (of course different from the salts of said metal cation) such as NaCl at a high concentration, for example greater than 30 g / l.
Le procédé selon l'invention permet en effet, de manière étonnante, de séparer efficacement et sélectivement un cation métallique tel qu'un cation césium, même à partir de milieux liquides, tels que des solutions aqueuses, fortement chargés en sels, notamment en NaCI. De tels milieux fortement chargés en NaCI sont par exemple les eaux de mer et les eaux saumâtres. The process according to the invention makes it possible surprisingly to effectively and selectively separate a metal cation such as a cesium cation, even from liquid media, such as aqueous solutions, which are heavily loaded with salts, in particular in NaCl. Such media heavily loaded with NaCl are for example seawater and brackish water.
Généralement, ledit cation métallique peut être présent à une concentration de 0,1 picogramme à 100 mg/L, de préférence de 0,1 picogramme à 10 mg/L.  Generally, said metal cation may be present at a concentration of 0.1 picogram to 100 mg / L, preferably 0.1 picogram to 10 mg / L.
Le terme « métal » recouvre aussi les isotopes et notamment les isotopes radioactifs dudit métal.  The term "metal" also covers the isotopes and in particular the radioactive isotopes of said metal.
De préférence, le cation est un cation d'un élément choisi parmi Cs, Co, Ag, Ru, Fe et Tl et les isotopes, notamment radioactifs de ceux-ci.  Preferably, the cation is a cation of an element selected from Cs, Co, Ag, Ru, Fe and Ti and the isotopes, especially radioactive thereof.
De préférence encore, le cation est un cation du 134Cs, ou du 137Cs. More preferably, the cation is a 134 Cs, or 137 Cs cation.
Le procédé selon l'invention peut être mis en œuvre avantageusement avec un milieu liquide qui est une solution aqueuse, contenant en tant que cation métallique un cation du 134Cs, et/ou du 137Cs, et contenant en outre des sels, tels que du NaCI, à une concentration élevée, par exemple supérieure à 30 g/L. The process according to the invention can be carried out advantageously with a liquid medium which is an aqueous solution, containing as a metal cation a cation of 134 Cs, and / or 137 Cs, and further containing salts, such as NaCl, at a high concentration, for example greater than 30 g / l.
Le procédé selon l'invention permet de séparer efficacement et sélectivement ces cations métalliques de césium radioactif à partir de tels milieux liquides très chargés en sels comme NaCI. Cette séparation effective et sélective est possible grâce à la sélectivité du matériau selon l'invention vis-à-vis du Cs en présence d'un ion compétiteur comme le Na.  The process according to the invention makes it possible to effectively and selectively separate these metal cations from radioactive cesium from such highly saturated liquid media as salts such as NaCl. This effective and selective separation is possible thanks to the selectivity of the material according to the invention vis-à-vis the Cs in the presence of a competing ion such as Na.
Ce procédé possède tous les avantages intrinsèquement liés au matériau selon l'invention, mis en œuvre dans ce procédé, et qui ont déjà été décrits plus haut.  This process has all the advantages intrinsically related to the material according to the invention, implemented in this process, and which have already been described above.
L'invention sera mieux comprise à la lecture de la description détaillée qui suit de modes de réalisation particuliers, notamment sous la forme d'exemples, cette description étant faite en relation avec les dessins joints.  The invention will be better understood on reading the following detailed description of particular embodiments, particularly in the form of examples, this description being made in connection with the accompanying drawings.
BRÈVE DESCRIPTION DES DESSINS. BRIEF DESCRIPTION OF THE DRAWINGS
- La Figure 1 est une photographie d'un monolithe de silice fonctionnalisé par des particules de ferrocyanure de cobalt, préparé par le procédé selon l'invention.  - Figure 1 is a photograph of a silica monolith functionalized with cobalt ferrocyanide particles prepared by the method according to the invention.
La Figure 2 est une photographie d'un monolithe fonctionnalisé par des particules de ferrocyanure de zinc, préparé par le procédé selon l'invention.  Figure 2 is a photograph of a monolith functionalized with zinc ferrocyanide particles prepared by the process according to the invention.
La Figure 3 est une photographie d'un monolithe fonctionnalisé par des particules de ferrocyanure de cuivre, préparé par le procédé selon l'invention. La Figure 4 est une photographie prise au microscope électronique à balayage (M EB) d'un monolithe fonctionnalisé par des particules de ferrocyanure de Cobalt appelées particules d'ABP (c'est-à-dire Analogues du Bleu de Prusse. C'est ainsi que l'on désigne les composés de la famille des ferro- et ferricyanures). Figure 3 is a photograph of a monolith functionalized with copper ferrocyanide particles prepared by the process according to the invention. Figure 4 is a scanning electron microscope (M EB) photograph of a monolith functionalized with cobalt ferrocyanide particles called ABP particles (i.e. Prussian Blue Analogs. as well as the compounds of the ferro- and ferricyanide family).
L'échelle portée sur la Figure 4 représente 10 μιη.  The scale shown in FIG. 4 represents 10 μιη.
La Figure 5 est une photographie prise au microscope électronique à balayage (M EB) d'un monolithe fonctionnalisé par des particules de ferrocyanure de Zinc.  Figure 5 is a scanning electron microscope (M EB) photograph of a monolith functionalized with Zn ferrocyanide particles.
L'échelle portée sur la Figure 5 représente 10 μιη.  The scale shown in FIG. 5 represents 10 μιη.
La Figure 6A est une photographie prise au microscope électronique à balayage (M EB) d'un monolithe fonctionnalisé par des particules de ferrocyanure de Cuivre.  Figure 6A is a scanning electron microscope (M EB) photograph of a monolith functionalized with copper ferrocyanide particles.
L'échelle portée sur la Figure 6A représente 10 μιη.  The scale shown in FIG. 6A represents 10 μιη.
La Figure 6B est une photographie prise au microscope électronique à balayage (M EB) d'un monolithe fonctionnalisé par des particules de ferrocyanure de Cuivre. Cette figure est un agrandissement de la partie entourée de la Figure 6A.  Figure 6B is a scanning electron microscope (M EB) photograph of a monolith functionalized with copper ferrocyanide particles. This figure is an enlargement of the circled portion of Figure 6A.
L'échelle portée sur la Figure 6B représente 3 μιη.  The scale shown in FIG. 6B represents 3 μιη.
La Figure 7 est un graphique qui montre les courbes obtenues lors d' analyses par la technique de diffusion des rayons X aux petits angles (« Small Angle X Ray Scattering » ou « SAXS » en anglais ) effectuées sur un monolithe fonctionnalisé par des particules de ferrocyanure de cobalt, préparé par le procédé selon l'invention (courbe A), un monolithe fonctionnalisé par des particules de ferrocyanure de zinc, préparé par le procédé selon l'invention (courbe B), et un monolithe fonctionnalisé par des particules de ferrocyanure de cuivre, préparé par le procédé selon l'invention (courbe C).  FIG. 7 is a graph which shows the curves obtained during analyzes by the small angle X ray scattering ("SAXS") technique performed on a monolith functionalized with particles of cobalt ferrocyanide, prepared by the process according to the invention (curve A), a monolith functionalized with zinc ferrocyanide particles, prepared by the process according to the invention (curve B), and a monolith functionalized with ferrocyanide particles of copper, prepared by the process according to the invention (curve C).
En abscisse est porté le vecteur d'ondes q (en nnr1). On the abscissa is the wave vector q (in nnr 1 ).
DPC est la distance entre deux centres de pores.  DPC is the distance between two pore centers.
- La Figure 8 est un graphique qui montre les isothermes d'adsorption d'azote obtenus lors de mesures d'adsorption d'azote effectuées sur un monolithe fonctionnalisé par du ferrocyanure de cobalt (« CoPBA ») appelé monolithe - CoPBA (courbe A), et sur un monolithe non fonctionnalisé par K4Fe(CN)6 et simplement chargé en Co appelé monolithe - Co (courbe B). En abscisse est portée la pression relative P/Po, et en ordonnée est portée la quantité d'azote adsorbée (en cm3/g STP). FIG. 8 is a graph which shows the nitrogen adsorption isotherms obtained during nitrogen adsorption measurements carried out on a cobalt ferrocyanide functional monolith ("CoPBA") called monolith - CoPBA (curve A) , and on a monolith not functionalized by K 4 Fe (CN) 6 and simply loaded in Co called monolith - Co (curve B). On the abscissa is the relative pressure P / Po, and the ordinate is carried the amount of adsorbed nitrogen (in cm 3 / g STP).
La Figure 9 est un graphique qui donne les isothermes d'adsorption du césium effectuées sur un monolithe fonctionnalisé par des particules de ferrocyanure de cobalt, préparé par le procédé selon l'invention (courbe A), un monolithe fonctionnalisé par des particules de ferrocyanure de zinc, préparé par le procédé selon l'invention (courbe B), et un monolithe fonctionnalisé par des particules de ferrocyanure de cuivre, préparé par le procédé selon l'invention (courbe C).  FIG. 9 is a graph which gives the cesium adsorption isotherms carried out on a monolith functionalized with particles of cobalt ferrocyanide, prepared by the process according to the invention (curve A), a monolith functionalized with particles of ferrocyanide of zinc, prepared by the process according to the invention (curve B), and a monolith functionalized with copper ferrocyanide particles, prepared by the process according to the invention (curve C).
Ces courbes représentent la quantité de césium sorbée sur le solide Q.cs (en mg/g) en fonction de la concentration d'équilibre du césium dans la solution CeCs (en mM). These curves represent the amount of cesium sorbed on the solid Q.cs (in mg / g) as a function of the equilibrium concentration of cesium in the solution C e Cs (in mM).
La Figure 10 est un graphique qui donne les isothermes d'adsorption du sodium effectués sur un monolithe fonctionnalisé par des particules de ferrocyanure de cobalt, préparé par le procédé selon l'invention (courbe A), un monolithe fonctionnalisé par des particules de ferrocyanure de zinc, préparé par le procédé selon l'invention (courbe B), et un monolithe fonctionnalisé par des particules de ferrocyanure de cuivre, préparé par le procédé selon l'invention (courbe C).  FIG. 10 is a graph which gives the sodium adsorption isotherms carried out on a monolith functionalized with particles of cobalt ferrocyanide, prepared by the process according to the invention (curve A), a monolith functionalized with particles of ferrocyanide of zinc, prepared by the process according to the invention (curve B), and a monolith functionalized with copper ferrocyanide particles, prepared by the process according to the invention (curve C).
Ces courbes représentent la quantité de sodium sorbée sur le solide Q.Na (en mg/g) en fonction de la concentration d'équilibre du sodium dans la solution Ce Na (en mM). EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS  These curves represent the amount of sodium sorbed on the Q.Na solid (in mg / g) as a function of the equilibrium concentration of sodium in Ce Na solution (in mM). DETAILED PRESENTATION OF PARTICULAR EMBODIMENTS
L'invention va maintenant être décrite en référence aux exemples suivants donnés à titre illustratif et non limitatif.  The invention will now be described with reference to the following examples given for illustrative and non-limiting.
EXEMPLES. EXAMPLES.
Dans les exemples qui suivent, on prépare des monolithes de silice contenant des nanoparticules de ferrocyanures conformes à l'invention par le procédé selon l'invention et on utilise ces monolithes de silice contenant des nanoparticules de ferrocyanures comme sorbants du césium ionique (Cs+). Exemple 1. In the examples which follow, silica monoliths containing nanoparticles of ferrocyanides according to the invention are prepared by the process according to the invention and these silica monoliths containing nanoparticles of ferrocyanides are used as ionic cesium (Cs + ) sorbents. . Example 1
Dans cet exemple, on expose le protocole général de préparation, conforme à l'invention, de monolithes de silice contenant des nanoparticules de ferrocyanures de métaux de transition, et on prépare trois monolithes de silice contenant respectivement des nanoparticules de ferrocyanure de Cobalt, de ferrocyanure de Zinc, et de ferrocyanure de Cuivre par ce protocole.  In this example, the general preparation protocol according to the invention of silica monoliths containing nanoparticles of transition metal ferrocyanides is prepared, and three silica monoliths containing nanoparticles of cobalt ferrocyanide and ferrocyanide are prepared. of zinc, and copper ferrocyanide by this protocol.
Le protocole de préparation des monolithes de silice contenant des nanoparticules de ferrocyanures comprend les étapes successives suivantes :  The protocol for preparing silica monoliths containing ferrocyanide nanoparticles comprises the following successive steps:
1. On prépare une solution contenant une masse donnée de Pluronic® P123 (tensio-actif commercialisé par BASF® ou Sigma-AIdrich®) de manière à obtenir une solution dont la concentration en tensio-actif est de 20% en poids. 1. A solution containing a given weight of Pluronic ® P123 (surfactant commercially available from BASF ® or Sigma-Aldrich ®) so as to obtain a solution with a surfactant concentration of 20% by weight.
La solution préparée dans cette étape est appelée solution A. 2. On ajoute à 1,68g de la solution A, 50 mg de métal de transition (M2+). The solution prepared in this step is called solution A. 2. To 50 mg of transition metal (M 2+ ) is added to 1.68 g of solution A.
La source de métal utilisée est un nitrate, M(N 03)2 avec M = Co, Zn, ou Cu. On ajuste le pH à 2. L'acide utilisé pour rectifier le pH à 2,0 est l'acide chlorhydrique. The metal source used is a nitrate, M (N 03) 2 with M = Co, Zn, or Cu. The pH is adjusted to 2. The acid used to rectify the pH at 2.0 is hydrochloric acid.
La solution préparée dans cette étape est appelée solution B. The solution prepared in this step is called solution B.
3. On dissout goutte à goutte dans la solution B, lg de tétraéthylorthosilicate3. B, lg of tetraethylorthosilicate is dissolved dropwise in solution
(TEOS). On attend 30 minutes jusqu'à ce que la solution redevienne limpide. On obtient la solution C. (TEOS). Wait 30 minutes until the solution becomes clear again. Solution C is obtained.
4. On ajoute 10 μΙ d'une solution de fluorure de sodium (NaF) à 8 g/1 dans la solution C. 4. Add 10 μl of a solution of sodium fluoride (NaF) at 8 g / l in solution C.
La solution préparée dans cette étape est appelée solution D. 5. Rapidement, c'est-à-dire dans les 15 minutes suivant l'addition de la solution de fluorure de sodium ayant permis de préparer la solution D, on procède à l'émulsification de cette solution avec 5,1 mL de cyclohexane. Pour cela, on utilise un appareil disperseur- homogénéiseur de type Ultraturrax® T25 avec une sonde S25N et on ajoute lentement le cyclohexane dans la solution D sous cisaillement. The solution prepared in this step is called solution D. 5. Rapidly, that is to say within 15 minutes after the addition of the solution of sodium fluoride which made it possible to prepare solution D, the solution is emulsified with 5.1 ml of cyclohexane. . For this, one uses a disperseur- homogenizer type Ultraturrax ® T25 device with a S25N probe and cyclohexane are slowly added in the solution D under shear.
La vitesse de cisaillement peut varier de 1 (si 0 pas de cisaillement) à 20000 trs/min, et elle est de préférence de de 3200 trs/min.  The shear rate can range from 1 (if 0 no shear) to 20000 rpm, and is preferably 3200 rpm.
Les rapports massiques des constituants utilisés pour préparer l'émulsion peuvent être les suivants : m de M / m (solution de tensio-actif, par exemple solution de tensio-actif tel que le P123, à 20% en poids et pH 2) / m(TEOS) / m (solution de NaF à 8 g/1) / m (cyclohexane) : 0,08 / 1,6 / 1 / 9,3.10"3 / 3,98. The mass ratios of the constituents used to prepare the emulsion may be as follows: m of M / m (surfactant solution, for example surfactant solution such as P123, at 20% by weight and pH 2) / m (TEOS) / m (8 g / l NaF solution) / m (cyclohexane): 0.08 / 1.6 / 1 / 9.3 × 3 / 3.98.
On obtient à l'issue de cette étape une émulsion blanchâtre E.  At the end of this step, an off-white emulsion E is obtained.
6. Préparation du monolithe. 6. Preparation of the monolith.
Au cours de cette étape, dite étape de maturation, on prépare le monolithe.  During this step, the so-called ripening step, the monolith is prepared.
Pour cela, on laisse reposer l'émulsion E en la plaçant à l'étuve pendant 7 jours, à une température entre la température ambiante et 50°C, de préférence à 40°C.  For this, the emulsion E is left standing by placing it in an oven for 7 days, at a temperature between room temperature and 50.degree. C., preferably at 40.degree.
A l'issue de cette étape de maturation, le monolithe est formé.  At the end of this stage of maturation, the monolith is formed.
Il ne reste plus que les étapes de lavage/séchage puis calcination du monolithe à réaliser avant d'effectuer la fonctionnalisation du monolithe.  All that remains is the washing / drying steps then calcination of the monolith to be carried out before performing the functionalization of the monolith.
7. Lavage/Séchage du monolithe. 7. Washing / drying the monolith.
Dans cet exemple, l'alcane utilisé est le cyclohexane. L'étape de lavage peut donc être évitée. Il suffit donc de laisser les monolithes à 25°C pendant 48h pour évacuer le cyclohexane. In this example, the alkane used is cyclohexane. The washing step can therefore be avoided. It is therefore sufficient to leave the monoliths at 25 ° C for 48 hours to evacuate cyclohexane.
8. Calcination du monolithe. 8. Calcination of the monolith.
Le monolithe est ensuite calciné pour améliorer sa tenue mécanique. Le cycle thermique de calcination comprend tout d'abord une première rampe de température au cours de laquelle on élève la température du monolithe à raison de 0,5°C/min pour atteindre une température de 200°C. The monolith is then calcined to improve its mechanical strength. The thermal calcination cycle firstly comprises a first temperature ramp during which the temperature of the monolith is raised at a rate of 0.5 ° C./min to reach a temperature of 200 ° C.
On observe ensuite un premier plateau à 200°C pendant 2 heures.  A first plateau is then observed at 200 ° C. for 2 hours.
Puis on réalise une deuxième rampe de température au cours de laquelle on élève la température du monolithe à raison de 0,2°C/min pour atteindre une température de 500°C qui est la température finale de calcination.  Then a second temperature ramp is carried out during which the temperature of the monolith is raised at 0.2 ° C / min to reach a temperature of 500 ° C which is the final calcination temperature.
On observe enfin un deuxième plateau à la température finale de de 500°C pendant 6 heures.  Finally, a second plateau is observed at the final temperature of 500 ° C. for 6 hours.
On laisse le monolithe refroidir jusqu'à la température ambiante.  The monolith is allowed to cool to room temperature.
A l'issue de ces étapes de lavage, séchage, et calcination, on obtient un monolithe chargé en métal de transition. Les atomes de métal de transition vont ensuite servir de points de croissance pour les particules d'analogues du Bleu de Prusse. 9. Imprégnation des monolithes.  At the end of these washing, drying and calcination steps, a monolith loaded with a transition metal is obtained. The transition metal atoms will then serve as growth points for the Prussian Blue analog particles. 9. Impregnation of monoliths.
Au cours de cette étape, on imprègne les monolithes avec une solution aqueuse de K4Fe(CN)6 à 0,1M. During this step, the monoliths are impregnated with an aqueous solution of K 4 Fe (CN) 6 at 0.1M.
Les ions M2+ réagissent avec les ions Fe(CN)64" pour former des particules d'analogue de Bleu de Prusse (ABP) K2MFe(CN)6. M 2+ ions react with Fe (CN) 6 4 - ions to form Prussian Blue (ABP) K 2 MFe (CN) 6 analog particles.
A l'issue de cette étape d'imprégnation, on procède au lavage des matériaux à l'eau et à l'éthanol.  At the end of this impregnation step, the materials are washed with water and with ethanol.
Après une étape de séchage de 48h à 40°C, on obtient le matériau selon l'invention.  After a drying step of 48h at 40 ° C, the material according to the invention is obtained.
Le protocole de préparation des monolithes exposé ci-dessus a été mis en œuvre pour préparer trois matériaux selon l'invention constitués respectivement par : The protocol for the preparation of the monoliths described above has been implemented to prepare three materials according to the invention constituted respectively by:
- un monolithe de silice comprenant des nanoparticules de ferrocyanure de Cobalt, en d'autres termes un monolithe de silice fonctionnalisé par des nanoparticules de ferrocyanure de Cobalt. - un monolithe de silice comprenant des nanoparticules de ferrocyanure de Zinc, en d'autres termes un monolithe de silice fonctionnalisé par des nanoparticules de ferrocyanure de Zinc. a silica monolith comprising nanoparticles of cobalt ferrocyanide, in other words a silica monolith functionalized with nanoparticles of cobalt ferrocyanide. a silica monolith comprising nanoparticles of Zn ferrocyanide, in other words a silica monolith functionalized with Zn ferrocyanide nanoparticles.
- un monolithe de silice comprenant des nanoparticules de ferrocyanure de Cuivre, en d'autres termes un monolithe de silice fonctionnalisé par des nanoparticules de ferrocyanure de Cuivre.  a silica monolith comprising nanoparticles of copper ferrocyanide, in other words a silica monolith functionalized with copper ferrocyanide nanoparticles.
Exemple 2. Example 2
Dans cet exemple, on effectue une observation macroscopique des trois monolithes préparés dans l'exemple 1.  In this example, a macroscopic observation is made of the three monoliths prepared in Example 1.
Les Figures 1, 2, et 3, sont des photographies qui montrent l'aspect macroscopique respectivement du monolithe de silice fonctionnalisé par des particules de ferrocyanure de cobalt, du monolithe fonctionnalisé par des particules de ferrocyanure de zinc, et du monolithe fonctionnalisé par des particules de ferrocyanure de cuivre, préparés par le procédé selon l'invention dans l'exemple 1.  FIGS. 1, 2 and 3 are photographs showing the macroscopic appearance respectively of the silica monolith functionalized with particles of cobalt ferrocyanide, of the monolith functionalized with zinc ferrocyanide particles, and of the monolith functionalized with particles. of copper ferrocyanide prepared by the process according to the invention in Example 1.
La couleur du monolithe dépend du type de ferrocyanure qui est présent au sein du matériau.  The color of the monolith depends on the type of ferrocyanide that is present in the material.
On retrouve les couleurs classiques des ferrocyanures de cobalt (violet foncé), de zinc (jaune) et de cuivre (rouge).  We find the classic colors of ferrocyanides cobalt (dark purple), zinc (yellow) and copper (red).
Exemple 3. Example 3
Dans cet exemple, on effectue une observation au microscope électronique à balayage (MEB) des trois monolithes préparés dans l'exemple 1.  In this example, a scanning electron microscope (SEM) observation of the three monoliths prepared in Example 1 is carried out.
Les Figures 4, 5, et 6A, 6B montrent respectivement la morphologie du monolithe fonctionnalisé par des particules de ferrocyanure de Cobalt (Figure 4), du monolithe fonctionnalisé par des particules de ferrocyanure de Zinc (Figure 5), et du monolithe fonctionnalisé par des particules de ferrocyanure de Cuivre (Figures 6A et 6B).  Figures 4, 5 and 6A, 6B respectively show the morphology of the monolith functionalized with cobalt ferrocyanide particles (Figure 4), the monolith functionalized with Zn ferrocyanide particles (Figure 5), and the monolith functionalized with Copper ferrocyanide particles (FIGS. 6A and 6B).
Ces clichés montrent la structure macroporeuse de ces échantillons. Cette macroporosité est due à l'empreinte laissée par les gouttes d'huile après l'étape de lavage du matériau. La taille moyenne des macropores se situe pour les trois matériaux autour de 3 àThese pictures show the macroporous structure of these samples. This macroporosity is due to the impression left by the oil drops after the washing step of the material. The average size of macropores is for all three materials around 3 to
4 μιη. 4 μιη.
Les tailles moyennes des particules de ferrocyanures sont de 80 à 400 nm pour le ferrocyanure de cobalt, de 300 nm pour le ferrocyanure de zinc, et de 20 à 100 nm pour le ferrocyanure de cuivre.  The average ferrocyanide particle sizes are 80 to 400 nm for cobalt ferrocyanide, 300 nm for zinc ferrocyanide, and 20 to 100 nm for copper ferrocyanide.
On remarque également que la partie intérieure des macropores est tapissée de particules de ferrocyanures relativement agrégées. Leurs tailles et polydispersités dépendent du type de métal choisi. Il se dégage que les particules de ferrocyanure de zinc sont les plus monodisperses et que celles de ferrocyanure de cuivre sont les plus petites.  It is also noted that the inner part of the macropores is lined with relatively aggregated ferrocyanide particles. Their sizes and polydispersities depend on the type of metal chosen. It turns out that zinc ferrocyanide particles are the most monodisperse and copper ferrocyanide particles are the smallest.
Exemple 4. Example 4
Dans cet exemple, on effectue une analyse des trois monolithes préparés dans l'exemple 1 par la technique de diffusion des rayons X aux petits angles (« Small Angle X Ray Scatte ring » ou « SAXS » en anglais).  In this example, an analysis of the three monoliths prepared in Example 1 is carried out by the technique of small angle X-ray scattering ("Small Angle X Ray Scatter Ring" or "SAXS" in English).
Les monolithes selon l'invention sont macroporeux en raison de leur mode de synthèse qui utilise une émulsion comme empreinte. Ils sont également mésoporeux du fait de l'utilisation de tensio-actif dans le procédé de préparation. Ces tensio-actifs s'organisent sous forme de micelles en phase aqueuse. La taille typique de ces micelles atteint quelques nanomètres. Lors de l'étape de lavage des monolithes, les tensio-actifs sont enlevés et libèrent une cavité d'une taille voisine de celles des micelles, c'est-à-dire un mésopore.  The monoliths according to the invention are macroporous because of their mode of synthesis which uses an emulsion as an imprint. They are also mesoporous because of the use of surfactant in the preparation process. These surfactants are organized in the form of micelles in aqueous phase. The typical size of these micelles reaches a few nanometers. During the monolith washing step, the surfactants are removed and release a cavity of a size close to that of the micelles, that is to say a mesopore.
La technique de diffusion de rayons X aux petits angles sonde la matière à des échelles de tailles permettant de caractériser l'organisation de ces mésopores. Les résultats des analyses par cette technique sont présentés sur la Figure 7.  The small-angle X-ray scattering technique probes the material at size scales to characterize the organization of these mesopores. The results of the analyzes by this technique are shown in Figure 7.
Les courbes présentent un pic intense signifiant qu'il existe une position moyenne entre deux centres de mésopores. La position de ce pic à q* permet d'évaluer la distance entre deux centres de pores DPC pour chaque monolithe qui est égale à 2n/ q*. Cette distance est du même ordre de grandeur pour chaque type de monolithe. Plus exactement, la valeur de DPC est respectivement de 9,4 nm ; 11,8 nm ; et 11,2 nm pour les monolithes fonctionnalisés par des ferrocyanures de cobalt, zinc ou cuivre. La variation de la valeur de cette distance peut être attribuée à l'interaction métal- micelle qui peut varier lorsque la nature du métal change. The curves have an intense peak signifying that there is an average position between two centers of mesopores. The position of this peak at q * makes it possible to evaluate the distance between two centers of pores DPC for each monolith which is equal to 2n / q *. This distance is of the same order of magnitude for each type of monolith. More exactly, the value of DPC is 9.4 nm, respectively; 11.8 nm; and 11.2 nm for monoliths functionalized with ferrocyanides of cobalt, zinc or copper. The variation in the value of this distance can be attributed to the metal-micelle interaction that can vary as the nature of the metal changes.
Les mésopores sont donc faiblement structurées puisqu'une distance moyenne peut- être déterminée sans pour autant que l'arrangement soit cristallin. Si tel était le cas, les courbes SAXS présenteraient plusieurs pics de Bragg.  The mesopores are therefore weakly structured since an average distance can be determined without the arrangement being crystalline. If this were the case, the SAXS curves would show several peaks of Bragg.
Pour les grandes valeurs de vecteur d'onde, à savoir q >7 nnr1, plusieurs pics de diffraction sont visibles qui peuvent être attribués aux particules de ferrocyanures. Ceci montre une fois de plus que les monolithes sont bien fonctionnalisés. Exemple 5. For large wave vector values, namely q> 7 nnr 1 , several diffraction peaks are visible that can be attributed to the ferrocyanide particles. This shows once again that the monoliths are well functionalized. Example 5
Dans cet exemple, on effectue une analyse des trois monolithes préparés dans l'exemple 1 par la technique de mesure d'adsorption d'azote. Cette technique permet de connaître la surface spécifique des matériaux moyennant l'application du modèle BET.  In this example, the three monoliths prepared in Example 1 are analyzed by the nitrogen adsorption measurement technique. This technique makes it possible to know the specific surface of the materials by applying the BET model.
Les isothermes sont présentés sur la Figure 8.  The isotherms are shown in Figure 8.
On remarque que la fonctionnalisation du monolithe qui est effectuée lors de l'étape d'imprégnation au K4Fe(CN)6 provoque une diminution très nette de la surface spécifique du matériau qui passe de 710 m2/g à 406 m2/g-It is noted that the functionalization of the monolith which is carried out during the K 4 Fe (CN) 6 impregnation stage causes a very sharp reduction in the specific surface area of the material which goes from 710 m 2 / g to 406 m 2 / boy Wut-
Ceci est cohérent avec la précipitation de particules de ferrocyanures de cobalt dans les pores. This is consistent with the precipitation of cobalt ferrocyanide particles in the pores.
En effet, soit les particules sont localisées dans les macropores et bouchent l'accès aux mésopores situés dans les coquilles de silice (voir Figures 4 à 6), soit les particules précipitent directement dans les mésopores.  Indeed, either the particles are localized in the macropores and block the access to the mesopores located in the silica shells (see Figures 4 to 6), or the particles precipitate directly in the mesopores.
Quel que soit le mécanisme, cela aboutit à une diminution de la surface spécifique du matériau.  Whatever the mechanism, this results in a decrease in the specific surface area of the material.
Exemple 6 : Sorption du Césium. Example 6: Sorption of Cesium
Dans cet exemple, on réalise des essais d'adsorption du césium ionique Cs+ sur les monolithes de silice fonctionnalisés, contenant des nanoparticules de ferrocyanure de cuivre, zinc ou cobalt préparés dans l'exemple 1. En d'autres termes, dans cet exemple, les ferrocyanures contenus dans les monolithes sont utilisés comme sorbants spécifiques du césium ionique Cs+. In this example, adsorption tests for Cs + ionic cesium are carried out on the functionalized silica monoliths containing nanoparticles of copper, zinc or cobalt ferrocyanide prepared in Example 1. In other words, in this example, the ferrocyanides contained in the monoliths are used as specific sorbents for Cs + ionic cesium.
En effet, ces ferrocyanures contiennent un ion potassium dans la maille cristalline qui s'échange spécifiquement avec un ion césium.  Indeed, these ferrocyanides contain a potassium ion in the crystal mesh which is specifically exchanged with a cesium ion.
Les isothermes de sorption du Cs sur les monolithes fonctionnalisés avec des ferrocyanures de cuivre, zinc ou cobalt sont réalisés selon un protocole normalisé.  The Cs sorption isotherms on monoliths functionalized with ferrocyanides of copper, zinc or cobalt are made according to a standardized protocol.
Ce protocole est le suivant :  This protocol is as follows:
- préparer une solution contenant [X] mol/1 de NaNÛ3 et [Y] mol/1 de CSN O3 avec [X]/[Y]=10. Cette solution est appelée solution G.  - Prepare a solution containing [X] mol / l of NaNO3 and [Y] mol / l of CSN O3 with [X] / [Y] = 10. This solution is called solution G.
- prélever 10 mg de monolithe et les immerger dans 20 ml de la solution G précédente.  - Take 10 mg of monolith and immerse in 20 ml of the previous solution G.
- agiter pendant 48h.  - shake for 48h.
- prélever le surnageant, filtrer, et mesurer la teneur en Cs par chromatographie ionique.  - Take the supernatant, filter, and measure the Cs content by ion chromatography.
Ce protocole permet de quantifier la capacité d'échange des monolithes tout en s'assurant de la sélectivité des matériaux pour le césium vis-à-vis du sodium. This protocol makes it possible to quantify the exchange capacity of the monoliths while ensuring the selectivity of materials for cesium vis-à-vis sodium.
Dans toutes les expériences, dont les résultats sont donnés sur les Figures 9 et 10, la concentration en sodium est identique avant et après immersion du monolithe dans la solution G.  In all the experiments, the results of which are given in FIGS. 9 and 10, the sodium concentration is identical before and after immersion of the monolith in solution G.
Au bout de 48h d'agitation, l'équilibre d'adsorption est atteint, ce qui permet de comparer les expériences entre elles.  After 48 hours of stirring, the adsorption equilibrium is reached, which makes it possible to compare the experiments with each other.
Les Figures 9 et 10 montrent que les monolithes fonctionnalisés retiennent bien le Césium prioritairement vis-à-vis du sodium.  FIGS. 9 and 10 show that the functionalized monoliths retain cesium primarily with respect to sodium.
Le monolithe contenant des nanoparticules de ferrocyanure de zinc est le plus efficace, avec des capacités de sorption ou d'adsorption plus élevées que les autres monolithes qui contiennent des nanoparticules d'autres ferrocyanures, à savoir des nanoparticules de ferrocyanure de cobalt ou de ferrocyanure de cuivre. Ces capacités d'adsorption du Césium sont de l'ordre de 22 mg/g, 10 mg/g et 7 mg/g pour, respectivement, les monolithes qui contiennent des nanoparticules de ferrocyanures de zinc, de cuivre et de cobalt. The monolith containing nanoparticles of zinc ferrocyanide is the most efficient, with higher sorption or adsorption capacities than the other monoliths which contain nanoparticles of other ferrocyanides, namely nanoparticles of cobalt ferrocyanide or ferrocyanide. copper. These cesium adsorption capacities are of the order of 22 mg / g, 10 mg / g and 7 mg / g for, respectively, the monoliths which contain ferrocyanide nanoparticles of zinc, copper and cobalt.
Ces valeurs sont à comparer avec celles de la littérature.  These values are to be compared with those of the literature.
Par exemple, il a été montré dans le document de C. Delchet, A. Tokarev, X. Dumail, For example, it was shown in the document by C. Delchet, A. Tokarev, X. Dumail,
G. Toquer, Y. Barre, Y. Guari, C. Guerin, J. Larionova, A. Grandjean, « Extraction of radioactive césium using innovative functionalized porous materials », RSC Adv., 2, (2012), 5707 [5], que des silices mésoporeuses ou des billes de verre poreux post-fonctionnalisées par des ferrocyanures présentaient des capacités de sorption respectives de 17mg/g et 5mg/g sans ion compétiteur. G. Toquer, Y. Barre, Y. Guari, C. Guerin, J. Larionova, A. Grandjean, "Extraction of radioactive cesium using innovative functionalized porous materials", RSC Adv., 2, (2012), 5707 [5] that mesoporous silicas or porous glass beads post-functionalized with ferrocyanides had respective sorption capacities of 17 mg / g and 5 mg / g without competitor ion.
Par ailleurs, il a été montré dans le document de T. Sangvanich, V. Sukwarotwat, R.J. Wiacek, R.M. Grudzien, G.E. Fryxell, R.S. Addieman, C. Timchalk, W. Yantasee, "Sélective capture of césium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica", Journal of Hazardous Materials, 182, (2010), 225 [6], que des silices mésoporeuses fonctionnalisées par une voie différente de celle décrite dans le document de C. Delchet et al. présentaient des capacités de sorption maximales de 17,1 mg/g dans l'eau de mer.  Furthermore, T. Sangvanich, V. Sukwarotwat, RJ Wiacek, RM Grudzien, GE Fryxell, RS Addieman, C. Timchalk, W. Yantasee, T. Selective Capture of Cesium and Thallium from Natural Waters has been shown in the document. [6], that mesoporous silicas functionalised by a different route than that described in the document by C. Delchet et al., published in the Journal of Hazardous Materials, 182, (2010), 225 [6]. had a maximum sorption capacity of 17.1 mg / g in seawater.
On note donc que les matériaux monolithiques selon l'invention, préparés par le procédé selon l'invention possèdent des performances supérieures (22 mg/g pour le Zinc) en termes de capacité d'adsorption par rapport aux matériaux mis en œuvre dans les documents [5] et [6].  It is therefore noted that the monolithic materials according to the invention, prepared by the process according to the invention have higher performances (22 mg / g for Zinc) in terms of adsorption capacity compared to the materials used in the documents. [5] and [6].

Claims

REVENDICATIONS
1. Matériau solide se présentant sous la forme d'un monolithe alvéolaire constitué par une matrice calcinée d'un oxyde inorganique à porosité hiérarchisée et ouverte comprenant des macropores, des mésopores, et des micropores, définis par des parois, avec des atomes d'un métal de transition M intégrés et liés auxdites parois, lesdits macropores, mésopores et micropores étant interconnectés, dans lequel des nanoparticules d'un matériau solide inorganique échangeur d'un cation métallique choisi parmi les hexa- et octacyanométallates de métal de formule [Alk+ x]Mn+ y[M'(CN)m]tz~, où Alk+ est un cation monovalent choisi parmi les cations de métaux alcalins et le cation ammonium NH4 +, x est égal à 0, 1 ou 2, M est un métal de transition, n est égal à 2 ou 3, y est égal à 1, 2 ou 3, M' est un métal de transition, m est égal à 6 ou 8, z est égal à 3 ou 4, et t est égal à 1 ou 2, sont réparties dans ladite porosité, et les nanoparticules sont fixées à une surface interne desdites parois par l'intermédiaire desdits atomes de métal de transition M. 1. A solid material in the form of an alveolar monolith consisting of a calcined matrix of an inorganic oxide with an open hierarchical porosity comprising macropores, mesopores, and micropores, defined by walls, with atoms of a transition metal M integrated and bonded to said walls, said macropores, mesopores and micropores being interconnected, wherein nanoparticles of an inorganic solid material exchanger of a metal cation selected from hexa and octacyanometallates of metal of formula [Alk + x ] M n + y [M '(CN) m ] t z ~ , where Alk + is a monovalent cation selected from the alkali metal cations and the ammonium cation NH 4 + , x is 0, 1 or 2, M is a transition metal, n is 2 or 3, y is 1, 2 or 3, M 'is a transition metal, m is 6 or 8, z is 3 or 4, and t is equal to 1 or 2, are distributed in said porosity, and the nanoparticles are t attached to an inner surface of said walls via said transition metal atoms M.
2. Matériau selon la revendication 1, dans lequel l'oxyde inorganique est choisi parmi les oxydes d'au moins un métal ou métalloïde choisi parmi Si, Ti, Zr, Th, Nb, Ta, V, W, Y, Ca, Mg et Al. 2. Material according to claim 1, wherein the inorganic oxide is selected from oxides of at least one metal or metalloid selected from Si, Ti, Zr, Th, Nb, Ta, V, W, Y, Ca, Mg. et al.
3. Matériau selon la revendication 2, dans lequel l'oxyde inorganique est la silice. 3. The material of claim 2, wherein the inorganic oxide is silica.
4. Matériau selon l'une quelconque des revendications précédentes, dans lequel Mn+ est Fe2+, Ni2+, Fe3+, Co2+, Cu2+, ou Zn2+. 4. Material according to any one of the preceding claims, wherein M n + is Fe 2+ , Ni 2+ , Fe 3+ , Co 2+ , Cu 2+ , or Zn 2+ .
5. Matériau selon l'une quelconque des revendications précédentes, dans lequel M' est Fe2+ ou Fe3+ ou Co3+ et m est 6 ; ou bien M' est Mo5+ et m est 8. Material according to any one of the preceding claims, wherein M 'is Fe 2+ or Fe 3+ or Co 3+ and m is 6; or M 'is Mo 5+ and m is 8.
6. Matériau selon l'une quelconque des revendications précédentes, dans lequel [M'(CN)m]z- est [Fe(CN) 6]3", [Fe(CN)6]\ [Co(CN) 6]3 ou [Mo(CN)8]3". Material according to any of the preceding claims, wherein [M '(CN) m ] z - is [Fe (CN) 6 ] 3 - , [Fe (CN) 6 ] [Co (CN) 6 ] 3 or [Mo (CN) 8 ] 3 " .
7. Matériau selon la revendication 4, dans lequel le matériau solide inorganique échangeur d'un cation métallique répond à la formule K2M Fe(CN)6, par exemple K2Cu Fe(CN)6, K2ZnFe(CN)6, K2Co Fe(CN)6. 7. Material according to claim 4, wherein the inorganic solid material exchanger of a metal cation has the formula K2M Fe (CN) 6, for example K 2 Cu Fe (CN) 6 , K 2 ZnFe (CN) 6 , K 2 Co Fe (CN) 6 .
8. Matériau selon l'une quelconque des revendications précédentes, dans lequel les nanoparticules ont une forme de sphère ou de sphéroïde. 8. Material according to any one of the preceding claims, wherein the nanoparticles have a sphere or spheroidal shape.
9. Matériau selon l'une quelconque des revendications précédentes, dans lequel les nanoparticules ont une taille moyenne, telle qu'un diamètre, de 2 à 300 nm, de préférence de 2 à 100 nm, de préférence encore de 2 à 50 nm. 9. Material according to any one of the preceding claims, wherein the nanoparticles have an average size, such as a diameter, of 2 to 300 nm, preferably 2 to 100 nm, more preferably 2 to 50 nm.
10. Matériau selon l'une quelconque des revendications précédentes, dans lequel la teneur en nanoparticules du au moins un matériau solide inorganique échangeur d'un cation métallique est de 0,5 à 15% en poids, de préférence de 0,5 à 5% en poids. 10. The material as claimed in claim 1, in which the nanoparticle content of the at least one inorganic solid material exchanging a metal cation is from 0.5 to 15% by weight, preferably from 0.5 to 5% by weight. % in weight.
11. Procédé de préparation du matériau selon l'une quelconque des revendications 1 à 10 qui comprend au moins les étapes successives suivantes : 11. Process for preparing the material according to any one of claims 1 to 10 which comprises at least the following successive steps:
a) on prépare une solution aqueuse A d'un tensio-actif organique, et le pH de cette solution est ajusté à une valeur de 1,5 à 2,5, de préférence de 1,8 à 2,2, de préférence encore de 2 ;  a) an aqueous solution A of an organic surfactant is prepared, and the pH of this solution is adjusted to a value of 1.5 to 2.5, preferably 1.8 to 2.2, more preferably of 2;
b) on ajoute des ions Mn+ à la solution A, éventuellement le pH de cette solution à laquelle ont été ajoutés des ions Mn+ est ajusté à une valeur de 1,5 à 2,5, de préférence de 1,8 à 2,2, de préférence encore de 2, moyennant quoi on obtient une solution aqueuse B; b) adding M n + ions to solution A, optionally the pH of this solution to which M n + ions have been added is adjusted to a value of 1.5 to 2.5, preferably of 1.8 to 2 , 2, more preferably 2, whereby an aqueous solution B is obtained;
c) on dissout un précurseur de l'oxyde inorganique dans la solution B, moyennant quoi on obtient une solution aqueuse C ;  c) dissolving a precursor of the inorganic oxide in solution B, whereby an aqueous solution C is obtained;
d) éventuellement, le pH de la solution aqueuse C est ajusté à une valeur de 1,5 à 2,5, de préférence de 1,8 à 2,2, de préférence encore de 2 , et on ajoute une solution aqueuse d'au moins un fluorure de métal, de préférence d'au moins un fluorure de métal alcalin tel que le KF, le LiF, ou le NaF à la solution C, moyennant quoi on obtient une solution aqueuse D; e) on ajoute, rapidement après la fin de l'étape d), une phase huileuse sous agitation mécanique avec cisaillement, à la solution aqueuse D, moyennant quoi on obtient une émulsion huile dans l'eau E formée de gouttelettes de la phase huileuse dispersée dans une phase aqueuse continue ; d) optionally, the pH of the aqueous solution C is adjusted to a value of 1.5 to 2.5, preferably 1.8 to 2.2, more preferably 2, and an aqueous solution of at least one metal fluoride, preferably at least one alkali metal fluoride such as KF, LiF, or NaF in solution C, whereby an aqueous solution D is obtained; e) an oil phase is added rapidly after the end of step d), with shearing mechanical stirring, to the aqueous solution D, whereby an oil-in-water emulsion E formed of droplets of the oily phase is obtained; dispersed in a continuous aqueous phase;
f) on réalise la maturation, minéralisation de l'émulsion E obtenue dans l'étape e), moyennant quoi le monolithe se forme ;  f) maturation is carried out, mineralization of the emulsion E obtained in step e), whereby the monolith is formed;
g) on lave, et/ou on sèche le monolithe ;  g) washing and / or drying the monolith;
h) on calcine le monolithe ;  h) the monolith is calcined;
i) on imprègne le monolithe avec une solution aqueuse de [Alk+ X]
Figure imgf000036_0001
i) the monolith is impregnated with an aqueous solution of [Alk + X ]
Figure imgf000036_0001
j) on lave et on sèche le monolithe imprégné.  j) washing and drying the impregnated monolith.
12. Procédé pour séparer au moins un cation métallique à partir d'un milieu liquide le contenant, dans lequel on met en contact ledit milieu liquide avec le matériau selon l'une quelconque des revendications 1 à 10. 12. Process for separating at least one metal cation from a liquid medium containing it, wherein said liquid medium is brought into contact with the material according to any one of claims 1 to 10.
13. Procédé selon la revendication 12, dans lequel ledit milieu liquide est un milieu liquide aqueux, tel qu'une solution aqueuse. The method of claim 12, wherein said liquid medium is an aqueous liquid medium, such as an aqueous solution.
14. Procédé selon l'une quelconque des revendications 12 ou 13, dans lequel ledit milieu liquide est un milieu liquide contenant des radionucléides, par exemple le milieu liquide est choisi parmi les liquides et effluents issus de l'industrie nucléaire, et des activités mettant en œuvre des radionucléides. 14. A method according to any one of claims 12 or 13, wherein said liquid medium is a liquid medium containing radionuclides, for example the liquid medium is selected from liquids and effluents from the nuclear industry, and activities involving radionuclides.
15. Procédé selon l'une quelconque des revendications 12 à 14, dans lequel le milieu liquide est une solution aqueuse contenant outre ledit cation métallique, des sels tels que du NaCI à une concentration élevée, par exemple supérieure à 30 g/L. 15. The method according to any one of claims 12 to 14, wherein the liquid medium is an aqueous solution containing in addition to said metal cation, salts such as NaCl at a high concentration, for example greater than 30 g / l.
16. Procédé selon l'une quelconque des revendications 12 à 15, dans lequel ledit cation métallique est présent à une concentration de 0,1 picogramme à 100 mg/L, de préférence de 0,1 picogramme à 10 mg/L. The method of any one of claims 12 to 15, wherein said metal cation is present at a concentration of 0.1 picogram to 100 mg / L, preferably 0.1 picogram to 10 mg / L.
17. Procédé selon l'une quelconque des revendications 12 à 16, dans lequel le cation métallique est un cation d'un élément choisi parmi Cs, Co, Ag, Ru, Fe et Tl et les isotopes, notamment radioactifs de ceux-ci, de préférence, le cation est un cation du 134Cs, ou du 137Cs. 17. Process according to any one of claims 12 to 16, in which the metal cation is a cation of an element chosen from Cs, Co, Ag, Ru, Fe and Ti and the isotopes, in particular radioactive thereof, preferably, the cation is a 134 Cs, or 137 Cs cation.
18. Procédé selon l'une quelconque des revendications 12 à 17, dans lequel le milieu liquide est une solution aqueuse, contenant en tant que cation métallique un cation du 134Cs, et/ou du 137Cs, et contenant en outre des sels tels que du NaCI à une concentration élevée, par exemple supérieure à 30 g/L. 18. A process according to any one of claims 12 to 17, wherein the liquid medium is an aqueous solution, containing as a metal cation a cation of 134 Cs, and / or 137 Cs, and further containing salts such as as NaCl at a high concentration, for example greater than 30 g / l.
PCT/EP2016/063772 2015-06-17 2016-06-15 Inorganic cellular monobloc cation-exchange materials, preparation method thereof, and separation method using same WO2016202869A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1555535 2015-06-17
FR1555535A FR3037583B1 (en) 2015-06-17 2015-06-17 CELL - EXCHANGING INORGANIC ALVEOLAR MONOLITHIC MATERIALS, THEIR PREPARATION PROCESS, AND THE SEPARATION PROCESS USING THE SAME.

Publications (1)

Publication Number Publication Date
WO2016202869A1 true WO2016202869A1 (en) 2016-12-22

Family

ID=54366298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/063772 WO2016202869A1 (en) 2015-06-17 2016-06-15 Inorganic cellular monobloc cation-exchange materials, preparation method thereof, and separation method using same

Country Status (2)

Country Link
FR (1) FR3037583B1 (en)
WO (1) WO2016202869A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111247114A (en) * 2017-10-23 2020-06-05 原子能和替代能源委员会 Method for preparing powders based on yttrium oxide, aluminum oxide and optionally at least one other element oxide

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3106507B1 (en) 2020-01-28 2024-03-01 Commissariat Energie Atomique SOLID MATERIAL WITH MULTIPLE OPEN POROSITY COMPRISING A GEOPOLYMER AND SOLID PARTICLES AND PREPARATION METHOD THEREFOR

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0575612A1 (en) * 1991-12-24 1993-12-29 Sovmestnoe Sovetsko-Kanadskoe Predpriyatie " Compomet Cantec" Method for obtaining composite sorbents
FR2765812A1 (en) * 1997-07-09 1999-01-15 Commissariat Energie Atomique SOLID COMPOSITE MATERIAL FIXING MINERAL POLLUTANTS BASED ON HEXACYANOFERRATES AND FILM-LAYER POLYMER, PROCESS FOR PREPARING THE SAME, AND METHOD FOR FIXING MINERAL POLLUTANTS EMPLOYING THE SAME
WO2001047855A1 (en) 1999-12-27 2001-07-05 University Of Delaware Functionalized monolith catalyst and process for production of ketenes
WO2003018194A1 (en) * 2001-08-22 2003-03-06 Commissariat A L'energie Atomique Composite solid material fixing mineral pollutants, method for preparing same and method for fixing pollutants using same
WO2003018193A1 (en) * 2001-08-22 2003-03-06 Commissariat A L'energie Atomique Method for preparing a composite solid material based on hexacyanoferrates, and method for fixing mineral pollutants using same
WO2008031108A2 (en) 2006-09-08 2008-03-13 Cornell Research Foundation, Inc. Sol-gel precursors and products thereof
FR2912400A1 (en) * 2007-02-14 2008-08-15 Univ Paris Curie Material in the form of a honeycomb monolith, useful as an adsorbent or catalyst support, comprises an inorganic oxide polymer with organic substituents
WO2012049412A1 (en) 2010-10-11 2012-04-19 Centre National De La Recherche Scientifique Process for preparing cellular inorganic monolithic materials and uses of these materials
WO2014049048A1 (en) * 2012-09-28 2014-04-03 Commissariat à l'énergie atomique et aux énergies alternatives Supported membrane functionalized with hexa- and octacyanometallates, process for the preparation thereof and separation process using same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0575612A1 (en) * 1991-12-24 1993-12-29 Sovmestnoe Sovetsko-Kanadskoe Predpriyatie " Compomet Cantec" Method for obtaining composite sorbents
FR2765812A1 (en) * 1997-07-09 1999-01-15 Commissariat Energie Atomique SOLID COMPOSITE MATERIAL FIXING MINERAL POLLUTANTS BASED ON HEXACYANOFERRATES AND FILM-LAYER POLYMER, PROCESS FOR PREPARING THE SAME, AND METHOD FOR FIXING MINERAL POLLUTANTS EMPLOYING THE SAME
WO2001047855A1 (en) 1999-12-27 2001-07-05 University Of Delaware Functionalized monolith catalyst and process for production of ketenes
WO2003018194A1 (en) * 2001-08-22 2003-03-06 Commissariat A L'energie Atomique Composite solid material fixing mineral pollutants, method for preparing same and method for fixing pollutants using same
WO2003018193A1 (en) * 2001-08-22 2003-03-06 Commissariat A L'energie Atomique Method for preparing a composite solid material based on hexacyanoferrates, and method for fixing mineral pollutants using same
WO2008031108A2 (en) 2006-09-08 2008-03-13 Cornell Research Foundation, Inc. Sol-gel precursors and products thereof
FR2912400A1 (en) * 2007-02-14 2008-08-15 Univ Paris Curie Material in the form of a honeycomb monolith, useful as an adsorbent or catalyst support, comprises an inorganic oxide polymer with organic substituents
WO2008129151A2 (en) 2007-02-14 2008-10-30 Universite Pierre Et Marie Curie Hybrid material, and method for the production thereof
WO2012049412A1 (en) 2010-10-11 2012-04-19 Centre National De La Recherche Scientifique Process for preparing cellular inorganic monolithic materials and uses of these materials
WO2014049048A1 (en) * 2012-09-28 2014-04-03 Commissariat à l'énergie atomique et aux énergies alternatives Supported membrane functionalized with hexa- and octacyanometallates, process for the preparation thereof and separation process using same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
C. DELCHET; A. TOKAREV; X. DUMAIL; G. TOQUER; Y. BARRE; Y. GUARI; C. GUERIN; J. LARIONOVA; A. GRANDJEAN: "Extraction of radioactive cesium using innovative functionalized porous materials", RSC ADV., vol. 2, 2012, pages 5707
T. SANGVANICH; V. SUKWAROTWAT; R.J. WIACEK; R.M. GRUDZIEN; G.E. FRYXELL; R.S. ADDLEMAN; C. TIMCHALK; W. YANTASEE: "Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica", JOURNAL OF HAZARDOUS MATERIALS, vol. 182, 2010, pages 225, XP027211996

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111247114A (en) * 2017-10-23 2020-06-05 原子能和替代能源委员会 Method for preparing powders based on yttrium oxide, aluminum oxide and optionally at least one other element oxide

Also Published As

Publication number Publication date
FR3037583B1 (en) 2020-01-03
FR3037583A1 (en) 2016-12-23

Similar Documents

Publication Publication Date Title
EP3083524B1 (en) Inorganic cellular monobloc cation-exchange materials, the preparation method thereof, and separation method using same
Nassar et al. A facile and tunable approach for synthesis of pure silica nanostructures from rice husk for the removal of ciprofloxacin drug from polluted aqueous solutions
Ali et al. High-speed and high-capacity removal of methyl orange and malachite green in water using newly developed mesoporous carbon: kinetic and isotherm studies
Yang et al. Preparation of diamine modified mesoporous silica on multi-walled carbon nanotubes for the adsorption of heavy metals in aqueous solution
Kongsri et al. Nanocrystalline hydroxyapatite from fish scale waste: Preparation, characterization and application for selenium adsorption in aqueous solution
Ahmed et al. Mesoporous MgO nanoparticles as a potential sorbent for removal of fast orange and bromophenol blue dyes
Kumar et al. Removal of toxic arsenic from aqueous media using polyphenylsulfone/cellulose acetate hollow fiber membranes containing zirconium oxide
Ali et al. Removal of Cs+, Sr 2+ and Co 2+ by activated charcoal modified with Prussian blue nanoparticle (PBNP) from aqueous media: kinetics and equilibrium studies
Arenas et al. Removal efficiency and adsorption mechanisms of CeO2 nanoparticles onto granular activated carbon used in drinking water treatment plants
EP3192078A1 (en) Method for producing a solid nanocomposite material based on hexa- and octacyanometallates of alkali metals
Talavera-Pech et al. Effect of functionalization synthesis type of amino-MCM-41 mesoporous silica nanoparticles on its RB5 adsorption capacity and kinetics
Arabkhani et al. A reusable mesoporous adsorbent for efficient treatment of hazardous triphenylmethane dye wastewater: RSM-CCD optimization and rapid microwave-assisted regeneration
Oukebdane et al. Binary comparative study adsorption of anionic and cationic Azo-dyes on Fe3O4-Bentonite magnetic nanocomposite: Kinetics, Equilibrium, Mechanism and Thermodynamic study
KR102114995B1 (en) Heavy Metal Absorbent having Nano Zero Valent Iron and Used Coffee Grounds, and Manufacturing Method thereof
EP3509738B1 (en) Process for preparing a solid nanocomposite material made from hexa- or octacyanometallates of alkali metals
WO2016202869A1 (en) Inorganic cellular monobloc cation-exchange materials, preparation method thereof, and separation method using same
Alwan et al. Synthesis of cobalt iron oxide doped by chromium using sol-gel method and application to remove malachite green dye
Zambotti et al. Glyphosate adsorption performances of polymer-derived SiC/C aerogels
WO2021152248A1 (en) Solid material having an open multiple porosity, comprising a geopolymer and solid particles, and method for the preparation thereof
Deng et al. Using magnetite/zirconium-comodified attapulgite as a novel phosphorus (P) sorbent for the efficient removal of P and the adsorption mechanism allowing this effect
Burdzy et al. Application of Ion Exchangers with the N-Methyl-D-Glucamine Groups in the V (V) Ions Adsorption Process
Srivastava et al. Coupled catalytic dephosphorylation and complex phosphate ion-exchange in networked hierarchical lanthanum carbonate grafted asymmetric bio-composite membrane
Abd-Elhamid et al. Synthesis of Prussian blue-embedded magnetic micro hydrogel for scavenging of cesium from aqueous solutions; Batch and dynamic investigations
JP2016183092A (en) Method of obtaining nanoparticles of biomorphic silica from plant sections characterized by high content thereof
Al-Farraj et al. Functionalization of Na2Ca2Si3O9/Ca8Si5O18 Nanostructures with Chitosan and Terephthalaldehyde Crosslinked Chitosan for Effective Elimination of Pb (II) Ions from Aqueous Media

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16733328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16733328

Country of ref document: EP

Kind code of ref document: A1