WO2016201700A1 - 基于集群业务的同频组网方法和装置 - Google Patents

基于集群业务的同频组网方法和装置 Download PDF

Info

Publication number
WO2016201700A1
WO2016201700A1 PCT/CN2015/081956 CN2015081956W WO2016201700A1 WO 2016201700 A1 WO2016201700 A1 WO 2016201700A1 CN 2015081956 W CN2015081956 W CN 2015081956W WO 2016201700 A1 WO2016201700 A1 WO 2016201700A1
Authority
WO
WIPO (PCT)
Prior art keywords
cluster
port
data
layer
transmitting
Prior art date
Application number
PCT/CN2015/081956
Other languages
English (en)
French (fr)
Inventor
张庆利
鲁志兵
Original Assignee
海能达通信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海能达通信股份有限公司 filed Critical 海能达通信股份有限公司
Priority to CN201580000295.5A priority Critical patent/CN106538021B/zh
Priority to US15/737,734 priority patent/US10321498B2/en
Priority to PCT/CN2015/081956 priority patent/WO2016201700A1/zh
Priority to DE112015006633.0T priority patent/DE112015006633T5/de
Publication of WO2016201700A1 publication Critical patent/WO2016201700A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/65Arrangements characterised by transmission systems for broadcast
    • H04H20/67Common-wave systems, i.e. using separate transmitters operating on substantially the same frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0813Configuration setting characterised by the conditions triggering a change of settings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/16Threshold monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • H04W4/08User group management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and apparatus for co-frequency networking based on cluster services.
  • CoMP Coordinated Multiple Points
  • CoMP transmission refers to multiple transmission points separated by geographical locations, usually refers to base stations of different cells, cooperates with the same terminal to perform physical downlink shared channel (PDSCH) data transmission, or jointly receives the physical of the same terminal.
  • the CoMP technology sets the edge user equipment on the same video resource of several base stations of the neighboring cell, and several base stations simultaneously send the same downlink data to the edge user equipment, thereby improving the spectrum utilization rate of the edge user equipment.
  • each base station After receiving the uplink data of the UE, each base station estimates the downlink channel condition by using the dedicated adjustment reference signal and the uplink channel condition that are pre-negotiated with the UE, and then transmits the downlink data code to the UE by using the downlink channel condition. After receiving the downlink data, the UE decodes the dedicated adjustment reference signal to obtain downlink data sent by the base station.
  • the combination of the CoMP transmission and the Beamforming technology to implement the same-frequency networking can only be applied to the unicast UE. That is, the base station is only applicable to the base station to send downlink data to one UE.
  • the base station uses the Beamforming technology to estimate the downlink channel condition by using the dedicated adjustment reference signal and the uplink channel condition of the UE to the uplink data of the base station.
  • the base station sends downlink data to multiple UEs.
  • the base station uses the Beamforming technology to estimate the downlink channel condition
  • the base station can estimate the downlink channel condition by using the uplink channel condition of the uplink data of the UE, and the base station uses the estimated downlink.
  • Channel condition for the downlink The data is encoded and sent to multiple UEs.
  • the technical problem to be solved by the present invention is to provide a method and an apparatus for co-frequency networking based on a cluster service, which solves the problem of high decoding error rate of transmission data transmitted by a terminal to a base station in the prior art cluster service.
  • a first aspect of the present invention provides a method for co-frequency networking based on a cluster service, where a plurality of transmit cluster ports are set in advance, and a cluster-specific adjustment reference signal is set for each of the transmit cluster ports, where the method includes:
  • precoding on the multi-layer data stream by using a preset multi-port precoding method to obtain encoded data of each of the transmitting cluster ports, where the multi-port pre-coding method matches multiple preset transmit cluster ports.
  • the transmission data of each of the transmitting cluster ports is sent to the matched cluster port by using the transmitting cluster port, and the matched cluster port is sent by multiple user equipments (User Equipments, UEs) in the same group in the cluster system.
  • the cluster-specific adjustment reference signal set by the cluster port is the same as the receiving cluster port.
  • the performing the resource mapping of the coded data of each of the transmitting cluster ports and the dedicated mediation reference signal to obtain the transmission data of the transmitting cluster port includes:
  • the cluster of the port is dedicated to adjusting the mapping area of the reference signal and other areas than the mapping area of the cell reference signal.
  • the precoding the multi-layer data stream by using a preset multi-port precoding method includes:
  • the multi-layer data stream is precoded by using a two-port precoding method
  • the multi-layer data stream is precoded by a four-port precoding method.
  • the performing, by using the two-port pre-coding method, the pre-coding of the multi-layer data stream includes:
  • the multi-layer data stream is precoded using the following formula:
  • y (A) (2i) and y (A) (2i+1) are the encoded data of the transmitting cluster port A
  • y (B) (2i) and y (B) (2i+1) are the transmitting cluster port B.
  • the encoded data, Re[x (0) (i)] is the real part of the i-th data in the layer 1 data stream
  • Re[x (1) (i)] is the i-th data in the layer 2 data stream.
  • the real part, Im[x (0) (i)] is the imaginary part of the i-th data in the layer 1 data stream
  • Im[x (1) (i)] is the i-th data in the layer 2 data stream.
  • M represents the number of data contained in each layer of the data stream
  • k 0,1,2...,N -1
  • N represents the number of layers of the data stream.
  • the performing, by using the four-port pre-coding method, the pre-coding of the multi-layer data stream includes:
  • the multi-layer data stream is precoded using the following formula:
  • y (A) (4i), y (A) (4i+1), y (A) (4i+2), and y (A) (4i+2) are the encoded data of the transmitting cluster port A
  • y ( B) (4i), y (B) (4i+1), y (B) (4i+2), and y (B) (4i+3) are the encoded data of the transmitting cluster port B
  • y (C) (4i ), y (C) (4i+1), y (C) (4i+2), and y (C) (4i+3) are coded data for transmitting cluster port C
  • y (D) (4i), y ( D) (4i+1), y (D) (4i+2), and y (D) (4i+3) are the encoded data of the transmitting cluster port D
  • Re[x (0) (i)] is the first layer.
  • the real part of the i-th data in the data stream, Re[x (1) (i)] is the real part of the i-th data in the layer 2 data stream, and Re[x (2) (i)] is the third layer.
  • the real part of the i-th data in the data stream, Re[x (3) (i)] is the real part of the i-th data in the layer 4 data stream, and Im[x (0) (i)] is the first layer.
  • the imaginary part of the i-th data in the data stream, Im[x (1) (i)] is the imaginary part of the i-th data in the layer 2 data stream, and Im[x (2) (i)] is the third layer
  • the second aspect of the present invention provides a method for the same-frequency networking based on the cluster service, where multiple receiving cluster ports are set in advance, and a cluster-specific adjustment reference signal is set for each of the receiving cluster ports, and the method includes:
  • Each receiving cluster port receives a matching transmitting cluster port of multiple base stations in the cluster system.
  • the same transmission data sent, the matched transmission cluster port is the same transmission cluster port as the cluster-specific adjustment reference signal set by the receiving cluster port;
  • Each receiving cluster port demodulates the transmission data received by the receiving cluster port by using a cluster-specific adjustment reference signal set by the receiving cluster port, and obtains encoded data of each receiving cluster port;
  • the encoded data of each receiving cluster port is decoded by a decoding method corresponding to the multi-port precoding method to obtain a multi-layer data stream.
  • a third aspect of the present invention provides a base station of a co-frequency networking based on a cluster service, where the base station includes:
  • each of the transmitting cluster ports setting a cluster-specific adjustment reference signal
  • the processor is configured to obtain a multi-layer data stream after the layer mapping process, and perform precoding on the multi-layer data stream by using a preset multi-port precoding method to obtain coded data of each of the transmitting cluster ports.
  • the multi-port pre-coding method is a pre-coding method that matches a plurality of transmit cluster ports that are set in advance; resource mapping of the coded data of each transmit cluster port and the cluster-specific mediation reference signal to obtain transmission data of the transmit cluster port; Sending transmission data of each transmitting cluster port to the transmitting cluster port;
  • Each of the transmitting cluster ports is configured to receive transmission data sent by the processor, and send the received transmission data to the matching receiving cluster port by using the transmitting cluster port, where each matched receiving cluster port is
  • the receiving cluster port on the plurality of user equipment UEs in the same group in the cluster system is the same as the cluster-specific adjustment reference signal set by the sending cluster port.
  • the processor is configured to perform resource mapping on the coded data of each of the transmit cluster ports and the dedicated mediation reference signal to obtain the transmission data of the transmit cluster port, including:
  • the cluster of the port is dedicated to adjusting the mapping area of the reference signal and other areas than the mapping area of the cell reference signal.
  • the processor is configured to perform precoding on the multi-layer data stream by using a preset multi-port precoding method, including:
  • the multi-layer data stream is precoded by using a two-port precoding method
  • the multi-layer data stream is precoded by a four-port precoding method.
  • the processor is configured to perform precoding on the multi-layer data stream by using a two-port precoding method include:
  • the multi-layer data stream is precoded using the following formula:
  • y (A) (2i) and y (A) (2i+1) are the encoded data of the transmitting cluster port A
  • y (B) (2i) and y (B) (2i+1) are the transmitting cluster port B.
  • the encoded data, Re[x (0) (i)] is the real part of the i-th data in the layer 0 data stream
  • Re[x (1) (i)] is the i-th data in the layer 1 data stream.
  • the real part, Im[x (0) (i)] is the imaginary part of the i-th data in the layer 0 data stream
  • Im[x (1) (i)] is the i-th data in the layer 1 data stream.
  • M represents the number of data contained in each layer of the data stream
  • k 0,1,2...,N -1
  • N represents the number of layers of the data stream.
  • the processor is configured to perform precoding on the multi-layer data stream by using a four-port precoding method, including:
  • the multi-layer data stream is precoded using the following formula:
  • y (A) (4i), y (A) (4i+1), y (A) (4i+2), and y (A) (4i+2) are the encoded data of the transmitting cluster port A
  • y ( B) (4i), y (B) (4i+1), y (B) (4i+2), and y (B) (4i+3) are the encoded data of the transmitting cluster port B
  • y (C) (4i ), y (C) (4i+1), y (C) (4i+2), and y (C) (4i+3) are coded data for transmitting cluster port C
  • y (D) (4i), y ( D) (4i+1), y (D) (4i+2), and y (D) (4i+3) are the encoded data of the transmitting cluster port D
  • Re[x (0) (i)] is the first layer.
  • the real part of the i-th data in the data stream, Re[x (1) (i)] is the real part of the i-th data in the layer 2 data stream, and Re[x (2) (i)] is the third layer.
  • the real part of the i-th data in the data stream, Re[x (3) (i)] is the real part of the i-th data in the layer 4 data stream, and Im[x (0) (i)] is the first layer.
  • the imaginary part of the i-th data in the data stream, Im[x (1) (i)] is the imaginary part of the i-th data in the layer 2 data stream, and Im[x (2) (i)] is the third layer
  • a fourth aspect of the present invention provides a terminal of a co-frequency networking based on a cluster service, where the terminal includes:
  • Each of the receiving cluster ports is configured to receive the same transmission data sent by the transmitting cluster port matched by the receiving cluster port among the plurality of base stations in the cluster system, and send the received transmission data to the processor, where
  • the matching transmit cluster port is the same transmit cluster port as the cluster-specific adjustment reference signal set by the receive cluster port.
  • the processor is configured to receive transmission data sent by each receiving cluster port, and perform data demodulation on the transmission data received by the receiving cluster port by using a cluster-specific adjustment reference signal set by each cluster port, respectively, to obtain each Receiving encoded data of the cluster port; decoding the encoded data of each receiving cluster port by using a decoding method corresponding to the multi-port precoding method to obtain a multi-layer data stream.
  • a fifth aspect of the present invention provides a system for co-frequency networking based on a cluster service, where the system includes:
  • the base station of the same-frequency networking based on the cluster service and the user equipment UE group according to any one of the third aspect to the fourth aspect of the present invention, wherein the UE group is composed of multiple The terminal component of the same frequency grouping network based on the cluster service according to the fourth aspect of the invention;
  • the number of the transmitting cluster ports in the base station is the same as the number of the receiving cluster ports in the terminal, and the transmitting cluster ports in the base station are matched with the receiving cluster ports in the terminal, and the matched transmitting cluster ports are matched. Same as the cluster-specific adjustment reference signal set by the receiving cluster port;
  • the transmitting cluster port in each base station sends the same transmission data to the receiving cluster ports of all the terminals in the UE group that match the transmitting cluster port;
  • the receiving cluster ports in each of the UE groups respectively receive the same transmission data sent by the sending cluster ports that match the receiving cluster ports in all the base stations.
  • the present invention has the following beneficial effects:
  • the embodiment of the invention provides a method, a device and a system for co-frequency networking based on a cluster service.
  • a plurality of transmitting cluster ports are preset in the base station, and multiple receiving cluster ports are preset in the terminal, and each transmitting cluster port has A matching receiving cluster port, the matching clustering port and the receiver port are set to have the same cluster-specific adjustment reference signal.
  • the base station obtains the multi-layer data stream after the mapping process, and pre-encodes the multi-layer data stream by using a preset multi-port precoding method to obtain coded data of each of the transmitting cluster ports, and each of the transmission sets
  • the coded data of the group port and the dedicated mediation reference signal are used for resource mapping to obtain the transmission data of the transmitting cluster port.
  • the transmission data of each transmitting cluster port is transmitted to the multiple UEs in the same group in the cluster system by using the transmitting cluster port.
  • Receive cluster port The multi-layer data stream obtained by the layer mapping process is pre-coded by a multi-port precoding method to obtain coded data of each of the transmitting cluster ports, and the coded data increases data redundancy compared with the original multi-layer data stream.
  • the encoded data is resource mapped to obtain transmission data of multiple cluster transmission ports, and each layer of data in each layer of the original data stream is separately sent to the UE, which also increases data redundancy.
  • Combining the precoding technology with multiple cluster transmit port transmission technologies increases the data redundancy of the transmission data received by the UE and improves the correctness of the UE decoding the transmitted data.
  • the plurality of base stations perform the same data transmission to the plurality of UEs in the cluster service system by using the method of the same-frequency networking based on the cluster service, and implement the same-frequency networking technology in the cluster service system to improve the spectrum utilization of the LTE system.
  • Embodiment 1 is a flowchart of Embodiment 1 of a method for co-frequency networking based on a cluster service according to the present invention
  • 2(1) is a schematic diagram showing an example of setting a cluster-specific adjustment reference signal of port 1 according to the present invention
  • 2(2) is a schematic diagram showing an example of setting a cluster-specific adjustment reference signal of the port 2 of the present invention
  • 2(3) is a schematic diagram showing an example of setting a cluster-specific adjustment reference signal of the port 3 of the present invention
  • 2(4) is a schematic diagram showing an example of setting a cluster-specific adjustment reference signal of the port 4 of the present invention
  • FIG. 3 is a schematic structural diagram of resource mapping according to the present invention.
  • Embodiment 4 is a flowchart of Embodiment 2 of a method for co-frequency networking based on a cluster service according to the present invention
  • Embodiment 3 is a schematic structural diagram of Embodiment 3 of a base station of a same frequency grouping network based on a cluster service according to the present invention
  • FIG. 6 is a schematic structural diagram of a fourth embodiment of a terminal of a same frequency grouping network based on a cluster service according to the present invention.
  • FIG. 7 is a schematic structural diagram of Embodiment 5 of a system for co-frequency networking based on a cluster service according to the present invention.
  • the embodiments of the present invention provide a method and a device for co-frequency networking based on a cluster service, which increases data redundancy of transmission data received by the UE, improves correctness of decoding of the transmission data by the UE, and implements the same frequency in the cluster service system.
  • Networking technology to improve the spectrum utilization of LTE systems.
  • each base station receives the PUSCH data transmission of the UE, and uses the dedicated adjustment reference signal and the uplink channel condition that are pre-negotiated with the UE to estimate the downlink channel condition according to the uplink data sent by the UE, and then uses the downlink channel condition to downlink.
  • the data encoding is sent to the UE.
  • one base station transmits downlink data to multiple UEs, and receives uplink data sent by multiple UEs.
  • the downlink channel condition can be estimated only by using the Beamforming technology by using the uplink data of one UE.
  • the same frequency networking technology cannot be implemented by using the Beamforming technology.
  • Embodiment 1 is a flowchart of Embodiment 1 of a method for co-frequency networking based on a cluster service, which is applied to a base station of a cluster service, where the method includes:
  • Step 101 preset a plurality of transmitting cluster ports, and set a cluster-specific adjustment reference signal for each of the transmitting cluster ports.
  • the same-frequency networking technology is implemented in the cluster service, and one transmitting cluster port group is respectively set for the base stations of the multiple cells that cooperate with each other, and the number of transmitting cluster ports included in the transmitting cluster port group set by each base station is the same.
  • a trunk-specific reference signal (Trunking-Specific Reference Signals) is set for each of the transmitting cluster ports of each group, and the cluster-specific adjustment reference signals set by different transmitting cluster ports in the same group are different. Setting the same set of cluster-specific adjustment reference signals for the transmit cluster port group of the base stations of the multiple cells that cooperate with each other, each cluster dedicated The adjustment reference signals respectively correspond to one transmit cluster port set on the base station.
  • the base stations of the three cells that cooperate with each other are the base station A, the base station B, and the base station C, respectively, and the four transmit cluster ports are set for each base station as an example for description.
  • the base station A sets four transmit cluster ports A1, A2, A3, and A4, sets a cluster-specific adjustment reference signal R1 to the transmit cluster port A1, sets a cluster-specific adjustment reference signal R2 to the transmit cluster port A2, and sets a cluster-specific for the transmit cluster port A3.
  • the reference signal R3 is adjusted to set a cluster-specific adjustment reference signal R4 to the transmitting cluster port A4.
  • the base station B sets four transmit cluster ports B1, B2, B3, and B4, sets a cluster-specific adjustment reference signal R1 to the transmit cluster port B1, sets a cluster-specific adjustment reference signal R2 to the transmit cluster port B2, and sets a cluster-specific for the transmit cluster port B3.
  • the reference signal R3 is adjusted to set a cluster-specific adjustment reference signal R4 to the transmitting cluster port B4.
  • the base station C sets four transmit cluster ports C1, C2, C3, and C4, sets a cluster-specific adjustment reference signal R1 to the transmit cluster port C1, sets a cluster-specific adjustment reference signal R2 to the transmit cluster port C2, and sets a cluster-specific for the transmit cluster port C3.
  • the reference signal R3 is adjusted to set a cluster-specific adjustment reference signal R4 to the transmitting cluster port C4.
  • the number of transmitting cluster ports set in a plurality of base stations that cooperate with each other is the same, and the same group of cluster-specific adjustment reference signals are used: R1, R2, R3, and R4.
  • the number of base stations in the coordinated cell, the number of transmitting cluster ports set by each base station, and the cluster-specific adjustment reference signals set by each transmitting cluster port can be set according to actual conditions.
  • FIG. 2 is a schematic diagram showing an example of setting a dedicated adjustment reference signal for a four-port cluster.
  • Figure 2 (1) is a schematic diagram of a cluster-specific adjustment reference signal set for port 1
  • 2 (2) is a cluster-specific adjustment reference signal set for port 2
  • 2 (3) is a cluster-specific adjustment reference set for port 3.
  • the signal diagram, 2(4) is a schematic diagram of the cluster-specific adjustment reference signal set for port 4.
  • the dedicated adjustment reference signals set for each port are different, not only in the mapping locations in the physical resource blocks, but also in different values.
  • the mapping positions of the different cluster-specific reference signals in the physical resource blocks need to be staggered, and the mapping locations of the cluster-specific reference signals in the physical resource blocks cannot transmit the transmission data.
  • the mapping location of the physical resource block can be selected to set a dedicated adjustment reference signal for the port of the base station, and details are not described herein.
  • Step 102 Acquire a multi-layer data stream after layer mapping processing.
  • Step 103 Perform precoding on the multi-layer data stream by using a preset multi-port precoding method to obtain encoded data of each of the transmitting cluster ports, where the multi-port pre-coding method is combined with multiple presets. Precoding method for cluster port matching.
  • a multi-port precoding method matching a plurality of pre-set transmission cluster ports is employed. That is to say, by setting several transmit cluster ports to the base station in advance, a port port precoding method is adopted. For example, if two transmit cluster ports are preset for each base station, a two-port precoding method is adopted; if four transmit cluster ports are preset for each base station, a four-port precoding method is adopted; By setting 8 transmit cluster ports in advance, an eight-port precoding method is adopted. By analogy, the number of transmitting cluster ports of the base station is set according to the actual situation, and the multi-port precoding method matched with the number of the set transmitting cluster ports is adopted.
  • Equation (1) is an implementation scheme of the two-port precoding method:
  • y (A) (2i) and y (A) (2i+1) are the encoded data of the transmitting cluster port A
  • y (B) (2i) and y (B) (2i+1) are the transmitting cluster port B.
  • the encoded data, Re[x (0) (i)] is the real part of the i-th data in the layer 0 data stream
  • Re[x (1) (i)] is the i-th data in the layer 1 data stream.
  • the real part, Im[x (0) (i)] is the imaginary part of the i-th data in the layer 0 data stream
  • Im[x (1) (i)] is the i-th data in the layer 1 data stream.
  • M represents the number of data contained in each layer of the data stream
  • k 0,1,2...,N -1
  • N represents the number of layers of the data stream.
  • each data stream has i data
  • the data streams of the kth layer and the k+1th layer are encoded by a two-port precoding method to obtain two transmitting clusters.
  • the encoded data of the port It can be known from formula (1) that two data in the data stream can be encoded to obtain four encoded data by using a two-port precoding method. That is to say, after the layer data stream is encoded by the two-port precoding method, the encoded data is doubled in data redundancy compared with the original layer data stream.
  • the UE may demodulate the cluster-specific adjustment reference signal to obtain twice the number of transmissions. According to the decoding of the transmission data, the decoding accuracy is twice that of the prior art, and the UE can correctly decode the transmission data and implement the same frequency networking in the cluster service system.
  • Equation (2) is an implementation scheme of the four-port precoding method:
  • y (A) (4i), y (A) (4i+1), y (A) (4i+2), and y (A) (4i+2) are the encoded data of the transmitting cluster port A
  • y ( B) (4i), y (B) (4i+1), y (B) (4i+2), and y (B) (4i+3) are the encoded data of the transmitting cluster port B
  • y (C) (4i ), y (C) (4i+1), y (C) (4i+2), and y (C) (4i+3) are coded data for transmitting cluster port C
  • y (D) (4i), y ( D) (4i+1), y (D) (4i+2), and y (D) (4i+3) are the encoded data of the transmitting cluster port D
  • Re[x (0) (i)] is the first layer.
  • the real part of the i-th data in the data stream, Re[x (1) (i)] is the real part of the i-th data in the layer 2 data stream, and Re[x (2) (i)] is the third layer.
  • the real part of the i-th data in the data stream, Re[x (3) (i)] is the real part of the i-th data in the layer 4 data stream, and Im[x (0) (i)] is the first layer.
  • the imaginary part of the i-th data in the data stream, Im[x (1) (i)] is the imaginary part of the i-th data in the layer 2 data stream, and Im[x (2) (i)] is the third layer
  • each data stream has i
  • the data streams of the kth layer, the k+1th layer, the k+2th layer, and the k+3th layer are encoded by a four-port precoding method, and encoded data of four transmitting cluster ports is obtained. It can be known from the formula (2) that one data is acquired in each layer of the data stream, and the four-port pre-encoding method is used for encoding, and the obtained four data codes can obtain sixteen encoded data.
  • the encoded data is increased by four times compared with the original layer data stream.
  • the UE may use the cluster-specific adjustment reference signal to demodulate and obtain four times of transmission data.
  • the decoding accuracy rate is four times that of the prior art without precoding, and the UE The transmission data can be correctly decoded, and the same frequency networking can be implemented in the cluster service system.
  • the two-port precoding method and the four-port precoding method are used to precode the layer data stream, and the pre-coding method such as the eight-port precoding method may be used.
  • the secretary stream is precoded, and the multi-port precoding method matched with a plurality of pre-set transmission cluster ports is selected according to actual needs for precoding.
  • Step 104 Perform resource mapping on the encoded data of each transmitting cluster port and the cluster-specific mediation reference signal to obtain transmission data of the transmitting cluster port.
  • the multi-port precoding method is used to precode the multi-layer data stream, and the encoded data of each transmitting cluster port is obtained.
  • the two-port precoding method is used for precoding to obtain coded data of two transmitting cluster ports;
  • the four-port precoding method is used for precoding to obtain coded data of four transmitting cluster ports, and so on.
  • the encoded data of each transmitting cluster port can only be mapped to the physical resource block of the transmitting cluster port.
  • the cluster-specific adjustment reference signal set by each transmitting cluster port can also be mapped only to the physical resource block of the transmitting cluster port.
  • the encoded data of the A port obtained after precoding is y (A) (4i), y (A) (4i+1), y (A) (4i+2), and y (A) (4i+2) can only be mapped to the physical resource block of port A
  • the encoded data of the B port obtained after precoding is y (B) (4i), y (B) (4i+1), y (B) (4i+2) and y (B) (4i+3)
  • the encoded data of the C port obtained after precoding is y (C) (4i), y ( C) (4i+1), y (C) (4i+2), and y (C) (4i+3) can only be mapped to the physical resource block of port C
  • the encoded data of the D port obtained after precoding (D) (4i), y (D) (4i+1), y (D) (4i+2), and y (D) (4i+3) can only be mapped to the physical resource block of port C
  • the cluster-specific mediation reference signal of the transmitting cluster port is first mapped to the physical resource block of the transmitting cluster port to obtain the reference resource block.
  • the encoded data is then sequentially mapped to a blank area in the reference resource block.
  • the resource mapping of the coded data of each of the transmitting cluster ports and the dedicated mediation reference signal to obtain the transmission data of the transmitting cluster port includes:
  • the cluster of the port is dedicated to adjusting the mapping area of the reference signal and other areas than the mapping area of the cell reference signal.
  • the blank area of the reference resource block is a mapping area other than the mapping area of the cluster-specific adjustment reference signal of all the transmitting cluster ports and the mapping area of the cell reference signal.
  • the physical resource block there is an area that maps the cluster-specific mediation reference signal, and an area that maps the cell reference signal, and is a mapping area of the coded data.
  • the gray area is a mapping area of the cell reference signal
  • the shaded area is a mapping area of the cluster dedicated mediation reference signal
  • the blank area is a resource mapping area of the encoded data.
  • FIG. 3 is only for explaining resource mapping of coded data and cluster-specific mediation reference signals, and is not limited to the mapping area setting mode shown in FIG.
  • the resource mapping of the coded data of the transmitting cluster port may be performed first, and then the resource mapping of the cluster-specific adjustment reference signal of the transmitting cluster port is performed.
  • the manner of resource mapping is similar, and details are not described herein.
  • Step 105 The transmission data of each transmitting cluster port is matched to the transmitting cluster port.
  • the receiving cluster port is sent, and the matched receiving cluster port is a receiving cluster port that is the same as the cluster-specific adjustment reference signal set by the sending cluster port on multiple UEs in the same group in the cluster system.
  • Orthogonal Frequency Division Multiplexing is performed on the resource-mapped physical resource blocks of each transmitting cluster port after the resource mapping of each of the transmitting cluster ports in the base station and the cluster-specific adjustment reference signal are completed. And converting the frequency domain transmission data into time domain transmission data, and transmitting the transmission data to the plurality of UEs by using the transmitting cluster port.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the base station When transmitting the transmission data to the multiple UEs, the base station transmits the transmission data of each transmitting cluster port to the matching receiving cluster port of the multiple UEs by using the transmitting cluster port.
  • the cluster-specific adjustment reference signal set by the transmitting cluster port of the base station is the same as the cluster-specific adjustment reference signal set by the receiving cluster port of the UE, it is considered that the receiving cluster port of the UE matches the transmitting cluster port of the base station.
  • a plurality of transmitting cluster ports are set on each base station, and multiple receiving cluster ports are also set on each UE.
  • the number of transmitting cluster ports set by the base station is the same as the number of receiving cluster ports set on the UE.
  • Each transmitting cluster port of the base station has a receiving cluster port on the UE that matches the transmitting cluster port.
  • each UE's receiving cluster port also has a transmitting cluster port that matches the receiving cluster port on the base station.
  • the base stations of the three cells that cooperate with each other are the base station A, the base station B, and the base station C, respectively, and the four transmit cluster ports are set for each base station as an example for description.
  • the base station A sets four transmit cluster ports A1, A2, A3, and A4, sets a cluster-specific adjustment reference signal R1 to the transmit cluster port A1, sets a cluster-specific adjustment reference signal R2 to the transmit cluster port A2, and sets a cluster-specific for the transmit cluster port A3.
  • the reference signal R3 is adjusted to set a cluster-specific adjustment reference signal R4 to the transmitting cluster port A4.
  • the base station B sets four transmit cluster ports B1, B2, B3, and B4, sets a cluster-specific adjustment reference signal R1 to the transmit cluster port B1, sets a cluster-specific adjustment reference signal R2 to the transmit cluster port B2, and sets a cluster-specific for the transmit cluster port B3.
  • the reference signal R3 is adjusted to set a cluster-specific adjustment reference signal R4 to the transmitting cluster port B4.
  • the base station C sets four transmit cluster ports C1, C2, C3, and C4, sets a cluster-specific adjustment reference signal R1 to the transmit cluster port C1, sets a cluster-specific adjustment reference signal R2 to the transmit cluster port C2, and sets a cluster-specific for the transmit cluster port C3.
  • the reference signal R3 is adjusted to set a cluster-specific adjustment reference signal R4 to the transmitting cluster port C4.
  • the cluster service system includes two terminals, namely terminal D and terminal E, to provide for each terminal.
  • the four receiving cluster ports are taken as an example for description.
  • Terminal D sets four receiving cluster ports D1, D2, D3, and D4, sets a cluster-specific adjustment reference signal R1 to the transmitting cluster port D1, sets a cluster-specific adjustment reference signal R2 to the transmitting cluster port D2, and sets a cluster-specific for the transmitting cluster port D3.
  • the reference signal R3 is adjusted to set a cluster-specific adjustment reference signal R4 to the transmitting cluster port D4.
  • Terminal E sets four receiving cluster ports E1, E2, E3, and E4, sets a cluster-specific adjustment reference signal R1 for the transmitting cluster port E1, sets a cluster-specific adjustment reference signal R2 for the transmitting cluster port E2, and sets a cluster-specific for the transmitting cluster port E3.
  • the reference signal R3 is adjusted, and the cluster-specific adjustment reference signal R4 is set to the transmitting cluster port E4.
  • the matching receiving cluster port of the transmitting cluster port A1 of the base station A is the receiving cluster port D1 of the terminal D and the receiving cluster port E1 of the terminal E; the matching receiving cluster port of the transmitting cluster port A2 of the base station A is the receiving cluster port D2 of the terminal D.
  • the receiving cluster port E2 of the terminal E; the matching receiving cluster port of the transmitting cluster port A3 of the base station A is the receiving cluster port D3 of the terminal D and the receiving cluster port E3 of the terminal E; the matching receiving cluster port of the transmitting cluster port A4 of the base station A It is the receiving cluster port D4 of the terminal D and the receiving cluster port E4 of the terminal E.
  • the matching transmit cluster port and the receive cluster port have the same cluster-specific adjustment reference signal.
  • the receiving cluster port matched by each of the transmitting cluster ports in the base station B, the base station C, and the base station D can be obtained, and details are not described herein.
  • FIG. 4 is a flowchart of Embodiment 2 of a method for co-frequency networking based on a cluster service according to the present invention, which is applied to a UE of a cluster service, where the method includes:
  • Step 401 Set a plurality of receiving cluster ports in advance, and set a cluster-specific adjustment reference signal to each of the receiving cluster ports.
  • a plurality of receiving cluster ports are set on each UE in the cluster service system, and a cluster dedicated adjustment reference signal is set for each receiving cluster port.
  • Each receiving cluster port set on the UE is The receiving cluster port matched by one transmitting cluster port of the base station is the same as the cluster dedicated adjusting reference signal set by the transmitting clustering port.
  • Each receiving cluster port of the UE receives only transmission data transmitted by the transmitting cluster port that matches the receiving cluster port.
  • each transmitting cluster port of a base station of a plurality of coordinated cells transmits transmission data to a plurality of UEs in the cluster service system.
  • a receiving cluster port of each UE receives transmission data transmitted by a matching transmitting cluster port of the plurality of base stations.
  • the base stations of the three cells that cooperate with each other are the base station A, the base station B, and the base station C, respectively, and the four transmit cluster ports are set for each base station as an example for description.
  • the base station A sets four transmit cluster ports A1, A2, A3, and A4, sets a cluster-specific adjustment reference signal R1 to the transmit cluster port A1, sets a cluster-specific adjustment reference signal R2 to the transmit cluster port A2, and sets a cluster-specific for the transmit cluster port A3.
  • the reference signal R3 is adjusted to set a cluster-specific adjustment reference signal R4 to the transmitting cluster port A4.
  • the base station B sets four transmit cluster ports B1, B2, B3, and B4, sets a cluster-specific adjustment reference signal R1 to the transmit cluster port B1, sets a cluster-specific adjustment reference signal R2 to the transmit cluster port B2, and sets a cluster-specific for the transmit cluster port B3.
  • the reference signal R3 is adjusted to set a cluster-specific adjustment reference signal R4 to the transmitting cluster port B4.
  • the base station C sets four transmit cluster ports C1, C2, C3, and C4, sets a cluster-specific adjustment reference signal R1 to the transmit cluster port C1, sets a cluster-specific adjustment reference signal R2 to the transmit cluster port C2, and sets a cluster-specific for the transmit cluster port C3.
  • the reference signal R3 is adjusted to set a cluster-specific adjustment reference signal R4 to the transmitting cluster port C4.
  • the cluster service system includes two terminals, namely, terminal D and terminal E, respectively, to provide four receiving cluster ports for each terminal as an example for description.
  • Terminal D sets four receiving cluster ports D1, D2, D3, and D4, sets a cluster-specific adjustment reference signal R1 to the transmitting cluster port D1, sets a cluster-specific adjustment reference signal R2 to the transmitting cluster port D2, and sets a cluster-specific for the transmitting cluster port D3.
  • the reference signal R3 is adjusted to set a cluster-specific adjustment reference signal R4 to the transmitting cluster port D4.
  • Terminal E sets four receiving cluster ports E1, E2, E3, and E4, sets a cluster-specific adjustment reference signal R1 for the transmitting cluster port E1, sets a cluster-specific adjustment reference signal R2 for the transmitting cluster port E2, and sets a cluster-specific for the transmitting cluster port E3.
  • the reference signal R3 is adjusted, and the cluster-specific adjustment reference signal R4 is set to the transmitting cluster port E4.
  • the receiving group port D1 of the terminal D receives the transmitting cluster port A1 in the base station A, the transmitting cluster port B1 in the base station B, the transmitting cluster port C1 in the base station C, and the transmitting cluster end in the base station D.
  • the transmission data sent by the port D2; the receiving group port D2 of the terminal D receives the transmitting cluster port A2 in the base station A, the transmitting cluster port B2 in the base station B, the transmitting cluster port C2 in the base station C, and the transmitting cluster port in the base station D.
  • the transmission data transmitted by D2; the receiving group port D3 of the terminal D receives the transmitting cluster port A3 in the base station A, the transmitting cluster port B3 in the base station B, the transmitting cluster port C3 in the base station C, and the transmitting cluster port D3 in the base station D.
  • the transmitted transmission data; the receiving group port D4 of the terminal D receives the transmitting cluster port A4 in the base station A, the transmitting cluster port B4 in the base station B, the transmitting cluster port C4 in the base station C, and the transmitting cluster port D4 in the base station D.
  • Transfer data By analogy, the transmission data sent by the base station A, the base station B, the base station C, and the transmitting cluster port of the base station D to be received by each receiving cluster port in the terminal E can be obtained, and details are not described herein again.
  • Step 402 Each receiving cluster port receives the same transmission data sent by the matching transmitting cluster port of the plurality of base stations in the cluster system, and the matched transmitting cluster port is a cluster-specific adjustment reference signal set by the receiving cluster port. Same launch cluster port.
  • Step 403 Each receiving cluster port performs data demodulation on the transmission data received by the receiving cluster port by using a cluster-specific adjustment reference signal set by the receiving cluster port, and obtains encoded data of each receiving cluster port.
  • Step 404 Decode the encoded data of each receiving cluster port by using a decoding method corresponding to the multi-port precoding method to obtain a multi-layer data stream.
  • Each receiving cluster port of the UE receives the transmission data sent by the matched transmitting cluster port of the plurality of base stations, and the transmitted data sent by the matching transmitting cluster port of the different base stations received by the same receiving cluster port of the UE are the same. , to achieve the same frequency networking.
  • the UE performs demodulation by using the cluster-specific adjustment reference signal set by the receiving cluster port, and obtains encoded data of each receiving cluster port.
  • the encoded data received by the receiving cluster port of the UE is data encoded by the multi-port precoding method, and has multiple times of redundant data, and the UE can use the cluster-specific adjustment reference signal to demodulate the obtained encoded data with high accuracy.
  • the core difference between the present invention and the prior art is that the cluster service system in the prior art cannot use the Beamforming technology to estimate the downlink channel condition, and the transmission data sent by the base station after demodulation is demodulated and the decoding accuracy is low, in the cluster service.
  • the same frequency networking technology cannot be implemented.
  • the multi-port precoding method is used to pre-code the multi-layer data stream to obtain more redundant data, thereby improving the correct rate of demodulation of the received transmission data by the UE.
  • the UE decodes the encoded data obtained by each port by using the decoding method corresponding to the multi-port precoding method to obtain the multi-layer data stream.
  • each UE receives the transmission data sent by multiple base stations in the same-frequency networking system, so that the UE receives the signal of the transmission data sent by the base station, and multi-port precoding technology and multiple The technology of transmitting the transmission data of the cluster port is combined, and the same frequency networking technology is implemented in the cluster service system to improve the spectrum utilization rate of the LTE system.
  • the present invention employs a transmission mode that matches a plurality of transmit cluster ports that are set, such as a two-port transmit diversity transmission mode or a four-port transmit diversity mode.
  • the present invention has the following beneficial effects:
  • the multi-layer data stream obtained by the layer mapping process is pre-coded by a multi-port precoding method to obtain coded data of each of the transmitting cluster ports, and the coded data increases data redundancy compared with the original multi-layer data stream.
  • the encoded data is resource mapped to obtain transmission data of multiple cluster transmission ports, and each layer of data in each layer of the original data stream is separately sent to the UE, which also increases data redundancy.
  • Combining the precoding technology with multiple cluster transmit port transmission technologies increases the data redundancy of the transmission data received by the UE and improves the correctness of the UE decoding the transmitted data.
  • the plurality of base stations perform the same data transmission to the plurality of UEs in the cluster service system by using the method of the same-frequency networking based on the cluster service, and implement the same-frequency networking technology in the cluster service system to improve the spectrum utilization of the LTE system.
  • FIG. 5 is a schematic structural diagram of a third embodiment of a base station based on a cluster service according to the present invention.
  • the third embodiment is a base station corresponding to the method according to the first embodiment, where the base station includes:
  • the processor 501 and the plurality of transmitting cluster ports A1-Am each set a cluster-specific adjustment reference signal.
  • n is a natural number greater than one.
  • the processor 501 is configured to obtain a layered data stream after the layer mapping process, and perform precoding on the multi-layer data stream by using a preset multi-port precoding method to obtain coded data of each of the transmitting cluster ports.
  • the multi-port precoding method is matched with a plurality of pre-set cluster ports. a precoding method: performing resource mapping on the coded data of each of the transmitting cluster ports and the cluster dedicated mediation reference signal to obtain transmission data of the transmitting cluster port; and transmitting the transmission data of each transmitting cluster port to the transmitting cluster port.
  • Each of the matched receiving cluster ports is a receiving cluster port that is the same as the cluster-specific adjustment reference signal set by the sending cluster port on the plurality of user equipment UEs in the same group in the cluster system.
  • the processor 501 is configured to perform resource mapping on the encoded data of each of the transmitting cluster ports and the dedicated mediation reference signal to obtain the transmission data of the transmitting cluster port, including:
  • the cluster of the port is dedicated to adjusting the mapping area of the reference signal and other areas than the mapping area of the cell reference signal.
  • Each of the transmitting cluster ports is configured to receive transmission data sent by the processor, and send the received transmission data to the matching receiving cluster port by using the transmitting cluster port, where each matched receiving cluster port is A receiving cluster port on the plurality of UEs in the same group in the cluster system that is the same as the cluster-specific adjustment reference signal set by the sending cluster port.
  • the processor 501 is configured to perform precoding on the multi-layer data stream by using a preset multi-port precoding method, including:
  • the multi-layer data stream is precoded by using a two-port precoding method
  • the multi-layer data stream is precoded by a four-port precoding method.
  • the processor 501 is configured to adopt a two-port precoding method for the multi-layer data stream. Precoding includes:
  • the multi-layer data stream is precoded using the following formula:
  • y (A) (2i) and y (A) (2i+1) are the encoded data of the transmitting cluster port A
  • y (B) (2i) and y (B) (2i+1) are the transmitting cluster port B.
  • the encoded data, Re[x (0) (i)] is the real part of the i-th data in the layer 0 data stream
  • Re[x (1) (i)] is the i-th data in the layer 1 data stream.
  • the real part, Im[x (0) (i)] is the imaginary part of the i-th data in the layer 0 data stream
  • Im[x (1) (i)] is the i-th data in the layer 1 data stream.
  • M represents the number of data contained in each layer of data stream
  • k 0,1,2L,N-1
  • N represents the number of layers of the data stream.
  • the processor 501 is configured to perform precoding on the multi-layer data stream by using a four-port precoding method, including:
  • the multi-layer data stream is precoded using the following formula:
  • y (A) (4i), y (A) (4i+1), y (A) (4i+2), and y (A) (4i+2) are the encoded data of the transmitting cluster port A
  • y ( B) (4i), y (B) (4i+1), y (B) (4i+2), and y (B) (4i+3) are the encoded data of the transmitting cluster port B
  • y (C) (4i ), y (C) (4i+1), y (C) (4i+2), and y (C) (4i+3) are coded data for transmitting cluster port C
  • y (D) (4i), y ( D) (4i+1), y (D) (4i+2), and y (D) (4i+3) are the encoded data of the transmitting cluster port D
  • Re[x (0) (i)] is the first layer.
  • the real part of the i-th data in the data stream, Re[x (1) (i)] is the real part of the i-th data in the layer 2 data stream, and Re[x (2) (i)] is the third layer.
  • the real part of the i-th data in the data stream, Re[x (3) (i)] is the real part of the i-th data in the layer 4 data stream, and Im[x (0) (i)] is the first layer.
  • the imaginary part of the i-th data in the data stream, Im[x (1) (i)] is the imaginary part of the i-th data in the layer 2 data stream, and Im[x (2) (i)] is the third layer
  • the third embodiment is a base station corresponding to the method in the first embodiment.
  • the specific implementation is similar to the first embodiment. For details, refer to the description of the first embodiment, and details are not described herein again.
  • FIG. 6 is a schematic structural diagram of a fourth embodiment of a terminal in the same frequency grouping network based on the cluster service according to the present invention.
  • the fourth embodiment is a terminal corresponding to the method in the second embodiment, where the terminal includes:
  • a plurality of receiving cluster ports B1 B Bn and a processor 601 are provided with a cluster-specific adjustment reference signal for each of the receiving cluster ports.
  • n is a natural number greater than one.
  • Each of the receiving cluster ports is configured to receive transmission data sent by a transmitting cluster port that matches the receiving cluster port among the plurality of base stations in the same group in the cluster system, and send the received transmission data to the processor.
  • the matched transmit cluster port is the same transmit cluster port as the cluster-specific adjustment reference signal set by the receive cluster port.
  • the processor 601 is configured to receive transmission data sent by each receiving cluster port, and perform data demodulation on the transmission data received by the receiving cluster port by using a cluster-specific adjustment reference signal set by each cluster port.
  • the encoded data of each receiving cluster port is decoded by using a decoding method corresponding to the multi-port precoding method to obtain a multi-layer data stream.
  • the fourth embodiment is the terminal corresponding to the method in the second embodiment.
  • the specific implementation is similar to the second embodiment.
  • FIG. 7 is a schematic structural diagram of Embodiment 5 of a system for co-frequency networking based on a cluster service according to the present invention, where the system includes:
  • the plurality of base stations K1 to Kx of the same-frequency networking based on the cluster service and the user equipment UE group 701, and the UE group 701 is configured by the plurality of cluster-based same-frequency groups according to the fourth embodiment.
  • the terminal of the network is composed. Where x and y are both natural numbers greater than one.
  • a plurality of transmitting cluster ports are disposed in each of the base stations, and each of the terminals in the UE group 701 is configured with multiple receiving cluster ports, a transmitting cluster port in the base station, and a receiving cluster port in the terminal.
  • the number of the same is the same, and the transmitting cluster port in the base station is matched with the receiving cluster port in the terminal, and the matched transmitting cluster port is the same as the cluster-specific adjustment reference signal set by the receiving cluster port.
  • the transmitting cluster port in each base station sends the same transmission data to the receiving cluster ports that match the transmitting cluster port among all the terminals in the UE group; the receiving cluster ports in each terminal in the UE group respectively Receiving the same transmission data sent by the sending cluster port that matches the receiving cluster port in all base stations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了基于集群业务的同频组网的方法、装置及系统,将层映射处理后所得的多层数据流采用多端口预编码方法进行预编码,获得每个发射集群端口的编码数据,编码数据与原多层数据流相比,增加了数据冗余。将编码数据进行资源映射获得多个集群发射端口的传输数据,将原有每层数据流中的每层数据分成多部分分别发送至UE,也增加了数据冗余。将预编码技术和多个集群发射端口传输技术结合,增加UE所接收的传输数据的数据冗余,提高UE对传输数据解码的正确率。多个基站采用上述基于集群业务的同频组网的方法,向集群业务系统中同一群组下的多个UE进行相同的数据传输,在集群业务系统中实现同频组网技术,降低小区间干扰,提高LTE系统的频谱利用率。

Description

基于集群业务的同频组网方法和装置 技术领域
本发明涉及通信技术领域,特别涉及一种基于集群业务的同频组网的方法和装置。
背景技术
为了提高长期演进(Long Term Evolution,LTE,LTE)系统在有限的频谱资源中获得更大的传输带宽,一般采用同频组网技术提高LTE系统中的频谱利用率。协同多点(Coordinated Multiple Points,CoMP)传输技术是常用的同频组网技术之一。
CoMP传输是指地理位置上分离的多个传输点,通常指不同小区的基站,协同给同一个终端进行物理下行共享信道(Physical Downlink Shared Channel,PDSCH)数据传输,或者联合接收同一个终端的物理上行共享信道(Physical Uplink Shared Channel,PUSCH)数据传输。CoMP技术将边缘用户设备设置在相邻小区的几个基站的相同视频资源上,几个基站同时给该边缘用户设备发送相同的下行数据,提高边缘用户设备的频谱利用率。
采用CoMP传输实现同频组网时,通常与波束成行(Beamforming)技术结合。每个基站接收到UE的上行数据后,利用与UE预先协商好的专用调节参考信号以及上行信道条件估计下行信道条件,再利用下行信道条件给下行数据编码发送至所述UE。所述UE接收到下行数据后,再利用所述专用调节参考信号解码获得所述基站发送的下行数据。
采用CoMP传输与Beamforming技术结合实现同频组网只能应用于单播UE,即只适用于基站给一个UE发送下行数据。基站采用Beamforming技术,利用专用调节参考信号以及UE给基站上行数据的上行信道条件估计下行信道条件。而在集群业务系统中,基站给多个UE发送下行数据,基站采用Beamforming技术估计下行信道条件时,仅能利用一个UE给基站上行数据的上行信道条件估计下行信道条件,基站利用估计得到的下行信道条件对下行 数据编码后发送至多个UE。这种情况下只有给基站提供上行信道条件的UE利用专用调节参考信号解码所得的下行数据准确率高,其他UE解码所得下行数据错误率高。因此,CoMP传输与Beamforming技术结合实现同频组网不适用于集群业务。现有技术中没有给出在集群业务中实现的同频组网技术。
发明内容
本发明解决的技术问题在于提供一种基于集群业务的同频组网的方法和装置,解决了现有技术集群业务中,终端对基站发送的传输数据解码错误率高的问题。
为此,本发明解决技术问题的技术方案是:
本发明第一方面提供了一种基于集群业务的同频组网的方法,预先设置多个发射集群端口,给每个所述发射集群端口设置一个集群专用调节参考信号,所述方法包括:
获取层映射处理后的多层数据流;
对所述多层数据流采用预先设置的多端口预编码方法进行预编码,获得每个所述发射集群端口的编码数据,所述多端口预编码方法是与预先设置的多个发射集群端口匹配的预编码方法;
将每个发射集群端口的编码数据和集群专用调解参考信号进行资源映射获得该发射集群端口的传输数据;
将每个发射集群端口的传输数据利用该发射集群端口向匹配的集群端口发送,所述匹配的集群端口为集群系统中同一群组下的多个用户设备(User Equipment,UE)上与该发送集群端口所设置的集群专用调节参考信号相同的接收集群端口。
在第一方面第一种可能的实现方式中,所述将每个发射集群端口的编码数据和专用调解参考信号进行资源映射获得该发射集群端口的传输数据包括:
获取每个发射集群端口的编码数据和所述发射集群端口所设置的集群专用调节参考信号;
将每个所述发射集群端口所设置的集群专用调节参考信号进行资源映射获得该发射集群端口的参考资源块;
将每个所述发射集群端口的编码数据映射至该发射集群端口的参考资源块的空白区域获得该发射集群端口的传输数据,所述参考资源块的空白区域为参考资源块中除了所有发射集群端口的集群专用调节参考信号的映射区域以及小区参考信号的映射区域以外的其他区域。
在第一方面第二种可能的实现方式中,所述对所述多层数据流采用预先设置的多端口预编码方法进行预编码包括:
预先设置2个发射集群端口时,对所述多层数据流采用两端口预编码方法进行预编码;
或者,
预先设置4个发射集群端口时,对所述多层数据流采用四端口预编码方法进行预编码。
结合第一方面第二种可能的实现方式,在第一方面第三种可能的实现方式中,所述对所述多层数据流采用两端口预编码方法进行预编码包括:
对所述多层数据流采用下述公式进行预编码:
Figure PCTCN2015081956-appb-000001
其中,y(A)(2i)和y(A)(2i+1)为发射集群端口A的编码数据,y(B)(2i)和y(B)(2i+1)为发射集群端口B的编码数据,Re[x(0)(i)]为第1层数据流中第i个数据的实部,Re[x(1)(i)]为第2层数据流中第i个数据的实部,Im[x(0)(i)]为第1层数据流中第i个数据的虚部,Im[x(1)(i)]为第2层数据流中第i个数据的虚部,i=0,1,2…,M-1,j表示复数中的虚部,M表示每层数据流中所含的数据的个数,k=0,1,2…,N-1,N表示数据流的层数。
结合第一方面第二种可能的实现方式,在第一方面第四种可能的实现方式中,所述对所述多层数据流采用四端口预编码方法进行预编码包括:
对所述多层数据流采用下述公式进行预编码:
Figure PCTCN2015081956-appb-000002
其中,y(A)(4i)、y(A)(4i+1)、y(A)(4i+2)和y(A)(4i+2)为发射集群端口A的编码数据,y(B)(4i)、y(B)(4i+1)、y(B)(4i+2)和y(B)(4i+3)为发射集群端口B的编码数据,y(C)(4i)、y(C)(4i+1)、y(C)(4i+2)和y(C)(4i+3)为发射集群端口C的编码数据,y(D)(4i)、y(D)(4i+1)、y(D)(4i+2)和y(D)(4i+3)为发射集群端口D的编码数据,Re[x(0)(i)]为第1层数据流中第i个数据的实部,Re[x(1)(i)]为第2层数据流中第i个数据的实部,Re[x(2)(i)]为第3层数据流中第i个数据的实部,Re[x(3)(i)]为第4层数据流中第i个数据的实部,Im[x(0)(i)]为第1层数据流中第i个数据的虚部,Im[x(1)(i)]为第2层数据流中第i个数据的虚部,Im[x(2)(i)]为第3层数据流中第i个数据的虚部,Im[x(3)(i)]为第3层数据流中第i个数据的虚部,i=0,1,2…,M-1,j表示复数中的虚部,M表示每层数据流中所含的数据的个数,k=0,1,2…,N-1,N表示数据流的层数。
本发明第二方面提供一种基于集群业务的同频组网的方法,预先设置多个接收集群端口,给每个所述接收集群端口设置一个集群专用调节参考信号,所述方法包括:
每个接收集群端口分别接收集群系统中多个基站的匹配发射集群端口发 送的相同的传输数据,所述匹配的发射集群端口是与所述接收集群端口所设置的集群专用调节参考信号相同的发射集群端口;
每个接收集群端口分别利用该接收集群端口所设置的集群专用调节参考信号对该接收集群端口所接收到的传输数据进行数据解调,获得每个接收集群端口的编码数据;
利用与多端口预编码方法所对应的解码方法对每个接收集群端口的编码数据进行解码,获得多层数据流。
本发明第三方面提供了一种基于集群业务的同频组网的基站,所述基站包括:
处理器和多个发射集群端口,每个所述发射集群端口设置一个集群专用调节参考信号;
所述处理器,用于获取层映射处理后的多层数据流;对所述多层数据流采用预先设置的多端口预编码方法进行预编码,获得每个所述发射集群端口的编码数据,所述多端口预编码方法是与预先设置的多个发射集群端口匹配的预编码方法;将每个发射集群端口的编码数据和集群专用调解参考信号进行资源映射获得该发射集群端口的传输数据;将每个发射集群端口的传输数据发送至该发射集群端口;
每个所述发射集群端口,用于接收所述处理器发送的传输数据,将所接收到的传输数据利用该发射集群端口向匹配的接收集群端口发送,所述每个匹配的接收集群端口为集群系统中同一群组下的多个用户设备UE上与该发送集群端口所设置的集群专用调节参考信号相同的接收集群端口。
在本发明第三方面第一种可能的实现方式中,所述处理器用于将每个发射集群端口的编码数据和专用调解参考信号进行资源映射获得该发射集群端口的传输数据包括:
获取每个发射集群端口的编码数据和所述发射集群端口所设置的集群专用调节参考信号;
将每个所述发射集群端口所设置的集群专用调节参考信号进行资源映射获得该发射集群端口的参考资源块;
将每个所述发射集群端口的编码数据映射至该发射集群端口的参考资源块的空白区域获得该发射集群端口的传输数据,所述参考资源块的空白区域为参考资源块中除了所有发射集群端口的集群专用调节参考信号的映射区域以及小区参考信号的映射区域以外的其他区域。
在本发明第三方面第二种可能的实现方式中,所述处理器用于对所述多层数据流采用预先设置的多端口预编码方法进行预编码包括:
预先设置2个发射集群端口时,对所述多层数据流采用两端口预编码方法进行预编码;
或者,
预先设置4个发射集群端口时,对所述多层数据流采用四端口预编码方法进行预编码。
结合本发明第三方面第二种可能的实现方式,在第三方面第三种可能的实现方式中,所述处理器用于用于对所述多层数据流采用两端口预编码方法进行预编码包括:
对所述多层数据流采用下述公式进行预编码:
Figure PCTCN2015081956-appb-000003
其中,y(A)(2i)和y(A)(2i+1)为发射集群端口A的编码数据,y(B)(2i)和y(B)(2i+1)为发射集群端口B的编码数据,Re[x(0)(i)]为第0层数据流中第i个数据的实部,Re[x(1)(i)]为第1层数据流中第i个数据的实部,Im[x(0)(i)]为第0层数据流中第i个数据的虚部,Im[x(1)(i)]为第1层数据流中第i个数据的虚部,i=0,1,2…,M-1,j表示复数中的虚部,M表示每层数据流中所含的数据的个数,k=0,1,2…,N-1,N表示数据流的层数。
结合本发明第三方面第二种可能的实现方式,在第三方面第四种可能的实现方式中,所述处理器用于对所述多层数据流采用四端口预编码方法进行预编码包括:
对所述多层数据流采用下述公式进行预编码:
Figure PCTCN2015081956-appb-000004
其中,y(A)(4i)、y(A)(4i+1)、y(A)(4i+2)和y(A)(4i+2)为发射集群端口A的编码数据,y(B)(4i)、y(B)(4i+1)、y(B)(4i+2)和y(B)(4i+3)为发射集群端口B的编码数据,y(C)(4i)、y(C)(4i+1)、y(C)(4i+2)和y(C)(4i+3)为发射集群端口C的编码数据,y(D)(4i)、y(D)(4i+1)、y(D)(4i+2)和y(D)(4i+3)为发射集群端口D的编码数据,Re[x(0)(i)]为第1层数据流中第i个数据的实部,Re[x(1)(i)]为第2层数据流中第i个数据的实部,Re[x(2)(i)]为第3层数据流中第i个数据的实部,Re[x(3)(i)]为第4层数据流中第i个数据的实部,Im[x(0)(i)]为第1层数据流中第i个数据的虚部,Im[x(1)(i)]为第2层数据流中第i个数据的虚部,Im[x(2)(i)]为第3层数据流中第i个数据的虚部,Im[x(3)(i)]为第3层数据流中第i个数据的虚部,i=0,1,2…,M-1,j表示复数中的虚部,M表示每层数据流中所含的数据的个数,k=0,1,2…,N-1,N表示数据流的层数。
本发明第四方面提供了一种基于集群业务的同频组网的终端,所述终端包括:
多个接收集群端口和处理器,给每个所述接收集群端口设置一个集群专用调节参考信号;
每个所述接收集群端口,用于分别接收集群系统中多个基站中与该接收集群端口匹配的发射集群端口发送的相同的传输数据,将所接收到的传输数据发送至处理器,所述匹配的发射集群端口是与该接收集群端口所设置的集群专用调节参考信号相同的发射集群端口,
所述处理器,用于接收每个接收集群端口发送的传输数据,分别利用每个集群端口所设置的集群专用调节参考信号对该接收集群端口所接收到的传输数据进行数据解调,获得每个接收集群端口的编码数据;利用与多端口预编码方法所对应的解码方法对每个接收集群端口的编码数据进行解码,获得多层数据流。
本发明第五方面提供了一种基于集群业务的同频组网的系统,所述系统包括:
多个本发明第三方面至第三方面第四种可能的实现方式中任意一项所述的基于集群业务的同频组网的基站与一个用户设备UE组,所述UE组由多个本发明第四方面所述的基于集群业务的同频组网的终端组成;
所述基站中的发射集群端口与所述终端中的接收集群端口的个数相同,并且所述基站中的发射集群端口与所述终端中的接收集群端口一一匹配,所匹配的发射集群端口与接收集群端口所设置的集群专用调节参考信号相同;
每个基站中的发射集群端口给所述UE组中所有所述终端中与该发射集群端口匹配的接收集群端口发送相同的传输数据;
所述UE组中的每个终端中的接收集群端口分别接收所有基站中与该接收集群端口匹配的发送集群端口发送的相同的传输数据。
通过上述技术方案可知,本发明有如下有益效果:
本发明实施例提供了一种基于集群业务的同频组网的方法、装置及系统,基站上预先设置多个发射集群端口,终端上预先设置多个接收集群端口,每个发射集群端口都有一个匹配的接收集群端口,相互匹配的发射集群端口和接收机器端口设置有相同的集群专用调节参考信号。基站获取映射处理后的多层数据流,对所述多层数据流采用预先设置的多端口预编码方法进行预编码,获得每个所述发射集群端口的编码数据,将每个发射集 群端口的编码数据和专用调解参考信号进行资源映射获得该发射集群端口的传输数据每个发射集群端口的传输数据利用该发射集群端口发送至集群系统中同一群组下的多个UE上所匹配的接收集群端口。将层映射处理后所得的多层数据流采用多端口预编码方法进行预编码获得每个所述发射集群端口的编码数据,编码数据与原多层数据流相比,增加了数据冗余。将编码数据进行资源映射获得多个集群发射端口的传输数据,将原有每层数据流中的每层数据分成多部分分别发送至UE,也增加了数据冗余。将预编码技术和多个集群发射端口传输技术结合,增加UE所接收到的传输数据的数据冗余,提高UE对传输数据解码的正确性。多个基站采用上述基于集群业务的同频组网的方法向集群业务系统中的多个UE进行相同的数据传输,在集群业务系统中实现同频组网技术,提高LTE系统的频谱利用率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一种基于集群业务的同频组网的方法实施例一流程图;
图2(1)为本发明端口1的集群专用调节参考信号的设置实例示意图;
图2(2)为本发明端口2的集群专用调节参考信号的设置实例示意图;
图2(3)为本发明端口3的集群专用调节参考信号的设置实例示意图;
图2(4)为本发明端口4的集群专用调节参考信号的设置实例示意图;
图3为本发明资源映射的结构示意图;
图4为本发明一种基于集群业务的同频组网的方法实施例二流程图;
图5为本发明一种基于集群业务的同频组网的基站实施例三结构示意图;
图6为本发明一种基于集群业务的同频组网的终端实施例四结构示意图;
图7为本发明一种基于集群业务的同频组网的系统实施例五结构示意图。
具体实施方式
本发明实施例提供了基于集群业务的同频组网的方法和装置,增加UE所接收到的传输数据的数据冗余,提高UE对传输数据解码的正确性,在集群业务系统中实现同频组网技术,提高LTE系统的频谱利用率。
现有技术所提供的同频组网技术中,多个协作小区的基站协同给同一个终端UE进行PDSCH数据传输。在CoMP技术中,每个基站分别接收UE的PUSCH数据传输,根据UE发送的上行数据,利用与UE预先协商好的专用调节参考信号以及上行信道条件估计下行信道条件,再利用下行信道条件给下行数据编码发送至所述UE。
但是在集群业务系统中,一个基站向多个UE发送下行数据,并且接收多个UE发送的上行数据。基站每次发送下行数据前,仅能利用一个UE的上行数据采用Beamforming技术估计下行信道条件。对于集群业务系统中的多个UE来说,只有一个UE对基站发送的下行数据的解码准确率包,其他UE对基站发送的下行数据的错误率高。因此,在集群业务系统中,采用Beamforming技术无法实现同频组网技术。
下面结合附图对本发明实施例进行详细说明。
实施例一
图1为本发明一种基于集群业务的同频组网的方法实施例一流程图,应用于集群业务的基站,所述方法包括:
步骤101:预先设置多个发射集群端口,给每个所述发射集群端口设置一个集群专用调节参考信号。
在集群业务中实现同频组网技术,给相互协作的多个小区的基站分别设置一个发射集群端口组,每个基站所设置的发射集群端口组所包含的发射集群端口的个数相同。给每组发射集群端口中的每个发射集群端口分别设置一个集群专用调节参考信号(Trunking-Specific Reference Signals),同组中的不同发射集群端口所设置的集群专用调节参考信号各不相同。给相互协作的多个小区的基站的发射集群端口组设置相同的一组集群专用调节参考信号,每个集群专用 调节参考信号分别对应于基站上所设置的一个发射集群端口。
举例说明:相互协作的三个小区的基站分别为基站A,基站B和基站C,以给每个基站设置四个发射集群端口为例进行说明。基站A设置四个发射集群端口A1、A2、A3和A4,给发射集群端口A1设置集群专用调节参考信号R1,给发射集群端口A2设置集群专用调节参考信号R2,给发射集群端口A3设置集群专用调节参考信号R3,给发射集群端口A4设置集群专用调节参考信号R4。基站B设置四个发射集群端口B1、B2、B3和B4,给发射集群端口B1设置集群专用调节参考信号R1,给发射集群端口B2设置集群专用调节参考信号R2,给发射集群端口B3设置集群专用调节参考信号R3,给发射集群端口B4设置集群专用调节参考信号R4。基站C设置四个发射集群端口C1、C2、C3和C4,给发射集群端口C1设置集群专用调节参考信号R1,给发射集群端口C2设置集群专用调节参考信号R2,给发射集群端口C3设置集群专用调节参考信号R3,给发射集群端口C4设置集群专用调节参考信号R4。从上述实例可以看出,相互协作的多个基站中所设置的发射集群端口的个数相同,并且采用同一组集群专用调节参考信号:R1、R2、R3和R4。在实际应用中,协作小区的基站的个数,每个基站所设置的发射集群端口的个数以及每个发射集群端口所设置的集群专用调节参考信号,都可以根据实际情况自行设定。
图2为四端口集群专用调节参考信号的设置实例示意图。由图2(1)是给端口1设置的集群专用调节参考信号示意图,2(2)是给端口2设置的集群专用调节参考信号示意图,2(3)是给端口3设置的集群专用调节参考信号示意图,2(4)是给端口4设置的集群专用调节参考信号示意图。如图2所示,给每个端口所设置的专用调节参考信号都不相同,不仅在物理资源块中的映射位置不同,取值也不同。不同集群专用参考信号在物理资源块中的映射位置需要错开,集群专用参考信号在物理资源块中的映射位置不能发送传输数据。实际应用中还可以选取物理资源块其他的映射位置给基站的端口设置专用调节参考信号,这里不再进行赘述。
这里需要说明的是,上述实例仅为了读者更好的了解本发明的技术方案,具体应用时,并不仅限于上述技术方案。
步骤102:获取层映射处理后的多层数据流。
步骤103:对所述多层数据流采用预先设置的多端口预编码方法进行预编码,获得每个所述发射集群端口的编码数据,所述多端口预编码方法是与预先设置的多个发射集群端口匹配的预编码方法。
对多层数据流进行预编码时,采用与预先设置的多个发射集群端口匹配的多端口预编码方法。也就是说,给基站预先设置几个发射集群端口,就采用几端口预编码方法。举例说明,若给每个基站预先设置2个发射集群端口,就采用两端口预编码方法;若给每个基站预先设置4个发射集群端口,就采用四端口预编码方法;若给每个基站预先设置8个发射集群端口,就采用八端口预编码方法。以此类推,根据实际情况设置基站的发射集群端口的个数,采用与所设置的发射集群端口的个数所匹配的多端口预编码方法。
下面给出两端口预编码方法和四端口预编码方法的具体实现方案:
第一,采用公式(1)对多层数据流进行预编码获得两个发射集群端口的编码数据,公式(1)是两端口预编码方法的一种实现方案:
Figure PCTCN2015081956-appb-000005
其中,y(A)(2i)和y(A)(2i+1)为发射集群端口A的编码数据,y(B)(2i)和y(B)(2i+1)为发射集群端口B的编码数据,Re[x(0)(i)]为第0层数据流中第i个数据的实部,Re[x(1)(i)]为第1层数据流中第i个数据的实部,Im[x(0)(i)]为第0层数据流中第i个数据的虚部,Im[x(1)(i)]为第1层数据流中第i个数据的虚部,i=0,1,2…,M-1,j表示复数中的虚部,M表示每层数据流中所含的数据的个数,k=0,1,2…,N-1,N表示数据流的层数。
第k层和第k+1层的数据流中,每个数据流有i个数据,对第k层和第k+1层的数据流采用两端口预编码方法进行编码,获得两个发射集群端口的编码数据。由公式(1)可知,采用两端口预编码方法可以将数据流中的两个数据编码获得四个编码数据。也就是说,层数据流经过两端口预编码方法编码后,编码后的数据与原有的层数据流相比,增加了两倍的数据冗余。UE接收到基站发送的传输数据后,可以利用集群专用调节参考信号解调获得两倍的传输数 据,对传输数据进行解码时,解码正确率是现有技术中不进行预编码的两倍,UE可以对传输数据正确解码,在集群业务系统中实现同频组网。
第二,采用公式(2)对多层数据流进行预编码获得两个发射集群端口的编码数据,公式(2)是四端口预编码方法的一种实现方案:
Figure PCTCN2015081956-appb-000006
其中,y(A)(4i)、y(A)(4i+1)、y(A)(4i+2)和y(A)(4i+2)为发射集群端口A的编码数据,y(B)(4i)、y(B)(4i+1)、y(B)(4i+2)和y(B)(4i+3)为发射集群端口B的编码数据,y(C)(4i)、y(C)(4i+1)、y(C)(4i+2)和y(C)(4i+3)为发射集群端口C的编码数据,y(D)(4i)、y(D)(4i+1)、y(D)(4i+2)和y(D)(4i+3)为发射集群端口D的编码数据,Re[x(0)(i)]为第1层数据流中第i个数据的实部,Re[x(1)(i)]为第2层数据流中第i个数据的实部,Re[x(2)(i)]为第3层数据流中第i个数据的实部,Re[x(3)(i)]为第4层数据流中第i个数据的实部,Im[x(0)(i)]为第1层数据流中第i个数据的虚部,Im[x(1)(i)]为第2层数据流中第i个数据的虚部,Im[x(2)(i)]为第3层数据流中第i个数据的虚部,Im[x(3)(i)]为第3层数据流中第i个数据的虚部,i=0,1,2…,M-1,j表示复数中的虚部,M表示每层数据流中所含的数据的个数,k=0,1,2…,N-1,N表示数据流的层数。
第k层、第k+1层、第k+2层和第k+3层的数据流中,每个数据流有i 个数据,对第k层、第k+1层、第k+2层和第k+3层的数据流采用四端口预编码方法进行编码,获得四个发射集群端口的编码数据。由公式(2)可知,每层数据流中获取一个数据,采用四端口预编码方法进行编码,可以所获取的四个数据编码获得十六个编码数据。也就是说,层数据流经过四端口预编码方法编码后,编码后的数据与原有的层数据流相比,增加了四倍的数据冗余。UE接收到基站发送的传输数据后,可以利用集群专用调节参考信号解调获得四倍的传输数据,对传输数据进行解码时,解码正确率是现有技术中不进行预编码的四倍,UE可以对传输数据正确解码,在集群业务系统中实现同频组网。
这里需要说明的是,在实际应用中不仅限于上述介绍的采用两端口预编码方法和采用四端口预编码方法对层数据流进行预编码,还可以采用八端口预编码方法等预编码方法对曾书记流进行预编码,根据实际需要选择与预先设置的多个发射集群端口所匹配的多端口预编码方法进行预编码。
步骤104:将每个发射集群端口的编码数据和集群专用调解参考信号进行资源映射获得该发射集群端口的传输数据。
采用多端口预编码方法对多层数据流进行预编码后,获得每个发射集群端口的编码数据。举例说明:采用两端口预编码方法进行预编码,获得两个发射集群端口的编码数据;采用四端口预编码方法进行预编码,获得四个发射集群端口的编码数据,以此类推。每个发射集群端口的编码数据只能映射到该发射集群端口的物理资源块。每个发射集群端口所设置的集群专用调节参考信号也只能映射到该发射集群端口的物理资源块。
这里需要说明的是,在给每个发射集群端口设置集群专用调节参考信号时,不仅设置集群专用调节参考信号的值,还设置集群专用调节参考信号在物理资源块中的映射区域。对于不同的发射集群端口来说,不仅集群专用调节参考信号的值不同,在物理资源块中的映射区域也不同。
举例说明:以四端口预编码为例,预编码后所得到的A端口的编码数据y(A)(4i)、y(A)(4i+1)、y(A)(4i+2)和y(A)(4i+2)只能映射到端口A的物理资源块,预编码后所得到的B端口的编码数据y(B)(4i)、y(B)(4i+1)、y(B)(4i+2)和y(B)(4i+3)只能映射到端口B的物理资源块,预编码后所得到的C端口的编码数据y(C)(4i)、y(C)(4i+1)、y(C)(4i+2)和y(C)(4i+3)只能映射到端口C的物理资源块,预编码后 所得到的D端口的编码数据y(D)(4i)、y(D)(4i+1)、y(D)(4i+2)和y(D)(4i+3)只能映射到端口D的物理资源块。
一般情况下,将每个发射集群端口的编码数据和集群专用调解参考信号进行资源映射时,先将发射集群端口的集群专用调解参考信号映射到该发射集群端口的物理资源块获得参考资源块,再将编码数据依次映射到参考资源块中空白区域。具体实现方法为:
所述将每个发射集群端口的编码数据和专用调解参考信号进行资源映射获得该发射集群端口的传输数据包括:
获取每个发射集群端口的编码数据和所述发射集群端口所设置的集群专用调节参考信号;
将每个所述发射集群端口所设置的集群专用调节参考信号进行资源映射获得该发射集群端口的参考资源块;
将每个所述发射集群端口的编码数据映射至该发射集群端口的参考资源块的空白区域获得该发射集群端口的传输数据,所述参考资源块的空白区域为参考资源块中除了所有发射集群端口的集群专用调节参考信号的映射区域以及小区参考信号的映射区域以外的其他区域。
所述参考资源块的空白区域为参考资源块中除了所有发射集群端口的集群专用调节参考信号的映射区域以及小区参考信号的映射区域以外的其他区域。物理资源块中,有映射集群专用调解参考信号的区域,也有映射小区参考信号的区域,除此以外,则是编码数据的映射区域。如图3所示,灰色区域是小区参考信号的映射区域,斜线阴影区域是集群专用调解参考信号的映射区域,空白区域即为编码数据的资源映射区域。图3只是为了对编码数据和集群专用调解参考信号的资源映射进行说明,并不仅限于图3所示的映射区域设置方式。
当然,在实际应用中,也可以先对发射集群端口的编码数据进行资源映射,再对发射集群端口的集群专用调节参考信号进行资源映射,资源映射的方式类似,这里不再赘述。
步骤105:将每个发射集群端口的传输数据利用该发射集群端口向匹配的 接收集群端口发送,所述匹配的接收集群端口为集群系统中同一群组下的多个UE上与该发送集群端口所设置的集群专用调节参考信号相同的接收集群端口。
当基站中每个发射集群端口的编码数据和集群专用调节参考信号完成资源映射后,对每个发射集群端口的资源映射后的物理资源块进行正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM),将频域传输数据转换成时域传输数据,利用发射集群端口向多个UE发送传输数据。
基站在给多个UE发送传输数据时,将每个发射集群端口的传输数据利用该发射集群端口发送至多个UE上匹配的接收集群端口。当基站的发射集群端口所设置的集群专用调节参考信号与UE的接收集群端口所设置的集群专用调节参考信号相同时,则认为UE的接收集群端口与基站的发射集群端口匹配。
每个基站上设置了多个发射集群端口,每个UE上也设置了多个接收集群端口,基站所设置的发射集群端口的个数与UE上设置的接收集群端口的个数相同。基站的每个发射集群端口在UE上都有一个与该发射集群端口匹配的接收集群端口。相应的,每个UE的接收集群端口也在基站上都有一个与该接受集群端口匹配的发射集群端口。
举例说明:相互协作的三个小区的基站分别为基站A,基站B和基站C,以给每个基站设置四个发射集群端口为例进行说明。基站A设置四个发射集群端口A1、A2、A3和A4,给发射集群端口A1设置集群专用调节参考信号R1,给发射集群端口A2设置集群专用调节参考信号R2,给发射集群端口A3设置集群专用调节参考信号R3,给发射集群端口A4设置集群专用调节参考信号R4。基站B设置四个发射集群端口B1、B2、B3和B4,给发射集群端口B1设置集群专用调节参考信号R1,给发射集群端口B2设置集群专用调节参考信号R2,给发射集群端口B3设置集群专用调节参考信号R3,给发射集群端口B4设置集群专用调节参考信号R4。基站C设置四个发射集群端口C1、C2、C3和C4,给发射集群端口C1设置集群专用调节参考信号R1,给发射集群端口C2设置集群专用调节参考信号R2,给发射集群端口C3设置集群专用调节参考信号R3,给发射集群端口C4设置集群专用调节参考信号R4。
集群业务系统中包括两个终端,分别为终端D和终端E,以给每个终端设 置四个接收集群端口为例进行说明。终端D设置四个接收集群端口D1、D2、D3和D4,给发射集群端口D1设置集群专用调节参考信号R1,给发射集群端口D2设置集群专用调节参考信号R2,给发射集群端口D3设置集群专用调节参考信号R3,给发射集群端口D4设置集群专用调节参考信号R4。终端E设置四个接收集群端口E1、E2、E3和E4,给发射集群端口E1设置集群专用调节参考信号R1,给发射集群端口E2设置集群专用调节参考信号R2,给发射集群端口E3设置集群专用调节参考信号R3,给发射集群端口E4设置集群专用调节参考信号R4。
则基站A的发射集群端口A1的匹配接收集群端口为终端D的接收集群端口D1以及终端E的接收集群端口E1;基站A的发射集群端口A2的匹配接收集群端口为终端D的接收集群端口D2以及终端E的接收集群端口E2;基站A的发射集群端口A3的匹配接收集群端口为终端D的接收集群端口D3以及终端E的接收集群端口E3;基站A的发射集群端口A4的匹配接收集群端口为终端D的接收集群端口D4以及终端E的接收集群端口E4。由此可知,匹配的发射集群端口和接收集群端口所设置的集群专用调节参考信号相同。以此类推,可以得到基站B、基站C以及基站D中的每个发射集群端口所匹配的接收集群端口,这里不再骤赘述。
这里需要说明的是,上述实例仅为了更好的说明本发明的技术方案,并不仅限于上述实例中所包括的四个基站和两个终端的集群业务系统,还可以包含更多的协作小区的基站以及接收传输数据的终端,这里不再赘述。
实施例二
图4为本发明一种基于集群业务的同频组网的方法实施例二流程图,应用于集群业务的UE,所述方法包括:
步骤401:预先设置多个接收集群端口,给每个所述接收集群端口设置一个集群专用调节参考信号。
在集群业务系统中的每个UE上设置多个接收集群端口,给每个接收集群端口设置一个集群专用调节参考信号。UE上所设置的每个接收集群端口是与 基站的一个发射集群端口所匹配的接收集群端口,所匹配的接收集群端口与发射集群端口所设置的集群专用调节参考信号相同。UE的每个接收集群端口只接收与该接收集群端口匹配的发射集群端口发送的传输数据。
在同频组网技术中,多个协作小区的基站的每个发射集群端口向集群业务系统中的多个UE发送传输数据。每个UE的一个接收集群端口会接收到多个基站中匹配的发射集群端口发送的传输数据。
举例说明:相互协作的三个小区的基站分别为基站A,基站B和基站C,以给每个基站设置四个发射集群端口为例进行说明。基站A设置四个发射集群端口A1、A2、A3和A4,给发射集群端口A1设置集群专用调节参考信号R1,给发射集群端口A2设置集群专用调节参考信号R2,给发射集群端口A3设置集群专用调节参考信号R3,给发射集群端口A4设置集群专用调节参考信号R4。基站B设置四个发射集群端口B1、B2、B3和B4,给发射集群端口B1设置集群专用调节参考信号R1,给发射集群端口B2设置集群专用调节参考信号R2,给发射集群端口B3设置集群专用调节参考信号R3,给发射集群端口B4设置集群专用调节参考信号R4。基站C设置四个发射集群端口C1、C2、C3和C4,给发射集群端口C1设置集群专用调节参考信号R1,给发射集群端口C2设置集群专用调节参考信号R2,给发射集群端口C3设置集群专用调节参考信号R3,给发射集群端口C4设置集群专用调节参考信号R4。
集群业务系统中包括两个终端,分别为终端D和终端E,以给每个终端设置四个接收集群端口为例进行说明。终端D设置四个接收集群端口D1、D2、D3和D4,给发射集群端口D1设置集群专用调节参考信号R1,给发射集群端口D2设置集群专用调节参考信号R2,给发射集群端口D3设置集群专用调节参考信号R3,给发射集群端口D4设置集群专用调节参考信号R4。终端E设置四个接收集群端口E1、E2、E3和E4,给发射集群端口E1设置集群专用调节参考信号R1,给发射集群端口E2设置集群专用调节参考信号R2,给发射集群端口E3设置集群专用调节参考信号R3,给发射集群端口E4设置集群专用调节参考信号R4。
则终端D的接接收群端口D1接收基站A中的发射集群端口A1、基站B中的发射集群端口B1,基站C中的发射集群端口C1以及基站D中的发射集群端 口D2发送的传输数据;终端D的接接收群端口D2接收基站A中的发射集群端口A2、基站B中的发射集群端口B2,基站C中的发射集群端口C2以及基站D中的发射集群端口D2发送的传输数据;终端D的接接收群端口D3接收基站A中的发射集群端口A3、基站B中的发射集群端口B3,基站C中的发射集群端口C3以及基站D中的发射集群端口D3发送的传输数据;终端D的接接收群端口D4接收基站A中的发射集群端口A4、基站B中的发射集群端口B4,基站C中的发射集群端口C4以及基站D中的发射集群端口D4发送的传输数据。以此类推,可以得到终端E中的每个接收集群端口所要接收的基站A、基站B、基站C以及基站D的发射集群端口所发送的传输数据,这里不再赘述。
步骤402:每个接收集群端口分别接收集群系统中多个基站的匹配发射集群端口发送的相同的传输数据,所述匹配的发射集群端口是与所述接收集群端口所设置的集群专用调节参考信号相同的发射集群端口。
步骤403:每个接收集群端口分别利用该接收集群端口所设置的集群专用调节参考信号对该接收集群端口所接收到的传输数据进行数据解调,获得每个接收集群端口的编码数据。
步骤404:利用与多端口预编码方法所对应的解码方法对每个接收集群端口的编码数据进行解码,获得多层数据流。
UE的每个接收集群端口分别接收多个基站中匹配的发射集群端口发送的传输数据,并且UE的同一个接收集群端口所接收的不同的基站中匹配的发射集群端口所发送的传输数据都相同,实现同频组网。UE利用该接收集群端口所设置的集群专用调节参考信号进行解调,获得每个接收集群端口的编码数据。UE的接收集群端口所接收到的编码数据是采用多端口预编码方法编码后的数据,有多倍的冗余数据,UE可以利用集群专用调节参考信号解调获得的编码数据的准确率高。
本发明与现有技术的核心区别在于,现有技术中的集群业务系统不能采用Beamforming技术估计下行信道条件,UE所接收到的基站发送的传输数据解调后解码正确率低,在集群业务中无法实现同频组网技术。本发明中,采用多端口预编码方法对多层数据流进行预编码,获得更多的冗余数据,提高UE对所接收到的传输数据的解调的正确率。
UE将每个端口所获得的编码数据利用与多端口预编码方法所对应的解码方法对每个接收集群端口的编码数据进行解码,获得多层数据流。由于集群业务系统中,每个UE接收到的是同频组网系统中多个基站发送的传输数据,因此,使得UE接收基站发送的传输数据的信号增强,将多端口预编码技术与多个发射集群端口发送传输数据的技术结合,在集群业务系统中实现同频组网技术,提高LTE系统的频谱利用率。
本发明采用与所设置的多个发射集群端口所匹配的传输模式,如两端口发射分集传输模式或四端口发射分集模式等。
由上述内容可知,本发明有如下有益效果:
将层映射处理后所得的多层数据流采用多端口预编码方法进行预编码获得每个所述发射集群端口的编码数据,编码数据与原多层数据流相比,增加了数据冗余。将编码数据进行资源映射获得多个集群发射端口的传输数据,将原有每层数据流中的每层数据分成多部分分别发送至UE,也增加了数据冗余。将预编码技术和多个集群发射端口传输技术结合,增加UE所接收到的传输数据的数据冗余,提高UE对传输数据解码的正确性。多个基站采用上述基于集群业务的同频组网的方法向集群业务系统中的多个UE进行相同的数据传输,在集群业务系统中实现同频组网技术,提高LTE系统的频谱利用率。
实施例三
图5为本发明一种基于集群业务的同频组网的基站实施例三结构示意图,实施例三是与实施例一所述的方法所对应的基站,所述基站包括:
处理器501和多个发射集群端口A1~Am,每个所述发射集群端口设置一个集群专用调节参考信号。
其中,m为大于1的自然数。
所述处理器501,用于获取层映射处理后的多层数据流;对所述多层数据流采用预先设置的多端口预编码方法进行预编码,获得每个所述发射集群端口的编码数据,所述多端口预编码方法是与预先设置的多个发射集群端口匹配的 预编码方法;将每个发射集群端口的编码数据和集群专用调解参考信号进行资源映射获得该发射集群端口的传输数据;将每个发射集群端口的传输数据向该发射集群端口发送。
所述每个匹配的接收集群端口为集群系统中同一群组下的多个用户设备UE上与该发送集群端口所设置的集群专用调节参考信号相同的接收集群端口。
在一个具体实施例中,所述处理器501用于将每个发射集群端口的编码数据和专用调解参考信号进行资源映射获得该发射集群端口的传输数据包括:
获取每个发射集群端口的编码数据和所述发射集群端口所设置的集群专用调节参考信号;
将每个所述发射集群端口所设置的集群专用调节参考信号进行资源映射获得该发射集群端口的参考资源块;
将每个所述发射集群端口的编码数据映射至该发射集群端口的参考资源块的空白区域获得该发射集群端口的传输数据,所述参考资源块的空白区域为参考资源块中除了所有发射集群端口的集群专用调节参考信号的映射区域以及小区参考信号的映射区域以外的其他区域。
每个所述发射集群端口,用于接收所述处理器发送的传输数据,将所接收到的传输数据利用该发射集群端口发送至匹配的接收集群端口,所述每个匹配的接收集群端口为集群系统中同一群组下的多个UE上与该发送集群端口所设置的集群专用调节参考信号相同的接收集群端口。
在一个具体的实施例中,所述处理器501用于对所述多层数据流采用预先设置的多端口预编码方法进行预编码包括:
预先设置2个发射集群端口时,对所述多层数据流采用两端口预编码方法进行预编码;
或者,
预先设置4个发射集群端口时,对所述多层数据流采用四端口预编码方法进行预编码。
其中,所述处理器501用于用于对所述多层数据流采用两端口预编码方法 进行预编码包括:
对所述多层数据流采用下述公式进行预编码:
Figure PCTCN2015081956-appb-000007
其中,y(A)(2i)和y(A)(2i+1)为发射集群端口A的编码数据,y(B)(2i)和y(B)(2i+1)为发射集群端口B的编码数据,Re[x(0)(i)]为第0层数据流中第i个数据的实部,Re[x(1)(i)]为第1层数据流中第i个数据的实部,Im[x(0)(i)]为第0层数据流中第i个数据的虚部,Im[x(1)(i)]为第1层数据流中第i个数据的虚部,i=0,1,2L,M-1,j表示复数中的虚部,M表示每层数据流中所含的数据的个数,k=0,1,2L,N-1,N表示数据流的层数。
其中,所述处理器501用于对所述多层数据流采用四端口预编码方法进行预编码包括:
对所述多层数据流采用下述公式进行预编码:
Figure PCTCN2015081956-appb-000008
其中,y(A)(4i)、y(A)(4i+1)、y(A)(4i+2)和y(A)(4i+2)为发射集群端口A的编 码数据,y(B)(4i)、y(B)(4i+1)、y(B)(4i+2)和y(B)(4i+3)为发射集群端口B的编码数据,y(C)(4i)、y(C)(4i+1)、y(C)(4i+2)和y(C)(4i+3)为发射集群端口C的编码数据,y(D)(4i)、y(D)(4i+1)、y(D)(4i+2)和y(D)(4i+3)为发射集群端口D的编码数据,Re[x(0)(i)]为第1层数据流中第i个数据的实部,Re[x(1)(i)]为第2层数据流中第i个数据的实部,Re[x(2)(i)]为第3层数据流中第i个数据的实部,Re[x(3)(i)]为第4层数据流中第i个数据的实部,Im[x(0)(i)]为第1层数据流中第i个数据的虚部,Im[x(1)(i)]为第2层数据流中第i个数据的虚部,Im[x(2)(i)]为第3层数据流中第i个数据的虚部,Im[x(3)(i)]为第3层数据流中第i个数据的虚部,i=0,1,2…,M-1,j表示复数中的虚部,M表示每层数据流中所含的数据的个数,k=0,1,2…,N-1,N表示数据流的层数。
实施例三是与实施例一所述的方法所对应的基站,具体实现方式与实施例一类似,参考实施例一的描述,这里不再赘述。
实施例四
图6为本发明一种基于集群业务的同频组网的终端实施例四结构示意图,实施例四是与实施例二所述的方法所对应的终端,所述终端包括:
多个接收集群端口B1~Bn和处理器601,给每个所述接收集群端口设置一个集群专用调节参考信号。
其中,n为大于1的自然数。
每个所述接收集群端口,用于分别接收集群系统中同一群组下的多个基站中与该接收集群端口匹配的发射集群端口发送的传输数据,将所接收到的传输数据发送至处理器,所述匹配的发射集群端口是与该接收集群端口所设置的集群专用调节参考信号相同的发射集群端口,
所述处理器601,用于接收每个接收集群端口发送的传输数据,分别利用每个集群端口所设置的集群专用调节参考信号对该接收集群端口所接收到的传输数据进行数据解调,获得每个接收集群端口的编码数据;利用与多端口预编码方法所对应的解码方法对每个接收集群端口的编码数据进行解码,获得多层数据流。
实施例四是与实施例二所述的方法所对应的终端,具体实现方式与实施例二类似,参考实施例二的描述,这里不再赘述。
实施例五
图7为本发明一种基于集群业务的同频组网的系统实施例五结构示意图,所述系统包括:
多个实施例三所述的基于集群业务的同频组网的基站K1~Kx与一个用户设备UE组701,所述UE组701由多个实施例四所述的基于集群业务的同频组网的终端组成。其中,x和y均为大于1的自然数。
每个所述基站中设置多个发射集群端口,所述UE组701中的每个所述终端中设置多个接收集群端口,所述基站中的发射集群端口与所述终端中的接收集群端口的个数相同,并且所述基站中的发射集群端口与所述终端中的接收集群端口一一匹配,所匹配的发射集群端口与接收集群端口所设置的集群专用调节参考信号相同。
每个基站中的发射集群端口给所述UE组中所有所述终端中与该发射集群端口匹配的接收集群端口发送相同的传输数据;所述UE组中的每个终端中的接收集群端口分别接收所有基站中与该接收集群端口匹配的发送集群端口发送的相同的传输数据。
此处参考实施例一和实施例二中的描述,这里不再赘述。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (11)

  1. 一种基于集群业务的同频组网的方法,其特征在于,预先设置多个发射集群端口,给每个所述发射集群端口设置一个集群专用调节参考信号,所述方法包括:
    获取层映射处理后的多层数据流;
    对所述多层数据流采用预先设置的多端口预编码方法进行预编码,获得每个所述发射集群端口的编码数据,所述多端口预编码方法是与预先设置的多个发射集群端口匹配的预编码方法;
    将每个发射集群端口的编码数据和集群专用调解参考信号进行资源映射获得该发射集群端口的传输数据;
    将每个发射集群端口的传输数据利用该发射集群端口向匹配的集群端口发送,所述匹配的集群端口为集群系统中同一群组下的多个用户设备UE上与该发送集群端口所设置的集群专用调节参考信号相同的接收集群端口。
  2. 根据权利要求1所述的方法,其特征在于,所述对所述多层数据流采用预先设置的多端口预编码方法进行预编码包括:
    预先设置2个发射集群端口时,对所述多层数据流采用两端口预编码方法进行预编码;
    或者,
    预先设置4个发射集群端口时,对所述多层数据流采用四端口预编码方法进行预编码。
  3. 根据权利要求2所述的方法,其特征在于,所述对所述多层数据流采用两端口预编码方法进行预编码包括:
    对所述多层数据流采用下述公式进行预编码:
    Figure PCTCN2015081956-appb-100001
    其中,y(A)(2i)和y(A)(2i+1)为发射集群端口A的编码数据,y(B)(2i)和 y(B)(2i+1)为发射集群端口B的编码数据,Re[x(0)(i)]为第1层数据流中第i个数据的实部,Re[x(1)(i)]为第2层数据流中第i个数据的实部,Im[x(0)(i)]为第1层数据流中第i个数据的虚部,Im[x(1)(i)]为第2层数据流中第i个数据的虚部,i=0,1,2…,M-1,j表示复数中的虚部,M表示每层数据流中所含的数据的个数,k=0,1,2…,N-1,N表示数据流的层数。
  4. 根据权利要求2所述的方法,其特征在于,所述对所述多层数据流采用四端口预编码方法进行预编码包括:
    对所述多层数据流采用下述公式进行预编码:
    Figure PCTCN2015081956-appb-100002
    其中,y(A)(4i)、y(A)(4i+1)、y(A)(4i+2)和y(A)(4i+2)为发射集群端口A的编码数据,y(B)(4i)、y(B)(4i+1)、y(B)(4i+2)和y(B)(4i+3)为发射集群端口B的编码数据,y(C)(4i)、y(C)(4i+1)、y(C)(4i+2)和y(C)(4i+3)为发射集群端口C的编码数据,y(D)(4i)、y(D)(4i+1)、y(D)(4i+2)和y(D)(4i+3)为发射集群端口D的编码数据,Re[x(0)(i)]为第1层数据流中第i个数据的实部,Re[x(1)(i)]为第2层数据流中第i个数据的实部,Re[x(2)(i)]为第3层数据流中第i个数据的实部,Re[x(3)(i)]为第4层数据流中第i个数据的实部,Im[x(0)(i)]为第1层数据流中第i个数据的虚部,Im[x(1)(i)]为第2层数据流中第i个数据的虚部,Im[x(2)(i)]为第3层数据流中 第i个数据的虚部,Im[x(3)(i)]为第3层数据流中第i个数据的虚部,i=0,1,2…,M-1,j表示复数中的虚部,M表示每层数据流中所含的数据的个数,k=0,1,2…,N-1,N表示数据流的层数。
  5. 一种基于集群业务的同频组网的方法,其特征在于,预先设置多个接收集群端口,给每个所述接收集群端口设置一个集群专用调节参考信号,所述方法包括:
    每个接收集群端口分别接收集群系统中多个基站的匹配发射集群端口发送的相同的传输数据,所述匹配的发射集群端口是与所述接收集群端口所设置的集群专用调节参考信号相同的发射集群端口;
    每个接收集群端口分别利用该接收集群端口所设置的集群专用调节参考信号对该接收集群端口所接收到的传输数据进行数据解调,获得每个接收集群端口的编码数据;
    利用与多端口预编码方法所对应的解码方法对每个接收集群端口的编码数据进行解码,获得多层数据流。
  6. 一种基于集群业务的同频组网的基站,其特征在于,所述基站包括:
    处理器和多个发射集群端口,每个所述发射集群端口设置一个集群专用调节参考信号;
    所述处理器,用于获取层映射处理后的多层数据流;对所述多层数据流采用预先设置的多端口预编码方法进行预编码,获得每个所述发射集群端口的编码数据,所述多端口预编码方法是与预先设置的多个发射集群端口匹配的预编码方法;将每个发射集群端口的编码数据和集群专用调解参考信号进行资源映射获得该发射集群端口的传输数据;将每个发射集群端口的传输数据发送至该发射集群端口;
    每个所述发射集群端口,用于接收所述处理器发送的传输数据,将所接收到的传输数据利用该发射集群端口向匹配的接收集群端口发送,所述每个匹配的接收集群端口为集群系统中同一群组下的多个用户设备UE上与该发送集群端口所设置的集群专用调节参考信号相同的接收集群端口。
  7. 根据权利要求6所述的基站,其特征在于,所述处理器用于对所述多 层数据流采用预先设置的多端口预编码方法进行预编码包括:
    预先设置2个发射集群端口时,对所述多层数据流采用两端口预编码方法进行预编码;
    或者,
    预先设置4个发射集群端口时,对所述多层数据流采用四端口预编码方法进行预编码。
  8. 根据权利要求7所述的基站,其特征在于,所述处理器用于用于对所述多层数据流采用两端口预编码方法进行预编码包括:
    对所述多层数据流采用下述公式进行预编码:
    Figure PCTCN2015081956-appb-100003
    其中,y(A)(2i)和y(A)(2i+1)为发射集群端口A的编码数据,y(B)(2i)和y(B)(2i+1)为发射集群端口B的编码数据,Re[x(0)(i)]为第0层数据流中第i个数据的实部,Re[x(1)(i)]为第1层数据流中第i个数据的实部,Im[x(0)(i)]为第0层数据流中第i个数据的虚部,Im[x(1)(i)]为第1层数据流中第i个数据的虚部,i=0,1,2…,M-1,j表示复数中的虚部,M表示每层数据流中所含的数据的个数,k=0,1,2…,N-1,N表示数据流的层数。
  9. 根据权利要求7所述的基站,其特征在于,所述处理器用于对所述多层数据流采用四端口预编码方法进行预编码包括:
    对所述多层数据流采用下述公式进行预编码:
    Figure PCTCN2015081956-appb-100004
    其中,y(A)(4i)、y(A)(4i+1)、y(A)(4i+2)和y(A)(4i+2)为发射集群端口A的编码数据,y(B)(4i)、y(B)(4i+1)、y(B)(4i+2)和y(B)(4i+3)为发射集群端口B的编码数据,y(C)(4i)、y(C)(4i+1)、y(C)(4i+2)和y(C)(4i+3)为发射集群端口C的编码数据,y(D)(4i)、y(D)(4i+1)、y(D)(4i+2)和y(D)(4i+3)为发射集群端口D的编码数据,Re[x(0)(i)]为第1层数据流中第i个数据的实部,Re[x(1)(i)]为第2层数据流中第i个数据的实部,Re[x(2)(i)]为第3层数据流中第i个数据的实部,Re[x(3)(i)]为第4层数据流中第i个数据的实部,Im[x(0)(i)]为第1层数据流中第i个数据的虚部,Im[x(1)(i)]为第2层数据流中第i个数据的虚部,Im[x(2)(i)]为第3层数据流中第i个数据的虚部,Im[x(3)(i)]为第3层数据流中第i个数据的虚部,i=0,1,2…,M-1,j表示复数中的虚部,M表示每层数据流中所含的数据的个数,k=0,1,2…,N-1,N表示数据流的层数。
  10. 一种基于集群业务的同频组网的终端,其特征在于,所述终端包括:
    多个接收集群端口和处理器,给每个所述接收集群端口设置一个集群专用调节参考信号;
    每个所述接收集群端口,用于分别接收集群系统中多个基站中与该接收集群端口匹配的发射集群端口发送的相同的传输数据,将所接收到的传输数据发 送至处理器,所述匹配的发射集群端口是与该接收集群端口所设置的集群专用调节参考信号相同的发射集群端口,
    所述处理器,用于接收每个接收集群端口发送的传输数据,分别利用每个集群端口所设置的集群专用调节参考信号对该接收集群端口所接收到的传输数据进行数据解调,获得每个接收集群端口的编码数据;利用与多端口预编码方法所对应的解码方法对每个接收集群端口的编码数据进行解码,获得多层数据流。
  11. 一种基于集群业务的同频组网的系统,其特征在于,所述系统包括:
    多个权利要求7-11任意一项所述的基于集群业务的同频组网的基站与一个UE组,所述UE组由多个权利要求12所述的基于集群业务的同频组网的终端组成;
    所述基站中的发射集群端口与所述终端中的接收集群端口的个数相同,并且所述基站中的发射集群端口与所述终端中的接收集群端口一一匹配,所匹配的发射集群端口与接收集群端口所设置的集群专用调节参考信号相同;
    每个基站中的发射集群端口给所述UE组中所有所述终端中与该发射集群端口匹配的接收集群端口发送相同的传输数据;
    所述UE组中的每个终端中的接收集群端口分别接收所有基站中与该接收集群端口匹配的发送集群端口发送的相同的传输数据。
PCT/CN2015/081956 2015-06-19 2015-06-19 基于集群业务的同频组网方法和装置 WO2016201700A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580000295.5A CN106538021B (zh) 2015-06-19 2015-06-19 基于集群业务的同频组网方法和装置
US15/737,734 US10321498B2 (en) 2015-06-19 2015-06-19 Co-frequency networking method and apparatus based on cluster service
PCT/CN2015/081956 WO2016201700A1 (zh) 2015-06-19 2015-06-19 基于集群业务的同频组网方法和装置
DE112015006633.0T DE112015006633T5 (de) 2015-06-19 2015-06-19 Gleichkanal-Netzwerkverfahren und eine Vorrichtung basierend auf einem Trunking-Dienst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/081956 WO2016201700A1 (zh) 2015-06-19 2015-06-19 基于集群业务的同频组网方法和装置

Publications (1)

Publication Number Publication Date
WO2016201700A1 true WO2016201700A1 (zh) 2016-12-22

Family

ID=57544776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/081956 WO2016201700A1 (zh) 2015-06-19 2015-06-19 基于集群业务的同频组网方法和装置

Country Status (4)

Country Link
US (1) US10321498B2 (zh)
CN (1) CN106538021B (zh)
DE (1) DE112015006633T5 (zh)
WO (1) WO2016201700A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103856899A (zh) * 2012-11-30 2014-06-11 北京信威通信技术股份有限公司 一种集群通信中组资源调度方法
CN103873116A (zh) * 2008-11-03 2014-06-18 北电网络有限公司 用于多点协作发送与接收的无线通信集群的方法和系统
CN104683432A (zh) * 2014-11-26 2015-06-03 海能达通信股份有限公司 激活或禁用集群终端的方法及系统、终端和中心设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10142082B1 (en) * 2002-05-14 2018-11-27 Genghiscomm Holdings, LLC Pre-coding in OFDM
CN101626264B (zh) * 2008-07-09 2013-03-20 中兴通讯股份有限公司 一种无线通信系统中实现开环预编码的方法
US8559351B2 (en) * 2008-08-01 2013-10-15 Qualcomm Incorporated Dedicated reference signal design for network MIMO
US20100195748A1 (en) * 2009-02-02 2010-08-05 Samsung Electronics Co., Ltd. Method and system for reference signal pattern design in resource blocks
WO2010120140A2 (ko) * 2009-04-15 2010-10-21 엘지전자 주식회사 참조 신호를 전송하는 방법 및 장치
US9432164B2 (en) * 2009-10-15 2016-08-30 Qualcomm Incorporated Method and apparatus for reference signal sequence mapping in wireless communication
WO2012109542A1 (en) * 2011-02-11 2012-08-16 Interdigital Patent Holdings, Inc Systems and methods for an enhanced control channel
KR101880990B1 (ko) * 2011-11-16 2018-08-24 삼성전자주식회사 다중 안테나 통신 시스템에서 신호 송수신 방법 및 장치
CN103312389B (zh) * 2012-03-06 2016-05-25 华为技术有限公司 一种多用户干扰抑制方法、终端及基站
EP2823577A1 (en) * 2012-03-06 2015-01-14 Telefonaktiebolaget L M Ericsson (publ) Data transmission in a multiple antenna system
CN103796176A (zh) * 2012-10-31 2014-05-14 中兴通讯股份有限公司 集群业务实现方法、系统及网元
US9425946B2 (en) * 2013-02-21 2016-08-23 Blackberry Limited Interference measurement methods for advanced receiver in LTE/LTE-A
US9479298B2 (en) * 2013-07-08 2016-10-25 Intel IP Corporation Demodulation reference signals (DMRS)for side information for interference cancellation
WO2018174641A2 (en) * 2017-03-23 2018-09-27 Samsung Electronics Co., Ltd. Method and apparatus for transmitting data in wireless communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103873116A (zh) * 2008-11-03 2014-06-18 北电网络有限公司 用于多点协作发送与接收的无线通信集群的方法和系统
CN103856899A (zh) * 2012-11-30 2014-06-11 北京信威通信技术股份有限公司 一种集群通信中组资源调度方法
CN104683432A (zh) * 2014-11-26 2015-06-03 海能达通信股份有限公司 激活或禁用集群终端的方法及系统、终端和中心设备

Also Published As

Publication number Publication date
DE112015006633T5 (de) 2018-03-08
CN106538021B (zh) 2019-10-29
US20180270881A1 (en) 2018-09-20
US10321498B2 (en) 2019-06-11
CN106538021A (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
CN110574304B (zh) 用于高级无线通信系统中的高级别csi报告的方法和装置
CN105934910B (zh) 叠加编码的资源分配方法及其基站
US9929838B2 (en) Method and system for mapping pilot signals in multi-stream transmissions
RU2638524C2 (ru) Способ сигнализации конкретных типов элементов ресурсов в системе беспроводной связи
CN105359607B (zh) 消除相邻小区数据传输的方法及用户设备
US9094167B2 (en) System and method for multi-user and multi-cell MIMO transmissions
CN108934190B (zh) 传输预编码方法及其用户设备
US10205621B2 (en) Differential signal mapping for cell-edge and cell-center user equipments
US9166729B2 (en) Enhanced demodulation reference signal (DM-RS) design
CN107733511B (zh) 数据的传输方法及装置
US9020056B2 (en) Transmission scheme for multiple-input communication
EP2915265A1 (en) Configuration of rate matching and interference measurement resources for coordinated multi-point transmission
US10375689B2 (en) Control channel architecture with control information distributed over multiple subframes on different carriers
WO2016065921A1 (zh) 多用户信息传输的叠加、解调方法及装置
EP2522099A2 (en) Signaling of dedicated reference signal (drs) precoding granularity
CN102231661B (zh) 一种信息传输方法、系统及装置
CN104980197A (zh) 一种实现透明多用户多输入多输出传输的方法及装置
KR20040094487A (ko) 다중 안테나를 사용하는 직교주파수분할다중 시스템에서채널 추정 장치 및 방법
EP2882205A1 (en) Control information processing method and device
Mashhadi et al. CNN-based analog CSI feedback in FDD MIMO-OFDM systems
WO2017174018A1 (zh) 多传输点数据传输的方法及装置
CN102075294B (zh) 一种协作预编码方法及系统
CN104010199B (zh) 基于组解码技术的信号叠加复用视频传输方法
KR20130020487A (ko) 제어 정보 전송 방법 및 장치와 이를 이용한 데이터 수신 방법 및 장치
WO2016201700A1 (zh) 基于集群业务的同频组网方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15895273

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015006633

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 15737734

Country of ref document: US

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/06/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15895273

Country of ref document: EP

Kind code of ref document: A1