WO2016200245A1 - Production line air conditioning device using compressed air, and method for operating same - Google Patents

Production line air conditioning device using compressed air, and method for operating same Download PDF

Info

Publication number
WO2016200245A1
WO2016200245A1 PCT/KR2016/006277 KR2016006277W WO2016200245A1 WO 2016200245 A1 WO2016200245 A1 WO 2016200245A1 KR 2016006277 W KR2016006277 W KR 2016006277W WO 2016200245 A1 WO2016200245 A1 WO 2016200245A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
line
air chamber
chamber
pressure
Prior art date
Application number
PCT/KR2016/006277
Other languages
French (fr)
Korean (ko)
Inventor
윤종찬
Original Assignee
주식회사 비엠티
(주)파워쿨
윤종찬
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150083302A external-priority patent/KR101608801B1/en
Priority claimed from KR1020150186227A external-priority patent/KR102000649B1/en
Application filed by 주식회사 비엠티, (주)파워쿨, 윤종찬 filed Critical 주식회사 비엠티
Publication of WO2016200245A1 publication Critical patent/WO2016200245A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers

Definitions

  • the present invention relates to an air conditioning apparatus and a method of operating the production line using the compressed air to predict the amount of compressed air to meet the required output capacity conditions and at the same time to improve the driving efficiency of the compression pump and the refrigeration cycle.
  • a production line such as a factory, is a place where products are produced in cooperation with production facilities of a specific purpose and many workers to operate these production facilities.
  • the general structure of such a production line consists of a large area for the arrangement of production facilities with high ceilings and installed for product production.
  • the production line is equipped with various facilities for improving the efficiency of workers with respect to the operation of the production facilities.
  • Representative examples of various facilities are to supply compressed air for the convenience of workers in connection with the operation of the air conditioning system and the production facilities that perform the temperature environment or ventilation for the purpose of improving the lighting and health and efficiency of workers. Compressors, and the like.
  • the general method of the above-described air conditioner, the compressor, the condenser, the expansion valve, the evaporator in order to circulate the refrigerant the method of supplying the cooled or heated air passing through the evaporator or condenser to the work space to the blower. Is adopted.
  • the production line equipped with various production facilities has a high ceiling, a large area, and the work area mainly used by the worker is far from the blower that supplies the cooled or heated air, and produces a heat source. It is difficult to expect its efficiency because it is limited to localized areas surrounded by facilities.
  • the present invention provides an air conditioning apparatus and a method of operating the production line using compressed air to maintain a stable and efficient temperature conditions and supply in response to changes in the supply of cooled or heated compressed air required for each worker in the production line.
  • the purpose is to provide.
  • an object of the present invention is to provide an air conditioning apparatus and a method of operating the production line using compressed air to continuously and stably supply the compressed air while maintaining the temperature of the compressed air within a predetermined range within a limited time.
  • a second regulator between the air chamber and the air supply line to supply the air pressure already set from the air chamber to the air supply line.
  • the air chamber is further provided with a pressure sensor and a temperature sensor, the pressure sensor and the temperature sensor applies each measurement signal to the controller, the controller receives the measurement signals of the pressure sensor and the temperature sensor compression pump And to control the operation of the refrigeration cycle.
  • the branch line is further provided with a valve for controlling the flow of air through the branch line, the valve is controlled by opening and closing the control signal reception and operation of the operator of the controller, the degree of opening and closing the It is preferable to configure the solenoid valve applied to the controller.
  • the branch line is further provided with a valve for controlling the flow of air through the branch line
  • the valve is composed of a solenoid valve which is controlled to open and close by receiving the control signal of the controller and the operator's operation
  • the solenoid valve or the branch line may be configured to install a flow sensor for measuring the opening and closing degree of the solenoid valve or the amount of air flowing through the branch line to apply a measurement signal to the controller.
  • the human body sensor for applying the signal to the controller; it is effective to install.
  • a return line leading to the compression pump may be further connected to an end of the air supply line, and the return line may be provided with a third regulator for supplying air pressure already set to the compression pump.
  • the comparison of the adjustment values of the first, second and third regulators with respect to the supply pressure of the compressed air has the highest air pressure adjustment value by the second regulator, and the air pressure adjustment value by the first regulator is relatively high. It is the lowest, it is preferable that the air pressure adjustment value by the third regulator is between the air pressure adjustment value by the 1, 2 regulator.
  • the return line between the compression pump and the third regulator may temporarily store air flowing through the third regulator, and further install a buffer chamber having an inlet port to allow inflow of external air.
  • the buffer chamber includes: a first check valve for controlling the flow of air when the air pressure flowing through the return line is greater than or equal to a preset range; And a second check valve for allowing air to flow from the inflow port when the pressure inside the buffer chamber is already set or less.
  • the return line is connected at the end of the air supply line and is adjacent to the air supply line to the part adjacent to the second regulator side by side, and branched from the air supply line at the part adjacent to the second regulator It may be made by connecting to the third regulator in one shape.
  • the air chamber is composed of one or more partitions that form an air flow passage so that the air flow from the air inlet line to the air supply line is bent in a plurality of times therein, the evaporator or condenser of the refrigeration cycle
  • the air chamber may be disposed along an air flow path between the inner wall of the air chamber and the partition wall and between the partition walls.
  • the side wall of the air chamber is a pipe shape standing vertically
  • the partition wall is one or more pipe shapes of different sizes are erected vertically is connected to the top and bottom of the air chamber corresponding to the top and bottom, respectively, so that the inside of the air chamber It is divided into two or more with respect to the center direction, the upper or lower portion of the lower portion of the inner chamber of the air chamber in the direction of the center or from the center of the air chamber in the direction of the inner wall of the air chamber to form a door to pass through
  • the evaporator or condenser may be installed in a spiral shape along the outer wall or inner wall of the partition wall.
  • the partition wall is installed in two or more numbers of different sizes
  • Distributing units may be further provided so as to correspond to each other, and the evaporator or the condenser may be formed in a number corresponding to each space inside the air chamber separated by the partition and connected to the distribution units, respectively.
  • the side wall of the air chamber is a vertical pipe shape
  • the partition wall is a plate shape having a length in the width direction both edge portions abut the upper and lower portions of the air chamber, one end in the longitudinal direction of the air inlet line
  • the remaining portion is in contact with the inner wall of the air chamber, the remaining portion is bent in the direction of the air inlet line from the portion in contact with the inner wall of the air chamber and continues continuously along the vortex phenomenon of Archimedes in plan view, and the other end is the central portion of the air chamber.
  • the evaporator or condenser has a continuous inclination from one side to the other in the plane of the air chamber along the spiral shape of Archimedes, and has a continuous inclination from the top to the bottom in the conical shape when viewed from the side. It can be done by arrangement.
  • the evaporator or condenser is preferably in contact with the surface of the partition wall corresponding to the arrangement.
  • the inner wall of the air chamber and the surface of the partition wall and the surface of the evaporator / condenser have a flow of air moving from the upper side to the lower side or the lower side to the upper side with respect to each space of the air chamber separated by the partition wall.
  • the guiding wing plate may be disposed in a spiral shape in the vertical direction.
  • the air chamber may further include a blower fan, and may further increase the frequency of contact of air in the air chamber to the evaporator / condenser by driving the blower fan.
  • Each end of the double pipe has a joint for communicating with the main pipe and has a configuration having a female or male socket which is electrically connected to each wire cable.
  • the operating method of the air conditioner of the production line using the compressed air for achieving the above object, the air conditioner of the production line using the above compressed air, (A) the first, Setting a pressure range in the air chamber based on the air pressure adjustment value by the 2 and 3 regulators; (B) controlling the driving of the compression pump so that the pressure in the air chamber is within a preset pressure range; (C) controlling the pressure setting condition in the air chamber and controlling the driving of the compression pump according to the measured discharge value of the compressed air through the branch line compared with the pressure range condition for the inside of the air chamber; It is made to include.
  • regulators can induce differential pressure maintenance and flow in the order of air chamber, air supply line, and branch line, and at the same time, it can stably and efficiently maintain the amount of compressed air in the air chamber compared to the supply amount according to the use of compressed air by workers. It works.
  • the refrigeration cycle required for cooling the compressed air as well as suppressing the indiscriminate use of the compressed pump to secure the compressed air inside the air chamber.
  • the compressed air supplied to the workers by circulating a part of the compressed air cooled through the return line or the return line and the buffer chamber can not only maintain the preset temperature range but also heat exchange the circulation of the compressed air cooled. This has the effect of reducing the driving energy loss of the refrigeration cycle.
  • the air chamber is a partition installed therein to induce the air flow in the air chamber leading from the air inlet line to the air discharge line to increase the contact frequency of the air to the evaporator / condenser and thus the heat exchange efficiency. Compared with the non-installation, there is an effect of preventing the air from passing through with insufficient heat exchange to the evaporator / condenser.
  • the contact between the evaporator / condenser and the partition wall extends the specific surface area for heat exchange of the evaporator / condenser to the partition wall, thereby increasing the heat exchange efficiency of the compressed air.
  • the blowing fan installed in the air chamber is to circulate or repeatedly contact the air maintained above the atmospheric pressure inside the air chamber with the evaporator / condenser, thereby increasing the heat exchange efficiency of the compressed air. .
  • the air supply line has a rapid circulation
  • the relatively short branching line has a double pipe to reduce the loss of temperature, and to quickly perform the control of the first regulator or valve between the air supply line. It has the effect of reducing losses.
  • FIG. 1 is a schematic diagram illustrating a configuration and an operation relationship of an air conditioner of a production line using compressed air according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram schematically illustrating an air conditioner configuration and an operation relationship of a production line using compressed air showing a modified example from the embodiment of FIG. 1.
  • FIG. 3 is a block diagram illustrating a control relationship of a controller with respect to the configuration of FIG. 1.
  • 4A to 4F and 5 are cross-sectional views schematically illustrating various modified embodiments of the air chamber.
  • 6 and 7 are partial cutaway perspective views for explaining the technical configuration of the branch line and their coupling relationship.
  • FIG. 8 is a flow chart for explaining the air pressure control process of the air chamber and the air supply line for the controller.
  • FIG. 9 is a flowchart illustrating an air temperature control process on an air chamber and an air supply line by a controller.
  • the air conditioning apparatus of the production line using compressed air as shown in Figures 1 to 3, the air chamber 10 for receiving the compressed air, and the air intake line that is compressed by sucking the outside air Compression pumps 22a and 22b supplied to the air chamber 10 through LI1, LI2 and LI3, a refrigeration cycle 16 in which an evaporator 18 or a condenser is installed in the air chamber 10, and air
  • the first regulator 24b for adjusting the air pressure supplied through the branch lines LD1 to LDn branched from the supply line LS1, and the valve 26 for controlling the flow of air through the branch lines LD1 to LDn.
  • a controller 40 receiving the open / close signal of the valve 26 to control the driving of the compression pumps 22a and 22b and the refrigeration cycle 16.
  • the second regulator 24a may be further provided to adjust the compressed air supply pressure in the air chamber 10 to be supplied to the air supply line LS1.
  • the air chamber 10 constituting the present invention will be described in more detail.
  • the internal volume according to the design is already partitioned, and an air inflow line LI1 is formed at one side. , LI2, LI3) is connected in communication, the air supply line (LS1) is connected to the other side to form a configuration in communication.
  • the air chamber 10 connects an evaporator or a condenser (hereinafter, referred to as an 'evaporator / condenser') part of the configuration constituting the refrigeration cycle 16 described above to cool or heat the air contained therein. I'm trying to.
  • an evaporator or a condenser hereinafter, referred to as an 'evaporator / condenser'
  • the air chamber 10 has a configuration in which a first pressure sensor 12a for measuring the degree of air pressure contained therein and a first temperature sensor 14a for measuring the temperature of the air contained therein are provided.
  • the internal volume of the air chamber 10 is, as will be described later, of the compressed air that can be supplied to the worker through the branch line (LD1 ⁇ LDn) branched from the air supply line (LS1)
  • the design is based on the maximum supply.
  • the compression pump (22a, 22b) constituting the present invention is installed on the air inlet line (LI1, LI2, LI3) leading from the outside to the air chamber 10 to compress the air sucked from the outside, and thus compressed One compressed air is supplied into the air chamber 10.
  • the compressed air supply amount of the compression pump 22a, 22b as in the volume design inside the air chamber 10 described above, the maximum supply amount of the compressed air that can be supplied to the operator through the branch lines (LD1 ⁇ LDn) It is preferable to apply on the basis.
  • the compression pumps 22a and 22b sufficiently correspond to the maximum supply amount of compressed air supplied to the operator, only one compression pump 22a or 22b may be installed in the air chamber 10, but two or more compression pumps may be provided. It can also be made by installing a number.
  • the number of the compression pumps 22a and 22b is limited to use only in response to the change in the compressed air supply amount used by the workers.
  • By stopping unnecessary driving of the compression pumps 22a and 22b it is possible to expect an effect of reducing unnecessary energy consumption due to the operation of the compression pump of the near capacity.
  • the refrigeration cycle 16 constituting the present invention the compressor, condenser, expansion valve, the evaporator constituting the general refrigeration cycle 16, only the evaporator 18 or the condenser portion installed in the air chamber 10 inside the air chamber 10 (10) Heat exchange with the compressed air inside.
  • the evaporator / condenser 18 applied in the present invention acts as an evaporator when the refrigerant flow in the refrigerating cycle 16 is in one direction (direction for cooling the compressed air in the air chamber), and reverses the flow of the refrigerant. It acts as a condenser in the direction (direction for heating the compressed air in the air chamber).
  • the second regulator 24a which adjusts and supplies the compressed air flowing from the air chamber 10 to the air supply line LS1 to the preset air pressure in the air supply line LS1 adjacent to the air chamber 10. ) Is made.
  • the installation of the second regulator 24a is not necessarily required, and the pressure inside the air chamber 10 and the air supply line LS1 are equally formed, and the first regulator 24b is described later. It would be satisfactory if the pressure could be supplied by lowering the air pressure to the branch lines LD1 to LDn.
  • the air supply line 24a may be made of a configuration in which one or more air chambers 10 are connected.
  • Each of the branch lines LD1 to LDn branched from the air supply line LS1 is supplied by adjusting the compressed air flowing from the air supply line LS1 to the branch lines LD1 to LDn at a predetermined air pressure. Installation of the first regulator 24b is made.
  • the above-described second regulator 24a and the first regulator 24b form different adjustment values of the air pressure passing through the installation position.
  • the compression pump (22a, 22b) under the control of the controller 40 is assumed to be driven so that the air pressure in the air chamber 10 is in a stepped range within the range of 5 ⁇ 10bar
  • the second regulator 24a causes the air pressure traveling from the air chamber 10 to the air supply line LS1 to be at the selected air pressure adjustment value within a range of more than 3 bar and less than 5 bar.
  • the first regulator 24b allows the air pressure traveling from the air supply line LS1 to the branch lines LD1 to LDn to be at the selected air pressure adjustment value within a range of more than 1 bar and 3 bar or less.
  • first and second regulators 24a and 24b and the third regulator 24c to be described later may be manual regulators for allowing compressed air to pass through the supply air pressure level set by the operator's manual operation, or as described above. It may be an electronically controlled regulator having a solenoid valve to control the supply air pressure of the compressed air by the control of one controller (40).
  • the volume of the air supply line LS1 is formed by adding up the volumes of all the branch lines LD1 to LDn branched from the air supply line LS1, and the air chamber 10 supplies the air. It is preferable to form more than the volume of the line LS1.
  • the compressed air output of the compression pumps 22a and 22b described above is preferably above the maximum supply capacity that can be supplied to all the branch lines LD1 to LDn through the first regulator 24b.
  • a valve 26 is further provided to control the opening and closing degree by the operator or the controller 40. Can be done.
  • the valve 26 is a solenoid valve for controlling the opening and closing or opening / closing amount (opening amount) of the controller 40 by receiving the control signal of the controller 40 and the operator's operation, and applying the opening and closing degree to the controller 40. It is preferable to construct.
  • the valve 26 is configured as a solenoid valve in which opening and closing adjustment is simply performed by receiving a control signal of the controller 40 or an operator's operation, and opening and closing the solenoid valve on the solenoid valve or the branch lines LD1 to LDn. It may be made of a configuration in which the flow rate sensor 28 for measuring the supply flow rate of the compressed air through the degree or the branch line (LD1 ⁇ LDn) to apply the measurement signal to the controller 40.
  • the installation of the valve 26 is not necessarily required, and in the case where the first regulator 24b is an electronically controlled regulator that can be adjusted by the operator or the controller 40, the installation of the valve 26 will be omitted. Can be.
  • a diffuser 30 is provided at the end of the branch lines LD1 to LDn so that air is blown to the worker, and the diffuser 30 is installed within the interval already set by the diffuser 30.
  • the presence or absence of a human body sensor 32 is applied to detect the presence and absence of the detection signal to the controller 40.
  • the human body sensor 32 may be an infrared sensor or an ultrasonic sensor.
  • the return line (LR) leading to the compression pump (22a, 22b) is further connected to the end of the air supply line (LS1), the return line (LR) with the air pressure already set in the direction of the compression pump (22a, 22b)
  • the 3rd regulator 24c which adjusts and supplies is provided.
  • the air pressure adjustment values adjusted by each of the first, second, and third regulators 24a, 24b, and 24c have the highest air pressure adjustment value by the second regulator 24a, and the first regulator 24b.
  • the air pressure adjustment value by is relatively the lowest, and the air pressure adjustment value by the third regulator 24c is preferably between the air pressure adjustment values by the first and second regulators 24a and 24b.
  • the air pressure inside the air chamber 10 is in the range of 5 to 10 bar, and the air pressure adjustment value that is adjusted by the second regulator 24a, that is, the air supply line ( When the air pressure formed in LS1) is more than 4 bar and less than 5 bar, and the air pressure adjustment value adjusted by the 1st regulator 24b with respect to branch lines LD1-LDn is more than 1 bar and less than 3 bar, the 3rd regulator 24c Pneumatic pressure adjustment value range is adjusted through, it is preferable to form more than 3bar 4bar or less.
  • the setting of the air pressure adjustment value range according to the third regulator 24c allows the compressed air supplied through the air supply line LS1 to be preferentially supplied to the workers through the branch lines LD1 to LDn.
  • the surplus of compressed air supplied to the workers is to be circulated back to the compression pumps 22a and 22b through the third regulator 24c.
  • the return line LR between the compression pumps 22a and 22b and the third regulator 24c temporarily stores the air flowing through the third regulator 24c and also flows in to allow the inflow of external air. It is preferable to further install a buffer chamber 34 having a port.
  • the buffer chamber 34 has an internal air pressure flowing through the return line LR via the third regulator 24c therein or above the predetermined range, or is driven by the compression pumps 22a and 22b.
  • the first check valve 26 for intermittently allowing the inflow of air into the buffer chamber 34 when a vacuum pressure is formed therein, and the air from the inlet port when the pressure inside the buffer chamber 34 is less than or equal to a predetermined value. It may be provided with a second check valve 26 to allow the inflow of.
  • the first check valve 26 is used to block reverse flow of external air through the return line LR described above, and the return line LR and the air supply line LS1 through the third regulator 24c. This is to prevent the pressure loss of the indiscriminately proceeding, which is not necessarily necessary, and when the vacuum pressure in the buffer chamber 34 is generated by the driving of the compression pumps 22a and 22b, By opening first, it is preferable that the cooled compressed air has a recirculation process before the external air.
  • the return line LR is connected at the end of the air supply line LS1 to be adjacent to the air supply line LS1 to a portion adjacent to the second regulator 24a, and side by side to the second regulator 24a. It is made by connecting to the third regulator 24c in a shape branching from the air supply line LS1 at an adjacent portion.
  • the air supply line LS1 and the return line LR are in contact with each other in order to mutually reduce the energy loss due to heat exchange from the production line.
  • the air chamber 10, the compression pumps 22a and 22b, and the refrigeration cycle 16 are installed at a distance from the work space where the supply is made. Therefore, the air supply line LS1 and the return line LR are installed. This is to avoid forming a double.
  • the above-described first, second and third regulators 24a, 24b and 24c differentially form respective air pressure adjustment values.
  • the second regulator 24a sets the air pressure of the compressed air traveling from the air chamber 10 to the air supply line LS1 to any one air pressure adjustment value selected from a range of more than 3 bar and less than 5 bar.
  • the first regulator 24b causes the air pressure of the compressed air that proceeds from the air supply line LS1 to the branch lines LD1 to LDn to be at a selected air pressure adjustment value within a range of more than 1 bar and 3 bar or less.
  • the third regulator 24c may be set to the same or lower level as the air pressure adjustment value of the second regulator 24a and set to a higher air pressure adjustment value than the air pressure adjustment value of the first regulator 24b.
  • the air pressure adjustment value of the third regulator 24c is formed to be the same as the air pressure adjustment value of the second regulator 24a is continued through the second regulator 24a from the air chamber 10 forming a higher air pressure.
  • the air pressure in the air supply line LS1 is recycled to overflow when the air pressure is formed above the air pressure adjustment value of the second regulator 24a.
  • the air pressure adjustment value of the third regulator 24c is lower than the air pressure adjustment value of the second regulator 24a allows continuous flow of compressed or cooled compressed air to the air supply line LS1. It is for.
  • forming the air pressure adjustment value of the third regulator 24c higher than the air pressure adjustment value of the first regulator 24b means that the compressed air on the air supply line LS1 is supplied to the worker through the branch lines LD1 to LDn. It is intended to be supplied preferentially.
  • the partition wall 50 installed as described above forms an air flow path so that the compressed air flowing into the air chamber 10 moves or circulates along an already designed evaporator / condenser 16 arrangement. In order to increase the frequency of contact with the compressed air.
  • the evaporator / condenser 18 in the air chamber 10 is arranged along the flow passage of compressed air including between the inner wall of the air chamber 10 and the partition 50 and between the partitions 50.
  • the aforementioned partition wall 50 and the evaporator / condenser 18 are composed of a combination of mutual arrangements such that the flow of compressed air in the air chamber 10 increases the possibility of contact with the evaporator / condenser 18.
  • the air chamber 10a shown in FIG. 4A is provided with two or more plates at intervals in the air inflow line LI from the air inlet line LI with respect to opposite inner walls of the air chamber 10a.
  • the compressed air can be made to have a zigzag flow.
  • the evaporator / condenser 18a is provided between the partition walls 50a in which the plurality of plates alternately alternately, that is, in the flow passage of the compressed air in the air chamber 10a along the flow of the compressed air.
  • the structure of the partition wall 50b of the air chamber 10b shown in FIG. 4B includes a flow passage formed by the partition wall 50b while guiding the flow of compressed air flowing from the air inflow line LI in one direction according to the design. Guide the air supply line LS along the evaporator / condenser 18b, and the compressed air that is not discharged through the air supply line LS or remaining is again along the flow path formed by the partition 50b. Direction so that the compressed air remaining in the air chamber 10b is continuously circulated.
  • blowing fan (60a) for forcing the circulation of the compressed air in the air passage through which the compressed air circulates in the air chamber (10b).
  • the air chamber 10c shown in FIG. 4C has the shape of a pipe standing vertically, such as a circle
  • the partition wall 50c has one or more pipe shapes inserted vertically at intervals with respect to the inner wall of the air chamber 10c, each of which is a ceiling of the air chamber 10c corresponding to at least one of the upper part and the lower part, or Installation is made so as to separate or distinguish the inner space of the air chamber 10c having a side wall with a pipe shape in contact with the floor to the outside and the inside of the partition 50c.
  • each of the partitions 50c is provided with different sizes from each other, and among these partitions 50c, the smaller ones are relatively larger in size. Installation is made with the gap inserted against the inner wall.
  • the upper and lower portions of the partition walls 50c are installed to be in contact with both the ceiling and the bottom of the corresponding air chamber 10c so as to contact the inner side of the partition walls 50c. There may be cases where the outside is to be distinguished.
  • the partition 50c may be formed by cutting a part of the upper part or the lower part or installing the door D to open or close the part.
  • Installation of these cutouts or doors D is for making compressed air of the outer side (or inner side) of the partition 50c pass to the inner side (or outer side) direction of the partition 50c,
  • the formation position is air
  • the compressed air flowing into the chamber 10c flows from the upper side to the lower side or the lower side to the upper side of the partition 50c and then passes through the inside of the partition 50c to the inside of the partition 50c. It is preferable to arrange the compressed air flowing inwardly to flow from the lower side to the upper side or from the upper side to the lower side as opposed to the compressed air flow on the outer side of the partition wall 50c.
  • the number of installation of the partition wall 50c is two or more, and there is no shape portion cut off on the upper or lower portion, or those having no door D installed thereon.
  • each of the partitions 50c is smaller than the distance between the ceiling and the floor of the air chamber 10c, and the installation of the plurality of partitions 50c is one of the upper air chambers in the order of being located from the outside to the inside. 10c), and the next neighbor is installed so that the lower side is in contact with the bottom of the air chamber (10c) and the upper and lower zigzag shape when the compressed air flowing through the air inlet line (LI) flows from the outside to the inside It is desirable to achieve.
  • the partition walls 50c having different sizes form a structure in which neighboring ones are alternately installed with respect to the ceiling and the floor of the air chamber 10.
  • the air chamber 10c is configured such that the inflow direction of the compressed air through the air inflow line LI is directed from the upper side to the lower side (or the lower side to the upper side) and at the same time around the partition 50c.
  • the door (D) presented in an example of the above description may be installed in a shape that induces the flow of the compressed air passing through the partition 50c to form a spiral or swirl.
  • Distributing pipes 54a are further provided for separating and supplying refrigerant to respective spaces inside, and each branched through the distribution pipes 54a.
  • the evaporator / condenser 18c of the air chamber 10c is compressed between the inner wall of the air chamber 10c and the adjacent partition wall 50c, between each partition wall 50c, and in a single partition wall 50c installed at the center of the air chamber 10. It may be made by installing to correspond to the flow of air.
  • the connecting tube 54b (when the 'evaporator / condenser' is a 'condenser') is installed to connect with the end of the condenser 18c and collect the refrigerant therefrom, and the refrigerant collected through the combining tube 54b is again provided. It may be made to have a circulation process flowing into the refrigeration cycle 16 through the refrigerant flow line (L).
  • the present invention is not limited thereto, and a separate space is provided in the air chamber 10c. Naturally, it can be made of a configuration installed through the partitions 50c provided or arranged.
  • distribution pipe 54a or coalescing pipe 54b provides a flow of refrigerant to each space in the air chamber 10c divided by a plurality of refrigeration cycles 16 and partition walls 50c.
  • a dispensing unit is formed.
  • an evaporator / condenser 18c is provided for each space in the air chamber 10c separated by the partition walls 50c, and these evaporator / condenser 18c is provided.
  • it can be made by connecting the independent refrigeration cycle (16) for each.
  • the air chamber 10d shown in FIG. 4D, and the partition 50d and evaporator / condenser 18d structures provided therein have a pipe shape in which the side walls of the air chamber 10d are vertically erected, and the partition 50d is It is a plate-shaped thing with a length, and the edge part of the width direction makes contact with the ceiling and bottom surface of the air chamber 10d.
  • one end portion in the longitudinal direction of the barrier rib 50d is in contact with the inner wall of the air chamber 10d around the air inflow line LI, and the remaining portion is in contact with the inner wall of the air chamber 10d, as shown in FIG. 5.
  • the air inlet line (LI) in the form of a first bent shape, and then in plan view when the other end portion continuously along the vortex phenomenon of Archimedes to form a structure reaching the center portion of the air chamber (10d).
  • the evaporator / condenser 18d corresponding to the installation of the bulkhead 50d has a conical shape in which the portion extending from one side to the other side follows the helical shape of Archimedes when viewed from the plane of the air chamber 10d. According to the arrangement may be made to have a continuous slope from the upper side to the lower side.
  • the side shape of the evaporator / condenser 18d is inclined downward along the cone shape.
  • the liquid refrigerant flows into the gas through the lower portion of the center of the air chamber 10d and changes in the gas state.
  • the condenser prevents the liquid refrigerant from accumulating in the flow passage of the refrigerant when the gaseous refrigerant flows into the liquid state through the upper portion of the air chamber 10d. It is designed for.
  • This design shows that one partition 50d and one evaporator / condenser 18d can be made in one air chamber 10d.
  • the wing plate 56 for guiding the flow of air moving from the upper side to the lower side or the lower side to the upper side in a spiral shape may be further disposed in a spiral shape along the vertical direction.
  • the function of the wing plate 56 may also be achieved by cooling fins provided in the evaporator / condenser 18d, as shown in FIG. 4C.
  • the installation of the vane 56 and the cooling fins described above is also intended to increase the likelihood of collision (heat exchange) of compressed air against the evaporator / condenser 18.
  • the air chamber 10e of FIG. 4E is a blower fan which provides a blowing pressure to flow in the direction of the evaporator / condenser 18e while forcibly circulating the compressed air therein without a partition for inducing the flow of compressed air therein. It can be made only by the installation of (60b).
  • the air chamber 10f shown in FIG. 4F is provided with a plurality of air chamber 10d structures identified in FIG. 4D described above, and shows connecting them up and down.
  • the air inlet line (LS) of each of the air chamber (10d) and the air supply line (LS) and the evaporator / condenser (18f) may be made to have a connector port (C) for the corresponding connection, respectively.
  • Each of these connector ports C is preferably formed with a valve (not shown) that prevents the flow of fluid in the absence of its corresponding connection.
  • the cover tube 60b and the cover tube 60b form a space between the main tube 60a and the outside and surround the spacer tube 60 through one or more ribs 62 protruding from the outside of the main tube 60a.
  • the above-mentioned male and female divisions of the sockets 64a and 64b form a plug PL for electrical connection, which is called a socket 64a of a male structure, and a socket of a male structure ( 64a) can be divided into a female socket 64b having an outlet structure through which the plug PL is inserted.
  • sockets 64a and 64b provided at both ends of the above-described double pipe 60 may be differently connected to each other, or may be configured to selectively connect the same structure to each other.
  • the branch line LD formed as described above with reference to FIGS. 1 and 2 is provided with the compressed air through the first regulator 24b through the presence or absence of a signal from the human body sensor 32 installed in the diffuser 30. It is to reduce the pressure loss of the compressed air by blocking the flow in a position close to the air supply line (LS).
  • the compressed air in the double pipe 60 is naturally discharged in the absence of the operator so that the inside is at normal pressure, and cooling or heating air through the opening of the first regulator 24b when the operator is in the working position. It is desirable to be able to supply quickly.
  • the air supply line LS is composed of steel pipes to maintain the internal pressure, and is installed at a predetermined design position with respect to the production line, and the branch line LD is far from the air supply line LS. Or to provide the operator with cooled or heated compressed air at least one or more connections to the workspace where the installation is difficult to arrange in a straight line.
  • the branch line LD can easily cope with the location conditions of the work space, and can quickly perform the supply of compressed air to the presence or absence of an operator while preventing the temperature loss of the compressed air in the section leading to the work space.
  • reference numeral “LS2” indicates that the compressed air inside the air chamber 10 can be further connected to an air gun (not shown) used by a production facility or an operator, and “12b”.
  • LS1 a second pressure sensor for detecting the presence of pressure abnormality in the air supply line (LS1)
  • 14b is a second temperature sensor for measuring the temperature conditions in the air supply line (LS1) or production line, through which the refrigeration cycle (16) To compensate for the driving conditions.
  • the controller 40 sets the pressure range formed by the compressed air in the air chamber 10 in one or more steps at different stages (ST110).
  • the differentially setting the pressure range inside the air chamber 10 is a large number of branch lines LD1 to LDn branched from the air supply line LS1, and the amount of compressed air used by workers. This is to cope with the case where it cannot be predicted.
  • the pressure inside the air chamber 10 in the pressure inside the air chamber 10 to be in the range of 5 bar or more and 10 bar or less, a quarter of the number of branch lines LD1 to LDn out of the total branch lines LD1 to LDn.
  • the pressure inside the air chamber 10 is maintained at about 5 to 7 bar, and half of the branch lines LD1 to LDn of the total branch lines LD1 to LDn are maintained.
  • the pressure inside the air chamber 10 is in the range of 7 to 8 bar, and 3/4 of the branch lines LD1 to LDn are included in the total branch lines LD1 to LDn.
  • the pressure inside the air chamber 10 is in the range of 8 to 9 bar, and when the compressed air is consumed through all the branch lines LD1 to LDn, the air chamber (10) The pressure inside can be in the range of 9 ⁇ 10bar.
  • the pressure setting inside the air chamber 10 is differentially divided according to the consumption of compressed air through the branch lines LD1 to LDn.
  • the differential classification of the pressure inside the air chamber 10 is to reduce the energy consumption associated with the driving by refraining from unnecessary driving of the compression pumps 22a and 22b and driving them to a required level.
  • the controller 40 frequently checks the pressure in the air chamber 10 through the first pressure sensor 12a (ST112), and when it is determined that the air pressure in the air chamber 10 is equal to or less than the set value (ST114), The compression pumps 22a and 22b are driven to be maintained at a level corresponding to the set value (ST116). When the air pressure inside the air chamber 10 is equal to or higher than the set value, the driving of the compression pumps 22a and 22b is stopped and unnecessary. Reduce energy consumption (ST118).
  • the controller 40 stores a reserve amount of compressed air in the air chamber 10 in response to the consumption amount through the branch lines LD1 to LDn.
  • the controller 40 is the human body sensor 32, the flow sensor 28, The supply amount of the compressed air is frequently measured based on whether the first regulator 24b or the valve 26 is opened or closed (ST120), and the measured value is compared with the set value inside the air chamber 10. It is judged whether or not (ST122), and the condition is changed to adjust the set value inside the air chamber 10 corresponding to the measured value for the current supply amount of compressed air (ST124).
  • controller 40 allows to maintain the supply of compressed air to the operator by repeating the above process.
  • the temperature inside the air chamber 10 according to the differential of each pressure range is set (ST210).
  • the setting of the temperature inside the air chamber 10 is to set the time and the output of the driving of the refrigeration cycle 16 after all, and this is also compressed air newly introduced by the supply amount of the compressed air supplied to the worker. In response to this, the cooling time is formed.
  • the controller 40 measures the temperature in the air chamber (C) through the first temperature sensor 14a (ST212), and determines whether the measured value is in a preset temperature range (ST214).
  • the controller 40 stops driving the refrigeration cycle 16 (ST218), and if it is not within the set value range, the refrigeration cycle 16 ) Is controlled to cool the compressed air inside the air chamber 10 (ST216).
  • controller 40 measures the discharge amount of the compressed air through the branch lines LD1 to LDn through any one of the flow sensor 28, the first regulator 24b, and the valve 26 (ST220). The measured value is compared with the pressure range condition for the inside of the air chamber 10 to determine whether to adjust the pressure setting condition in the air chamber 10 (ST222).
  • the controller 40 changes the temperature setting condition corresponding thereto (ST224) and reflects this to drive the refrigeration cycle 16. To control.

Abstract

The present invention relates to a production line air conditioning device using compressed air, which is capable of matching a required output capacity condition by predicting the amount of compressed air to be used and is also capable of improving operation efficiency of a compression pump and a refrigeration cycle, and a method for operating the same. The production line air conditioning device using compressed air comprises: an air chamber which accommodates air sucked from an air introduction line and discharges the air through an air supply line extending to a production line; a compression pump which is installed on the air introduction line to suck and compress outside air and supply the compressed air into the air chamber; a refrigeration cycle in which an evaporator or a condenser is installed within and connected to the air chamber; a first regulator which is installed on a branch line branching from the air supply line to supply air at a preset air pressure to the branch line; and a controller which controls the operation of the compression pump and the refrigeration cycle.

Description

압축공기를 이용하는 생산라인의 공기조화장치 및 이의 운영방법Air conditioner of production line using compressed air and its operation method
본 발명은 압축공기의 사용량을 예측하여 필요한 출력용량 조건을 맞추도록 함과 동시에 압축펌프와 냉동사이클의 구동 효율성을 개선토록 하는 압축공기를 이용하는 생산라인의 공기조화장치 및 이의 운용방법에 관한 것이다.The present invention relates to an air conditioning apparatus and a method of operating the production line using the compressed air to predict the amount of compressed air to meet the required output capacity conditions and at the same time to improve the driving efficiency of the compression pump and the refrigeration cycle.
일반적으로 공장 등의 생산라인은 특정 목적의 생산설비들과 이들 생산설비들을 운용하기 위한 많은 작업자들의 협동작업으로 제품을 생산하는 장소이다.In general, a production line, such as a factory, is a place where products are produced in cooperation with production facilities of a specific purpose and many workers to operate these production facilities.
이러한 생산라인의 일반적인 구조는 천장이 높고 제품 생산을 위해 설치되는 생산설비들의 배치를 위한 넓은 면적으로 이루어진다.The general structure of such a production line consists of a large area for the arrangement of production facilities with high ceilings and installed for product production.
이에 대한 작업자들은 각각의 생산설비들 사이의 제한된 영역에서 생산설비들을 운용하게 된다.Workers in this regard operate the production facilities in a limited area between each production facility.
또한, 생산라인은 생산설비의 운용과 관련하여 작업자의 능률 향상을 위한 제반시설들을 마련하고 있다.In addition, the production line is equipped with various facilities for improving the efficiency of workers with respect to the operation of the production facilities.
제반시설의 대표적인 예는 조명시설과 작업자들의 건강과 능률 향샹을 목적으로 온도환경 또는 환기를 수행하는 공기조화장치 및 생산설비의 운용과 관련하여 작업자의 편의를 도모하기 위한 용도로 압축공기를 공급하는 콤프레셔 등을 들 수 있다.Representative examples of various facilities are to supply compressed air for the convenience of workers in connection with the operation of the air conditioning system and the production facilities that perform the temperature environment or ventilation for the purpose of improving the lighting and health and efficiency of workers. Compressors, and the like.
여기서, 상술한 공기조화장치의 일반적인 방식은, 압축기, 응축기, 팽창변, 증발기를 순차적으로 연결하여 냉매를 순환시키고, 증발기 또는 응축기를 거쳐 통과하는 냉각 또는 가열된 공기를 송풍기로 작업공간에 공급하는 방식을 채택하고 있다.Here, the general method of the above-described air conditioner, the compressor, the condenser, the expansion valve, the evaporator in order to circulate the refrigerant, the method of supplying the cooled or heated air passing through the evaporator or condenser to the work space to the blower. Is adopted.
그러나, 앞서 설명한 바와 같이, 각종 생산설비들을 갖춘 생산라인은 천장이 높고, 면적이 넓을 뿐 아니라 작업자가 주로 작업하는 공간은 냉각 또는 가열된 공기를 공급하는 송풍기로부터 원거리에 있으며, 열원을 방출하는 생산설비들에 둘러싸인 국부 장소로 제한됨으로 그 효율을 기대하기가 어렵다.However, as described above, the production line equipped with various production facilities has a high ceiling, a large area, and the work area mainly used by the worker is far from the blower that supplies the cooled or heated air, and produces a heat source. It is difficult to expect its efficiency because it is limited to localized areas surrounded by facilities.
본 발명은 생산라인의 각 작업자들에 필요한 냉각 또는 가열된 압축공기의 공급량 변화에 대응하여 온도 조건과 공급량을 안정적이며 효율적으로 유지할 수 있도록 하는 압축공기를 이용하는 생산라인의 공기조화장치 및 그 운영방법을 제공함을 목적으로 한다.The present invention provides an air conditioning apparatus and a method of operating the production line using compressed air to maintain a stable and efficient temperature conditions and supply in response to changes in the supply of cooled or heated compressed air required for each worker in the production line. The purpose is to provide.
또한, 압축공기의 온도를 제한된 시간 내에 이미 설정한 범위 내에 있도록 유지하면서 계속적이고도 안정적으로 공급할 수 있도록 하는 압축공기를 이용하는 생산라인의 공기조화장치 및 그 운영방법을 제공함을 목적으로 한다.In addition, an object of the present invention is to provide an air conditioning apparatus and a method of operating the production line using compressed air to continuously and stably supply the compressed air while maintaining the temperature of the compressed air within a predetermined range within a limited time.
상기 목적을 달성하기 위한 압축공기를 이용하는 생산라인의 공기조화장치는, 공기 유입라인으로부터 흡입되는 공기를 수용하고, 생산라인으로 연장된 공기 공급라인을 통해 공기의 배출이 이루어지는 에어챔버와; 상기 공기 유입라인 상에 설치되어 외부의 공기를 흡입하여 압축하고, 압축한 공기를 에어챔버 내에 공급하는 압축펌프와; 증발기 또는 응축기가 상기 에어챔버 내부에 있도록 연결 설치한 냉동사이클과; 상기 공기 공급라인에서 분기한 분기라인 상에 설치되어, 분기라인에 이미 설정한 공기압으로 공급하는 제 1 레귤레이터; 및 상기 압축펌프와 냉동사이클의 구동을 제어하는 컨트롤러;를 포함하여 이루어진 것을 특징으로 한다.An air conditioning apparatus of a production line using compressed air for achieving the above object comprises: an air chamber for receiving air sucked from the air inlet line and discharging the air through an air supply line extending to the production line; A compression pump installed on the air inlet line to suck outside air and to compress the outside air, and to supply the compressed air into the air chamber; A refrigeration cycle connected and installed such that an evaporator or a condenser is inside the air chamber; A first regulator installed on a branch line branched from the air supply line and supplying the air pressure already set in the branch line; And a controller for controlling the driving of the compression pump and the refrigeration cycle.
이에 더하여 상기 에어챔버와 상기 공기 공급라인 사이에는 상기 에어챔버에서 상기 공기 공급라인으로 이미 설정한 공기압으로 공급하는 제 2 레귤레이터를 더 설치토록 함이 바람직하다.In addition, it is preferable to further install a second regulator between the air chamber and the air supply line to supply the air pressure already set from the air chamber to the air supply line.
또한, 상기 에어챔버에는 압력센서와 온도센서를 더 설치하고, 상기 압력센서와 온도센서는 상기 컨트롤러에 각 측정신호를 인가하고, 상기 컨트롤러는 상기 압력센서와 온도센서의 측정신호를 수신하여 압축펌프와 냉동사이클의 구동을 제어토록 함이 바람직하다.In addition, the air chamber is further provided with a pressure sensor and a temperature sensor, the pressure sensor and the temperature sensor applies each measurement signal to the controller, the controller receives the measurement signals of the pressure sensor and the temperature sensor compression pump And to control the operation of the refrigeration cycle.
그리고, 상기 분기라인에 상기 분기라인을 통한 공기의 흐름을 제어하는 밸브를 더 구비하고, 상기 밸브는 상기 컨트롤러의 제어신호 수신과 작업자의 조작에 의해 개폐의 조절이 이루어지고, 그 개폐 정도를 상기 컨트롤러에 인가하는 솔레노이드밸브로 구성함이 바람직하다.Further, the branch line is further provided with a valve for controlling the flow of air through the branch line, the valve is controlled by opening and closing the control signal reception and operation of the operator of the controller, the degree of opening and closing the It is preferable to configure the solenoid valve applied to the controller.
또는, 상기 분기라인에 상기 분기라인을 통한 공기의 흐름을 제어하는 밸브를 더 구비하고, 상기 밸브는 상기 컨트롤러의 제어신호 수신과 작업자의 조작에 의해 개폐의 조절이 이루어지는 솔레노이드밸브로 구성하고, 상기 솔레노이드밸브 또는 상기 분기라인에는 상기 솔레노이드밸브의 개폐 정도 또는 상기 분기라인을 통해 유동하는 공기량을 측정하여 상기 컨트롤러에 측정 신호를 인가하는 유량센서를 설치한 구성으로 이루어질 수 있다.Alternatively, the branch line is further provided with a valve for controlling the flow of air through the branch line, the valve is composed of a solenoid valve which is controlled to open and close by receiving the control signal of the controller and the operator's operation, The solenoid valve or the branch line may be configured to install a flow sensor for measuring the opening and closing degree of the solenoid valve or the amount of air flowing through the branch line to apply a measurement signal to the controller.
더불어, 상기 분기라인의 끝단부에는 공기의 분사가 이루어지도록 한 디퓨져와; 상기 디퓨져에 설치되어 디퓨져로부터 이미 설정한 간격 이내의 인체 유무를 감지하고, 그 신호를 컨트롤러에 인가하는 인체감지센서;를 설치토록 함이 효과적이다.In addition, at the end of the branch line and a diffuser for the injection of air; Installed in the diffuser to detect the presence of the human body within a predetermined interval from the diffuser, the human body sensor for applying the signal to the controller; it is effective to install.
또한, 상기 공기 공급라인의 끝단에는 상기 압축펌프로 이어지는 리턴라인이 더 연결되고, 상기 리턴라인에는 상기 압축펌프에 이미 설정한 공기압으로 공급하는 제 3 레귤레이터를 설치한 것으로 이루어질 수 있다.In addition, a return line leading to the compression pump may be further connected to an end of the air supply line, and the return line may be provided with a third regulator for supplying air pressure already set to the compression pump.
여기서, 압축공기의 공급압에 대한 상기 제 1, 2, 3 레귤레이터의 각 조정값 비교는, 상기 제 2 레귤레이터에 의한 공기압 조정값이 상대적으로 가장 높고, 상기 제 1 레귤레이터에 의한 공기압 조정값이 상대적으로 가장 낮으며, 상기 제 3 레귤레이터에 의한 공기압 조정값이 상기 1, 2 레귤레이터에 의한 공기압 조정값의 사이에 있도록 함이 바람직하다.Here, the comparison of the adjustment values of the first, second and third regulators with respect to the supply pressure of the compressed air has the highest air pressure adjustment value by the second regulator, and the air pressure adjustment value by the first regulator is relatively high. It is the lowest, it is preferable that the air pressure adjustment value by the third regulator is between the air pressure adjustment value by the 1, 2 regulator.
그리고, 상기 압축펌프와 상기 제 3 레귤레이터 사이의 상기 리턴라인에는 상기 제 3 레귤레이터를 통해 유입되는 공기를 일시적으로 저장하고, 외부 공기의 유입이 있도록 유입포트를 구비한 버퍼챔버를 더 설치하여 이루어질 수 있고, 상기 버퍼챔버에는 상기 리턴라인을 통해 유입되는 공기압이 이미 설정한 범위 이상일 때에 공기의 유동이 있도록 단속하는 제 1 체크밸브와; 상기 버퍼챔버 내부의 압력이 이미 설정한 이하일 때에 상기 유입포트로부터 공기의 유입이 있도록 하는 제 2 체크밸브;를 더 구비토록 함이 바람직하다.The return line between the compression pump and the third regulator may temporarily store air flowing through the third regulator, and further install a buffer chamber having an inlet port to allow inflow of external air. The buffer chamber includes: a first check valve for controlling the flow of air when the air pressure flowing through the return line is greater than or equal to a preset range; And a second check valve for allowing air to flow from the inflow port when the pressure inside the buffer chamber is already set or less.
더불어, 상기 리턴라인은 상기 공기 공급라인의 끝단에서 연결되어 상기 제 2 레귤레이터에 인접하는 부위까지 상기 공기 공급라인과 구분되어 나란하게 접하고, 상기 제 2 레귤레이터에 인접하는 부위에서 상기 공기 공급라인으로부터 분기한 형상으로 상기 제 3 레귤레이터에 연결하여 이루어질 수 있다.In addition, the return line is connected at the end of the air supply line and is adjacent to the air supply line to the part adjacent to the second regulator side by side, and branched from the air supply line at the part adjacent to the second regulator It may be made by connecting to the third regulator in one shape.
또한, 상기 에어챔버는 내부에 상기 공기 유입라인에서 상기 공기 공급라인으로 이어지는 공기 흐름이 복수 회수로 굴곡되게 공기 유동통로를 이루는 하나 이상의 격벽을 설치한 것으로 이루어지고, 상기 냉동사이클의 증발기 또는 응축기는 상기 에어챔버의 내벽과 상기 격벽 사이와 상기 격벽들 사이의 공기 유동통로를 따라 배치하는 것으로 이루어질 수 있다.In addition, the air chamber is composed of one or more partitions that form an air flow passage so that the air flow from the air inlet line to the air supply line is bent in a plurality of times therein, the evaporator or condenser of the refrigeration cycle The air chamber may be disposed along an air flow path between the inner wall of the air chamber and the partition wall and between the partition walls.
상기 에어챔버의 측벽은 수직으로 세워지는 파이프 형상이고, 상기 격벽은 크기가 다른 하나 이상의 파이프 형상이 수직으로 세워져 상단과 하단이 대응하는 상기 에어챔버의 상부와 하부에 각각 연결되어 상기 에어챔버 내부를 중심 방향에 대하여 둘 이상으로 분리 구획하며, 상단 부위 또는 하단 부위 일부에 상기 에어챔버의 내벽에서 중심 방향으로 또는 상기 에어챔버의 중심에서 상기 에어챔버의 내벽 방향으로 공기가 통과하도록 하는 도어를 형성한 것으로 이루어지며, 상기 증발기 또는 응축기는 상기 격벽의 외벽 또는 내벽을 따라 나선 형상으로 설치한 것으로 이루어질 수 있다.The side wall of the air chamber is a pipe shape standing vertically, the partition wall is one or more pipe shapes of different sizes are erected vertically is connected to the top and bottom of the air chamber corresponding to the top and bottom, respectively, so that the inside of the air chamber It is divided into two or more with respect to the center direction, the upper or lower portion of the lower portion of the inner chamber of the air chamber in the direction of the center or from the center of the air chamber in the direction of the inner wall of the air chamber to form a door to pass through The evaporator or condenser may be installed in a spiral shape along the outer wall or inner wall of the partition wall.
그리고, 상기 격벽을 크기가 다른 둘 이상의 개수로 설치한 것에 있어서, 상기 냉각사이클과 상기 에어챔버 사이의 상기 증발기 또는 응축기에는 냉매의 흐름을 상기 에어챔버 내부에서 상기 격벽에 의해 분리 구획되는 각 공간에 각각 대응하도록 분배하는 분배유닛을 더 설치하고, 상기 증발기 또는 응축기는 상기 격벽에 의해 분리 구획되는 상기 에어챔버 내부의 각 공간에 대응하는 개수로 형성하여 각각 상기 분배유닛에 연결하는 것으로 이루어질 수 있다.In addition, the partition wall is installed in two or more numbers of different sizes, the evaporator or the condenser between the cooling cycle and the air chamber in the space separated by the partition wall in the flow of refrigerant in the air chamber in each space Distributing units may be further provided so as to correspond to each other, and the evaporator or the condenser may be formed in a number corresponding to each space inside the air chamber separated by the partition and connected to the distribution units, respectively.
또한, 상기 에어챔버의 측벽은 수직으로 세워진 파이프형상이고, 상기 격벽은 길이를 갖는 판 형상으로 폭 방향 양측 가장자리 부위가 상기 에어챔버의 상부와 하부에 맞닿고, 길이 방향 일단 부위는 상기 공기 유입라인 주연의 상기 에어챔버 내벽에 접하며, 나머지 부위는 상기 에어챔버 내벽에 접한 부위에서 상기 공기 유입라인 방향으로 굽어 평면상에서 볼 때 아르키메데스의 와선 현상을 따라 연속하여 이어지며 타단 부위가 상기 에어챔버의 중심 부위에 이르도록 하고, 상기 증발기 또는 응축기는 상기 에어챔버의 평면상에서 볼 때 일측에서 타측으로 이어지는 부위가 아르키메데스의 와선 형상을 따라 이어지고, 측면상에서 볼 때 원뿔 형상을 따라 상측에서 하측으로 연속된 경사를 갖도록 배치하여 이루어질 수 있다.In addition, the side wall of the air chamber is a vertical pipe shape, the partition wall is a plate shape having a length in the width direction both edge portions abut the upper and lower portions of the air chamber, one end in the longitudinal direction of the air inlet line The remaining portion is in contact with the inner wall of the air chamber, the remaining portion is bent in the direction of the air inlet line from the portion in contact with the inner wall of the air chamber and continues continuously along the vortex phenomenon of Archimedes in plan view, and the other end is the central portion of the air chamber. The evaporator or condenser has a continuous inclination from one side to the other in the plane of the air chamber along the spiral shape of Archimedes, and has a continuous inclination from the top to the bottom in the conical shape when viewed from the side. It can be done by arrangement.
그리고, 상기 증발기 또는 응축기는 그 배치에 대응하는 상기 격벽의 표면에 접하게 함이 바람직하다.The evaporator or condenser is preferably in contact with the surface of the partition wall corresponding to the arrangement.
더불어, 상기 에어챔버의 내벽과 상기 격벽의 표면 및 상기 증발기/응축기의 표면에는 상기 격벽에 의해 분리 구획되는 상기 에어챔버의 각 공간에 대하여 상측에서 하측으로 또는 하측에서 상측으로 이동하는 공기의 흐름을 안내하는 날개판을 상하 방향의 나선 형상으로 배치하여 이루어질 수 있다.In addition, the inner wall of the air chamber and the surface of the partition wall and the surface of the evaporator / condenser have a flow of air moving from the upper side to the lower side or the lower side to the upper side with respect to each space of the air chamber separated by the partition wall. The guiding wing plate may be disposed in a spiral shape in the vertical direction.
그리고, 상기 에어챔버는 내부에 송풍팬을 더 설치토록 할 수 있으며, 상기 송풍팬의 구동을 통해 상기 증발기/응축기에 대한 상기 에어챔버 내의 공기의 접촉 빈도를 더욱 증가시키도록 함이 바람직하다.The air chamber may further include a blower fan, and may further increase the frequency of contact of air in the air chamber to the evaporator / condenser by driving the blower fan.
또한, 상기 제 1 레귤레이터에서 상기 디퓨져 사이를 잇는 상기 분기라인은, 유연한 합성수지 재질로 압축공기의 유동통로를 이루는 주관과, 이 주관의 외측에서 연장 돌출한 하나 이상의 리브를 통해 간격을 두고 감싸며 주관과 외부 사이에 격리 공간을 형성하는 커버관 및 커버관이 이루는 격리 공간 또는 외측 표면의 둘레를 따라 복수 개수로 배치하여 길이 방향으로 연장한 전선케이블을 일체로 형성한 이중관과; 상기 이중관의 각 양단에 주관과 연통 연결을 위한 이음부를 갖고 상기 각 전선케이블에 대응하여 각각 전기적으로 연결이 이루어지는 암 또는 수 구조의 소켓을 구비한 구성으로 이루어진다.In addition, the branch line between the first regulator and the diffuser, the main pipe forming a flow passage of the compressed air made of a flexible synthetic resin material, and the main pipe is wrapped at intervals through one or more ribs protruding from the outside of the main pipe and A double pipe integrally formed with a plurality of wire cables extending in a longitudinal direction by arranging a plurality of cover pipes forming an isolation space between the outside and a circumference of the isolation space or outer surface formed by the cover pipe; Each end of the double pipe has a joint for communicating with the main pipe and has a configuration having a female or male socket which is electrically connected to each wire cable.
한편, 상기 목적을 달성하기 위한 본 발명에 따른 압축공기를 이용하는 생산라인의 공기조화장치의 운영방법은, 위의 압축공기를 이용하는 생산라인의 공기조화장치를 구비하고, (A) 상기 제 1, 2, 3 레귤레이터에 의한 공기압 조정값을 기초하여 상기 에어챔버 내의 압력 범위를 설정하는 단계; (B) 상기 에어챔버 내의 압력이 이미 설정한 압력 범위에 있도록 상기 압축펌프의 구동을 제어하는 단계; (C) 상기 분기라인을 통한 압축공기의 배출량 측정값이 상기 에어챔버 내부에 대한 압력 범위 조건과 비교하여, 상기 에어챔버 내의 압력 설정 조건 조정 및 그에 따른 상기 압축펌프의 구동을 제어하는 단계;를 포함하여 이루어진다.On the other hand, the operating method of the air conditioner of the production line using the compressed air according to the present invention for achieving the above object, the air conditioner of the production line using the above compressed air, (A) the first, Setting a pressure range in the air chamber based on the air pressure adjustment value by the 2 and 3 regulators; (B) controlling the driving of the compression pump so that the pressure in the air chamber is within a preset pressure range; (C) controlling the pressure setting condition in the air chamber and controlling the driving of the compression pump according to the measured discharge value of the compressed air through the branch line compared with the pressure range condition for the inside of the air chamber; It is made to include.
또한, 상기 에어챔버와 상기 리턴라인을 포함한 공기 공급라인 및 상기 분기라인에 대한 공기압 조정값 조정과 연동하여, (a) 상기 에어챔버 내의 온도 범위를 설정하는 단계; (b) 상기 에어챔버 내의 온도가 이미 설정한 온도 범위에 있도록 상기 냉동사이클의 구동을 제어하는 단계; (c) 상기 분기라인을 통한 압축공기의 배출량 측정값이 상기 에어챔버 내부에 대한 압력 범위 조건과 비교하여, 상기 에어챔버 내의 압력 설정 조건 조정 및 그에 따른 상기 냉동사이클의 구동을 제어하는 단계;를 포함하여 이루어진다.In addition, in conjunction with the air pressure adjustment value adjustment for the air supply line and the branch line including the air chamber and the return line, (a) setting a temperature range in the air chamber; (b) controlling the driving of the refrigeration cycle so that the temperature in the air chamber is within a preset temperature range; (c) controlling the pressure setting condition in the air chamber and controlling the driving of the refrigeration cycle according to the measured discharge value of the compressed air through the branch line compared with the pressure range condition for the inside of the air chamber; It is made to include.
본 발명에 따른 구성과 그 운영방법에 따르면, 다음과 같은 효과가 있다.According to the configuration and the operating method according to the present invention, the following effects.
첫째, 레귤레이터들을 통해 에어챔버와 공기 공급라인 및 분기라인 순으로 차등적인 압력 유지와 흐름을 유도함과 동시에 작업자들의 압축공기의 사용에 따른 공급량 대비 에어챔버 내의 압축공기 확보량을 안정적이면서 효율적으로 유지할 수 있는 효과가 있다.First, regulators can induce differential pressure maintenance and flow in the order of air chamber, air supply line, and branch line, and at the same time, it can stably and efficiently maintain the amount of compressed air in the air chamber compared to the supply amount according to the use of compressed air by workers. It works.
둘째, 압력센서와 분기라인을 통한 압축공기 공급 유량 측정과 압축공기의 온도를 측정하는 것으로 에어챔버 내부의 압축공기 확보를 위한 압축펌프의 무분별한 사용을 억제할 뿐 아니라 압축공기의 냉각에 필요한 냉동사이클의 무분별한 사용을 억제함으로, 압축펌프와 냉동사이클의 불필요한 운전에 필요한 전력 손실을 방지하는 것으로 그에 따른 비용을 절감하는 효과도 있다.Second, by measuring the compressed air supply flow rate through the pressure sensor and the branch line and measuring the temperature of the compressed air, the refrigeration cycle required for cooling the compressed air as well as suppressing the indiscriminate use of the compressed pump to secure the compressed air inside the air chamber. By suppressing the indiscriminate use of the system, it is possible to reduce the cost by preventing the power loss required for unnecessary operation of the compression pump and the refrigeration cycle.
셋째, 리턴라인 또는 리턴라인과 버퍼챔버를 통해 냉각된 압축공기의 일부를 순환시킴으로써 작업자들에 공급되는 압축공기는 이미 설정한 온도범위를 유지할 수 있을 뿐 아니라 이미 냉각된 압축공기의 순환으로 그 열교환에 필요한 냉동사이클의 구동 에너지 손실을 줄이는 효과가 있다.Third, the compressed air supplied to the workers by circulating a part of the compressed air cooled through the return line or the return line and the buffer chamber can not only maintain the preset temperature range but also heat exchange the circulation of the compressed air cooled. This has the effect of reducing the driving energy loss of the refrigeration cycle.
넷째, 에어챔버는 내부에 설치한 격벽은 공기 유입라인에서 공기 배출라인으로 이어지는 에어챔버 내의 공기 흐름을 증발기/응축기에 대한 공기의 접촉 빈도 및 그에 따른 열교환 효율을 증가시키도록 유도하는 것이고, 격벽의 미설치와 비교할 때에 공기가 증발기/응축기에 대한 열교환이 미비한 상태로 통과하는 것을 방지하는 효과가 있다.Fourth, the air chamber is a partition installed therein to induce the air flow in the air chamber leading from the air inlet line to the air discharge line to increase the contact frequency of the air to the evaporator / condenser and thus the heat exchange efficiency. Compared with the non-installation, there is an effect of preventing the air from passing through with insufficient heat exchange to the evaporator / condenser.
다섯째, 증발기/응축기와 격벽이 접해 있도록 한 것은, 증발기/응축기의 열교환을 위한 비표면적을 격벽으로까지 확대시키는 것이고, 이에 따라 압축공기의 열교환 효율이 증대되는 효과가 있다.Fifth, the contact between the evaporator / condenser and the partition wall extends the specific surface area for heat exchange of the evaporator / condenser to the partition wall, thereby increasing the heat exchange efficiency of the compressed air.
여섯째, 에어챔버 내부에 설치한 송풍팬은 에어챔버 내부의 상압 이상으로 유지되는 공기를 증발기/응축기에 대하여 순환 또는 반복적으로 접촉시키도록 하는 것이고, 이에 따라 압축공기의 열교환 효율이 증대되는 효과가 있다.Sixth, the blowing fan installed in the air chamber is to circulate or repeatedly contact the air maintained above the atmospheric pressure inside the air chamber with the evaporator / condenser, thereby increasing the heat exchange efficiency of the compressed air. .
일곱째, 공기 공급라인은 빠른 순환이 이루어지고, 상대적으로 짧은 분기라인은 이중관으로 이루어져 온도의 손실을 줄일 뿐 아니라 공기 공급라인과의 사이에 제 1 레귤레이터 또는 밸브의 단속을 신속히 수행토록 함으로써 압축 공기의 손실을 줄이는 효과가 있다.Seventh, the air supply line has a rapid circulation, and the relatively short branching line has a double pipe to reduce the loss of temperature, and to quickly perform the control of the first regulator or valve between the air supply line. It has the effect of reducing losses.
도 1은 본 발명의 일 실시 예에 따른 압축공기를 이용하는 생산라인의 공기조화장치 구성과 그 작동관계를 설명하기 위해 개략적으로 나타낸 계통도이다.1 is a schematic diagram illustrating a configuration and an operation relationship of an air conditioner of a production line using compressed air according to an embodiment of the present invention.
도 2는 도 1의 일 실시 예로부터의 변형 예를 나타낸 압축공기를 이용하는 생산라인의 공기조화장치 구성과 그 작동관계를 설명하기 위해 개략적으로 나타낸 계통도이다.FIG. 2 is a schematic diagram schematically illustrating an air conditioner configuration and an operation relationship of a production line using compressed air showing a modified example from the embodiment of FIG. 1.
도 3은 도 1의 구성에 대한 컨트롤러의 제어관계를 설명하기 위한 블록도이다.3 is a block diagram illustrating a control relationship of a controller with respect to the configuration of FIG. 1.
도 4a 내지 도 4f 및 도 5는 에어챔버의 다양한 변형 실시예를 설명하기 위해 개략적으로 나타낸 단면도이다.4A to 4F and 5 are cross-sectional views schematically illustrating various modified embodiments of the air chamber.
도 6과 도 7은 분기라인의 기술 구성과 이들의 결합관계를 설명하기 위한 부분 절취 사시도이다.6 and 7 are partial cutaway perspective views for explaining the technical configuration of the branch line and their coupling relationship.
도 8은 컨트롤러에 대한 에어챔버 및 공기 공급라인의 공기압 제어과정을 설명하기 위한 순서도이다.8 is a flow chart for explaining the air pressure control process of the air chamber and the air supply line for the controller.
도 9는 컨트롤러에 의한 에어챔버 및 공기 공급라인 상의 공기 온도 제어과정을 설명하기 위한 순서도이다.9 is a flowchart illustrating an air temperature control process on an air chamber and an air supply line by a controller.
이하, 본 발명의 구체적인 실시예를 첨부한 도면을 참조하여 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명에 따른 압축공기를 이용하는 생산라인의 공기조화장치는, 도 1 내지 도 3에 도시한 바와 같이, 압축공기를 수용하는 에어챔버(10)와, 외부 공기를 흡입하여 압축한 것을 공기 유입라인(LI1, LI2, LI3)을 통해 에어챔버(10)에 공급하는 압축펌프(22a, 22b)와, 에어챔버(10) 내부에 증발기(18) 또는 응축기를 설치한 냉동사이클(16)과, 공기 공급라인(LS1)으로부터 분기한 분기라인(LD1~LDn)을 통해 공급되는 공기압을 조정하는 제 1 레귤레이터(24b)와, 분기라인(LD1~LDn)을 통한 공기의 흐름을 제어하는 밸브(26) 및 밸브(26)의 개폐신호를 수신하여 압축펌프(22a, 22b)와 냉동사이클(16)의 구동을 제어하는 컨트롤러(40)를 포함한 구성으로 이루어진다.The air conditioning apparatus of the production line using compressed air according to the present invention, as shown in Figures 1 to 3, the air chamber 10 for receiving the compressed air, and the air intake line that is compressed by sucking the outside air Compression pumps 22a and 22b supplied to the air chamber 10 through LI1, LI2 and LI3, a refrigeration cycle 16 in which an evaporator 18 or a condenser is installed in the air chamber 10, and air The first regulator 24b for adjusting the air pressure supplied through the branch lines LD1 to LDn branched from the supply line LS1, and the valve 26 for controlling the flow of air through the branch lines LD1 to LDn. And a controller 40 receiving the open / close signal of the valve 26 to control the driving of the compression pumps 22a and 22b and the refrigeration cycle 16.
이에 더하여 에어챔버(10) 내의 압축공기 공급압을 조절하여 공기 공급라인(LS1)으로 공급되게 하는 제 2 레귤레이터(24a)를 더 구비하는 것으로 이루어질 수 있다.In addition, the second regulator 24a may be further provided to adjust the compressed air supply pressure in the air chamber 10 to be supplied to the air supply line LS1.
먼저, 본 발명을 구성하는 에어챔버(10)에 대하여 더욱 구체적으로 살펴보면, 도 1과 도 2에 도시한 바와 같이, 이미 설계에 따른 내부 용적(容積)을 구획하고, 일측에 공기 유입라인(LI1, LI2, LI3)이 연통하게 연결이 이루어지고, 다른 일측에 공기 공급라인(LS1)이 연통하게 연결한 구성을 이룬다.First, the air chamber 10 constituting the present invention will be described in more detail. As shown in FIGS. 1 and 2, the internal volume according to the design is already partitioned, and an air inflow line LI1 is formed at one side. , LI2, LI3) is connected in communication, the air supply line (LS1) is connected to the other side to form a configuration in communication.
또한, 에어챔버(10)는 내부에 상술한 냉동사이클(16)을 이루는 구성 중 증발기 또는 응축기(이하, '증발기/응축기'라 함) 부위를 연결 설치하여 내부에 수용되는 공기를 냉각 또는 가열시키도록 하고 있다.In addition, the air chamber 10 connects an evaporator or a condenser (hereinafter, referred to as an 'evaporator / condenser') part of the configuration constituting the refrigeration cycle 16 described above to cool or heat the air contained therein. I'm trying to.
그리고, 에어챔버(10)는, 내부에 수용되는 공기압 정도를 측정하는 제 1 압력센서(12a)와 내부에 수용되는 공기의 온도를 측정하는 제 1 온도센서(14a)를 설치한 구성으로 이루어진다.The air chamber 10 has a configuration in which a first pressure sensor 12a for measuring the degree of air pressure contained therein and a first temperature sensor 14a for measuring the temperature of the air contained therein are provided.
여기서, 상술한 바와 같이, 에어챔버(10)가 이루는 내부 용적은, 후술하는 바와 같이, 공기 공급라인(LS1)으로부터 분기된 분기라인(LD1~LDn)들을 통해 작업자에게 공급될 수 있는 압축공기의 최대 공급량을 기초하여 설계가 이루어진다.Here, as described above, the internal volume of the air chamber 10 is, as will be described later, of the compressed air that can be supplied to the worker through the branch line (LD1 ~ LDn) branched from the air supply line (LS1) The design is based on the maximum supply.
한편, 본 발명을 구성하는 압축펌프(22a, 22b)는, 외부에서 에어챔버(10)로 이어지는 공기 유입라인(LI1, LI2, LI3) 상에 설치되어 외부로부터 흡입한 공기를 압축하고, 이렇게 압축한 압축공기를 에어챔버(10) 내부로 공급한다.On the other hand, the compression pump (22a, 22b) constituting the present invention is installed on the air inlet line (LI1, LI2, LI3) leading from the outside to the air chamber 10 to compress the air sucked from the outside, and thus compressed One compressed air is supplied into the air chamber 10.
이때, 압축펌프(22a, 22b)의 압축공기 공급량은, 앞서 설명한 에어챔버(10) 내부의 용적 설계와 마찬가지로, 분기라인(LD1~LDn)들을 통해 작업자에게 공급될 수 있는 압축공기의 최대 공급량을 기초하여 적용함이 바람직하다.At this time, the compressed air supply amount of the compression pump 22a, 22b, as in the volume design inside the air chamber 10 described above, the maximum supply amount of the compressed air that can be supplied to the operator through the branch lines (LD1 ~ LDn) It is preferable to apply on the basis.
*따라서, 압축펌프(22a, 22b)는 작업자에게 공급되는 압축공기의 최대 공급량에 충분히 대응하는 경우, 에어챔버(10)에 대하여 하나만 설치할 수 있으나, 앞의 최대 공급량에 못미치는 용량일 경우 둘 이상의 개수로 설치하는 것으로도 이루어질 수 있다.Therefore, if the compression pumps 22a and 22b sufficiently correspond to the maximum supply amount of compressed air supplied to the operator, only one compression pump 22a or 22b may be installed in the air chamber 10, but two or more compression pumps may be provided. It can also be made by installing a number.
여기서, 압축펌프(22a, 22b)의 설치 개수를 둘 이상의 개수로 형성할 경우에는, 작업자들이 사용하는 압축공기 공급량 변화에 대응하여 일부 개수의 압축펌프(22a, 22b)만을 사용토록 제한함과 동시에 불필요한 압축펌프(22a, 22b)들의 구동을 정지토록 함으로써 근 용량의 압축펌프의 구동에 따른 불필요한 에너지 소모를 줄이는 효과를 기대할 수 있다.In this case, when the number of installation of the compression pumps 22a and 22b is more than two, the number of the compression pumps 22a and 22b is limited to use only in response to the change in the compressed air supply amount used by the workers. By stopping unnecessary driving of the compression pumps 22a and 22b, it is possible to expect an effect of reducing unnecessary energy consumption due to the operation of the compression pump of the near capacity.
한편, 본 발명을 구성하는 냉동사이클(16)은, 일반적인 냉동사이클(16)을 이루는 압축기, 응축기, 팽창변, 증발기 구성 중 증발기(18) 또는 응축기 부위만 에어챔버(10) 내부에 설치하여 에어챔버(10) 내부의 압축공기와 열교환이 이루어지도록 한다.On the other hand, the refrigeration cycle 16 constituting the present invention, the compressor, condenser, expansion valve, the evaporator constituting the general refrigeration cycle 16, only the evaporator 18 or the condenser portion installed in the air chamber 10 inside the air chamber 10 (10) Heat exchange with the compressed air inside.
여기서, 본 발명에서 적용한 증발기/응축기(18)는, 냉동사이클(16) 내의 냉매 흐름을 어느 일 방향(에어챔버 내의 압축공기를 냉각시키기 위한 방향)일 때에 증발기로서 작용하고, 냉매의 흐름을 반대 방향(에어챔버 내의 압축공기를 가열시키기 위한 방향)일 때에 응축기로서 작용토록 한 것이다.Here, the evaporator / condenser 18 applied in the present invention acts as an evaporator when the refrigerant flow in the refrigerating cycle 16 is in one direction (direction for cooling the compressed air in the air chamber), and reverses the flow of the refrigerant. It acts as a condenser in the direction (direction for heating the compressed air in the air chamber).
이렇게 증발기/응축기(18)가 증발기로서의 기능 또는 응축기로서의 기능을 선택적으로 적용될 수 있도록 하는 냉동사이클(16)의 기술 구성을 적용하는 것은, 관련 기술분야에서 공지된 관계로 이에 대한 구체적인 기술 설명은 생략하기로 한다.The application of the technical configuration of the refrigeration cycle 16 such that the evaporator / condenser 18 can selectively apply the function as the evaporator or the function as the condenser is well known in the related art and thus detailed description thereof is omitted. Let's do it.
또한, 에어챔버(10)에 근접한 공기 공급라인(LS1)에는, 에어챔버(10)로부터 공기 공급라인(LS1)으로 유동하는 압축공기를 이미 설정한 공기압으로 조정하여 공급토록 하는 제 2 레귤레이터(24a)의 설치가 이루어진다.In addition, the second regulator 24a which adjusts and supplies the compressed air flowing from the air chamber 10 to the air supply line LS1 to the preset air pressure in the air supply line LS1 adjacent to the air chamber 10. ) Is made.
여기서, 제 2 레귤레이터(24a)의 설치는 반듯이 필요로 하는 것은 아니며, 에어챔버(10)와 공기 공급라인(LS1) 내부의 압력을 동일하게 형성하고, 후술하는 제 1 레귤레이터(24b)를 통해 각 분기라인(LD1~LDn)으로 공기압을 낮추어 공급할 수 있는 정도이면 만족하다고 할 것이다.Here, the installation of the second regulator 24a is not necessarily required, and the pressure inside the air chamber 10 and the air supply line LS1 are equally formed, and the first regulator 24b is described later. It would be satisfactory if the pressure could be supplied by lowering the air pressure to the branch lines LD1 to LDn.
더불어, 공기 공급라인(24a)에는 하나 이상의 에어챔버(10)를 연결한 구성으로 이루어질 수도 있기 때문이다.In addition, it is because the air supply line 24a may be made of a configuration in which one or more air chambers 10 are connected.
그리고, 공기 공급라인(LS1)에서 분기한 각각의 분기라인(LD1~LDn)에는, 공기 공급라인(LS1)으로부터 분기라인(LD1~LDn)으로 유동하는 압축공기를 이미 설정한 공기압으로 조정하여 공급토록 하는 제 1 레귤레이터(24b)의 설치가 이루어진다.Each of the branch lines LD1 to LDn branched from the air supply line LS1 is supplied by adjusting the compressed air flowing from the air supply line LS1 to the branch lines LD1 to LDn at a predetermined air pressure. Installation of the first regulator 24b is made.
여기서, 상술한 제 2 레귤레이터(24a)와 제 1 레귤레이터(24b)는 해당 설치 위치에서 통과하는 공기압의 조정값을 상호 다르게 형성하고 있다.Here, the above-described second regulator 24a and the first regulator 24b form different adjustment values of the air pressure passing through the installation position.
이에 대하여 바람직한 일 예를 제시하자면, 압축펌프(22a, 22b)는 컨트롤러(40)의 제어에 따라 에어챔버(10) 내부의 공기압이 5~10bar 범위 내의 단계적 범위에 있도록 구동하는 것으로 가정할 때에, 제 2 레귤레이터(24a)는 에어챔버(10)에서 공기 공급라인(LS1)으로 진행하는 공기압을 3bar 초과 5bar 미만인 범위 내에서 선택된 공기압 조정값에 있도록 한다.To present a preferred example, when the compression pump (22a, 22b) under the control of the controller 40 is assumed to be driven so that the air pressure in the air chamber 10 is in a stepped range within the range of 5 ~ 10bar, The second regulator 24a causes the air pressure traveling from the air chamber 10 to the air supply line LS1 to be at the selected air pressure adjustment value within a range of more than 3 bar and less than 5 bar.
또한, 제 1 레귤레이터(24b)는 공기 공급라인(LS1)에서 분기라인(LD1~LDn)으로 진행하는 공기압을 1bar 초과 3bar 이하인 범위 내에서 선택된 공기압 조정값에 있도록 한다.In addition, the first regulator 24b allows the air pressure traveling from the air supply line LS1 to the branch lines LD1 to LDn to be at the selected air pressure adjustment value within a range of more than 1 bar and 3 bar or less.
여기서, 상술한 제 1, 2 레귤레이터(24a, 24b) 및 후술하는 제 3 레귤레이터(24c)는 작업자의 수동 조작에 의해 압축공기가 설정한 공급 공기압 수준으로 통과하게 하는 수동 레귤레이터일 수 있고, 또는 상술한 컨트롤러(40)의 제어에 의해 압축공기의 공급 공기압을 조절할 수 있도록 솔레노이드밸브를 구비한 전자제어식 레귤레이터일 수 있다.Here, the above-mentioned first and second regulators 24a and 24b and the third regulator 24c to be described later may be manual regulators for allowing compressed air to pass through the supply air pressure level set by the operator's manual operation, or as described above. It may be an electronically controlled regulator having a solenoid valve to control the supply air pressure of the compressed air by the control of one controller (40).
더불어, 위의 각 구성 부위의 압력 조건과 더불어 각 구성 부위의 내부 용적 또한 차별적으로 설계함이 바람직하다.In addition, it is desirable to design the internal volume of each component in addition to the pressure conditions of the above components.
이에 대하여 예시하자면, 공기 공급라인(LS1)의 용적은 공기 공급라인(LS1)으로부터 분기한 모든 분기라인(LD1~LDn)들의 용적을 합산한 그 이상으로 형성하고, 에어챔버(10)는 공기 공급라인(LS1)의 용적 이상으로 형성함이 바람직하다.For example, the volume of the air supply line LS1 is formed by adding up the volumes of all the branch lines LD1 to LDn branched from the air supply line LS1, and the air chamber 10 supplies the air. It is preferable to form more than the volume of the line LS1.
이에 더하여 상술한 압축펌프(22a, 22b)의 압축공기 생산량은 제 1 레귤레이터(24b)들을 통해 모든 분기라인(LD1~LDn)으로 공급될 수 있는 최대 공급용량 이상에 있도록 함이 바람직하다.In addition, the compressed air output of the compression pumps 22a and 22b described above is preferably above the maximum supply capacity that can be supplied to all the branch lines LD1 to LDn through the first regulator 24b.
한편, 압축공기가 상술한 제 1 레귤레이터(24b)를 통과하여 진행하는 분기라인(LD1~LDn) 상에는, 작업자 또는 컨트롤러(40)에 의해 개폐 및 개폐 정도가 조절되는 밸브(26)를 더 설치하여 이루어질 수 있다.On the other hand, on the branch lines LD1 to LDn where the compressed air passes through the above-described first regulator 24b, a valve 26 is further provided to control the opening and closing degree by the operator or the controller 40. Can be done.
이러한 밸브(26)는 컨트롤러(40)의 제어신호 수신과 작업자의 조작에 의해 개폐 또는 그 개폐 정도(개방량) 조절이 이루어지고, 개폐 및 개폐의 정도를 컨트롤러(40)에 인가하는 솔레노이드밸브로 구성함이 바람직하다.The valve 26 is a solenoid valve for controlling the opening and closing or opening / closing amount (opening amount) of the controller 40 by receiving the control signal of the controller 40 and the operator's operation, and applying the opening and closing degree to the controller 40. It is preferable to construct.
또는, 밸브(26)는 컨트롤러(40)의 제어신호 수신 또는 작업자의 조작에 의해 단순히 개폐의 조절이 이루어지는 솔레노이드밸브로 구성하고, 이러한 솔레노이드밸브 또는 분기라인(LD1~LDn) 상에 솔레노이드밸브의 개폐 정도 또는 분기라인(LD1~LDn)을 통한 압축공기의 공급 유동량을 측정하여 컨트롤러(40)에 그 측정신호를 인가하는 유량센서(28)를 더 설치한 구성으로 이루어질 수 있다.Alternatively, the valve 26 is configured as a solenoid valve in which opening and closing adjustment is simply performed by receiving a control signal of the controller 40 or an operator's operation, and opening and closing the solenoid valve on the solenoid valve or the branch lines LD1 to LDn. It may be made of a configuration in which the flow rate sensor 28 for measuring the supply flow rate of the compressed air through the degree or the branch line (LD1 ~ LDn) to apply the measurement signal to the controller 40.
여기서, 밸브(26)의 설치는 반듯이 필요로 하는 것은 아니며, 제 1 레귤레이터(24b)가 작업자 또는 컨트롤러(40)에 의해 조정될 수 있는 전자제어식 레귤레이터인 경우에는, 밸브(26)의 설치는 생략할 수 있다.Here, the installation of the valve 26 is not necessarily required, and in the case where the first regulator 24b is an electronically controlled regulator that can be adjusted by the operator or the controller 40, the installation of the valve 26 will be omitted. Can be.
또한, 분기라인(LD1~LDn)의 끝단부에는 작업자에 대하여 공기의 분사가 이루어지도록 한 디퓨져(30)의 설치가 이루어지고, 이 디퓨져(30)에는 디퓨져(30)로부터 이미 설정한 간격 이내에 인체 유무를 감지하여, 그 감지신호를 컨트롤러(40)에 인가하는 인체감지센서(32)의 설치가 이루어진다.Further, a diffuser 30 is provided at the end of the branch lines LD1 to LDn so that air is blown to the worker, and the diffuser 30 is installed within the interval already set by the diffuser 30. The presence or absence of a human body sensor 32 is applied to detect the presence and absence of the detection signal to the controller 40.
이러한 인체감지센서(32)는 적외선 센서 또는 초음파 센서 등이 적용될 수 있다.The human body sensor 32 may be an infrared sensor or an ultrasonic sensor.
한편, 공기 공급라인(LS1)의 끝단에는 압축펌프(22a, 22b)로 이어지는 리턴라인(LR)을 더 연결하고, 리턴라인(LR)에는 압축펌프(22a, 22b) 방향으로 이미 설정한 공기압으로 조정하여 공급하는 제 3 레귤레이터(24c)의 설치가 이루어진다.On the other hand, the return line (LR) leading to the compression pump (22a, 22b) is further connected to the end of the air supply line (LS1), the return line (LR) with the air pressure already set in the direction of the compression pump (22a, 22b) The 3rd regulator 24c which adjusts and supplies is provided.
여기서, 제 1, 2, 3 레귤레이터(24a, 24b, 24c)들 각각에 의해 조정된 공기압 조정값들은, 제 2 레귤레이터(24a)에 의한 공기압 조정값이 상대적으로 가장 높고, 제 1 레귤레이터(24b)에 의한 공기압 조정값은 상대적으로 가장 낮으며, 제 3 레귤레이터(24c)에 의한 공기압 조정값은 제 1, 2 레귤레이터(24a, 24b)들에 의한 공기압 조정값들 사이에 있도록 함이 바람직하다.Here, the air pressure adjustment values adjusted by each of the first, second, and third regulators 24a, 24b, and 24c have the highest air pressure adjustment value by the second regulator 24a, and the first regulator 24b. The air pressure adjustment value by is relatively the lowest, and the air pressure adjustment value by the third regulator 24c is preferably between the air pressure adjustment values by the first and second regulators 24a and 24b.
이에 대하여 앞서 예시한 공기압 조정값을 비교하여 제시하면, 에어챔버(10) 내부의 공기압이 5~10bar 범위에 있도록 하고, 제 2 레귤레이터(24a)에 의해 조정되는 공기압 조정값 즉, 공기 공급라인(LS1)에 형성되는 공기압이 4bar 초과 5bar 미만이고, 분기라인(LD1~LDn)에 대하여 제 1 레귤레이터(24b)에 의해 조정되는 공기압 조정값이 1bar 초과 3bar 미만이라 할 때에, 제 3 레귤레이터(24c)를 통해 조정되는 공기압 조정값 범위는, 3bar 초과 4bar 이하로 형성함이 바람직하다.On the other hand, when comparing the air pressure adjustment values exemplified above, the air pressure inside the air chamber 10 is in the range of 5 to 10 bar, and the air pressure adjustment value that is adjusted by the second regulator 24a, that is, the air supply line ( When the air pressure formed in LS1) is more than 4 bar and less than 5 bar, and the air pressure adjustment value adjusted by the 1st regulator 24b with respect to branch lines LD1-LDn is more than 1 bar and less than 3 bar, the 3rd regulator 24c Pneumatic pressure adjustment value range is adjusted through, it is preferable to form more than 3bar 4bar or less.
이렇게 제 3 레귤레이터(24c)에 따른 공기압 조정값 범위의 설정은, 공기 공급라인(LS1)을 통해 공급되는 압축공기가 분기라인(LD1~LDn)을 통해 작업자들에게 우선적으로 공급될 수 있도록 하고, 작업자들에게 공급되고 남은 잉여분의 압축공기는 제 3 레귤레이터(24c)를 통해 다시 압축펌프(22a, 22b)로 순환하도록 하기 위한 것이다.The setting of the air pressure adjustment value range according to the third regulator 24c allows the compressed air supplied through the air supply line LS1 to be preferentially supplied to the workers through the branch lines LD1 to LDn. The surplus of compressed air supplied to the workers is to be circulated back to the compression pumps 22a and 22b through the third regulator 24c.
이에 더하여, 압축펌프(22a, 22b)와 제 3 레귤레이터(24c) 사이의 리턴라인(LR)에는 제 3 레귤레이터(24c)를 통해 유입되는 공기를 일시적으로 저장하고, 또한 외부 공기의 유입이 있도록 유입포트를 구비한 버퍼챔버(34)를 더 설치토록 함이 바람직하다.In addition, the return line LR between the compression pumps 22a and 22b and the third regulator 24c temporarily stores the air flowing through the third regulator 24c and also flows in to allow the inflow of external air. It is preferable to further install a buffer chamber 34 having a port.
또한, 버퍼챔버(34)는 내부에 제 3 레귤레이터(24c)를 거쳐 리턴라인(LR)을 통해 유입되는 공기압이 이미 설정한 범위 이상이거나 압축펌프(22a, 22b)의 구동으로 버퍼챔버(34) 내에 진공압이 형성될 때에 버퍼챔버(34) 내부로 공기의 유입이 있도록 단속하는 제 1 체크밸브(26)와, 버퍼챔버(34) 내부의 압력이 이미 설정한 이하일 때에 유입포트()로부터 공기의 유입이 있도록 하는 제 2 체크밸브(26)를 더 구비하여 이루어질 수 있다.In addition, the buffer chamber 34 has an internal air pressure flowing through the return line LR via the third regulator 24c therein or above the predetermined range, or is driven by the compression pumps 22a and 22b. The first check valve 26 for intermittently allowing the inflow of air into the buffer chamber 34 when a vacuum pressure is formed therein, and the air from the inlet port when the pressure inside the buffer chamber 34 is less than or equal to a predetermined value. It may be provided with a second check valve 26 to allow the inflow of.
여기서, 제 1 체크밸브(26)는 상술한 리턴라인(LR)을 통해 외부공기의 역진행을 차단하기 위한 용도와 제 3 레귤레이터(24c)를 통한 리턴라인(LR)과 공기 공급라인(LS1)의 압력손실이 무분별하게 진행하는 것을 차단하기 위한 것으로서, 반듯이 필요한 구성은 아니며, 압축펌프(22a, 22b)의 구동에 의해 버퍼챔버(34) 내의 진공압이 발생할 경우 제 2 체크밸브(26)보다 먼저 개방이 이루어지도록 함으로써 냉각된 압축공기가 외부공기보다 먼저 재순환과정을 갖도록 함이 바람직하다.Here, the first check valve 26 is used to block reverse flow of external air through the return line LR described above, and the return line LR and the air supply line LS1 through the third regulator 24c. This is to prevent the pressure loss of the indiscriminately proceeding, which is not necessarily necessary, and when the vacuum pressure in the buffer chamber 34 is generated by the driving of the compression pumps 22a and 22b, By opening first, it is preferable that the cooled compressed air has a recirculation process before the external air.
그리고, 리턴라인(LR)은 공기 공급라인(LS1)의 끝단에서 연결되어 제 2 레귤레이터(24a)에 인접하는 부위까지 공기 공급라인(LS1)과 구분되어 나란하게 접하고, 제 2 레귤레이터(24a)에 인접하는 부위에서 공기 공급라인(LS1)으로부터 분기한 형상으로 제 3 레귤레이터(24c)에 연결하여 이루어진다.In addition, the return line LR is connected at the end of the air supply line LS1 to be adjacent to the air supply line LS1 to a portion adjacent to the second regulator 24a, and side by side to the second regulator 24a. It is made by connecting to the third regulator 24c in a shape branching from the air supply line LS1 at an adjacent portion.
이렇게 공기 공급라인(LS1)과 리턴라인(LR)이 상호 접해 있도록 하는 것은, 공기 공급라인(LS1)과 리턴라인(LR)이 생산라인으로부터 열교환에 따른 에너지 손실을 상호 보완적으로 저감하기 위한 것이며, 에어챔버(10)와 압축펌프(22a, 22b) 및 냉동사이클(16)은 그 공급이 이루어지는 작업공간으로부터 원거리에 이격 설치됨에 대응하여 공기 공급라인(LS1)과 리턴라인(LR)의 설치를 이중으로 형성하지 않도록 하기 위함이다.The air supply line LS1 and the return line LR are in contact with each other in order to mutually reduce the energy loss due to heat exchange from the production line. The air chamber 10, the compression pumps 22a and 22b, and the refrigeration cycle 16 are installed at a distance from the work space where the supply is made. Therefore, the air supply line LS1 and the return line LR are installed. This is to avoid forming a double.
이하에서는, 이상에서 살펴본 압축공기를 이용하는 생산라인의 공기조화장치로부터 그 운영방법을 살펴보기로 한다.Hereinafter, the operation method from the air conditioner of the production line using the compressed air described above will be described.
먼저, 위에 제시한 바와 같이, 상술한 제 1, 2, 3 레귤레이터(24a, 24b, 24c)들은 각각의 공기압 조정값을 상호 차등적으로 형성한다.First, as shown above, the above-described first, second and third regulators 24a, 24b and 24c differentially form respective air pressure adjustment values.
이에 대하여 예시하자면, 제 2 레귤레이터(24a)는 에어챔버(10)에서 공기 공급라인(LS1)으로 진행하는 압축공기의 공기압을 3bar 초과 5bar 미만 범위에서 선택된 어느 하나의 공기압 조정값으로 설정하고, 제 1 레귤레이터(24b)는 공기 공급라인(LS1)에서 분기라인(LD1~LDn)으로 진행하는 압축공기의 공기압을 1bar 초과 3bar 이하인 범위 내에서 선택된 공기압 조정값에 있도록 한다.For example, the second regulator 24a sets the air pressure of the compressed air traveling from the air chamber 10 to the air supply line LS1 to any one air pressure adjustment value selected from a range of more than 3 bar and less than 5 bar. The first regulator 24b causes the air pressure of the compressed air that proceeds from the air supply line LS1 to the branch lines LD1 to LDn to be at a selected air pressure adjustment value within a range of more than 1 bar and 3 bar or less.
또한, 제 3 레귤레이터(24c)는 제 2 레귤레이터(24a)의 공기압 조정값과 같거나 낮은 수준으로 함과 동시에 제 1 레귤레이터(24b)의 공기압 조정값 보다는 높은 공기압 조정값으로 설정할 수 있다.Further, the third regulator 24c may be set to the same or lower level as the air pressure adjustment value of the second regulator 24a and set to a higher air pressure adjustment value than the air pressure adjustment value of the first regulator 24b.
여기서, 제 3 레귤레이터(24c)의 공기압 조정값을 제 2 레귤레이터(24a)의 공기압 조정값과 같게 형성하는 것은, 그 이상의 공기압을 형성하는 에어챔버(10)로부터 제 2 레귤레이터(24a)를 통해 계속적인 압축공기의 진행이 이루어짐으로써 공기 공급라인(LS1) 내의 공기압이 제 2 레귤레이터(24a)의 공기압 조정값 이상으로 형성될 때에 오버플로우되는 것을 재순환토록 하기 위한 것이다.Here, forming the air pressure adjustment value of the third regulator 24c to be the same as the air pressure adjustment value of the second regulator 24a is continued through the second regulator 24a from the air chamber 10 forming a higher air pressure. By advancing the normal compressed air, the air pressure in the air supply line LS1 is recycled to overflow when the air pressure is formed above the air pressure adjustment value of the second regulator 24a.
또한, 제 3 레귤레이터(24c)의 공기압 조정값을 제 2 레귤레이터(24a)의 공기압 조정값보다 낮게 형성하는 것은, 공기 공급라인(LS1)에 대하여 냉각 또는 가열된 압축공기의 흐름이 연속되게 순환시키기 위한 것이다.In addition, forming the air pressure adjustment value of the third regulator 24c to be lower than the air pressure adjustment value of the second regulator 24a allows continuous flow of compressed or cooled compressed air to the air supply line LS1. It is for.
이것은, 분기라인(LD1~LDn)을 통한 압축공기의 공급(배출)이 이루어지지 않는 경우 즉, 압축공기가 공기 공급라인(LS1) 내에서 정체되어 있는 경우, 공기 공급라인(LS1) 내의 압축공기는 생산라인과의 열교환으로 열에너지를 손실이 발생하고, 이러한 상태에서 작업자의 사용이 이루어지면, 작업자는 일정 시간(열에너지를 손실한 압축공기가 공기 공급라인(LS1)으로부터 소진되기까지의 시간) 동안 소망하는 온도 조건이 아닌 압축공기를 공급받게 되는 것을 방지하기 위한 것이다.This is because when compressed air is not supplied (discharged) through the branch lines LD1 to LDn, that is, when compressed air is stagnant in the air supply line LS1, compressed air in the air supply line LS1. Heat energy is lost due to heat exchange with the production line, and when the worker is used in this state, the worker is allowed to use it for a certain time (the time until the compressed air that has lost the heat energy is exhausted from the air supply line LS1). This is to prevent the supply of compressed air rather than the desired temperature conditions.
그리고, 제 3 레귤레이터(24c)의 공기압 조정값을 제 1 레귤레이터(24b)의 공기압 조정값보다 높게 형성하는 것은, 공기 공급라인(LS1) 상의 압축공기가 분기라인(LD1~LDn)들을 통해 작업자에게 우선적으로 공급될 수 있도록 하기 위한 것이다.And, forming the air pressure adjustment value of the third regulator 24c higher than the air pressure adjustment value of the first regulator 24b means that the compressed air on the air supply line LS1 is supplied to the worker through the branch lines LD1 to LDn. It is intended to be supplied preferentially.
한편, 상술한 에버챔버(10)의 내부에는, 도 4a 내지 도 5에 도시한 바와 같이, 공기 유입라인(LI)을 통해 유입되는 압축공기가 공기 공급라인(LS)을 통해 배출되기까지 공기의 흐름을 복수 회수로 굴곡시키도록 공기의 유동통로를 이루는 격벽(50)을 하나 이상 설치하고 있다.On the other hand, the inside of the above-described ever chamber 10, as shown in Figures 4a to 5, the compressed air flowing through the air inlet line (LI) until the air is discharged through the air supply line (LS) One or more partitions 50 forming a flow passage of air are provided to bend the flow in a plurality of times.
이렇게 설치한 격벽(50)은, 에어챔버(10) 내부로 유입되는 압축공기가 이미 설계한 증발기/응축기(16) 배치를 따라 이동 내지 순환하도록 공기의 유동통로를 이룸으로써 증발기/응축기(16)에 대한 압축공기의 접촉 빈도를 높이도록 하기 위한 것이다.The partition wall 50 installed as described above forms an air flow path so that the compressed air flowing into the air chamber 10 moves or circulates along an already designed evaporator / condenser 16 arrangement. In order to increase the frequency of contact with the compressed air.
따라서, 에어챔버(10) 내의 증발기/응축기(18)는 에어챔버(10)의 내벽과 격벽(50) 사이와 격벽(50)들 상호 간의 사이를 포함한 압축공기의 유동통로를 따라 배치를 이룬다.Thus, the evaporator / condenser 18 in the air chamber 10 is arranged along the flow passage of compressed air including between the inner wall of the air chamber 10 and the partition 50 and between the partitions 50.
즉, 상술한 격벽(50)과 증발기/응축기(18)는 에어챔버(10) 내의 압축공기의 흐름이 증발기/응축기(18)에 대하여 접촉 가능성을 높이도록 상호 간 배치의 조합으로 이루어진다.That is, the aforementioned partition wall 50 and the evaporator / condenser 18 are composed of a combination of mutual arrangements such that the flow of compressed air in the air chamber 10 increases the possibility of contact with the evaporator / condenser 18.
여기서, 도 4a 내지 도 5를 참조하여 에어챔버(10)와 격벽(50) 및 증발기/응축기(18)의 다양한 형태에 대하여 살펴보기로 한다.Here, various forms of the air chamber 10, the partition wall 50, and the evaporator / condenser 18 will be described with reference to FIGS. 4A to 5.
먼저, 도 4a에 도시한 에어챔버(10a)는, 둘 이상의 판체를 에어챔버(10a) 내의 마주보는 양측 내벽에 대하여 공기 유입라인(LI)에서 공기 공급라인(LS) 방향으로 간격을 두고 설치하여 압축공기가 지그재그 형상의 흐름을 갖도록 할 수 있다.First, the air chamber 10a shown in FIG. 4A is provided with two or more plates at intervals in the air inflow line LI from the air inlet line LI with respect to opposite inner walls of the air chamber 10a. The compressed air can be made to have a zigzag flow.
상술한 바와 같이, 복수 판체가 상호 어긋나게 교번한 배치의 격벽(50a) 사이 즉, 에어챔버(10a) 내의 압축공기의 유동통로에는 압축공기의 흐름을 따라 증발기/응축기(18a)의 설치가 이루어진다.As described above, the evaporator / condenser 18a is provided between the partition walls 50a in which the plurality of plates alternately alternately, that is, in the flow passage of the compressed air in the air chamber 10a along the flow of the compressed air.
도 4b에 도시한 에어챔버(10b)의 격벽(50b) 구조는, 공기 유입라인(LI)으로부터 유입되는 압축공기의 흐름을 이미 설계에 따른 한 방향으로 유도하면서 격벽(50b)이 이루는 유동통로와 증발기/응축기(18b)를 따라 공기 공급라인(LS) 방향으로 유도하고, 공기 공급라인(LS)을 통해 배출되지 않거나 남은 압축공기는 격벽(50b)이 이루는 유동통로를 따라 다시 공기 유입라인(LI) 방향으로 향하도록 하여 에어챔버(10b) 내부에 잔류하는 압축공기를 계속적으로 순환하도록 한 것이다.The structure of the partition wall 50b of the air chamber 10b shown in FIG. 4B includes a flow passage formed by the partition wall 50b while guiding the flow of compressed air flowing from the air inflow line LI in one direction according to the design. Guide the air supply line LS along the evaporator / condenser 18b, and the compressed air that is not discharged through the air supply line LS or remaining is again along the flow path formed by the partition 50b. Direction so that the compressed air remaining in the air chamber 10b is continuously circulated.
이때, 에어챔버(10b) 내부에는, 압축공기가 순환하도록 하는 공기통로에는 압축공기의 순환을 강제하는 송풍팬(60a)을 더 설치토록 할 수 있다.At this time, it is possible to further install a blowing fan (60a) for forcing the circulation of the compressed air in the air passage through which the compressed air circulates in the air chamber (10b).
도 4c에 도시한 에어챔버(10c)는, 측벽 둘레의 형상이 평면상에서 볼 때에, 원형, 다각형 등의 수직으로 세워지는 파이프 형상을 이룬다.The air chamber 10c shown in FIG. 4C has the shape of a pipe standing vertically, such as a circle | round | yen and a polygon, when the shape of the perimeter of a side wall is planar view.
또한, 격벽(50c)은 에어챔버(10c) 내벽에 대하여 간격을 두고 삽입되어 수직으로 세워지는 하나 이상의 파이프 형상의 것으로 각각은 상부와 하부 중 적어도 한 부위가 대응하는 에어챔버(10c)의 천장 또는 바닥에 맞닿아 측벽이 파이프 형상으로 이루어진 에어챔버(10c) 내부 공간을 격벽(50c)의 외측과 내측으로 분리 내지 구분하도록 설치가 이루어진다.In addition, the partition wall 50c has one or more pipe shapes inserted vertically at intervals with respect to the inner wall of the air chamber 10c, each of which is a ceiling of the air chamber 10c corresponding to at least one of the upper part and the lower part, or Installation is made so as to separate or distinguish the inner space of the air chamber 10c having a side wall with a pipe shape in contact with the floor to the outside and the inside of the partition 50c.
여기서, 격벽(50c)의 설치 개수가 둘 이상일 경우에, 각각의 격벽(50c)은 서로 크기가 다른 것으로 구비되며, 이들 격벽(50c) 상호 간에 있어서, 그 크기가 상대적으로 작은 것은 상대적으로 큰 것의 내벽에 대하여 간격을 두고 삽입한 상태로 설치가 이루어진다.Here, when the number of installation of the partition 50c is two or more, each of the partitions 50c is provided with different sizes from each other, and among these partitions 50c, the smaller ones are relatively larger in size. Installation is made with the gap inserted against the inner wall.
이러한 복수 격벽(50c)의 설치구조에 있어서, 일 실시 예는, 격벽(50c)의 상부와 하부가 대응하는 에어챔버(10c)의 천장과 바닥에 모두 맞닿게 설치하여 격벽(50c)의 내측과 외측을 구분하도록 하는 경우가 있을 수 있다.In the installation structure of the plurality of partition walls 50c, in one embodiment, the upper and lower portions of the partition walls 50c are installed to be in contact with both the ceiling and the bottom of the corresponding air chamber 10c so as to contact the inner side of the partition walls 50c. There may be cases where the outside is to be distinguished.
이때, 격벽(50c)은 상부 또는 하부의 일부를 절개한 것이거나 그 부위를 개폐하도록 도어(D)를 설치한 구성으로 이루어질 수 있다.In this case, the partition 50c may be formed by cutting a part of the upper part or the lower part or installing the door D to open or close the part.
이들 절개 부위 또는 도어(D)의 설치는, 격벽(50c)의 외측(또는 내측)의 압축공기가 격벽(50c)의 내측(또는 외측) 방향으로 통과하게 하기 위한 것으로서, 그 형성 위치는, 에어챔버(10c) 내부로 유입되는 압축공기를 격벽(50c) 외측(또는 내측)의 상측에서 하측으로 또는 하측에서 상측으로 유동하여 해당 격벽(50c)의 내측(또는 외측)으로 통과하게 하고, 이어서 격벽(50c) 내측으로 유입되는 압축공기를 격벽(50c) 외측에서의 압축공기 흐름과 반대로 하측에서 상측으로 또는 상측에서 하측으로 유동시키도록 배치함이 바람직하다.Installation of these cutouts or doors D is for making compressed air of the outer side (or inner side) of the partition 50c pass to the inner side (or outer side) direction of the partition 50c, The formation position is air The compressed air flowing into the chamber 10c flows from the upper side to the lower side or the lower side to the upper side of the partition 50c and then passes through the inside of the partition 50c to the inside of the partition 50c. It is preferable to arrange the compressed air flowing inwardly to flow from the lower side to the upper side or from the upper side to the lower side as opposed to the compressed air flow on the outer side of the partition wall 50c.
한편, 다른 예로서 격벽(50c)의 설치 개수가 둘 이상이고, 상부 또는 하부에 절개한 형상 부위가 없거나 또는 도어(D)를 설치하지 않은 것들로 이루어진 경우가 있을 수 있다.On the other hand, as another example, there may be a case where the number of installation of the partition wall 50c is two or more, and there is no shape portion cut off on the upper or lower portion, or those having no door D installed thereon.
이때, 각 격벽(50c)들의 높이는, 에어챔버(10c)의 천장과 바닥 사이의 간격보다 작고, 복수의 격벽(50c)들의 설치는, 외측에서 내측으로 위치하는 순서대로 하나는 상부가 에어챔버(10c)의 천장에 접하고, 그 다음으로 이웃하는 것은 하부가 에어챔버(10c)의 바닥에 접하도록 설치하여 공기 유입라인(LI)을 통해 유입되는 압축공기가 외측에서 내측으로 유동할 때에 상하 지그재그 형상을 이루도록 함이 바람직하다.At this time, the height of each of the partitions 50c is smaller than the distance between the ceiling and the floor of the air chamber 10c, and the installation of the plurality of partitions 50c is one of the upper air chambers in the order of being located from the outside to the inside. 10c), and the next neighbor is installed so that the lower side is in contact with the bottom of the air chamber (10c) and the upper and lower zigzag shape when the compressed air flowing through the air inlet line (LI) flows from the outside to the inside It is desirable to achieve.
즉, 위의 다른 예에 의하면, 각기 크기가 다른 격벽(50c)들은 에어챔버(10)의 천장과 바닥에 대하여 상호 이웃하는 것들끼리 번갈아 설치한 구조를 이룬다.That is, according to the other example above, the partition walls 50c having different sizes form a structure in which neighboring ones are alternately installed with respect to the ceiling and the floor of the air chamber 10.
위의 각 예에 있어서, 에어챔버(10c)는, 공기 유입라인(LI)을 통한 압축공기의 유입 방향이 상측에서 하측(또는 하측에서 상측) 방향으로 향하도록 함과 동시에 격벽(50c)의 둘레 방향을 따라 유동하도록 즉, 유입되는 압축공기의 유동 방향이 나선 형상을 이루도록 공기 유입라인(LI)의 설치 방향을 설정하거나 에어챔버(10c) 내부의 공기 유입라인(LI)을 연결한 부위에 압축공기의 흐름을 유도하기 위한 방향타와 같은 판 형상의 유도부재(56)를 더 설치하는 것으로 이루어질 수도 있다.In each of the above examples, the air chamber 10c is configured such that the inflow direction of the compressed air through the air inflow line LI is directed from the upper side to the lower side (or the lower side to the upper side) and at the same time around the partition 50c. Set the installation direction of the air inflow line (LI) to flow along the direction, that is, the flow direction of the inflowing compressed air to form a spiral shape or compress the air inflow line (LI) inside the air chamber (10c) connected to the site It may also consist of further installing a plate-like guide member 56, such as a rudder for directing the flow of air.
그리고, 위의 설명 중 일 예에서 제시한 도어(D)는, 격벽(50c)을 통과하는 압축공기의 흐름이 나선형을 이루도록 하거나 소용돌이치도록 유도하는 형상으로 설치될 수 있다.And, the door (D) presented in an example of the above description, may be installed in a shape that induces the flow of the compressed air passing through the partition 50c to form a spiral or swirl.
이와 같이, 크기가 다른 복수의 격벽(50c)을 에어챔버(10c)의 내벽에서 그 중심 방향으로 간격을 두고 에어챔버(10c) 내부 공간을 구분토록 배치한 것에 대한 증발기/응축기(18c)의 설치는, 격벽(50c)에 의해 유도되는 압축공기의 유동 방향을 따라 배치할 수 있다.In this way, the installation of the evaporator / condenser 18c for arranging the plurality of partition walls 50c having different sizes so as to separate the inner space of the air chamber 10c at intervals from the inner wall of the air chamber 10c in the center direction thereof. Can be arranged along the flow direction of the compressed air guided by the partition 50c.
더욱 바람직하게는, 도 4c에 도시한 바와 같이, 냉동사이클(16)에서 에어챔버(10c)로 냉매의 유동이 이루어지는 냉매 유동라인(L)에는 복수의 격벽(50c)에 의해 구분된 에어챔버(10c) 내부의 각 공간에 대하여 냉매를 각각 분리하여 공급토록 하는 분배관(54a)('증발기/응축기'가 '응축기' 일 때)을 더 설치하고, 이 분배관(54a)을 통해 분기한 각각의 증발기/응축기(18c)는 에어챔버(10c)의 내벽과 이에 이웃하는 격벽(50c) 사이, 각 격벽(50c)들 사이 및 에어챔버(10)의 중심에 설치한 단일 격벽(50c) 내에 압축공기의 흐름에 대응하도록 설치하여 이루어질 수 있다.More preferably, as shown in Figure 4c, the refrigerant flow line (L) in which the refrigerant flows from the refrigeration cycle 16 to the air chamber (10c) in the air chamber divided by a plurality of partition walls (50c) ( 10c) Distributing pipes 54a (when 'evaporator / condenser' is 'condenser') are further provided for separating and supplying refrigerant to respective spaces inside, and each branched through the distribution pipes 54a. Of the evaporator / condenser 18c of the air chamber 10c is compressed between the inner wall of the air chamber 10c and the adjacent partition wall 50c, between each partition wall 50c, and in a single partition wall 50c installed at the center of the air chamber 10. It may be made by installing to correspond to the flow of air.
그리고, 에어챔버(10c)에서 냉동사이클(16c)로 냉매의 유동이 있도록 한 냉매 유동라인(L)에는, 격벽(50c)에 의해 구분된 에어챔버(10c) 내부의 각 공간으로부터 이어진 각 증발기/응축기(18c)의 단부와 연결이 이루어져 이들로부터 냉매를 모으는 합체관(54b)('증발기/응축기'가 '응축기' 일 때)의 설치가 이루어지고, 합체관(54b)을 통해 모인 냉매는 다시 냉매 유동라인(L)을 통해 냉동사이클(16)로 유동하는 순환과정을 갖도록 하여 이루어질 수 있다.Then, in the refrigerant flow line (L) in which the refrigerant flows from the air chamber (10c) to the refrigeration cycle (16c), each evaporator / connected from each space inside the air chamber (10c) separated by the partition wall (50c) / The connecting tube 54b (when the 'evaporator / condenser' is a 'condenser') is installed to connect with the end of the condenser 18c and collect the refrigerant therefrom, and the refrigerant collected through the combining tube 54b is again provided. It may be made to have a circulation process flowing into the refrigeration cycle 16 through the refrigerant flow line (L).
여기서, 상술한 분배관(54a) 또는 합체관(54b)은, 도 4c에서 에어챔버(10c)의 외측에 설치한 것으로 표현되었으나, 이에 한정되는 것은 아니며, 에어챔버(10c) 내에 별도의 공간을 마련하거나 배치한 각 격벽(50c)들을 관통하여 설치한 구성으로 이루어질 수 있음은 당연하다고 할 것이다.Here, although the above-described distribution pipe 54a or coalescing pipe 54b is expressed as being installed outside the air chamber 10c in FIG. 4C, the present invention is not limited thereto, and a separate space is provided in the air chamber 10c. Naturally, it can be made of a configuration installed through the partitions 50c provided or arranged.
그리고, 상술한 분배관(54a) 또는 합체관(54b)은, 하나의 냉동사이클(16)과 격벽(50c)들에 의해 복수로 구분된 에어챔버(10c) 내의 각 공간에 대하여 냉매의 흐름을 분배하는 분배유닛을 이룬다.In addition, the above-described distribution pipe 54a or coalescing pipe 54b provides a flow of refrigerant to each space in the air chamber 10c divided by a plurality of refrigeration cycles 16 and partition walls 50c. A dispensing unit is formed.
이에 대한 변형 예를 제시하자면, 비록 도면으로 표현하지는 않았으나 격벽(50c)들에 의해 구분 되어진 에어챔버(10c) 내의 각 공간에 대하여 증발기/응축기(18c)를 각각 설치하고, 이들 증발기/응축기(18c)에 대하여 각각 독립된 냉동사이클(16)을 연결하는 것으로도 이루어질 수 있음은 당연하다고 할 것이다.To present a variation of this, although not represented in the drawings, an evaporator / condenser 18c is provided for each space in the air chamber 10c separated by the partition walls 50c, and these evaporator / condenser 18c is provided. Of course, it can be made by connecting the independent refrigeration cycle (16) for each.
도 4d에 도시한 에어챔버(10d)와 그 내부에 설치한 격벽(50d) 및 증발기/응축기(18d) 구조는, 에어챔버(10d)의 측벽이 수직으로 세워진 파이프 형상이고, 격벽(50d)은 길이를 갖는 판 형상의 것으로 폭 방향 양측 가장자리 부위가 에어챔버(10d)의 천장과 바닥면에 맞닿게 한다.The air chamber 10d shown in FIG. 4D, and the partition 50d and evaporator / condenser 18d structures provided therein have a pipe shape in which the side walls of the air chamber 10d are vertically erected, and the partition 50d is It is a plate-shaped thing with a length, and the edge part of the width direction makes contact with the ceiling and bottom surface of the air chamber 10d.
또한, 격벽(50d)의 길이 방향 일단 부위는, 도 5에서 참조되는 바와 같이, 공기 유입라인(LI) 주연의 에어챔버(10d) 내벽에 접하며, 나머지 부위는 에어챔버(10d) 내벽에 접한 부위에서 공기 유입라인(LI) 방향으로 일차로 굽은 형상을 이루며, 이어서 평면상에서 볼 때에 아르키메데스의 와선 현상을 따라 연속하여 타단 부위가 에어챔버(10d)의 중심 부위에 이르는 구조를 이룬다.In addition, one end portion in the longitudinal direction of the barrier rib 50d is in contact with the inner wall of the air chamber 10d around the air inflow line LI, and the remaining portion is in contact with the inner wall of the air chamber 10d, as shown in FIG. 5. In the direction of the air inlet line (LI) in the form of a first bent shape, and then in plan view when the other end portion continuously along the vortex phenomenon of Archimedes to form a structure reaching the center portion of the air chamber (10d).
이러한 격벽(50d) 설치에 대응하는 증발기/응축기(18d)는, 에어챔버(10d)의 평면상에서 볼 때에, 일측에서 타측으로 이어지는 부위가 아르키메데스의 와선 형상을 따라 이어지고, 동시에 측면상에서 볼 때 원뿔 형상을 따라 상측에서 하측으로 연속된 경사를 갖도록 배치하여 이루어질 수 있다.The evaporator / condenser 18d corresponding to the installation of the bulkhead 50d has a conical shape in which the portion extending from one side to the other side follows the helical shape of Archimedes when viewed from the plane of the air chamber 10d. According to the arrangement may be made to have a continuous slope from the upper side to the lower side.
여기서, 증발기/응축기(18d)의 측면 형상이 원뿔 형상을 따라 하측 방향으로 경사를 이루도록 한 것은, 증발기의 경우에 액상 냉매가 에어챔버(10d) 중심 하부를 통해 내부 방향으로 유입되면서 기체로 상태 변화한 후 상부를 통해 통과가 용이하도록 하고, 반대로 응축기의 경우에 기상 냉매가 에어챔버(10d) 상부를 통해 내부 방향으로 유입되면서 액체 상태로 변화할 때 액상 냉매가 냉매의 유동통로에 고이는 것을 방지하기 위한 설계이다.Here, the side shape of the evaporator / condenser 18d is inclined downward along the cone shape. In the case of the evaporator, the liquid refrigerant flows into the gas through the lower portion of the center of the air chamber 10d and changes in the gas state. After passing through the upper part to facilitate passage, the condenser prevents the liquid refrigerant from accumulating in the flow passage of the refrigerant when the gaseous refrigerant flows into the liquid state through the upper portion of the air chamber 10d. It is designed for.
이러한 설계는 하나의 에어챔버(10d) 내에 하나의 격벽(50d)과 하나의 증발기/응축기(18d)로 이루어질 수 있음을 나타낸 것이다.This design shows that one partition 50d and one evaporator / condenser 18d can be made in one air chamber 10d.
이상에서 살펴본 각 실시 예에 있어서, 상술한 증발기/응축기(18d)의 설치는, 그 배치에 대응하는 격벽(50d)의 표면에 접하여 있도록 함이 바람직하다.In each embodiment described above, it is preferable that the above-described installation of the evaporator / condenser 18d is in contact with the surface of the partition wall 50d corresponding to the arrangement.
이는 격벽(50d)이 증발기/응축기(18d)의 비표면적을 확대하여 압축공기의 충돌(열교환) 가능성을 높이기 위한 것이다.This is for the partition 50d to enlarge the specific surface area of the evaporator / condenser 18d to increase the possibility of collision (heat exchange) of the compressed air.
더불어, 에어챔버(10d)의 내벽과 격벽(50d)의 표면 및 증발기/응축기(18d)의 표면에는, 도 4c에서 참조되는 바와 같이, 격벽(50d)에 의해 분리 구분된 에어챔버(10d) 내의 각 공간에 대하여 상측에서 하측으로 또는 하측에서 상측으로 이동하는 공기의 흐름이 나선 형상을 이루도록 안내하는 날개판(56)을 상하 방향을 따라서 나선 형상으로 더 배치한 것으로 이루어질 수 있다.In addition, on the inner wall of the air chamber 10d, the surface of the partition 50d, and the surface of the evaporator / condenser 18d, as shown in FIG. 4C, in the air chamber 10d separated and separated by the partition 50d. For each space, the wing plate 56 for guiding the flow of air moving from the upper side to the lower side or the lower side to the upper side in a spiral shape may be further disposed in a spiral shape along the vertical direction.
이러한 날개판(56)의 기능은, 도 4c에서 참조되는 바와 같이, 증발기/응축기(18d)에 구비한 냉각핀에 의해서도 이루어질 수 있다.The function of the wing plate 56 may also be achieved by cooling fins provided in the evaporator / condenser 18d, as shown in FIG. 4C.
상술한 날개판(56)과 냉각핀의 설치 또한 증발기/응축기(18)에 대한 압축공기의 충돌(열교환) 가능성을 높이기 위한 것이다.The installation of the vane 56 and the cooling fins described above is also intended to increase the likelihood of collision (heat exchange) of compressed air against the evaporator / condenser 18.
도 4e의 에어챔버(10e)는, 내부에 압축공기의 흐름을 유도하는 격벽 없이 내부의 압축공기를 강제 순환시키도록 하면서 강제적으로 증발기/응축기(18e) 방향으로 유동하도록 송풍압을 제공하는 송풍팬(60b)의 설치만으로 이루어질 수 있음을 나타낸 것이다.The air chamber 10e of FIG. 4E is a blower fan which provides a blowing pressure to flow in the direction of the evaporator / condenser 18e while forcibly circulating the compressed air therein without a partition for inducing the flow of compressed air therein. It can be made only by the installation of (60b).
도 4f에 도시한 에어챔버(10f)는, 앞서 살펴본 도 4d에서 확인된 에어챔버(10d) 구조를 복수로 구비하고, 이들을 상하로 연결하는 것을 나타낸 것이다.The air chamber 10f shown in FIG. 4F is provided with a plurality of air chamber 10d structures identified in FIG. 4D described above, and shows connecting them up and down.
이때, 각 에어챔버(10d)들의 공기 유입라인(LS)과 공기 공급라인(LS) 및 증발기/응축기(18f)에 대하여 각각 대응하여 연결하기 위한 커넥터 포트(C)를 구비한 것으로 이루어질 수 있으며, 이들 각 커넥터 포트(C)는 그 대응하는 연결이 없는 경우에 유체의 흐름을 방지토록 차단하는 밸브(도시 안됨)를 구비한 것으로 형성함이 바람직하다.In this case, the air inlet line (LS) of each of the air chamber (10d) and the air supply line (LS) and the evaporator / condenser (18f) may be made to have a connector port (C) for the corresponding connection, respectively. Each of these connector ports C is preferably formed with a valve (not shown) that prevents the flow of fluid in the absence of its corresponding connection.
한편, 제 1 레귤레이터(24b)에서 디퓨져(30) 사이를 잇는 분기라인(LD)은, 도 6과 도 7에 도시한 바와 같이, 유연한 합성수지 재질로 압축공기의 유동통로를 이루는 주관(60a)과, 이 주관(60a)의 외측에서 연장 돌출한 하나 이상의 리브(62)를 통해 간격을 두고 감싸며 주관(60a)과 외부 사이에 격리 공간을 형성하는 커버관(60b) 및 커버관(60b)이 이루는 격리 공간 또는 외측 표면의 둘레를 따라 복수 개수로 배치하여 길이 방향으로 연장한 전선케이블(C/L)을 일체로 형성한 이중관(60)과; 이중관(60)의 각 양단에 주관(60a)과 연통 연결을 위한 이음부(66a, 66b)를 갖고 상기 각 전선케이블(C/L)에 대응하여 각각 전기적으로 연결이 이루어지는 암 또는 수 구조의 소켓(64a, 64b)을 구비한 구성으로 이루어진다.On the other hand, the branch line (LD) between the first regulator 24b and the diffuser 30, as shown in Figure 6 and 7, the main pipe (60a) forming a flow passage of the compressed air made of a flexible synthetic resin material and The cover tube 60b and the cover tube 60b form a space between the main tube 60a and the outside and surround the spacer tube 60 through one or more ribs 62 protruding from the outside of the main tube 60a. A double pipe (60) integrally formed with a plurality of wire cables (C / L) extending in the longitudinal direction by being arranged in a plurality of numbers along the circumference of the isolation space or the outer surface; Sockets of female or male structure having joints 66a and 66b for communicating with main pipe 60a at each end of double pipe 60 and electrically connected to each wire cable C / L, respectively. It consists of the structure provided with 64a and 64b.
이러한 분기라인(LD)에 있어서, 상술한 소켓(64a, 64b)의 암수 구분은, 전기적인 접속을 위한 플러그(PL)를 형성한 것을 수 구조의 소켓(64a)라 하고, 수 구조의 소켓(64a)과는 상대적으로 플러그(PL)의 삽입이 이루어지는 콘센트 구조를 갖는 것을 암 구조의 소켓(64b)로 구분할 수 있다.In the branch line LD, the above-mentioned male and female divisions of the sockets 64a and 64b form a plug PL for electrical connection, which is called a socket 64a of a male structure, and a socket of a male structure ( 64a) can be divided into a female socket 64b having an outlet structure through which the plug PL is inserted.
여기서, 상술한 이중관(60)의 양단에 구비한 소켓(64a, 64b)은, 암수 구조가 상호 다르게 연결할 수 있고, 또는 상호 같은 구조를 선택적으로 연결한 것으로 이루어질 수도 있다.Here, the sockets 64a and 64b provided at both ends of the above-described double pipe 60 may be differently connected to each other, or may be configured to selectively connect the same structure to each other.
이렇게 형성한 분기라인(LD)은, 도 1과 도 2에서 참조되는 바와 같이, 디퓨져(30)에 설치한 인체감지센서(32)의 신호 유무를 통해 제 1 레귤레이터(24b)를 통한 압축공기의 흐름을 공기 공급라인(LS)에 근접 위치에서 차단토록 하여 압축공기의 압력 손실을 줄이도록 하기 위한 것이다.As described above, the branch line LD formed as described above with reference to FIGS. 1 and 2 is provided with the compressed air through the first regulator 24b through the presence or absence of a signal from the human body sensor 32 installed in the diffuser 30. It is to reduce the pressure loss of the compressed air by blocking the flow in a position close to the air supply line (LS).
또한, 이중관(60) 내의 압축공기는 작업자의 부재시에 자연적으로 배출되게 하여 내부를 상압에 있도록 하고, 작업자가 작업위치에 있음을 감지할 때에는 제 1 레귤레이터(24b)의 개방을 통한 냉방 또는 가열 공기를 빠르게 공급할 수 있도록 함이 바람직하다.In addition, the compressed air in the double pipe 60 is naturally discharged in the absence of the operator so that the inside is at normal pressure, and cooling or heating air through the opening of the first regulator 24b when the operator is in the working position. It is desirable to be able to supply quickly.
그리고, 공기 공급라인(LS)은, 내압을 유지하기 위하여 대체로 강재 파이프로 구성하고, 생산라인에 대하여 정해진 설계 위치에 설치가 이루어지는 것이고, 분기라인(LD)은 공기 공급라인(LS)으로부터 멀리 떨어지거나 그 설치가 직선으로 배치하기 곤란한 위치의 작업공간에 대하여 적어도 하나 이상의 연결로 작업자에게 냉각 또는 가열된 압축공기를 공급할 수 있도록 하기 위함이다.In addition, the air supply line LS is composed of steel pipes to maintain the internal pressure, and is installed at a predetermined design position with respect to the production line, and the branch line LD is far from the air supply line LS. Or to provide the operator with cooled or heated compressed air at least one or more connections to the workspace where the installation is difficult to arrange in a straight line.
즉, 분기라인(LD)은 작업공간의 위치 조건에 대응하기 용이하도록 하며, 작업공간으로 이어지는 구간에 대하여 압축공기의 온도 손실을 방지하면서 작업자의 유무에 대하여 압축공기의 공급 여부를 빠르게 수행할 수 있도록 한다.In other words, the branch line LD can easily cope with the location conditions of the work space, and can quickly perform the supply of compressed air to the presence or absence of an operator while preventing the temperature loss of the compressed air in the section leading to the work space. Make sure
도 1과 도 2에서 미설명 부호인 "LS2"는 에어챔버(10) 내부의 압축공기를 생산설비 또는 작업자가 사용하는 에어 건(도시 안됨)에 별도로 더 연결할 수 있음을 나타낸 것이고, "12b"는 공기 공급라인(LS1) 내의 압력 이상 유무를 감지하기 위한 제 2 압력센서이며, "14b"는 공기 공급라인(LS1) 또는 생산라인 내의 온도 조건을 측정하는 제 2 온도센서로서, 이를 통해 냉동사이클(16) 구동의 조건을 보완하기 위한 것이다.In FIG. 1 and FIG. 2, reference numeral “LS2” indicates that the compressed air inside the air chamber 10 can be further connected to an air gun (not shown) used by a production facility or an operator, and “12b”. Is a second pressure sensor for detecting the presence of pressure abnormality in the air supply line (LS1), "14b" is a second temperature sensor for measuring the temperature conditions in the air supply line (LS1) or production line, through which the refrigeration cycle (16) To compensate for the driving conditions.
이상에서 살펴본 압축공기를 이용하는 생산라인의 공기조화장치로부터 이를 운영하는 방법에 대하여 살펴보기로 한다.The method of operating the air conditioner of the production line using the compressed air described above will be described.
먼저, 컨트롤러(40)는 에어챔버(10) 내의 압축공기가 이루는 압력 범위를 하나 이상의 단계로 차등을 두고 설정한다(ST110).First, the controller 40 sets the pressure range formed by the compressed air in the air chamber 10 in one or more steps at different stages (ST110).
여기서, 에어챔버(10) 내부의 압력 범위를 차등적으로 구분하여 설정하는 것은, 공기 공급라인(LS1)에서 분기한 분기라인(LD1~LDn)들의 개수가 많고, 또 작업자들에 의한 압축공기 사용량을 예측할 수 없는 경우에 대하여 대처하기 위한 것이다.Here, the differentially setting the pressure range inside the air chamber 10 is a large number of branch lines LD1 to LDn branched from the air supply line LS1, and the amount of compressed air used by workers. This is to cope with the case where it cannot be predicted.
반대로 공기 공급라인(LS1)에서 분기한 분기라인(LD1~LDn)들의 개수가 적어 작업자들에게 압축공기를 공급하는 양이 제한적인 경우에는, 에어챔버(10) 내부의 압력 범위를 차등적으로 구분하는 것은 무의미할 수 있다.On the contrary, when the number of branch lines LD1 to LDn branched from the air supply line LS1 is small and the amount of compressed air supplied to the workers is limited, the pressure range inside the air chamber 10 is differentially divided. To do that can be meaningless.
이에 대하여 예시하자면, 에어챔버(10) 내부의 압력을 5bar 이상 10bar 이하의 범위에 있도록 함에 있어서, 전체 분기라인(LD1~LDn)들 중 1/4 정도 개수의 분기라인(LD1~LDn)들을 통한 압축공기의 소모가 이루어질 경우는, 에어챔버(10) 내부의 압력을 5~7bar 정도로 유지토록 하고, 전체 분기라인(LD1~LDn)들 중 1/2 정도 개수의 분기라인(LD1~LDn)들을 통한 압축공기의 소모가 이루어질 경우에는 에어챔버(10) 내부의 압력을 7~8bar 범위에 있도록 하며, 전체 분기라인(LD1~LDn)들 중 3/4 정도 개수의 분기라인(LD1~LDn)들을 통한 압축공기의 소모가 이루어질 경우에는, 에어챔버(10) 내부의 압력을 8~9bar 범위에 있도록 하며, 전체 분기라인(LD1~LDn)들 모두를 통한 압축공기의 소모가 이루어질 경우에는, 에어챔버(10) 내부의 압력을 9~10bar 범위에 있도록 할 수 있다.To illustrate this, in the pressure inside the air chamber 10 to be in the range of 5 bar or more and 10 bar or less, a quarter of the number of branch lines LD1 to LDn out of the total branch lines LD1 to LDn. When the compressed air is consumed, the pressure inside the air chamber 10 is maintained at about 5 to 7 bar, and half of the branch lines LD1 to LDn of the total branch lines LD1 to LDn are maintained. When the compressed air is consumed, the pressure inside the air chamber 10 is in the range of 7 to 8 bar, and 3/4 of the branch lines LD1 to LDn are included in the total branch lines LD1 to LDn. When the compressed air is consumed through, the pressure inside the air chamber 10 is in the range of 8 to 9 bar, and when the compressed air is consumed through all the branch lines LD1 to LDn, the air chamber (10) The pressure inside can be in the range of 9 ~ 10bar.
즉, 에어챔버(10) 내부의 압력설정은 결국 분기라인(LD1~LDn)들을 통한 압축공기의 소모량에 따라 차등적으로 구분한다.That is, the pressure setting inside the air chamber 10 is differentially divided according to the consumption of compressed air through the branch lines LD1 to LDn.
이렇게 에어챔버(10) 내부의 압력을 차등적으로 구분하는 것은, 압축펌프(22a, 22b)의 불필요한 구동을 자제하고, 필요한 수준으로 구동시키도록 함으로써 그 구동에 따른 에너지 소모를 줄이기 위한 것이다.The differential classification of the pressure inside the air chamber 10 is to reduce the energy consumption associated with the driving by refraining from unnecessary driving of the compression pumps 22a and 22b and driving them to a required level.
또한, 컨트롤러(40)는 제 1 압력센서(12a)를 통해 에어챔버(10) 내의 압력을 수시로 확인하고(ST112), 에어챔버(10) 내부의 공기압이 설정값 이하인 것으로 판단한 때에는(ST114), 압축펌프(22a, 22b)를 구동시켜 설정값에 대응하는 수준으로 유지토록 하고(ST116), 에어챔버(10) 내부의 공기압이 설정값 이상일 때에 압축펌프(22a, 22b)의 구동을 정지시켜 불필요한 에너지의 소모를 줄이도록 한다(ST118).In addition, the controller 40 frequently checks the pressure in the air chamber 10 through the first pressure sensor 12a (ST112), and when it is determined that the air pressure in the air chamber 10 is equal to or less than the set value (ST114), The compression pumps 22a and 22b are driven to be maintained at a level corresponding to the set value (ST116). When the air pressure inside the air chamber 10 is equal to or higher than the set value, the driving of the compression pumps 22a and 22b is stopped and unnecessary. Reduce energy consumption (ST118).
이렇게 컨트롤러(40)는 분기라인(LD1~LDn)을 통한 소모량에 대응하여 에어챔버(10) 내부의 압축공기의 예비량을 비축한다.In this way, the controller 40 stores a reserve amount of compressed air in the air chamber 10 in response to the consumption amount through the branch lines LD1 to LDn.
이를 통한 진행과정에서 분기라인(LD1~LDn)들을 통한 압축공기의 배출량이 앞의 설정값과 비교하여 증가하거나 감소하는 경우, 컨트롤러(40)는 인체감지센서(32), 유량센서(28), 제 1 레귤레이터(24b) 또는 밸브(26)의 개폐 여부 및 그 개폐 정도 등을 통해 압축공기의 공급량을 수시로 측정하며(ST120), 그 측정값이 에어챔버(10) 내부의 설정값과 비교하여 적정한지 여부를 판단하고(ST122), 현재의 압축공기의 공급량에 대한 측정값에 대응하는 에어챔버(10) 내부의 설정값을 조정토록 그 조건을 변경한다(ST124).When the discharge of compressed air through the branch lines (LD1 ~ LDn) increases or decreases in comparison with the previous set value in the process, the controller 40 is the human body sensor 32, the flow sensor 28, The supply amount of the compressed air is frequently measured based on whether the first regulator 24b or the valve 26 is opened or closed (ST120), and the measured value is compared with the set value inside the air chamber 10. It is judged whether or not (ST122), and the condition is changed to adjust the set value inside the air chamber 10 corresponding to the measured value for the current supply amount of compressed air (ST124).
이와 같이, 컨트롤러(40)는 상술한 과정을 반복하게 함으로써 작업자에 대한 압축공기의 공급을 안정적으로 유지할 수 있도록 한다.In this way, the controller 40 allows to maintain the supply of compressed air to the operator by repeating the above process.
또한, 위의 각 구성 부위의 공기압 조정값 조정과 연동하여 작업자들에게 공급하는 압축공기의 온도 설정을 살펴보면 다음과 같다.In addition, the temperature setting of the compressed air supplied to the workers in conjunction with the adjustment of the air pressure adjustment value of each of the above components is as follows.
먼저, 에어챔버(10) 내의 압축공기가 이루는 압력 범위를 하나 이상의 단계로 차등을 둔 것과 마찬가지로, 각 압력 범위의 차등에 따른 에어챔버(10) 내부의 온도를 설정한다(ST210).First, as in the differential pressure range of the compressed air in the air chamber 10 in one or more steps, the temperature inside the air chamber 10 according to the differential of each pressure range is set (ST210).
이렇게 에어챔버(10) 내부의 온도를 설정하는 것은, 결국 냉동사이클(16)의 구동을 시간과 그 출력을 설정하기 위한 것이며, 이 또한 작업자에게 공급되는 압축공기의 공급량에 의해 새롭게 유입되는 압축공기에 대응하여 냉각 시간을 형성하기 위한 것이다.The setting of the temperature inside the air chamber 10 is to set the time and the output of the driving of the refrigeration cycle 16 after all, and this is also compressed air newly introduced by the supply amount of the compressed air supplied to the worker. In response to this, the cooling time is formed.
따라서, 컨트롤러(40)는 제 1 온도센서(14a)를 통해 에어챔버() 내의 온도를 측정하고(ST212), 그 측정값이 이미 설정한 온도 범위에 있는지 여부를 판단한다(ST214).Therefore, the controller 40 measures the temperature in the air chamber (C) through the first temperature sensor 14a (ST212), and determines whether the measured value is in a preset temperature range (ST214).
이때, 에어챔버(10) 내부의 온도가 설정값 범위에 있는 경우, 컨트롤러(40)는 냉동사이클(16)의 구동을 정지시키고(ST218), 만약 그 설정값 범위에 없는 경우에는 냉동사이클(16)을 구동시켜 에어챔버(10) 내부의 압축공기를 냉각시키도록 제어한다(ST216).At this time, when the temperature inside the air chamber 10 is within the set value range, the controller 40 stops driving the refrigeration cycle 16 (ST218), and if it is not within the set value range, the refrigeration cycle 16 ) Is controlled to cool the compressed air inside the air chamber 10 (ST216).
또한, 컨트롤러(40)는 유량센서(28), 제 1 레귤레이터(24b), 밸브(26) 중 어느 하나를 통해 분기라인(LD1~LDn)을 통한 압축공기의 배출량을 측정하고(ST220), 그 측정값이 에어챔버(10) 내부에 대한 압력 범위 조건과 비교하여, 에어챔버(10) 내의 압력 설정 조건을 조정할지 여부를 판단한다(ST222).In addition, the controller 40 measures the discharge amount of the compressed air through the branch lines LD1 to LDn through any one of the flow sensor 28, the first regulator 24b, and the valve 26 (ST220). The measured value is compared with the pressure range condition for the inside of the air chamber 10 to determine whether to adjust the pressure setting condition in the air chamber 10 (ST222).
이로부터 에어챔버(10) 내부의 압축공기에 대한 온도 설정 조건이 필요하다고 판단한 경우, 컨트롤러(40)는 그에 대응하는 온도 설정 조건을 변경하고(ST224), 이를 반영하여 냉동사이클(16)의 구동을 제어한다.From this, when it is determined that the temperature setting condition for the compressed air inside the air chamber 10 is necessary, the controller 40 changes the temperature setting condition corresponding thereto (ST224) and reflects this to drive the refrigeration cycle 16. To control.

Claims (18)

  1. 공기 유입라인으로부터 흡입되는 공기를 수용하고, 생산라인으로 연장된 공기 공급라인을 통해 공기의 배출이 이루어지는 에어챔버와; An air chamber configured to receive air sucked from the air inlet line and to discharge air through an air supply line extending to the production line;
    상기 공기 유입라인 상에 설치되어 외부의 공기를 흡입하여 압축하고, 압축한 공기를 에어챔버 내에 공급하는 압축펌프와; A compression pump installed on the air inlet line to suck outside air and to compress the outside air, and to supply the compressed air into the air chamber;
    증발기 또는 응축기가 상기 에어챔버 내부에 있도록 연결 설치한 냉동사이클과; A refrigeration cycle connected and installed such that an evaporator or a condenser is inside the air chamber;
    상기 공기 공급라인에서 분기한 분기라인 상에 설치되어, 분기라인에 이미 설정한 공기압으로 조정하여 공급하는 제 1 레귤레이터; 및 A first regulator installed on a branch line branched from the air supply line, the first regulator adjusting and supplying the air pressure already set in the branch line; And
    상기 압축펌프와 냉동사이클의 구동을 제어하는 컨트롤러;A controller for controlling the driving of the compression pump and the refrigeration cycle;
    를 포함하여 이루어진 압축공기를 이용하는 생산라인의 공기조화장치.Air conditioning device of the production line using compressed air comprising a.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 에어챔버와 상기 공기 공급라인 사이에는 상기 에어챔버에서 상기 공기 공급라인으로 이미 설정한 공기압으로 공급하는 제 2 레귤레이터를 더 설치토록 함이 바람직하다.Preferably between the air chamber and the air supply line to further install a second regulator for supplying the air pressure already set from the air chamber to the air supply line.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 에어챔버는 내부의 공기압을 측정하는 압력센서와 내부 공기압이 이루는 온도를 측정하는 온도센서를 더 설치한 것으로 이루어지고, The air chamber is composed of a pressure sensor for measuring the internal air pressure and a temperature sensor for measuring the temperature of the internal air pressure is further installed,
    상기 상기 압력센서와 온도센서는 상기 컨트롤러에 각 측정신호를 인가하고, 상기 컨트롤러는 상기 압력센서와 온도센서의 측정신호를 수신하여 압축펌프와 냉동사이클의 구동을 제어하는 것을 특징으로 하는 압축공기를 이용하는 생산라인의 공기조화장치.The pressure sensor and the temperature sensor apply each measurement signal to the controller, and the controller receives the measurement signals of the pressure sensor and the temperature sensor to control the operation of the compression pump and the refrigeration cycle. Air conditioning system of production line used.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 분기라인에 상기 분기라인을 통한 공기의 흐름을 제어하는 밸브를 더 구비하고, The branch line further comprises a valve for controlling the flow of air through the branch line,
    상기 밸브는 상기 컨트롤러의 제어신호 수신과 작업자의 조작에 의해 개폐의 조절이 이루어지고, 그 개폐 정도를 상기 컨트롤러에 인가하는 솔레노이드밸브인 것을 특징으로 하는 압축공기를 이용하는 생산라인의 공기조화장치.The valve is a solenoid valve of the production line using compressed air, characterized in that the opening and closing of the adjustment is made by the control signal reception of the controller and the operator's operation, and applying the opening and closing degree to the controller.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 분기라인에 상기 분기라인을 통한 공기의 흐름을 제어하는 밸브를 더 구비하고, The branch line further comprises a valve for controlling the flow of air through the branch line,
    상기 밸브는 상기 컨트롤러의 제어신호 수신과 작업자의 조작에 의해 개폐의 조절이 이루어지는 솔레노이드밸브로 구성하고, The valve is composed of a solenoid valve that is controlled to open and close by receiving the control signal of the controller and the operator's operation,
    상기 솔레노이드밸브 또는 상기 분기라인에는 상기 솔레노이드밸브의 개폐 정도 또는 상기 분기라인을 통해 유동하는 공기량을 측정하여 상기 컨트롤러에 측정 신호를 인가하는 유량센서를 더 설치한 구성으로 이루어짐을 특징으로 하는 압축공기를 이용하는 생산라인의 공기조화장치.Compressed air, characterized in that the solenoid valve or the branch line further comprises a flow rate sensor for measuring the opening and closing degree of the solenoid valve or the amount of air flowing through the branch line to apply a measurement signal to the controller. Air conditioning system of production line used.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 분기라인의 끝단부에는 공기의 분사가 이루어지도록 한 디퓨져와; 상기 디퓨져에 설치되어 디퓨져로부터 이미 설정한 간격 이내의 인체 유무를 감지하고, 그 감지신호를 컨트롤러에 인가하는 인체감지센서;를 더 설치하여 이루어짐을 특징으로 하는 압축공기를 이용하는 생산라인의 공기조화장치.A diffuser configured to spray air at an end of the branch line; Installed in the diffuser to detect the presence of the human body within a predetermined interval from the diffuser, the human body sensor for applying the detection signal to the controller; air conditioning apparatus of the production line using the compressed air characterized in that the installation further .
  7. 제 2 항에 있어서,The method of claim 2,
    상기 공기 공급라인의 끝단에는 상기 압축펌프로 이어지는 리턴라인이 더 연결하고, 상기 리턴라인에는 상기 압축펌프에 이미 설정한 공기압으로 조정하여 공급하는 제 3 레귤레이터를 설치하여 이루어짐을 특징으로 하는 압축공기를 이용하는 생산라인의 공기조화장치.A return line leading to the compression pump is further connected to the end of the air supply line, and the return line is formed by installing a third regulator for adjusting and supplying the air pressure set to the compression pump. Air conditioning system of production line used.
  8. 제 7 항에 있어서,The method of claim 7, wherein
    상기 제 1, 2, 3 레귤레이터 각각에 의해 조정된 공기압 조정값 상호간에는, 상기 제 2 레귤레이터에 의한 공기압 조정값이 상대적으로 가장 높고, 상기 제 1 레귤레이터에 의한 공기압 조정값이 상대적으로 가장 낮으며, 상기 제 3 레귤레이터에 의한 공기압 조정값이 상기 1, 2 레귤레이터에 의한 공기압 조정값의 사이에 있도록 한 것을 특징으로 하는 압축공기를 이용하는 생산라인의 공기조화장치.Between the air pressure adjustment values adjusted by each of the first, second and third regulators, the air pressure adjustment value by the second regulator is relatively highest, the air pressure adjustment value by the first regulator is relatively lowest, An air conditioner in a production line using compressed air, characterized in that the air pressure adjustment value by said third regulator is between the air pressure adjustment values by said 1 and 2 regulators.
  9. 제 7 항에 있어서,The method of claim 7, wherein
    상기 압축펌프와 상기 제 3 레귤레이터 사이의 상기 리턴라인에는 상기 제 3 레귤레이터를 통해 유입되는 공기를 일시적으로 저장하고, 외부 공기의 유입이 있도록 유입포트를 구비한 버퍼챔버를 더 설치하여 이루어지고, The return line between the compression pump and the third regulator is temporarily stored in the air flowing through the third regulator, and further provided by a buffer chamber having an inlet port for the inlet of external air,
    상기 버퍼챔버에는 상기 리턴라인을 통해 유입되는 공기압이 이미 설정한 범위 이상이거나 버퍼챔버 내부의 진공압이 작용할 때에 공기의 유동이 있도록 단속하는 제 1 체크밸브와; 상기 버퍼챔버 내부의 압력이 이미 설정한 이하일 때에 상기 유입포트로부터 공기의 유입이 있도록 하는 제 2 체크밸브;를 더 구비하여 이루어지며,The buffer chamber includes: a first check valve for intermittently allowing the flow of air when the air pressure flowing through the return line is greater than or equal to a preset range or when a vacuum pressure inside the buffer chamber is applied; And a second check valve for allowing air to flow from the inflow port when the pressure inside the buffer chamber is less than or equal to a predetermined value.
    상기 제 1 체크밸브는 상기 제 2 체크밸브보다 우선하여 개방되게 설정한 것을 특징으로 하는 압축공기를 이용하는 생산라인의 공기조화장치.And the first check valve is set to open in preference to the second check valve.
  10. 제 7 항에 있어서,The method of claim 7, wherein
    상기 리턴라인은 상기 공기 공급라인의 끝단에서 연결되어 상기 제 2 레귤레이터에 인접하는 부위까지 상기 공기 공급라인과 구분되어 나란하게 접하고, 상기 제 2 레귤레이터에 인접하는 부위에서 상기 공기 공급라인으로부터 분기한 형상으로 상기 제 3 레귤레이터에 연결한 것을 특징으로 하는 압축공기를 이용하는 생산라인의 공기조화장치.The return line is connected to an end of the air supply line and is separated from the air supply line to a portion adjacent to the second regulator, and parallel to each other, and branched from the air supply line at a portion adjacent to the second regulator. The air conditioner of the production line using the compressed air, characterized in that connected to the third regulator.
  11. 제 1 항에 있어서,The method of claim 1,
    상기 에어챔버는 내부에 상기 공기 유입라인에서 상기 공기 공급라인으로 이어지는 공기 흐름이 복수 회수로 굴곡되게 공기 유동통로를 이루는 하나 이상의 격벽을 설치한 것으로 이루어지고, 상기 냉동사이클의 증발기 또는 응축기는 상기 에어챔버의 내벽과 상기 격벽 사이와 상기 격벽들 사이의 공기 유동통로를 따라 배치하여 이루어짐을 특징으로 하는 압축공기를 이용하는 생산라인의 공기조화장치.The air chamber is composed of one or more partitions that form an air flow passage so that the air flow from the air inlet line to the air supply line is bent in a plurality of times therein, the evaporator or condenser of the refrigeration cycle is An air conditioning apparatus of a production line using compressed air, characterized in that it is arranged along the air flow path between the inner wall of the chamber and the partition wall and the partition wall.
  12. 제 11 항에 있어서,The method of claim 11,
    상기 에어챔버의 측벽은 수직으로 세워지는 파이프 형상이고, 상기 격벽은 크기가 다른 하나 이상의 파이프 형상이 수직으로 세워져 상단과 하단이 대응하는 상기 에어챔버의 상부와 하부에 각각 연결되어 상기 에어챔버 내부를 중심 방향에 대하여 둘 이상으로 분리 구획하며, 상단 부위 또는 하단 부위 일부에 상기 에어챔버의 내벽에서 중심 방향으로 또는 상기 에어챔버의 중심에서 상기 에어챔버의 내벽 방향으로 공기가 통과하도록 하는 도어를 형성한 것으로 이루어지며, 상기 증발기 또는 응축기는 상기 격벽의 외벽 또는 내벽을 따라 나선 형상으로 설치하여 이루어짐을 특징으로 하는 The side wall of the air chamber is a pipe shape standing vertically, the partition wall is one or more pipe shapes of different sizes are erected vertically is connected to the top and bottom of the air chamber corresponding to the top and bottom, respectively, so that the inside of the air chamber It is divided into two or more with respect to the center direction, the upper or lower portion of the lower portion of the inner chamber of the air chamber in the direction of the center or from the center of the air chamber in the direction of the inner wall of the air chamber to form a door to pass through The evaporator or condenser is formed by installing in a spiral shape along the outer wall or the inner wall of the partition wall
  13. 제 12 항에 있어서,The method of claim 12,
    상기 격벽을 크기가 다른 둘 이상의 개수로 설치한 것에 있어서, 상기 냉각사이클과 상기 에어챔버 사이의 상기 증발기 또는 응축기에는 냉매의 흐름을 상기 에어챔버 내부에서 상기 격벽에 의해 분리 구획되는 각 공간에 각각 대응하도록 분배하는 분배유닛을 더 설치하고, 상기 증발기 또는 응축기는 상기 격벽에 의해 분리 구획되는 상기 에어챔버 내부의 각 공간에 대응하는 개수로 형성하여 각각 상기 분배유닛에 연결한 것을 특징으로 하는 In the case where the partitions are installed in two or more numbers of different sizes, the evaporator or the condenser between the cooling cycle and the air chamber corresponds to each space separated by the partition wall in the air chamber. Further comprising a distribution unit for dispensing, wherein the evaporator or condenser is formed in a number corresponding to each space inside the air chamber separated by the partition wall, characterized in that connected to each distribution unit
  14. 제 11 항에 있어서,The method of claim 11,
    상기 에어챔버의 측벽은 수직으로 세워진 파이프형상이고, The side wall of the air chamber is a vertical pipe shape,
    상기 격벽은 길이를 갖는 판 형상으로 폭 방향 양측 가장자리 부위가 상기 에어챔버의 상부와 하부에 맞닿고, 길이 방향 일단 부위는 상기 공기 유입라인 주연의 상기 에어챔버 내벽에 접하며, 나머지 부위는 상기 에어챔버 내벽에 접한 부위에서 상기 공기 유입라인 방향으로 굽어 평면상에서 볼 때 아르키메데스의 와선 현상을 따라 연속하여 이어지며 타단 부위가 상기 에어챔버의 중심 부위에 이르도록 하고, The partition wall has a plate shape having a length in the width direction both edge portions abut the upper and lower portions of the air chamber, one end portion in the longitudinal direction is in contact with the inner wall of the air chamber periphery of the air inlet line, the remaining portion is the air chamber Bend in the direction of the air inlet line in the area in contact with the inner wall and continues in succession along the vortex phenomenon of Archimedes so that the other end reaches the center of the air chamber,
    상기 증발기 또는 응축기는 상기 에어챔버의 평면상에서 볼 때 일측에서 타측으로 이어지는 부위가 아르키메데스의 와선 형상을 따라 이어지고, 측면상에서 볼 때 원뿔 형상을 따라 상측에서 하측으로 연속된 경사를 갖도록 배치한 것을 특징으로 하는 압축공기를 이용하는 생산라인의 공기조화장치.The evaporator or condenser is arranged so that a portion extending from one side to the other side when viewed from the plane of the air chamber follows the helical shape of Archimedes, and has a continuous inclination from the upper side to the lower side along the conical shape when viewed from the side. Air conditioning device of production line using compressed air.
  15. 제 1 항에 있어서,The method of claim 1,
    상기 에어챔버는 내부에 송풍팬을 더 설치하여, 상기 송풍팬의 구동을 통해 상기 증발기/응축기에 대한 상기 에어챔버 내의 공기의 접촉 빈도를 더욱 증가시키도록 한 것을 특징으로 하는 압축공기를 이용하는 생산라인의 공기조화장치.The air chamber is further provided with a blowing fan therein, the production line using compressed air characterized in that to further increase the frequency of contact of the air in the air chamber to the evaporator / condenser through the operation of the blowing fan. Air conditioning system.
  16. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 레귤레이터에서 상기 디퓨져 사이를 잇는 상기 분기라인은, 유연한 합성수지 재질로 압축공기의 유동통로를 이루는 주관과, 이 주관의 외측에서 연장 돌출한 하나 이상의 리브를 통해 간격을 두고 감싸며 주관과 외부 사이에 격리 공간을 형성하는 커버관 및 커버관이 이루는 격리 공간 또는 외측 표면의 둘레를 따라 복수 개수로 배치하여 길이 방향으로 연장한 전선케이블을 일체로 형성한 이중관과; The branching line between the first regulator and the diffuser is a flexible synthetic resin material, which forms a flow passage of compressed air, and is surrounded by a space between at least one rib extending and protruding from the outside of the main pipe and spaced between the main pipe and the outside. A double pipe formed integrally with a plurality of wire cables extending in the longitudinal direction by being arranged in a plurality of numbers along a circumference of an isolation space or an outer surface formed by the cover pipe and the cover pipe forming an isolation space;
    상기 이중관의 각 양단에 주관과 연통 연결을 위한 이음부를 갖고 상기 각 전선케이블에 대응하여 각각 전기적으로 연결이 이루어지는 암 또는 수 구조의 소켓;A socket having a female or male structure in which both ends of the double pipe have joints for communicating with the main pipe and are electrically connected to each wire cable;
    을 구비하여 이루어짐을 특징으로 하는 압축공기를 이용하는 생산라인의 공기조화장치.Air conditioning apparatus of the production line using the compressed air, characterized in that made with.
  17. 제 7 항의 압축공기를 이용하는 생산라인의 공기조화장치를 구비하고, An air conditioner of the production line using the compressed air of claim 7,
    (A) 상기 제 1, 2, 3 레귤레이터 중 하나 이상으로부터 공기압 조정값을 기초하여 상기 에어챔버 내의 압력 범위를 설정하는 단계; (A) setting a pressure range in the air chamber based on an air pressure adjustment value from at least one of the first, second and third regulators;
    (B) 상기 에어챔버 내의 압력이 이미 설정한 압력 범위에 있도록 상기 압축펌프의 구동을 제어하는 단계; 및 (B) controlling the driving of the compression pump so that the pressure in the air chamber is within a preset pressure range; And
    (C) 상기 분기라인을 통한 압축공기의 배출량 측정값이 상기 에어챔버 내부에 대한 압력 범위 조건과 비교하여, 상기 에어챔버 내의 압력 설정 조건 조정 및 그에 따른 상기 압축펌프의 구동을 제어하는 단계;(C) controlling the pressure setting condition in the air chamber and the driving of the compression pump according to the measured discharge value of the compressed air through the branch line compared with the pressure range condition for the inside of the air chamber;
    를 포함하여 이루어진 압축공기를 이용하는 생산라인의 공기조화장치의 운영방법.Operation method of the air conditioning device of the production line using compressed air comprising a.
  18. 제 17 항에 있어서,The method of claim 17,
    상기 에어챔버와 상기 리턴라인을 포함한 공기 공급라인 및 상기 분기라인에 대한 공기압 조정값 조정과 연동하여, In conjunction with the air pressure adjustment value adjustment for the air supply line and the branch line including the air chamber and the return line,
    (a) 상기 에어챔버 내의 온도 범위를 설정하는 단계; (a) setting a temperature range in the air chamber;
    (b) 상기 에어챔버 내의 온도가 이미 설정한 온도 범위에 있도록 상기 냉동사이클의 구동을 제어하는 단계; 및 (b) controlling the driving of the refrigeration cycle so that the temperature in the air chamber is within a preset temperature range; And
    (c) 상기 분기라인을 통한 압축공기의 배출량 측정값이 상기 에어챔버 내부에 대한 압력 범위 조건과 비교하여, 상기 에어챔버 내의 압력 설정 조건 조정 및 그에 따른 상기 냉동사이클의 구동을 제어하는 단계;(c) controlling the pressure setting condition in the air chamber and the driving of the refrigeration cycle according to the measured discharge value of the compressed air through the branch line compared with the pressure range condition for the inside of the air chamber;
    를 포함하여 이루어진 압축공기를 이용하는 생산라인의 공기조화장치의 운영방법.Operation method of the air conditioning device of the production line using compressed air comprising a.
PCT/KR2016/006277 2015-06-12 2016-06-13 Production line air conditioning device using compressed air, and method for operating same WO2016200245A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020150083302A KR101608801B1 (en) 2015-06-12 2015-06-12 Air conditioning system of the production line using compressed air and method of operating using same as
KR10-2015-0083302 2015-06-12
KR1020150186227A KR102000649B1 (en) 2015-12-24 2015-12-24 Air conditioning system of the production line using compressed air
KR10-2015-0186227 2015-12-24

Publications (1)

Publication Number Publication Date
WO2016200245A1 true WO2016200245A1 (en) 2016-12-15

Family

ID=57503819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/006277 WO2016200245A1 (en) 2015-06-12 2016-06-13 Production line air conditioning device using compressed air, and method for operating same

Country Status (1)

Country Link
WO (1) WO2016200245A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108759991A (en) * 2018-06-21 2018-11-06 广东美的暖通设备有限公司 The diagnosis of survey error method, apparatus and air-conditioning system of sensor in air-conditioning system
CN110617588A (en) * 2019-09-09 2019-12-27 青岛新航农高科产业发展有限公司 Integrated wall and building

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070025414A1 (en) * 2005-07-05 2007-02-01 Stefano Mola System for controlling an air-conditioning system within an environment, in particular the passenger compartment of a vehicle
KR20110057818A (en) * 2009-11-25 2011-06-01 박희성 Actuator with stepping motor and auto diffuser using home network for heating, ventilatiing and air conditioning
KR101351051B1 (en) * 2013-07-22 2014-01-10 윤종찬 A air conditioner using by compressed air
US20140120820A1 (en) * 2012-10-30 2014-05-01 Ford Global Technologies, Llc Condensation control in a charge air cooler by controlling charge air cooler temperature
KR20150032435A (en) * 2013-09-17 2015-03-26 대우조선해양 주식회사 Hvac and ocean facility comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070025414A1 (en) * 2005-07-05 2007-02-01 Stefano Mola System for controlling an air-conditioning system within an environment, in particular the passenger compartment of a vehicle
KR20110057818A (en) * 2009-11-25 2011-06-01 박희성 Actuator with stepping motor and auto diffuser using home network for heating, ventilatiing and air conditioning
US20140120820A1 (en) * 2012-10-30 2014-05-01 Ford Global Technologies, Llc Condensation control in a charge air cooler by controlling charge air cooler temperature
KR101351051B1 (en) * 2013-07-22 2014-01-10 윤종찬 A air conditioner using by compressed air
KR20150032435A (en) * 2013-09-17 2015-03-26 대우조선해양 주식회사 Hvac and ocean facility comprising the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108759991A (en) * 2018-06-21 2018-11-06 广东美的暖通设备有限公司 The diagnosis of survey error method, apparatus and air-conditioning system of sensor in air-conditioning system
CN110617588A (en) * 2019-09-09 2019-12-27 青岛新航农高科产业发展有限公司 Integrated wall and building

Similar Documents

Publication Publication Date Title
CN101385407B (en) Air removal unit
US5203175A (en) Frost control system
WO2016200245A1 (en) Production line air conditioning device using compressed air, and method for operating same
CN1104610C (en) Cool air supply apparatus of refrigerator
WO2015194891A1 (en) Refrigerator
WO2014175537A1 (en) Tunnel air conditioning apparatus, passenger boarding bridge comprising the apparatus, air conditioning system for passenger boarding bridge, and system for controlling same
KR100808699B1 (en) Open showcase
KR101644108B1 (en) Cubicle cases for electric switchgear and automatic control systems
WO2017065367A1 (en) Air conditioning device, ejector used therefor, and method for controlling air conditioning device
WO2022154340A1 (en) Air conditioner
SE459447B (en) SEAT AND DEVICE MOVE TO VENTILATE A ROOM THROUGH INFLATION OF AIR HORIZONTALLY UNDER A HEATING EXCHANGE ROOF MOUNTED PANEL
CN103261805A (en) Air-conditioning system using outside air
WO2019190055A1 (en) Refrigerator
EP3582255B1 (en) Stocker
CN101277890A (en) Elevator apparatus
US4873914A (en) Clean room system and unit for the same clean room system
US3996762A (en) Air conditioning system for a mobile home including component area access
WO2020149700A1 (en) Unit cooler
US4300441A (en) Baseboard distribution hot air heating system
CN115342590B (en) Intelligent control device for defrosting waste heat of air cooler of vaccine ultralow-temperature warehouse and control method of intelligent control device
CN103698129A (en) Engine heat balance test system and temperature control device thereof
WO2017073896A1 (en) Air conditioner
US11162692B2 (en) Fan assembly for an HVAC unit
JP2022550760A (en) Processing system and processing method
WO2019245291A1 (en) Air conditioner outdoor unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807885

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16807885

Country of ref document: EP

Kind code of ref document: A1