WO2016199872A1 - Corrosion control system and corrosion control method - Google Patents

Corrosion control system and corrosion control method Download PDF

Info

Publication number
WO2016199872A1
WO2016199872A1 PCT/JP2016/067289 JP2016067289W WO2016199872A1 WO 2016199872 A1 WO2016199872 A1 WO 2016199872A1 JP 2016067289 W JP2016067289 W JP 2016067289W WO 2016199872 A1 WO2016199872 A1 WO 2016199872A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
measurement
metal
corrosion
thinning
Prior art date
Application number
PCT/JP2016/067289
Other languages
French (fr)
Japanese (ja)
Inventor
和紀 宮澤
暁之 加藤
航平 齋藤
慎也 三戸
徹也 石川
Original Assignee
横河電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016095553A external-priority patent/JP2017003574A/en
Application filed by 横河電機株式会社 filed Critical 横河電機株式会社
Publication of WO2016199872A1 publication Critical patent/WO2016199872A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws

Definitions

  • the present invention relates to a corrosion management system and a corrosion management method for performing corrosion management of metal equipment such as metal piping.
  • a corrosion management system has been proposed as a technique for detecting, measuring and managing the thinning caused by locally generated corrosion.
  • the corrosion management system includes, for example, a corrosion inspection device that detects occurrence of thinning caused by corrosion and the like, and a corrosion inspection management device that manages inspection results.
  • the corrosion inspection apparatus an eddy current flaw detection apparatus, an X-ray inspection apparatus, a guide wave inspection apparatus and the like are used in addition to the most common ultrasonic thickness gauge.
  • the corrosion inspection management device has a function of acquiring measurement results from the corrosion inspection device and displaying the measurement results at measurement points.
  • the ultrasonic thickness gauge is a device that measures the wall thickness from the speed and arrival time of ultrasonic waves propagating in the metal using an ultrasonic transmission element and a reception element. In principle, the measurement is made at one point on the surface.
  • An eddy current flaw detector is a device that detects a flaw on a metal surface by applying a high-frequency AC magnetic field to a piping surface or the like with a coil or the like and measuring a magnetic field generated by a current generated by the AC magnetic field.
  • the X-ray inspection device is a device that uses a powerful X-ray source that penetrates metal to image the inside of piping and the like based on the X-ray principle, and reads the presence or absence of thinning or deterioration from the output image.
  • the guide wave inspection device is a device mainly used for piping. It is a device that detects the size of the missing section and the position of the pipe lock due to thinning etc. by generating elastic waves of a special mode called guide waves in the pipe and measuring the guide wave reflected by thinning etc. .
  • a corrosion inspection device that can continuously inspect with high surface resolution and the corrosion inspection device
  • a corrosion inspection management device that can grasp the shape, size, and position of the thinning from the obtained inspection results and map it to the three-dimensional shape of the facility is essential.
  • the shape and size of thinning, the position, and mapping them to the three-dimensional shape of the equipment and visualizing them are useful information for analyzing the corrosion mechanism important in corrosion management.
  • workers can accurately grasp the target equipment and position from the information visualized by mapping to the three-dimensional shape of the equipment. Can be made.
  • the ultrasonic thickness gauge as a corrosion inspection device is a point measurement, so in order to obtain the shape, size, and position of thinning caused by local corrosion with high surface resolution, it is enormous. The quantity must be measured. Therefore, it is difficult to inspect the entire surface of the monitoring target equipment with high surface resolution. Furthermore, since the measurement value of the ultrasonic thickness gage generally depends on the skill of the inspector, it is difficult to continuously measure with high reproducibility.
  • the eddy current flaw detector uses an electromagnetic wave with a high frequency, attenuation due to the skin effect is large, and the measurement range in the thickness direction is limited. For this reason, it is difficult to convert to a wall thickness, and it is not suitable for obtaining the shape, size, and position of the thinning caused by local corrosion. Furthermore, since a coil is required to generate eddy current inside and outside the facility, it is difficult to form an array. Therefore, it is difficult to inspect the entire equipment surface with high surface resolution.
  • the X-ray inspection apparatus can capture piping and the like with high surface resolution, but the output result depends on the imaging direction. For this reason, in order to grasp the shape, size, and position of the thinning caused by local corrosion of the entire piping and the like in three dimensions, a great deal of imaging and image composition are required. In addition, since the X-ray inspection apparatus requires management of the X-ray source, the introduction barrier is high and continuous measurement cannot be performed.
  • Guide wave inspection equipment requires very large electric power to generate a guide wave, so it is difficult to use it during operation in the explosion-proof area of the plant. Gas detection by is essential. Further, specialized knowledge is required for reading the inspection results, and the output is basically the cross-sectional defect rate, and the shape, size and position of the thinning caused by local corrosion cannot be obtained directly.
  • the conventional corrosion inspection management apparatus generally acquires the inspection result of the corrosion inspection apparatus through a portable storage device or is input manually. For this reason, a lot of man-hours are required for data input work. In addition, in order to analyze the corrosion mechanism from the collected data, knowledge of a corrosion specialist is required.
  • the present invention has been made in view of such a situation, and an object thereof is to enable continuous measurement and management of the shape, size, and position of thinning caused by local corrosion of a metal facility. .
  • a corrosion management system includes a magnetic field measurement device including a magnetic field sensor array that measures a magnetic field distribution on the surface of a metal facility to be monitored, and a measurement result of the magnetic field measurement device.
  • a measurement management device that calculates the shape, size, and position of the thinning in the metal facility, and generates a three-dimensional shape corresponding to the metal facility from the shape, size, and position of the thinning. It is characterized by providing.
  • the measurement management device can acquire the measurement result of the magnetic field measurement device using wireless communication.
  • the measurement management device calculates the shape, size, and position of the metal equipment thinning based on the difference between the measurement result obtained when the metal equipment is not thinned and the actual measurement result. can do.
  • the current application device and the magnetic field measurement device may be independent devices.
  • the measurement management device may correct the measurement result of the magnetic field measurement device based on the positions of the magnetic field sensor and the metal equipment constituting the magnetic field sensor array. At this time, the measurement management device calculates a position of the magnetic field sensor and the metal facility based on the magnetic flux density obtained by an alternating current of a different frequency applied to the metal facility for a certain magnetic field sensor. Can do.
  • the measurement management device may use the magnetic field sensor based on the magnetic flux density measured for a certain magnetic field sensor and the magnetic flux density measured by the auxiliary magnetic field sensor disposed on the extension of the magnetic field sensor from the metal facility. And the position of the metal facility can be calculated.
  • the corrosion management method according to the second aspect of the present invention applies an electric current to an electrode installed in a monitored metal facility or a magnetic field generating wire installed in the vicinity of the metal facility.
  • the shape, size, and position of thinning caused by local corrosion of a metal facility can be measured and managed, and visualized in a state mapped to the three-dimensional shape of the facility so that it can be continuously performed. Become.
  • FIG. 1 is a block diagram showing a configuration of a corrosion management system 10 according to the present embodiment.
  • the corrosion management system 10 is a system that performs corrosion management of a metal pipe (referred to as a monitoring target pipe 110) laid in the plant 100.
  • metal piping is described as an example of corrosion management.
  • the corrosion management system 10 is not limited to metal piping, and for example, metal equipment such as a distillation tower and a reactor may be targeted for corrosion management. it can.
  • the corrosion management system 10 includes a current application device 120, a magnetic field measurement device 130, and a measurement management device 210 connected to the control network 200, which are arranged in the vicinity of the monitoring target pipe 110 of the plant 100. I have.
  • the current application device 120 and the magnetic field measurement device 130 have a wireless communication function.
  • the measurement management device 210 is connected to the wireless sensor network gateway 220 via the control network 200. Accordingly, the measurement management device 210, the current application device 120, and the magnetic field measurement device 130 can perform wireless communication with each other via the wireless sensor network 280.
  • the wireless sensor network 280 can be an industrial wireless sensor network such as ISA100.11a or WirelessHART, or a general-purpose wireless network such as IEEE802.11 or IEEE802.15.4.
  • the magnetic field distribution generated by the current applied by the current application device 120 is measured by the magnetic field measurement device 130, thereby grasping the thinning state of the monitoring target pipe 110.
  • this principle for example, either the first principle or the second principle described below can be used.
  • other principles may be applied as long as the magnetic field distribution generated by the current applied by the current application device 120 is measured by the magnetic field measurement device 130 to grasp the thinning state of the monitored pipe 110. .
  • FIG. 2 is a diagram for explaining the first principle.
  • the current application device 120 applies an alternating current to the metal surface of the monitoring target pipe 110 via a pair of electrodes 111 installed on the metal surface of the monitoring target pipe 110.
  • This current flows at a current density according to the resistance distribution of the metal surface and generates a magnetic field.
  • the resistance in the vicinity thereof changes, so that the current density distribution changes and the magnetic field distribution also changes.
  • the change in the magnetic field distribution is measured by the magnetic field measuring device 130 and converted into the shape and size of the thinning.
  • the intersection of the perpendicular line drawn from the sensor indicating that there is thinning to the monitoring target pipe 110 and the monitoring target pipe 110 is an approximate position of the thinning. More specifically, by analyzing including the output of the sensor in the vicinity of the sensor indicating that there is thinning, the shape, size, and position of the thinning are converted.
  • FIG. 3 is a diagram for explaining the second principle.
  • the second principle can be applied when the monitoring target pipe 110 is a magnetic body.
  • the current application device 120 applies an alternating current to the magnetic field generating wire 112 disposed near the metal surface of the monitoring target pipe 110 to generate a magnetic field.
  • This magnetic field distribution is determined by the magnetic permeability distribution around the magnetic field source.
  • the magnetic field distribution changes due to thinning caused by local corrosion or the like of the metal surface of the pipe 110 to be monitored (the “metal surface” is a concept including the inner surface of the metal pipe)
  • the magnetic field distribution according to the change also changes.
  • the change in the magnetic field distribution is measured by the magnetic field measuring device 130 and converted into the shape and size of the thinning.
  • the intersection of the perpendicular drawn to the monitoring target pipe 110 from the sensor indicating that there is thinning and the monitoring target pipe 110 is the position of the thinning.
  • the current applied by the current application device 120 is, for example, a frequency with good signal selectivity such as a frequency away from an integer multiple of 50 Hz or 60 Hz of the commercial frequency or a frequency that is a prime number.
  • the current applying device 120 applies an alternating current to the electrode 111 provided on the surface of the monitoring target pipe 110, and when the second principle is adopted, the current applying device 120 is near the monitoring target pipe 110.
  • An alternating current is applied to the magnetic field generating wire 112 disposed in the section to generate an alternating magnetic field.
  • the magnetic field measurement device 130 is disposed in the vicinity of the monitoring target pipe 110 and measures the magnetic field distribution.
  • FIG. 4 is a block diagram illustrating a configuration example of the current application device 120.
  • the current application device 120 includes a calculation unit 121, a signal generation unit 122, a current control unit 123, a storage unit 124, a magnetic field measurement device synchronization unit 125, and a wireless communication unit 126.
  • the calculation unit 121 performs setting processing of the current value, frequency, and the like of the applied current based on the setting information sent from the measurement management device 210.
  • the signal generation unit 122 generates a current waveform to be applied according to the setting of the calculation unit 121.
  • the current control unit 123 controls the applied current according to the current waveform generated by the signal generation unit 122.
  • the storage unit 124 stores setting information such as a current setting value.
  • the magnetic field measurement device synchronization unit 125 performs a synchronization process with the magnetic field measurement device 130.
  • the wireless communication unit 126 performs connection processing to the wireless sensor network 280.
  • FIG. 5 is a block diagram illustrating a configuration example of the magnetic field measuring apparatus 130.
  • the magnetic field measurement device 130 includes a magnetic field sensor array 131, a calculation unit 132, a sensor switching unit 133, a signal conversion unit 134, a storage unit 135, a current application device synchronization unit 136, and a wireless communication unit 137. Yes.
  • the magnetic field sensor array 131 is configured by arraying magnetic field sensors, and is attached to the monitoring target pipe 110 as shown in the figure. Thereby, the magnetic field distribution on the surface of the monitoring target pipe 110 can be obtained. Since the magnetic field sensor is a small sensor with low power consumption, it can be mounted at a high density on a large area. Therefore, the magnetic field distribution can be measured with high surface resolution.
  • the magnetic field sensor array 131 is always attached to the monitoring target pipe 110. Thereby, the effort which attaches a magnetic field sensor to the monitoring object piping 110 for every measurement can be saved, and it can measure continuously.
  • the sensor switching unit 133 switches the magnetic field sensor from which the measurement value is to be acquired from the magnetic field sensors constituting the magnetic field sensor array 131. That is, in the present embodiment, the measurement values are sequentially acquired from the magnetic field sensors. There are two methods for obtaining measurement values: a method for sequentially obtaining measurement values from each magnetic field sensor as in the present embodiment, and a method for obtaining measurement values all at once. Since the circuit component cost can be reduced, the present embodiment has shown a method for sequentially obtaining measured values. Of course, in order to shorten the measurement time, the measurement values may be acquired from the magnetic field sensors all at once.
  • the signal converter 134 converts the measurement value into a digital signal.
  • the storage unit 135 stores measurement values converted into digital signals, setting information for measurement, and the like.
  • the calculation unit 132 performs noise removal of the measurement value, conversion processing to an effective value, processing of setting information, and the like. A specific noise removal method will be described later.
  • the current application device synchronization unit 136 performs a synchronization process with the current application device 120.
  • the wireless communication unit 137 performs connection processing to the wireless sensor network 280.
  • the magnetic field measurement device 130 measures the alternating magnetic field generated by the alternating current applied by the current application device 120 with the magnetic field sensor array 131. Then, a noise removal process described later is performed on the measurement result, and then a conversion process to an effective value is performed. For example, the magnetic field measurement device 130 transmits an array of effective values corresponding to the arrayed magnetic field sensors to the measurement management device 210 via the wireless sensor network 280 as a measurement result.
  • the current application device 120 and the magnetic field measurement device 130 are separated to be independent devices.
  • the first reason is that it is assumed to operate in an explosion-proof area such as the petroleum / petrochemical industry.
  • the current application device 120 needs to handle a larger amount of electric power than the magnetic field measurement device 130, and by separating the device, the circuit configuration can be simplified, and the circuit to be considered in the event of a failure can be limited. It becomes like this.
  • the current application device 120 can basically cover the region between the electrodes 111 installed. Further, according to the second principle, the range in which the magnetic field generating wires 112 are arranged can be covered, and each relatively large area can be easily covered.
  • the magnetic field measuring device 130 measures the magnetic field in the range covered by the arrayed magnetic field sensors, it is necessary to increase the number of magnetic field sensors in the magnetic field sensor array 131 in order to expand the measurement region. Is not easy.
  • the measurement region can be easily expanded without increasing the current application devices 120.
  • a device in which the current application device 120 and the magnetic field measurement device 130 are integrated may be used to reduce the housing cost and space.
  • the current application device 120 and the magnetic field measurement device 130 operate in synchronization so that a current is applied at the timing of measuring the magnetic field.
  • a synchronization method since the electric circuit is separated, a method of triggering by communication using light such as infrared rays or a synchronization method via the wireless sensor network 280 can be considered.
  • the current application device 120 includes a magnetic field measurement device synchronization unit 125
  • the magnetic field measurement device 130 includes a current application device synchronization unit 136.
  • the start time and the operation time are set in one (for example, the magnetic field measurement device 130), and the two are mainly synchronized.
  • the measurement management device 210 transmits the start time and the operation time as setting information to both the current application device 120 and the magnetic field measurement device 130, respectively. For this reason, the magnetic field measurement device synchronization unit 125 and the current application device synchronization unit 136 may be omitted.
  • FIG. 6 is a block diagram illustrating a configuration example of the measurement management apparatus 210.
  • the measurement management apparatus 210 includes a calculation unit 211, a communication unit 212, a storage unit 213, and an input / output unit 214.
  • the communication unit 212 performs communication processing via the control network 200.
  • the storage unit 213 is a relative position between the magnetic field measurement device 130 installed in the plant 100 and the monitoring target pipe 110, various settings in the corrosion management system 10, and an array of effective values received from the magnetic field measurement device 130 via the wireless sensor network.
  • the calculation result of the calculation unit 211 is stored.
  • the calculation unit 211 converts the array of effective values received from the magnetic field measurement device 130 into the shape and size of the thinning generated in the monitoring target pipe 110, and calculates the relative position between the monitoring target pipe 110 and the magnetic field sensor array 131. Based on the process of converting into a three-dimensional shape corresponding to the monitoring target pipe 110 in consideration of the thinning, and the measurement for setting the next measurement timing in the current application device 120 and the magnetic field measurement device 130 based on the thinning state Perform setting processing.
  • the input / output unit 214 performs a process of receiving a user operation or outputting a three-dimensional shape corresponding to the monitoring target pipe 110 in consideration of the thinning that is the processing result of the calculation unit 211.
  • the measurement management device 210 and the input / output unit 214 that receives the user's operation are integrated. However, a separate input / output device may be prepared and connected using the control network 200, for example.
  • the calculated shape and size of the thinning are mapped to the shape of the monitoring target pipe 110.
  • the depth in the thickness direction and the cross-sectional defect rate are calculated from the shape and size of the thinning.
  • the rate of change per unit time is calculated by comparing with the previously measured depth of thinning and the cross-sectional defect rate.
  • the time margin is calculated by comparing each with the minimum allowable wall thickness and the maximum allowable shear stress, and the next measurement timing is set in the current application device 120 and the magnetic field measurement device 130 based on the smaller margin. To do.
  • the magnetic field sensor array 131 is installed in the monitoring target pipe 110, the electrode 111 is installed (first principle), or the magnetic field generating wire 112 is installed in the vicinity (second principle), and the current application device 120 is connected (S101).
  • the calculation unit 132 of the magnetic field measuring apparatus 130 acquires the effective value after removing noise from the measured value (S204).
  • the effective value can be represented by an array corresponding to the magnetic field sensor array 131, whereby the magnetic field distribution on the surface of the monitoring target pipe 110 can be obtained.
  • the effective value represented by the array is sent to the measurement management device 210, and the calculation unit 211 of the measurement management device 210 converts it into the shape and size of the wall thickness or thickness reduction (S205). Then, the next measurement timing is set based on the change in the shape and size of the thinning (S206).
  • the calculation unit 211 performs three-dimensional mapping of the shape and size of the thinning to the monitoring target pipe 110 based on the position information of the thinning (S207).
  • the shape and size of the thinning, the position, and the three-dimensional mapping result are recorded in the storage unit 213 and output to a display screen or the like as necessary (S208).
  • the wireless communication unit 126 requests setting information from the measurement management device 210 via the wireless sensor network 280 (S301).
  • setting information is received from the measurement management device 210 (S302) and recorded in the storage unit 124 (S303).
  • the setting information includes the frequency of the alternating current to be applied, the current value, the application start time (cycle), the current application duration, and the like.
  • the measurement management apparatus 210 may be notified that the current application has been completed.
  • the current application device 120 further receives setting information related to the next measurement timing from the measurement management device 210 (S307), and waits for the next start time (S304). However, if the setting information is a stop instruction (S308: Yes), it stops.
  • the wireless communication unit 137 requests setting information from the measurement management device 210 via the wireless sensor network 280 (S401).
  • setting information is received from the measurement management device 210 (S402) and recorded in the storage unit 135 (S403).
  • the setting information includes the measurement start time (cycle), the measurement time per sensor, the frequency of the alternating current applied by the current application device 120, and the like.
  • the sensor for measurement is switched (S405), and the magnetic field is measured (S406). At this time, you may make it notify the measurement management apparatus 210 that magnetic field measurement was started.
  • the measurement by the sensor is terminated, and the calculation unit 132 performs noise removal and effective value calculation processing (S407). If there is an unmeasured sensor in this process (S408: No), the sensor is switched (S405), and the measurement process is repeated.
  • the effective value is transmitted to the measurement management device 210 in an array format corresponding to the magnetic field sensor array 131 (S409).
  • the magnetic field measurement device 130 further receives setting information regarding the next measurement timing from the measurement management device 210 (S410), and waits for the next start time (S404). However, if the setting information is a stop instruction (S411: Yes), it stops.
  • the noise removal process performed by the calculation unit 132 of the magnetic field measurement apparatus 130 in (S407) will be described. Since the AC magnetic field signal measured by the magnetic field measurement device 130 generally includes noise, it is necessary to obtain an effective value after removing the noise. As the noise removal method, the following four methods are conceivable.
  • First method for noise removal This is a method in which the measured AC signal is converted into a frequency space by discrete Fourier transform or Z transform, and the frequency applied by the current application device 120 is cut out.
  • Second method of noise removal The measured AC signal is converted into a frequency space by discrete Fourier transform or Z transform, and smoothing is performed to cancel higher-order noise, and regression is performed according to [Equation 1].
  • k 0 is a method of extracting only. Since this method uses the instantaneous value of the signal sequence from which noise is to be removed, it is not necessary to store the signal in the memory, and the amount of RAM used in the storage unit 135 can be reduced.
  • the second method for removing noise is an improvement of the first method for removing noise using discrete Fourier transform so as to meet the object of the present invention.
  • the points of improvement are the following two points.
  • the second noise removal method is an improvement of the first noise removal method so that the frequency resolution and the measurement time are compatible.
  • a signal f (t) having a frequency component only in the vicinity of the angular frequency ⁇ 0 can be described as [Equation 2]. However, it is assumed that ⁇ i ⁇ 0 . At this time, the value to be obtained is the amplitude w 0 corresponding to the angular frequency ⁇ 0 .
  • the Fourier integral in the interval 0 ⁇ t ⁇ T of the signal f (t) can be calculated by [Equation 3].
  • F [f] ( ⁇ 0 ) converges to ⁇ 0 in the limit of T ⁇ ⁇ .
  • the first method for removing noise is a method for calculating the integral value. However, if we note that the above equation can be expanded to [Equation 4], With the following two procedures, F [f] ( ⁇ 0 ) can be converged to ⁇ 0 without taking the limit of T ⁇ ⁇ .
  • 3rd method for noise removal Since the main component of noise is noise generated by the circuit of the magnetic field measuring apparatus 130, it is assumed that the noise is a normal distribution and a Kalman filter is applied.
  • the magnetic field measurement device 130 performs the above noise removal on the AC signal measured by each magnetic field sensor of the magnetic field sensor array 131, calculates the effective value of the AC signal, and passes the wireless sensor network 280 via the wireless sensor network 280. To the measurement management device 210. However, other noise removal methods may be employed.
  • the operation of the measurement management apparatus 210 will be described with reference to the flowchart of FIG.
  • the measurement management device 210 When the measurement management device 210 is activated, the relative position relationship between the magnetic field generating wire 112 and the magnetic field sensor array 131 installed in the monitoring target pipe 110 or the magnetic field sensor array 131 and the shape of the monitoring target pipe 110 are set.
  • the device arrangement information is recorded in the storage unit 213 (S601).
  • the setting information recorded in advance in the storage unit 213 is transmitted (S603). Specifically, when the setting information request is received from the current application device 120, the frequency of the alternating current to be applied, the current value, the application start time (cycle), the current application duration, etc. are transmitted as the setting information. When a setting information request is received from the magnetic field measurement device 130, the measurement start time (cycle), the measurement time per sensor, the frequency of the alternating current applied by the current application device 120, and the like are transmitted as setting information.
  • the measurement management device 210 stores the effective value array received from the magnetic field measurement device 130 in the storage unit 213 as a history, and the calculation unit 211 converts the AC magnetic field effective value array into a shape and size of thinning. (S607).
  • a method for converting the array of effective values of the alternating magnetic field into the shape and size of the thinning will be described.
  • the effective value of each magnetic field sensor in the magnetic field distribution as a reference such as the magnetic field measured without thinning and the simulation result, and the measured effective value
  • calculating the magnetic field distribution, current distribution, and resistance distribution by applying the measured effective value to the physical model and calculating the magnetic field distribution, current distribution, and resistance distribution.
  • a method for calculating the metal thickness is considered.
  • the conversion methods (1 to 4) corresponding to the first principle and the conversion methods (5 to 8) corresponding to the second principle are shown below.
  • Conversion method 1 For example, when a pipe is newly installed, an AC current is applied from the current application device 120 without thinning, and the effective value of the magnetic field distribution of the AC magnetic field around the surface is measured by the magnetic field measurement device 130. Then, the data is transmitted to the measurement management apparatus 210 via the wireless sensor network 280 and stored in the storage unit 213 of the measurement management apparatus 210.
  • the effective value of the magnetic field distribution of the alternating magnetic field around the surface of the same pipe after a certain period of time is similarly measured and transmitted to the measurement management device 210.
  • the measurement management device 210 calculates the difference between the newly measured effective value and the reference effective value stored in the storage unit 213, and the shape and material of the piping stored in the storage unit 213, the current application device 120, and the magnetic field
  • the relative position between the measuring device 130 and the pipe is acquired, and the difference calculation result of the effective value and the corrosion generated in the pipe are fitted to the difference result of the effective value using the semi-elliptical sphere as a model.
  • the most suitable result is estimated as the size and position of the thinning, and the shape and size of the thinning mapped to the three-dimensional shape of the equipment together with the shape of the pipe stored in the storage unit 213 of the measurement management device 210, Calculate the position.
  • fitting may be performed assuming that the piping is a flat surface.
  • the unevenness of the plane due to fitting may be calculated and mapped to the shape stored in the storage unit 213.
  • Conversion method 2 This is a method according to the conversion method 1, but it is a method for obtaining the effective value of the magnetic field distribution of the alternating magnetic field around the reference pipe surface by magnetic field simulation. Further, in order to correct an error between the simulation result and the actual magnetic field distribution, a certain coefficient is applied to the simulation result to obtain a reference effective value.
  • Conversion method 3 This is a method according to conversion method 2, but the thickness distribution in the standard state is measured with another device such as an ultrasonic thickness gauge, and a simulation is performed based on the thickness distribution. This is a method in which the result is the effective value of the magnetic field distribution of the alternating magnetic field around the pipe surface as a reference.
  • Conversion method 4 This is a method according to the conversion method 1, but from the effective value of the magnetic field distribution of the alternating magnetic field measured by the magnetic field measurement device 130 at an arbitrary time stored in the storage unit 213 of the measurement management device 210, the resistance distribution Is estimated.
  • the constraint conditions for estimating the resistance distribution are the measured effective value of the magnetic field, the position of the electrode on the pipe surface, the pipe specifications (for example, material, outer diameter, wall thickness), and applied current amount.
  • the resistance distribution estimation problem is not a good setting problem, the magnitude of the current distribution or resistance distribution is used as a normalization term.
  • the piping is regarded as a graph in which resistances as shown in FIG. Then, the current flowing through each resistor is estimated from the measured magnetic field, and the resistance value (metal thinning rate) is estimated from the current flowing through each resistor.
  • the current flowing in the pipe is dominant in the direction from the one electrode to the other electrode (left and right direction in the figure), and almost no current flows in the direction perpendicular to it (up and down direction in the figure).
  • the piping can be regarded approximately as a graph as shown in FIG. Compared with the graph shown in FIG. 13A, the graph shown in FIG. 13B has the advantage that the number of currents to be calculated is halved and the calculation time can be greatly shortened.
  • Conversion method 5 When the pipe 110 to be monitored is a magnetic metal, for example, when a pipe is newly installed, an AC current is applied from the current application device 120 without thinning, and the magnetic field distribution of the AC magnetic field around the surface is changed. The effective value is measured by the magnetic field measurement device 130. Then, the data is transmitted to the measurement management apparatus 210 via the wireless sensor network 280 and stored in the storage unit 213 of the measurement management apparatus 210.
  • the effective value of the magnetic field distribution of the alternating magnetic field around the surface of the same pipe after a certain period of time is similarly measured and transmitted to the measurement management device 210.
  • the measurement management device 210 calculates the difference between the newly measured effective value and the reference effective value stored in the storage unit 213, and the shape and material of the piping stored in the storage unit 213, the current application device 120, and the magnetic field
  • the relative position between the measuring device 130 and the pipe is acquired, and the difference calculation result of the effective value and the corrosion generated in the pipe are fitted to the difference result of the effective value using the semi-elliptical sphere as a model.
  • Conversion method 6 This is a method according to the conversion method 5, but it is a method of acquiring the effective value of the magnetic field distribution of the alternating magnetic field around the reference pipe surface by magnetic field simulation. Further, in order to correct an error between the simulation result and the actual magnetic field distribution, a certain coefficient is applied to the simulation result to obtain a reference effective value.
  • Conversion method 7 This is a method according to conversion method 2, but the thickness distribution in the standard state is measured with another device such as an ultrasonic thickness gauge, and a simulation is performed based on the thickness distribution. This is a method in which the result is the effective value of the magnetic field distribution of the alternating magnetic field around the pipe surface as a reference.
  • Conversion method 8 A method according to the conversion method 4, but the resistance distribution is calculated from the effective value of the magnetic field distribution of the alternating magnetic field measured by the magnetic field measurement device 130 at an arbitrary time stored in the storage unit 213 of the measurement management device 210. From the difference in magnetic permeability between the magnetic metal and the atmosphere such as air or water and the estimated value of the magnetic field distribution, the inverse problem of estimating the thinning of the pipe made of the magnetic metal is solved. The constraint conditions at this time are the effective value of the measured magnetic field, the position of the electrode on the pipe surface, the specifications of the pipe (for example, material, outer diameter, thickness), and the amount of applied current. In general, since the resistance distribution estimation problem is not a good setting problem, the magnitude of the current distribution or resistance distribution is used as a normalization term.
  • the magnetic field sensor array of the monitoring target pipe 110 and the magnetic field measuring device 130 at the time of installation or detachment due to the restriction of the above method for converting the measured magnetic field distribution into the shape and size of the thinning. 131, it is necessary to manage the positions of the electrodes 111 and the magnetic field generating wires 112 of the current application device 120 and to manage the relative positions. This is because the magnetic field changes in proportion to the distance from the source to the measurement point, and this appears as an error when converted.
  • the situation in which the magnetic sensor array 131 is attached and detached includes the case where the monitoring target pipe 110 in which the magnetic field sensor array 131 is installed is inspected by another means (for example, an ultrasonic thickness gauge), or the magnetic field sensor array 131 is There may be a situation where a failure occurs and replacement is performed.
  • another means for example, an ultrasonic thickness gauge
  • the AC magnetic field around the surface of the metal pipe is measured with no thinning on the surface of the metal pipe (herein referred to as initial measurement), and the difference from the state with the thinning
  • initial measurement no thinning on the surface of the metal pipe
  • a method of satisfying such a requirement there is a method of attaching a reference jig to the surface of a metal pipe during initial measurement.
  • the electrode 111 and the magnetic field generating wire 112 are left on or near the surface of the metal equipment, there is a method of measuring the magnetic field by the magnetic field measuring device 130 using these and correcting the position from the information.
  • the simulation result is used instead of the initial measurement result. For this reason, management of the relative position of the simulation model and the magnetic field sensor array 131 actually installed on the surface of the metal pipe, the electrode 111 of the current application device 120, or the magnetic field generating wire 112 is required.
  • the relative positions of the metal pipe surface, the magnetic field sensor array 131, the electrode 111, or the magnetic field generating wire 112 are first modeled, and after simulation, these are adapted to the model.
  • a method of installation is conceivable.
  • a method may be considered in which the magnetic field sensor array 131, the electrode 111, or the magnetic field generating wire 112 is first installed, the positions thereof are measured, a simulation model is created, and the simulation is performed.
  • the surface of the metal pipe is treated as having no thinning.
  • the thickness of the metal piping measured by another means is added to the simulation model. For this reason, it is necessary to manage the position measured by another means as the position on the model.
  • the calculation unit 211 of the measurement management device 210 converts the effective value of the array format into the shape and size of the thinning (S607), based on the change in the shape and size of the thinning, and the like.
  • the next measurement timing is set (S608). Specifically, the depth in the thickness direction and the cross-sectional defect rate are calculated from the shape and size of the thinning. Then, the rate of change per unit time is calculated by comparing with the previously measured depth of thinning and the cross-sectional defect rate. Furthermore, the time margin is calculated by comparing each with the minimum allowable wall thickness and the maximum allowable shear stress, and the next measurement timing is set in the current application device 120 and the magnetic field measurement device 130 based on the smaller margin. To do.
  • calculation unit 211 performs three-dimensional mapping to the monitoring target pipe 110 based on the effective values represented in the array format (S610).
  • FIG. 14 shows an example of three-dimensional mapping performed based on the effective values represented in the array format.
  • the shape and size of the thinning, the position, and the three-dimensional mapping result are recorded in the storage unit 213 and output to a display screen or the like as necessary (S611). If there is no stop instruction (S612: No), it waits for the next start time (S604), and if there is a stop instruction (S612: Yes), it stops. At this time, stop setting information is transmitted to the current application device 120 and the magnetic field measurement device 130.
  • the corrosion management system 10 that is an embodiment of the present invention has been described above. According to the corrosion management system 10 of the present embodiment, for example, the following effects can be obtained.
  • Effect 1 Local corrosion occurring on the surface of metal equipment such as metal piping can be continuously measured and managed in three dimensions with good reproducibility.
  • Effect 2 Once the corrosion management system 10 is introduced, it is possible to continuously measure the thinning caused by corrosion, etc., eliminating the need for incidental work for human access to metal equipment, reducing man-hours and costs. it can. As a result, the measurement cycle can be shortened. Further, the measurement cycle can be set at an arbitrary cycle.
  • Effect 3 Since the current application device 120 and the magnetic field measurement device 130 are separated and compatible with the narrow-band wireless sensor network 280 corresponding to explosion prevention, the magnetic field measurement device 130 is effective after removing noise from the AC magnetic field measurement value. By outputting and transmitting the value, it becomes possible to correspond to the explosion-proof area, and it is possible to measure thinning in the explosion-proof area during operation.
  • Effect 4 The measurement result is transmitted and received by the wireless sensor network 280 and managed by the measurement management apparatus 210, so that it is not necessary to manage the inspection result manually.
  • Effect 5 The measurement result is visualized as information in which the shape and size of the thinning are mapped to the three-dimensional shape of the equipment, so that it is possible to grasp the result without special knowledge. .
  • the present invention is not limited to the above-described embodiment, and various modifications are possible.
  • another sensor such as a temperature sensor that measures the temperature of the surface of metal equipment such as piping and a humidity sensor may be added to the above-described corrosion management system 10. It is desirable to install a set of temperature sensors and humidity sensors near the magnetic field sensor array 131 and to install a plurality of sets of other temperature sensors and humidity sensors at other locations.
  • the data of these temperature sensors and humidity sensors can be read by the measurement management device 210 of the corrosion management system 10.
  • the measurement management apparatus 210 directly reads through the wireless sensor network 280 and a method in which it is read indirectly through a process control system or the like are conceivable.
  • the measurement management device 210 has similarities between the temperature and humidity data and the history of the location where the magnetic field sensor array 131 is installed and where local corrosion actually occurs and the shape and layout of the metal equipment. In addition, local corrosion is extrapolated in a place where another set of temperature sensor / humidity sensor is installed but the magnetic field sensor array 131 is not installed.
  • a sensor that inputs data inside a metal facility such as a pipe to the corrosion management system 10 described above such as a pressure sensor, a temperature sensor, a flow rate sensor, a pH sensor, an ER corrosion sensor, an electrochemical corrosion sensor, or the like. It may be added. These may be connected directly to the corrosion management system 10 via the wireless sensor network 280 or may be connected via a process control system.
  • the measurement management device 210 is similar to the data of sensors that measure the inside of the metal facility where the magnetic field sensor array 131 is installed and actually corroded, their history, the shape of the metal facility, the fluid in the metal facility, and the like. Based on the characteristics, local corrosion is extrapolated at other locations inside the metal facility where the magnetic field sensor array 131 is not installed.
  • the history of the sensor data of the process control system is used as an input, and fluid simulation is performed on the target equipment, so that the history of the local internal environment can be obtained and the three-dimensional shape of local corrosion can be obtained by installing the magnetic field sensor array 131.
  • the process state was simulated according to the production plan to be performed in the future.
  • Fluid simulation may be performed to create a local internal environment history in the future.
  • the future occurrence and progress of local corrosion is extrapolated based on the history of the internal environment in the future, the similarity of the internal fluid in the shape of the metal facility, and the above-mentioned relational model.
  • the measurement management device 210 calculates the rate of change per unit time of local corrosion. It is also possible to calculate the thinning amount from the rate of change, obtain an approximate curve representing the relationship between the thinning amount and time, and predict the progress of local corrosion from the approximate curve.
  • the position of the monitoring target pipe 110 and the magnetic field sensor array 131 of the magnetic field measuring device 130 at the time of installation or desorption is determined from the characteristic of the method of converting the measured magnetic field distribution into the thinning distribution. It is necessary to manage and manage the relative position. This is because the magnetic flux density changes according to the distance from the generation source to the measurement point, and this appears as an error during conversion.
  • an attachment member corresponding to the shape of the monitoring target pipe 110 is created.
  • an attachment member corresponding to distortion or the like of the monitoring target pipe 110 can be created.
  • the attachment member is preferably attached by point contact using legs or the like in order to avoid the influence on the monitoring target pipe 110 due to the contact of different metal, but the positional relationship between the magnetic field sensor and the monitoring target pipe 110 changes over a long period of time. It should be robust enough not to
  • the correction method is a deviation in the x-axis direction and the y-axis direction (a plane parallel to the surface of the monitoring target pipe 110), the deviation amount between the original magnetic field sensor position and the actual magnetic field sensor position. Accordingly, it is conceivable to correct the measurement value of each magnetic field sensor using existing techniques such as linear interpolation and bicubic interpolation using measurement values of adjacent magnetic field sensors.
  • the measured value is inversely proportional to the square of the distance.
  • the actual magnetic field sensor is 1.5 times the original position. If it is far away, the measurement can be corrected by multiplying the measured value by a square of 1.5.
  • This utilizes the skin effect that the alternating current flowing through the conductor concentrates on the conductor surface as the frequency increases and the internal current density decreases.
  • the distance at which the current density is 1 / e times the conductor surface is called the skin depth, and if the frequency is determined, the skin depth in the conductor can be specified.
  • the magnetic flux density measured by the magnetic field sensor 131a when an alternating current having a frequency f1 is passed through the monitoring target pipe 110 is H1.
  • the skin depth ⁇ 1 at this time is known.
  • the magnetic flux density measured by the magnetic field sensor 131a when an alternating current having a frequency f2 higher than the frequency f1 is passed through the monitoring target pipe 110 is set to H2.
  • the skin depth ⁇ 2 at this time is known and becomes shallower than the skin depth ⁇ 1.
  • the frequency f1 is selected so that the skin depth is ⁇ 1 that does not reach the thinned portion even when the thinning occurs.
  • the distance between the magnetic field sensor 131a and the auxiliary magnetic field sensor 131b is r, and this distance r is firmly maintained by an attachment member or the like and does not change. Further, the thickness of the monitoring target pipe 110 is t.

Abstract

The present invention enables continuous measurement and control of the shape, size, and position of a portion reduced in thickness by corrosion or the like of a metal facility. Provided is a corrosion control system (10) provided with: an electric current supply device (121) that supplies an electric current to an electrode installed on a metal facility to be monitored or to a magnetic field generating wire (112) installed in the vicinity of the metal facility; a magnetic field measuring device (125) that measures a magnetic field distribution over a surface of the metal facility; and a measurement and control device (210) that calculates the shape, size, and position of a portion reduced in thickness by corrosion or the like of the metal facility on the basis of a result of a measurement by the magnetic field measuring device (125), and generates a three-dimensional shape corresponding to the metal facility after the thickness reduction.

Description

腐食管理システムおよび腐食管理方法Corrosion management system and corrosion management method
 本発明は、金属配管等の金属設備の腐食管理を行なう腐食管理システムおよび腐食管理方法に関する。 The present invention relates to a corrosion management system and a corrosion management method for performing corrosion management of metal equipment such as metal piping.
 石油・石油化学のプラント等では、金属配管、反応装置、蒸留塔等の設備で腐食、特に局部腐食が発生すると、それによって設備に減肉が生じ、結果として漏洩が生じたり、生産効率が低下したりするおそれがある。このため、プラント全体に張り巡らされた金属配管や巨大な反応装置等の設備を対象に、局所的に発生した腐食等によって生じる減肉を検出・計測し、管理するための技術が望まれている。 In oil and petrochemical plants, etc., if corrosion, especially local corrosion, occurs in equipment such as metal pipes, reactors, distillation towers, etc., this results in thinning of the equipment, resulting in leakage and reduced production efficiency. There is a risk of doing so. For this reason, a technology for detecting, measuring, and managing thinning caused by locally generated corrosion, etc. is desired for facilities such as metal pipes and huge reactors spread throughout the plant. Yes.
 局所的に発生した腐食等によって生じる減肉を検出・計測し、管理するための技術として、腐食管理システムが提案されている。腐食管理システムは、例えば、腐食等によって生じる減肉の発生を検出する腐食検査装置と、検査結果を管理する腐食検査管理装置とから構成される。 A corrosion management system has been proposed as a technique for detecting, measuring and managing the thinning caused by locally generated corrosion. The corrosion management system includes, for example, a corrosion inspection device that detects occurrence of thinning caused by corrosion and the like, and a corrosion inspection management device that manages inspection results.
 腐食検査装置としては、最も一般的な超音波肉厚計の他、渦電流探傷装置、X線検査装置、ガイド波検査装置等が用いられている。腐食検査管理装置は、例えば、腐食検査装置より計測結果を取得し、計測点における計測結果を表示する機能を有している。 As the corrosion inspection apparatus, an eddy current flaw detection apparatus, an X-ray inspection apparatus, a guide wave inspection apparatus and the like are used in addition to the most common ultrasonic thickness gauge. For example, the corrosion inspection management device has a function of acquiring measurement results from the corrosion inspection device and displaying the measurement results at measurement points.
 腐食検査装置として用いられている装置において、超音波肉厚計は、超音波発信素子と受信素子とを用いて、金属内を伝搬する超音波の速度と到達時間とから肉厚を計測する装置であり、原理的に表面上の1点での計測となる。 In the device used as a corrosion inspection device, the ultrasonic thickness gauge is a device that measures the wall thickness from the speed and arrival time of ultrasonic waves propagating in the metal using an ultrasonic transmission element and a reception element. In principle, the measurement is made at one point on the surface.
 渦電流探傷装置は、コイル等で配管面等に高い周波数の交流磁界を印加し、その交流磁界により発生する電流によって生じる磁界を計測することで、金属表面の傷を検出する装置である。 An eddy current flaw detector is a device that detects a flaw on a metal surface by applying a high-frequency AC magnetic field to a piping surface or the like with a coil or the like and measuring a magnetic field generated by a current generated by the AC magnetic field.
 X線検査装置は、金属を透過する強力なX線源を用いて、レントゲンの原理で配管等内部を撮影する装置であり、その出力画像から減肉や劣化の有無を読み取るものである。 The X-ray inspection device is a device that uses a powerful X-ray source that penetrates metal to image the inside of piping and the like based on the X-ray principle, and reads the presence or absence of thinning or deterioration from the output image.
 ガイド波検査装置は、主に配管に対して使用される装置である。配管にガイド波と呼ばれる特殊なモードの弾性波を発生させ、減肉等によって反射したガイド波を計測することで、減肉等による欠損断面の大きさと配管錠の位置とを検出する装置である。 The guide wave inspection device is a device mainly used for piping. It is a device that detects the size of the missing section and the position of the pipe lock due to thinning etc. by generating elastic waves of a special mode called guide waves in the pipe and measuring the guide wave reflected by thinning etc. .
日本国特開2007-327924号公報Japanese Unexamined Patent Publication No. 2007-327924 日本国特開2008-175638号公報Japanese Unexamined Patent Publication No. 2008-175638
 石油・石油化学のプラント等における設備に発生した局部腐食等によって生じる減肉を検出・計測し、管理するためには、高い面分解能で継続的に検査できる腐食検査装置と、前記腐食検査装置で得られた検査結果から減肉の形状と大きさ、位置を把握し、設備の三次元形状にマップすることができる腐食検査管理装置が必須となる。 In order to detect, measure, and manage the thinning caused by local corrosion, etc. occurring in equipment in oil and petrochemical plants, etc., a corrosion inspection device that can continuously inspect with high surface resolution and the corrosion inspection device A corrosion inspection management device that can grasp the shape, size, and position of the thinning from the obtained inspection results and map it to the three-dimensional shape of the facility is essential.
 なぜならば、局部腐食の大きさはプラント等で使用される設備に対して極めて小さいため、局部腐食を検出するためには、設備全面を高い面分解能のセンサで検査する必要があるからである。減肉を継続的に検査することで、検査結果から得られる減肉の形状と大きさの時間変化が得られ、その減肉の形状と大きさの時間変化より腐食の進行度合いの予測が可能となるからである。 This is because the magnitude of local corrosion is extremely small with respect to equipment used in a plant or the like, and in order to detect local corrosion, it is necessary to inspect the entire equipment surface with a high surface resolution sensor. By continuously inspecting the thinning, the change in shape and size of the thinning obtained from the inspection results can be obtained over time, and the progress of corrosion can be predicted from the change in shape and size of the thinning over time. Because it becomes.
 また、減肉の形状と大きさ、位置と、それらを設備の三次元形状にマップして可視化することは、腐食管理において重要な腐食メカニズムを分析する上で有効な情報である。さらに、腐食等によって生じる減肉に対する保全活動を行なう上で、設備の三次元形状にマップして可視化された情報から、作業員は対象となる設備・位置を的確に把握できるため、作業の効率化を行なうことができる。 In addition, the shape and size of thinning, the position, and mapping them to the three-dimensional shape of the equipment and visualizing them are useful information for analyzing the corrosion mechanism important in corrosion management. In addition, when conducting maintenance activities for thinning caused by corrosion, etc., workers can accurately grasp the target equipment and position from the information visualized by mapping to the three-dimensional shape of the equipment. Can be made.
 しかしながら、腐食検査装置として最も一般的な超音波肉厚計では、点での計測となるため、局部腐食によって生じる減肉の形状と大きさ、位置を高い面分解能で得るためには、莫大な量の計測を行なわなければならない。そのため、監視対象設備の全面を高い面分解能で検査することが困難である。さらに、超音波肉厚計の計測値は、一般に検査者の技量に左右されるため、高い再現性をもって継続的に計測することは困難である。 However, the most common ultrasonic thickness gauge as a corrosion inspection device is a point measurement, so in order to obtain the shape, size, and position of thinning caused by local corrosion with high surface resolution, it is enormous. The quantity must be measured. Therefore, it is difficult to inspect the entire surface of the monitoring target equipment with high surface resolution. Furthermore, since the measurement value of the ultrasonic thickness gage generally depends on the skill of the inspector, it is difficult to continuously measure with high reproducibility.
 また、渦電流探傷装置は、高い周波数の電磁波を用いるため、表皮効果による減衰が大きく、肉厚方向の測定範囲が限定される。このため、肉厚に換算することが困難であり、局部腐食によって生じる減肉の形状と大きさ、位置を得るのには適していない。さらに、渦電流を設備内外に発生させるためにコイルが必要となるため、アレイ化が困難である。そのため、設備全面を高い面分解能で検査することが困難である。 Also, since the eddy current flaw detector uses an electromagnetic wave with a high frequency, attenuation due to the skin effect is large, and the measurement range in the thickness direction is limited. For this reason, it is difficult to convert to a wall thickness, and it is not suitable for obtaining the shape, size, and position of the thinning caused by local corrosion. Furthermore, since a coil is required to generate eddy current inside and outside the facility, it is difficult to form an array. Therefore, it is difficult to inspect the entire equipment surface with high surface resolution.
 X線検査装置は、配管等を高い面分解能で捉えることが可能であるが、出力結果は撮像方向に依存したものとなる。このため、配管等全体の局部腐食によって生じる減肉の形状と大きさ、位置を三次元で把握するためには非常に多くの撮像と画像合成が必要となる。また、X線検査装置では、X線源の管理が要求されるため導入障壁が高く、継続的な計測はできない。 The X-ray inspection apparatus can capture piping and the like with high surface resolution, but the output result depends on the imaging direction. For this reason, in order to grasp the shape, size, and position of the thinning caused by local corrosion of the entire piping and the like in three dimensions, a great deal of imaging and image composition are required. In addition, since the X-ray inspection apparatus requires management of the X-ray source, the introduction barrier is high and continuous measurement cannot be performed.
 ガイド波検査装置は、ガイド波を発生させるために非常に大きな電力を必要とするため、プラントの防爆エリアで操業中に使用することが困難であり、仮に使用するのであれば、ガス検知機等によるガス検知が必須となる。また、検査結果の読み取りに専門的な知識が必要となり、出力も基本的には断面欠損率であり、局部腐食によって生じる減肉の形状と大きさ、位置を直接得ることはできない。 Guide wave inspection equipment requires very large electric power to generate a guide wave, so it is difficult to use it during operation in the explosion-proof area of the plant. Gas detection by is essential. Further, specialized knowledge is required for reading the inspection results, and the output is basically the cross-sectional defect rate, and the shape, size and position of the thinning caused by local corrosion cannot be obtained directly.
 石油や石油化学産業で用いられる配管等の設備は、多くが高所にありエネルギ効率の面から断熱材が取り付けられている。前述した検査装置は、検査担当者が現場で操作することを前提にしているため、検査を行う場合、検査人がアクセスするための足場の設置や解体、断熱材の脱着といった付帯工事に多くの工数とコストがかけられている。このことから、石油や石油化学の設備の腐食検査は、最短でも年1回程度の周期でしか行なうことができず、腐食メカニズムを分析する上で重要な運転との相関や、局部腐食の発生と成長の過程を知ることができない。また、腐食の進行度合いを予測することも困難である。 Many of the facilities such as piping used in the petroleum and petrochemical industries are located in high places and are equipped with heat insulating materials from the viewpoint of energy efficiency. The inspection device described above is premised on the operation of the person in charge of the inspection. Therefore, when performing inspection, there are many incidental works such as installation and dismantling of scaffolding for access by the inspector, and removal of insulation. Man-hours and costs are spent. For this reason, corrosion inspections of petroleum and petrochemical facilities can only be performed at least once a year, and correlation with the operation that is important in analyzing the corrosion mechanism and the occurrence of local corrosion. And can't know the process of growth. It is also difficult to predict the degree of progress of corrosion.
 一方、従来の腐食検査管理装置は、腐食検査装置の検査結果を可搬型の記憶装置を介して取得するか、手作業により入力されるのが一般的である。このため、データ入力作業に多大な工数が必要となる。また、集計したデータから腐食メカニズムを分析するためには、腐食専門家の知識が必要となる。 On the other hand, the conventional corrosion inspection management apparatus generally acquires the inspection result of the corrosion inspection apparatus through a portable storage device or is input manually. For this reason, a lot of man-hours are required for data input work. In addition, in order to analyze the corrosion mechanism from the collected data, knowledge of a corrosion specialist is required.
 本発明は、このような状況を鑑みてなされたものであり、金属設備の局部腐食等によって生じる減肉の形状と大きさ、位置を、継続的に計測管理できるようにすることを目的とする。 The present invention has been made in view of such a situation, and an object thereof is to enable continuous measurement and management of the shape, size, and position of thinning caused by local corrosion of a metal facility. .
 上記課題を解決するため、本発明の第1の態様である腐食管理システムは、監視対象の金属設備表面の磁界分布を計測する磁界センサアレイを備える磁界計測装置と、前記磁界計測装置の計測結果に基づいて、前記金属設備における減肉の形状と大きさ、位置を算出し、前記減肉の形状と大きさ、位置から前記金属設備に対応した三次元形状を生成する計測管理装置と、を備えることを特徴とする。
 ここで、前記金属設備に設置された電極あるいは前記金属設備の近傍に設置された磁界発生用電線に電流を印加する電流印加装置をさらに備えてもよい。
 また、前記計測管理装置は、無線通信を利用して前記磁界計測装置の計測結果を取得することができる。
 また、前記計測管理装置は、前記金属設備に減肉がない場合に得られる計測結果と、実際の計測結果との差分に基づいて、前記金属設備の減肉の形状と大きさ、位置を算出することができる。
 また、前記電流印加装置と、前記磁界計測装置とが独立した装置であってもよい。
 また、前記計測管理装置は、前記磁界センサアレイを構成する磁界センサと前記金属設備との位置に基づいて、前記磁界計測装置の計測結果を補正するようにしてもよい。
 このとき、前記計測管理装置は、ある磁界センサについて、前記金属設備に印加された異なる周波数の交流電流により得られた磁束密度に基づいて、その磁界センサと前記金属設備との位置を算出することができる。
 あるいは、前記計測管理装置は、ある磁界センサについて計測された磁束密度と、その磁界センサの前記金属設備からの延長上に配置された補助磁界センサで計測された磁束密度に基づいて、その磁界センサと前記金属設備との位置を算出することができる。
 上記課題を解決するため、本発明の第2の態様である腐食管理方法は、監視対象の金属設備に設置された電極あるいは前記金属設備の近傍に設置された磁界発生用電線に電流を印加する電流印加ステップと、前記金属設備表面の磁界分布を計測する磁界計測ステップと、前記磁界計測ステップの計測結果に基づいて、前記金属設備の減肉の形状と大きさ、位置を算出し、前記減肉の形状と大きさ、位置から前記金属設備に対応した三次元形状を生成する計測管理ステップと、を有することを特徴とする。
In order to solve the above-described problem, a corrosion management system according to a first aspect of the present invention includes a magnetic field measurement device including a magnetic field sensor array that measures a magnetic field distribution on the surface of a metal facility to be monitored, and a measurement result of the magnetic field measurement device. A measurement management device that calculates the shape, size, and position of the thinning in the metal facility, and generates a three-dimensional shape corresponding to the metal facility from the shape, size, and position of the thinning. It is characterized by providing.
Here, you may further provide the electric current application apparatus which applies an electric current to the electrode installed in the said metal equipment, or the electric wire for magnetic field installation installed in the vicinity of the said metal equipment.
In addition, the measurement management device can acquire the measurement result of the magnetic field measurement device using wireless communication.
In addition, the measurement management device calculates the shape, size, and position of the metal equipment thinning based on the difference between the measurement result obtained when the metal equipment is not thinned and the actual measurement result. can do.
The current application device and the magnetic field measurement device may be independent devices.
Further, the measurement management device may correct the measurement result of the magnetic field measurement device based on the positions of the magnetic field sensor and the metal equipment constituting the magnetic field sensor array.
At this time, the measurement management device calculates a position of the magnetic field sensor and the metal facility based on the magnetic flux density obtained by an alternating current of a different frequency applied to the metal facility for a certain magnetic field sensor. Can do.
Alternatively, the measurement management device may use the magnetic field sensor based on the magnetic flux density measured for a certain magnetic field sensor and the magnetic flux density measured by the auxiliary magnetic field sensor disposed on the extension of the magnetic field sensor from the metal facility. And the position of the metal facility can be calculated.
In order to solve the above-described problem, the corrosion management method according to the second aspect of the present invention applies an electric current to an electrode installed in a monitored metal facility or a magnetic field generating wire installed in the vicinity of the metal facility. Based on the measurement result of the current application step, the magnetic field measurement step for measuring the magnetic field distribution on the surface of the metal facility, and the measurement result of the magnetic field measurement step, the shape, size, and position of the thinning of the metal facility are calculated, and the decrease A measurement management step of generating a three-dimensional shape corresponding to the metal equipment from the shape, size, and position of the meat.
 本発明によれば、金属設備の局部腐食等によって生じる減肉の形状と大きさ、位置を計測管理し、設備の3次元形状にマップした状態で可視化することが、継続的に行なえるようになる。 According to the present invention, the shape, size, and position of thinning caused by local corrosion of a metal facility can be measured and managed, and visualized in a state mapped to the three-dimensional shape of the facility so that it can be continuously performed. Become.
本実施形態に係る腐食管理システムの構成を示すブロック図である。It is a block diagram which shows the structure of the corrosion management system which concerns on this embodiment. 減肉状態把握の第1原理を説明する図である。It is a figure explaining the 1st principle of grasping | ascertaining a thinning state. 減肉状態把握の第2原理を説明する図である。It is a figure explaining the 2nd principle of a thinning state grasp. 電流印加装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of an electric current application apparatus. 磁界計測装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of a magnetic field measuring device. 計測管理装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of a measurement management apparatus. 実際の運用に先立つ準備フェーズについて説明するフロー図である。It is a flowchart explaining the preparation phase prior to actual operation. 腐食管理システムの運用時の動作の概要について説明するフロー図である。It is a flowchart explaining the outline | summary of the operation | movement at the time of operation | use of a corrosion management system. 電流印加装置の動作について説明するフロー図である。It is a flowchart explaining operation | movement of an electric current application apparatus. 磁界計測装置の動作について説明するフロー図である。It is a flowchart explaining operation | movement of a magnetic field measuring apparatus. ノイズ除去第2の方法を説明するフロー図である。It is a flowchart explaining the noise removal 2nd method. 計測管理装置の動作について説明するフロー図である。It is a flowchart explaining operation | movement of a measurement management apparatus. 配管を、抵抗を格子状に接続したグラフとみなした図である。It is the figure which considered piping as the graph which connected resistance in the grid | lattice form. 配列形式で表された実効値に基づいて行なった三次元マッピングの例を示す図である。It is a figure which shows the example of the three-dimensional mapping performed based on the effective value represented by the array format. 監視対象配管と磁界センサとの距離測定手法を説明する図である。It is a figure explaining the distance measurement method of monitoring object piping and a magnetic field sensor. 監視対象配管と磁界センサとの距離測定手法を説明する図である。It is a figure explaining the distance measurement method of monitoring object piping and a magnetic field sensor.
 本発明の実施の形態について図面を参照して説明する。図1は、本実施形態に係る腐食管理システム10の構成を示すブロック図である。腐食管理システム10は、プラント100内に敷設された金属配管(監視対象配管110と称する)の腐食管理を行なうシステムである。本実施形態では、金属配管を腐食管理の対象例として説明するが、腐食管理システム10は、金属配管に限られず、例えば、蒸留塔や反応装置等の金属設備を腐食管理の対象とすることができる。 Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a configuration of a corrosion management system 10 according to the present embodiment. The corrosion management system 10 is a system that performs corrosion management of a metal pipe (referred to as a monitoring target pipe 110) laid in the plant 100. In the present embodiment, metal piping is described as an example of corrosion management. However, the corrosion management system 10 is not limited to metal piping, and for example, metal equipment such as a distillation tower and a reactor may be targeted for corrosion management. it can.
 本図に示すように、腐食管理システム10は、プラント100の監視対象配管110近傍に配置される電流印加装置120、磁界計測装置130と、制御用ネットワーク200に接続された計測管理装置210とを備えている。 As shown in this figure, the corrosion management system 10 includes a current application device 120, a magnetic field measurement device 130, and a measurement management device 210 connected to the control network 200, which are arranged in the vicinity of the monitoring target pipe 110 of the plant 100. I have.
 電流印加装置120と磁界計測装置130は、無線通信機能を備えている。また、計測管理装置210は、制御用ネットワーク200を介して無線センサネットワークゲートウェイ220と接続している。これにより、計測管理装置210、電流印加装置120、磁界計測装置130は、無線センサネットワーク280により相互に無線通信を行なえるようになっている。 The current application device 120 and the magnetic field measurement device 130 have a wireless communication function. In addition, the measurement management device 210 is connected to the wireless sensor network gateway 220 via the control network 200. Accordingly, the measurement management device 210, the current application device 120, and the magnetic field measurement device 130 can perform wireless communication with each other via the wireless sensor network 280.
 無線センサネットワーク280は、ISA100.11aやWirelessHARTといった産業用無線センサネットワークや、IEEE802.11やIEEE802.15.4のような汎用の無線ネットワークを用いることができる。 The wireless sensor network 280 can be an industrial wireless sensor network such as ISA100.11a or WirelessHART, or a general-purpose wireless network such as IEEE802.11 or IEEE802.15.4.
 本実施形態の腐食管理システム10では、電流印加装置120が印加する電流により発生する磁界分布を磁界計測装置130で計測することにより、監視対象配管110の減肉状態を把握する。この原理として、例えば、以下に説明する第1原理、第2原理のいずれかを用いることができる。ただし、電流印加装置120が印加する電流により発生する磁界分布を磁界計測装置130で計測することにより、監視対象配管110の減肉状態を把握するのであれば、他の原理を適用してもよい。 In the corrosion management system 10 of the present embodiment, the magnetic field distribution generated by the current applied by the current application device 120 is measured by the magnetic field measurement device 130, thereby grasping the thinning state of the monitoring target pipe 110. As this principle, for example, either the first principle or the second principle described below can be used. However, other principles may be applied as long as the magnetic field distribution generated by the current applied by the current application device 120 is measured by the magnetic field measurement device 130 to grasp the thinning state of the monitored pipe 110. .
 図2は、第1原理を説明する図である。第1原理では、本図に示すように、監視対象配管110の金属表面に設置された一対の電極111を介して、電流印加装置120が監視対象配管110の金属表面に交流電流を印加する。 FIG. 2 is a diagram for explaining the first principle. In the first principle, as shown in the drawing, the current application device 120 applies an alternating current to the metal surface of the monitoring target pipe 110 via a pair of electrodes 111 installed on the metal surface of the monitoring target pipe 110.
 この電流は、金属面の持つ抵抗分布にしたがった電流密度で流れ、磁界を発生させる。この際に、監視対象配管110に局部腐食等による減肉があれば、その付近の抵抗が変化するため、電流密度分布が変化し、磁界分布も変化する。第1原理では、この磁界分布の変化を磁界計測装置130で計測し、減肉の形状と大きさに換算する。ここで、減肉があることを示したセンサから監視対象配管110に下した垂線と監視対象配管110との交点が減肉のおおよその位置である。より詳細には、減肉があることを示したセンサ近傍のセンサの出力を含めて解析することで、減肉の形状と大きさ、位置に換算する。 This current flows at a current density according to the resistance distribution of the metal surface and generates a magnetic field. At this time, if the monitored pipe 110 is thinned due to local corrosion or the like, the resistance in the vicinity thereof changes, so that the current density distribution changes and the magnetic field distribution also changes. In the first principle, the change in the magnetic field distribution is measured by the magnetic field measuring device 130 and converted into the shape and size of the thinning. Here, the intersection of the perpendicular line drawn from the sensor indicating that there is thinning to the monitoring target pipe 110 and the monitoring target pipe 110 is an approximate position of the thinning. More specifically, by analyzing including the output of the sensor in the vicinity of the sensor indicating that there is thinning, the shape, size, and position of the thinning are converted.
 図3は、第2原理を説明する図である。第2原理は、監視対象配管110が磁性体である場合に適用することができる。第2原理では、本図に示すように、電流印加装置120は、監視対象配管110の金属表面付近に配置された磁界発生用電線112に交流電流を印加し磁界を発生させる。 FIG. 3 is a diagram for explaining the second principle. The second principle can be applied when the monitoring target pipe 110 is a magnetic body. In the second principle, as shown in the figure, the current application device 120 applies an alternating current to the magnetic field generating wire 112 disposed near the metal surface of the monitoring target pipe 110 to generate a magnetic field.
 この磁界の分布は、磁界発生源の周辺における透磁率の分布によって決定される。監視対象配管110の金属表面(「金属表面」は、金属配管の内面を含む概念である)の局部腐食等によって生じる減肉などで透磁率の分布が変化した場合、その変化にしたがって磁界の分布も変化する。第2原理では、この磁界分布の変化を磁界計測装置130で計測し、減肉の形状と大きさに換算する。ここで、減肉があることを示したセンサから監視対象配管110に下した垂線と監視対象配管110との交点が減肉の位置である。 This magnetic field distribution is determined by the magnetic permeability distribution around the magnetic field source. When the permeability distribution changes due to thinning caused by local corrosion or the like of the metal surface of the pipe 110 to be monitored (the “metal surface” is a concept including the inner surface of the metal pipe), the magnetic field distribution according to the change Also changes. In the second principle, the change in the magnetic field distribution is measured by the magnetic field measuring device 130 and converted into the shape and size of the thinning. Here, the intersection of the perpendicular drawn to the monitoring target pipe 110 from the sensor indicating that there is thinning and the monitoring target pipe 110 is the position of the thinning.
 一般に磁界の計測は、地磁気をはじめとする環境磁界の影響を受ける。このため、電流印加装置120が印加する電流は、例えば、商用周波数の50Hzあるいは60Hzの整数倍から離れた周波数や、素数となる周波数等の信号選択性のよい周波数とする。 In general, magnetic field measurement is affected by environmental magnetic fields such as geomagnetism. For this reason, the current applied by the current application device 120 is, for example, a frequency with good signal selectivity such as a frequency away from an integer multiple of 50 Hz or 60 Hz of the commercial frequency or a frequency that is a prime number.
 電流印加装置120は、第1原理を採用した場合には、監視対象配管110の表面に設けられた電極111に交流電流を印加し、第2原理を採用した場合には、監視対象配管110近傍に配置された磁界発生用電線112に交流電流を印加して、交流磁界を発生させる。いずれの原理を採用した場合でも、磁界計測装置130は、監視対象配管110近傍に配置され、磁界分布を計測する。 When the first principle is adopted, the current applying device 120 applies an alternating current to the electrode 111 provided on the surface of the monitoring target pipe 110, and when the second principle is adopted, the current applying device 120 is near the monitoring target pipe 110. An alternating current is applied to the magnetic field generating wire 112 disposed in the section to generate an alternating magnetic field. Regardless of which principle is adopted, the magnetic field measurement device 130 is disposed in the vicinity of the monitoring target pipe 110 and measures the magnetic field distribution.
 図4は、電流印加装置120の構成例を示すブロック図である。本図に示すように、電流印加装置120は、演算部121、信号発生部122、電流制御部123、記憶部124、磁界計測装置同期部125、無線通信部126を備えている。 FIG. 4 is a block diagram illustrating a configuration example of the current application device 120. As shown in the figure, the current application device 120 includes a calculation unit 121, a signal generation unit 122, a current control unit 123, a storage unit 124, a magnetic field measurement device synchronization unit 125, and a wireless communication unit 126.
 演算部121は、計測管理装置210から送られる設定情報に基づいて、印加する電流の電流値、周波数等の設定処理等を行なう。信号発生部122は、演算部121の設定にしたがって印加する電流波形を生成する。電流制御部123は、信号発生部122が生成した電流波形にしたがって印加電流を制御する。記憶部124は、電流の設定値等の設定情報を記憶する。磁界計測装置同期部125は、磁界計測装置130との同期処理を行なう。無線通信部126は、無線センサネットワーク280へ接続処理を行なう。 The calculation unit 121 performs setting processing of the current value, frequency, and the like of the applied current based on the setting information sent from the measurement management device 210. The signal generation unit 122 generates a current waveform to be applied according to the setting of the calculation unit 121. The current control unit 123 controls the applied current according to the current waveform generated by the signal generation unit 122. The storage unit 124 stores setting information such as a current setting value. The magnetic field measurement device synchronization unit 125 performs a synchronization process with the magnetic field measurement device 130. The wireless communication unit 126 performs connection processing to the wireless sensor network 280.
 図5は、磁界計測装置130の構成例を示すブロック図である。本図に示すように、磁界計測装置130は、磁界センサアレイ131、演算部132、センサ切換部133、信号変換部134、記憶部135、電流印加装置同期部136、無線通信部137を備えている。 FIG. 5 is a block diagram illustrating a configuration example of the magnetic field measuring apparatus 130. As shown in the figure, the magnetic field measurement device 130 includes a magnetic field sensor array 131, a calculation unit 132, a sensor switching unit 133, a signal conversion unit 134, a storage unit 135, a current application device synchronization unit 136, and a wireless communication unit 137. Yes.
 磁界センサアレイ131は、磁界センサをアレイ化して構成したものであり、本図に示すように、監視対象配管110に取り付ける。これにより、監視対象配管110表面の磁界分布を得ることができる。磁界センサは、小型かつ低消費電力なセンサであるため、大面積に対して高密度で実装することができる。そのため、高い面分解能で磁界分布を計測することができる。 The magnetic field sensor array 131 is configured by arraying magnetic field sensors, and is attached to the monitoring target pipe 110 as shown in the figure. Thereby, the magnetic field distribution on the surface of the monitoring target pipe 110 can be obtained. Since the magnetic field sensor is a small sensor with low power consumption, it can be mounted at a high density on a large area. Therefore, the magnetic field distribution can be measured with high surface resolution.
 磁界センサアレイ131は、監視対象配管110に常時取り付けておくようにする。これにより、計測毎に監視対象配管110に磁界センサを取り付ける手間を省くことができ、継続的に計測することができる。 The magnetic field sensor array 131 is always attached to the monitoring target pipe 110. Thereby, the effort which attaches a magnetic field sensor to the monitoring object piping 110 for every measurement can be saved, and it can measure continuously.
 センサ切換部133は、磁界センサアレイ131を構成する磁界センサから計測値取得対象の磁界センサを切り換える。すなわち、本実施形態では、各磁界センサから順次計測値を取得するようにしている。計測値の取得方法には、本実施形態のように各磁界センサから順次計測値を取得する方法と、一斉に計測値を取得する方法があるが、一般に腐食による肉厚変化は緩やかであり、回路の部品コストを低減できるため、本実施形態では順次計測値を取得する方法を示した。もちろん、測定時間を短縮するために、各磁界センサから一斉に計測値を取得するようにしてもよい。 The sensor switching unit 133 switches the magnetic field sensor from which the measurement value is to be acquired from the magnetic field sensors constituting the magnetic field sensor array 131. That is, in the present embodiment, the measurement values are sequentially acquired from the magnetic field sensors. There are two methods for obtaining measurement values: a method for sequentially obtaining measurement values from each magnetic field sensor as in the present embodiment, and a method for obtaining measurement values all at once. Since the circuit component cost can be reduced, the present embodiment has shown a method for sequentially obtaining measured values. Of course, in order to shorten the measurement time, the measurement values may be acquired from the magnetic field sensors all at once.
 信号変換部134は、計測値をデジタル信号に変換する。記憶部135は、デジタル信号に変換した計測値や計測のための設定情報等を記憶する。演算部132は、計測値のノイズ除去や実効値への換算処理、設定情報の処理などを行なう。具体的なノイズ除去手法については後述する。電流印加装置同期部136は、電流印加装置120との同期処理を行なう。無線通信部137は、無線センサネットワーク280へ接続処理を行なう。 The signal converter 134 converts the measurement value into a digital signal. The storage unit 135 stores measurement values converted into digital signals, setting information for measurement, and the like. The calculation unit 132 performs noise removal of the measurement value, conversion processing to an effective value, processing of setting information, and the like. A specific noise removal method will be described later. The current application device synchronization unit 136 performs a synchronization process with the current application device 120. The wireless communication unit 137 performs connection processing to the wireless sensor network 280.
 この構成により、磁界計測装置130は、電流印加装置120が印加する交流電流により発生した交流磁界を磁界センサアレイ131で計測する。そして、計測結果に対して、後述するノイズ除去処理を施してから、実効値への変換処理を行なう。磁界計測装置130は、例えば、アレイ化した磁界センサに対応した実効値の配列を、無線センサネットワーク280を介して計測管理装置210に計測結果として送信する。 With this configuration, the magnetic field measurement device 130 measures the alternating magnetic field generated by the alternating current applied by the current application device 120 with the magnetic field sensor array 131. Then, a noise removal process described later is performed on the measurement result, and then a conversion process to an effective value is performed. For example, the magnetic field measurement device 130 transmits an array of effective values corresponding to the arrayed magnetic field sensors to the measurement management device 210 via the wireless sensor network 280 as a measurement result.
 本実施形態では、電流印加装置120と磁界計測装置130とを分離して独立した装置としている。この第1の理由は、石油・石油化学産業等の防爆エリアで動作させることを想定しているためである。電流印加装置120は、磁界計測装置130に比較して大きな電力を扱う必要があり、装置を分離することで、回路構成を単純化でき、故障時等に考慮すべき回路を限定することができるようになる。 In the present embodiment, the current application device 120 and the magnetic field measurement device 130 are separated to be independent devices. The first reason is that it is assumed to operate in an explosion-proof area such as the petroleum / petrochemical industry. The current application device 120 needs to handle a larger amount of electric power than the magnetic field measurement device 130, and by separating the device, the circuit configuration can be simplified, and the circuit to be considered in the event of a failure can be limited. It becomes like this.
 第2の理由は、それぞれの持つカバレッジの違いである。電流印加装置120は、監視対象配管110に電流を印加する第1の原理では、基本的に電極111を設置した間の領域をカバーすることができる。また第2の原理では、磁界発生用電線112を配置した範囲をカバーすることができ、それぞれ比較的大きな領域を容易にカバーすることが可能である。 The second reason is the difference in coverage. In the first principle of applying a current to the monitoring target pipe 110, the current application device 120 can basically cover the region between the electrodes 111 installed. Further, according to the second principle, the range in which the magnetic field generating wires 112 are arranged can be covered, and each relatively large area can be easily covered.
 一方、磁界計測装置130は、アレイ化した磁界センサがカバーする範囲の磁界が計測対象となるため、計測領域を拡張するには磁界センサアレイ131の磁界センサ数を増やす必要があるため、領域拡張が簡易ではない。 On the other hand, since the magnetic field measuring device 130 measures the magnetic field in the range covered by the arrayed magnetic field sensors, it is necessary to increase the number of magnetic field sensors in the magnetic field sensor array 131 in order to expand the measurement region. Is not easy.
 そこで、装置を分離して、1つの電流印加装置120と複数の磁界計測装置130を動作させることで、電流印加装置120を増やすことなく、計測領域を容易に拡張することが可能となる。もちろん、筐体コストや省スペース化のために、電流印加装置120と磁界計測装置130とが一体となった装置でもよい。 Therefore, by separating the devices and operating one current application device 120 and a plurality of magnetic field measurement devices 130, the measurement region can be easily expanded without increasing the current application devices 120. Of course, a device in which the current application device 120 and the magnetic field measurement device 130 are integrated may be used to reduce the housing cost and space.
 磁界を計測する際には、磁界を計測するタイミングで電流を印加するように、電流印加装置120と磁界計測装置130とが同期して動作することが必要となる。同期の方法としては、電気回路を分離しているため赤外線のような光による通信でトリガーをかける方法や、無線センサネットワーク280を介した同期方法が考えられる。これらの処理を行なうため、電流印加装置120には、磁界計測装置同期部125が備えられ、磁界計測装置130には、電流印加装置同期部136が備えられている。 When measuring a magnetic field, it is necessary that the current application device 120 and the magnetic field measurement device 130 operate in synchronization so that a current is applied at the timing of measuring the magnetic field. As a synchronization method, since the electric circuit is separated, a method of triggering by communication using light such as infrared rays or a synchronization method via the wireless sensor network 280 can be considered. In order to perform these processes, the current application device 120 includes a magnetic field measurement device synchronization unit 125, and the magnetic field measurement device 130 includes a current application device synchronization unit 136.
 具体的には、一方を主、他方を従として、一方(例えば、磁界計測装置130)に開始時刻と動作時間を設定し、それを主として同期させる方法が考えられる。また、計測管理装置210が無線センサネットワーク280を介して同期させた上で、消費電力を効率化するために局所的に同期部を介して電流印加装置120と磁界計測装置130とが同期してもよい。本実施形態では、計測管理装置210が、電流印加装置120と磁界計測装置130の両方に、それぞれ開始時刻と動作時間を設定情報として送信する。このため、磁界計測装置同期部125、電流印加装置同期部136を省いてもよい。 Specifically, a method is conceivable in which one is the master and the other is the slave, the start time and the operation time are set in one (for example, the magnetic field measurement device 130), and the two are mainly synchronized. In addition, after the measurement management device 210 is synchronized via the wireless sensor network 280, the current application device 120 and the magnetic field measurement device 130 are locally synchronized via the synchronization unit in order to improve power consumption efficiency. Also good. In the present embodiment, the measurement management device 210 transmits the start time and the operation time as setting information to both the current application device 120 and the magnetic field measurement device 130, respectively. For this reason, the magnetic field measurement device synchronization unit 125 and the current application device synchronization unit 136 may be omitted.
 図6は、計測管理装置210の構成例を示すブロック図である。本図に示すように計測管理装置210は、演算部211、通信部212、記憶部213、入出力部214を備えている。 FIG. 6 is a block diagram illustrating a configuration example of the measurement management apparatus 210. As shown in the figure, the measurement management apparatus 210 includes a calculation unit 211, a communication unit 212, a storage unit 213, and an input / output unit 214.
 通信部212は、制御用ネットワーク200を介した通信処理を行なう。記憶部213は、プラント100に設置された磁界計測装置130と監視対象配管110との相対位置や腐食管理システム10における各種設定、磁界計測装置130から無線センサネットワークを介して受信した実効値の配列、演算部211の演算結果等を記憶する。 The communication unit 212 performs communication processing via the control network 200. The storage unit 213 is a relative position between the magnetic field measurement device 130 installed in the plant 100 and the monitoring target pipe 110, various settings in the corrosion management system 10, and an array of effective values received from the magnetic field measurement device 130 via the wireless sensor network. The calculation result of the calculation unit 211 is stored.
 演算部211は、磁界計測装置130から受信した実効値の配列を監視対象配管110に生じている減肉の形状と大きさに換算し、監視対象配管110と磁界センサアレイ131との相対位置をもとに、減肉を考慮した監視対象配管110に対応した三次元形状に変換する処理と、減肉状態に基づいて次回の計測タイミングを電流印加装置120と磁界計測装置130とに設定する計測設定処理とを行なう。入出力部214は、ユーザの操作を受け付けたり、演算部211の処理結果である減肉を考慮した監視対象配管110に対応した三次元形状を出力する処理を行なう。なお、ここでは、計測管理装置210とユーザの操作を受ける入出力部214を一体としたが、別途入出力装置を用意し、例えば制御用ネットワーク200を用いて接続してもよい。 The calculation unit 211 converts the array of effective values received from the magnetic field measurement device 130 into the shape and size of the thinning generated in the monitoring target pipe 110, and calculates the relative position between the monitoring target pipe 110 and the magnetic field sensor array 131. Based on the process of converting into a three-dimensional shape corresponding to the monitoring target pipe 110 in consideration of the thinning, and the measurement for setting the next measurement timing in the current application device 120 and the magnetic field measurement device 130 based on the thinning state Perform setting processing. The input / output unit 214 performs a process of receiving a user operation or outputting a three-dimensional shape corresponding to the monitoring target pipe 110 in consideration of the thinning that is the processing result of the calculation unit 211. Here, the measurement management device 210 and the input / output unit 214 that receives the user's operation are integrated. However, a separate input / output device may be prepared and connected using the control network 200, for example.
 減肉を考慮した監視対象配管110に対応した三次元形状への変換処理では、算出された減肉の形状と大きさを監視対象配管110の形状にマッピングする。計測設定処理では、減肉の形状と大きさから肉厚方向の深さと、断面欠損率を計算する。そして、前回計測した減肉の深さおよび断面欠損率と比較することで、単位時間あたりの変化率を計算する。さらに、それぞれを最小許容肉厚および最大許容せん断応力と比較することで時間的なマージンを計算し、マージンの小さな方をもとに次の計測タイミングを電流印加装置120と磁界計測装置130に設定する。 In the conversion process to the three-dimensional shape corresponding to the monitoring target pipe 110 in consideration of the thinning, the calculated shape and size of the thinning are mapped to the shape of the monitoring target pipe 110. In the measurement setting process, the depth in the thickness direction and the cross-sectional defect rate are calculated from the shape and size of the thinning. Then, the rate of change per unit time is calculated by comparing with the previously measured depth of thinning and the cross-sectional defect rate. Furthermore, the time margin is calculated by comparing each with the minimum allowable wall thickness and the maximum allowable shear stress, and the next measurement timing is set in the current application device 120 and the magnetic field measurement device 130 based on the smaller margin. To do.
 次に、本実施形態の腐食管理システム10の動作について説明する。まず、実際の運用に先立つ準備フェーズについて図7のフロー図を参照して説明する。なお、設備の三次元形状については、レーザーによる測距技術や設備の3D-CADデータなどから、あらかじめ入力されているものとする。 Next, the operation of the corrosion management system 10 of this embodiment will be described. First, the preparation phase prior to actual operation will be described with reference to the flowchart of FIG. It is assumed that the three-dimensional shape of the facility has been input in advance from laser ranging technology, 3D-CAD data of the facility, or the like.
 準備フェーズでは、監視対象配管110に磁界センサアレイ131を設置するとともに、電極111を設置し(第1原理)、あるいは、近傍に磁界発生用電線112を設置し(第2原理)、電流印加装置120に接続する(S101)。 In the preparation phase, the magnetic field sensor array 131 is installed in the monitoring target pipe 110, the electrode 111 is installed (first principle), or the magnetic field generating wire 112 is installed in the vicinity (second principle), and the current application device 120 is connected (S101).
 そして、設置した磁界センサアレイ131の各磁界センサ、電極111あるいは磁界発生用電線112、監視対象配管110の相対位置関係を計測して、計測管理装置210の記憶部213に記録する(S102)。 Then, the relative positional relationship between each magnetic field sensor of the installed magnetic field sensor array 131, the electrode 111 or the magnetic field generating wire 112, and the monitoring target pipe 110 is measured and recorded in the storage unit 213 of the measurement management device 210 (S102).
 次に、腐食管理システム10の運用時の動作の概要について図8のフロー図を参照して説明する。所定の計測タイミングになると(S201:Yes)、電流印加装置120が電流を印加し(S202)、磁界計測装置130が磁界分布を計測する(S203)。 Next, an outline of the operation during the operation of the corrosion management system 10 will be described with reference to the flowchart of FIG. When the predetermined measurement timing comes (S201: Yes), the current application device 120 applies a current (S202), and the magnetic field measurement device 130 measures the magnetic field distribution (S203).
 磁界計測装置130の演算部132は、計測値からノイズを除去した上で、実効値を取得する(S204)。実効値は、磁界センサアレイ131に対応した配列で表すことができ、これにより、監視対象配管110の表面の磁界分布を得ることができる。 The calculation unit 132 of the magnetic field measuring apparatus 130 acquires the effective value after removing noise from the measured value (S204). The effective value can be represented by an array corresponding to the magnetic field sensor array 131, whereby the magnetic field distribution on the surface of the monitoring target pipe 110 can be obtained.
 配列で表された実効値は計測管理装置210に送られ、計測管理装置210の演算部211が、肉厚あるいは減肉の形状と大きさに換算する(S205)。そして、減肉の形状と大きさの変化等に基づいて次回の計測タイミングを設定する(S206)。 The effective value represented by the array is sent to the measurement management device 210, and the calculation unit 211 of the measurement management device 210 converts it into the shape and size of the wall thickness or thickness reduction (S205). Then, the next measurement timing is set based on the change in the shape and size of the thinning (S206).
 また、演算部211は、減肉の形状と大きさについて、その減肉の位置情報を元に監視対象配管110への三次元マッピングを行なう(S207)。減肉の形状と大きさ、位置や三次元マッピング結果は、記憶部213に記録し、必要に応じて表示画面等に出力する(S208)。 Further, the calculation unit 211 performs three-dimensional mapping of the shape and size of the thinning to the monitoring target pipe 110 based on the position information of the thinning (S207). The shape and size of the thinning, the position, and the three-dimensional mapping result are recorded in the storage unit 213 and output to a display screen or the like as necessary (S208).
 次に、各装置の具体的な動作について説明する。まず、電流印加装置120の動作について図9のフロー図を参照して説明する。電流印加装置120は、起動すると、無線通信部126により無線センサネットワーク280を介して計測管理装置210に設定情報を要求する(S301)。 Next, the specific operation of each device will be described. First, the operation of the current application device 120 will be described with reference to the flowchart of FIG. When the current application device 120 is activated, the wireless communication unit 126 requests setting information from the measurement management device 210 via the wireless sensor network 280 (S301).
 この応答として計測管理装置210から設定情報を受信し(S302)、記憶部124に記録する(S303)。設定情報には、印加する交流電流の周波数、電流値、印加開始時刻(周期)、電流印加継続時間等が含まれる。 As a response, setting information is received from the measurement management device 210 (S302) and recorded in the storage unit 124 (S303). The setting information includes the frequency of the alternating current to be applied, the current value, the application start time (cycle), the current application duration, and the like.
 設定情報で示された電流印加開始時刻になると(S304)、電流の印加を開始する(S305)。このとき、電流印加を開始したことを計測管理装置210に通知するようにしてもよい。 When the current application start time indicated by the setting information is reached (S304), current application is started (S305). At this time, you may make it notify the measurement management apparatus 210 that the electric current application was started.
 設定情報で示された電流印加継続時間が経過すると電流印加を終了する(S306)。このとき、電流印加を終了したことを計測管理装置210に通知するようにしてもよい。 When the current application duration indicated by the setting information has elapsed, the current application is terminated (S306). At this time, the measurement management apparatus 210 may be notified that the current application has been completed.
 電流印加装置120は、さらに次の計測タイミングに関する設定情報を計測管理装置210から受信し(S307)、次の開始時刻を待つ(S304)。ただし、設定情報が停止指示であれば(S308:Yes)、停止する。 The current application device 120 further receives setting information related to the next measurement timing from the measurement management device 210 (S307), and waits for the next start time (S304). However, if the setting information is a stop instruction (S308: Yes), it stops.
 次に、磁界計測装置130の動作について図10のフロー図を参照して説明する。磁界計測装置130は、起動すると、無線通信部137により無線センサネットワーク280を介して計測管理装置210に設定情報を要求する(S401)。 Next, the operation of the magnetic field measurement apparatus 130 will be described with reference to the flowchart of FIG. When the magnetic field measurement device 130 is activated, the wireless communication unit 137 requests setting information from the measurement management device 210 via the wireless sensor network 280 (S401).
 この応答として計測管理装置210から設定情報を受信し(S402)、記憶部135に記録する(S403)。設定情報には、計測開始時刻(周期)、1センサあたりの計測時間、電流印加装置120が印加する交流電流の周波数等が含まれる。 As the response, setting information is received from the measurement management device 210 (S402) and recorded in the storage unit 135 (S403). The setting information includes the measurement start time (cycle), the measurement time per sensor, the frequency of the alternating current applied by the current application device 120, and the like.
 設定情報で示された計測開始時刻になると(S404)、計測を行なうセンサを切り換えて(S405)、磁界を計測する(S406)。このとき、磁界計測を開始したことを計測管理装置210に通知するようにしてもよい。 When the measurement start time indicated by the setting information is reached (S404), the sensor for measurement is switched (S405), and the magnetic field is measured (S406). At this time, you may make it notify the measurement management apparatus 210 that magnetic field measurement was started.
 設定情報で示された1センサあたりの計測時間が計測すると、そのセンサでの計測を終了し、演算部132が、ノイズ除去、実効値算出処理を行なう(S407)。この処理を、未計測のセンサがあれば(S408:No)、センサを切り換えて(S405)、計測処理を繰り返す。 When the measurement time per sensor indicated by the setting information is measured, the measurement by the sensor is terminated, and the calculation unit 132 performs noise removal and effective value calculation processing (S407). If there is an unmeasured sensor in this process (S408: No), the sensor is switched (S405), and the measurement process is repeated.
 すべてのセンサでの計測が終了すると(S408:Yes)、実効値を磁界センサアレイ131に対応した配列形式で計測管理装置210に送信する(S409)。 When measurement with all sensors is completed (S408: Yes), the effective value is transmitted to the measurement management device 210 in an array format corresponding to the magnetic field sensor array 131 (S409).
 磁界計測装置130は、さらに次の計測タイミングに関する設定情報を計測管理装置210から受信し(S410)、次の開始時刻を待つ(S404)。ただし、設定情報が停止指示であれば(S411:Yes)、停止する。 The magnetic field measurement device 130 further receives setting information regarding the next measurement timing from the measurement management device 210 (S410), and waits for the next start time (S404). However, if the setting information is a stop instruction (S411: Yes), it stops.
 ここで、磁界計測装置130の演算部132が(S407)で行なうノイズ除去処理について説明する。磁界計測装置130が計測する交流磁界信号には一般にノイズが含まれることから、ノイズを除去した上で実効値とすることが必要となる。ノイズ除去の方法としては、次のような4つの方法が考えられる。 Here, the noise removal process performed by the calculation unit 132 of the magnetic field measurement apparatus 130 in (S407) will be described. Since the AC magnetic field signal measured by the magnetic field measurement device 130 generally includes noise, it is necessary to obtain an effective value after removing the noise. As the noise removal method, the following four methods are conceivable.
 ノイズ除去第1の方法:計測した交流信号を離散フーリエ変換やZ変換により周波数空間に変換し、その上で電流印加装置120が印加した周波数を切り出す方法である。 First method for noise removal: This is a method in which the measured AC signal is converted into a frequency space by discrete Fourier transform or Z transform, and the frequency applied by the current application device 120 is cut out.
 ノイズ除去第2の方法:計測した交流信号を離散フーリエ変換やZ変換により周波数空間に変換するとともに、高次のノイズを打ち消すために平滑化を行い、[数1]にしたがって回帰し、回帰パラメータkのみを取り出す方法である。本方法は、ノイズを除去したい信号列の瞬時値を用いるため、信号をメモリ上に保持する必要がなく、記憶部135のRAMの使用量を削減することが可能となる。
Figure JPOXMLDOC01-appb-M000001
 より具体的に説明すると、ノイズ除去第2の方法は、離散フーリエ変換を利用したノイズ除去第1の方法を本発明の目的に沿うように改良したものである。改良のポイントは次の2点である。
Second method of noise removal: The measured AC signal is converted into a frequency space by discrete Fourier transform or Z transform, and smoothing is performed to cancel higher-order noise, and regression is performed according to [Equation 1]. k 0 is a method of extracting only. Since this method uses the instantaneous value of the signal sequence from which noise is to be removed, it is not necessary to store the signal in the memory, and the amount of RAM used in the storage unit 135 can be reduced.
Figure JPOXMLDOC01-appb-M000001
More specifically, the second method for removing noise is an improvement of the first method for removing noise using discrete Fourier transform so as to meet the object of the present invention. The points of improvement are the following two points.
 ・周波数分解能が良い。 ・ Frequency resolution is good.
 ・指定した周波数成分しか取り出せず、それ以外の周波数に関する情報は一切得られない。 ・ Only the specified frequency components can be extracted, and no information about other frequencies can be obtained.
 ノイズ除去第1の方法では、切り出す周波数の分解能を高くするためには測定時間を長くせざるを得ないが、腐食管理システム10では、電流印加装置120や磁界計測装置130の消費電力の観点から測定時間を長くすることは好ましくない。逆に特定の周波数成分だけを計算すればよく、それ以外の周波数成分を算出する必要はない。ノイズ除去第2の方法は、周波数分解能と測定時間が両立するように、ノイズ除去第1の方法を改良したものである。 In the first method of noise removal, in order to increase the resolution of the cut-out frequency, it is necessary to lengthen the measurement time. However, in the corrosion management system 10, from the viewpoint of power consumption of the current application device 120 and the magnetic field measurement device 130. It is not preferable to lengthen the measurement time. Conversely, it is only necessary to calculate a specific frequency component, and it is not necessary to calculate other frequency components. The second noise removal method is an improvement of the first noise removal method so that the frequency resolution and the measurement time are compatible.
 ノイズ除去第2の方法の原理について説明する。角周波数ω付近にだけ周波数成分を持つ信号f(t)は、[数2]と記述できる。ただし、ω≒ωとする。
Figure JPOXMLDOC01-appb-M000002
 このとき、求めたい値は角振動数ωに対応する振幅wである。信号f(t)の区間0≦t≦Tにおけるフーリエ積分は、[数3]で計算することができる。
Figure JPOXMLDOC01-appb-M000003
 F[f](ω)はT→∞の極限においてωに収束する。ノイズ除去第1の方法はこの積分値を算出する手法である。しかし上式が、[数4]と展開できることに注意すれば、
Figure JPOXMLDOC01-appb-M000004
 次の2つの手順により、T→∞の極限を取ることなく、F[f](ω)をωに収束させることができる。
The principle of the second noise removal method will be described. A signal f (t) having a frequency component only in the vicinity of the angular frequency ω 0 can be described as [Equation 2]. However, it is assumed that ω i ≈ω 0 .
Figure JPOXMLDOC01-appb-M000002
At this time, the value to be obtained is the amplitude w 0 corresponding to the angular frequency ω 0 . The Fourier integral in the interval 0 ≦ t ≦ T of the signal f (t) can be calculated by [Equation 3].
Figure JPOXMLDOC01-appb-M000003
F [f] (ω 0 ) converges to ω 0 in the limit of T → ∞. The first method for removing noise is a method for calculating the integral value. However, if we note that the above equation can be expanded to [Equation 4],
Figure JPOXMLDOC01-appb-M000004
With the following two procedures, F [f] (ω 0 ) can be converged to ω 0 without taking the limit of T → ∞.
 ・平均化を施すことで振動項をキャンセルする。 ・ Cancel the vibration term by averaging.
 ・回帰式[数1]を用いて回帰し、パラメータkのみを取り出す。 · Regression equation and regression using [Equation 1], taking out only the parameter k 0.
 この手順をフローチャート化したものが図11である。すなわち、磁界計測結果のデジタル値を取得し(S501)、フーリエ積分を行なう(S502)。そして、平滑化を行なって(S503)、回帰演算を行ない(S504)、回帰結果を出力する(S505)。なお、前提とした条件ω≒ωが満たされない場合は、角振動数ωに対応する成分は0に等しいことを意味するから、平滑化や回帰を行うまでもなく、ω=0が得られる。 FIG. 11 is a flowchart of this procedure. That is, the digital value of the magnetic field measurement result is acquired (S501), and Fourier integration is performed (S502). Then, smoothing is performed (S503), a regression calculation is performed (S504), and a regression result is output (S505). Note that if the precondition ω i ≈ω 0 is not satisfied, it means that the component corresponding to the angular frequency ω 0 is equal to 0, so that ω 0 = 0 without performing smoothing or regression. Is obtained.
 ノイズ除去第3の方法:ノイズの主成分は、磁界計測装置130の回路が発生するノイズであることから、ノイズを正規分布と仮定し、カルマンフィルタを適用する方法である。 3rd method for noise removal: Since the main component of noise is noise generated by the circuit of the magnetic field measuring apparatus 130, it is assumed that the noise is a normal distribution and a Kalman filter is applied.
 ノイズ除去第4の方法:ノイズの主成分は、磁界計測装置130の回路が発生するノイズであることから、対象とする系を線形と仮定し、粒子フィルタ(パーティクルフィルタ)を適用する方法である。 Fourth method of noise removal: Since the main component of noise is noise generated by the circuit of the magnetic field measurement device 130, it is assumed that the target system is linear and a particle filter (particle filter) is applied. .
 磁界計測装置130は、磁界センサアレイ131の各磁界センサが計測した交流信号に対して、上記のいずれかのノイズ除去を行なった上で交流信号の実効値を計算し、無線センサネットワーク280を介して計測管理装置210に送信する。ただし、他のノイズ除去方法を採用してもよい。 The magnetic field measurement device 130 performs the above noise removal on the AC signal measured by each magnetic field sensor of the magnetic field sensor array 131, calculates the effective value of the AC signal, and passes the wireless sensor network 280 via the wireless sensor network 280. To the measurement management device 210. However, other noise removal methods may be employed.
 次に、計測管理装置210の動作について図12のフロー図を参照して説明する。計測管理装置210は、起動すると、監視対象配管110に設置した電極111あるいは近傍に設置した磁界発生用電線112、磁界センサアレイ131の各磁界センサそれぞれの相対位置関係と監視対象配管110の形状を装置配置情報として記憶部213に記録する(S601)。 Next, the operation of the measurement management apparatus 210 will be described with reference to the flowchart of FIG. When the measurement management device 210 is activated, the relative position relationship between the magnetic field generating wire 112 and the magnetic field sensor array 131 installed in the monitoring target pipe 110 or the magnetic field sensor array 131 and the shape of the monitoring target pipe 110 are set. The device arrangement information is recorded in the storage unit 213 (S601).
 他装置から設定情報の要求を受信すると(S602)、あらかじめ記憶部213に記録しておいた設定情報を送信する(S603)。具体的には、電流印加装置120から設定情報の要求を受信した場合には、印加する交流電流の周波数、電流値、印加開始時刻(周期)、電流印加継続時間等を設定情報として送信し、磁界計測装置130から設定情報の要求を受信した場合には、計測開始時刻(周期)、1センサあたりの計測時間、電流印加装置120が印加する交流電流の周波数等を設定情報として送信する。 When a request for setting information is received from another device (S602), the setting information recorded in advance in the storage unit 213 is transmitted (S603). Specifically, when the setting information request is received from the current application device 120, the frequency of the alternating current to be applied, the current value, the application start time (cycle), the current application duration, etc. are transmitted as the setting information. When a setting information request is received from the magnetic field measurement device 130, the measurement start time (cycle), the measurement time per sensor, the frequency of the alternating current applied by the current application device 120, and the like are transmitted as setting information.
 設定情報で示した計測開始時刻になると(S604:Yes)、電流印加装置120、磁界計測装置130から開始通知を受信する(S605)。また、磁界計測装置130から測定結果である実効値を配列形式で受信する(S606)。 When the measurement start time indicated by the setting information is reached (S604: Yes), a start notification is received from the current application device 120 and the magnetic field measurement device 130 (S605). Further, the effective value as the measurement result is received from the magnetic field measuring apparatus 130 in an array format (S606).
 計測管理装置210は、磁界計測装置130から受信した実効値の配列を履歴として記憶部213に格納するとともに、演算部211が、交流磁界の実効値の配列を減肉の形状と大きさに換算する(S607)。 The measurement management device 210 stores the effective value array received from the magnetic field measurement device 130 in the storage unit 213 as a history, and the calculation unit 211 converts the AC magnetic field effective value array into a shape and size of thinning. (S607).
 ここで、交流磁界の実効値の配列を減肉の形状と大きさに換算する方法について説明する。実効値を減肉の形状と大きさに換算する方法としては、例えば、減肉なしの状態において計測した磁界やシミュレーション結果といった基準となる磁界分布における各磁界センサの実効値と、計測した実効値との差分を計算し、差分をもとに減肉の形状と大きさに換算する方法と、計測した実効値を物理モデルにあてはめ、磁界分布や電流分布、抵抗分布を計算し、抵抗分布から金属の肉厚を計算する方法とが考えられる。以下に、第1の原理に対応した換算方法(1~4)と第2の原理に対応した換算方法(5~8)とを示す。 Here, a method for converting the array of effective values of the alternating magnetic field into the shape and size of the thinning will be described. As a method of converting the effective value into the shape and size of the thinning, for example, the effective value of each magnetic field sensor in the magnetic field distribution as a reference such as the magnetic field measured without thinning and the simulation result, and the measured effective value And calculating the magnetic field distribution, current distribution, and resistance distribution by applying the measured effective value to the physical model and calculating the magnetic field distribution, current distribution, and resistance distribution. A method for calculating the metal thickness is considered. The conversion methods (1 to 4) corresponding to the first principle and the conversion methods (5 to 8) corresponding to the second principle are shown below.
 換算方法1:例えば配管新設時などに、減肉なしの状態で電流印加装置120から交流電流を印加し、表面周辺の交流磁界の磁界分布の実効値を磁界計測装置130で計測する。そして、無線センサネットワーク280を介して計測管理装置210に送信し、計測管理装置210の記憶部213に格納する。 Conversion method 1: For example, when a pipe is newly installed, an AC current is applied from the current application device 120 without thinning, and the effective value of the magnetic field distribution of the AC magnetic field around the surface is measured by the magnetic field measurement device 130. Then, the data is transmitted to the measurement management apparatus 210 via the wireless sensor network 280 and stored in the storage unit 213 of the measurement management apparatus 210.
 次に、一定期間経過後の同じ配管の表面周辺の交流磁界の磁界分布の実効値を同様に計測し、計測管理装置210に送信する。計測管理装置210は、新たに計測された実効値と記憶部213に格納した基準となる実効値との差分を計算し、記憶部213に格納した配管の形状や材質、電流印加装置120や磁界計測装置130と配管との相対位置を取得し、実効値の差分計算結果と、これらの情報をもとに、配管に発生した腐食が半楕円球をモデルとして、実効値の差分結果にフィッティングし、最も適した結果を減肉の大きさ、位置と推定し、計測管理装置210の記憶部213に記憶した配管の形状と合わせ設備の3次元形状にマップされた減肉の形状と大きさ、位置を計算する。 Next, the effective value of the magnetic field distribution of the alternating magnetic field around the surface of the same pipe after a certain period of time is similarly measured and transmitted to the measurement management device 210. The measurement management device 210 calculates the difference between the newly measured effective value and the reference effective value stored in the storage unit 213, and the shape and material of the piping stored in the storage unit 213, the current application device 120, and the magnetic field The relative position between the measuring device 130 and the pipe is acquired, and the difference calculation result of the effective value and the corrosion generated in the pipe are fitted to the difference result of the effective value using the semi-elliptical sphere as a model. The most suitable result is estimated as the size and position of the thinning, and the shape and size of the thinning mapped to the three-dimensional shape of the equipment together with the shape of the pipe stored in the storage unit 213 of the measurement management device 210, Calculate the position.
 なお、配管が比較的単純なトポロジーで曲率が低い場合は、配管を平面と仮定してフィッティングを行ってもよい。局部腐食の三次元形状を得るためには、フィッティングによる平面の凹凸を算出し、記憶部213に記憶した形状にマッピングすればよい。 In addition, when the piping is a relatively simple topology and the curvature is low, fitting may be performed assuming that the piping is a flat surface. In order to obtain a three-dimensional shape of local corrosion, the unevenness of the plane due to fitting may be calculated and mapped to the shape stored in the storage unit 213.
 換算方法2:換算方法1に準じる方法であるが、基準となる配管表面周辺の交流磁界の磁界分布の実効値を磁界シミュレーションによって獲得する方法である。また、シミュレーション結果と実際の磁界分布との誤差を修正するためにシミュレーション結果に一定の係数をかけて基準となる実効値とする。 Conversion method 2: This is a method according to the conversion method 1, but it is a method for obtaining the effective value of the magnetic field distribution of the alternating magnetic field around the reference pipe surface by magnetic field simulation. Further, in order to correct an error between the simulation result and the actual magnetic field distribution, a certain coefficient is applied to the simulation result to obtain a reference effective value.
 換算方法3:換算方法2に準じる方法であるが、基準となる状態の肉厚分布を超音波肉厚計のような他の装置で計測し、その肉厚分布をもとにシミュレーションを行ない、その結果を基準となる配管表面周辺の交流磁界の磁界分布の実効値とする方法である。 Conversion method 3: This is a method according to conversion method 2, but the thickness distribution in the standard state is measured with another device such as an ultrasonic thickness gauge, and a simulation is performed based on the thickness distribution. This is a method in which the result is the effective value of the magnetic field distribution of the alternating magnetic field around the pipe surface as a reference.
 換算方法4:換算方法1に準じる方法であるが、計測管理装置210の記憶部213に格納された任意の時刻で、磁界計測装置130が計測した交流磁界の磁界分布の実効値から、抵抗分布を推定する。抵抗分布推定の拘束条件は、計測した磁界の実効値と配管表面上の電極の位置、配管の仕様(例えば、材質、外径、肉厚)、印加電流量である。一般に、抵抗分布推定問題は良設定問題にならないため、電流分布や抵抗分布の大きさを正規化項として用いる。 Conversion method 4: This is a method according to the conversion method 1, but from the effective value of the magnetic field distribution of the alternating magnetic field measured by the magnetic field measurement device 130 at an arbitrary time stored in the storage unit 213 of the measurement management device 210, the resistance distribution Is estimated. The constraint conditions for estimating the resistance distribution are the measured effective value of the magnetic field, the position of the electrode on the pipe surface, the pipe specifications (for example, material, outer diameter, wall thickness), and applied current amount. In general, since the resistance distribution estimation problem is not a good setting problem, the magnitude of the current distribution or resistance distribution is used as a normalization term.
 具体的には、配管を図13(a)に示すような抵抗を格子状に接続したグラフとみなす。そして、測定された磁場から各抵抗に流れる電流を推定し、各抵抗に流れる電流から抵抗値(金属の減肉率)を推定する。配管に流れる電流は、一方の電極から他方の電極へ向かう方向(図の左右方向)に流れる電流が支配的であり、それと直交する方向(図の上下方向)にはほとんど電流は流れない。 Specifically, the piping is regarded as a graph in which resistances as shown in FIG. Then, the current flowing through each resistor is estimated from the measured magnetic field, and the resistance value (metal thinning rate) is estimated from the current flowing through each resistor. The current flowing in the pipe is dominant in the direction from the one electrode to the other electrode (left and right direction in the figure), and almost no current flows in the direction perpendicular to it (up and down direction in the figure).
 そのため、配管は近似的に図13(b)に示すようなグラフとみなすこともできる。図13(b)に示すグラフは、図13(a)に示すグラフと比較して、算出するべき電流量の数が半減しており、計算時間が大幅に短縮できるというメリットがある。 Therefore, the piping can be regarded approximately as a graph as shown in FIG. Compared with the graph shown in FIG. 13A, the graph shown in FIG. 13B has the advantage that the number of currents to be calculated is halved and the calculation time can be greatly shortened.
 換算方法5:監視対象配管110が磁性体金属の場合において、例えば、配管新設時などに、減肉なしの状態で電流印加装置120から交流電流を印加し、表面周辺の交流磁界の磁界分布の実効値を磁界計測装置130で計測する。そして、無線センサネットワーク280を介して計測管理装置210に送信し、計測管理装置210の記憶部213に格納する。 Conversion method 5: When the pipe 110 to be monitored is a magnetic metal, for example, when a pipe is newly installed, an AC current is applied from the current application device 120 without thinning, and the magnetic field distribution of the AC magnetic field around the surface is changed. The effective value is measured by the magnetic field measurement device 130. Then, the data is transmitted to the measurement management apparatus 210 via the wireless sensor network 280 and stored in the storage unit 213 of the measurement management apparatus 210.
 次に、一定期間経過後の同じ配管の表面周辺の交流磁界の磁界分布の実効値を同様に計測し、計測管理装置210に送信する。計測管理装置210は、新たに計測された実効値と記憶部213に格納した基準となる実効値との差分を計算し、記憶部213に格納した配管の形状や材質、電流印加装置120や磁界計測装置130と配管との相対位置を取得し、実効値の差分計算結果と、これらの情報をもとに、配管に発生した腐食が半楕円球をモデルとして、実効値の差分結果にフィッティングし、最も適した結果を減肉の大きさと位置を推定し、計測管理装置210の記憶部213に記憶した配管の形状と合わせ設備の3次元形状にマップされた減肉の形状と大きさ、位置を計算する。 Next, the effective value of the magnetic field distribution of the alternating magnetic field around the surface of the same pipe after a certain period of time is similarly measured and transmitted to the measurement management device 210. The measurement management device 210 calculates the difference between the newly measured effective value and the reference effective value stored in the storage unit 213, and the shape and material of the piping stored in the storage unit 213, the current application device 120, and the magnetic field The relative position between the measuring device 130 and the pipe is acquired, and the difference calculation result of the effective value and the corrosion generated in the pipe are fitted to the difference result of the effective value using the semi-elliptical sphere as a model. Estimate the size and position of the thinning for the most suitable result, and the shape, size and position of the thinning mapped to the three-dimensional shape of the equipment together with the shape of the piping stored in the storage unit 213 of the measurement management device 210 Calculate
 換算方法6:換算方法5に準じる方法であるが、基準となる配管表面周辺の交流磁界の磁界分布の実効値を磁界シミュレーションによって獲得する方法である。また、シミュレーション結果と実際の磁界分布との誤差を修正するためにシミュレーション結果に一定の係数をかけて基準となる実効値とする。 Conversion method 6: This is a method according to the conversion method 5, but it is a method of acquiring the effective value of the magnetic field distribution of the alternating magnetic field around the reference pipe surface by magnetic field simulation. Further, in order to correct an error between the simulation result and the actual magnetic field distribution, a certain coefficient is applied to the simulation result to obtain a reference effective value.
 換算方法7:換算方法2に準じる方法であるが、基準となる状態の肉厚分布を超音波肉厚計のような他の装置で計測し、その肉厚分布をもとにシミュレーションを行ない、その結果を基準となる配管表面周辺の交流磁界の磁界分布の実効値とする方法である。 Conversion method 7: This is a method according to conversion method 2, but the thickness distribution in the standard state is measured with another device such as an ultrasonic thickness gauge, and a simulation is performed based on the thickness distribution. This is a method in which the result is the effective value of the magnetic field distribution of the alternating magnetic field around the pipe surface as a reference.
 換算方法8:換算方法4に準じる方法であるが、計測管理装置210の記憶部213に格納された任意の時刻で、磁界計測装置130が計測した交流磁界の磁界分布の実効値から、抵抗分布を推定し、磁性体金属と空気や水など雰囲気の透磁率の違いと磁界分布の推定値とから、磁性体金属である配管の減肉を推定する逆問題を解く。このときの拘束条件は、計測した磁界の実効値と配管表面上の電極の位置、配管の仕様(例えば、材質、外径、肉厚)、印加電流量である。一般に、抵抗分布推定問題は良設定問題にならないため、電流分布や抵抗分布の大きさを正規化項として用いる。 Conversion method 8: A method according to the conversion method 4, but the resistance distribution is calculated from the effective value of the magnetic field distribution of the alternating magnetic field measured by the magnetic field measurement device 130 at an arbitrary time stored in the storage unit 213 of the measurement management device 210. From the difference in magnetic permeability between the magnetic metal and the atmosphere such as air or water and the estimated value of the magnetic field distribution, the inverse problem of estimating the thinning of the pipe made of the magnetic metal is solved. The constraint conditions at this time are the effective value of the measured magnetic field, the position of the electrode on the pipe surface, the specifications of the pipe (for example, material, outer diameter, thickness), and the amount of applied current. In general, since the resistance distribution estimation problem is not a good setting problem, the magnitude of the current distribution or resistance distribution is used as a normalization term.
 本実施形態の腐食管理システム10では、計測した磁界分布を減肉の形状と大きさに換算する上記の方法の制約から、設置時や脱着時に監視対象配管110と磁界計測装置130の磁界センサアレイ131、電流印加装置120の電極111や磁界発生用電線112の位置を管理し、相対的な位置を管理する必要がある。なぜなら、磁界は発生源から計測点までの距離に比例して変化し、これが換算時に誤差として現れるためである。磁界センサアレイ131の脱着が行われる状況としては、磁界センサアレイ131が設置されている監視対象配管110を別の手段(例えば、超音波肉厚計)で検査する場合や、磁界センサアレイ131が故障し、交換を行なう状況等が考えられる。 In the corrosion management system 10 of the present embodiment, the magnetic field sensor array of the monitoring target pipe 110 and the magnetic field measuring device 130 at the time of installation or detachment due to the restriction of the above method for converting the measured magnetic field distribution into the shape and size of the thinning. 131, it is necessary to manage the positions of the electrodes 111 and the magnetic field generating wires 112 of the current application device 120 and to manage the relative positions. This is because the magnetic field changes in proportion to the distance from the source to the measurement point, and this appears as an error when converted. The situation in which the magnetic sensor array 131 is attached and detached includes the case where the monitoring target pipe 110 in which the magnetic field sensor array 131 is installed is inspected by another means (for example, an ultrasonic thickness gauge), or the magnetic field sensor array 131 is There may be a situation where a failure occurs and replacement is performed.
 換算方法1や換算方法5のように、金属配管表面に減肉がない状態で金属配管表面周辺の交流磁界の計測(ここでは初期計測と呼ぶ)を行なって、減肉がある状態との差分から減肉の形状と大きさを求める方式では、初期計測時の位置から誤差なく磁界センサアレイ131と電流印加装置120の電極111または磁界発生用電線112を設置または脱着する必要がある。このような要求を満たす方法として初期計測時に金属配管表面に基準となる治具を取り付ける方法がある。また、電極111や磁界発生用電線112が金属設備表面上または付近に残されている場合、これらを用いて磁界計測装置130で磁界を計測し、その情報から位置を補正する方法がある。 As in conversion method 1 and conversion method 5, the AC magnetic field around the surface of the metal pipe is measured with no thinning on the surface of the metal pipe (herein referred to as initial measurement), and the difference from the state with the thinning In the method for obtaining the shape and size of the thinning from the above, it is necessary to install or remove the magnetic field sensor array 131, the electrode 111 of the current application device 120, or the magnetic field generating wire 112 without error from the position at the time of initial measurement. As a method of satisfying such a requirement, there is a method of attaching a reference jig to the surface of a metal pipe during initial measurement. Further, when the electrode 111 and the magnetic field generating wire 112 are left on or near the surface of the metal equipment, there is a method of measuring the magnetic field by the magnetic field measuring device 130 using these and correcting the position from the information.
 換算方法2や換算方法6の場合、シミュレーション結果を初期計測結果の代わりとして用いる。このため、シミュレーション上のモデルと実際に金属配管表面に設置された磁界センサアレイ131や電流印加装置120の電極111あるいは磁界発生用電線112の相対位置の管理が求められる。 In the case of conversion method 2 and conversion method 6, the simulation result is used instead of the initial measurement result. For this reason, management of the relative position of the simulation model and the magnetic field sensor array 131 actually installed on the surface of the metal pipe, the electrode 111 of the current application device 120, or the magnetic field generating wire 112 is required.
 換算方法1、2、3、5、6、7において、磁界センサアレイ131を配管に取り付け測定を行なった後に、(超音波肉厚系などによって)詳細な肉厚検査を行ない、その後、引き続き磁界センサアレイ131で測定を行うという状況が考えられる。そのような場合、換算のための腐食モデルを、半楕円球ではなく、詳細検査によって得られた減肉の形状にすることによって、より精度の高い換算結果を得ることができる。 In conversion methods 1, 2, 3, 5, 6, and 7, after attaching the magnetic field sensor array 131 to the pipe and performing the measurement, a detailed thickness inspection is performed (for example, by an ultrasonic thickness system), and then the magnetic field is continued. A situation where measurement is performed by the sensor array 131 is conceivable. In such a case, a conversion result with higher accuracy can be obtained by making the corrosion model for conversion not the semi-elliptical sphere but the shape of thinning obtained by the detailed inspection.
 この管理を行う方法としては、例えば、先に金属配管表面や磁界センサアレイ131、電極111あるいは磁界発生用電線112の相対位置をモデル化し、シミュレーションを行なった上で、モデルに合わせて、これらを設置する方法が考えられる。 As a method for performing this management, for example, the relative positions of the metal pipe surface, the magnetic field sensor array 131, the electrode 111, or the magnetic field generating wire 112 are first modeled, and after simulation, these are adapted to the model. A method of installation is conceivable.
 あるいは、先に磁界センサアレイ131、電極111あるいは磁界発生用電線112を設置し、これらの位置を計測した上で、シミュレーションモデルを作成し、シミュレーションを行う方法が考えられる。なお、これらの方法では、金属配管表面は減肉がないものとして扱う。 Alternatively, a method may be considered in which the magnetic field sensor array 131, the electrode 111, or the magnetic field generating wire 112 is first installed, the positions thereof are measured, a simulation model is created, and the simulation is performed. In these methods, the surface of the metal pipe is treated as having no thinning.
 換算方法3や換算方法7の場合は、上記シミュレーションを用いる方法に準じるが、別の手段(たとえば超音波肉厚計)で計測した金属配管の肉厚をシミュレーションのモデルに加える。このため、別の手段で計測を行った位置をモデル上の位置として管理する必要がある。 In the case of the conversion method 3 and the conversion method 7, although it is based on the method using the said simulation, the thickness of the metal piping measured by another means (for example, ultrasonic thickness gauge) is added to the simulation model. For this reason, it is necessary to manage the position measured by another means as the position on the model.
 換算方法4や換算方法8では、初期計測状態を必要としないため、上記に示したような初期状態との相対位置の誤差を管理する必要はない。ただし、金属配管表面をモデル化して得られる磁界分布から金属配管の肉厚を推定するという逆問題を解くため、シミュレーションの場合と同様に、設置した際に、これらの相対位置を管理する必要がある。 In the conversion method 4 and the conversion method 8, since the initial measurement state is not required, it is not necessary to manage the relative position error from the initial state as described above. However, in order to solve the inverse problem of estimating the thickness of the metal pipe from the magnetic field distribution obtained by modeling the surface of the metal pipe, it is necessary to manage the relative position of these when installed as in the simulation. is there.
 図12の説明に戻って、計測管理装置210の演算部211は、配列形式の実効値を減肉の形状と大きさに換算すると(S607)、減肉の形状と大きさの変化等に基づいて次回の計測タイミングを設定する(S608)。具体的には、減肉の形状と大きさから肉厚方向の深さと、断面欠損率を計算する。そして、前回計測した減肉の深さおよび断面欠損率と比較することで、単位時間あたりの変化率を計算する。さらに、それぞれを最小許容肉厚および最大許容せん断応力と比較することで時間的なマージンを計算し、マージンの小さな方をもとに次の計測タイミングを電流印加装置120と磁界計測装置130に設定する。 Returning to the description of FIG. 12, the calculation unit 211 of the measurement management device 210 converts the effective value of the array format into the shape and size of the thinning (S607), based on the change in the shape and size of the thinning, and the like. The next measurement timing is set (S608). Specifically, the depth in the thickness direction and the cross-sectional defect rate are calculated from the shape and size of the thinning. Then, the rate of change per unit time is calculated by comparing with the previously measured depth of thinning and the cross-sectional defect rate. Furthermore, the time margin is calculated by comparing each with the minimum allowable wall thickness and the maximum allowable shear stress, and the next measurement timing is set in the current application device 120 and the magnetic field measurement device 130 based on the smaller margin. To do.
 さらに、演算部211は、配列形式で表された実効値に基づいて監視対象配管110への三次元マッピングを行なう(S610)。図14は、配列形式で表された実効値に基づいて行なった三次元マッピングの例を示している。 Further, the calculation unit 211 performs three-dimensional mapping to the monitoring target pipe 110 based on the effective values represented in the array format (S610). FIG. 14 shows an example of three-dimensional mapping performed based on the effective values represented in the array format.
 減肉の形状と大きさ、位置や三次元マッピング結果は、記憶部213に記録し、必要に応じて表示画面等に出力する(S611)。停止指示がなければ(S612:No)、次の開始時刻を待ち(S604)、停止指示があれば(S612:Yes)、停止する。このとき、電流印加装置120、磁界計測装置130に停止の設定情報を送信する。 The shape and size of the thinning, the position, and the three-dimensional mapping result are recorded in the storage unit 213 and output to a display screen or the like as necessary (S611). If there is no stop instruction (S612: No), it waits for the next start time (S604), and if there is a stop instruction (S612: Yes), it stops. At this time, stop setting information is transmitted to the current application device 120 and the magnetic field measurement device 130.
 以上、本発明の実施形態である腐食管理システム10について説明した。本実施形態の腐食管理システム10によれば、例えば、以下のような効果を得ることができる。 The corrosion management system 10 that is an embodiment of the present invention has been described above. According to the corrosion management system 10 of the present embodiment, for example, the following effects can be obtained.
 効果1:金属配管のような金属設備表面に発生する局部腐食を再現性良く継続的に三次元で計測し、管理することが可能となる。 Effect 1: Local corrosion occurring on the surface of metal equipment such as metal piping can be continuously measured and managed in three dimensions with good reproducibility.
 効果2:一旦、腐食管理システム10を導入してしまえば、継続的に腐食等によって生じる減肉を計測できることから、金属設備に人がアクセスするための付帯工事が不要となり、工数・コストを削減できる。これにより、計測周期を短縮することが可能となる。また、計測周期を任意の周期で設定できる。 Effect 2: Once the corrosion management system 10 is introduced, it is possible to continuously measure the thinning caused by corrosion, etc., eliminating the need for incidental work for human access to metal equipment, reducing man-hours and costs. it can. As a result, the measurement cycle can be shortened. Further, the measurement cycle can be set at an arbitrary cycle.
 効果3:電流印加装置120と磁界計測装置130とを分離し、防爆に対応した狭帯域の無線センサネットワーク280に対応可能なため、磁界計測装置130で交流磁界測定値のノイズ除去した後、実効値として出力・送信することで、防爆エリアへの対応が可能となり、操業中の防爆エリアで減肉を計測することが可能となる。 Effect 3: Since the current application device 120 and the magnetic field measurement device 130 are separated and compatible with the narrow-band wireless sensor network 280 corresponding to explosion prevention, the magnetic field measurement device 130 is effective after removing noise from the AC magnetic field measurement value. By outputting and transmitting the value, it becomes possible to correspond to the explosion-proof area, and it is possible to measure thinning in the explosion-proof area during operation.
 効果4:計測結果を無線センサネットワーク280で送受信し、計測管理装置210で管理することで、検査結果を手作業で管理する必要がなくなる。 Effect 4: The measurement result is transmitted and received by the wireless sensor network 280 and managed by the measurement management apparatus 210, so that it is not necessary to manage the inspection result manually.
 効果5:計測結果は、減肉の形状と大きさが設備の三次元形状にマップされた情報として可視化されることから、特に専門的な知識がなくても結果を把握することが可能となる。 Effect 5: The measurement result is visualized as information in which the shape and size of the thinning are mapped to the three-dimensional shape of the equipment, so that it is possible to grasp the result without special knowledge. .
 なお、本発明は、上述の実施形態に限られず種々の変形が可能である。例えば、上述の腐食管理システム10に配管等の金属設備表面の温度を計測する温度センサと湿度センサ等の別のセンサを付加してもよい。一組の温度センサ、湿度センサを磁界センサアレイ131付近に設置し、他の温度センサ、湿度センサの組を他の場所に複数設置することが望ましい。 Note that the present invention is not limited to the above-described embodiment, and various modifications are possible. For example, another sensor such as a temperature sensor that measures the temperature of the surface of metal equipment such as piping and a humidity sensor may be added to the above-described corrosion management system 10. It is desirable to install a set of temperature sensors and humidity sensors near the magnetic field sensor array 131 and to install a plurality of sets of other temperature sensors and humidity sensors at other locations.
 これらの温度センサ、湿度センサのデータを、腐食管理システム10の計測管理装置210で読み込むことができるものとする。具体的には、無線センサネットワーク280を介して計測管理装置210が直接読み込む方法と、プロセス制御システムなどを介して間接的に読み込む方法が考えられる。 Suppose that the data of these temperature sensors and humidity sensors can be read by the measurement management device 210 of the corrosion management system 10. Specifically, a method in which the measurement management apparatus 210 directly reads through the wireless sensor network 280 and a method in which it is read indirectly through a process control system or the like are conceivable.
 このようにした上で、計測管理装置210は、磁界センサアレイ131が設置され実際に局部腐食が発生している箇所の温度、湿度データやその履歴と金属設備の形状やレイアウトの類似性をもとに、別の組の温度センサ・湿度センサが設置されているが磁界センサアレイ131は設置されていない場所において局部腐食を外挿する。 In this way, the measurement management device 210 has similarities between the temperature and humidity data and the history of the location where the magnetic field sensor array 131 is installed and where local corrosion actually occurs and the shape and layout of the metal equipment. In addition, local corrosion is extrapolated in a place where another set of temperature sensor / humidity sensor is installed but the magnetic field sensor array 131 is not installed.
 これによって磁界センサアレイ131を設置しておらず局部腐食を計測できない位置を含め、より広いエリアを仮想的に管理することが可能となる。なお、本例は、温度センサ、湿度センサを用いたが、ひずみセンサなど他のセンサと組み合わせてもよい。また、これらのデータをセンサではなく、設備の管理作業者が取得し、計測管理装置210に入力してもよい。 This makes it possible to virtually manage a wider area including a position where the magnetic field sensor array 131 is not installed and local corrosion cannot be measured. In addition, although this example used the temperature sensor and the humidity sensor, you may combine with other sensors, such as a strain sensor. In addition, these data may be acquired by a facility management operator instead of a sensor and input to the measurement management apparatus 210.
 あるいは、上述の腐食管理システム10に、配管等の金属設備の内部のデータを入力するセンサ、例えば、圧力センサや温度センサ、流速センサ、pHセンサ、ER腐食センサや電気化学的な腐食センサ等を付加してもよい。これらは、無線センサネットワーク280を介して、直接腐食管理システム10と接続してもよく、またプロセス制御システムを介して接続してもよい。 Alternatively, a sensor that inputs data inside a metal facility such as a pipe to the corrosion management system 10 described above, such as a pressure sensor, a temperature sensor, a flow rate sensor, a pH sensor, an ER corrosion sensor, an electrochemical corrosion sensor, or the like. It may be added. These may be connected directly to the corrosion management system 10 via the wireless sensor network 280 or may be connected via a process control system.
 計測管理装置210は、磁界センサアレイ131が設置され実際に腐食している箇所の金属設備の内部を計測するセンサのデータとそれらの履歴・金属設備の形状や、金属設備内部の流体等の類似性をもとに、磁界センサアレイ131が設置されていない金属設備内部の他の場所における局部腐食を外挿する。 The measurement management device 210 is similar to the data of sensors that measure the inside of the metal facility where the magnetic field sensor array 131 is installed and actually corroded, their history, the shape of the metal facility, the fluid in the metal facility, and the like. Based on the characteristics, local corrosion is extrapolated at other locations inside the metal facility where the magnetic field sensor array 131 is not installed.
 これによって、磁界センサアレイ131を設定しておらず局部腐食を計測できない位置を含め、より広いエリアを仮想的に管理することが可能となる。 This makes it possible to virtually manage a wider area including the position where the magnetic field sensor array 131 is not set and local corrosion cannot be measured.
 ところで、配管等の金属設備内面の局部腐食は、内面の環境(圧力や温度、流速等)のアンバランスによってしばしば引き起こされる。そこで、プロセス制御システムの持つセンサデータの履歴を入力として、対象とする設備に流体シミュレーションを行なうことで、局所的な内面環境の履歴を、磁界センサアレイ131が設置され局部腐食の三次元形状が計測できている箇所について計算してもよい。この場合、次に、同様の計算を金属設備内面の他の場所で行ない、局所的な内面環境の履歴と金属設備の形状や内部流体の類似性をもとに、磁界センサアレイ131が設置されていない金属設備内部の他の場所における局部腐食を外挿する。 By the way, local corrosion on the inner surface of metal equipment such as piping is often caused by imbalance of the environment (pressure, temperature, flow rate, etc.) of the inner surface. Therefore, the history of the sensor data of the process control system is used as an input, and fluid simulation is performed on the target equipment, so that the history of the local internal environment can be obtained and the three-dimensional shape of local corrosion can be obtained by installing the magnetic field sensor array 131. You may calculate about the location which can be measured. In this case, the same calculation is then performed elsewhere on the inner surface of the metal equipment, and the magnetic field sensor array 131 is installed based on the local history of the internal environment and the similarity of the shape of the metal equipment and the internal fluid. Extrapolate local corrosion at other locations inside the metal facility that are not.
 これによって、磁界センサアレイ131を設定しておらず局部腐食を計測できない位置を含め、より広いエリアを仮想的に管理することが可能となる。 This makes it possible to virtually manage a wider area including the position where the magnetic field sensor array 131 is not set and local corrosion cannot be measured.
 このようにして得られた局所的な内面状態と外挿した局部腐食との関係をモデル化した上で、今後行う生産計画にしたがいプロセス状態のシミュレーションを行ない、さらのそのシミュレーション結果をもとに流体シミュレーションを行ない、未来における局所的な内面環境の履歴を作成してもよい。この場合、この未来における内面環境の履歴と金属設備の形状な内部流体の類似性と上述の関係モデルをもとに、将来的な局部腐食の発生や進展を外挿する。 After modeling the relationship between the local internal state obtained in this way and the extrapolated local corrosion, the process state was simulated according to the production plan to be performed in the future. Fluid simulation may be performed to create a local internal environment history in the future. In this case, the future occurrence and progress of local corrosion is extrapolated based on the history of the internal environment in the future, the similarity of the internal fluid in the shape of the metal facility, and the above-mentioned relational model.
 これによって、今後の運転計画や保全計画、運転条件の限界値をより精緻に立案・設定することが可能となる。 This makes it possible to plan and set future operation plans, maintenance plans, and limit values for operation conditions more precisely.
 計測管理装置210では、局部腐食の単位時間あたりの変化率が算出される。その変化率から減肉量を算出し、減肉量と時間の関係を表す近似曲線を求め、その近似曲線から局部腐食の進行度合いを予測することも可能である。 The measurement management device 210 calculates the rate of change per unit time of local corrosion. It is also possible to calculate the thinning amount from the rate of change, obtain an approximate curve representing the relationship between the thinning amount and time, and predict the progress of local corrosion from the approximate curve.
 ところで、本実施形態の腐食管理システム10では、計測した磁界分布を減肉分布に換算する手法の特性から、設置時や脱着時に監視対象配管110と磁界計測装置130の磁界センサアレイ131の位置を管理し、相対的な位置を管理する必要がある。なぜなら、磁束密度は発生源から計測点までの距離に応じて変化し、これが換算時に誤差として現れるためである。 By the way, in the corrosion management system 10 of the present embodiment, the position of the monitoring target pipe 110 and the magnetic field sensor array 131 of the magnetic field measuring device 130 at the time of installation or desorption is determined from the characteristic of the method of converting the measured magnetic field distribution into the thinning distribution. It is necessary to manage and manage the relative position. This is because the magnetic flux density changes according to the distance from the generation source to the measurement point, and this appears as an error during conversion.
 このため、磁界センサアレイ131の監視対象配管110への取り付けに際しては、監視対象配管110の形状に対応した取り付け部材を作成する。例えば、監視対象配管110を、3Dスキャナを用いて計測した場合には、監視対象配管110の歪み等にも対応した取り付け部材を作成することができる。 Therefore, when the magnetic field sensor array 131 is attached to the monitoring target pipe 110, an attachment member corresponding to the shape of the monitoring target pipe 110 is created. For example, when the monitoring target pipe 110 is measured using a 3D scanner, an attachment member corresponding to distortion or the like of the monitoring target pipe 110 can be created.
 なお、取り付け部材は、異金属接触による監視対象配管110への影響を避けるため、脚等を用いた点接触で取り付ける形態が好ましいが、磁界センサと監視対象配管110との位置関係が長期間変化しないような堅牢性を備えさせるものとする。 The attachment member is preferably attached by point contact using legs or the like in order to avoid the influence on the monitoring target pipe 110 due to the contact of different metal, but the positional relationship between the magnetic field sensor and the monitoring target pipe 110 changes over a long period of time. It should be robust enough not to
 しかしながら、設備の経時変化により、磁界センサアレイ131と監視対象配管110との相対位置がずれたり、また、実際に取り付けられた場所がシステム計算上の位置からずれている場合もある。このようなずれが生じた場合には、磁界センサアレイ131を構成する各磁界センサの計測値をずれ量に応じて補正することで、誤差の発生を防ぐことができる。 However, there is a case where the relative position between the magnetic field sensor array 131 and the monitoring target pipe 110 is shifted due to the time-dependent change of the equipment, or the actually installed location is shifted from the position in the system calculation. When such a deviation occurs, the occurrence of an error can be prevented by correcting the measurement value of each magnetic field sensor constituting the magnetic field sensor array 131 according to the deviation amount.
 補正の方法は、例えば、x軸方向、y軸方向(監視対象配管110の表面と平行な面)のずれであれば、本来の磁界センサの位置と、実際の磁界センサの位置とのずれ量に応じて、隣接する磁界センサの測定値を利用した線形補完やバイキュービック補完等の既存技術を用いて各磁界センサの測定値を補正することが考えられる。 For example, if the correction method is a deviation in the x-axis direction and the y-axis direction (a plane parallel to the surface of the monitoring target pipe 110), the deviation amount between the original magnetic field sensor position and the actual magnetic field sensor position. Accordingly, it is conceivable to correct the measurement value of each magnetic field sensor using existing techniques such as linear interpolation and bicubic interpolation using measurement values of adjacent magnetic field sensors.
 また、z軸方向(監視対象配管110の表面と垂直方向)のずれであれば、測定値は距離の2乗に反比例するため、例えば、実際の磁界センサが本来の位置よりも1.5倍離れていれば、測定値を1.5の2乗倍することで補正を行なうことができる。 In addition, if the displacement is in the z-axis direction (perpendicular to the surface of the monitored pipe 110), the measured value is inversely proportional to the square of the distance. For example, the actual magnetic field sensor is 1.5 times the original position. If it is far away, the measurement can be corrected by multiplying the measured value by a square of 1.5.
 磁界センサの実際の位置を取得する方法としては、3Dスキャナを用いる方法が考えられるが、z軸方向の位置であれば、磁界センサの測定値を用いて取得することもできる。 As a method of acquiring the actual position of the magnetic field sensor, a method using a 3D scanner is conceivable, but if the position is in the z-axis direction, it can also be acquired using the measured value of the magnetic field sensor.
 これは、導体に流れる交流電流は周波数の増加と共に導体表面に集中し、内部の電流密度が減るという表皮効果を利用するものである。一般に、電流密度が導体表面の1/e倍になる距離を表皮深さと呼び、周波数が定まればその導体における表皮深さを特定することができる。 This utilizes the skin effect that the alternating current flowing through the conductor concentrates on the conductor surface as the frequency increases and the internal current density decreases. In general, the distance at which the current density is 1 / e times the conductor surface is called the skin depth, and if the frequency is determined, the skin depth in the conductor can be specified.
 具体的には、図15(a)に示すように、周波数f1の交流電流を監視対象配管110に流したときに磁界センサ131aで測定される磁束密度をH1とする。このときの表皮深さδ1は既知である。次に、図15(b)に示すように、周波数f1よりも高い周波数f2の交流電流を監視対象配管110に流したときに磁界センサ131aで測定される磁束密度をH2とする。このときの表皮深さδ2は既知であり、表皮深さδ1よりも浅くなる。なお、減肉発生時であっても表皮深さが減肉部分に達しない程度の表皮深さδ1となるように、周波数f1を選択する。 Specifically, as shown in FIG. 15A, the magnetic flux density measured by the magnetic field sensor 131a when an alternating current having a frequency f1 is passed through the monitoring target pipe 110 is H1. The skin depth δ1 at this time is known. Next, as shown in FIG. 15B, the magnetic flux density measured by the magnetic field sensor 131a when an alternating current having a frequency f2 higher than the frequency f1 is passed through the monitoring target pipe 110 is set to H2. The skin depth δ2 at this time is known and becomes shallower than the skin depth δ1. Note that the frequency f1 is selected so that the skin depth is δ1 that does not reach the thinned portion even when the thinning occurs.
 ここで、監視対象配管110と磁界センサ131aとの距離をdとすると、[数5]が成り立つ。ただし、kは、印加した電流や監視対象配管110等によって決まる定数である。
Figure JPOXMLDOC01-appb-M000005
 [数5]をdについて整理すると、kが消去された[数6]を得ることができるため、これにより磁界センサ131aの監視対象配管110に対するz軸方向の位置を取得することができる。
Figure JPOXMLDOC01-appb-M000006
 あるいは、図16に示すように、磁界センサ131aの上方に補助磁界センサ131bを配置することで、磁界センサ131aの監視対象配管110に対するz軸方向の位置を取得することもできる。ここで、磁界センサ131aと補助磁界センサ131bとの距離をrとし、この距離rは取り付け部材等により強固に保たれ、変化しないものとする。また、監視対象配管110の肉厚をtとする。
Here, when the distance between the monitoring target pipe 110 and the magnetic field sensor 131a is d, [Equation 5] is established. However, k is a constant determined by the applied current, the monitoring target pipe 110, and the like.
Figure JPOXMLDOC01-appb-M000005
When [Equation 5] is arranged with respect to d, [Equation 6] in which k is deleted can be obtained, so that the position of the magnetic field sensor 131a in the z-axis direction with respect to the monitored pipe 110 can be obtained.
Figure JPOXMLDOC01-appb-M000006
Alternatively, as shown in FIG. 16, the auxiliary magnetic field sensor 131b is disposed above the magnetic field sensor 131a, so that the position of the magnetic field sensor 131a in the z-axis direction with respect to the monitored pipe 110 can be acquired. Here, it is assumed that the distance between the magnetic field sensor 131a and the auxiliary magnetic field sensor 131b is r, and this distance r is firmly maintained by an attachment member or the like and does not change. Further, the thickness of the monitoring target pipe 110 is t.
 監視対象配管110に交流電流を流し(表皮効果は考慮しなくてよい)、磁界センサ131aで測定される磁束密度をH1とし、補助磁界センサ131bで測定される磁束密度をH2とすると、[数7]が成り立つ。ただし、kは、印加した電流や監視対象配管110等によって決まる定数である。
Figure JPOXMLDOC01-appb-M000007
 [数7]をdについて整理すると、kが消去された[数8]を得ることができるため、これにより磁界センサ131aの監視対象配管110に対するz軸方向の位置を取得することができる。
Figure JPOXMLDOC01-appb-M000008
 このようにして得られた距離dが本来の距離と異なっていれば、その差に応じた補正を測定値に対して行なうことで、減肉状態推定の精度低下を防ぐことができる。
When an alternating current is passed through the monitored pipe 110 (the skin effect need not be considered), the magnetic flux density measured by the magnetic field sensor 131a is H1, and the magnetic flux density measured by the auxiliary magnetic field sensor 131b is H2. 7] holds. However, k is a constant determined by the applied current, the monitoring target pipe 110, and the like.
Figure JPOXMLDOC01-appb-M000007
By arranging [Equation 7] with respect to d, it is possible to obtain [Equation 8] in which k is deleted, and thus the position of the magnetic field sensor 131a in the z-axis direction with respect to the monitored pipe 110 can be obtained.
Figure JPOXMLDOC01-appb-M000008
If the distance d obtained in this way is different from the original distance, it is possible to prevent a reduction in the accuracy of the thinning state estimation by performing correction according to the difference on the measured value.
 ここでは配管とセンサの相対位置や補正係数の導出に、電流中心という概念を利用して近似的に計算を行ったため、[数5]や[数7]、補正係数はすべて距離の2乗の反比例という形になっている。これを、電流中心という概念を用いずに、例えば電流分布の精密な計算や数値シミュレーションなどを援用することで、より現実に即した補正式を導くことも可能である。 Here, since the calculation of the relative position of the pipe and sensor and the correction coefficient are performed approximately using the concept of the current center, [Equation 5] and [Equation 7], all the correction coefficients are the square of the distance. It is in the form of inverse proportion. Without using the concept of current center, it is possible to derive a more realistic correction formula by using, for example, precise calculation of current distribution or numerical simulation.
 なお、以上の説明は、本発明の説明および例示を目的として特定の好適な実施例を示したに過ぎない。従って本発明は、上記実施例に限定されることなく、その本質から逸脱しない範囲で更に多くの変更、変形を含むものである。
 なお、本出願は、2015年6月12日付で出願された日本特許出願(特願2015-119553号)、2016年5月11日付で出願された日本特許出願(特願2016-095553号)、に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
The above description merely shows a specific preferred embodiment for the purpose of explanation and illustration of the present invention. Therefore, the present invention is not limited to the above-described embodiments, and includes many changes and modifications without departing from the essence thereof.
Note that this application is a Japanese patent application filed on June 12, 2015 (Japanese Patent Application No. 2015-119553), a Japanese patent application filed on May 11, 2016 (Japanese Patent Application No. 2016-095553), Which is incorporated by reference in its entirety. Also, all references cited herein are incorporated as a whole.
10…腐食管理システム、100…プラント、110…監視対象配管、111…電極、112…磁界発生用電線、120…電流印加装置、121…演算部、122…信号発生部、123…電流制御部、124…記憶部、125…磁界計測装置同期部、126…無線通信部、130…磁界計測装置、131…磁界センサアレイ、132…演算部、133…センサ切換部、134…信号変換部、135…記憶部、136…電流印加装置同期部、137…無線通信部、200…制御用ネットワーク、210…計測管理装置、211…演算部、212…通信部、213…記憶部、214…入出力部、220…無線センサネットワークゲートウェイ、280…無線センサネットワーク DESCRIPTION OF SYMBOLS 10 ... Corrosion management system, 100 ... Plant, 110 ... Monitoring object piping, 111 ... Electrode, 112 ... Electric field for magnetic field generation, 120 ... Current application apparatus, 121 ... Calculation part, 122 ... Signal generation part, 123 ... Current control part, DESCRIPTION OF SYMBOLS 124 ... Memory | storage part, 125 ... Magnetic field measuring device synchronization part, 126 ... Wireless communication part, 130 ... Magnetic field measuring device, 131 ... Magnetic field sensor array, 132 ... Operation part, 133 ... Sensor switching part, 134 ... Signal conversion part, 135 ... Storage unit 136 ... Current application device synchronization unit 137 ... Wireless communication unit 200 ... Control network 210 ... Measurement management device 211 ... Calculation unit 212 ... Communication unit 213 ... Storage unit 214 ... Input / output unit 220 ... Wireless sensor network gateway, 280 ... Wireless sensor network

Claims (9)

  1.  監視対象の金属設備表面の磁界分布を計測する磁界センサアレイを備える磁界計測装置と、
     前記磁界計測装置の計測結果に基づいて、前記金属設備における減肉の形状と大きさ、位置を算出し、前記減肉の形状と大きさ、位置から前記金属設備に対応した三次元形状を生成する計測管理装置と、
    を備えることを特徴とする腐食管理システム。
    A magnetic field measurement apparatus including a magnetic field sensor array for measuring a magnetic field distribution on a surface of a metal facility to be monitored;
    Based on the measurement result of the magnetic field measurement device, the shape, size, and position of the thinning in the metal facility are calculated, and the three-dimensional shape corresponding to the metal facility is generated from the shape, size, and position of the thinning. A measurement management device,
    A corrosion management system comprising:
  2.  前記計測管理装置は、無線通信を利用して前記磁界計測装置の計測結果を取得することを特徴とする請求項1に記載の腐食管理システム。 The corrosion management system according to claim 1, wherein the measurement management device acquires a measurement result of the magnetic field measurement device using wireless communication.
  3.  前記計測管理装置は、前記金属設備に減肉がない場合に得られる計測結果と、実際の計測結果との差分に基づいて、前記金属設備の減肉の形状と大きさ、位置を算出することを特徴とする請求項1または2に記載の腐食管理システム。 The measurement management device calculates the shape, size, and position of the thinning of the metal facility based on the difference between the measurement result obtained when the metal facility has no thinning and the actual measurement result. The corrosion management system according to claim 1 or 2.
  4.  前記金属設備に設置された電極あるいは前記金属設備の近傍に設置された磁界発生用電線に電流を印加する電流印加装置を備えることを特徴とする請求項1~3のいずれか1項に記載の腐食管理システム。 The current application device according to any one of claims 1 to 3, further comprising a current application device configured to apply a current to an electrode installed in the metal facility or a magnetic field generating wire installed in the vicinity of the metal facility. Corrosion management system.
  5.  前記電流印加装置と、前記磁界計測装置とが独立した装置であることを特徴とする請求項4に記載の腐食管理システム。 The corrosion management system according to claim 4, wherein the current application device and the magnetic field measurement device are independent devices.
  6.  前記計測管理装置は、
     前記磁界センサアレイを構成する磁界センサと前記金属設備との位置に基づいて、前記磁界計測装置の計測結果を補正することを特徴とする請求項4または5に記載の腐食管理システム。
    The measurement management device includes:
    The corrosion management system according to claim 4 or 5, wherein the measurement result of the magnetic field measurement device is corrected based on the positions of the magnetic field sensor and the metal equipment constituting the magnetic field sensor array.
  7.  前記電流印加装置は、前記金属設備に設置された電極に電流を印加するものであって、
     前記計測管理装置は、
     ある磁界センサについて、前記金属設備に印加された異なる周波数の交流電流により得られた磁束密度に基づいて、その磁界センサと前記金属設備との位置を算出することを特徴とする請求項6に記載の腐食管理システム。
    The current application device applies a current to an electrode installed in the metal facility,
    The measurement management device includes:
    The position of the magnetic field sensor and the metal equipment is calculated based on the magnetic flux density obtained by the alternating current of the different frequency applied to the metal equipment about a certain magnetic field sensor. Corrosion management system.
  8.  前記計測管理装置は、
     ある磁界センサについて計測された磁束密度と、その磁界センサの前記金属設備からの延長上に配置された補助磁界センサで計測された磁束密度に基づいて、その磁界センサと前記金属設備との位置を算出することを特徴とする請求項6に記載の腐食管理システム。
    The measurement management device includes:
    Based on the magnetic flux density measured for a certain magnetic field sensor and the magnetic flux density measured by the auxiliary magnetic field sensor disposed on the extension of the magnetic field sensor from the metal facility, the position of the magnetic field sensor and the metal facility is determined. The corrosion management system according to claim 6, wherein the corrosion management system is calculated.
  9.  監視対象の金属設備に設置された電極あるいは前記金属設備の近傍に設置された磁界発生用電線に電流を印加する電流印加ステップと、
     前記金属設備表面の磁界分布を計測する磁界計測ステップと、
     前記磁界計測ステップの計測結果に基づいて、前記金属設備の減肉の形状と大きさ、位置を算出し、前記減肉の形状と大きさ、位置から前記金属設備に対応した三次元形状を生成する計測管理ステップと、
    を有することを特徴とする腐食管理方法。
    A current application step of applying a current to an electrode installed in a metal facility to be monitored or a magnetic field generating wire installed in the vicinity of the metal facility;
    A magnetic field measuring step for measuring a magnetic field distribution on the surface of the metal equipment;
    Based on the measurement result of the magnetic field measurement step, the shape, size, and position of the thinning of the metal equipment are calculated, and a three-dimensional shape corresponding to the metal equipment is generated from the shape, size, and position of the thinning. A measurement management step to perform,
    A corrosion management method characterized by comprising:
PCT/JP2016/067289 2015-06-12 2016-06-09 Corrosion control system and corrosion control method WO2016199872A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-119553 2015-06-12
JP2015119553 2015-06-12
JP2016095553A JP2017003574A (en) 2015-06-12 2016-05-11 System and method for managing corrosion
JP2016-095553 2016-05-11

Publications (1)

Publication Number Publication Date
WO2016199872A1 true WO2016199872A1 (en) 2016-12-15

Family

ID=57503609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067289 WO2016199872A1 (en) 2015-06-12 2016-06-09 Corrosion control system and corrosion control method

Country Status (1)

Country Link
WO (1) WO2016199872A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3236252A1 (en) * 2016-04-22 2017-10-25 Yokogawa Electric Corporation Thinning detection system and thinning detection method
CN112888939A (en) * 2018-10-16 2021-06-01 株式会社岛津制作所 Magnetic substance management system and magnetic substance management method

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185162A (en) * 1986-02-12 1987-08-13 Natl Res Inst For Metals Method for non-destructive measurement of surface flaw according to leakage flux flaw detection method
JPH0577760U (en) * 1991-05-28 1993-10-22 原子燃料工業株式会社 Metal thin tube inspection device
JPH06324021A (en) * 1993-03-16 1994-11-25 Hitachi Ltd Non-destructive inspection device
JPH07128295A (en) * 1993-10-20 1995-05-19 Kobe Steel Ltd Method for measuring crystal grain size of steel plate
JPH09189682A (en) * 1996-01-10 1997-07-22 Nuclear Fuel Ind Ltd Method for inspecting flaw
JPH10300723A (en) * 1997-04-24 1998-11-13 Forschungszentrum Karlsruhe Gmbh Non-contacting method for testing and measuring longitudinal and lateral uniformity of critical current density in strip superconducting material and measuring instrument used therefor
JP2000131287A (en) * 1998-10-23 2000-05-12 Japan Science & Technology Corp Method and device for detecting flaw using magnetic measurement
JP2001235449A (en) * 2000-02-23 2001-08-31 Shinko Inspection & Service Co Ltd Carburizing depth measuring device
JP2005265848A (en) * 2004-03-19 2005-09-29 General Electric Co <Ge> Method and device for eddy current flaw detection inspection for metal post
JP2007024855A (en) * 2005-07-20 2007-02-01 Korea Atomic Energy Research Inst Device and method for detecting heat transfer tube state of heat exchanger
JP2007327924A (en) * 2006-06-09 2007-12-20 Osaka Gas Co Ltd Thickness change detection method of metal member, and thickness change detection device of metal member
JP2008175638A (en) * 2007-01-17 2008-07-31 Toshiba Corp Device and method for detecting defect of structural material
JP2010048624A (en) * 2008-08-20 2010-03-04 Sanshiro Kimoto Low-frequency electromagnetic induction type defect measuring apparatus
JP2013156088A (en) * 2012-01-27 2013-08-15 Hitachi-Ge Nuclear Energy Ltd Eddy current flaw detection system and eddy current flaw detection method
JP2013224864A (en) * 2012-04-20 2013-10-31 Toshiba Corp Eddy current flaw detection testing device and method
JP2014130021A (en) * 2012-12-28 2014-07-10 Hitachi Ltd Eddy current flaw detection device, eddy current flaw detection probe and eddy current flaw detection method

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185162A (en) * 1986-02-12 1987-08-13 Natl Res Inst For Metals Method for non-destructive measurement of surface flaw according to leakage flux flaw detection method
JPH0577760U (en) * 1991-05-28 1993-10-22 原子燃料工業株式会社 Metal thin tube inspection device
JPH06324021A (en) * 1993-03-16 1994-11-25 Hitachi Ltd Non-destructive inspection device
JPH07128295A (en) * 1993-10-20 1995-05-19 Kobe Steel Ltd Method for measuring crystal grain size of steel plate
JPH09189682A (en) * 1996-01-10 1997-07-22 Nuclear Fuel Ind Ltd Method for inspecting flaw
JPH10300723A (en) * 1997-04-24 1998-11-13 Forschungszentrum Karlsruhe Gmbh Non-contacting method for testing and measuring longitudinal and lateral uniformity of critical current density in strip superconducting material and measuring instrument used therefor
JP2000131287A (en) * 1998-10-23 2000-05-12 Japan Science & Technology Corp Method and device for detecting flaw using magnetic measurement
JP2001235449A (en) * 2000-02-23 2001-08-31 Shinko Inspection & Service Co Ltd Carburizing depth measuring device
JP2005265848A (en) * 2004-03-19 2005-09-29 General Electric Co <Ge> Method and device for eddy current flaw detection inspection for metal post
JP2007024855A (en) * 2005-07-20 2007-02-01 Korea Atomic Energy Research Inst Device and method for detecting heat transfer tube state of heat exchanger
JP2007327924A (en) * 2006-06-09 2007-12-20 Osaka Gas Co Ltd Thickness change detection method of metal member, and thickness change detection device of metal member
JP2008175638A (en) * 2007-01-17 2008-07-31 Toshiba Corp Device and method for detecting defect of structural material
JP2010048624A (en) * 2008-08-20 2010-03-04 Sanshiro Kimoto Low-frequency electromagnetic induction type defect measuring apparatus
JP2013156088A (en) * 2012-01-27 2013-08-15 Hitachi-Ge Nuclear Energy Ltd Eddy current flaw detection system and eddy current flaw detection method
JP2013224864A (en) * 2012-04-20 2013-10-31 Toshiba Corp Eddy current flaw detection testing device and method
JP2014130021A (en) * 2012-12-28 2014-07-10 Hitachi Ltd Eddy current flaw detection device, eddy current flaw detection probe and eddy current flaw detection method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3236252A1 (en) * 2016-04-22 2017-10-25 Yokogawa Electric Corporation Thinning detection system and thinning detection method
US10458947B2 (en) 2016-04-22 2019-10-29 Yokogawa Electric Corporation Thinning detection system and thinning detection method
CN112888939A (en) * 2018-10-16 2021-06-01 株式会社岛津制作所 Magnetic substance management system and magnetic substance management method
CN112888939B (en) * 2018-10-16 2023-08-25 株式会社岛津制作所 Magnetic substance management system and magnetic substance management method

Similar Documents

Publication Publication Date Title
JP2017003574A (en) System and method for managing corrosion
JP6489061B2 (en) Thinning detection system, thinning detection method
Waleed et al. An in-pipe leak detection robot with a neural-network-based leak verification system
JP7004516B2 (en) Predictive shimming of joints
KR101786028B1 (en) Method and system of deterministic fatigue life prediction for rotor materials
Liu et al. State-of-the-art review of technologies for pipe structural health monitoring
JP6370596B2 (en) Water leakage monitoring system, water leakage monitoring method, water leakage monitoring device, and water leakage monitoring program
RU2563419C2 (en) Method of monitoring of technical state of pipeline and system for its implementation
US7546224B2 (en) Method for assessing the integrity of a structure
WO2017169849A1 (en) Valve diagnosis method and valve diagnosis device
RU2008102141A (en) SYSTEM AND METHOD FOR MONITORING AND MANAGING THE OPERATING MODE OF A POWER TRANSFORMER
JP2009036516A (en) Nondestructive inspection device using guide wave and nondestructive inspection method
WO2016199872A1 (en) Corrosion control system and corrosion control method
RU2009117712A (en) METHOD FOR PIPELINE CORROSION MONITORING AND DEVICE FOR ITS IMPLEMENTATION
KR101764706B1 (en) System and Method for measurement of thickness of structure using local wavenumber filter
Hoek et al. Localizing partial discharge in power transformers by combining acoustic and different electrical methods
JP2005114583A (en) Conduit-refreshing plan support arrangement and system therefor
JP5390447B2 (en) Method for estimating noise countermeasure effect
GB2576843A (en) Sensor system
Hedges et al. Monitoring and inspection techniques for corrosion in oil and gas production
RU120276U1 (en) ACOUSTIC CONTROL SYSTEM FOR NPP PIPELINES
WO2017155526A1 (en) Visualization of multi-pipe inspection results
Yusa et al. Probability of detection analyses of eddy current data for the detection of corrosion
Hoek et al. Time-based partial discharge localization in power transformers by combining acoustic and different electrical methods
KR100844893B1 (en) Structural health monitoring apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16807578

Country of ref document: EP

Kind code of ref document: A1