WO2016201536A1 - Biotransformation method for transforming phenolic compounds from soy extract into equol and bioactive isoflavones by fermentation and/or enzymatic application, thus obtained composition and use - Google Patents

Biotransformation method for transforming phenolic compounds from soy extract into equol and bioactive isoflavones by fermentation and/or enzymatic application, thus obtained composition and use Download PDF

Info

Publication number
WO2016201536A1
WO2016201536A1 PCT/BR2016/000024 BR2016000024W WO2016201536A1 WO 2016201536 A1 WO2016201536 A1 WO 2016201536A1 BR 2016000024 W BR2016000024 W BR 2016000024W WO 2016201536 A1 WO2016201536 A1 WO 2016201536A1
Authority
WO
WIPO (PCT)
Prior art keywords
minutes
ehs
biotransformation
process according
equol
Prior art date
Application number
PCT/BR2016/000024
Other languages
French (fr)
Portuguese (pt)
Inventor
Gabriela Alves MACEDO
Juliana Alves MACEDO
Lívia Dias DE QUEIRÓS
Original Assignee
Universidade Estadual De Campinas - Unicamp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade Estadual De Campinas - Unicamp filed Critical Universidade Estadual De Campinas - Unicamp
Publication of WO2016201536A1 publication Critical patent/WO2016201536A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9783Angiosperms [Magnoliophyta]
    • A61K8/9789Magnoliopsida [dicotyledons]
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING OR TREATMENT THEREOF
    • A23C11/00Milk substitutes, e.g. coffee whitener compositions
    • A23C11/02Milk substitutes, e.g. coffee whitener compositions containing at least one non-milk component as source of fats or proteins
    • A23C11/10Milk substitutes, e.g. coffee whitener compositions containing at least one non-milk component as source of fats or proteins containing or not lactose but no other milk components as source of fats, carbohydrates or proteins
    • A23C11/103Milk substitutes, e.g. coffee whitener compositions containing at least one non-milk component as source of fats or proteins containing or not lactose but no other milk components as source of fats, carbohydrates or proteins containing only proteins from pulses, oilseeds or nuts, e.g. nut milk
    • A23C11/106Addition of, or treatment with, microorganisms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
    • A23L11/00Pulses, i.e. fruits of leguminous plants, for production of food; Products from legumes; Preparation or treatment thereof
    • A23L11/50Fermented pulses or legumes; Fermentation of pulses or legumes based on the addition of microorganisms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
    • A23L11/00Pulses, i.e. fruits of leguminous plants, for production of food; Products from legumes; Preparation or treatment thereof
    • A23L11/60Drinks from legumes, e.g. lupine drinks
    • A23L11/65Soy drinks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/48Fabaceae or Leguminosae (Pea or Legume family); Caesalpiniaceae; Mimosaceae; Papilionaceae
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/06Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/02Oxygen as only ring hetero atoms
    • C12P17/06Oxygen as only ring hetero atoms containing a six-membered hetero ring, e.g. fluorescein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P39/00Processes involving microorganisms of different genera in the same process, simultaneously
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/225Lactobacillus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/225Lactobacillus
    • C12R2001/23Lactobacillus acidophilus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/46Streptococcus ; Enterococcus; Lactococcus

Definitions

  • the present invention relates to a process of biotransformation of water soluble soybean extract phenolic compounds into high yield, high yield bioactive isoflavones; composition thus obtained and use.
  • the present process has application in the biotechnology area, mainly for the food industry, as food ingredient, and industry of nutricosmetics and dietary supplements.
  • the main application of the present invention is the biotransformation of water soluble soybean extract (EHS) phenolic compounds to obtain product rich in bioactive compounds.
  • EHS water soluble soybean extract
  • the purpose is to increase the content of bioactive isoflavones (agiicones) and to produce equol in soybean extract through the application of starter cultures and probiotic lactic bacteria in the fermentation of EHS, allied to the action of crude tanase extract obtained from Paecilomyces variotti.
  • the present invention provides a composition in the form of a food ingredient which contains high bioavailable bioactive isoflavones and equol content.
  • US8765445B2 relates to a process employing Lactobacillus strains in the process for producing product for direct consumption, it is noted that this process is already in the commercial phase.
  • WO2012033150 relates to the production of equol by fermentation in complex fermentation medium with addition of daizein in kinda gaseous.
  • the process uses the Streptococcus strain. This document teaches that the use of hydrogen in fermentation increases equol production.
  • the process according to this document is suitable for industrial production, obtaining high yield of isoflavones.
  • US20120094336 describes the production of equol without racemic mixing by chemical synthesis. Describes synthesis by specific chemical catalysts for the production of the preferred type S isomer.
  • US201 10189134 describes the production of a fermented soy milk-based beverage, with the addition of live Lactobacillus to produce equol during the shelf life of the product.
  • the process according to the teachings of this document is already on an industrial scale. It is also noted that the addition of ascorbic acid to maintain production is described.
  • JP201 1083273 describes a process for producing soy isoflavones and equol by fermentation using Lactoccoccus isolated from the Japanese ekuoru product.
  • the process according to this document uses lactic acid bacteria (Lactococcus garviaes).
  • US2013231291 describes the production of isoflavone extract, equol and lunasil peptide by fermentation using isolated lactic acid bacteria. The process according to this document focuses on the use in cosmetics.
  • Patent document CN102021 130 describes the use of Clostridium bifermentans zx-7 for the production of equol by fermentation.
  • Patent document TW20071221 1 discloses the production of equol with a collection of intestinal flora microorganisms found in the human intestinal flora.
  • Patent document CN104031875 discloses the production of equol by genetically modified bacteria from Lactococcus.
  • the enzyme according to the present invention was extracted from GRAS fungus, which can be used in food.
  • the present invention has been the development of in vitro biotechnological processes capable of biotransforming isoflavones into their bioactive forms and increasing the water soluble soybean extract equol content by fermentation of this substrate by priming bacteria and probiotic lactic acid bacteria and application of the same.
  • tanase enzyme obtained from Paecilomyces variotti; composition thus obtained and use in the food industry as a food ingredient and in the nutricosmetics and dietary supplements industry.
  • Soy products are a way to include bioactive substances such as isoflavones in the diet, and water soluble soy extract (EHS) is a substrate that has been shown to have potential for the production of novel foods with healthy appeal.
  • EHS water soluble soy extract
  • the process was developed. described in this document. It was investigated the application of probiotic starter cultures and lactic acid bacteria in the fermentation of the EHS, allied to the action of the crude tanase enzyme extract obtained from the fungus Paecilomyces var ⁇ otti. In addition, the biotransformation of phenolic compounds and antioxidant activity of the obtained product was also evaluated.
  • Total phenol content was evaluated by Folin-Ciocalteau reagent-based methodology, antioxidant activity by in vitro ORAC and DPPH radical sequestration methods and specificity of semipurified tanase extract against commercial isfolavone standards as well as how changes in the phenolic profile of water soluble soybean extract were evaluated by HPLC-DAD. After the fermentative process and / or enzymatic treatment of soybean water soluble extract, there was a significant increase in the total phenolic content and antioxidant capacity, by both tested methods (ORAC and DPPH), when compared with the EHS control without reaction.
  • Figure 1 shows HPLC-DAD chromatograms of the reaction of the glycosylated isoflavone (A) daidzine and (B) genistin standards with Paecilomyces variotii tannase semipurified extract at 40 s C for 30 minutes.
  • Figure 2 shows HPLC-DAD chromatograms of (A) standard EHS, (B) fermented EHS, ⁇ C ⁇ fermented EHS reacted with 1.8 U tannase and (D) standard EHS reacted with 1.8 U tannase at 40 ° C for 30 minutes.
  • the present invention relates to the process of biotransforming phenolic compounds from soluble soybean extract to obtain equol rich product and bioactive isoflavones by fermentation with starter bacteria and probiotic lactic acid bacteria and application of the tanase enzyme; composition thus obtained and use.
  • the process can utilize biotransformation forms which comprise applying strains of starter bacteria and probiotic lactic acid bacteria and / or reacting with the Paecilomyces variotti tannase enzyme in soybean water soluble.
  • the process comprises the following steps:
  • Process 1 Fermentative Biotransformation: Starter Bacteria Streptococcus ssp. Thermophilus (YF-L81 1) and Lactobacillus delbruecki ssp. Bulgaricus (LB-340) and Lactic Acid Bacteria probiotic Bifidobacterium animales ssp. Laciis (Bb-12) and Lactobacillus acidophillus (LA-05);
  • ii Incubate the cultures with EHS obtained in (i) from 30 to S 40 C, preferably at 37 5 C for 10 to 24 hours, preferably 12 hours, under anaerobic conditions; iii. Inoculate in a solution obtained from (ii) with 1 to 5 U tanase, preferably 1.8 U tanase, per ml fermented EHS (ii);
  • EHS inoculum obtained in (I) with 1 to 5 U tanase, preferably 1.8 U tanase, per 1 ml EHS (I); ii. Incubate the solution (i) from 35 to 45 DEG C, preferably 40 Q C for 20 to 50 minutes, preferably 30 minutes; and
  • compositions obtained from the described process comprise the characteristics according to the type of biotransformation according to table 1 below and have application in the food industry, as a food ingredient, and the nutricosmetics and dietary supplements industry.
  • Water-soluble soy extract was prepared according to the methodology described by Mandarino and Carr ⁇ o-Panizzi (1999). We used soybeans (Glyc ⁇ ne max) from "Natu's” brand.
  • the enzyme tanase (E.C: 3.1.1.20), obtained from the microorganism Paecilomyces variotii, as described by Battestin and Macedo (2007a), was used in this study.
  • This process can be represented by the following steps:
  • the enzymatic activity measurement of the semipuritized tanase extract was performed according to the methodology proposed by Battestin & Macedo (2007b).
  • the substrate consisted of a 0.7% (w / v) tannic acid solution (Sigma-Aldrich, Steinheim, Germany) in acetate buffer (0.2 M, pH 5.5). To perform the reaction, the following steps were followed:
  • One unit of tanase activity was defined as the amount of hydrolyzed tannic acid per 1 mL enzyme per minute reaction.
  • Lyophilized commercial cultures (Christian Hansen Lab. Ind. And Com. Ltda.) Of starter cultures Streptococcus ssp. Thermophilus (YF-L811) and Lactobacillus delbrueckii ssp. Bulgaricus (LB-340) and probiotic lactic acid bacteria Bifidobacterium animales ssp. Lactis (Bb-12) and Lactobacillus acidophillus (LA-05). All cultures were lyophilized reactivated individually in sterile water extract of soybeans 9 to 37 C for 12 hours under anaerobic conditions using an anaerobic jar.
  • Starter cultures were inoculated at a concentration of 1% (v / v) and probiotic lactic acid bacteria at a concentration of 5% (v / v), ensuring a minimum count of 10 6 - 10 7 log CFU / mL (Cruz et al ., 2013).
  • Fermented EHS samples were evaluated for chemical profile (total phenol content and HPLC) and antioxidant capacity (ORAC and DPPH).
  • Biotransformed EHS samples were evaluated for chemical profile (total phenol content and HPLC) and antioxidant capacity (ORAC and DPPH).
  • Unfermented EHS (1 mL) was inoculated with 1.8 U tanase at 40 ° C for 30 minutes. The hydrolysis process was stopped in an ice bath for 15 minutes. Biotransformed EHS samples were evaluated for chemical profile (total phenol content and HPLC) and antioxidant capacity (ORAC and DPPH).
  • the total phenolic content in the samples was determined with the Folin-Ciocalteu reagent (Contemporary Chemical Dynamics, Brazil) according to the method of Chandler and Doods (1983), with some modifications.
  • Total phenolic concentrations were determined by comparing the absorbance of the samples with a calibration curve using catechin as standard. Results were expressed in g catechin per ml sample.
  • Glycosidic isoflavones (daidzine and genistine), aglycones (daidzein and genistein) and equol were identified and quantified in all samples by HPLC-DAD.
  • the chromatographic conditions used were previously described by Park et al. (2001).
  • the equipment used was Dionex Ulitmate 3000 (Germany) equipped with a Atlantis® C18 column (Waters, 5 ⁇ , 4.6 x 150 mm) maintained at 30 C. 9 Detection was performed using a UV diode array detector / VIS (DAD-3000).
  • the mobile phases consisted of deionized water (solvent A) and methanol (solvent B).
  • the elution gradient was as follows: 20% B (0-15 min), 20-80% B (15-75min), 80-100% B (75-80min), 100-20% B (80-90 min) ) and 20% B (90-95 min) with a flow rate of 0.5 mL / min.
  • the sample injection volume was 20 ⁇ _ and all samples were analyzed in triplicate. The spectra were obtained between 190 and 480 nm and the chromatograms processed at 254 nm.
  • Isoflavonoids were individually identified by comparing their retention times and the spectrum of their patterns: daidzine, genistine, daidzein, genistein and equol. Individual quantification of isfolavonoids was performed by integrating peak areas using calibration curves that were established within the concentration range of 0.01 -1.0 mg / mL of the isoflavones and equol standards. Results were expressed as of each phenolic compound per mL of sample.
  • Biotransformed soybean extract polyphenols antioxidant activity
  • Oxygen radical absorption capacity (ORAC)
  • the determination of antioxidant capacity by the ORAC method was performed according to the methodology described by Macedo et al. (201 L), using fluorescein (FL) as a flag.
  • the automated ORAC test was performed on a Fluostar Optimal Microplate Reader (Fluostar Optima - Labtech BMG, Germany) with fluorescence filters for an excitation wavelength of 485 nm and emission of 520 nm. Measurements were performed on Costar® opaque black plates (Corning Costar Corporation, Cambridge, USA) with 96 wells.
  • ORAC values were defined as the difference between the area under the FL and blank decay curve (net AUC). Regression equations between net AUC and antioxidant concentration were calculated for all samples. A tanase control was performed as a regular sample, and the obtained ORAC value was subtracted from the samples treated with this enzyme. ORAC-FL values were expressed in pmol equivalent of Trolox / L soybean extract.
  • the antioxidant activity potential of fermented and unfermented water-soluble soybean extract was also assessed by stable free radical sequestration activity 1,1-diphenyl-2-picrylhydrazyl (DPPH), as described by Macedo et al. (201 l).
  • DPPH stable free radical sequestration activity 1,1-diphenyl-2-picrylhydrazyl
  • Results were expressed as arithmetic means and standard deviations. Statistical significance of differences between groups was analyzed by Tukey test. Differences were considered significant when p ⁇ 0.05.
  • Process 3 showed the largest increase in total phenolic content (101-847 Mg catechin / mL), an increase of about 8.4-fold after the reaction of EHS with the enzyme tanase.
  • Soybeans and soy-based products are nutritionally rich foods and have various phytochemicals (isoflavones, phytosterols, saponins, phenolic acids, phytic acid and trypsin inhibitors) that have functional, antioxidant and free radical scavenging properties ( Wardhani, Vázquez, and Pandiellaa, 2010). Soybean phenolic compounds have free radical scavenging activity (Shon et al., 2007), which may explain the correspondence between the increase in total phenolic content with antioxidant activity shown in table 2.
  • the results of the present invention indicate a trend towards increased total phenolic content after the three proposed bioprocesses. This trend was similar to that observed for antioxidant activity by both the ORAC and DPPH methods, supporting the results obtained by the microbial and enzymatic biotransformation of the EHS.
  • glycosidic isoflavones were the predominant forms in standard and fermented EHS.
  • concentrations of fermented EHS genistin and daidzine glycosides (process I) decreased by about 1, 6 and 2 times, respectively, and the daidzein and genistein algicones increased by 3.5 and 5 times, respectively, when compared with standard EHS. Therefore, these results suggest that glycosylated isoflavones were transformed into aglycone forms as a result of the fermentation process. According to Duenas et al. (2012), This may be due to the ⁇ -glycosidase activity inherent in the microorganisms used in the fermentation process.
  • glycosidic forms (daidzine and genistine) were not identified, showing that these forms were converted to their respective aglycone forms, as shown by a significant increase in levels. of daidzein and genistein after these bioprocesses.
  • Concentrations of the fermented EHS aglycone forms after process II increased significantly about 28-fold (25.6 - 717.2 mg / mL) for daidzein and 25-fold (10.2-251.4 mg). / mL) for genistein compared to standard EHS.
  • the aglycone forms increased significantly, compared to standard EHS, by 37-fold (25.6 - 944.5 mg / mL) for daidzein and 32-fold (10.2 - 321.6 mg / mL) for daidzein. the genistein.
  • Isoflavones aglycones have been reported to exhibit greater bioactive function than glycosidic forms (Cederroth, and Nef, 2009; Setchell, 1998). Therefore, aglycones are primarily responsible for the antioxidant activity of soy-based foods, although other soy components such as phenolic compounds may also contribute to antioxidant capacity to some extent (Cheng, Lin, and Liu, 201 1).
  • FIG. 1 shows the chromatograms obtained after 30 minutes of feed at 40 ° C, in which commercial standards of daidzine (A) and genistein (B) were reacted with P. variotti tannase semipurified extract. also retention times and absorption spectra of reaction products are shown.
  • Figure 2 shows the chromatographic profile of the general composition of standard EHS (A) and lactic acid bacteria fermented EHS (B) as well as fermented EHS (C) and unfermented EHS (D) polyphenols. treated with 1.8 U of semi-purified tannase extract.
  • A standard EHS
  • B lactic acid bacteria fermented EHS
  • C fermented EHS
  • D unfermented EHS
  • Isoflavone-rich soy protein isolate attenuates bone loss in the lumbar spine of perimenopausal women, American Journal of Clinical Nutrition, 72 (3), 844-852.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Botany (AREA)
  • Food Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Polymers & Plastics (AREA)
  • Agronomy & Crop Science (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Nutrition Science (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Birds (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The present invention relates to a biotransformation method for transforming phenolic compounds from soy milk into bioactive isoflavones and equol, with a high yield and production volume, for use in the biotechnological field, mainly in the food industry. The invention allows the glycosylated forms of isoflavones (daidzin and genistin) to be biotransformed into the respective aglycone forms (daldzein and genistein) by fermentation of soy milk with initiator cultures and probiotic lactic bacteria, and/or by treatment of the extract with the enzyme tanase from Paecilomyces variotti. In one of the embodiments, the present invention relates to an in vitro method for producing bioactive equol in the absence of intestinal bacteria, using only enzymatic biotransformation.

Description

"PROCESSO DE BIOTRANSFORMAÇÃO DE COMPOSTOS FENÓLICOS DO EXTRATO DE SOJA EM EQUOL E ISOFLAVONAS BIOATIVAS ATRAVÉS DE FERMENTAÇÃO E/OU APLICAÇÃO ENZIMÁTICA,  "BIO-TRANSFORMATION PROCESS OF PHENOLIC COMPOUNDS FROM EQUOL SOY EXTRACT AND BIOACTIVE ISOFLAVONES THROUGH FERMENTATION AND / OR ENZYMATIC APPLICATION,
COMPOSIÇÃO ASSIM OBTIDO E USO"  SO COMPOSITION OBTAINED AND USE "
CAMPO DA INVENÇÃO FIELD OF INVENTION
[001] A presente invenção refere-se a um processo de biotransformação de compostos fenólicos de extrato hidrossolúvel de soja em isoflavonas bioativas e equol com alto rendimento e alta produção; composição assim obtido e uso.  [001] The present invention relates to a process of biotransformation of water soluble soybean extract phenolic compounds into high yield, high yield bioactive isoflavones; composition thus obtained and use.
[002] O presente processo tem aplicação na área biotecnológica, principalmente para a indústria alimentícia, como ingrediente alimentar, e indústria de nutrícosméticos e suplementos dietéticos. [002] The present process has application in the biotechnology area, mainly for the food industry, as food ingredient, and industry of nutricosmetics and dietary supplements.
FUNDAMENTOS DA INVENÇÃO BACKGROUND OF THE INVENTION
[003] A principal aplicação da presente invenção consiste na biotransformação de compostos fenólicos de extrato hidrossolúvel de soja (EHS) para obtenção de produto rico em compostos bioativos. O propósito é aumentar o conteúdo de isoflavonas bioativas (agiiconas) e produzir equol em extrato de soja através da aplicação de culturas iniciadoras e bactérias lácticas probióticas na fermentação do EHS, aliado à ação do extrato bruto de tanase obtido a partir de Paecilomyces variotti.  [003] The main application of the present invention is the biotransformation of water soluble soybean extract (EHS) phenolic compounds to obtain product rich in bioactive compounds. The purpose is to increase the content of bioactive isoflavones (agiicones) and to produce equol in soybean extract through the application of starter cultures and probiotic lactic bacteria in the fermentation of EHS, allied to the action of crude tanase extract obtained from Paecilomyces variotti.
[004] A presente invenção proporciona uma composição sob a forma de um ingrediente alimentício, o qual contém alto teor de isoflavonas bioativas e equol biodisponíveis.  The present invention provides a composition in the form of a food ingredient which contains high bioavailable bioactive isoflavones and equol content.
[005] Outro possível uso é o da bioatividade do extrato hidrossolúvel de soja antes e após biotransformação com o extrato semipurificado de tanase de P. varíotii para modelos anti-inflamatórios e de quimioprevénção.  Another possible use is the bioactivity of water-soluble soybean extract before and after biotransformation with P. variotii semisified tanase extract for anti-inflammatory and chemoprevention models.
[006] Além disso, também é interessante a atuação do extrato semipurificado de tanase de P. varíotii em outras classes de flavonoides glicosilados em alimentos com grande quantidade de flavonoides na forma glisocilada.  [006] In addition, the role of P. variotii tanase semipurified extract in other classes of glycosylated flavonoids in foods with large amounts of flavonoids in glycated form is also interesting.
[007] O documento de patente US8765445B2 refere-se a um processo empregando cepas de Lactobacillus no processo para produção de produto para consumo direto, ressaltando-se que este processo já se encontra em fase comerciai.  US8765445B2 relates to a process employing Lactobacillus strains in the process for producing product for direct consumption, it is noted that this process is already in the commercial phase.
[008] O documento de patente WO2012033150 refere-se à produção de equol por fermentação em meio de fermentação complexo com adição de daizeina em meio gasoso. O processo usa a cepa de Streptococcus. Este documento ensina que o uso de hidrogénio na fermentação aumenta a produção de equol. O processo de acordo com este documento é adequado para produção industrial, obtendo-se alto rendimento de isoflavonas. WO2012033150 relates to the production of equol by fermentation in complex fermentation medium with addition of daizein in kinda gaseous. The process uses the Streptococcus strain. This document teaches that the use of hydrogen in fermentation increases equol production. The process according to this document is suitable for industrial production, obtaining high yield of isoflavones.
[009] O documento de patente US20120094336 descreve a produção de equol sem mistura racêmica, por síntese química. Descreve a síntese por catalisadores químicos específicos para produção do isômero preferencial de tipo S.  US20120094336 describes the production of equol without racemic mixing by chemical synthesis. Describes synthesis by specific chemical catalysts for the production of the preferred type S isomer.
[0010] O documento de patente US201 10189134 descreve a produção de uma bebida fermentada à base de leite de soja, com adição de Lactobacillus vivos para produzir equol durante o tempo de prateleira (shelf life) do produto. O processo de acordo com os ensinamentos deste documento já se encontra em escala industrial. Destaca-se, ainda, que a adição de ácido ascórbico para a manutenção da produção é descrita. US201 10189134 describes the production of a fermented soy milk-based beverage, with the addition of live Lactobacillus to produce equol during the shelf life of the product. The process according to the teachings of this document is already on an industrial scale. It is also noted that the addition of ascorbic acid to maintain production is described.
[001 1] O documento de patente JP201 1083273 descreve um processo de produção de isoflavonas de soja e equol por fermentação utilizando Lactoccoccus isolados do produto japonês ekuoru. O processo de acordo com este documento se vale do uso de bactérias lácticas (Lactococcus garviaes).  JP201 1083273 describes a process for producing soy isoflavones and equol by fermentation using Lactoccoccus isolated from the Japanese ekuoru product. The process according to this document uses lactic acid bacteria (Lactococcus garviaes).
[0012] O documento de patente US2013231291 descreve a produção de extrato de isoflavonas, equol e lunasil peptideo por fermentação utilizando bactérias lácticas isoladas. O processo de acordo com este documento tem como foco o uso em cosméticos. US2013231291 describes the production of isoflavone extract, equol and lunasil peptide by fermentation using isolated lactic acid bacteria. The process according to this document focuses on the use in cosmetics.
[0013] O documento de patente CN102021 130 descreve o uso de Clostrídium bifermentans zx-7 para a produção de equol por fermentação.  Patent document CN102021 130 describes the use of Clostridium bifermentans zx-7 for the production of equol by fermentation.
[0014] O documento de patente TW20071221 1 revela a produção de equol com uma coleção de microorganismos da flora intestinal encontrados na flora intestinal humana. Patent document TW20071221 1 discloses the production of equol with a collection of intestinal flora microorganisms found in the human intestinal flora.
[0015] O documento de patente CN104031875 traz a produção de equol por bactéria modificada geneticamente a partir de Lactococcus.  Patent document CN104031875 discloses the production of equol by genetically modified bacteria from Lactococcus.
[0016] Ressalta-se que os processos descritos no estado da técnica são, em majoritariamente baseados em processos fermentativos, utilizando cepas de Lactobacillus (bactérias entéricas) diferentes, isoladas ou em grupos. Alguns dos documentos fazem a fermentação com os meios de cultivo sintéticos, adicionando o precursor de equol daizeina, outros formulam o meio de cultivo com leite de soja, estratégia também utilizada na presente invenção. [0017] Já a presente invenção se vale de processos distintos que são diferentes dos anteriormente descritos no estado da técnica. Um deles utiliza uma mistura de Lactobacillus (estratégia também utilizada no estado da técnica), com o diferencial de utilizar uma enzima isolada de fungo à tanase, um efeito técnico novo e inventivo. It is noteworthy that the processes described in the prior art are mostly based on fermentative processes using different strains of Lactobacillus (enteric bacteria), isolated or in groups. Some of the documents ferment with synthetic culture media by adding the equol daizein precursor, others formulate the soy milk culture medium, a strategy also used in the present invention. Already the present invention uses different processes which are different from those previously described in the prior art. One uses a mixture of Lactobacillus (a strategy also used in the state of the art), with the advantage of using an isolated fungal enzyme to tanase, a new and inventive technical effect.
[0018] Em um dos processos de acordo com a presente invenção utiliza-se somente um tratamento enzimático, outro efeito técnico novo e inventivo. Destaca-se que o preparado enzimático de acordo com a presente invenção (de fungo, outro efeito aspecto inovador) não é purificado e possui tanto enzimas conhecidas quanto ainda desconhecidas. Este é um processo novo, não tendo sido encontrado qualquer relato ou sugestão neste sentido no estado da técnica.  In one of the processes according to the present invention only one enzymatic treatment is used, another new and inventive technical effect. It is noteworthy that the enzyme preparation according to the present invention (fungus, other novel aspect effect) is not purified and has both known and unknown enzymes. This is a new process and no such report or suggestion has been found in the prior art.
[0019] A enzima de acordo com a presente invenção foi extraída de fungo GRAS, que pode ser usado em alimentos. The enzyme according to the present invention was extracted from GRAS fungus, which can be used in food.
BREVE DESCRIÇÃO DA INVENÇÃO BRIEF DESCRIPTION OF THE INVENTION
[0020] O presente invento consistiu no desenvolvimento de processos biotecnológicos in vitro capazes de biotransformar as isoflavonas em suas formas bioativas e aumentar o teor de equol em extrato hidrossolúvel de soja através da fermentação deste substrato por bactérias iniciadoras e bactérias ácido lácticas probióticas e aplicação da enzima tanase, obtida a partir de Paecilomyces variotti; composição assim obtido e uso na indústria alimentícia, como ingrediente alimentar, e indústria de nutricosméticos e suplementos dietéticos.  [0020] The present invention has been the development of in vitro biotechnological processes capable of biotransforming isoflavones into their bioactive forms and increasing the water soluble soybean extract equol content by fermentation of this substrate by priming bacteria and probiotic lactic acid bacteria and application of the same. tanase enzyme, obtained from Paecilomyces variotti; composition thus obtained and use in the food industry as a food ingredient and in the nutricosmetics and dietary supplements industry.
[0021] Após os processos de biotransformação, obteve-se um ingrediente alimentar derivado de soja que apresentou grande teor de isoflavonas bioativas e equol, demonstrando, assim, que os processos biotecnológicos desenvolvidos consistiram em estratégias eficientes para melhorar o potencial bioativo do extrato de soja e demonstraram um potencial de aplicação do equol como agente nutracêutico para populações não produtoras deste isoflavonoide.  Following biotransformation processes, a soybean-derived food ingredient was obtained which had a high content of bioactive isoflavones and equol, thus demonstrating that the biotechnological processes developed consisted of efficient strategies to improve the bioactive potential of soybean extract. and demonstrated a potential of equol application as a nutraceutical agent for non-isoflavonoid producing populations.
[0022] Produtos à base de soja são uma forma de incluir substâncias bioativas como as isoflavonas na dieta, sendo que o extrato hidrossolúvel de soja (EHS) é um substrato que tem se apresentado com potencial para produção de novos alimentos com apelo saudável. Desse modo, com o propósito de aumentar o conteúdo de isoflavonas bioativas e avaliar a viabilidade de um processo biotecnológico para produção de equol in vitro, foi desenvolvido o processo descrito neste documento. Foi investigada a aplicação de culturas iniciadoras e bactérias lácticas probióticas na fermentação do EHS, aliado à ação do extraio bruto de enzima tanase obtido a partir do fungo Paecilomyces varíotti. Além disso, também foi avaliada a biotransformação dos compostos fenólicos e atividade antioxidante do produto obtido. O teor de fenóis totais foi avaliado por metodologia baseada na reação com o reagente de Folin-Ciocalteau, a atividade antioxidante pelos métodos in vitro ORAC e de sequestro de radicais DPPH e a especificidade do extrato semipurificado de tanase frente aos padrões comerciais de isfolavonas, bem como as alterações no perfil fenólico do extrato hídrossolúvel de soja foram avaliadas por CLAE-DAD. Após o processo fermentativo e/ou tratamento enzimático do extrato hídrossolúvel de soja, houve um significativo aumento no teor de fenólicos totais e capacidade antioxidante, por ambos métodos testados (ORAC e DPPH), quando comparados com o controle de EHS sem reação. Além disso, foi verificada uma modificação no perfil polifenólico das amostras de EHS biotransformadas obtido por CLAE-DAD, resultando em um aumento na concentração das formas agliconas em relação às glicosiladas, bem como o aumento da concentração de equol após os processos de biotransformação propostos. Os resultados obtidos, indicam que o extrato de tanase de P. variotty foi capaz de biotransformar as formas glicosiladas (daidzina e genistina) das ísoflavonas em suas respectivas formas agliconas (daidzeína e genisteína). Pelo que se tem conhecimento, a hidrólise de isoflavonóides glicosilados por tanase, bem como a formação de equol, é um relato inédito na literatura demonstrando que é possível desenvolver um processo in vitro para a obtenção deste composto bioativo, sem a presença de bactérias intestinais, utilizando apenas uma biotransformação enzimática. Soy products are a way to include bioactive substances such as isoflavones in the diet, and water soluble soy extract (EHS) is a substrate that has been shown to have potential for the production of novel foods with healthy appeal. Thus, in order to increase the content of bioactive isoflavones and evaluate the viability of a biotechnological process for equol production in vitro, the process was developed. described in this document. It was investigated the application of probiotic starter cultures and lactic acid bacteria in the fermentation of the EHS, allied to the action of the crude tanase enzyme extract obtained from the fungus Paecilomyces varíotti. In addition, the biotransformation of phenolic compounds and antioxidant activity of the obtained product was also evaluated. Total phenol content was evaluated by Folin-Ciocalteau reagent-based methodology, antioxidant activity by in vitro ORAC and DPPH radical sequestration methods and specificity of semipurified tanase extract against commercial isfolavone standards as well as how changes in the phenolic profile of water soluble soybean extract were evaluated by HPLC-DAD. After the fermentative process and / or enzymatic treatment of soybean water soluble extract, there was a significant increase in the total phenolic content and antioxidant capacity, by both tested methods (ORAC and DPPH), when compared with the EHS control without reaction. In addition, a modification of the polyphenolic profile of the biotransformed EHS samples obtained by HPLC-DAD was observed, resulting in an increase in the concentration of the aglycone forms relative to the glycosylated ones, as well as an increase in the equol concentration after the proposed biotransformation processes. The results indicate that P. variotty tanase extract was able to biotransform the glycosylated forms (daidzine and genistine) of isoflavones into their respective aglycone forms (daidzein and genistein). To the best of our knowledge, hydrolysis of tannase glycosylated isoflavonoids, as well as the formation of equol, is an unpublished report in the literature showing that it is possible to develop an in vitro process for obtaining this bioactive compound without the presence of intestinal bacteria, using only one enzymatic biotransformation.
BREVE DESCRIÇÃO DAS FIGURAS. BRIEF DESCRIPTION OF THE FIGURES.
A Figura 1 apresenta cromatogramas obtidos por HPLC-DAD da reação dos padrões de isoflavonas glicosiladas (A) daidzina e (B) genistina com extrato semipurificado de tanase de Paecilomyces variotii a 40s C por 30 minutos. Figure 1 shows HPLC-DAD chromatograms of the reaction of the glycosylated isoflavone (A) daidzine and (B) genistin standards with Paecilomyces variotii tannase semipurified extract at 40 s C for 30 minutes.
A Figura 2 apresenta cromatogramas obtidos por HPLC-DAD do (A) EHS padrão, (B) EHS fermentado, {C} EHS fermentado reagido com 1 ,8 U de tannase e (D) EHS padrão reagido com 1 ,8 U de tannase a 40° C por 30 minutos. Figure 2 shows HPLC-DAD chromatograms of (A) standard EHS, (B) fermented EHS, {C} fermented EHS reacted with 1.8 U tannase and (D) standard EHS reacted with 1.8 U tannase at 40 ° C for 30 minutes.
DESCRIÇÃO DETALHADA DA INVENÇÃO [0023] A presente invenção refere-se ao processo de biotransformação de compostos fenólicos do extrato solúvel de soja para obtenção de produto rico em equol e isoflavonas bioativas através de fermentação com bactérias iniciadoras e bactérias ácido lácticas probióticas e aplicação da enzima tanase; composição assim obtido e uso. Para tanto, o processo pode utilizar formas biotransformação que compreendem na aplicação de cepas de bactérias iniciadoras e bactérias ácido lácticas probióticas e/ou reação com a enzima tanase de Paecilomyces variotti em hidrossolúvel de soja. DETAILED DESCRIPTION OF THE INVENTION [0023] The present invention relates to the process of biotransforming phenolic compounds from soluble soybean extract to obtain equol rich product and bioactive isoflavones by fermentation with starter bacteria and probiotic lactic acid bacteria and application of the tanase enzyme; composition thus obtained and use. To this end, the process can utilize biotransformation forms which comprise applying strains of starter bacteria and probiotic lactic acid bacteria and / or reacting with the Paecilomyces variotti tannase enzyme in soybean water soluble.
[0024] O processo compreende as etapas descritas a seguir:  The process comprises the following steps:
A. Macerar os grãos de soja íntegros a temperatura ambiente em água destilada (grãos de soja água; 1 :3 p/v);  A. Macerate whole soybeans at room temperature in distilled water (soybean water; 1: 3 w / v);
B. Descartar a agua utilizada para maceração;  B. Discard the water used for maceration;
C. Adicionar agua destilada;  C. Add distilled water;
D. Aquecer os grãos em água entre 90 a 1 10QC, preferencialmente a 100°C, (grãos de soja/água; 1 :2 p/v) por 3 a 10 minutos, preferencialmente 5 minutos; D. Heat the beans in water between 90 and 1 10 Q C, preferably to 100 ° C (soybean / water; 1: 2 w / v) for 3 to 10 minutes, preferably 5 minutes;
E. Adicionar agua destilada  E. Add distilled water
F. Triturar os grãos de soja com água destilada (grãos de soja/água; 1 :4 P/v);  F. Crush soybeans with distilled water (soybeans / water; 1: 4 P / v);
G. Centrifugar a massa obtida entre 9000 a 10000 x g, preferencialmente 9630 x g, por 10 a 20 minutos, preferencialmente 15 minutos a temperatura ambiente (±255C); G. Centrifuge the obtained mass of 9000-10000 x g, preferably 9630 xg for 10 to 20 minutes, preferably 15 minutes at room temperature (25 ± 5 ° C);
H. Aquecer o extrato hidrossolúvel de soja (EHS) até ebulição entre 96 9C e 1009C por 10 a 15 minutos, preferencialmente 0 minutos; H. Warm water extract of soybean (EHS) to boiling between 96 and 100 9 C 9 C for 10 to 15 minutes, preferably 0 to minutes;
I. Esterilizar por aquecimento a temperatura de 121 °C, durante 15 a 20 minutos, preferencialmente 15 minutos;  I. Sterilize by heating at 121 ° C for 15 to 20 minutes, preferably 15 minutes;
a. Manter o extrato hidrossolúvel de soja estéril sob refrigeração a 4 a 12QC, por até 10 dias, ou congelar o extrato a -80QC até sua utilização; The. Keep sterile water extract of soybean under refrigeration at 4 to 12 Q C for 10 days, the extract or freeze at -80 Q C until their use;
J. Realizar os processos de biotransformação do extrato hidrossolúvel de soja que podem ser realizados por qualquer uma das seguintes formas:  J. Carry out the biotransformation processes of water-soluble soybean extract which may be carried out in any of the following ways:
Processo 1 - Biotransformação fermentativa: Bactéria iniciadoras Streptococcus ssp. Thermophilus (YF-L81 1 ) e Lactobacillus delbrueckíi ssp. Bulgaricus (LB-340) e bactérias ácido lácticas probióticas Bifidobacterium animales ssp. Laciis (Bb-12) e Lactobacillus acidophillus (LA-05); Process 1 - Fermentative Biotransformation: Starter Bacteria Streptococcus ssp. Thermophilus (YF-L81 1) and Lactobacillus delbruecki ssp. Bulgaricus (LB-340) and Lactic Acid Bacteria probiotic Bifidobacterium animales ssp. Laciis (Bb-12) and Lactobacillus acidophillus (LA-05);
i. Inocular as culturas iniciadoras na concentração de 0,5 - 2% (v/v), preferencialmente 1 % (v/v), e de bactérias ácido lácticas probióticas na concentração de 5 a 15% (v/v), preferencialmente 5% (v/v), e contagem mínima de 106 - 107 log UFC/mL e máxima de 1014 log UFC/mL no EHS obtido em (I); e i. Inoculate starter cultures at a concentration of 0.5 - 2% (v / v), preferably 1% (v / v), and probiotic lactic acid bacteria at a concentration of 5 to 15% (v / v), preferably 5% (v / v), and a minimum count of 10 6 - 10 7 log CFU / mL and a maximum of 10 14 log CFU / mL in the EHS obtained in (I); and
ii. Incubar a solução obtida em (i) entre 30 e 40eC, preferencialmente a 379C, por 10 a 24 horas, preferencialmente 12 horas, em condições de anaerobiose;ii. Incubate the solution obtained in (i) and from 30 to 40 C, preferably at 37 9 C, for 10 to 24 hours, preferably 12 hours, under anaerobic conditions;
Processo 2 - Biotransformação fermentativa seguida por enzimática Process 2 - Fermentative Biotransformation followed by Enzymatic
i. Inocularas culturas iniciadoras na concentração de 0,5 - 2% (v/v), preferencialmente 1 % (v/v), e de bactérias ácido lácticas probióticas na concentração de 5 - 15% (v/v), preferencialmente a 5% (v/v), e contagem mínima de 106 - 107 log UFC/mL e máxima de 1014 log UFC/mL no EHS obtido em (I); i. Inoculate starter cultures at a concentration of 0.5 - 2% (v / v), preferably 1% (v / v), and probiotic lactic acid bacteria at a concentration of 5 - 15% (v / v), preferably 5% (v / v), and a minimum count of 10 6 - 10 7 log CFU / mL and a maximum of 10 14 log CFU / mL in the EHS obtained in (I);
ii. Incubar ao EHS com as culturas obtida em (i) entre 30 e 40SC, preferencialmente a 375C, por 10 a 24 horas, preferencialmente 12 horas, em condições de anaerobiose; iii. Inocular em solução obtida em (ii) com 1 a 5 U de tanase, preferencialmente 1 ,8 U de tanase, por ml de EHS fermentado (ii); ii. Incubate the cultures with EHS obtained in (i) from 30 to S 40 C, preferably at 37 5 C for 10 to 24 hours, preferably 12 hours, under anaerobic conditions; iii. Inoculate in a solution obtained from (ii) with 1 to 5 U tanase, preferably 1.8 U tanase, per ml fermented EHS (ii);
iv. Incubar a solução de (iii) entre 35 a 45°C, preferencialmente 40gC, por 20 a 50 minutos, preferencialmente 30 minutos; e v. Incubar a solução de (iv) entre -2 a 2°C, preferencialmente 0QC (em banho de gelo) por 10 a 30 min, preferencialmente 15 minutos; iv. Incubate the solution of (iii) at 35 to 45 ° C, preferably 40 g C, for 20 to 50 minutes, preferably 30 minutes; and v. Incubate the solution of (iv) between -2 to 2 ° C, preferably Q 0 C (ice bath) for 10 to 30 minutes, preferably 15 minutes;
Processo 3 - Biotransformação enzimática  Process 3 - Enzymatic Biotransformation
i. Inocular em EHS obtida em (I) com 1 a 5 U de tanase, preferencialmente 1 ,8 U de tanase, por 1 ml de EHS (I); ii. Incubar a solução em (i) entre entre 35 a 45°C, preferencialmente 40QC, por 20 a 50 minutos, preferencialmente 30 minutos; e i. EHS inoculum obtained in (I) with 1 to 5 U tanase, preferably 1.8 U tanase, per 1 ml EHS (I); ii. Incubate the solution (i) from 35 to 45 DEG C, preferably 40 Q C for 20 to 50 minutes, preferably 30 minutes; and
íii. Incubar a solução de (ii) entre -2 a 2°C, preferencialmente iii. Incubate the solution of (ii) at -2 to 2 ° C, preferably
09C (em banho de gelo) por 10 a 30 min, preferencialmente0 9 C (in an ice bath) for 10 to 30 min, preferably
15 minutos; 15 minutes;
K. Manter o produto EHS com isoflavonas bioativas e equol congelado a - 809C. K. Maintain EHS product with bioactive isoflavones and frozen equol at -80 9 C.
[0025] As composições obtidas do processo descrito compreendem as características segundo o tipo de biotransformação conforme a tabela 1 abaixo e têm aplicação na indústria alimentícia, como ingrediente alimentar, e indústria de nutricosméticos e suplementos dietéticos.  The compositions obtained from the described process comprise the characteristics according to the type of biotransformation according to table 1 below and have application in the food industry, as a food ingredient, and the nutricosmetics and dietary supplements industry.
Tabela 1 : Composições obtida a partir do processo descrito  Table 1: Compositions obtained from the process described
Figure imgf000009_0001
Figure imgf000009_0001
Exemplificação Exemplification
Preparo do extraio hidrossolúvel de soja  Preparation of water soluble soy extract
[0026] O extrato hidrossolúvel de soja foi preparado de acordo com metodologia descrita por Mandarino e Carrão-Panizzi (1999). Foram utilizados grãos de soja (Glycíne max) da marca "Natu's".  Water-soluble soy extract was prepared according to the methodology described by Mandarino and Carrão-Panizzi (1999). We used soybeans (Glycíne max) from "Natu's" brand.
[0027] O processo pode ser representado pelas etapas a seguir:  [0027] The process can be represented by the following steps:
1. Macerar os grãos de soja íntegros por 6 horas a temperatura ambiente em água destilada em água destilada (grãos de soja/água; 1 :3 p/v). 1. Macerate whole soybeans for 6 hours at room temperature in distilled water in distilled water (soybean / water; 1: 3 w / v).
2. Descartar a agua utilizada para maceração 3. Ferver grãos em água (grãos de soja/água; 1 :2 p/v) por cinco minutos.2. Discard the water used for maceration 3. Boil grains in water (soy beans / water; 1: 2 w / v) for five minutes.
4. Triturar os grãos de soja com auxílio de liquidificador, com água destilada (grãos de soja/água; 1 :4 p/v) por 3 minutos. 4. Crush the soy beans with the aid of a blender with distilled water (soy beans / water; 1: 4 w / v) for 3 minutes.
5. Centrifugar a massa obtida a 9630 x g por 15 minutos a temperatura ambiente.  5. Centrifuge the mass obtained at 9630 x g for 15 minutes at room temperature.
6. Aquecer o sobrenadante obtido, conhecido como extrato hidrossolúvel de soja, até ebulição por 10 minutos.  6. Heat the obtained supernatant, known as water-soluble soy extract, to boiling for 10 minutes.
7. Distribuir o extrato de soja em frascos e esterilizar por aquecimento a 121 °C durante 15 minutos.  7. Distribute the soy extract in vials and heat sterilize at 121 ° C for 15 minutes.
8. Manter o extrato hidrossolúvel de soja estéril sob refrigeração até sua utilização nas análises.  8. Keep sterile water-soluble soy extract refrigerated until use for analysis.
Obtenção de extrato semipuríficado de tanase  Obtaining semipurified extract of tanase
[0028] A enzima tanase (E.C: 3.1.1.20), obtida a partir do microorganismo Paecilomyces variotii, como descrito por Battestin e Macedo (2007a), foi utilizada neste estudo.  The enzyme tanase (E.C: 3.1.1.20), obtained from the microorganism Paecilomyces variotii, as described by Battestin and Macedo (2007a), was used in this study.
Este processo pode ser representado pelas etapas a seguir:  This process can be represented by the following steps:
a) Adicionar, em erlenmeyers de 250 ml_, 10 g de farelo de trigo (Natu's, Hortolândia, Brasil), 10 mL de água destilada e 10% de ácido tânico (p/p) (Tanal B, Prozyn BioSolution, São Paulo, Brasil)  (a) Add 10 g of wheat bran (250 ml) conical flasks (Natu's, Hortolândia, Brazil) to 10 ml of distilled water and 10% tannic acid (w / w) (Tanal B, Prozyn BioSolution, Sao Paulo, Brazil)
b) Esterilizar o meio de cultura a 121 QC por 15 minutos. b) sterilizing the culture medium at 121 Q C for 15 minutes.
c) Inocular 2,5 mL (5,0x107 esporos/mL) da suspensão de pré-inóculo em água destilada  c) Inoculate 2.5 mL (5.0x107 spores / mL) of the pre-inoculum suspension in distilled water
d) Incubar o meio a 30-C por 120 horas.  d) Incubate the medium at 30 ° C for 120 hours.
e) Adicionar 80 mL de tampão acetato (20 mM, pH 5,0) ao meio.  e) Add 80 mL of acetate buffer (20 mM, pH 5.0) to the medium.
f) Agitar o meto a 200 rpm por 1 hora.  f) Shake the method at 200 rpm for 1 hour.
g) Filtrar a solução final e centrifugar a 9630 x g por 30 minutos a 4QC (Centrífuga Beckman J2-2 , Beckman-Coulter, INC Fullerton, CA, USA). h) Adicionar, ao sobrenadante, sulfato de amónio (Ecibra, Santo Amaro, São Paulo, Brasil) em concentração final de 80% de saturação (561 g/L). i) Manter sob refrigeração por 12 horas a 49C. g) filtering the final solution and centrifuge at 9630 xg for 30 minutes at 4 Q C (J2-2 Beckman Centrifuge, Beckman-Coulter, Inc. Fullerton, CA, USA). (h) Add to the supernatant ammonium sulphate (Ecibra, Santo Amaro, Sao Paulo, Brazil) at a final concentration of 80% saturation (561 g / l). (i) keep refrigerated for 12 hours at 4 9 C.
j) Recolher o precipitado formado por centrifugação a (9630 x g por 30 minutos) e ressuspender o mesmo em água destilada  j) Collect the precipitate formed by centrifugation at (9630 x g for 30 minutes) and resuspend it in distilled water.
k) Dialisar por 48 horas em água destilada. 1) Congelar a -18°C e liofilizar, em liofilizador de bancada (Liotop L101 , Liobras Ind. Com. Serv. Liofilizadores Ltda., São Carlos, São Paulo, Brasil), durante 24 horas, k) Dialysate for 48 hours in distilled water. 1) Freeze at -18 ° C and lyophilize in bench top lyophilizer (Liotop L101, Liobras Ind. Com. Serv. Liofilizantes Ltda., Sao Carlos, Sao Paulo, Brazil) for 24 hours,
m) Manter o extrato semipuriíicado liofilizado a -18gC. m) Maintain the lyophilized semipuritized extract at -18 g C.
Determinação de atividade enzimática  Determination of Enzyme Activity
[0029] A medida de atividade enzimática do extrato semipuriíicado de tanase foi realizada de acordo com metodologia proposta por Battestin & Macedo (2007b). O substrato consistiu em uma solução de ácido tânico (Sigma-Aldrich, Steinheim, Alemanha) 0,7% (p/v) em tampão acetato (0,2 M, pH 5,5). Para a realização da reação foram seguidos os seguintes passos:  [0029] The enzymatic activity measurement of the semipuritized tanase extract was performed according to the methodology proposed by Battestin & Macedo (2007b). The substrate consisted of a 0.7% (w / v) tannic acid solution (Sigma-Aldrich, Steinheim, Germany) in acetate buffer (0.2 M, pH 5.5). To perform the reaction, the following steps were followed:
a) Adicionar 0,3 ml_ da solução de substrato a 0,5 ml de extrato de enzima. b) Incubar a 60°C durante 10 minutos.  a) Add 0.3 ml of the substrate solution to 0.5 ml of enzyme extract. b) Incubate at 60 ° C for 10 minutes.
c) Paralisar a reação pela adição de 3 mL de uma solução de albumina de soro bovino (BSA) a 1 ,0 mg/mL preparada em solução de cloreto de sódio 0,17 M em tampão acetato (0,2 M, pH 5,0).  c) Stop the reaction by adding 3 mL of a 1.0 mg / mL bovine serum albumin (BSA) solution prepared in 0.17 M sodium chloride solution in acetate buffer (0.2 M, pH 5 .0).
d) Filtrar e centrifugar a solução a 10.070 x g por 15 min a 4°C.  d) Filter and centrifuge the solution at 10,070 x g for 15 min at 4 ° C.
e) Dissolver o precipitado a 3 mL em SDS-triethanolamina  e) Dissolve the precipitate to 3 mL in SDS-triethanolamine
f) Adicionar 1 ml do reagente FeCI3.  f) Add 1 ml of FeCl3 reagent.
g) Manter em repouso por 15 minutos para a estabilização da cor.  g) Keep at rest for 15 minutes for color stabilization.
h) Medir a absorbância a 530 nm (Mondai, Banerjee, Jana, & Pati, 2001 ). i) Calcular a atividade enzimática por Abs530 = Abscontrole-Absteste.  h) Measure absorbance at 530 nm (Mondai, Banerjee, Jana, & Pati, 2001). i) Calculate enzymatic activity by Abs530 = Abscontrol-Abstest.
Uma unidade de atividade de tanase foi definida como a quantidade de ácido tânico hidrolisado por 1 mL de enzima por minuto de reação.  One unit of tanase activity was defined as the amount of hydrolyzed tannic acid per 1 mL enzyme per minute reaction.
Biotransformação enzimática dos isoflavonoides  Enzymatic biotransformation of isoflavonoids
[0030] Os padrões comerciais de isoflavonoides genistina, daidzina, genisteína e daidzeína (Sigma-Aldrich, Steinheim, Alemanha) foram utilizados como substrato para hidrólise enzimática por tanase isolada a partir de Paecilomyces variotti (Battestin & Macedo, 2007a).  The commercial standards of isoflavonoids genistin, daidzine, genistein and daidzein (Sigma-Aldrich, Steinheim, Germany) were used as substrate for tanase enzymatic hydrolysis isolated from Paecilomyces variotti (Battestin & Macedo, 2007a).
[0031 ] Este processo pode ser representado pelas etapas a seguir:  [0031] This process can be represented by the following steps:
a) Dissolver 1 mg dos padrões de isoflavonoidess em 1 mL de tampão fosfato (pH 7,4, 75 mM).  a) Dissolve 1 mg of isoflavonoid standards in 1 ml phosphate buffer (pH 7.4, 75 mM).
b) Incubar a solução com 0,18U de tanase, por 30 minutos a 49C em banho termostatizado (modelo B12D, Micronal, São Paulo, Brasil). b) incubating the solution of tannase 0,18U for 30 minutes at 4 ° C in thermostated bath 9 (B12D model Micronal, Sao Paulo, Brazil).
c) Paralisar o processo de hidrólise em banho de gelo por 15 minutos. d) Avaliar, por HPLC-DAD, os produtos finais dos padrões de isoflavonoides. c) Paralyze the hydrolysis process in an ice bath for 15 minutes. d) Evaluate, by HPLC-DAD, the end products of the isoflavonoid standards.
Processos de biotransformação do extrato hidrossolúvel de soja  Water soluble soybean extract biotransformation processes
Processo 1 - Biotransformação fermentativa  Process 1 - Fermentative Biotransformation
[0032] Foram utilizadas culturas comerciais liofilizadas (Christian Hansen Lab. Ind. e Com. Ltda) de culturas iniciadoras Streptococcus ssp. Thermophilus (YF- L811 ) e Lactobacillus delbrueckii ssp. Bulgaricus (LB-340) e bactérias ácido lácticas probióticas Bifidobacterium animales ssp. Lactis (Bb-12) e Lactobacillus acidophillus (LA-05). Todas as culturas liofilizadas foram reativadas, individualmente, em extrato hidrossolúvel de soja estéril a 379C por 12 horas em condições de anaerobiose utilizando uma jarra de anaerobiose. As culturas iniciadoras foram inoculadas na concentração de 1 % (v/v) e as bactérias ácido lácticas probióticas na concentração de 5% (v/v), garantindo uma contagem mínima de 106 - 107 log UFC/mL (Cruz et al., 2013). Lyophilized commercial cultures (Christian Hansen Lab. Ind. And Com. Ltda.) Of starter cultures Streptococcus ssp. Thermophilus (YF-L811) and Lactobacillus delbrueckii ssp. Bulgaricus (LB-340) and probiotic lactic acid bacteria Bifidobacterium animales ssp. Lactis (Bb-12) and Lactobacillus acidophillus (LA-05). All cultures were lyophilized reactivated individually in sterile water extract of soybeans 9 to 37 C for 12 hours under anaerobic conditions using an anaerobic jar. Starter cultures were inoculated at a concentration of 1% (v / v) and probiotic lactic acid bacteria at a concentration of 5% (v / v), ensuring a minimum count of 10 6 - 10 7 log CFU / mL (Cruz et al ., 2013).
[0033] A fermentação do extrato hidrossolúvel de soja fermentado foi conduzida de acordo com metodologia tradicional (Tamime e Robinson, 2007) de acordo com as seguintes etapas:  The fermentation of the water-soluble fermented soybean extract was conducted according to traditional methodology (Tamime and Robinson, 2007) according to the following steps:
a) Inocular, assepticamente, o extrato hidrossolúvel de soja estéril com o conteúdo total de cada cultura bacteriana reativada.  (a) Aseptically inoculate sterile water-soluble soybean extract with the total contents of each reactivated bacterial culture.
b) Incubar o EHS inoculado a 37QC por 24 horas em condições de anaerobiose utilizando uma jarra de anaerobiose. b) incubating the inoculated EHS 37 Q C for 24 hours under anaerobic conditions using an anaerobic jar.
As amostras do EHS fermentado foram avaliadas quanto ao perfil químico (teor de fenóis totais e HPLC) e capacidade antioxidante (ORAC e DPPH).  Fermented EHS samples were evaluated for chemical profile (total phenol content and HPLC) and antioxidant capacity (ORAC and DPPH).
Processo 2 - Biotransformação fermentativa seguida por enzimática  Process 2 - Fermentative Biotransformation followed by Enzymatic
[0034] O EHS fermentado (1 mL), obtido no processo 1 , foi inoculado com 1 ,8 U de tanase, a 40eC por 30 minutos. O processo de hidrólise foi paralisado em banho de gelo por 15 minutos. [0034] The fermented EHS (1ml) obtained in Process 1 was inoculated with 1, 8 U of tannase at 40 ° C and for 30 minutes. The hydrolysis process was stopped in an ice bath for 15 minutes.
[0035] As amostras do EHS biotransformadas foram avaliadas quanto ao perfil químico (teor de fenóis totais e HPLC) e capacidade antioxidante (ORAC e DPPH).  Biotransformed EHS samples were evaluated for chemical profile (total phenol content and HPLC) and antioxidant capacity (ORAC and DPPH).
Processo 3 - Biotransformação enzimática  Process 3 - Enzymatic Biotransformation
[0036] O EHS não fermentado (1 mL) foi inoculado com 1 ,8 U de tanase, a 40-C por 30 minutos. O processo de hidrólise foi paralisado em banho de gelo por 15 minutos. [0037] As amostras do EHS biotransformados foram avaliadas quanto ao perfil químico (teor de fenóis totais e HPLC) e capacidade antioxidante (ORAC e DPPH). Unfermented EHS (1 mL) was inoculated with 1.8 U tanase at 40 ° C for 30 minutes. The hydrolysis process was stopped in an ice bath for 15 minutes. Biotransformed EHS samples were evaluated for chemical profile (total phenol content and HPLC) and antioxidant capacity (ORAC and DPPH).
Avaliação do perfil químico  Chemical profile assessment
Teor cie fenóiicos totais  Total phenolic content
[0038] O teor de fenóiicos totais nas amostras foi determinado com o reagente Folin-Ciocalteu (Dinâmica Química Contemporânea, Brasil) de acordo com o método de Chandler and Doods (1983), com algumas modificações. The total phenolic content in the samples was determined with the Folin-Ciocalteu reagent (Contemporary Chemical Dynamics, Brazil) according to the method of Chandler and Doods (1983), with some modifications.
[0039] Este processo pode ser representado pelas etapas a seguir: [0039] This process can be represented by the following steps:
a) Diluir uma alíquota de 1 ml_ das amostras, na proporção de 1 :5, com metanol 70%.  a) Dilute 1 ml aliquot 1: 5 with 70% methanol.
b) Adicionar 5 ml_ de água destilada, seguido por 0,5 ml_ de reagente de Folin-fenol Ciacalteu 1 M (Dinâmica Química Contemporânea, Brasil). c) Agitar as amostras.  b) Add 5 ml of distilled water, followed by 0.5 ml of 1 M Folin-phenol Ciacalteu reagent (Contemporary Chemical Dynamics, Brazil). c) Shake the samples.
d) Manter em repouso por 5 minutos.  d) Keep at rest for 5 minutes.
e) Adicionar 1 ml_ de solução de carbonato de sódio 5% (m/v) ao meio reacional de cada amostra.  e) Add 1 ml of 5% (w / v) sodium carbonate solution to the reaction medium of each sample.
f) Agitadas e incubar as amostras no escuro a temperatura ambiente por 1 hora.  f) Shake and incubate samples in the dark at room temperature for 1 hour.
g) Agitar novamente as amostras.  g) Shake the samples again.
h) Realizar leitura das absorbâncias a 725 nm em espectrofotômetro (modelo DU®640, Beckman CoulterTM, EUA).  h) Take absorbance readings at 725 nm in spectrophotometer (model DU®640, Beckman CoulterTM, USA).
As concentrações de fenóiicos totais foram determinadas por comparação de absorbância dasamostras com uma curva de calibração utilizando catequina como padrão. Os resultados foram expressos em g de catequina por mL de amostra.  Total phenolic concentrations were determined by comparing the absorbance of the samples with a calibration curve using catechin as standard. Results were expressed in g catechin per ml sample.
Análise dos isoflavonoides por HPLC  HPLC isoflavonoid analysis
[0040] As isoflavonas glicosídicas (daidzina e genistina), agliconas (daidzeína e genisteína) e equol foram identificados e quantificados em todas as amostras por HPLC-DAD. Glycosidic isoflavones (daidzine and genistine), aglycones (daidzein and genistein) and equol were identified and quantified in all samples by HPLC-DAD.
[0041 ] A extração dos isoflavonoides das amostras do extraio de soja foi realizada de acordo com metodologia proposta por Aguiar (2003), com modificações de acordo com as seguintes etapas: a) Misturar 1 ml_ das amostras dos extratos de soja biotransformados com 5 mL de metanol 70% a 25QC, por 60 minutos, a 100 rpm. The extraction of isoflavonoids from samples of soybean extraction was performed according to the methodology proposed by Aguiar (2003), with modifications according to the following steps: a) Mix 1 mL sample of soymilk biotransformed with 5 ml of 70% methanol at 25 Q C for 60 minutes at 100 rpm.
b) Centrifugar a mistura por 10 minutos a 5790 x g.  b) Centrifuge the mixture for 10 minutes at 5790 x g.
c) Filtrar o sobrenadante através de uma membrana de 0,45 μιη, antes de ser injetado num HPLC de fase invertida.  (c) Filter the supernatant through a 0.45 μιη membrane before being injected on an inverted phase HPLC.
[0042] As condições cromatográficas utilizadas foram previamente descritas por Park et al. (2001 ). Foi utilizado o equipamento Dionex Ulitmate 3000 (Alemanha) equipado com uma coluna C18 Atlantis® (Waters, 5 μιη, 4,6 x 150 mm) mantida a 309C. A detecção foi realizada utilizando um detector de arranjo de díodos UV/VIS (DAD-3000). As fases móveis consistiram em água deionizada (solvente A) e metanol (solvente B). O gradiente de eluição foi o seguinte: 20% B (0-15 min), 20-80% B (15-75min), 80-100% B (75-80min), 100-20% B (80-90 min) e 20% B (90-95 min) com vazão de 0.5 mL/min. O volume de injeçâo de amostra foi de 20 μΙ_ e todas as amostras foram analisadas em triplicata. Os espectros foram obtidos entre 190 e 480 nm e os cromatogramas processados a 254 nm. The chromatographic conditions used were previously described by Park et al. (2001). The equipment used was Dionex Ulitmate 3000 (Germany) equipped with a Atlantis® C18 column (Waters, 5 μιη, 4.6 x 150 mm) maintained at 30 C. 9 Detection was performed using a UV diode array detector / VIS (DAD-3000). The mobile phases consisted of deionized water (solvent A) and methanol (solvent B). The elution gradient was as follows: 20% B (0-15 min), 20-80% B (15-75min), 80-100% B (75-80min), 100-20% B (80-90 min) ) and 20% B (90-95 min) with a flow rate of 0.5 mL / min. The sample injection volume was 20 μΙ_ and all samples were analyzed in triplicate. The spectra were obtained between 190 and 480 nm and the chromatograms processed at 254 nm.
[0043] Os isoflavonoides foram identificados individualmente por comparação dos seus tempos de retenção e o espectro dos seus padrões: daidzina, genistina, daidzeína, genisteína e equol. A quantificação individual dos isfolavonoides foi realizada por integração das áreas dos picos utilizando curvas de calibração que foram estabelecidas no intervalo de concentração de 0,01 -1 ,0 mg/mL dos padrões de isoflavonas e equol. Os resultados foram expressos em de cada composto fenólico por mL de amostra. Isoflavonoids were individually identified by comparing their retention times and the spectrum of their patterns: daidzine, genistine, daidzein, genistein and equol. Individual quantification of isfolavonoids was performed by integrating peak areas using calibration curves that were established within the concentration range of 0.01 -1.0 mg / mL of the isoflavones and equol standards. Results were expressed as of each phenolic compound per mL of sample.
Atividade antioxidante dos polifenóis do extrato de soja biotransformado  Biotransformed soybean extract polyphenols antioxidant activity
Capacidade de absorção do radical oxigénio (ORAC)  Oxygen radical absorption capacity (ORAC)
[0044] A determinação da capacidade antioxidante pelo método do ORAC foi realizada conforme metodologia descrita por Macedo et al. (201 1 ), utilizando fluoresceína (FL) como sinalizador. O teste automatizado de ORAC foi realizado em leitor de microplacas Fluostar Óptima (Fluostar Óptima - Labtech BMG, Alemanha) com filtros de fluorescência para um comprimento de onda de excitação de 485 nm e de emissão de 520 nm. As medidas foram realizadas em placas pretas opacas Costar® (Corning Costar Corporation, Cambridge, EUA) com 96 poços. The determination of antioxidant capacity by the ORAC method was performed according to the methodology described by Macedo et al. (201 L), using fluorescein (FL) as a flag. The automated ORAC test was performed on a Fluostar Optimal Microplate Reader (Fluostar Optima - Labtech BMG, Germany) with fluorescence filters for an excitation wavelength of 485 nm and emission of 520 nm. Measurements were performed on Costar® opaque black plates (Corning Costar Corporation, Cambridge, USA) with 96 wells.
Antes da reação várias etapas de preparo das soluções devem ser seguidas: a) Decompor, a 37°C, o AAPH (2,2'-azinobis(2-amidinopropano) dihidrocloreto) em tampão fosfato (75 mM, pH 7,4). Obs: tal fato ocorre devido à sensibilidade da FL ao pH. Prior to the reaction several steps of solution preparation should be followed: a) Decompose at 37 ° C AAPH (2,2'-azinobis (2-amidinopropane) dihydrochloride) in phosphate buffer (75 mM, pH 7.4). Note: this fact occurs due to the sensitivity of FL to pH.
b) Preparar diariamente a solução de FL (70 nM), em tampão de fosfato (PBS) (75 mM, pH 7,4).  b) Prepare the FL solution (70 nM) in phosphate buffer (PBS) (75 mM, pH 7.4) daily.
c) Armazenar no escuro.  c) Store in the dark.
d) Preparar (diariamente) em PBS uma solução de Trolox (6-hidroxi-2,5,7,8- tetrametilcromo-2-carboxylic acid) 75 μΜ (utilizada como padrão de referência).  d) Prepare (daily) in PBS a solution of Trolox (6-hydroxy-2,5,7,8-tetramethylchromo-2-carboxylic acid) 75 μΜ (used as reference standard).
e) Construir uma curva padrão de Trolox diluindo a solução de 1 ,5-1500 pmol/mL.  e) Construct a standard Trolox curve by diluting the solution by 1.5-1500 pmol / mL.
A reação foi realizada de acordo com as seguintes etapas:  The reaction was performed according to the following steps:
a) Diluir 1 ml de cada amostra utilizando metanol 70% na proporção de 1 :5. b) Misturar, em cada poço, 120 pL de solução FL com 20 pL de amostra, branco (PBS) ou solução padrão (Trolox).  a) Dilute 1 ml of each sample using 70% methanol 1: 5. (b) Mix 120 µL of FL solution with 20 µL of sample, blank (PBS) or standard solution (Trolox) in each well.
c) Adicionar 60 pL de AAPH (12 mM).  c) Add 60 µl AAPH (12 mM).
d) Realizar, em triplicata e a cada 6 minutos durante 87 minutos, a medida da fluorescência imediatamente após a adição do AAPH  d) Perform, in triplicate and every 6 minutes for 87 minutes, the fluorescence measurement immediately after the addition of AAPH
[0045] Os valores de ORAC foram definidos como sendo a diferença entre a área sob a curva de decaimento de FL e do branco (net AUC). Equações de regressão entre net AUC e concentração de antioxidantes foram calculadas para todas as amostras. Um controle de tanase foi realizado como uma amostra regular, e o valor de ORAC obtido foi subtraído das amostras tratadas com esta enzima. Os valores de ORAC-FL foram expressos em pmol equivalente de Trolox/L de extrato de soja.  ORAC values were defined as the difference between the area under the FL and blank decay curve (net AUC). Regression equations between net AUC and antioxidant concentration were calculated for all samples. A tanase control was performed as a regular sample, and the obtained ORAC value was subtracted from the samples treated with this enzyme. ORAC-FL values were expressed in pmol equivalent of Trolox / L soybean extract.
Sequestro dos radicais livres do DPPH  DPPH Free Radical Hijacking
[0046] O potencial de atividade antioxidante do extrato hidrossolúvel de soja, fermentado e não fermentado, também foi avaliado pela atividade de sequestro do radical livre estável 1 ,1 -difenil-2-picrilhidrazil (DPPH), como descrito por Macedo et ai. (201 1 ). The antioxidant activity potential of fermented and unfermented water-soluble soybean extract was also assessed by stable free radical sequestration activity 1,1-diphenyl-2-picrylhydrazyl (DPPH), as described by Macedo et al. (201 l).
a) Preparar várias concentrações (0,01 -0,1 mg/mL em metanol 70% (v/v)) de amostras testadas.  a) Prepare various concentrations (0.01 - 0.1 mg / mL in 70% (v / v) methanol) of tested samples.
b) Misturar 50 pL das amostras testes com 150 pL de DPPH 0,2 mM em metanol) em placas de 96 poços (BMG LABTECH 96, Alemanha), c) Realizar a leitura em um leitor de microplacas Fluostar Óptima (BMG Fluostar Óptima - Labtech, Alemanha) com filtros de absorção para um comprimento de onda de excitação de 520 nm. (b) Mix 50 µL of the test samples with 150 µL of 0.2 mM DPPH in methanol) in 96-well plates (BMG LABTECH 96, Germany). c) Read on a Fluostar Optimal Microplate Reader (BMG Fluostar Optima - Labtech, Germany) with absorption filters for an excitation wavelength of 520 nm.
[0047] O processo de decaimento da cor das amostras foi registado depois de 90 minutos de reação e comparado com um branco controle; para as amostras de cores e amostras tratadas com tanase, foi realizado um controlo adicional, que continha a solução de extrato (ou solução de tanase) e metanol puro, em vez de DPPH. As soluções foram preparadas e armazenadas no escuro. As medidas foram realizadas em triplicata e a atividade antioxidante foi calculada a partir da equação obtida por regressão linear determinada traçando a atividade antioxidante de soluções padrão de Trolox com concentrações conhecidas. A atividade antioxidante foi expressa em pmol equivalente de Trolox/L de extrato de soja. The color decay process of the samples was recorded after 90 minutes of reaction and compared with a control blank; For color samples and tanase-treated samples, an additional control was performed which contained the extract solution (or tanase solution) and pure methanol instead of DPPH. The solutions were prepared and stored in the dark. Measurements were performed in triplicate and antioxidant activity was calculated from the equation obtained by linear regression determined by tracing the antioxidant activity of standard Trolox solutions with known concentrations. Antioxidant activity was expressed as pmol equivalent of Trolox / L soybean extract.
Análises estatísticas  Statistical analysis
[0048] Os resultados foram expressos como médias aritméticas e desvios padrões. A significância estatística das diferenças entre os grupos foi analisada pelo teste de Tukey. As diferenças foram consideradas significativas quando p <0,05. Results were expressed as arithmetic means and standard deviations. Statistical significance of differences between groups was analyzed by Tukey test. Differences were considered significant when p <0.05.
Efeitos dos bioprocessos no teor de fenólicos totais e atividade antioxidante  Effects of bioprocesses on total phenolic content and antioxidant activity
[0049] Os efeitos da fermentação e/ou biotransformação enzimática no teor de fenólicos totais e atividade antioxidante do extrato hidrossolúvel de soja, medida pelos métodos do ORAC e DPPH, estão apresentados na Tabela 2. Diferenças significativas · (p <0,05) no teor de fenólicos totais, ORAC e DPPH foram encontradas em todos os bioprocessos.  The effects of fermentation and / or enzymatic biotransformation on total phenolic content and antioxidant activity of soybean water soluble extract, as measured by ORAC and DPPH methods, are presented in Table 2. Significant differences · (p <0.05) In the total phenolic content, ORAC and DPPH were found in all bioprocesses.
Tabela 2. Teor de fenólicos totais e atividade antioxidante (ORAC e DPPH) das amostras do extrato hidrossolúvel de soja antes e após os processos de biotransformação.  Table 2. Total phenolics content and antioxidant activity (ORAC and DPPH) of water soluble soybean extract samples before and after biotransformation processes.
Bioprocesso Amostras Fenólicos ORAC Equiv. DPPH Equiv.  Bioprocess Phenolic Samples ORAC Equiv. DPPH Equiv.
Totais Equiv. Trolox (pmol/L) Trolox (pmol/L) Catequina  Equiv. Totals Trolox (pmol / L) Trolox (pmol / L) Catechin
(pg /ml_)  (pg / ml_)
Padrão EHS 101 a± 6 1 1584a ± 1022 821 a ± 14 1 EHS 254b ± 11 25987b ± 977 1729b ± 27 fermentado Standard EHS 1 101 ± 6 1022 ± 821 to 1584 ± 14 the 1 EHS 254 b ± 11 25987 b ± 977 1729 b ± 27 fermented
II EHS soja 387c ± 9 31801° ± 858 4439c ± 39 fermentado II EHS soybean 387 c ± 9 31801 ° ± 858 4439 c ± 39 fermented
+ tanase  + tanase
III EHS + 847d ± 7 45758d ± 937 6724d ± 36 tanase III EHS + 847 d ± 7 45758 d ± 937 6724 d ± 36 tanase
*Os resultados apresentados são médias (n = 3) ± DP, e aqueles com letras diferentes na mesma coluna são significativamente diferentes, com p < 0,05.  * Results shown are means (n = 3) ± SD, and those with different letters in the same column are significantly different, with p <0.05.
[0050] Os resultados mostraram que houve um aumento significativo no teor de fenólicos totais para todas as amostras biotransformadas (p <0,05). Após o processo fermentativo com bactérias ácido láticas (processo 1 ), o teor de fenólicos totais do extrato hidrossolúvel de soja aumentou significativamente de 101 para 254 pg catequina/mL, um aumento de cerca de 2,5 vezes comparado com o padrão (EHS não biotransformado). No processo 2, quando analisado a reação do EHS fermentado com a enzima tanase, também foi observado um aumento significativo no teor de fenólicos totais em que o aumento foi cerca de 3,8 vezes (101-387 g catequina/mL), quando comparado com o padrão. O processo 3 mostrou o maior aumento em conteúdo de fenólicos totais (101 -847 Mg catequina/mL), aumento de cerca de 8,4 vezes após a reação do EHS com a enzima tanase. Estes resultados sugerem que o processo fermentativo e de biotransformação enzimática com tanase melhora a liberação de compostos fenólicos do extrato de soja. Além disso, os resultados parecem indicar um maior potencial catalítico da tanase obre os fenólicos do extrato de soja quando comparado à ação fermentativa das bactérias ácido lácticas.  The results showed that there was a significant increase in total phenolic content for all biotransformed samples (p <0.05). Following the fermentation process with lactic acid bacteria (process 1), the total phenolic content of the soybean water soluble extract increased significantly from 101 to 254 pg catechin / mL, an increase of about 2.5 times compared to the standard (non-EHS). biotransformed). In process 2, when analyzing the reaction of fermented EHS with the enzyme tanase, a significant increase in the total phenolic content was also observed, where the increase was about 3.8 times (101-387 g catechin / mL) when compared with the default. Process 3 showed the largest increase in total phenolic content (101-847 Mg catechin / mL), an increase of about 8.4-fold after the reaction of EHS with the enzyme tanase. These results suggest that the fermentation process and tanase enzymatic biotransformation improve the release of phenolic compounds from soybean extract. Furthermore, the results seem to indicate a higher catalytic potential of tanase over soybean extract phenolics when compared to the fermentative action of lactic acid bacteria.
[0051] A atividade antioxidante das amostras, antes e após os três processos de biotransformação do EHS, foi analisada pelos métodos do ORAC e DPPH, in vitro. Os resultados estão descritos na Tabela 2 e expressos em equivalentes de Trolox®. Os resultados demonstraram que houve um aumento significativo na atividade antioxidante das amostras biotransformadas em ambas as metodologias (p<0,05), correlacionando com os resultados encontrados para teor de fenóis totais. The antioxidant activity of the samples, before and after the three EHS biotransformation processes, was analyzed by ORAC and DPPH methods in vitro. Results are described in Table 2 and expressed as equivalents of Trolox®. The results showed that there was a significant increase in the antioxidant activity of biotransformed samples in both methodologies (p <0.05), correlating with the results found for total phenol content.
[0052] Os resultados da tabela 2 indicam que o processo de fermentação do EHS (processo 1) resultou, no aumento significativo de cerca de 2,2 vezes na capacidade antioxidante pelo método ORAC e um aumento de aproximadamente 2,1 vezes pelo método de DPPH. A fermentação seguida pela biotransformação enzimática (processo 2) levou a um aumento na atividade antioxidante de 2,7 e 5,4 vezes pelos ensaios ORAC e DPPH, respectivamente. Do mesmo modo, na biotransformação do EHS catalisada apenas pela tanase (processo 3), houve um aumento significativo na atividade antioxidante de 4 e 8 vezes por ORAC e DPPH, respectivamente. [0052] The results of Table 2 show that the EHS fermentation process (process 1) resulted in a significant increase of about 2.2 times the antioxidant capacity by the ORAC method and an increase of approximately 2.1 times by the DPPH method. Fermentation followed by enzymatic biotransformation (process 2) led to an increase in antioxidant activity of 2.7 and 5.4 times by ORAC and DPPH assays, respectively. Similarly, in the tanase-catalyzed EHS biotransformation only (process 3), there was a significant increase in antioxidant activity of 4 and 8 fold by ORAC and DPPH, respectively.
[0053] A soja e os produtos à base de soja são alimentos nutricionalmente ricos e possuem vários fitoquímicos (isoflavonas, fitoesteróis, saponinas, ácidos fenólicos, ácido fítico e inibidores de tripsina) que possuem propriedades funcionais, antioxidantes e de eliminação de radicais livres (Wardhani, Vázquez, e Pandiellaa, 2010). Os compostos fenólicos de soja apresentam atividade sequestradora de radicais livres (Shon et al., 2007), o que pode explicar a correspondência entre o aumento do teor de fenólicos totais com atividade antioxidante demonstrada na tabela 2.  Soybeans and soy-based products are nutritionally rich foods and have various phytochemicals (isoflavones, phytosterols, saponins, phenolic acids, phytic acid and trypsin inhibitors) that have functional, antioxidant and free radical scavenging properties ( Wardhani, Vázquez, and Pandiellaa, 2010). Soybean phenolic compounds have free radical scavenging activity (Shon et al., 2007), which may explain the correspondence between the increase in total phenolic content with antioxidant activity shown in table 2.
[0054] Em resumo, os resultados da presente invenção indicam uma tendência do aumento do teor de fenólicos totais após os três bioprocessos propostos. Tal tendência foi semelhante à observada para a atividade antioxidante, tanto pelo método ORAC quanto pelo DPPH, apoiando os resultados obtidos pela biotransformação microbiana e enzimática do EHS.  In summary, the results of the present invention indicate a trend towards increased total phenolic content after the three proposed bioprocesses. This trend was similar to that observed for antioxidant activity by both the ORAC and DPPH methods, supporting the results obtained by the microbial and enzymatic biotransformation of the EHS.
Perfil das isoflavonas  Isoflavones profile
[0055] A concentração de genistina, daidzina, genisteína, daidzeína e a formação de equol foram avaliadas, antes e após os três processos de biotransformação, utilizando HPLC-DAD (Tabela 3). As isoflavonas e equol foram separados e identificados de acordo com metodologia proposta por Aguiar (2003). The concentration of genistin, daidzine, genistein, daidzein and equol formation were evaluated before and after the three biotransformation processes using HPLC-DAD (Table 3). Isoflavones and equol were separated and identified according to the methodology proposed by Aguiar (2003).
Tabela 3. Concentrações dos isômeros de isoflavonas e equol (Mg/mL) em extrato hidrossolúvel de soja antes (padrão) e após os processos de biotransformação. Table 3. Concentrations of isoflavone and equol isomers (Mg / mL) in water-soluble soybean extract before (standard) and after biotransformation processes.
Conteúdo de isoflavonoides (pg/mL)  Isoflavonoid content (pg / mL)
Processo Amostras Glicosiladas Agliconas  Process Glycosylated Samples Aglicones
s Daidzin Genistin I Daidzeín I Genisteín  s Daidzin Genistin I Daidzein I Genistein
a a a a Padrão EHS 313,0a ± 393,8a ± 25,6a ± 10,2a ± 0,08a aaaa Standard EHS to 313.0 ± 393.8 to 25.6 ± 10.2 to within ± 0.08 to ±
2,0 3,2 0,6 0,5 +  2.0 3.2 0.6 0.5 +
0,000 3 0.000 3
1 EHS 194,2b ± 202.5 ± 91 ,4b ± 52,3b ± 0,31 b fermentad 5,7 5,9 1 ,9 2,0 ±1 EHS 194.2 b ± 202.5 ± 91.4 b ± 52.3 b ± 0.31 b fermented 5.7 5.9 1, 9 2.0 ±
0 0,000 0 0.000
8 li EHS n.d.* n.d. 717,2° ± 251 ,4C ± 0,63c fermentad 1 1 ,0 6,9 + o + tanase 0,014 8 li EHS nd * nd 717.2 ° ± 251.4 ° C ± 0.63 and fermented 11.0 + 6.9 + o + tanase 0.014
2 2
III EHS + n.d. n.d. 944,5d ± 321 ,6d ± 0,82d tanase 0,9 0,8 + III EHS + ndnd 944.5 d ± 321.6 d ± 0.82 d tanase 0.9 0.8 +
0,010 4 n.d. = Não detectado abaixo do limite de detecção para esta metodologia e equipamentos. Os resultados são expressos como média ± desvio padrão (n = 3). A média na mesma coluna com letras diferentes são significativamente diferentes {p <0,05).  0.010 4 n.d. = Not detected below detection limit for this methodology and equipment. Results are expressed as mean ± standard deviation (n = 3). The mean in the same column with different letters is significantly different (p <0.05).
[0056] Os resultados demonstraram que todos os bioprocessos desenvolvidos foram capazes de aumentar significativamente o teor das formas agliconas (daidzeína e genisteína) e equol em extraio hidrossolúvel de soja. Devido à hidrólise da daidzina e genistina, o conteúdo das suas correspondentes formas agliconas, daidzeína e genisteína, em EHS aumentou após o processo fermentativo e enzimático (p <0,05).  The results showed that all bioprocesses developed were able to significantly increase the content of the aglycone (daidzein and genistein) and equol forms in water soluble soybean extract. Due to the hydrolysis of daidzine and genistine, the content of their corresponding aglycone, daidzein and genistein forms in EHS increased after the fermentative and enzymatic process (p <0.05).
[0057] Como demonstrado na tabela 3, as isoflavonas glicosídicas foram as formas predominantes no EHS padrão e fermentado. No entanto, as concentrações dos glicosídeos genistina e daidzina do EHS fermentado (processo I) diminuíram cerca de 1 ,6 e 2 vezes, respectivamente, e as algiconas daidzeína e a genisteína aumentaram cerca de 3,5 e 5 vezes, respectivamente, quando comparado com o EHS padrão. Portanto, estes resultados sugerem que as isoflavonas glicosiladas foram transformadas em formas agliconas como resultado do processo de fermentação. De acordo com Duenas et al., (2012), este fato pode ser devido à atividade de β-glicosidase inerente aos microrganismos utilizados no processo fermentativo. As shown in Table 3, glycosidic isoflavones were the predominant forms in standard and fermented EHS. However, the concentrations of fermented EHS genistin and daidzine glycosides (process I) decreased by about 1, 6 and 2 times, respectively, and the daidzein and genistein algicones increased by 3.5 and 5 times, respectively, when compared with standard EHS. Therefore, these results suggest that glycosylated isoflavones were transformed into aglycone forms as a result of the fermentation process. According to Duenas et al. (2012), This may be due to the β-glycosidase activity inherent in the microorganisms used in the fermentation process.
[0058] Como pode ser observado na tabela 3, após os processos II e III, as formas glicosídicas (daidzina e genistina) não foram identificadas, mostrando que estas formas foram convertidas em suas respectivas formas agliconas, como mostrado por um aumento significativo nos níveis de daidzeína e genisteína após estes bioprocessos.  As can be seen from Table 3, after processes II and III, the glycosidic forms (daidzine and genistine) were not identified, showing that these forms were converted to their respective aglycone forms, as shown by a significant increase in levels. of daidzein and genistein after these bioprocesses.
[0059] As concentrações das formas agliconas do EHS fermentado, após o processo II, aumentaram significativamente cerca de 28 vezes (25,6 - 717,2 mg/mL) para a daidzeína e 25 vezes (10,2- 251 ,4 mg/mL) para a genisteína, comparado com o EHS padrão. No processo ill as formas agliconas aumentaram significativamente, comparado com o EHS padrão, cerca de 37 vezes (25,6 - 944,5 mg/mL) para a daidzeína e 32 vezes (10,2 - 321 ,6 mg/mL) para a genisteína. Estes resultados indicam que a reação enzimática com tanasse (processo III) apresentou o maior aumento das formas bioativas das isoflavonas, o que também foi observado para os resultados do teor de fenólicos totais e capacidade antioxidante pelos métodos do ORAC e DPPH.  Concentrations of the fermented EHS aglycone forms after process II increased significantly about 28-fold (25.6 - 717.2 mg / mL) for daidzein and 25-fold (10.2-251.4 mg). / mL) for genistein compared to standard EHS. In process ill the aglycone forms increased significantly, compared to standard EHS, by 37-fold (25.6 - 944.5 mg / mL) for daidzein and 32-fold (10.2 - 321.6 mg / mL) for daidzein. the genistein. These results indicate that the enzymatic reaction with tanasse (process III) presented the largest increase of the bioactive forms of isoflavones, which was also observed for the results of total phenolic content and antioxidant capacity by ORAC and DPPH methods.
[0060] As isoflavonas agliconas foram reportadas por exibir maior função bioativa do que as formas glicosídicas (Cederroth, e Nef, 2009; Setchell, 1998). Portanto, as agliconas são as principais responsáveis pela atividade antioxidante de alimentos à base de soja, embora outros componentes da soja, tais como compostos fenólicos também possam contribuir para a capacidade antioxidante em certa medida (Cheng, Lin, e Liu, 201 1 ). Isoflavones aglycones have been reported to exhibit greater bioactive function than glycosidic forms (Cederroth, and Nef, 2009; Setchell, 1998). Therefore, aglycones are primarily responsible for the antioxidant activity of soy-based foods, although other soy components such as phenolic compounds may also contribute to antioxidant capacity to some extent (Cheng, Lin, and Liu, 201 1).
[0061 ] Portanto, a bioconversão das isoflavonas gicosiladas em suas formas agliconas após os três processos de biotransformação propostos, provou ser muito eficaz para aumentar a capacidade antioxidante das amostras pelos métodos testados, como foi demonstrado com os testes in vitro de atividade antioxidante (ORAC e DPPH).  Therefore, the bioconversion of glycosylated isoflavones into their aglycone forms after the three proposed biotransformation processes proved to be very effective in increasing the antioxidant capacity of the samples by the tested methods, as demonstrated by the in vitro antioxidant activity tests (ORAC). and DPPH).
[0062] A habilidade da enzima tanase em bíotransformar padrões comerciais de isoflavonas glicosídicas (daidzina e genistina) foi provada em ensaios realizados in vitro. A figura 1 apresenta os cromatogramas obtidos após de 30 minutos de ração, a 40° C, em que padrões comerciais de daidzina (A) e genisteína (B) foram reagidos com com extrato semipurif içado de tanase de P. variotti. Também são apresentados os tempos de retenção e os espectros de absorção dos produtos da reação. [0062] The ability of the enzyme tanase to transform commercial patterns of glycosidic isoflavones (daidzine and genistine) has been proven in in vitro assays. Figure 1 shows the chromatograms obtained after 30 minutes of feed at 40 ° C, in which commercial standards of daidzine (A) and genistein (B) were reacted with P. variotti tannase semipurified extract. also retention times and absorption spectra of reaction products are shown.
[0063] Como mostrado na figura 1 , é possível constatar que a reação entre a tanase e os padrões de isfolavonas glicosiladas (daidzina e genistina), levou à formação das suas respectivas formas agliconas (A) dadizeína e (B) genisteína. Tal fato pode ser confirmado a partir da similaridade entre o tempo de retenção dos produtos das reações. Estes resultados provam que a tanase é capaz de atuar na hidrólise das ligações glicosídicas das isoflavonas.  As shown in Figure 1, it can be seen that the reaction between tannase and the glycosylated isfolavone patterns (daidzine and genistine) led to the formation of their respective (A) dadizein and (B) genistein forms. This fact can be confirmed from the similarity between the retention time of the reaction products. These results prove that tanase is able to act on the hydrolysis of the isoflavone glycosidic bonds.
[0064] Como mostrado na tabela 3, a concentração de equol após a fermentação do EHS com bactérias do ácido láctico (processo I) levou a um aumento significativo no teor de equol, cerca de 3,9 vezes. No processo II, o tratamento enzimático do EHS fermentado levou a um aumento significativo de cerca de cerca de 7,9 vezes deste composto bioativo, quando comparado ao EHS padrão. No processo III, após o tratamento enzimático do EHS bruto o aumento foi de cerca de 10 vezes. Estes resultados indicam que a tanase de P. variotiii apresentou maior ação hidrolítica das isoflavonas glicosiladas em relação ao processo de fermentação e também foi capaz de melhorar o conteúdo de equol em EHS. As shown in Table 3, the concentration of equol after fermentation of EHS with lactic acid bacteria (process I) led to a significant increase in equol content, about 3.9-fold. In process II, enzymatic treatment of fermented EHS led to a significant increase of about 7.9 times this bioactive compound when compared to standard EHS. In process III, after enzymatic treatment of crude EHS the increase was about 10-fold. These results indicate that P. variotiii tannase showed higher hydrolytic action of glycosylated isoflavones in relation to the fermentation process and was also able to improve the equol content in EHS.
[0065] A capacidade da tanase em biotransformar as isoflavonas glicosiladas e aumentar o conteúdo de equol no EHS pode ser confirmada pelos cromatogramas presentes na figura 2.  The ability of tanase to biotransform glycosylated isoflavones and increase the equol content in the EHS can be confirmed by the chromatograms shown in Figure 2.
[0066] A figura 2 apresenta o perfil cromatográfico da composição geral dos polifenóis do EHS padrão (A) e do EHS fermentado por bactérias do ácido lácticas (B), bem como para o EHS fermentado (C) e EHS não fermentado (D) tratado com 1 ,8 U de extrato semi-purificado de tanase.  [0066] Figure 2 shows the chromatographic profile of the general composition of standard EHS (A) and lactic acid bacteria fermented EHS (B) as well as fermented EHS (C) and unfermented EHS (D) polyphenols. treated with 1.8 U of semi-purified tannase extract.
[0067] Na figura 2, é possível observar que ambos os processos de fermentação e tratamento enzimático foram capazes de aumentar significativamente o conteúdo de isoflavonas agliconas (daidzeína e genisteína). Além disso, estes bioprocessos levaram à formação de equol. In Figure 2, it can be seen that both fermentation and enzymatic treatment processes were able to significantly increase the content of isoflavones aglycones (daidzein and genistein). In addition, these bioprocesses led to the formation of equol.
[0068] Os resultados da tabela 3 demonstraram que a tanase de P. variotti foi capaz de sintetizar o equol a um nível superior quando comparada às cepas microbianas utilizadas no processo de fermentação. Para o melhor do nosso conhecimento, estudos nessa área são raros e há pouca informação sobre a correlação entre a formação equol e uso de enzimas. [0069] Também pode-se observar que a ação desta enzima não se limitou a uma degiicosilação da isoflavonas (figura 1 ), a tanase também foi capaz de aumentar o teor de equol. Estes resultados fazem desta enzima uma opção interessante para aplicação em alimentos à base de soja, com uma composição rica em polifenóis em que a tanase pode agir de diferentes maneiras no processo de biotransformação. The results of table 3 demonstrated that P. variotti tannase was able to synthesize equol at a higher level compared to microbial strains used in the fermentation process. To the best of our knowledge, studies in this area are rare and there is little information on the correlation between equol formation and enzyme use. It can also be observed that the action of this enzyme was not limited to isoflavone deglycosylation (figure 1), tannase was also able to increase the equol content. These results make this enzyme an interesting option for application in soy-based foods, with a rich polyphenol composition where tannase can act in different ways in the biotransformation process.
Referências Bibliográficas Bibliographic references
Aleke!, D. L, Germain, A. S., Peterson, C. T., Hanson, K. B., Stewart, J. W., & Toda, T. (2000). Isoflavone-rich soy protein isolate attenuates bone loss in the lumbar spine of perimenopausal women, American Journal of Clinicai Nutrition, 72(3), 844- 852.  Aleke, D.L., Germain, A.S., Peterson, C.T., Hanson, K.B., Stewart, J.W., & Toda, T. (2000). Isoflavone-rich soy protein isolate attenuates bone loss in the lumbar spine of perimenopausal women, American Journal of Clinical Nutrition, 72 (3), 844-852.
Aguiar, C. L; Suzuki, C. N.; Paredes, J. G.; Alencar, S. M.; Park, Y. K. (2003). Transformation of beta-glucoside isofíavones on solid-state fermentation of the soy flour with Aspergillus oryzae. Ciência y Tecnologia Alimentaria, 4(2), 1 15- 121 .  Aguiar, C.L; Suzuki, C.N .; Paredes, J. G .; Alencar, S. M .; Park, Y. K. (2003). Transformation of isofibone beta-glucoside on solid-state fermentation of soy flour with Aspergillus oryzae. Food Science and Technology, 4 (2), 1 15-121.
Battestin, V., & Macedo, G. A. (2007a). Tannase production by Paecilomyces variotii. Bioresource Technology, 98(9), 1832-1837.  Battestin, V., & Macedo, G. A. (2007a). Tannase production by Paecilomyces variotii. Bioresource Technology, 98 (9), 1832-1837.
Battestin, V., & Macedo, G. A. (2007b). Purification and biochemical characterization of tannase from a newly isolated strain of Paecilomyces variotii. Food Biotechnology, 21 (3), 207-216.  Battestin, V., & Macedo, G. A. (2007b). Purification and biochemical characterization of tannase from a newly isolated strain of Paecilomyces variotii. Food Biotechnology, 21 (3), 207-216.
Battestin, V., Macedo, G. A., & de Freitas, V. A. P. (2008). Hydrolysis of epigalíocatechingallate using a tannase from Paecilomyces variotti. Food Chemistry, 108(1 ), 228-233.  Battestin, V., Macedo, G. A., & de Freitas, V. A. P. (2008). Hydrolysis of epigallocatechingallate using a tannase from Paecilomyces variotti. Food Chemistry, 108 (1), 228-233.
Cao, S., Sofic, M., & Prior, R. L. (1996). Antioxidant capacity of tea and common vegetables. Journal of Agricultural Food Chemistry, 44(1 1 ), 3426-3431 .  Cao, S., Sofic, M., & Prior, R.L. (1996). Antioxidant capacity of tea and common vegetables. Journal of Agricultural Food Chemistry, 44 (11), 3426-3431.
Cederroth, C. R., & Nef, S. (2009). Soy, phytoestrogens and metabolism: a review. Molecular and Cellular Endocrinology, 304(1 ), 30-42. Cederroth, C.R., & Nef, S. (2009). Soy, phytoestrogens and metabolism: a review. Molecular and Cellular Endocrinology, 304 (1), 30-42.
Chandler, S. F., & Dodds, J. H. (1983). The effect of phosphate, nitrogen, and sucrose on the production of phenolics and socosidine in callus cultures of solanum tuberosum. Plant Celi Reports, 2:105-108. Chandler, S.F., & Dodds, J.H. (1983). The effect of phosphate, nitrogen, and sucrose on the production of phenolics and socosidine in callus cultures of solanum tuberosum. Plant Celi Reports, 2: 105-108.
Chang, C. T., Hsu, C. K., Chou, S. T., Chen, Y. C, Huang, F. S. & Chung Y.C. (2009). Effect of fermentation time on the antioxidant activities of tempeh prepared from fermented soybean using Rhizopus oligosporus. Internaíonal Journal of Food Science and Technology, 44(4), 799-806. Cheng, C, Wang, X., Weak!ey, S. M., Kougias, P., Lin, P. H., Qizhi, Y., et ai. (2010). Soybean isoflavonoid equol biocks ritonavir-induced endothe!ia dysfunction in porcine pulmonary arteries and human pulmonary artery endothelial cells. Journal of Nutrition, 140(1 ), 7-12. Chang, CT, Hsu, CK, Chou, ST, Chen, YC, Huang, FS & Chung YC (2009). Effect of fermentation time on antioxidant activities of tempeh prepared from fermented soybean using Rhizopus oligosporus. International Journal of Food Science and Technology, 44 (4), 799-806. Cheng, C., Wang, X., Weakley, SM, Kougias, P., Lin, PH, Qizhi, Y., et al. (2010). Soybean isoflavonoid equol ritonavir-induced endothelial cell dysfunction in porcine pulmonary arteries and human pulmonary artery endothelial cells. Journal of Nutrition, 140 (1), 7-12.
Cheng, K. C., Lin, J. T., & Liu, W. H. (2011). Extracts from fermented b!ack soybean by immobilized Rhizopus oligosporous exhibit both antioxidative and cytotoxic acttvtties. Food Technology and Biotechnology, 49(1 ), 11-117.  Cheng, K.C., Lin, J.T., & Liu, W.H. (2011). Extracts from fermented soybean by immobilized Rhizopus oligosporous exhibit both antioxidative and cytotoxic acttvtties. Food Technology and Biotechnology, 49 (1), 11-117.
Chien, H. L., Huang, H. Y., & Chou, C. C. (2006). Transformation of isoflavone phytoestrogens during the fermentation of soymilk with lactic acid bactéria and bifidobacteria. Food Microbiology, 23(8), 772-778. Chien, H.L., Huang, H.Y., & Chou, C.C. (2006). Transformation of isoflavone phytoestrogens during the fermentation of soymilk with lactic acid bacteria and bifidobacteria. Food Microbiology, 23 (8), 772-778.
Cho, K. M., Hong, S. Y., Math, R. K., Lee, J. H., Kambiranda, D. M., Kim, J. M. et al. (2009). Biotransformation of phenolics (isoflavones, flavanols and phenolic acids) during the fermentation of cheonggukjang by Bacillus pumilus HY1. Food Chemistry, 114(2), 413-419.  Cho, K.M., Hong, S.Y., Math, R.K., Lee, J.H., Kambiranda, D.M., Kim, J.M. et al. (2009). Biotransformation of phenolics (isoflavones, flavanols and phenolic acids) during the fermentation of cheonggukjang by Bacillus pumilus HY1. Food Chemistry, 114 (2), 413-419.
Clerici, C, Setchell, K. D., Battezzati, P. M., Pirro, ., Giuliano, V., Asciutti, S., Castellani, D., et al. (2007). Pasta naturally enriched with isoflavone aglycons from soy germ reduces serum lipids and improves markers of cardiovascular risk. Journal of Nutrition, 137(10), 2270-2278.  Clerici, C., Setchell, K. D., Battezzati, P. M., Pirro., Giuliano, V., Asciutti, S., Castellani, D., et al. (2007). Pasta naturally enriched with isoflavone aglycons from soy germ decreases serum lipids and improves markers of cardiovascular risk. Journal of Nutrition, 137 (10), 2270-2278.
Cruz, A. G., Guerreiro, L., Nogueira, L. C, SanfAna, A. S., Faria, J. A. F., Oliveira, C. A. F., et al. (2013). Developing a prebiotic yogurt: rheologícal, physico-chemical and microbiological aspects and adequacy of survival analysis methodology. Journal of Food Engineering, 114(3), 323-330.  Cruz, A. G., Guerreiro, L., Nogueira, L. C., SanfAna, A. S., Faria, J. A. F., Oliveira, C. A. F., et al. (2013). Developing a prebiotic yogurt: rheological, physicochemical and microbiological aspects and adequacy of survival analysis methodology. Journal of Food Engineering, 114 (3), 323-330.
Duenas, ., Hernandez, T., Robredo, S., Lamparski, G., Estrella, & I., Munoz, R. (2012). Bioactive phenolic compounds of soybean (Glycine max cv. Merit): modifications by different microbiological fermentations. Polish Journal of Food and Nutrition Sciences, 62(4), 241-250. Duenas, Hernandez T. Robredo S. Lamparski G. Estrella & I. Munoz R. (2012). Bioactive phenolic compounds of soybean (Glycine max cv. Merit): modifications by different microbiological fermentations. Polish Journal of Food and Nutrition Sciences, 62 (4), 241-250.
Di Cagno, R., Mazzacane, F., Rizello, C. G., Vincentini, O., Silano, M., Guilani, G., et al. (2010). Synthesis of isoflavone aglycones and equol in soy milks fermented by food-related lactic acid bactéria and their effect on human intestinal Caco-2 cells. Journal of Agriculture and Food Chemistry, 58(19), 10338-10446. Ferreira, L R., Macedo, J. A., Ribeiro, M. L & Macedo, G. A. (2013). Improving the chemopreventive potential of orange juice by enzymatic biotransformation. Food Research International, 51 (2), 526-535. Huang, D., Ou, D., & Hampsch-Woodi, M. (2002). Deveiopment and validation of oxygen radical absorbance capacity assay for lipophilic antioxidants using randomly methylated b-cyclodextrin as the solubility enhancer. Journal of Agricultural and Food Chemistry, 50(7), 1815-1821 . Di Cagno, R., Mazzacane, F., Rizello, CG, Vincentini, O., Silano, M., Guilani, G., et al. (2010). Synthesis of isoflavone aglycones and equol in soy milks fermented by food-related lactic acid bacteria and their effect on human intestinal Caco-2 cells. Journal of Agriculture and Food Chemistry, 58 (19), 10338-10446. Ferreira, L R., Macedo, JA, Ribeiro, M. L & Macedo, GA (2013). Improving the potential chemopreventive of orange juice by enzymatic biotransformation. Food Research International, 51 (2), 526-535. Huang, D., Or, D., & Hampsch-Woodi, M. (2002). Deviation and validation of oxygen radical capacity for lipophilic antioxidants using randomly methylated b-cyclodextrin as the solubility enhancer. Journal of Agricultural and Food Chemistry, 50 (7), 1815-1821.
King, R. A., & Bigneli, C. M., (2000). Concentrations of isoflavones phytoestrogens and their glucosides in Australian soya beans and soya foods. Australian Journal of Nutrition and Dietetics, 57(2), 70-78.  King, R.A., & Bigneli, C.M., (2000). Concentrations of phytoestrogens isoflavones and their glucosides in Australian soya beans and soya foods. Australian Journal of Nutrition and Dietetics, 57 (2), 70-78.
Macedo, J. A., Battestin, V., Ribeiro, M. L, & Macedo, G. A. (201 1 ). Increasing the antioxidant power of tea extracts by biotransformatton of polyphenols. Food Chemistry, 126(2), 491- 97. Macedo, J.A., Battestin, V., Ribeiro, M.L. & Macedo, G.A. (2011). Increasing the antioxidant power of tea extracts by biotransformatton of polyphenols. Food Chemistry, 126 (2), 491-97.
Mandarino, J. M. G., & Carrão-Panizzi, M.C. (1999). A soja na cozinha. Embrapa Soja, doe. 136. p.13.  Mandarin, J.M. G., and Carrão-Panizzi, M.C. (1999). The soy in the kitchen. Embrapa Soy, donate. 136. p.13.
McCue, P. P., & Shetty, K. (2005). Phenolic antioxidant mobilization during yogurt production from soymilk using Kefir cultures. Process Biochemistry, 40(5), 1791— 1797.  McCue, P. P., & Shetty, K. (2005). Phenolic antioxidant mobilization during yogurt production from soymilk using Kefir cultures. Process Biochemistry, 40 (5), 1791-1797.
Nam, D. H., Kim, H. J., Um, J. S., Kim, K. H, Park C, Kim J. H., et al. (201 1 ). Simultaneous. enhancement of free isoflavone content and potential of soybean by fermentation with Aspergillus oryzae. Journal of Food Science, 76(8), 194- . 200. Nam, DH, Kim, HJ, A, JS, Kim, K.H, Park C, Kim JH, et al. (201 l). Simultaneous . enhancement of free isoflavone content and potential of soybean by fermentation with Aspergillus oryzae. Journal of Food Science, 76 (8), 194-. 200.
Nielsen, I. L, & Williamson, G. (2007). Review of the factors affecting bioavatlability of soy isoflavones in humans. Nutritional and Câncer, 57(1 ), 1 -10. Park Y. K., Alencar, S. M., Nery, I. A., Aguiar, CL, Pacheco, T. A. R. C. (2001 ). Enrichment of isoflavone aglycones in extracted soybean isoflavones by heat and fungai β-glucosidase. Food Science-South Korea, 34(4), 14-19.  Nielsen, I.L, & Williamson, G. (2007). Review of the factors affecting bioavatability of soy isoflavones in humans. Nutritional and Cancer, 57 (1), 1-10. Park Y.K., Alencar, S.M., Nery, I.A., Aguiar, CL, Pacheco, T.A.R.C. (2001). Enrichment of isoflavone aglycones in extracted soybean isoflavones by heat and fungal β-glucosidase. Food Science-South Korea, 34 (4), 14-19.
Pyo, Y-H., Lee, T-C, & Lee, Y-C. (2005). Enrichment of bioactive isoflavones in soymilk fermented with β-glucosidase-producing lactic acid bactéria. Food Research International, 38(5), 551-559. Pyo, Y-H., Lee, T-C, & Lee, Y-C. (2005). Enrichment of bioactive isoflavones in soymilk fermented with β-glucosidase-producing lactic acid bacteria. Food Research International, 38 (5), 551-559.
Setchell, K. D. (1 998). Phytoestrogens: the biochemistry, physíology, and implications for human health of soy isoflavones. American Journal of Clinicai Nutrition, 68(6), 1333-1346.  Setchell, K. D. (1998). Phytoestrogens: the biochemistry, physiology, and implications for human health of soy isoflavones. American Journal of Clinical Nutrition, 68 (6), 1333-1346.
Shon, M. Y., Lee, J., Choi, J. H., Choi, S. Y., Nam, S. H., Seo, K. I., et al. (2007). Antioxidant and free radical scavenging activity of methanol extract of chungkukjang. Journal of Food Composition and Analysis, 20(2), 1 13- 18. Tamime, A. Y., & Robinson R.K. (2007). Yoghurt: Science and Technology. Ç3th ed.). Cambridge, UK: Woodhead Publishing, 791 p. Shon, MY, Lee, J., Choi, JH, Choi, SY, Nam, SH, Seo, KI, et al. (2007). Antioxidant and free radical scavenging activity of methanol extract of chungkukjang. Journal of Food Composition and Analysis, 20 (2), 11-18. Tamime, AY, & Robinson RK (2007). Yoghurt: Science and Technology. 3rd ed.). Cambridge, UK: Woodhead Publishing, 791 p.
Tyug, T. S., Prasad, K. N., & Ismail, A. (2010). Antioxidant capacity, phenolics and isoflavones in soybean by-products. Food Chemistry, 123(3), 583-589. Wang, Y. C, Yu, R. C. & Chou, C. C. (2006). Antioxidative activities of soymilk fermented with lactic acid bactéria and bifidobacteria. Food Microbiology, 23(2), 128-135.  Tyug, T.S., Prasad, K.N., & Ismail, A. (2010). Antioxidant capacity, phenolics and isoflavones in soybean by-products. Food Chemistry, 123 (3), 583-589. Wang, Y. C., Yu, R. C. & Chou, C. C. (2006). Antioxidative activities of soymilk fermented with lactic acid bacteria and bifidobacteria. Food Microbiology, 23 (2), 128-135.
Wardhani, D. H., Vázquez, J. A., & Pandiellaa, S. S. (2010). Optimisation of antioxidants extraction from soybeans fermented by Aspergillus oryzae. Food Chemistry, 1 18(3), 731 -739.  Wardhani, D.H., Vazquez, J.A., & Pandiellaa, S.S. (2010). Optimization of antioxidants extraction from fermented soybeans by Aspergillus oryzae. Food Chemistry, 11 (3), 731-739.

Claims

REIVINDICAÇÕES
1 . Processo de biotransformação enzimática de isoflavona caracterizado pelo fato de compreender a fermentação de um substrato composto de extrato hidrossolúvel de soja por bactérias iniciadoras e bactérias ácido lácticas probióticas e/ou de enzima tanase obtida a partir de Paecílomyces variottí.e as etapas:  1 . Isoflavone enzymatic biotransformation process comprising the fermentation of a substrate composed of water-soluble soybean extract by starter bacteria and probiotic lactic acid bacteria and / or tanase enzyme obtained from Paecílomyces variottí.e the steps:
A. Macerar os grãos de soja íntegros em água destilada a temperatura ambiente;  A. Macerate whole soybeans in distilled water at room temperature;
B. Descartar a agua utilizada para maceração;  B. Discard the water used for maceration;
C. Adicionar agua destilada;  C. Add distilled water;
D. Aquecer os grãos em água entre 90 a 1 10gC por 3 a 10 minutos; D. Heat the beans in water at 90 to 110 g C for 3 to 10 minutes;
E. Adicionar agua destilada;  E. Add distilled water;
F. Triturar os grãos de soja com água destilada;  F. Crush soybeans with distilled water;
G. Centrifugar a massa obtida entre 9000 a 10OOOg por 10 a 20 minutos, preferencialmente 15 minutos a temperatura ambiente;  G. Centrifuge the mass obtained from 9000 to 100,000 for 10 to 20 minutes, preferably 15 minutes at room temperature;
H. Aquecer o extrato hidrossolúvel de soja (EHS) até ebulição por entre 10 a 15 minutos;  H. Heat the water soluble soybean extract (EHS) to boiling for 10 to 15 minutes;
I. Esterilizar por aquecimento a temperatura de 121 °C por 15 a 20 minutos;  I. Sterilize by heating at 121 ° C for 15 to 20 minutes;
J. Realizar biotransformação; e  J. Perform biotransformation; and
K. Manter o produto EHS com isoflavonas bioativas e equol conservado. K. Maintain EHS with bioactive isoflavones and preserved equol.
2. Processo, de acordo com a reivindicação 1 , caracterizado peio fato de que as bactérias iniciadoras serem Streptococcus ssp. Thermophilus (YF-L81 1 ) e Lactobacillus delbrueckii ssp. Bulgaricus (LB-340); e bactérias ácido lácticas probióticas serem Bifidobacterium animales ssp. Lactis (Bb-12) e Lactobacillus acidophillus. Process according to Claim 1, characterized in that the starter bacteria are Streptococcus ssp. Thermophilus (YF-L81 1) and Lactobacillus delbrueckii ssp. Bulgaricus (LB-340); and probiotic lactic acid bacteria to be Bifidobacterium animales ssp. Lactis (Bb-12) and Lactobacillus acidophillus.
3. Processo, de acordo com a reivindicação 1 , caracterizado por na etapa (A) a proporção de peso de grãos de soja e volume de agua ser de 1 :3.  Process according to claim 1, characterized in that in step (A) the proportion of soybean weight and volume of water is 1: 3.
4. Processo, de acordo com a reivindicação 1 , caracterizado por na etapa (D) a proporção de peso de grãos de soja e volume de agua ser de :2 e as condições processuais serem 00°C por 5 minutos.  Process according to Claim 1, characterized in that in step (D) the proportion of soybean weight and volume of water is: 2 and the process conditions are 00 ° C for 5 minutes.
5. Processo, de acordo com a reivindicação 1 , caracterizado por na etapa (F) a proporção de peso de grãos de soja e volume de agua ser de 1 :4. Process according to Claim 1, characterized in that in step (F) the ratio of soybean weight to water volume is 1: 4.
6. Processo/de acordo com a reivindicação 1 , caracterizado por na etapa (G) a centrifugação ocorrer a 9630 x g por 15 minutos a temperatura de 259C. 6. The method / according to claim 1, wherein in step (G) occur at 9630 xg centrifugation for 15 min at 25 C. 9
7. Processo, de acordo com a reivindicação 1 , caracterizado por na etapa (H) a faixa preferencial de ebulição ser entre 96 e 100°C e tempo de 10 minutos. Process according to Claim 1, characterized in that in step (H) the preferred boiling range is between 96 and 100 ° C and a time of 10 minutes.
8. Processo, de acordo com a reivindicação 1 . caracterizado por na etapa (I) o tempo ser de 15 minutos. Process according to claim 1. characterized in that in step (I) the time is 15 minutes.
9. Processo, de acordo com a reivindicação 1 , caracterizado por na etapa (I) compreender opcionalmente uma subetapa de armazenamento (l.a) em condição estéril do EHS.  Process according to Claim 1, characterized in that in step (I) optionally comprises a sterile EHS storage substep (1a).
10. Processo, de acordo com a reivindicação 9, caracterizado por na subetapa etapa (l.a) as condições de armazenamento de EHS ser de refrigeração entre 4 a 12SC ou congelamento a -80eC. 10. Process according to claim 9, characterized in that in substep step (la) the storage conditions of refrigeration EHS be between 4 and 12 S or C and freezing at -80 C.
1 1 . Processo, de acordo com a reivindicação 1 , caracterizado por na etapa (J) a biotrasnformação ser realizada por Biotransformação fermentativa, Biotransformação fermentativa seguida por enzimática ou Biotransformação enzimática.  1 1. Process according to claim 1, characterized in that in step (J) the biotransformation is carried out by fermentative biotransformation, fermentative biotransformation followed by enzymatic or enzymatic biotransformation.
12. Processo, de acordo com a reivindicação 1 1 , caracterizado pela Biotransformação fermentativa ocorrer da seguinte forma:  Process according to Claim 11, characterized in that the fermentative biotransformation takes place as follows:
i. Inocular as culturas iniciadoras na concentração de 0,5 - 2% (v/v), preferencialmente 1 % (v/v), e de bactérias ácido lácticas probióticas na concentração de 5 a 1 5% (v/v), preferencialmente 5% (v/v), e contagem mínima de 106 - 107 log UFC/mL e máxima de 1014 log UFC/mL no EHS obtido na etapa i. Inoculate starter cultures at a concentration of 0.5 - 2% (v / v), preferably 1% (v / v), and probiotic lactic acid bacteria at a concentration of 5 to 15% (v / v), preferably 5 % (v / v), and a minimum count of 106 - 107 log CFU / mL and a maximum of 1014 log CFU / mL in the EHS obtained in step
( ; e ( ; and
ií. Incubar a solução obtida em (i) entre 30 e 409C, preferencialmente a 37QC, por 10 a 24 horas, preferencialmente 12 horas, em condições de anaerobiose. i. Incubate the solution obtained in (i) from 30 to 40 9 C, preferably at 37 Q C for 10 to 24 hours, preferably 12 hours under anaerobic conditions.
13. Processo, de acordo com a reivindicação 1 1 , caracterizado pela Biotransformação fermentativa seguida por enzimática ocorrer da seguinte forma:  Process according to Claim 11, characterized in that the fermentative biotransformation followed by enzymatic occurs as follows:
i. Inocular as culturas iniciadoras na concentração de 0,5 - 2% (v/v), preferencialmente 1 % (v/v), e de bactérias ácido lácticas probióticas na concentração de 5 - 15% (v/v), preferencialmente a 5% (v/v), e contagem mínima de 106 - 107 log UFC/mL e máxima de 1014 log UFC/mL no EHS obtido na etapa i. Inoculate starter cultures at a concentration of 0.5 - 2% (v / v), preferably 1% (v / v), and probiotic lactic acid bacteria at a concentration of 5 - 15% (v / v), preferably at 5 % (v / v), and a minimum count of 106 - 107 log CFU / mL and a maximum of 1014 log CFU / mL in the EHS obtained in step
(D; ii. Incubar ao EHS com as culturas obtida em (i) entre 30 e 40QC, preferencialmente a 37SC, por 10 a 24 horas, preferencialmente 12 horas, em condições de anaerobiose; (D; ii. Incubate the cultures with EHS obtained in (i) between 30 and 40 Q C, preferably S to 37 C for 10 to 24 hours, preferably 12 hours, under anaerobic conditions;
iii. Inocular em solução obtida em (ii) com 1 a 5 U de tanase, preferencialmente 1 ,8 U de tanase, por 1 ml de EHS fermentado (ii);  iii. Inoculate in a solution obtained from (ii) with 1 to 5 U of tanase, preferably 1.8 U of tanase, per 1 ml of fermented EHS (ii);
iv. Incubar a solução de (iii) entre 35 a 45oC, preferencialmente 40eC, por 20 a 50 minutos, preferencialmente 30 minutos; e iv. Incubate the solution of (iii) from 35 to 45 ° C, and preferably 40 C, for 20 to 50 minutes, preferably 30 minutes; and
v. Incubar a solução de (iv) entre -2 a 2oC, preferencialmente 0QC (em banho de gelo) por 10 a 30 min, preferencialmente 15 minutos; v. Incubate the solution of (iv) between -2 to 2 ° C, preferably Q 0 C (ice bath) for 10 to 30 minutes, preferably 15 minutes;
14. Processo, de acordo com a reivindicação 1 1 , caracterizado pela Biotransformação enzimática ocorrer da seguinte forma:  Process according to Claim 11, characterized in that the enzymatic biotransformation takes place as follows:
i. Inocular em EHS obtida em (I) com 1 a 5 U de tanase, preferencialmente 1 ,8 U de tanase, por 1 ml de EHS (I);  i. EHS inoculum obtained in (I) with 1 to 5 U tanase, preferably 1.8 U tanase, per 1 ml EHS (I);
ii. Incubar a solução em (i) entre entre 35 a 45oC, preferencialmente 409C, por 20 a 50 minutos, preferencialmente 30 minutos; e ii. Incubate the solution (i) from 35 to 45 ° C, preferably 40 9 C for 20 to 50 minutes, preferably 30 minutes; and
iii. Incubar a solução de (ii) entre -2 a 2oC, preferencialmente 0gC (em banho de gelo) por 10 a 30 min, preferencialmente 15 minutos; iii. Incubate the solution of (ii) at -2 to 2 ° C, preferably 0 g C (in an ice bath) for 10 to 30 min, preferably 15 minutes;
15. Processo, de acordo com a reivindicação 1 , caracterizado por na etapa (K) a conservação ocorrer preferencialmente por congelamento a -80°C.  Process according to claim 1, characterized in that in step (K) the preservation preferably takes place by freezing at -80 ° C.
16. Composição caracterizada por ser obtido de acordo o processo descrito nas reivindicações de 1 a 15 e compreender Daidzina na forma aglicona em concentração entre 90 e 946 Mg/mL, Genisteína na forma aglicona em concentração entre 50 e 323 Mg/mL e Equol em concentração entre 0,30 e 0,83 Mg/mL.  Composition characterized in that it is obtained according to the process described in claims 1 to 15 and comprises Daidzine in aglycone form in a concentration between 90 and 946 Mg / ml, Genistein in aglycone form in a concentration between 50 and 323 Mg / ml and Equol in concentration between 0.30 and 0.83 Mg / mL.
17. Uso da composição conforme definida na reivindicação 16 caracterizado por ter aplicação em alimentos à base de soja.  Use of the composition as defined in claim 16 for use in soybean foods.
18. Uso da composição conforme definida na reivindicação 16 caracterizado por ser componente de produto nutracêutico.  Use of the composition as defined in claim 16 characterized in that it is a nutraceutical product component.
19. Uso da composição conforme definida na reivindicação 16 caracterizado por ter aplicação na indústria alimentícia, como ingrediente alimentar, e indústria de nutricosméticos e suplementos dietéticos.  Use of the composition as defined in claim 16 for use in the food industry as a food ingredient and in the nutricosmetics and dietary supplements industry.
PCT/BR2016/000024 2015-06-18 2016-03-03 Biotransformation method for transforming phenolic compounds from soy extract into equol and bioactive isoflavones by fermentation and/or enzymatic application, thus obtained composition and use WO2016201536A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRBR1020150144997 2015-06-18
BR102015014499A BR102015014499A2 (en) 2015-06-18 2015-06-18 biotransformation process of phenolic compounds of soybean extract in equol and bioactive isoflavones through fermentation and / or enzymatic application, composition thus obtained and use

Publications (1)

Publication Number Publication Date
WO2016201536A1 true WO2016201536A1 (en) 2016-12-22

Family

ID=57544600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2016/000024 WO2016201536A1 (en) 2015-06-18 2016-03-03 Biotransformation method for transforming phenolic compounds from soy extract into equol and bioactive isoflavones by fermentation and/or enzymatic application, thus obtained composition and use

Country Status (2)

Country Link
BR (1) BR102015014499A2 (en)
WO (1) WO2016201536A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022001078A1 (en) * 2020-07-03 2022-01-06 济南瑞隆安生物技术有限公司 Flavonoid fermented product, preparation method, and application in blood sugar regulation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110189134A1 (en) * 2008-09-19 2011-08-04 Otsuka Pharmaceutical Co., Ltd. Fermentation product containing equol-producing microorganism having maintained equol-producing ability, and method for producing same
BRPI1103791A2 (en) * 2011-08-05 2013-07-30 Unicamp Orange bagasse waste culture media for simultaneous production of phytase and tanase enzymes by the microorganism paecilomyces variotii by solid fermentation, obtained enzymes and their uses

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110189134A1 (en) * 2008-09-19 2011-08-04 Otsuka Pharmaceutical Co., Ltd. Fermentation product containing equol-producing microorganism having maintained equol-producing ability, and method for producing same
BRPI1103791A2 (en) * 2011-08-05 2013-07-30 Unicamp Orange bagasse waste culture media for simultaneous production of phytase and tanase enzymes by the microorganism paecilomyces variotii by solid fermentation, obtained enzymes and their uses

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
BATTESTIN, V. ET AL.: "Tannase production by Paecilomyces variotii.", BIORESOUR TECHNOL., vol. 98, no. 9, 2007, pages 1832 - 1837, XP005876261 *
CHIEN, H. L. ET AL.: "Transformation of isoflavone phytoestrogens during the fermentation of soymilk with lactic acid bacteria and bifidobacteria.", FOOD MICROBIOL., vol. 23, no. 8, 2006, pages 772 - 778, XP024904367 *
CHUN, J. ET AL.: "Conversion of isoflavone glucosides to aglycones in soymilk by fermentation with lactic acid bacteria.", J FOOD SCI., vol. 72, no. 2, 2007, pages M39 - 44, XP002627004 *
DI CAGNO, R. ET AL.: "Synthesis of isoflavone aglycones and equol in soy milks fermented by food-related lactic acid bacteria and their effect on human intestinal Caco-2 cells", J AGRIC FOOD CHEM., vol. 58, no. 19, 13 October 2010 (2010-10-13), pages 10338 - 10346, XP002627012 *
FERREIRA, L. R. ET AL.: "Improving the chemopreventive potential of orange juice by enzymatic biotransformation.", FOOD RES., vol. 51, no. 2, 2013, pages 526 - 535, XP055337602 *
MADEIRA JR, J. V. ET AL.: "Efficient tannase production using Brazilian citrus residues and potential application for orange juice valorization.", B IOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY., vol. 4, no. 1, 2015, pages 91 - 97, XP055337615 *
MADEIRA JR, J. V. ET AL.: "Rich bioactive phenolic extract production by microbial biotransformation of Brazilian Citrus residues", CHEMICAL ENGINEERING RESEARCH AND DESIGN, vol. 92, no. 10, 2014, pages 1802 - 1810, XP055337606 *
QUEIRÓS, L. D.: "Biotransformação de compostos fenólicos do extrato de soja para obtenção de produto rico em compostos bioativos.", DISSERTAÇÃO (MESTRADO EM CIÊNCIA DE ALIMENTOS) - UNIVERSIDADE ESTADUAL DE CAMPINAS, CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO., pages 67 f., Retrieved from the Internet <URL:http://www.bibliotecadigital.unicamp.br/document/ ? code=000932035&opt=4> [retrieved on 20160427] *
YUAN, J. P . ET AL.: "Metabolism of dietary soy isoflavones to equol by human intestinal microflora--implications for health", MOL NUTR FOOD RES, vol. 51, no. 7, July 2007 (2007-07-01), pages 765 - 781, XP055337619 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022001078A1 (en) * 2020-07-03 2022-01-06 济南瑞隆安生物技术有限公司 Flavonoid fermented product, preparation method, and application in blood sugar regulation

Also Published As

Publication number Publication date
BR102015014499A2 (en) 2016-12-27

Similar Documents

Publication Publication Date Title
Tu et al. Quality and metagenomic evaluation of a novel functional beverage produced from soy whey using water kefir grains
Zhao et al. Changes in antioxidant capacity, isoflavone profile, phenolic and vitamin contents in soymilk during extended fermentation
da Silva Fernandes et al. Evaluation of the isoflavone and total phenolic contents of kefir-fermented soymilk storage and after the in vitro digestive system simulation
Zhu et al. Riboflavin-overproducing lactobacilli for the enrichment of fermented soymilk: insights into improved nutritional and functional attributes
Sharma et al. Probiotic fermentation of polyphenols: Potential sources of novel functional foods
Torino et al. Antioxidant and antihypertensive properties of liquid and solid state fermented lentils
Chun et al. Enrichment of isoflavone aglycones in soymilk by fermentation with single and mixed cultures of Streptococcus infantarius 12 and Weissella sp. 4
Ge et al. Fermentative and physicochemical properties of fermented milk supplemented with sea buckthorn (Hippophae eleagnaceae L.)
Ahsan et al. Functional exploration of bioactive moieties of fermented and non-fermented soy milk with reference to nutritional attributes
Moraes Filho et al. Optimization of the fermentation parameters for the growth of Lactobacillus in soymilk with okara flour
JP6322580B2 (en) Soymilk fermented extract and hypocotyl fermented extract
Wang et al. Functionalization of soy residue (okara) by enzymatic hydrolysis and LAB fermentation for B2 bio-enrichment and improved in vitro digestion
Rashwan et al. Chemical composition, quality attributes and antioxidant activity of stirred-type yogurt enriched with Melastoma dodecandrum Lour fruit powder
Samruan et al. Soybean and fermented soybean extract antioxidant activities
WO2006105284A2 (en) Yeast fermentation of rice bran extracts
El-Sayed et al. Impact of purslane (Portulaca oleracea L.) extract as antioxidant and antimicrobial agent on overall quality and shelf life of Greek-style yoghurt
Hati et al. Impact of whey protein concentrate on proteolytic lactic cultures for the production of isoflavones during fermentation of soy milk
Lodha et al. Antioxidant activity, total phenolic content and biotransformation of isoflavones during soy lactic‐fermentations
Yao et al. Comparison of antioxidant activities in black soybean preparations fermented with various microorganisms
Yeo et al. Effect of fermentation on the phytochemical contents and antioxidant properties of plant foods
de Queirós et al. A new biotechnological process to enhance the soymilk bioactivity
KR101914344B1 (en) A moisturizing and anti-wrinkle cosmetic composition comprising fermented barley, fermented pear juice, fermented soybeans and fermented pomegranate extract and the method preparation of thereof
JP7587562B2 (en) Barrier functional composition and oral composition
WO2007009187A1 (en) Polyphenol and probiotic containing nutritional supplement
Monajjemi et al. Nano study of antioxidant activities of fermented soy whey prepared with lactic acid bacteria and kefir

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16810641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16810641

Country of ref document: EP

Kind code of ref document: A1