WO2016202146A1 - 一种硅基调制器 - Google Patents

一种硅基调制器 Download PDF

Info

Publication number
WO2016202146A1
WO2016202146A1 PCT/CN2016/083038 CN2016083038W WO2016202146A1 WO 2016202146 A1 WO2016202146 A1 WO 2016202146A1 CN 2016083038 W CN2016083038 W CN 2016083038W WO 2016202146 A1 WO2016202146 A1 WO 2016202146A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguides
waveguide
phase
silicon
microring
Prior art date
Application number
PCT/CN2016/083038
Other languages
English (en)
French (fr)
Inventor
尚冬冬
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016202146A1 publication Critical patent/WO2016202146A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type

Definitions

  • This application relates to, but is not limited to, the field of silicon photonics integration.
  • the main principle of the modulator implementation is to control the change of the refractive index in the optical path by an external signal, so that the phase of the light output changes to achieve the purpose of modulation.
  • One waveguide can realize phase modulation, and two waveguides form MZ (Mach-Zehnder, Mach-Zehnder) structure. Phase modulation and intensity modulation can be realized by controlling the bias point of MZ structure.
  • QPSK in optical communication Quadratture Phase Shift Keying, Quadrature Phase Shift Keying
  • a waveguide capable of changing the output phase of light in real time based on an electrical signal, ie, a phase modulator is the key to the modulator system.
  • the electro-optical effect is weak, although the thermo-optic effect is significant, but its modulation rate is very slow, the plasma dispersion (PD) effect has a relatively high modulation efficiency, and the modulation rate is greatly improved. Received a lot of attention.
  • Modulators designed using the PD effect can be roughly classified into a carrier injection type (pin structure), a carrier depletion type (pn node structure), and a MOS capacitance type.
  • the number of carriers directly affects the refractive index of the light in the waveguide, which in turn affects the output phase.
  • Such modulators control the change of carriers through external electrical signals, thereby achieving phase modulation, but there are many restrictions on this type of modulator.
  • V ⁇ the voltage required to delay the phase ⁇ of the optical path
  • V ⁇ has to be increased.
  • People have successively designed interpolated modulators, U-type PN section modulators, etc., but still face problems such as low modulation rate, excessive modulation voltage, and low extinction ratio.
  • embodiments of the present invention provide a silicon-based modulator including: an optical path selector, two sets of waveguides, and an optical coupler.
  • the optical path selector is configured to: receive input light, control light input to the first group of waveguides or input to the second group of waveguides under control of the electrical signal;
  • the first set of waveguides and the second set of waveguides have one end connected to the optical path selector and the other end connected to the optical coupler, and the first set of waveguides or the second set of waveguides output light to the
  • the optical coupler is coupled and output by the optical coupler, and optical paths of the first group of waveguides and the second group of waveguides are not equal, and an optical path difference thereof corresponds to a phase difference to be obtained.
  • the first set of waveguides is a waveguide
  • the second set of waveguides is a waveguide
  • the lengths of the first set of waveguides and the second set of waveguides are not equal, and a difference in length corresponds to the optical path difference.
  • the first set of waveguides includes a waveguide
  • the second set of waveguides includes a waveguide
  • a phase controller is connected to the first group of waveguides, or a phase controller is connected to the second group of waveguides, or a phase control is respectively connected to the first group of waveguides and the second group of waveguides.
  • the first set of waveguides includes two first waveguides and a fourth waveguide of equal length and the same phase of the output optical field, the first waveguide and the fourth waveguide forming an MZ structure,
  • the second set of waveguides includes two second waveguides and a third waveguide of equal length and the same phase of the output optical field, the second waveguide and the third waveguide forming an MZ structure,
  • the lengths of the waveguides in the first set of waveguides and the waveguides in the second set of waveguides are unequal, and the difference in length corresponds to the optical path difference. 5.
  • the first set of waveguides includes two first waveguides and a fourth waveguide of equal length and the same phase of the output optical field, the first waveguide and the fourth waveguide forming an MZ structure,
  • the second set of waveguides includes two second waveguides and a third waveguide of equal length and the same phase of the output optical field, the second waveguide and the third waveguide forming an MZ structure,
  • a phase controller is coupled to one or more of the first waveguide, the second waveguide, the third waveguide, and the fourth waveguide.
  • the first set of waveguides are opposite in phase to the second set of waveguide output light fields.
  • the optical path selector includes a first microring structure and a second microring structure, one end of the first microring structure is connected to one of the first group of waveguides, and the other end of the first microring structure Connected to one of the second set of waveguides, one end of the second microring structure is connected to the other of the first set of waveguides, and the other end of the second microring structure is opposite to the second Another waveguide in the set of waveguides is connected.
  • An upstream end of the first microring structure is connected to the first waveguide, a lower end of the first microring structure is connected to the second waveguide, and an uplink end of the second microring structure is opposite to the first A three-waveguide connection, the downstream end of the second micro-ring structure being connected to the fourth waveguide.
  • the optical path selector employs a microring structure that controls light to pass through a set of waveguides when the microring structure is under resonance, and controls light to pass through the other set of waveguides when the microring structure is in a non-resonant condition.
  • the microring structure includes a phase controller of a PN node structure or a phase controller of a MOS capacitor structure.
  • the phase controller is a thermal phase shifter.
  • the above silicon-based modulator has high modulation efficiency, high modulation rate, high extinction ratio, and can save the volume of the silicon chip.
  • FIG. 1 is a schematic structural view of a silicon-based modulator according to a first example of the present invention
  • Example 2 is a schematic structural view of a silicon-based modulator of Example 2 of the present invention.
  • Example 3 is a schematic structural view of a silicon-based modulator of Example 3 of the present invention.
  • 4a and 4b are schematic structural views of a silicon-based modulator of Example 4 of the present invention.
  • Fig. 5 is a schematic structural view of a silicon-based modulator of Example 5 of the present invention.
  • the silicon-based modulator of the embodiment of the invention includes: an optical path selector, two sets of waveguides, and an optical coupler, wherein
  • the optical path selector is configured to: receive input light, control light input to the first group of waveguides or input to the second group of waveguides under control of the electrical signal;
  • the first set of waveguides and the second set of waveguides have one end connected to the optical path selector and the other end connected to the optical coupler, and the first set of waveguides or the second set of waveguides output light to the Light a coupler coupled out and output by the optical coupler, the optical paths of the first set of waveguides and the second set of waveguides being unequal, and the optical path difference corresponding to the phase difference to be obtained.
  • phase modulation can be achieved by controlling the optical path difference.
  • This embodiment proposes a new modulator design concept, which does not use various effects to change the transmission phase of light. Instead, two waveguides of unequal length are designed in a silicon-based system, and the waveguide tail is coupled out through a coupler. The length difference is the length required for the phase difference to be obtained, and an optical path selector (Optic switch) is used to pass light through any one of the waveguides according to the modulated signal, thereby realizing phase modulation of the light.
  • WSM Waveguide Selecting Modulator
  • Phase shift can be added to either arm or in either arm. ) to obtain a fixed phase difference between the two arms.
  • the silicon-based modulator of the embodiment of the invention has the advantages of low modulation voltage, high extinction ratio, high modulation rate and smaller volume, and can meet the requirements of long-distance transmission of silicon light.
  • the first set of waveguides is a waveguide
  • the second set of waveguides is a waveguide
  • the lengths of the first set of waveguides and the second set of waveguides are unequal, and the length difference and the optical path are The difference corresponds.
  • the first group of waveguides includes a waveguide
  • the second group of waveguides includes a waveguide
  • a first phase waveguide is connected to a phase controller
  • the second group of waveguides is connected to a waveguide.
  • a phase controller, or a respective one of the first set of waveguides and the second set of waveguides is coupled to a phase controller.
  • phase controller such as a heater (thermal phase shifter) to one of the arms (or both arms, as shown in Figure 2).
  • the phase difference between the two arms is realized. This control is slow and does not affect the modulation performance. It can also be considered that the two arms have a fixed phase difference.
  • the Optic switch adjusts the light through Select1
  • the ⁇ phase is obtained
  • the Optic switch adjusts the light through Select2
  • the 0 phase is obtained.
  • the electrical signal controls the optical path selection of the Optic switch to achieve phase 0 and ⁇ modulation.
  • the phase difference of the WSM is fixed (any desired phase difference can be obtained by the phase control device).
  • the rate of the modulator depends only on the speed of the Optic switch. Because of the optical coupling output of the two sets of waveguides as the signal source, the two paths of light The phase is reversed, so even if the Optic switch has an insufficient extinction ratio, the modulator can achieve a high extinction ratio.
  • the WSM Optic switch can adopt a microring structure. As shown in FIG. 3, when the microring satisfies the resonance condition, light is coupled to the waveguide Select1 through the microring to obtain the phase ⁇ . When the resonance condition of the microring is broken, the light passes directly through Select2 to obtain phase 0.
  • the microring can adopt a phase controller of a PN node structure to control the refractive index change of the microring by a signal.
  • the microring is under resonance conditions (the heater (thermal phase shifter) and other control devices can be added outside the microring so that it is always under resonance conditions), and the light passes through Select2 to modulate the phase ⁇ .
  • the microring resonance condition is destroyed, and the light passes through Select1 to modulate the phase 0.
  • the resonance condition of the microring is easily destroyed.
  • the required modulation voltage does not exceed 2V.
  • the extinction ratio is much better than the maximum of 10 dB.
  • the first set of waveguides includes two first waveguides and a fourth waveguide of equal length and the same phase of the output optical field, the first waveguide and the fourth waveguide forming an MZ structure,
  • the second set of waveguides includes two second waveguides and a third waveguide of equal length and the same phase of the output optical field, the second waveguide and the third waveguide forming an MZ structure,
  • the lengths of the waveguides in the first set of waveguides Select1 and the waveguides in the second set of waveguides Select2 are unequal, and the difference in length corresponds to the optical path difference, for example, the first set of waveguides and the second set
  • the group of waveguide output light fields are opposite in phase.
  • a phase controller may also be connected to one or more of the first waveguide, the second waveguide, the third waveguide, and the fourth waveguide to control the optical path difference.
  • the dual-arm silicon-based modulator of this example is shown in Figures 4a and 4b.
  • Figure 4a four of the two sets of waveguides are connected into a 4*1 coupler
  • Figure 4b two of the first set of waveguides are shown.
  • the strip waveguide is connected to a 2*1 coupler
  • the waveguide in the second set of waveguides is connected to another 2*1 coupler
  • the outputs of the two 2*1 couplers are connected to a 2*1 coupler.
  • the MZ structure composed of the WSM is controlled by the length difference, so that the Select1 of the upper and lower arms of the MZ are in phase with each other and Select2 is in phase.
  • the Opz switch selects the Select1 path, and the MZ structure composed of Select1 on the upper arm is in a coherent phase state with a phase of 0.
  • the Select2 of the upper arm is composed of
  • the MZ structure is also in a coherent phase state with a phase of ⁇ , which can increase the extinction ratio.
  • the WSM of the two arms can eliminate the phase inaccuracy caused by the rise and fall of the electrical signal.
  • the optical path selector includes a first microring structure and a second microring structure, and one end of the first microring structure is connected to one of the first group of waveguides.
  • the other end of the first microring structure is connected to one of the second set of waveguides, and one end of the second microring structure is connected to another waveguide of the first group of waveguides, the second Microring structure The other end is coupled to the other of the second set of waveguides.
  • the WSM Optic switch of the two arms can also adopt a micro ring structure.
  • FIG. 5 considering that the power of the uplink and downlink of the micro-ring structure is unbalanced, only the phase modulation system composed of a single-arm new modulator has fluctuations in output power of different phase information.
  • the output power of the new modulator MZ structure of the micro-ring structure is the superposition of the uplink of one micro-ring and the downlink of the other micro-ring, so the output power balance is stable and the extinction ratio is increased.
  • the phase difference between the through (drop) and drop (downstream) paths of the microring changes with the wavelength.
  • each MZ structure output considered is superimposed on the through path of one micro ring and the drop path of another micro ring. Even if the WSM of the two arms has a phase difference, it will only make the phase length insufficient, and the output is The two phase information is still the opposite.
  • the modulation voltage tends to be less than V ⁇ , and the 0 phase and the ⁇ phase still exist.
  • the light passes through the coupler 101 of the device 1:2, splitting the light into two paths, respectively entering the microring 102 and the microring 103, and the light of the upper arm is connected to the through end of the microring 102, and is connected to the waveguide 106.
  • the light of the lower arm is connected to the through end of the microring 103, and is connected to the waveguide 108.
  • the drop end of the microring 102 is connected to the waveguide 105, and the drop end of the microring 103 is connected to the waveguide 107.
  • the waveguides 105, 106, 107 and 108 are coupled out via a 4*1 coupler 104.
  • the waveguide 105 and the waveguide 107 are equal in length, and the output phases are in phase.
  • the waveguide 106 and the waveguide 108 are equal in length, the output phases are in phase, the lengths of Select1 and Select2 are not equal, and the length difference determines the phase difference.
  • the phase difference is required to be ⁇ , then the length difference is Where ⁇ is the wavelength of the propagating light and n is the effective refractive index of the waveguide.
  • Figure 5 is only an example.
  • the input terminals of the upper and lower micro-rings can be combined arbitrarily.
  • the light can be input to the through end of the upper micro-ring and the lower micro-ring at the same time, or the through-end of the micro-ring can be simultaneously input.
  • the drop end of the lower micro ring can also input the drop end of the micro ring and the through end of the lower micro ring at the same time, and can also input the drop end of the upper micro ring and the lower micro ring at the same time.
  • the microring 102 and the microring 103 can achieve a faster modulation rate using a PN node structure or a MOS capacitor structure.
  • the bias voltage can be set to -2V, and the signal voltage is Thus, the state of the PN section is 0V and -4V.
  • the electrical signals of the two micro-rings adopt differential signals, that is, when the upper and lower micro-ring modulations are respectively 2V and -2V, when the micro-ring 102 modulates the voltage of 0V, it is in a resonance condition, and the light passes through the drop end of the micro-ring and the waveguide 105, and the micro-ring 103 modulation - 4V, the resonance condition of the microring 103 is destroyed, the light passes through the through end of the microring and the waveguide 108, that is, Select1 is selected, and the modulation phase is ⁇ ; when the upper and lower microring modulations are respectively -2V and 2V, the microring 102 is modulated -4V voltage, the resonance condition is destroyed, the light passes through the through end of the microring and the waveguide 106, the microring 103 modulates 0V, the microring 103 is in a resonance condition, and the light passes through the drop end of the microring and the waveguide 107, that is, Select2 is selected.
  • the modulation phase is zero
  • the microring Since the modulation signal is statistically the same as the probability of modulating 2V and -2V, the microring is controlled to the resonance condition when the output power of the drop end of the microring is maximum. Similarly, the through end of the microring divides a part of the light for detection. When the average power of the detected light is minimum, the microring is biased to the resonance condition (when a certain level signal is in resonance, the other signal is non-resonant). It is reasonable to select the through-end for detection feedback, because the optical power of the micro-ring itself is larger than that of the drop end, and the split-end splitting can achieve both photoelectric detection and the two-port output optical power balance.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • the device/function module/functional unit in the above embodiment When the device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the silicon-based modulator of the embodiment of the invention comprises: an optical path selector, two sets of waveguides and an optical coupler, wherein the optical path selector is configured to receive input light, and control light input to the first set of waveguides under control of the electrical signal Or input to the second set of waveguides; the first set of waveguides and the second set of waveguides, one end connected to the optical path selector and the other end connected to the optical coupler, the first set of waveguides or the first
  • the two sets of waveguides output light to the optical coupler, and are coupled and output by the optical coupler, the optical paths of the first set of waveguides and the second set of waveguides are not equal, and the optical path difference thereof is to be obtained
  • the phase difference corresponds.
  • the above silicon-based modulator has high modulation efficiency, high modulation rate, high extinction ratio, and can save the volume of the silicon chip.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种硅基调制器,包括:光路选择器(102,103)、两组波导(105,107;106,108)和光耦合器(104),其中,所述光路选择器(102,103)设置为接收输入光,在电信号的控制下,控制光输入到第一组波导(105,107)或者输入到第二组波导(106,108);所述第一组波导(105,107)和所述第二组波导(106,108),一端与所述光路选择器(102,103)连接,另一端连接所述光耦合器(104),所述第一组波导(105,107)或所述第二组波导(106,108)将光输出给所述光耦合器(104),由所述光耦合器(104)耦合输出,所述第一组波导(105,107)和所述第二组波导(106,108)的光程不相等,且其光程差与待获得的相位差相对应。具有高调制效率,高调制速率,高消光比的特点,并且可以节省硅芯片的体积。

Description

一种硅基调制器 技术领域
本申请涉及但不限于硅光子集成领域。
背景技术
微电子技术发展起来后,一直按着摩尔定律预测的那样,“半导体芯片的集成度每18个月增长一倍,而价格则降低一半。”但是,现在以硅为基础的微电子技术已经越来越接近物理极限,很难继续遵循摩尔定律来发展。同时,在光通信领域,一直受到光器件高功耗,高成本,大体积等的困扰。硅光子技术的应运而生,可以同时解决微电子领域和光通信领域的诸多难题。硅光子技术就是以半导体的成熟工艺即生产电子器件,又生产光子器件。但是,要实现硅光子技术的产业化还存在很多要克服的困难,其中,硅基调制器就是最大难点。
调制器实现的主要原理是通过外部信号控制光路中的折射率发生变化,从而使得光输出的相位发生变化,达到调制的目的。一条波导能够实现相位的调制,两条波导组成MZ(Mach-Zehnder,马赫-泽德)结构,通过控制MZ结构的偏置点就可以实现相位调制和强度调制,光通信中的QPSK(Quadrature Phase Shift Keying,正交相移键控)信号就是基于这样的结构。所以,一条能够根据电信号实时改变光的输出相位的波导,即相位调制器是调制器系统的关键。
在硅基系统中,电光效应比较弱,热光效应虽然显著,但是其调制速率很慢,等离子色散(Plasma Dispersion,简称PD)效应的调制效率相对较高,调制速率也有很大的提升,因而受到很大的关注。利用PD效应设计的调制器大体可以分为:载流子注入式(pin结构),载流子耗尽式(pn节结构),MOS电容式。载流子的多少直接影响光在波导中的折射率,进而影响输出相位,此类调制器就是通过外部电信号控制载流子的变化,进而实现相位调制,但是这类型的调制器存在很多限制,由于载流子的变化区域与光场重合比较少,调制效率很低。人们往往通过增大器件长度,来得到小的Vπ(使得光路 延时相位π所需的电压),但是,器件过长会影响调制速率。要保证调制速率,又不得不使得Vπ增加。人们陆续设计了插指型调制器,U型PN节调制器等,但是仍然面临调制速率不高,调制电压过大,消光比过低等问题。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
有鉴于此,本发明实施例提供了一种硅基调制器,其中包括:光路选择器、两组波导和光耦合器,
所述光路选择器,设置为:接收输入光,在电信号的控制下,控制光输入到第一组波导或者输入到第二组波导;
所述第一组波导和所述第二组波导,一端与所述光路选择器连接,另一端连接所述光耦合器,所述第一组波导或所述第二组波导将光输出给所述光耦合器,由所述光耦合器耦合输出,所述第一组波导和所述第二组波导的光程不相等,且其光程差与待获得的相位差相对应。
可选地,
所述第一组波导为一条波导,所述第二组波导为一条波导,所述第一组波导和所述第二组波导的长度不相等,且长度差与所述光程差对应。
可选地,
所述第一组波导包括一条波导,所述第二组波导包括一条波导,
所述第一组波导中接入一相位控制器,或者所述第二组波导中接入一相位控制器,或者所述第一组波导和所述第二组波导中分别接入一相位控制器。
可选地,
所述第一组波导包括两条长度相等且输出光场相位相同的第一波导和第四波导,所述第一波导和所述第四波导组成MZ结构,
所述第二组波导包括两条长度相等且输出光场相位相同的第二波导和第三波导,所述第二波导和所述第三波导组成MZ结构,
所述第一组波导中的波导和所述第二组波导中的波导的长度不相等,且长度差与所述光程差对应。5、如权利要求1所述的硅基调制器,其中:
所述第一组波导包括两条长度相等且输出光场相位相同的第一波导和第四波导,所述第一波导和所述第四波导组成MZ结构,
所述第二组波导包括两条长度相等且输出光场相位相同的第二波导和第三波导,所述第二波导和所述第三波导组成MZ结构,
在所述第一波导、所述第二波导、所述第三波导和所述第四波导中的一条或多条波导上接入一相位控制器。
可选地,
所述第一组波导与所述第二组波导输出光场相位相反。
可选地,
所述光路选择器包括第一微环结构和第二微环结构,所述第一微环结构的一端与所述第一组波导中的一条波导连接,所述第一微环结构的另一端与所述第二组波导中的一条波导连接,所述第二微环结构的一端与所述第一组波导中另一条波导连接,所述第二微环结构的另一端与所述第二组波导中的另一条波导连接。
可选地,
所述第一微环结构的上行端与所述第一波导连接,所述第一微环结构的下行端与所述第二波导连接,所述第二微环结构的上行端与所述第三波导连接,所述第二微环结构的下行端与所述第四波导连接。
可选地,
所述光路选择器采用微环结构,当所述微环结构处于共振条件下,控制光通过一组波导,当所述微环结构处于非共振条件下,控制光通过另一组波导。
可选地,
所述微环结构包括PN节结构的相位控制器或MOS电容结构的相位控制器。
可选地,
所述相位控制器为热相移器。
上述硅基调制器,具有高调制效率,高调制速率,高消光比的特点,并且可以节省硅芯片的体积。
本发明实施例的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明实施例而了解。本发明实施例的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明示例一的硅基调制器的结构示意图;
图2为本发明示例二的硅基调制器的结构示意图;
图3为本发明示例三的硅基调制器的结构示意图;
图4a和图4b为本发明示例四的硅基调制器的结构示意图;
图5为本发明示例五的硅基调制器的结构示意图。
本发明的较佳实施方式
下面结合附图对本发明的实施方式进行描述。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的各种方式可以相互组合。
本发明实施例的硅基调制器包括:光路选择器、两组波导和光耦合器,其中,
所述光路选择器,设置为:接收输入光,在电信号的控制下,控制光输入到第一组波导或者输入到第二组波导;
所述第一组波导和所述第二组波导,一端与所述光路选择器连接,另一端连接所述光耦合器,所述第一组波导或所述第二组波导将光输出给所述光 耦合器,由所述光耦合器耦合输出,所述第一组波导和所述第二组波导的光程不相等,且其光程差与待获得的相位差相对应。
因为相位差=2π/波长*光程差,所以可以通过控制光程差来实现相位的调制。
本实施例提出的是一种全新的调制器设计理念,不再利用各种效应改变光的传输相位,而是在硅基系统中设计两条不等长的波导,波导尾部通过耦合器耦合输出,长度差为想要获得的相位差所需的长度,利用光路选择器(Optic switch)根据所调信号使得光通过其中任一个波导,从而实现光的相位调制。我们称这种原理实现的调制器为光路选择型调制器(Waveguide Selecting Modulator,简称WSM)。
考虑到硅光波导制作过程中的工艺误差,两条不等长的臂可能不能完全实现所需相位差,可以在两条臂中,或者在任一条臂中加入相位控制器(phase shift,简称PS)来获得两臂固定的相位差。
本发明实施例的硅基调制器具有低调制电压,高消光比,高调制速率,体积更小的优点,可以满足硅光长距离传输的要求。
以下以几个具体应用中的示例对本发明实施例的硅基调制器进行详细的说明。
示例一
本示例中,所述第一组波导为一条波导,所述第二组波导为一条波导,所述第一组波导和所述第二组波导的长度不相等,且长度差与所述光程差对应。
如图1所示:光经过Optic switch被分配到波导Select1或者Select2,而后通过optic coupler(光耦合器)耦合输出。其中波导Select1和Select2之间长度差可以精确控制,在硅基波导中,两臂的长度差为270nm时,产生固定的π相位差。考虑到硅材料的性质,其相位差随波长和温度的变化几乎没有变化。
示例二
本实施例中,所述第一组波导包括一条波导,所述第二组波导包括一条波导,所述第一组波导中接入一相位控制器,或者所述第二组波导中接入一相位控制器,或者所述第一组波导和所述第二组波导中的分别接入一相位控制器。
考虑到不同生产线的工艺误差,可以考虑设计等长或者不等长的两臂,对其中一臂(或者两臂,如图2所示)加入heater(热相移器)等的相位控制器来实现两臂的相位差,此控制是慢变的不影响调制性能,也可认为两臂有固定相位差。
那么,当Optic switch调整光经过Select1时,获得π相位,当Optic switch调整光经过Select2时,获得0相位。电信号控制Optic switch的光路选择,就可以实现相位0和π的调制。
WSM的相位差是固定的(可以通过相位控制装置获得任一想要的相位差),调制器的速率只取决于Optic switch的快慢,由于两组波导的光耦合输出作为信号源,两路光相位相反,所以即使Optic switch消光比不够,此调制器也可以获得高的消光比。
示例三
WSM的Optic switch可以采用微环结构,如图3所示,当微环满足共振条件时,光通过微环耦合到波导Select1,获得相位π。当微环的共振条件被破坏时,光直接通过Select2,获得相位0。
为了得到高的调制速率,微环可以采用PN节结构的相位控制器,通过信号控制微环的折射率变化。在某波长下,信号为1时,微环处于共振条件下(微环外部可以加入heater(热相移器)等控制装置,使得此时一直处于共振条件下),光通过Select2,调制相位π。信号为0时,微环共振条件被破坏,光通过Select1,调制相位0。
根据微环的性质可以知道,微环的共振条件很容易被破坏。一般只需使得微环内部相位变化π/10就可以获得20dB以上的消光比。在适当的微环周长情况下,所需调制电压不会超过2V。相比与现有调制器的调制电压最少4V, 消光比最大10dB的情况要好很多。
示例四
本示例中,所述第一组波导包括两条长度相等且输出光场相位相同的第一波导和第四波导,所述第一波导和所述第四波导组成MZ结构,
所述第二组波导包括两条长度相等且输出光场相位相同的第二波导和第三波导,所述第二波导和所述第三波导组成MZ结构,
所述第一组波导Select1中的波导和所述第二组波导Select2中的波导的长度不相等,且长度差与所述光程差对应,例如,所述第一组波导与所述第二组波导输出光场相位相反。当然,也可以在所述第一波导、所述第二波导、所述第三波导和所述第四波导中的一条或多条波导上接入一相位控制器来控制光程差。
本示例的双臂的硅基调制器如图4a和图4b所示,图4a中,两组波导中的四条波导连接入一个4*1耦合器,图4b中,第一组波导中的两条波导接入一个2*1耦合器,第二组波导中的波导接入另一个2*1耦合器,然后这两个2*1耦合器的输出端接入一2*1耦合器。
此WSM组成的MZ结构通过对长度差的有效控制,使得MZ上下两臂的Select1之间同相、Select2之间同相。而Select1和Select2之间反相,那么Optic switch选择Select1通路后,上线两臂的Select1组成的MZ结构处于相干相长状态,相位为0,Optic switch选择Select2通路后,上线两臂的Select2组成的MZ结构同样处于相干相长状态,相位为π,此结构可以提高消光比。同时,双臂的WSM可以消除电信号的上升下降时引起的相位不准确。
示例五
本示例中,在示例四的基础上,所述光路选择器包括第一微环结构和第二微环结构,所述第一微环结构的一端与所述第一组波导中的一条波导连接,所述第一微环结构的另一端与所述第二组波导中的一条波导连接,所述第二微环结构的一端与所述第一组波导中另一条波导连接,所述第二微环结构的 另一端与所述第二组波导中的另一条波导连接。
同样,双臂的WSM的Optic switch也可以采用微环结构。如图5所示,考虑到微环结构的上下行路功率是不平衡的,仅仅单臂的新型调制器组成的相位调制系统,不同相位信息的输出功率后有起伏。而此微环结构的新型调制器MZ结构输出功率为一个微环的上行路和另一个微环的下行路的叠加,所以输出功率平衡稳定,并且会提高消光比。
同时,微环的through(上行)和drop(下行)路的相位差会随着波长的变化而变化。但是,考虑的每次MZ结构输出都是一个微环的through路和另一个微环的drop路相叠加,双臂的WSM即使有相位差的出现,只是会使得相长不太充分,输出的两个相位信息依然是相反的。与MZ调制器中,调制电压往往小于Vπ的情况是一样的,0相位和π相位依然会存在。
如图5所示,光经过器件1:2的coupler 101,把光分为两路,分别进入微环102和微环103,上臂的光与微环102的through端相连,同时与波导106相连,下臂的光与微环103的through端相连,同时与波导108相连,微环102的drop端与波导105相连,微环103的drop端与波导107相连。波导105、106、107和108经过4*1的耦合器104耦合输出。
通过设计,波导105和波导107等长,输出相位同相。波导106和波导108等长,输出相位同相,Select1和Select2的长度不相等,长度差决定了相位差,对于使用此调制器用作QPSK信号调制,需要使得其相位差为π,那么长度差
Figure PCTCN2016083038-appb-000001
其中,λ为传播的光波长,n为波导的有效折射率。在硅基波导中,尺寸为500*220nm的strip(矩形)型波导的有效折射率n=2.443,λ=1550nm,则ΔL=317.2nm可以延时相位π,且在C波段变化很小。
图5仅是一个示例,在实际应用中,上下微环的输入端可以任意组合,例如,光可以同时输入上微环和下微环的through端,也可以同时输入上微环的through端和下微环的drop端,也可以同时输入上微环的drop端和下微环的through端,还可以同时输入上微环和下微环的drop端。
微环102和微环103可以采用PN节结构或者MOS电容结构已达到较快 的调制速率。以PN节结构为例,偏置电压可以设置为-2V,信号电压为
Figure PCTCN2016083038-appb-000002
这样对于PN节的状态就是0V和-4V两种。
两个微环的电信号采用差分信号,即:上下微环调制分别2V和-2V时,微环102调制0V电压时,其处于共振条件,光经过微环的drop端及波导105,微环103调制-4V,微环103的共振条件被破坏,光经过微环的through端及波导108,即Select1被选中,调制相位为π;上下微环调制分别-2V和2V时,微环102调制-4V电压,其共振条件被破坏,光经过微环的through端及波导106,微环103调制0V,微环103处于共振条件,光经过微环的drop端及波导107,即Select2被选中,调制相位为0。
由于调制信号在统计来说,调制2V和-2V的概率一样的,那么在微环的drop端输出功率最大时,微环被控制在共振条件。同样微环的through端分出一部分光进行检测,当检测光平均功率最小时,微环偏置于共振条件(某电平信号时,处于共振,另一信号是非共振)。选择through端进行检测反馈是合理的,因为微环本身through端的光功率要比drop端大,对through端分光既能做到光电检测又能是的两端口输出光功率平衡。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如系统、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。
上述实施例中的装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。 上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
工业实用性
本发明实施例的硅基调制器包括:光路选择器、两组波导和光耦合器,其中,所述光路选择器设置为接收输入光,在电信号的控制下,控制光输入到第一组波导或者输入到第二组波导;所述第一组波导和所述第二组波导,一端与所述光路选择器连接,另一端连接所述光耦合器,所述第一组波导或所述第二组波导将光输出给所述光耦合器,由所述光耦合器耦合输出,所述第一组波导和所述第二组波导的光程不相等,且其光程差与待获得的相位差相对应。上述硅基调制器具有高调制效率,高调制速率,高消光比的特点,并且可以节省硅芯片的体积。

Claims (11)

  1. 一种硅基调制器,其中包括:光路选择器、两组波导和光耦合器,
    所述光路选择器,设置为:接收输入光,在电信号的控制下,控制光输入到第一组波导或者输入到第二组波导;
    所述第一组波导和所述第二组波导,一端与所述光路选择器连接,另一端连接所述光耦合器,所述第一组波导或所述第二组波导将光输出给所述光耦合器,由所述光耦合器耦合输出,所述第一组波导和所述第二组波导的光程不相等,且其光程差与待获得的相位差相对应。
  2. 如权利要求1所述的硅基调制器,其中:
    所述第一组波导为一条波导,所述第二组波导为一条波导,所述第一组波导和所述第二组波导的长度不相等,且长度差与所述光程差对应。
  3. 如权利要求1所述的硅基调制器,其中:
    所述第一组波导包括一条波导,所述第二组波导包括一条波导,
    所述第一组波导中接入一相位控制器,或者所述第二组波导中接入一相位控制器,或者所述第一组波导和所述第二组波导中分别接入一相位控制器。
  4. 如权利要求1所述的硅基调制器,其中:
    所述第一组波导包括两条长度相等且输出光场相位相同的第一波导和第四波导,所述第一波导和所述第四波导组成MZ结构,
    所述第二组波导包括两条长度相等且输出光场相位相同的第二波导和第三波导,所述第二波导和所述第三波导组成MZ结构,
    所述第一组波导中的波导和所述第二组波导中的波导的长度不相等,且长度差与所述光程差对应。
  5. 如权利要求1所述的硅基调制器,其中:
    所述第一组波导包括两条长度相等且输出光场相位相同的第一波导和第四波导,所述第一波导和所述第四波导组成MZ结构,
    所述第二组波导包括两条长度相等且输出光场相位相同的第二波导和第 三波导,所述第二波导和所述第三波导组成MZ结构,
    在所述第一波导、所述第二波导、所述第三波导和所述第四波导中的一条或多条波导上接入一相位控制器。
  6. 如权利要求4或5所述的硅基调制器,其中:
    所述第一组波导与所述第二组波导输出光场相位相反。
  7. 如权利要求4或5所述的硅基调制器,其中:
    所述光路选择器包括第一微环结构和第二微环结构,所述第一微环结构的一端与所述第一组波导中的一条波导连接,所述第一微环结构的另一端与所述第二组波导中的一条波导连接,所述第二微环结构的一端与所述第一组波导中另一条波导连接,所述第二微环结构的另一端与所述第二组波导中的另一条波导连接。
  8. 如权利要求4或5所述的硅基调制器,其中:
    所述第一微环结构的上行端与所述第一波导连接,所述第一微环结构的下行端与所述第二波导连接,所述第二微环结构的上行端与所述第三波导连接,所述第二微环结构的下行端与所述第四波导连接。
  9. 如权利要求1-5任一项所述的硅基调制器,其中:
    所述光路选择器采用微环结构,当所述微环结构处于共振条件下,控制光通过一组波导,当所述微环结构处于非共振条件下,控制光通过另一组波导。
  10. 如权利要求9所述的硅基调制器,其中:
    所述微环结构包括PN节结构的相位控制器或MOS电容结构的相位控制器。
  11. 如权利要求3或5或8所述的硅基调制器,其中:
    所述相位控制器为热相移器。
PCT/CN2016/083038 2015-06-19 2016-05-23 一种硅基调制器 WO2016202146A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510347224.4 2015-06-19
CN201510347224.4A CN106324938A (zh) 2015-06-19 2015-06-19 一种硅基调制器

Publications (1)

Publication Number Publication Date
WO2016202146A1 true WO2016202146A1 (zh) 2016-12-22

Family

ID=57544844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/083038 WO2016202146A1 (zh) 2015-06-19 2016-05-23 一种硅基调制器

Country Status (2)

Country Link
CN (1) CN106324938A (zh)
WO (1) WO2016202146A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3641257A1 (en) * 2018-10-18 2020-04-22 Nokia Solutions and Networks Oy Phase-shift keying structures
CN111240053A (zh) * 2018-11-29 2020-06-05 海思光电子有限公司 光电调制器及其光电调制方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114297133B (zh) * 2021-11-26 2024-03-29 军事科学院系统工程研究院网络信息研究所 路径可编程多功能微波光子信号处理方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040161188A1 (en) * 2003-02-15 2004-08-19 Jun Su Optical add and drop multiplexer using ring resonators
CN2807287Y (zh) * 2005-07-28 2006-08-16 浙江大学 采用非均衡耦合结构的带微环马赫-曾德尔光强度调制器
WO2010065710A1 (en) * 2008-12-03 2010-06-10 Massachusetts Institute Of Technology Resonant optical modulators
CN102062896A (zh) * 2009-11-11 2011-05-18 中国科学院半导体研究所 一种硅基集成化的光学加密调制器
JP2013068908A (ja) * 2011-09-26 2013-04-18 Oki Electric Ind Co Ltd 光素子
US20140169740A1 (en) * 2012-12-13 2014-06-19 Luxtera, Inc. Method and system for stabilized directional couplers
JP2014160216A (ja) * 2013-02-20 2014-09-04 Nippon Telegr & Teleph Corp <Ntt> マッハツェンダ干渉計型波長選択スイッチ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8260150B2 (en) * 2008-04-25 2012-09-04 Finisar Corporation Passive wave division multiplexed transmitter having a directly modulated laser array
CN101726801B (zh) * 2008-10-28 2011-11-02 华为技术有限公司 一种光开关装置的控制方法和光开关装置
CN103293715B (zh) * 2013-06-28 2016-06-01 中国科学院半导体研究所 一种基于微环-马赫曾德尔干涉仪结构的电光调制器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040161188A1 (en) * 2003-02-15 2004-08-19 Jun Su Optical add and drop multiplexer using ring resonators
CN2807287Y (zh) * 2005-07-28 2006-08-16 浙江大学 采用非均衡耦合结构的带微环马赫-曾德尔光强度调制器
WO2010065710A1 (en) * 2008-12-03 2010-06-10 Massachusetts Institute Of Technology Resonant optical modulators
CN102062896A (zh) * 2009-11-11 2011-05-18 中国科学院半导体研究所 一种硅基集成化的光学加密调制器
JP2013068908A (ja) * 2011-09-26 2013-04-18 Oki Electric Ind Co Ltd 光素子
US20140169740A1 (en) * 2012-12-13 2014-06-19 Luxtera, Inc. Method and system for stabilized directional couplers
JP2014160216A (ja) * 2013-02-20 2014-09-04 Nippon Telegr & Teleph Corp <Ntt> マッハツェンダ干渉計型波長選択スイッチ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3641257A1 (en) * 2018-10-18 2020-04-22 Nokia Solutions and Networks Oy Phase-shift keying structures
CN111240053A (zh) * 2018-11-29 2020-06-05 海思光电子有限公司 光电调制器及其光电调制方法

Also Published As

Publication number Publication date
CN106324938A (zh) 2017-01-11

Similar Documents

Publication Publication Date Title
Xiong et al. High-speed two-mode switch for mode-division multiplexing optical networks
Ding et al. Ultra-low-power carrier-depletion Mach-Zehnder silicon optical modulator
Watts et al. Vertical junction silicon microdisk modulators and switches
Suzuki et al. Ultra-compact 8× 8 strictly-non-blocking Si-wire PILOSS switch
Xiao et al. High-speed, low-loss silicon Mach–Zehnder modulators with doping optimization
Hu et al. High-speed silicon modulator based on cascaded microring resonators
Akiyama et al. 12.5-Gb/s operation with 0.29-V· cm V π L using silicon Mach-Zehnder modulator based-on forward-biased pin diode
Lu et al. Low-power 2× 2 silicon electro-optic switches based on double-ring assisted Mach–Zehnder interferometers
Dupuis et al. Ultralow crosstalk nanosecond-scale nested 2× 2 Mach–Zehnder silicon photonic switch
Jia et al. WDM-compatible multimode optical switching system-on-chip
CN103293715B (zh) 一种基于微环-马赫曾德尔干涉仪结构的电光调制器
Xing et al. Nonblocking 4× 4 silicon electro-optic switch matrix with push–pull drive
CN105044931A (zh) 硅基集成化的差分电光调制器及其制备方法
Yang et al. XOR and XNOR operations at 12.5 Gb/s using cascaded carrier-depletion microring resonators
Manipatruni et al. PINIP based high-speed high-extinction ratio micron-size silicon electro-optic modulator
CN103091869B (zh) 集成化的相干光通信用电光调制器结构
Krishnamoorthy et al. A low-power, high-speed, 9-channel germanium-silicon electro-absorption modulator array integrated with digital CMOS driver and wavelength multiplexer
CN112262342A (zh) 光相位调制器和光调制器
WO2016202146A1 (zh) 一种硅基调制器
CN103955147A (zh) 一种微环光开关的控制装置
Kim et al. Compact-sized high-modulation-efficiency silicon Mach–Zehnder modulator based on a vertically dipped depletion junction phase shifter for chip-level integration
Hu et al. 180 Gbit/s Si 3 N 4-waveguide coupled germanium photodetector with improved quantum efficiency
CN110275365B (zh) 一种二进制全光四选一数据选择器
Li et al. Silicon photonic dual-drive MIM based 56 Gb/s DAC-less and DSP-free PAM-4 transmission
Shainline et al. Depletion-mode polysilicon optical modulators in a bulk complementary metal-oxide semiconductor process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16810887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16810887

Country of ref document: EP

Kind code of ref document: A1