WO2016199709A1 - Electric braking device - Google Patents

Electric braking device Download PDF

Info

Publication number
WO2016199709A1
WO2016199709A1 PCT/JP2016/066720 JP2016066720W WO2016199709A1 WO 2016199709 A1 WO2016199709 A1 WO 2016199709A1 JP 2016066720 W JP2016066720 W JP 2016066720W WO 2016199709 A1 WO2016199709 A1 WO 2016199709A1
Authority
WO
WIPO (PCT)
Prior art keywords
estimated
range
brake
force
brake force
Prior art date
Application number
PCT/JP2016/066720
Other languages
French (fr)
Japanese (ja)
Inventor
唯 増田
山崎 達也
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2016199709A1 publication Critical patent/WO2016199709A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/172Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive

Definitions

  • the present invention relates to an electric brake device, and more particularly to a technique capable of reducing costs while improving control accuracy in a normal range.
  • the electric brake device includes, for example, a motor that is a drive source, a speed reducer, a friction member operating means including a linear motion mechanism, and a brake rotor that rotates together with wheels.
  • the frictional force between the friction member and the brake rotor is controlled so as to generate an appropriate braking force based on the pedal operation amount (stepping force, stroke, etc.) of the driver and the state of the vehicle.
  • a brake force sensor that estimates the brake force is used to control the brake force with high accuracy.
  • the brake force sensor the present applicant has proposed a technique of applying a load sensor using a magnetic sensor (Patent Documents 1 to 6, etc.).
  • vehicle brakes are usually used at a deceleration of about 0.2 G or less, for example.
  • the driver controls the brake finely by operating a pedal or the like in accordance with the behavior of the vehicle.
  • the brake force sensor for controlling the brake force with high accuracy sufficient detection accuracy is required in order not to make the driver feel uncomfortable.
  • the driver during sudden braking where a large vehicle deceleration is required, it is rare for the driver to control the pedal finely according to the feeling, and even if the detection accuracy of the brake force sensor is relatively rough. There seems to be no problem.
  • a brake load sensor for detecting the axial load of the linear motion mechanism as in the prior art can be constructed at a relatively low cost, which is useful.
  • the electric brake device controls the pressing force between the friction member and the brake rotor.
  • the friction coefficient between a friction member and a brake rotor changes with the temperature.
  • the friction coefficient between the friction member and the brake rotor may be about 3 (fading phenomenon) when intense braking is repeated from high speed traveling.
  • the brake load sensor is required to have a dynamic range for detecting a pressing force assuming a fade phenomenon.
  • the brake force sensor is set to a dynamic range that assumes a relatively infrequent situation, it is necessary to configure a high-accuracy load sensor in order to obtain sufficient resolution in the normal range, which may result in high costs. There is.
  • An object of the present invention is to provide an electric brake device capable of reducing costs while improving control accuracy in a normal range.
  • the electric brake device includes a brake rotor 8, a friction member 9 that makes contact with the brake rotor 8, friction member operation means 6 that makes the friction member 9 contact the brake rotor 8, and this friction member operation means 6.
  • An electric motor 4 for driving the brake a brake force estimating means 17 for obtaining an estimated brake force which is an estimated value of a brake force generated by pressing the friction member 9 against the brake rotor 8, and controlling the electric motor 4.
  • An electric brake device including a control device 2 that controls the estimated brake force to follow the target brake force, The controller 2 changes the limit value of the estimated range of the estimated brake force by the brake force estimating means 17 based on one or both of the target brake force and the estimated brake force.
  • the control device 2 controls the electric motor 4 to drive the friction member operating means 6 when the driver of the vehicle equipped with the electric brake device performs a brake operation.
  • the friction member operating means 6 generates a braking force by pressing the friction member 9 against the brake rotor 8.
  • the control device 2 controls the estimated brake force obtained by the brake force estimating means 17 so as to follow the target brake force.
  • the estimated range changing means 26 of the control device 2 changes the limit value of the estimated range of the estimated brake force by the brake force estimating means 17 based on one or both of the target brake force and the estimated brake force.
  • the estimation range is set to the normal range, and the limit value of the estimation range is changed as necessary. This makes it easy to achieve the necessary resolution for each estimated range of the estimated braking force. Therefore, it is possible to reduce the cost without configuring a highly accurate load sensor as in the prior art, to improve the control accuracy in the normal range, and to provide sufficient detection accuracy to prevent the driver from feeling uncomfortable. can get. In addition, it is possible to detect a wide range of braking force necessary for sudden braking.
  • the estimated range changing means 26 includes the following condition group: When one or both of the target braking force and the estimated braking force exceed a threshold value in the estimated range, When the absolute value of the deviation between one or both of the braking forces and the threshold value in the estimated range is within a predetermined value and the amount of change in either one or both of the braking forces is greater than or equal to a predetermined value, and either When the excess time when one or both braking forces exceed the threshold exceeds a predetermined time, The limit value of the estimation range may be changed to be larger than the limit value before the change based on at least one of the conditions.
  • the threshold value is determined by results of tests, simulations, and the like (hereinafter the same).
  • the target brake force and the estimated brake force exceeds the threshold value in the estimated range.
  • the estimated range changing means 26 expands the limit value of the estimated range based on the excess amount, the calculation process can be simplified and the calculation processing load of the control calculation can be reduced.
  • the estimated range changing means 26 expands the limit value of the estimated range based on the amount of change of the target brake force, for example, a differential value, or when the target brake force increases sharply, the estimated range changes according to the tendency of the target brake force.
  • the limit value of can be expanded. For example, when the target braking force increases and approaches the threshold value steeply, it is predicted that the threshold value will be exceeded immediately thereafter, and the limit value of the estimated range can be changed quickly.
  • the estimated range changing means 26 expands the limit value of the estimated range based on the excess time, the limit value of the estimated range is changed when the target braking force exceeds the threshold value for a short time. It can be excluded from the conditions.
  • the predetermined short time is determined by a result of a test or simulation.
  • the estimated range changing means 26 includes the following condition group: When one or both of the target braking force and the estimated braking force falls below a threshold value in the estimated range, When the absolute value of the deviation between one or both of the braking forces and the threshold value in the estimated range is within a predetermined value and the amount of change in either one or both of the braking forces is less than or equal to a predetermined value; When the time during which one or both braking forces are below the threshold exceeds a predetermined time, The limit value of the estimation range may be changed to be smaller than the limit value before the change based on a condition including at least one of them.
  • the estimated range is determined by results of tests, simulations, and the like (hereinafter the same).
  • the target brake force and the estimated brake force for example, the target brake force is below a threshold value in the estimated range. Yes.
  • the threshold value for reduction is set smaller than the threshold value for expanding the limit value again after reduction of the estimated limit value and a hysteresis is provided, frequent changes in the estimation range can be prevented. Is preferred.
  • the estimated range changing means 26 reduces the limit value of the estimated range based on the absolute value of the difference, it can be a simple determination, and the calculation processing load of the control calculation can be reduced.
  • the estimated range changing means 26 reduces the limit value of the estimated range based on the amount of change of the target brake force, for example, a differential value, for example, it is predicted that the target range will soon fall below the threshold according to the decreasing tendency of the target brake force.
  • the limit value of the estimation range can be reduced.
  • the limit value of the estimated range is reduced based on the time when the target brake force falls below the threshold value, the condition for changing the limit value of the estimated range when the target brake force falls below the threshold value for a short time Can be excluded.
  • the estimated braking force may be used instead of the target braking force, or both may be used.
  • the differential value may be a differential value of a difference from a threshold value.
  • a rotation angle estimating means 24 for estimating the rotation angle of the electric motor 4 is provided, and the brake force estimating means 17 is determined after the estimated range changing means 26 has changed the limit value of the estimated range of the estimated brake force.
  • the estimated braking force may be obtained based on a predetermined relationship between the rotational angle estimated by the rotational angle estimating means 24 and the braking force within a predetermined time. The predetermined time and the predetermined relationship are determined by the results of tests and simulations, respectively.
  • the control device 2 uses the brake force sensor or the like for a predetermined time.
  • the electric brake device is controlled without using the estimation result. In other words, if the relationship between the rotation angle estimated by the rotation angle estimation means 24 and the braking force is measured to some extent, rough control is possible although the control accuracy is lower than that using a braking force sensor or the like. If the predetermined time is a short time, it is considered that there is no practical problem.
  • the brake force estimating means 17 may include a load sensor that estimates a pressing force when the friction member 9 presses the brake rotor 8.
  • Rotor angular velocity estimating means 28 for estimating the rotational angular velocity of the brake rotor 8 is provided,
  • the control device 2 is provided with temperature estimation means 29 for estimating the temperature of the brake rotor 8 from the rotational angular speed estimated by the rotor angular speed estimation means 28,
  • the estimated range changing unit 26 expands the limit value of the estimated range from the limit value before the change when the temperature estimated by the temperature estimating unit 29 is equal to or higher than a predetermined temperature, and the temperature estimating unit 29 When the estimated temperature becomes lower than a predetermined temperature, the limit value of the estimated range may be changed to be smaller than the limit value before the change.
  • the predetermined temperature is determined based on results of tests, simulations, and the like.
  • the temperature estimating means 29 estimates the temperature of the brake rotor 8 from the rotational angular speed estimated by the rotor angular speed estimating means 28.
  • the estimated range changing means 26 expands the limit value of the estimated range from the limit value before the change when the estimated temperature is equal to or higher than a predetermined temperature.
  • the estimated range changing means 26 reduces the limit value of the estimated range from the limit value before the change when the estimated temperature becomes lower than the predetermined temperature. Therefore, it is possible to finely change the limit value of the estimation range corresponding to the variation of the friction coefficient between the friction member 9 and the brake rotor 8.
  • FIG. 5 is a flowchart illustrating an example in which a threshold value for a target brake force is provided when changing the estimated range of the estimated brake force in the electric brake device. It is a flowchart which shows the example which provides a target brake, a threshold value, and a counter when changing the estimation range of the estimated brake force.
  • FIG. 7 is a flowchart showing an example of changing an estimated range of an estimated brake force based on a heat generation amount of each wheel estimated from a brake force and a vehicle speed in a vehicle equipped with an electric brake device according to another embodiment of the present invention.
  • . 6 is a flowchart illustrating an example in which the electric motor is controlled without using the brake force estimation result within a predetermined time after changing the limit value of the estimated range of the estimated brake force. It is a figure which shows the change of the estimation range according to the change of the brake force. It is a block diagram which shows the example of the brake force estimation means of the electric brake device which concerns on further another embodiment of this invention.
  • the electric brake device DB includes an electric actuator 1, a control device 2, and a brake force estimating means 17 (FIG. 2). First, the electric actuator 1 will be described.
  • the electric actuator 1 includes an electric motor 4, a speed reducing mechanism 5 that decelerates the rotation of the electric motor 4, a linear motion mechanism 6 that is a friction member operating means, a parking brake mechanism 7 that is a parking brake, a brake rotor 8, And a friction member 9.
  • the electric motor 4, the speed reduction mechanism 5, and the linear motion mechanism 6 are incorporated in, for example, a housing not shown.
  • the brake rotor 8 may be a disk type or a drum type.
  • the friction member 9 includes a brake pad or a brake shoe.
  • the linear motion mechanism 6 includes a feed screw mechanism such as a ball screw mechanism or a planetary roller screw mechanism.
  • the electric motor 4 is composed of a three-phase synchronous motor or the like.
  • the speed reduction mechanism 5 is a mechanism that reduces and transmits the rotation of the electric motor 4 to a tertiary gear 11 fixed to the rotary shaft 10, and includes a primary gear 12, an intermediate (secondary) gear 13, and a tertiary gear 11.
  • the speed reduction mechanism 5 decelerates the rotation of the primary gear 12 attached to the rotor shaft 4 a of the electric motor 4 by the intermediate gear 13 and transmits it to the tertiary gear 11 fixed to the end of the rotation shaft 10. It is possible.
  • the linear motion mechanism 6 is a mechanism that converts the rotational motion output from the speed reduction mechanism 5 into a linear motion of the linear motion portion 14 by a feed screw mechanism and causes the friction member 9 to contact or separate from the brake rotor 8. .
  • the linear motion portion 14 is supported so as to be prevented from rotating and movable in the axial direction A1.
  • a friction member 9 is provided at the outboard side end of the linear motion portion 14. By transmitting the rotation of the electric motor 4 via the speed reduction mechanism 5 to the linear motion mechanism 6, the rotational motion is converted into a linear motion, which is converted into the pressing force of the friction member 9 to generate a braking force.
  • the outboard side means that the electric brake device DB is mounted on each wheel (not shown) of the vehicle, the vehicle width direction outer side of the vehicle is called the outboard side, and the vehicle width direction center side of the vehicle is the inboard The side.
  • the parking brake mechanism 7 includes a lock member 15 and an actuator 16.
  • a plurality of locking holes are formed at regular intervals in the circumferential direction on the end face of the intermediate gear 13 on the outboard side.
  • the lock member 15 is configured to be able to be locked in any one of these locking holes.
  • a solenoid is applied as the actuator 16.
  • a lock member (solenoid pin) 15 is advanced by an actuator 16 and engaged by being fitted into the engagement hole formed in the intermediate gear 13, and the parking gear is locked by prohibiting rotation of the intermediate gear 13. Put it in a state. By retracting the lock member 15 to the actuator 16 and removing it from the locking hole, the rotation of the intermediate gear 13 is allowed and the unlocked state is achieved.
  • the control device 2 is a device that controls the electric actuator 1 (FIG. 1) that is a control target, and controls the electric motor 4 to control the brake force to follow the target brake force. It has a function.
  • the control device 2 is connected to a host ECU 3 that is a host control means of the control device 2.
  • a host ECU 3 that is a host control means of the control device 2.
  • the host ECU 3 is provided with a brake force command means 3a.
  • the brake force command means 3a is an LUT (Look Up Table) implemented by software or hardware in accordance with the output of the sensor 18a that changes according to the amount of operation of the brake pedal 18 that is a brake operation means, or software.
  • the control device 2 includes an inverter device 19.
  • the inverter device 19 includes a power circuit unit 20 provided for each electric motor 4, a motor control unit 21 that controls one or more power circuit units 20, Current detection means 22.
  • the motor control unit 21 includes a computer having a processor, a ROM (Read Only Memory) having a program executed by the processor, and other electronic circuits such as a RAM (Random Access Memory) and a coprocessor (Co-Processor). Is done.
  • the motor control unit 21 outputs a (motor) current command represented by a voltage value according to the target brake force given from the brake force command unit 3a and the estimated brake force estimated by the brake force estimation unit 17 (described later).
  • the current command is converted and given to the power circuit unit 20.
  • the motor control unit 21 has a function of outputting information such as detection values and control values regarding the electric motor 4 to the host ECU 3.
  • the power circuit unit 20 includes an inverter 20a that converts the DC power of the power source 23 into three-phase AC power used to drive the electric motor 4, and a PWM control unit 20b that controls the inverter 20a.
  • the electric motor 4 is provided with rotation angle estimation means 24 for estimating the rotation angle of a rotor (not shown).
  • the inverter 20a includes a plurality of semiconductor switching elements (not shown), and the PWM control unit 20b performs pulse width modulation on the input current command, and gives an on / off command to the gate terminal of each semiconductor switching element, for example. .
  • the motor control unit 21 includes a motor drive control unit 25 as a basic control unit.
  • the motor drive control unit 25 converts the current command based on the voltage value in accordance with the target brake force and the estimated brake force, and gives a motor operation command value including the current command to the PWM control unit 20b.
  • the motor drive control unit 25 obtains a motor current that flows from the inverter 20a to the electric motor 4 from the current detection unit 22 and performs current feedback control with respect to the target brake force. Further, the motor drive control unit 25 obtains the rotation angle of the rotor (not shown) of the electric motor 4, that is, the motor rotation angle from the rotation angle estimating means 24 so that the motor can be efficiently driven according to the motor rotation angle.
  • the current command is given to the PWM controller 20b.
  • the motor control unit 21 is provided with an estimated range changing unit 26, a recording unit 27, and the like.
  • the estimated range changing means 26 changes the limit value of the estimated range of the estimated brake force by the brake force estimating means 17 based on one or both of the target brake force and the estimated brake force.
  • the brake force estimating means 17 obtains an estimated brake force that is an estimated value of the brake force generated by pressing the friction member 9 (FIG. 1) against the brake rotor 8 (FIG. 1).
  • the brake force estimating means 17 converts a load sensor 17a that detects a pressing force when the friction member 9 (FIG. 1) presses the brake rotor 8 (FIG. 1), and converts an analog output of the load sensor 17a into a digital signal.
  • An A / D converter 17b and a relationship setting unit 17c described later are included.
  • the A / D converter 17b corresponds to a variable type in which the estimation range of the braking force is variable by an external input to a change input terminal (not shown), that is, the maximum value of the output digital signal. This is a variable type in which the maximum value of the analog input signal is variable.
  • the load sensor 17a includes, for example, a magnetic sensor 17aa (FIG. 3) and a magnetic target 17ab.
  • the magnetic target 17ab has, for example, two permanent magnets 17ba and 17ba.
  • FIGS. 1 and 3 when the friction member 9 presses the brake rotor 8, a reaction force to the inboard side acts on the linear motion mechanism 6.
  • a Hall IC As a magnetic sensor 17aa for detecting a change in magnetic field, a Hall IC with a variable dynamic range and an inexpensive price is commercially available, and is highly available.
  • a magnetoresistive element or a magnetic impedance element may be applied in addition to the Hall IC.
  • the relationship setting means 17c of the brake force estimating means 17 is a digital signal obtained by A / D converting the sensor output consisting of an analog signal by the A / D converter 17b and the reaction force of the brake force.
  • the braking force can be estimated based on the sensor output of the load sensor 17a.
  • the load sensor 17a an optical sensor other than the magnetic sensor, an eddy current sensor, or a capacitance sensor can be applied.
  • the estimated range changing unit 26 changes the limit value of the estimated range of the estimated brake force obtained by the brake force estimating unit 17 described above.
  • FIG. 4 is a diagram showing the relationship between the estimation range and the resolution of the braking force estimation means 17 of this electric brake device.
  • the resolution in each range is generally the resolution ⁇ of the A / D converter 17b. Depends on A.
  • a microcomputer In servo motor control such as the electric brake device according to the present embodiment, a microcomputer, a field programmable gate array (abbreviated as FPGA: field-programmable gate array), a digital signal processor (abbreviated as DSP: digital signal processor), etc. It is conceivable to use it.
  • FPGA field programmable gate array
  • DSP digital signal processor
  • a / D converter for the arithmetic unit, generally 10-bit (1024 divisions) to 12-bit (4096 divisions) are widely used.
  • the resolution ⁇ A of the A / D converter 17b of the brake force estimating means 17 is constant regardless of the range of the estimation range, and this A / D converter If 17b of the resolution alpha a can maximally use, the estimated braking force F2 of the estimated range (2), when the estimated braking force F1 of the estimated range (1) (where F2> F1), the estimated range (2), (1 ) Is expressed as follows.
  • Resolution in estimation range (2) F2 / ⁇ A
  • Resolution in estimation range (1) F1 / ⁇ A
  • the resolution ⁇ A of the A / D converter 17b is constant, the resolution ⁇ A is fully used, and F2> F1 regardless of the range of the estimation range.
  • the resolution F1 / ⁇ A in the estimation range (1) having a narrow measurement range is higher than the resolution F2 / ⁇ A in ().
  • the estimated range changing unit 26 determines the estimated braking force in the A / D converter 17 b of the braking force estimating unit 17 based on one or both of the target braking force and the estimated braking force. Change the limit value of the estimated range.
  • the estimation range is set to the normal range, and the estimation range changing unit 26 sets the limit value of the estimation range as necessary. change.
  • the estimated range changing means 26 has the following condition group and target brake force (here, the target brake force is an example of one or both of the target brake force and the estimated brake force):
  • the target brake force is an example of one or both of the target brake force and the estimated brake force:
  • the threshold in the estimated range is exceeded, the absolute value of the difference between the target braking force and the threshold is less than or equal to a predetermined value, and the amount of change in the target braking force, for example, the differential value is greater than or equal to a predetermined value, and
  • the limit value of the estimation range of the A / D converter 17b is changed to be larger than the limit value before the change based on a condition including at least one of them.
  • the threshold value is determined by the result of the test or simulation, and is stored in the recording means 27 so as to be rewritable.
  • the target braking force exceeds the threshold in the estimated range as a precondition for expanding the limit value of the estimated range.
  • it is possible to prevent frequent changes in the estimation range by setting a threshold value that is larger than a threshold value for reducing the estimation range, which will be described later, and providing hysteresis.
  • the estimated range changing means 26 expands the limit value of the estimated range based on the excess amount, the calculation process can be simplified and the calculation processing load of the control calculation can be reduced.
  • the estimated range changing means 26 expands the limit value of the estimated range based on the amount of change of the target brake force, for example, a differential value
  • the estimated range is increased according to the increasing tendency of the target brake force, for example, the target brake force increases sharply.
  • the limit value of can be expanded. For example, when the target braking force approaches the threshold value steeply, it is predicted that the threshold value will be exceeded immediately after that (even if the absolute value of the deviation between the threshold value and the target braking force is within a predetermined value).
  • the limit value of the estimated range can be quickly changed.
  • the limit value of the estimated range is changed when the target braking force exceeds the threshold value for a short time. It can be excluded from the conditions.
  • the estimated range changing means 26 is configured so that the following condition group, the target brake force (the target brake force of one or both of the target brake force and the estimated brake force is taken as an example here) is the estimated range.
  • the target brake force the target brake force of one or both of the target brake force and the estimated brake force is taken as an example here
  • the target brake force is the estimated range.
  • the target braking force is below the threshold value in the estimated range.
  • the threshold value is set smaller than the threshold value for increasing the estimated range again after the estimated range is reduced and a hysteresis is provided, frequent changes in the estimated range can be prevented.
  • the estimated range changing unit 26 reduces the limit value of the estimated range based on the determination that the estimated range is below the threshold, the calculation processing load of the control calculation can be reduced.
  • the estimated range changing means 26 reduces the limit value of the estimated range based on the amount of change of the target brake force, for example, a differential value, for example, it is predicted that the target range will soon fall below the threshold according to the decreasing tendency of the target brake force.
  • the limit value of the estimation range can be reduced.
  • the limit value of the estimated range is reduced based on the time when the target brake force falls below the threshold, the limit value of the estimated range is changed when the time when the target brake force falls below the threshold is a short time It can be excluded from the conditions.
  • FIG. 5 is a flowchart illustrating an example in which threshold values for the target brake force are provided when the estimated range of the estimated brake force is changed in the electric brake device.
  • the estimated range changing means 26 sets a target brake force threshold F the (F the : target brake force threshold (range expansion)) when expanding the estimated range (step a1), and the estimated range.
  • F the target brake force threshold
  • the target brake force threshold F is determined by multiplying the measurement range R n (R 1 ⁇ R 2 ⁇ %) Of the estimated brake force by an arbitrary constant ⁇ , and the target brake force threshold F thd is arbitrary in the measurement range R n . It is determined by multiplying by a constant ⁇ . However, 0 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ 1. These target brake force thresholds are respectively stored in the recording means 27 and read out as necessary.
  • the estimated range changing means 26 determines whether or not the target brake force F r given from the host ECU 3 is equal to or greater than the target brake force threshold F the (step a3).
  • the estimated range changing means 26 "1" limit value n of the current estimation range (measuring range) larger (Step a4).
  • This limit value n indicates, for example, the number of limit value patterns in an estimated range prepared by numbering in ascending order. Thereafter, this process is terminated.
  • step a5 the estimation range changing unit 26 when the target braking force F r from the upper ECU3 is determined to be equal to or less than the target brake force threshold F thd (step a5: yes), the estimated range changing means 26, The limit value n of the current estimated range (measurement range) is reduced by “1” (step a6). Thereafter, this process is terminated.
  • Target braking force F r is the determination of the target braking force threshold F thd larger (Step a5: no), the process ends.
  • the threshold value determination is performed as a precondition for enlarging and reducing the limit value of the estimation range (steps a3 and a5), and so-called predetermined hysteresis is provided. It is possible to prevent a change in the estimated range.
  • FIG. 6 is a flowchart illustrating an example in which a target brake, a threshold value, and a counter are provided when the estimated range of the estimated brake force is changed.
  • the estimated range changing means 26 sets a target brake force threshold value F th (F th : target brake force threshold) (step b1).
  • the target brake force threshold F th is determined by multiplying the measurement range R n (R 1 ⁇ R 2 ⁇ ...) Of the estimated brake force by an arbitrary constant ⁇ . However, 0 ⁇ ⁇ ⁇ 1.
  • estimation range changing unit 26 determines whether or not the target braking force F r from the upper ECU3 is target braking force threshold F th or more (step b2). In the determination of the target braking force F r is the target braking force threshold F th or more (Step b2: yes), the estimation range changing unit 26 performs updating to add "1" to the counter C e for range extension ( step b3), and resets the counter C d for the range reduced to "0" (step b4). Counter C e is for target braking force F r is measuring the time from when the target braking force threshold F th or more.
  • the estimated range changing means 26 determines whether or not the counter C e updated in step b3 is equal to or greater than the range expansion counter threshold C the (C the : counter threshold (range expansion)) (step b5). ).
  • Counter C e is the determination of the at counter threshold C the above (Step b5: yes), the estimated range changing means 26 "1" larger limit value n of the current estimation range (step b6). Thereafter, this process is terminated.
  • Counter C e is the determination that it is less than the counter threshold C the (Step b5: no), the process ends.
  • step b2 it is determined in the target braking force F r is less than the target brake force threshold F th (Step b2: no), the counter C e for range extension is reset to "0" (step b7), range Update is performed by adding “1” to the counter C d for reduction (step b8).
  • counter C d is for target braking force F r is measuring the time from when below the target braking force threshold F th.
  • the estimated range changing means 26 determines whether or not the counter C d updated in step b8 is equal to or greater than the range reduction counter threshold C thd (C thd : counter threshold (range reduction)) (step b9). ).
  • step b9: yes the estimation range changing unit 26 reduces the limit value n of the current estimation range by “1” (step b10). Thereafter, this process is terminated. If it is determined that the counter C d is less than the counter threshold C thd (step b9: no), this process is terminated.
  • the estimation range changing means 26 is configured by a hardware function or a software function on a processor (not shown) capable of performing the same operation as described above and outputting the result using the above-described implementation model. Has been.
  • the A / D converter 17b of the brake force estimating means 17 is a variable type that makes the estimated range of the estimated brake force variable by an external input.
  • the estimation range is set to the normal range, and the estimation range is expanded as necessary by the estimation range changing means 26. This makes it easy to achieve the necessary resolution for each estimated range of the estimated braking force. Therefore, it is possible to improve the control accuracy in the normal range without configuring a highly accurate load sensor as in the prior art.
  • rotor angular speed estimation means 28 for estimating the rotational angular speed of a brake rotor (not shown) may be provided, and temperature estimation means 29 may be provided in the control device 2.
  • the temperature estimation means 29 estimates the temperature of the brake rotor 8 (FIG. 1) or the friction member 9 (FIG. 1) from the rotational angular speed estimated by the rotor angular speed estimation means 28.
  • the estimation range changing means 26 sets the limit value of the estimation range when the temperature estimated by the temperature estimation means 29 is equal to or higher than a predetermined temperature. It expands from the limit value before the change.
  • the estimated range changing unit 26 changes the limit value of the estimated range to be smaller than the limit value before the change when the temperature estimated by the temperature estimating unit 29 becomes lower than a predetermined temperature.
  • the determined temperature is determined by a result of a test, simulation, or the like, and is stored in the recording unit 27 so as to be rewritable.
  • the friction member 9 (FIG. 1) is pressed against the brake rotor 8 (FIG. 1), the friction coefficient between the friction member 9 (FIG. 1) and the brake rotor 8 (FIG. 1) varies depending on the temperature.
  • the limit value of the estimated range is changed based on the heat generated by pressing the friction member 9 (FIG. 1) against the brake rotor 8 (FIG. 1).
  • FIG. 7 is a flowchart showing an example in which the estimated range of the estimated braking force is changed based on the calorific value of each wheel estimated from the braking force and the vehicle speed in a vehicle equipped with this electric brake device.
  • the symbol “ ⁇ ” at the beginning of the code indicates an estimated value, but the symbol “ ⁇ ” may be omitted. Further, in FIG. 7, “ ⁇ ” is added on other symbols.
  • the temperature estimation means 29 estimates a roughly generated heat flow rate ⁇ J xx of each wheel (step c2).
  • the generated heat flow rate ⁇ J xx is obtained by multiplying the value obtained by dividing the brake force F bxx of each wheel by the total brake force F ball by the heat flow rate ⁇ J estimated in step c1.
  • the temperature estimation means 29 estimates the temperature ⁇ T (k) of the friction member 9 (FIG. 1) from the generated heat flow rate ⁇ J xx for each wheel (step c3).
  • the estimated range R n is, FIG. 5 described above using a threshold, a counter for estimated temperature can be changed by the processing shown in FIG 6. Thereafter, this process is terminated.
  • the temperature ⁇ ⁇ ⁇ T (k) may be estimated by providing a temperature sensor such as a thermistor separately in the electric brake device.
  • the rough heat generation amount of each wheel is estimated from the braking force and the vehicle speed, and the estimation range is changed based on the heat generation amount.
  • the change of the estimation range based on the heat generation is for the purpose of dealing with the fluctuation of the friction coefficient of the friction member 9 (FIG. 1), and the estimated braking force is estimated to be affected by the friction coefficient such as a brake load.
  • An example is shown. According to this configuration, it is possible to finely change the limit value of the estimation range corresponding to the variation of the friction coefficient of the friction member 9 (FIG. 1) and the brake rotor 8 (FIG. 1).
  • the brake force estimation means 17 is estimated by the rotation angle estimation means 24 within a predetermined time after the limit value of the estimated brake force estimation range is changed by the estimation range change means 26.
  • the estimated braking force may be obtained based on a predetermined relationship between the rotation angle and the braking force.
  • the predetermined time is determined by the result of the test or simulation, and is stored in the recording means 27 so as to be rewritable.
  • FIG. 8 is a flowchart showing an example in which the electric motor 4 (FIG. 1) is controlled without using the brake force estimation result within a predetermined time after changing the limit value of the estimated range of the estimated brake force.
  • a time for changing the estimated range of the braking force is required, such as a rewrite time of a register of a sensor element (not shown)
  • the predetermined time after the estimated range is changed is the braking force.
  • An example is shown in which the electric brake device is controlled without using the estimation result. For example, if the relationship between the rotation angle of the electric motor 4 (FIG. 1) and the braking force is measured to some extent in advance, rough control is possible although the control accuracy is reduced, and the predetermined time is a short time. If there is, there is no problem in practical use.
  • step d2 determines whether or not the value of the counter Cid is “0” or more.
  • step d5 When it is determined that the value of the counter C id is equal to or greater than “0” (step d5: yes), the brake force estimation means 17 (FIG. 2) sets the target motor angle ⁇ r to the target value r, and the motor angle ⁇ Is set to the control amount y (step d6). Thereafter, the process proceeds to step d9.
  • step d5 When it is determined that the value of the counter C id is less than “0” (step d5: no), the brake force estimating means 17 (FIG. 2) resets the counter C id to “0” (step d7). Then, we set the target braking force F r to the target value r, setting the estimated braking force Fb on the controlled variable y (step d8).
  • step d9 a control calculation is executed, and then this process is terminated.
  • FIG. 9 is a diagram showing a change in the estimated range according to a change in the braking force when the operation of any of FIGS. 5 to 8 is implemented.
  • the estimated range changing unit 26 FOG. 2
  • control accuracy can be improved and costs can be reduced.
  • the target braking force is used as the braking force, it is preferable because the estimated range can be changed quickly, but the estimated braking force can also be used. Alternatively, both of the above may be used.
  • the brake force estimating means 17 is a digital signal obtained by A / D converting the rotation angle formed by the analog signal estimated by the rotation angle estimating means 24 with an A / D converter 17b.
  • the relationship between the signal and the braking force is obtained in advance by testing or simulation and stored in the relationship setting means 17c, and the estimated braking force is calculated based on the relationship between the rotation angle from the rotation angle estimating means 24 and the target braking force. You may ask.
  • the relationship between the motor current from the current detection means 22 (FIG. 2) and the target brake force is stored in the relationship setting means 17c in the same manner as described above, and based on these motor current and target brake force.
  • the estimated braking force may be obtained.
  • Control device 4 Electric motor 6 .
  • Linear motion mechanism (friction member operation means) DESCRIPTION OF SYMBOLS 8 .
  • Brake rotor 9 ... Friction member 17 .
  • Brake force estimation means 24 ...
  • Rotation angle estimation means 26 ...
  • Estimation range change means 28 ...
  • Rotor angular velocity estimation means 29 ...
  • Temperature estimation means DB ... Electric brake device

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Braking Systems And Boosters (AREA)
  • Regulating Braking Force (AREA)

Abstract

An electric braking device is provided such that the cost can be reduced while achieving improved control accuracy in a regular range of use. This electric braking device is provided with: a brake rotor; a friction member; a friction member actuation means; an electric motor (4); a braking force estimation means (17) for determining an estimated braking force, that is, an estimated value of a braking force generated when the friction member is pressed against the brake rotor; and a control device (2) for controlling the electric motor (4) such that the estimated braking force approaches a target braking force. The control device (2) has an estimation range change means (26) for changing, on the basis of the target braking force and/or the estimated braking force, or both, limit values of the estimated braking force estimation range used by the braking force estimation means (17).

Description

電動ブレーキ装置Electric brake device 関連出願Related applications
 本出願は、2015年6月11日出願の特願2015-118585の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2015-118585 filed on June 11, 2015, and is incorporated herein by reference in its entirety.
 この発明は、電動ブレーキ装置に関し、常用域において制御精度の向上を図りながら、コスト低減を図ることができる技術に関する。 The present invention relates to an electric brake device, and more particularly to a technique capable of reducing costs while improving control accuracy in a normal range.
 電動ブレーキ装置は、例えば、駆動源であるモータ、減速機、直動機構からなる摩擦部材操作手段、および車輪と共に回転するブレーキロータ等によって構成される。この電動ブレーキ装置は、運転者のペダル操作量(踏力、ストローク等)や車両の状態から適切なブレーキ力を発生させるように、摩擦部材とブレーキロータとの間の摩擦力が制御される。その際、ブレーキ力を精度良く制御するために、前記ブレーキ力を推定するブレーキ力センサが用いられる。このブレーキ力センサとして、本件出願人は磁気センサを用いた荷重センサを適用する技術を提案している(特許文献1~6等)。 The electric brake device includes, for example, a motor that is a drive source, a speed reducer, a friction member operating means including a linear motion mechanism, and a brake rotor that rotates together with wheels. In this electric brake device, the frictional force between the friction member and the brake rotor is controlled so as to generate an appropriate braking force based on the pedal operation amount (stepping force, stroke, etc.) of the driver and the state of the vehicle. At that time, a brake force sensor that estimates the brake force is used to control the brake force with high accuracy. As the brake force sensor, the present applicant has proposed a technique of applying a load sensor using a magnetic sensor (Patent Documents 1 to 6, etc.).
特開2013-29413号公報JP 2013-29413 A 特開2013-32970号公報JP 2013-32970 A 特開2013-83550号公報JP 2013-83550 A 特開2013-257000号公報JP 2013-257000 A 特開2014-16307号公報JP 2014-16307 A 特開2014-134450号公報JP 2014-134450 A
 一般に、車両用ブレーキは例えば通常0.2G以下程度の減速度で使用されることが多い。その際に運転者は車両の挙動に合わせてペダル等を操作し細かくブレーキの制御を行っている。このため、ブレーキ力を精度良く制御するためのブレーキ力センサにおいては、運転者に違和感を抱かせないために十分な検出精度が求められる。一方、大きな車両減速度が必要となる急制動時においては、一般に運転者がフィーリングに合わせてペダルを細かく制御するようなケースは稀であり、ブレーキ力センサの検出精度は比較的粗くても問題ないと考えられる。 Generally, vehicle brakes are usually used at a deceleration of about 0.2 G or less, for example. At that time, the driver controls the brake finely by operating a pedal or the like in accordance with the behavior of the vehicle. For this reason, in the brake force sensor for controlling the brake force with high accuracy, sufficient detection accuracy is required in order not to make the driver feel uncomfortable. On the other hand, during sudden braking where a large vehicle deceleration is required, it is rare for the driver to control the pedal finely according to the feeling, and even if the detection accuracy of the brake force sensor is relatively rough. There seems to be no problem.
 また、前記ブレーキ力を推定する手段として、従来技術のような、直動機構の軸方向荷重を検出するブレーキ荷重センサが比較的安価に構成できるため有用である。その場合、電動ブレーキ装置は、摩擦部材とブレーキロータとの間の押圧力を制御する。その際、摩擦部材とブレーキロータとの間の摩擦係数はその温度によって変化する。例えば、高速走行時から激しい制動を繰り返す場合などにおいて、摩擦部材とブレーキロータの摩擦係数が1/3程度になる場合があることが知られている(フェード現象)。 Also, as a means for estimating the brake force, a brake load sensor for detecting the axial load of the linear motion mechanism as in the prior art can be constructed at a relatively low cost, which is useful. In that case, the electric brake device controls the pressing force between the friction member and the brake rotor. In that case, the friction coefficient between a friction member and a brake rotor changes with the temperature. For example, it is known that the friction coefficient between the friction member and the brake rotor may be about 3 (fading phenomenon) when intense braking is repeated from high speed traveling.
 よって、前記ブレーキ荷重センサにはフェード現象を想定した押圧力を検出するダイナミックレンジが求められる。しかし、結果としてフェード現象が発生しない常用域において十分な分解能を得ることが困難となる場合がある。前記の通り、ブレーキ力センサを比較的頻度の低い状況を想定したダイナミックレンジに設定すると、常用域において十分な分解能を得るために高精度な荷重センサを構成する必要が生じ、高コストとなる恐れがある。 Therefore, the brake load sensor is required to have a dynamic range for detecting a pressing force assuming a fade phenomenon. However, as a result, it may be difficult to obtain sufficient resolution in the normal range where the fade phenomenon does not occur. As described above, if the brake force sensor is set to a dynamic range that assumes a relatively infrequent situation, it is necessary to configure a high-accuracy load sensor in order to obtain sufficient resolution in the normal range, which may result in high costs. There is.
 この発明の目的は、常用域において制御精度の向上を図りながら、コスト低減を図ることができる電動ブレーキ装置を提供することである。 An object of the present invention is to provide an electric brake device capable of reducing costs while improving control accuracy in a normal range.
 以下、この発明について、理解を容易にするために、便宜上実施形態の符号を参照して説明する。 Hereinafter, in order to facilitate understanding, the present invention will be described with reference to the reference numerals of the embodiments for convenience.
 この発明の電動ブレーキ装置は、ブレーキロータ8と、このブレーキロータ8に接触させる摩擦部材9と、この摩擦部材9を前記ブレーキロータ8に接触させる摩擦部材操作手段6と、この摩擦部材操作手段6を駆動する電動モータ4と、前記摩擦部材9を前記ブレーキロータ8に押し付けることにより発生するブレーキ力の推定値である推定ブレーキ力を求めるブレーキ力推定手段17と、前記電動モータ4を制御して前記推定ブレーキ力を目標ブレーキ力に追従制御する制御装置2とを備える電動ブレーキ装置であって、
 前記制御装置2は、前記目標ブレーキ力および前記推定ブレーキ力のいずれか一方または両方に基づいて、前記ブレーキ力推定手段17による前記推定ブレーキ力の推定範囲の限界値を変更する推定範囲変更手段26を有する。
The electric brake device according to the present invention includes a brake rotor 8, a friction member 9 that makes contact with the brake rotor 8, friction member operation means 6 that makes the friction member 9 contact the brake rotor 8, and this friction member operation means 6. An electric motor 4 for driving the brake, a brake force estimating means 17 for obtaining an estimated brake force which is an estimated value of a brake force generated by pressing the friction member 9 against the brake rotor 8, and controlling the electric motor 4. An electric brake device including a control device 2 that controls the estimated brake force to follow the target brake force,
The controller 2 changes the limit value of the estimated range of the estimated brake force by the brake force estimating means 17 based on one or both of the target brake force and the estimated brake force. Have
 この構成によると、この電動ブレーキ装置を搭載した車両の運転者がブレーキ操作を行うことで、制御装置2は、電動モータ4を制御して摩擦部材操作手段6を駆動する。これにより摩擦部材操作手段6は、摩擦部材9をブレーキロータ8に押し付けることでブレーキ力が発生する。制御装置2は電動モータ4を制御するとき、ブレーキ力推定手段17で求めた推定ブレーキ力を目標ブレーキ力に追従制御する。 According to this configuration, the control device 2 controls the electric motor 4 to drive the friction member operating means 6 when the driver of the vehicle equipped with the electric brake device performs a brake operation. Thereby, the friction member operating means 6 generates a braking force by pressing the friction member 9 against the brake rotor 8. When controlling the electric motor 4, the control device 2 controls the estimated brake force obtained by the brake force estimating means 17 so as to follow the target brake force.
 制御装置2の推定範囲変更手段26は、目標ブレーキ力および推定ブレーキ力のいずれか一方または両方に基づいて、ブレーキ力推定手段17による推定ブレーキ力の推定範囲の限界値を変更する。電動ブレーキ装置のように、推定ブレーキ力における常用域とそうでない領域がある程度想定できる場合、例えば、推定範囲を常用域に設定し、必要に応じて推定範囲の限界値を変更する。これにより、推定ブレーキ力の推定範囲毎に必要な分解能を達成することが容易になる。したがって、従来技術のような高精度な荷重センサを構成することなくコスト低減をすることができ、常用域において制御精度の向上を図り、運転者に違和感を抱かせないために十分な検出精度が得られる。また、急制動に必要な広範囲のブレーキ力の検出も可能となる。 The estimated range changing means 26 of the control device 2 changes the limit value of the estimated range of the estimated brake force by the brake force estimating means 17 based on one or both of the target brake force and the estimated brake force. When the normal range and the non-normal range in the estimated braking force can be assumed to some extent as in the electric brake device, for example, the estimation range is set to the normal range, and the limit value of the estimation range is changed as necessary. This makes it easy to achieve the necessary resolution for each estimated range of the estimated braking force. Therefore, it is possible to reduce the cost without configuring a highly accurate load sensor as in the prior art, to improve the control accuracy in the normal range, and to provide sufficient detection accuracy to prevent the driver from feeling uncomfortable. can get. In addition, it is possible to detect a wide range of braking force necessary for sudden braking.
 前記推定範囲変更手段26は、次の条件群、
 前記目標ブレーキ力および前記推定ブレーキ力のいずれか一方または両方が前記推定範囲における閾値を超過したとき、
 前記いずれか一方または両方のブレーキ力と前記推定範囲における閾値との偏差の絶対値が所定値以内かつ前記いずれか一方または両方のブレーキ力の変化量が所定値以上であるとき、および
 前記いずれか一方または両方のブレーキ力が前記閾値を超過している超過時間が所定時間を超えたとき、
 のうち、少なくともいずれか一つ以上の条件に基づいて、前記推定範囲の限界値を変更前の限界値より拡大するよう変更しても良い。前記閾値は、試験やシミュレーション等の結果により定められる(以下同じ)。
The estimated range changing means 26 includes the following condition group:
When one or both of the target braking force and the estimated braking force exceed a threshold value in the estimated range,
When the absolute value of the deviation between one or both of the braking forces and the threshold value in the estimated range is within a predetermined value and the amount of change in either one or both of the braking forces is greater than or equal to a predetermined value, and either When the excess time when one or both braking forces exceed the threshold exceeds a predetermined time,
The limit value of the estimation range may be changed to be larger than the limit value before the change based on at least one of the conditions. The threshold value is determined by results of tests, simulations, and the like (hereinafter the same).
 この構成によると、推定範囲の限界値を拡大するための前提条件として、目標ブレーキ力および推定ブレーキ力の少なくとも一方のブレーキ力、例えば目標ブレーキ力が前記推定範囲における閾値を超過したこととしている。このとき、限界値拡大後における後述する推定範囲の限界値を縮小するための閾値より大きな値を閾値としてヒステリシスを設けると、頻繁な推定範囲の変化を防止することができて好適である。また推定範囲変更手段26が前記超過量に基づいて前記推定範囲の限界値を拡大する場合、演算処理を簡単化し、制御演算の演算処理負荷を低減することができる。 According to this configuration, as a precondition for expanding the limit value of the estimated range, at least one of the target brake force and the estimated brake force, for example, the target brake force, exceeds the threshold value in the estimated range. At this time, it is preferable to provide hysteresis with a threshold value that is larger than a threshold value for reducing the limit value of the estimation range described later after the limit value is expanded, because frequent changes in the estimation range can be prevented. Further, when the estimated range changing means 26 expands the limit value of the estimated range based on the excess amount, the calculation process can be simplified and the calculation processing load of the control calculation can be reduced.
 推定範囲変更手段26が前記目標ブレーキ力の変化量例えば微分値に基づいて前記推定範囲の限界値を拡大する場合、目標ブレーキ力が急峻に増加する場合など目標ブレーキ力の傾向に従って、前記推定範囲の限界値を拡大することができる。例えば、目標ブレーキ力が増加して前記閾値に対して急峻に接近する場合、その後すぐに閾値を超過することを予測し、前記推定範囲の限界値を速やかに変更することができる。推定範囲変更手段26が超過時間に基づいて前記推定範囲の限界値を拡大する場合、目標ブレーキ力が定められた僅かな時間だけ閾値を超過するような場合、前記推定範囲の限界値を変更する条件から除外し得る。前記定められた僅かな時間は、試験やシミュレーション等の結果により定められる。 When the estimated range changing means 26 expands the limit value of the estimated range based on the amount of change of the target brake force, for example, a differential value, or when the target brake force increases sharply, the estimated range changes according to the tendency of the target brake force. The limit value of can be expanded. For example, when the target braking force increases and approaches the threshold value steeply, it is predicted that the threshold value will be exceeded immediately thereafter, and the limit value of the estimated range can be changed quickly. When the estimated range changing means 26 expands the limit value of the estimated range based on the excess time, the limit value of the estimated range is changed when the target braking force exceeds the threshold value for a short time. It can be excluded from the conditions. The predetermined short time is determined by a result of a test or simulation.
 前記推定範囲変更手段26は、次の条件群、
 前記目標ブレーキ力および前記推定ブレーキ力のいずれか一方または両方が前記推定範囲における閾値を下回ったとき、
 前記いずれか一方または両方のブレーキ力と前記推定範囲における閾値との偏差の絶対値が所定値以内かつ前記いずれか一方または両方のブレーキ力の変化量が所定値以下であるとき、および
 前記いずれか一方または両方のブレーキ力が前記閾値を下回っている時間が所定時間を超えたとき、
 のうち、少なくともいずれか一つを含む条件に基づいて、前記推定範囲の限界値を変更前の限界値より縮小するよう変更しても良い。前記推定範囲は、試験やシミュレーション等の結果により定められる(以下同じ)。
The estimated range changing means 26 includes the following condition group:
When one or both of the target braking force and the estimated braking force falls below a threshold value in the estimated range,
When the absolute value of the deviation between one or both of the braking forces and the threshold value in the estimated range is within a predetermined value and the amount of change in either one or both of the braking forces is less than or equal to a predetermined value; When the time during which one or both braking forces are below the threshold exceeds a predetermined time,
The limit value of the estimation range may be changed to be smaller than the limit value before the change based on a condition including at least one of them. The estimated range is determined by results of tests, simulations, and the like (hereinafter the same).
 この構成によると、推定範囲の限界値を縮小するための前提条件として、目標ブレーキ力および推定ブレーキ力の少なくとも一方のブレーキ力、例えば目標ブレーキ力が前記推定範囲における閾値を下回ることを前提条件としている。このとき、前記縮小する閾値について、推定限界値縮小後における再度限界値を拡大するための閾値より前記縮小する閾値を小さく設定してヒステリシスを設けると、頻繁な推定範囲の変化を防止し得るため好適である。また推定範囲変更手段26が前記差分の絶対値に基づいて前記推定範囲の限界値を縮小する場合、簡潔な判断とすることができて制御演算の演算処理負荷を低減し得る。 According to this configuration, as a precondition for reducing the limit value of the estimated range, it is assumed that at least one of the target brake force and the estimated brake force, for example, the target brake force is below a threshold value in the estimated range. Yes. At this time, if the threshold value for reduction is set smaller than the threshold value for expanding the limit value again after reduction of the estimated limit value and a hysteresis is provided, frequent changes in the estimation range can be prevented. Is preferred. Further, when the estimated range changing means 26 reduces the limit value of the estimated range based on the absolute value of the difference, it can be a simple determination, and the calculation processing load of the control calculation can be reduced.
 推定範囲変更手段26が前記目標ブレーキ力の変化量例えば微分値に基づいて前記推定範囲の限界値を縮小する場合、例えば、目標ブレーキ力の低下傾向に従って、すぐに閾値を下回ることを予測して、前記推定範囲の限界値を縮小し得る。前記目標ブレーキ力が前記閾値を下回る時間に基づいて前記推定範囲の限界値を縮小する場合、前記目標ブレーキ力が僅かな時間だけ前記閾値を下回る場合において、前記推定範囲の限界値を変更する条件から除外し得る。 When the estimated range changing means 26 reduces the limit value of the estimated range based on the amount of change of the target brake force, for example, a differential value, for example, it is predicted that the target range will soon fall below the threshold according to the decreasing tendency of the target brake force. The limit value of the estimation range can be reduced. When the limit value of the estimated range is reduced based on the time when the target brake force falls below the threshold value, the condition for changing the limit value of the estimated range when the target brake force falls below the threshold value for a short time Can be excluded.
 尚、前記目標ブレーキ力を用いる代わりに推定ブレーキ力を用いても良く、あるいはその両方を用いても良い。また、前記微分値は、閾値との差分の微分値を用いてもよい。 Note that the estimated braking force may be used instead of the target braking force, or both may be used. The differential value may be a differential value of a difference from a threshold value.
 前記電動モータ4の回転角度を推定する回転角推定手段24を設け、前記ブレーキ力推定手段17は、前記推定範囲変更手段26により前記推定ブレーキ力の推定範囲の限界値を変更した後、定められた時間内において、前記回転角推定手段24で推定された前記回転角度と前記ブレーキ力との定められた関係に基づいて、前記推定ブレーキ力を求めても良い。前記定められた時間、前記定められた関係は、それぞれ試験やシミュレーション等の結果により定められる。 A rotation angle estimating means 24 for estimating the rotation angle of the electric motor 4 is provided, and the brake force estimating means 17 is determined after the estimated range changing means 26 has changed the limit value of the estimated range of the estimated brake force. The estimated braking force may be obtained based on a predetermined relationship between the rotational angle estimated by the rotational angle estimating means 24 and the braking force within a predetermined time. The predetermined time and the predetermined relationship are determined by the results of tests and simulations, respectively.
 推定ブレーキ力の推定範囲の限界値を変更するための時間が必要な場合において、推定範囲の限界値を変更した後、定められた時間内は、制御装置2は、ブレーキ力センサ等によるブレーキ力推定結果を用いずに電動ブレーキ装置の制御を行う。つまり回転角推定手段24で推定された回転角度とブレーキ力との関係を事前にある程度測定しておけば、ブレーキ力センサ等を用いるものより制御精度は低下するものの大まかな制御は可能であり、前記定められた時間が僅かな時間であれば実用上問題ないと考えられる。 When it is necessary to change the limit value of the estimated range of the estimated brake force, after changing the limit value of the estimated range, the control device 2 uses the brake force sensor or the like for a predetermined time. The electric brake device is controlled without using the estimation result. In other words, if the relationship between the rotation angle estimated by the rotation angle estimation means 24 and the braking force is measured to some extent, rough control is possible although the control accuracy is lower than that using a braking force sensor or the like. If the predetermined time is a short time, it is considered that there is no practical problem.
 前記ブレーキ力推定手段17が、前記摩擦部材9が前記ブレーキロータ8を押圧するときの押圧力を推定する荷重センサを含むものであっても良い。 The brake force estimating means 17 may include a load sensor that estimates a pressing force when the friction member 9 presses the brake rotor 8.
 前記ブレーキロータ8の回転角速度を推定するロータ角速度推定手段28を設け、
 前記制御装置2に、前記ロータ角速度推定手段28で推定された前記回転角速度から前記ブレーキロータ8の温度を推定する温度推定手段29を設け、
 前記推定範囲変更手段26は、前記温度推定手段29で推定された温度が定められた温度以上となったとき前記推定範囲の限界値を変更前の限界値より拡大し、前記温度推定手段29で推定された温度が定められた温度未満となったとき前記推定範囲の限界値を変更前の限界値より縮小するよう変更しても良い。
 前記定められた温度は、試験やシミュレーション等の結果により定められる。
Rotor angular velocity estimating means 28 for estimating the rotational angular velocity of the brake rotor 8 is provided,
The control device 2 is provided with temperature estimation means 29 for estimating the temperature of the brake rotor 8 from the rotational angular speed estimated by the rotor angular speed estimation means 28,
The estimated range changing unit 26 expands the limit value of the estimated range from the limit value before the change when the temperature estimated by the temperature estimating unit 29 is equal to or higher than a predetermined temperature, and the temperature estimating unit 29 When the estimated temperature becomes lower than a predetermined temperature, the limit value of the estimated range may be changed to be smaller than the limit value before the change.
The predetermined temperature is determined based on results of tests, simulations, and the like.
 摩擦部材9をブレーキロータ8に押し付けるとき、摩擦部材9とブレーキロータ8の摩擦係数はその温度によって変化する。そうすると、摩擦部材9をブレーキロータ8に押し付けることに起因する発熱に基づいて、推定範囲の限界値を変更する。この構成によると、温度推定手段29は、ロータ角速度推定手段28で推定された回転角速度からブレーキロータ8の温度を推定する。推定範囲変更手段26は、推定された温度が定められた温度以上となったとき推定範囲の限界値を変更前の限界値より拡大する。推定範囲変更手段26は、推定された温度が定められた温度未満となったとき推定範囲の限界値を変更前の限界値より縮小する。したがって、摩擦部材9とブレーキロータ8の摩擦係数の変動に対応して推定範囲の限界値を木目細かく変更することができる。 When the friction member 9 is pressed against the brake rotor 8, the friction coefficient between the friction member 9 and the brake rotor 8 changes depending on the temperature. Then, the limit value of the estimated range is changed based on the heat generated due to pressing the friction member 9 against the brake rotor 8. According to this configuration, the temperature estimating means 29 estimates the temperature of the brake rotor 8 from the rotational angular speed estimated by the rotor angular speed estimating means 28. The estimated range changing means 26 expands the limit value of the estimated range from the limit value before the change when the estimated temperature is equal to or higher than a predetermined temperature. The estimated range changing means 26 reduces the limit value of the estimated range from the limit value before the change when the estimated temperature becomes lower than the predetermined temperature. Therefore, it is possible to finely change the limit value of the estimation range corresponding to the variation of the friction coefficient between the friction member 9 and the brake rotor 8.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、この発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、この発明に含まれる。 Any combination of at least two configurations disclosed in the claims and / or the specification and / or the drawings is included in the present invention. In particular, any combination of two or more of each claim in the claims is included in the invention.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。 The present invention will be understood more clearly from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are for illustration and description only and should not be used to define the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same reference numerals in a plurality of drawings indicate the same or corresponding parts.
この発明の実施形態に係る電動ブレーキ装置の概略構造を示す図である。It is a figure showing the schematic structure of the electric brake equipment concerning the embodiment of this invention. 同電動ブレーキ装置の制御系のブロック図である。It is a block diagram of a control system of the electric brake device. 同電動ブレーキ装置のブレーキ力推定手段の一例を概略示す図である。It is a figure which shows schematically an example of the brake force estimation means of the same electric brake device. 同電動ブレーキ装置のブレーキ力推定手段の推定範囲と分解能の関係を示す図である。It is a figure which shows the relationship between the estimation range of the brake force estimation means of the same electric brake device, and resolution. 同電動ブレーキ装置において、推定ブレーキ力の推定範囲を変更する際、目標ブレーキ力に対する閾値をそれぞれ設ける例を示すフローチャートである。5 is a flowchart illustrating an example in which a threshold value for a target brake force is provided when changing the estimated range of the estimated brake force in the electric brake device. 同推定ブレーキ力の推定範囲を変更する際、目標ブレーキと閾値、およびカウンタを設ける例を示すフローチャートである。It is a flowchart which shows the example which provides a target brake, a threshold value, and a counter when changing the estimation range of the estimated brake force. この発明の他の実施形態に係る電動ブレーキ装置を搭載する車両において、ブレーキ力および車速から推定される各輪の発熱量に基づいて、推定ブレーキ力の推定範囲を変更する例を示すフローチャートである。7 is a flowchart showing an example of changing an estimated range of an estimated brake force based on a heat generation amount of each wheel estimated from a brake force and a vehicle speed in a vehicle equipped with an electric brake device according to another embodiment of the present invention. . 同推定ブレーキ力の推定範囲の限界値を変更した後、定められた時間内は、ブレーキ力推定結果を用いずに電動モータの制御を行う例を示すフローチャートである。6 is a flowchart illustrating an example in which the electric motor is controlled without using the brake force estimation result within a predetermined time after changing the limit value of the estimated range of the estimated brake force. 同ブレーキ力の変化に応じた推定範囲の変化を示す図である。It is a figure which shows the change of the estimation range according to the change of the brake force. この発明のさらに他の実施形態に係る電動ブレーキ装置のブレーキ力推定手段の例を示すブロック図である。It is a block diagram which shows the example of the brake force estimation means of the electric brake device which concerns on further another embodiment of this invention.
 この発明の実施形態に係る電動ブレーキ装置を図1ないし図6と共に説明する。図1に示すように、電動ブレーキ装置DBは、電動アクチュエータ1と、制御装置2と、ブレーキ力推定手段17(図2)とを有する。先ず、電動アクチュエータ1について説明する。 An electric brake device according to an embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, the electric brake device DB includes an electric actuator 1, a control device 2, and a brake force estimating means 17 (FIG. 2). First, the electric actuator 1 will be described.
 電動アクチュエータ1は、電動モータ4と、この電動モータ4の回転を減速する減速機構5と、摩擦部材操作手段である直動機構6と、駐車ブレーキであるパーキングブレーキ機構7と、ブレーキロータ8と、摩擦部材9とを有する。電動モータ4、減速機構5、および直動機構6は、例えば、図示外のハウジング等に組込まれる。なおブレーキロータ8は、ディスク型であっても、ドラム型であっても良い。摩擦部材9は、ブレーキパッドまたはブレーキシュー等からなる。直動機構6は、ボールねじ機構や遊星ローラねじ機構などの送りねじ機構からなる。 The electric actuator 1 includes an electric motor 4, a speed reducing mechanism 5 that decelerates the rotation of the electric motor 4, a linear motion mechanism 6 that is a friction member operating means, a parking brake mechanism 7 that is a parking brake, a brake rotor 8, And a friction member 9. The electric motor 4, the speed reduction mechanism 5, and the linear motion mechanism 6 are incorporated in, for example, a housing not shown. The brake rotor 8 may be a disk type or a drum type. The friction member 9 includes a brake pad or a brake shoe. The linear motion mechanism 6 includes a feed screw mechanism such as a ball screw mechanism or a planetary roller screw mechanism.
 電動モータ4は三相の同期モータ等からなる。減速機構5は、電動モータ4の回転を、回転軸10に固定された三次歯車11に減速して伝える機構であり、一次歯車12、中間(二次)歯車13、および三次歯車11を含む。この例では、減速機構5は、電動モータ4のロータ軸4aに取り付けられた一次歯車12の回転を、中間歯車13により減速して、回転軸10の端部に固定された三次歯車11に伝達可能としている。 The electric motor 4 is composed of a three-phase synchronous motor or the like. The speed reduction mechanism 5 is a mechanism that reduces and transmits the rotation of the electric motor 4 to a tertiary gear 11 fixed to the rotary shaft 10, and includes a primary gear 12, an intermediate (secondary) gear 13, and a tertiary gear 11. In this example, the speed reduction mechanism 5 decelerates the rotation of the primary gear 12 attached to the rotor shaft 4 a of the electric motor 4 by the intermediate gear 13 and transmits it to the tertiary gear 11 fixed to the end of the rotation shaft 10. It is possible.
 直動機構6は、減速機構5で出力される回転運動を送りねじ機構により直動部14の直線運動に変換して、ブレーキロータ8に対して摩擦部材9を当接または離隔させる機構である。直動部14は、回り止めされ且つ軸方向A1に移動自在に支持されている。直動部14のアウトボード側端に摩擦部材9が設けられる。減速機構5を介した電動モータ4の回転を直動機構6に伝達することで、回転運動が直線運動に変換され、それが摩擦部材9の押圧力に変換されることによりブレーキ力を発生させる。なお、アウトボード側とは電動ブレーキ装置DBを車両の各車輪(不図示)毎に搭載した状態で、車両の車幅方向外側をアウトボード側といい、車両の車幅方向中央側をインボード側という。 The linear motion mechanism 6 is a mechanism that converts the rotational motion output from the speed reduction mechanism 5 into a linear motion of the linear motion portion 14 by a feed screw mechanism and causes the friction member 9 to contact or separate from the brake rotor 8. . The linear motion portion 14 is supported so as to be prevented from rotating and movable in the axial direction A1. A friction member 9 is provided at the outboard side end of the linear motion portion 14. By transmitting the rotation of the electric motor 4 via the speed reduction mechanism 5 to the linear motion mechanism 6, the rotational motion is converted into a linear motion, which is converted into the pressing force of the friction member 9 to generate a braking force. . The outboard side means that the electric brake device DB is mounted on each wheel (not shown) of the vehicle, the vehicle width direction outer side of the vehicle is called the outboard side, and the vehicle width direction center side of the vehicle is the inboard The side.
 パーキングブレーキ機構7は、ロック部材15とアクチュエータ16とを有する。中間歯車13のアウトボード側端面には、複数の係止孔(図示せず)が円周方向一定間隔おきに形成される。これら係止孔のいずれか一つにロック部材15が係止可能に構成される。アクチュエータ16として例えばソレノイドが適用される。アクチュエータ16により、ロック部材(ソレノイドピン)15を進出させて中間歯車13に形成された前記係止孔に嵌まり込ませることで係止し、中間歯車13の回転を禁止することで、パーキングロック状態にする。ロック部材15をアクチュエータ16に退避させて前記係止孔から離脱させることで、中間歯車13の回転を許容し、アンロック状態にする。 The parking brake mechanism 7 includes a lock member 15 and an actuator 16. A plurality of locking holes (not shown) are formed at regular intervals in the circumferential direction on the end face of the intermediate gear 13 on the outboard side. The lock member 15 is configured to be able to be locked in any one of these locking holes. For example, a solenoid is applied as the actuator 16. A lock member (solenoid pin) 15 is advanced by an actuator 16 and engaged by being fitted into the engagement hole formed in the intermediate gear 13, and the parking gear is locked by prohibiting rotation of the intermediate gear 13. Put it in a state. By retracting the lock member 15 to the actuator 16 and removing it from the locking hole, the rotation of the intermediate gear 13 is allowed and the unlocked state is achieved.
 制御装置2等について説明する。図2に示すように、制御装置2は、制御対象である電動アクチュエータ1(図1)を制御する装置であって、電動モータ4を制御してブレーキ力を目標ブレーキ力に対して追従制御する機能を有する。制御装置2には、この制御装置2の上位制御手段である上位ECU3が接続されている。上位ECU3として、例えば、車両全般を制御する電気制御ユニットが適用される。この上位ECU3に、ブレーキ力指令手段3aが設けられる。ブレーキ力指令手段3aは、ブレーキ操作手段であるブレーキペダル18の操作量に応じて変化するセンサ18aの出力に応じて、ソフトウエアやハードウエアで実現されたLUT(Look Up Table)、またはソフトウエアのライブラリ(Library)に収められた所定の変換関数やそれに等価のハードウエア等(以下、「具現化モデル」という)を用いて、目標とするブレーキ力の指令値すなわち目標ブレーキ力を生成し出力する。 The control device 2 will be described. As shown in FIG. 2, the control device 2 is a device that controls the electric actuator 1 (FIG. 1) that is a control target, and controls the electric motor 4 to control the brake force to follow the target brake force. It has a function. The control device 2 is connected to a host ECU 3 that is a host control means of the control device 2. For example, an electric control unit that controls the entire vehicle is applied as the host ECU 3. The host ECU 3 is provided with a brake force command means 3a. The brake force command means 3a is an LUT (Look Up Table) implemented by software or hardware in accordance with the output of the sensor 18a that changes according to the amount of operation of the brake pedal 18 that is a brake operation means, or software. Generates and outputs a target braking force command value, that is, a target braking force, using a predetermined conversion function stored in the Library of the library or equivalent hardware (hereinafter referred to as an “implementation model”). To do.
 制御装置2はインバータ装置19を備え、このインバータ装置19は、各電動モータ4に対して設けられたパワー回路部20と、1つまたは複数のパワー回路部20を制御するモータコントロール部21と、電流検出手段22とを有する。モータコントロール部21は、プロセッサを有するコンピュータ、前記プロセッサで実行されるプログラムを有するROM(Read Only Memory)、およびRAM(Random Access Memory)やコプロセッサ(Co-Processor)等の他の電子回路により構成される。 The control device 2 includes an inverter device 19. The inverter device 19 includes a power circuit unit 20 provided for each electric motor 4, a motor control unit 21 that controls one or more power circuit units 20, Current detection means 22. The motor control unit 21 includes a computer having a processor, a ROM (Read Only Memory) having a program executed by the processor, and other electronic circuits such as a RAM (Random Access Memory) and a coprocessor (Co-Processor). Is done.
 モータコントロール部21は、ブレーキ力指令手段3aから与えられる目標ブレーキ力およびブレーキ力推定手段17(後述する)で推定される推定ブレーキ力に応じて、電圧値で表された(モータ)電流指令に変換して、この電流指令をパワー回路部20に与える。モータコントロール部21は、電動モータ4に関する各検出値や制御値等の各情報を上位ECU3に出力する機能を有する。 The motor control unit 21 outputs a (motor) current command represented by a voltage value according to the target brake force given from the brake force command unit 3a and the estimated brake force estimated by the brake force estimation unit 17 (described later). The current command is converted and given to the power circuit unit 20. The motor control unit 21 has a function of outputting information such as detection values and control values regarding the electric motor 4 to the host ECU 3.
 パワー回路部20は、電源23の直流電力を電動モータ4の駆動に用いる三相の交流電力に変換するインバータ20aと、このインバータ20aを制御するPWM制御部20bとを有する。電動モータ4には、ロータ(図示せず)の回転角度を推定する回転角推定手段24が設けられている。インバータ20aは、複数の半導体スイッチング素子(図示せず)で構成され、PWM制御部20bは、入力された前記電流指令をパルス幅変調し、例えば前記各半導体スイッチング素子のゲート端子にオンオフ指令を与える。 The power circuit unit 20 includes an inverter 20a that converts the DC power of the power source 23 into three-phase AC power used to drive the electric motor 4, and a PWM control unit 20b that controls the inverter 20a. The electric motor 4 is provided with rotation angle estimation means 24 for estimating the rotation angle of a rotor (not shown). The inverter 20a includes a plurality of semiconductor switching elements (not shown), and the PWM control unit 20b performs pulse width modulation on the input current command, and gives an on / off command to the gate terminal of each semiconductor switching element, for example. .
 モータコントロール部21は、その基本となる制御部としてモータ駆動制御部25を有する。このモータ駆動制御部25は、前述の目標ブレーキ力および推定ブレーキ力に従い、電圧値による電流指令に変換して、PWM制御部20bに電流指令からなるモータ動作指令値を与える。モータ駆動制御部25は、目標ブレーキ力に対し、インバータ20aから電動モータ4に流すモータ電流を電流検出手段22から得て、電流フィードバック制御を行う。またモータ駆動制御部25は、電動モータ4のロータ(図示せず)の回転角度すなわちモータ回転角を回転角推定手段24から得て、モータ回転角に応じた効率的なモータ駆動が行えるように、PWM制御部20bに電流指令を与える。 The motor control unit 21 includes a motor drive control unit 25 as a basic control unit. The motor drive control unit 25 converts the current command based on the voltage value in accordance with the target brake force and the estimated brake force, and gives a motor operation command value including the current command to the PWM control unit 20b. The motor drive control unit 25 obtains a motor current that flows from the inverter 20a to the electric motor 4 from the current detection unit 22 and performs current feedback control with respect to the target brake force. Further, the motor drive control unit 25 obtains the rotation angle of the rotor (not shown) of the electric motor 4, that is, the motor rotation angle from the rotation angle estimating means 24 so that the motor can be efficiently driven according to the motor rotation angle. The current command is given to the PWM controller 20b.
 モータコントロール部21には、推定範囲変更手段26および記録手段27等が設けられる。推定範囲変更手段26は、前記目標ブレーキ力および前記推定ブレーキ力のいずれか一方または両方に基づいて、ブレーキ力推定手段17による前記推定ブレーキ力の推定範囲の限界値を変更する。ブレーキ力推定手段17は、摩擦部材9(図1)をブレーキロータ8(図1)に押し付けることにより発生するブレーキ力の推定値である推定ブレーキ力を求める。 The motor control unit 21 is provided with an estimated range changing unit 26, a recording unit 27, and the like. The estimated range changing means 26 changes the limit value of the estimated range of the estimated brake force by the brake force estimating means 17 based on one or both of the target brake force and the estimated brake force. The brake force estimating means 17 obtains an estimated brake force that is an estimated value of the brake force generated by pressing the friction member 9 (FIG. 1) against the brake rotor 8 (FIG. 1).
 ブレーキ力推定手段17は、摩擦部材9(図1)がブレーキロータ8(図1)を押圧するときの押圧力を検出する荷重センサ17aと、この荷重センサ17aのアナログ出力をデジタル信号に変換するA/D変換器17bと、後述の関係設定手段17cとを有する。本実施形態では、A/D変換器17bは、不図示の変更用入力端子への外部からの入力により、ブレーキ力の推定範囲を可変とする可変式、すなわち出力するデジタル信号の最大値に対応するアナログ入力信号の最大値を可変とする可変式のものである。 The brake force estimating means 17 converts a load sensor 17a that detects a pressing force when the friction member 9 (FIG. 1) presses the brake rotor 8 (FIG. 1), and converts an analog output of the load sensor 17a into a digital signal. An A / D converter 17b and a relationship setting unit 17c described later are included. In the present embodiment, the A / D converter 17b corresponds to a variable type in which the estimation range of the braking force is variable by an external input to a change input terminal (not shown), that is, the maximum value of the output digital signal. This is a variable type in which the maximum value of the analog input signal is variable.
 荷重センサ17aは、例えば、磁気式のセンサ17aa(図3)および磁気ターゲット17abを含む。磁気ターゲット17abは、例えば、2個の永久磁石17ba,17baを有する。図1および図3に示すように、摩擦部材9がブレーキロータ8を押圧するとき、直動機構6にインボード側への反力が作用する。磁気式のセンサ17aaおよび磁気ターゲット17abからなる荷重センサ17aは、このブレーキ力の反力を軸方向の変位量として磁気的に検出する。 The load sensor 17a includes, for example, a magnetic sensor 17aa (FIG. 3) and a magnetic target 17ab. The magnetic target 17ab has, for example, two permanent magnets 17ba and 17ba. As shown in FIGS. 1 and 3, when the friction member 9 presses the brake rotor 8, a reaction force to the inboard side acts on the linear motion mechanism 6. The load sensor 17a including the magnetic sensor 17aa and the magnetic target 17ab magnetically detects the reaction force of the braking force as an axial displacement amount.
 磁界の変化を検出する磁気式のセンサ17aaとして、ダイナミックレンジが可変でかつ安価なホールICが市販されており、入手性に優れる。磁気式のセンサ17aaとして、ホールIC以外に、例えば、磁気抵抗素子、または磁気インピーダンス素子等を適用しても良い。 As a magnetic sensor 17aa for detecting a change in magnetic field, a Hall IC with a variable dynamic range and an inexpensive price is commercially available, and is highly available. As the magnetic sensor 17aa, for example, a magnetoresistive element or a magnetic impedance element may be applied in addition to the Hall IC.
 図2に示すように、ブレーキ力推定手段17の関係設定手段17cは、アナログ信号からなるセンサ出力をA/D変換器17bでA/D変換したデジタル信号と、前記ブレーキ力の反力との関係を試験やシミュレーション等で予め求め、該関係をLUT化して格納しておくことにより、荷重センサ17aのセンサ出力に基づいて、ブレーキ力を推定し得る。なお、荷重センサ17aとして、磁気式以外の光学式、渦電流式、または静電容量式のセンサを適用することも可能である。 As shown in FIG. 2, the relationship setting means 17c of the brake force estimating means 17 is a digital signal obtained by A / D converting the sensor output consisting of an analog signal by the A / D converter 17b and the reaction force of the brake force. By obtaining the relationship in advance by tests, simulations, etc., and storing the relationship in LUT, the braking force can be estimated based on the sensor output of the load sensor 17a. As the load sensor 17a, an optical sensor other than the magnetic sensor, an eddy current sensor, or a capacitance sensor can be applied.
 推定範囲変更手段26は、前述のブレーキ力推定手段17で求めた推定ブレーキ力の推定範囲の限界値を変更する。ここで図4は、この電動ブレーキ装置のブレーキ力推定手段17の推定範囲と分解能の関係を示す図である。ブレーキ力推定手段17(図2)による所定の推定範囲(1)と、この推定範囲(1)より広い推定範囲(2)において、それぞれの範囲における分解能は一般にA/D変換器17bの分解能αに依存する。 The estimated range changing unit 26 changes the limit value of the estimated range of the estimated brake force obtained by the brake force estimating unit 17 described above. Here, FIG. 4 is a diagram showing the relationship between the estimation range and the resolution of the braking force estimation means 17 of this electric brake device. In a predetermined estimation range (1) by the brake force estimation means 17 (FIG. 2) and an estimation range (2) wider than the estimation range (1), the resolution in each range is generally the resolution α of the A / D converter 17b. Depends on A.
 本実施形態に係る電動ブレーキ装置のようなサーボモータ制御においては、マイクロコンピュータやフィールドプログラマブルゲートアレイ(略称FPGA: field-programmable gate array)、デジタルシグナルプロセッサ(略称DSP: digital signal processor)等を制御演算に用いることが考えられる。例えば、上記演算器用の安価なA/D変換器として、一般に10bit(1024分割)~12bit(4096分割)のものが広く用いられている。 In servo motor control such as the electric brake device according to the present embodiment, a microcomputer, a field programmable gate array (abbreviated as FPGA: field-programmable gate array), a digital signal processor (abbreviated as DSP: digital signal processor), etc. It is conceivable to use it. For example, as an inexpensive A / D converter for the arithmetic unit, generally 10-bit (1024 divisions) to 12-bit (4096 divisions) are widely used.
 本実施形態において、図2および図4に示すように、推定範囲の広狭にかかわらず、ブレーキ力推定手段17のA/D変換器17bの分解能αが一定であり、このA/D変換器17bの分解能αを最大限使用できる場合、推定範囲(2)の推定ブレーキ力F2、推定範囲(1)の推定ブレーキ力F1とすると(但しF2>F1)、推定範囲(2),(1)における分解能は次のように表される。
 推定範囲(2)における分解能=F2/α
 推定範囲(1)における分解能=F1/α
 前述のように、推定範囲の広狭にかかわらず、A/D変換器17bの分解能αが一定で、この分解能αをフルに使用し、且つ、F2>F1であるから、推定範囲(2)における分解能F2/αよりも、測定範囲の狭い推定範囲(1)の分解能F1/αの方が分解能は高くなる。
In this embodiment, as shown in FIGS. 2 and 4, the resolution α A of the A / D converter 17b of the brake force estimating means 17 is constant regardless of the range of the estimation range, and this A / D converter If 17b of the resolution alpha a can maximally use, the estimated braking force F2 of the estimated range (2), when the estimated braking force F1 of the estimated range (1) (where F2> F1), the estimated range (2), (1 ) Is expressed as follows.
Resolution in estimation range (2) = F2 / α A
Resolution in estimation range (1) = F1 / α A
As described above, the resolution α A of the A / D converter 17b is constant, the resolution α A is fully used, and F2> F1 regardless of the range of the estimation range. The resolution F1 / α A in the estimation range (1) having a narrow measurement range is higher than the resolution F2 / α A in ().
 そこで、図2に示すように、推定範囲変更手段26は、目標ブレーキ力および推定ブレーキ力のいずれか一方または両方に基づいて、ブレーキ力推定手段17のA/D変換器17bにおける推定ブレーキ力の推定範囲の限界値を変更する。電動ブレーキ装置のように、推定ブレーキ力における常用域とそうでない領域がある程度想定できる場合、例えば、推定範囲を常用域に設定し、推定範囲変更手段26は必要に応じて推定範囲の限界値を変更する。 Therefore, as shown in FIG. 2, the estimated range changing unit 26 determines the estimated braking force in the A / D converter 17 b of the braking force estimating unit 17 based on one or both of the target braking force and the estimated braking force. Change the limit value of the estimated range. When the normal range and the non-normal range in the estimated braking force can be assumed to some extent as in the electric brake device, for example, the estimation range is set to the normal range, and the estimation range changing unit 26 sets the limit value of the estimation range as necessary. change.
 具体的に、推定範囲変更手段26は、次の条件群、目標ブレーキ力(前記目標ブレーキ力および前記推定ブレーキ力のいずれか一方または両方のうち、ここでは目標ブレーキ力を例とする)が前記推定範囲における閾値を超過したとき、目標ブレーキ力と前記閾値との差分の絶対値が所定値以下でありかつ前記目標ブレーキ力の変化量例えば微分値が所定値以上であるとき、および前記超過の時間が所定時間を超えたとき、のうち、少なくともいずれか一つを含む条件に基づいて、A/D変換器17bの前記推定範囲の限界値を変更前の限界値より拡大するよう変更する。前記閾値は、試験やシミュレーションの結果により定められ、記録手段27に書き換え可能に保存される。 Specifically, the estimated range changing means 26 has the following condition group and target brake force (here, the target brake force is an example of one or both of the target brake force and the estimated brake force): When the threshold in the estimated range is exceeded, the absolute value of the difference between the target braking force and the threshold is less than or equal to a predetermined value, and the amount of change in the target braking force, for example, the differential value is greater than or equal to a predetermined value, and When the time exceeds the predetermined time, the limit value of the estimation range of the A / D converter 17b is changed to be larger than the limit value before the change based on a condition including at least one of them. The threshold value is determined by the result of the test or simulation, and is stored in the recording means 27 so as to be rewritable.
 推定範囲の限界値を拡大するための前提条件として、目標ブレーキ力が前記推定範囲における閾値を超過したこととしている。このとき、後述する推定範囲を縮小する閾値より大きな閾値を設定してヒステリシスを設けることで、頻繁な推定範囲の変化を防止し得る。また推定範囲変更手段26が前記超過量に基づいて前記推定範囲の限界値を拡大する場合、演算処理を簡単化し、制御演算の演算処理負荷を低減し得る。 Suppose that the target braking force exceeds the threshold in the estimated range as a precondition for expanding the limit value of the estimated range. At this time, it is possible to prevent frequent changes in the estimation range by setting a threshold value that is larger than a threshold value for reducing the estimation range, which will be described later, and providing hysteresis. Further, when the estimated range changing means 26 expands the limit value of the estimated range based on the excess amount, the calculation process can be simplified and the calculation processing load of the control calculation can be reduced.
 推定範囲変更手段26が前記目標ブレーキ力の変化量例えば微分値に基づいて前記推定範囲の限界値を拡大する場合、目標ブレーキ力が急峻に増加するなど目標ブレーキ力の増加傾向に従って、前記推定範囲の限界値を拡大し得る。例えば、目標ブレーキ力が前記閾値に対して急峻に接近する場合、その後すぐに閾値を超過する(閾値と目標ブレーキ力との偏差の絶対値が所定値以内であれば尚更である)ことを予測し、前記推定範囲の限界値を速やかに変更し得る。推定範囲変更手段26が超過時間に基づいて前記推定範囲の限界値を拡大する場合、目標ブレーキ力が定められた僅かな時間だけ閾値を超過するような場合、前記推定範囲の限界値を変更する条件から除外し得る。 When the estimated range changing means 26 expands the limit value of the estimated range based on the amount of change of the target brake force, for example, a differential value, the estimated range is increased according to the increasing tendency of the target brake force, for example, the target brake force increases sharply. The limit value of can be expanded. For example, when the target braking force approaches the threshold value steeply, it is predicted that the threshold value will be exceeded immediately after that (even if the absolute value of the deviation between the threshold value and the target braking force is within a predetermined value). In addition, the limit value of the estimated range can be quickly changed. When the estimated range changing means 26 expands the limit value of the estimated range based on the excess time, the limit value of the estimated range is changed when the target braking force exceeds the threshold value for a short time. It can be excluded from the conditions.
 また推定範囲変更手段26は、次の条件群、前記目標ブレーキ力(前記目標ブレーキ力および前記推定ブレーキ力のいずれか一方または両方のうち、ここでは目標ブレーキ力を例とする)が前記推定範囲における閾値を下回るとき、前記目標ブレーキ力と前記閾値との差分の絶対値が所定値以下かつ前記目標ブレーキ力の変化率が所定値以下であるとき、および前記目標ブレーキ力が前記閾値を下回る時間が所定時間以上であるとき、のうち、少なくともいずれか一つを含む条件に基づいて、前記推定範囲の限界値を変更前の限界値より縮小するよう変更しても良い。本明細書において、前記推定範囲、前記定められた時間、および前記定められた温度等は、試験やシミュレーション等の結果により定められ、記録手段27に保存される。 Further, the estimated range changing means 26 is configured so that the following condition group, the target brake force (the target brake force of one or both of the target brake force and the estimated brake force is taken as an example here) is the estimated range. When the absolute value of the difference between the target brake force and the threshold is less than or equal to a predetermined value and the rate of change of the target brake force is less than or equal to a predetermined value, and when the target brake force is less than the threshold May be changed so that the limit value of the estimation range is reduced from the limit value before the change based on a condition including at least one of them. In the present specification, the estimated range, the predetermined time, the predetermined temperature, and the like are determined by results of tests, simulations, and the like, and are stored in the recording unit 27.
 推定範囲の限界値を縮小するための前提条件として、目標ブレーキ力が前記推定範囲における閾値を下回ることを前提条件としている。このとき、前記閾値を推定範囲縮小後に再度推定範囲を増加させる閾値より小さく設定してヒステリシスを設けると、頻繁の推定範囲の変化を防止し得る。また推定範囲変更手段26が前記閾値を下回った判定に基づいて前記推定範囲の限界値を縮小する場合、制御演算の演算処理負荷を低減し得る。 前提 As a precondition for reducing the limit value of the estimated range, it is assumed that the target braking force is below the threshold value in the estimated range. At this time, if the threshold value is set smaller than the threshold value for increasing the estimated range again after the estimated range is reduced and a hysteresis is provided, frequent changes in the estimated range can be prevented. In addition, when the estimated range changing unit 26 reduces the limit value of the estimated range based on the determination that the estimated range is below the threshold, the calculation processing load of the control calculation can be reduced.
 推定範囲変更手段26が前記目標ブレーキ力の変化量例えば微分値に基づいて前記推定範囲の限界値を縮小する場合、例えば、目標ブレーキ力の低下傾向に従って、すぐに閾値を下回ることを予測して、前記推定範囲の限界値を縮小し得る。前記目標ブレーキ力が前記閾値を下回る時間に基づいて前記推定範囲の限界値を縮小する場合、前記目標ブレーキ力が前記閾値を下回る時間が僅かな時間のときに前記推定範囲の限界値を変更する条件から除外し得る。 When the estimated range changing means 26 reduces the limit value of the estimated range based on the amount of change of the target brake force, for example, a differential value, for example, it is predicted that the target range will soon fall below the threshold according to the decreasing tendency of the target brake force. The limit value of the estimation range can be reduced. When the limit value of the estimated range is reduced based on the time when the target brake force falls below the threshold, the limit value of the estimated range is changed when the time when the target brake force falls below the threshold is a short time It can be excluded from the conditions.
 図5は、この電動ブレーキ装置において、推定ブレーキ力の推定範囲を変更する際、目標ブレーキ力に対する閾値をそれぞれ設ける例を示すフローチャートである。以下、図2も参照しつつ説明する。本処理開始後、推定範囲変更手段26は、推定範囲を拡大する際における、目標ブレーキ力の閾値Fthe(Fthe:目標ブレーキ力スレッショルド(範囲拡大))を設定し(ステップa1)、推定範囲を縮小する際における、目標ブレーキ力の閾値Fthd(Fthd:目標ブレーキ力スレッショルド(範囲縮小)を設定する(ステップa2)。 FIG. 5 is a flowchart illustrating an example in which threshold values for the target brake force are provided when the estimated range of the estimated brake force is changed in the electric brake device. Hereinafter, description will be given with reference to FIG. After the start of this process, the estimated range changing means 26 sets a target brake force threshold F the (F the : target brake force threshold (range expansion)) when expanding the estimated range (step a1), and the estimated range. Is set to a target brake force threshold F thd (F thd : target brake force threshold (range reduction)) (step a2).
 目標ブレーキ力スレッショルドFtheは、推定ブレーキ力の測定範囲R(R<R<…)に任意定数αを乗じて定められ、目標ブレーキ力スレッショルドFthdは、前記測定範囲Rに任意定数βを乗じて定められる。但し、0≦β≦α≦1である。これら目標ブレーキ力スレッショルドは記録手段27にそれぞれ保存され、必要に応じて読み出される。 The target brake force threshold F the is determined by multiplying the measurement range R n (R 1 <R 2 <...) Of the estimated brake force by an arbitrary constant α, and the target brake force threshold F thd is arbitrary in the measurement range R n . It is determined by multiplying by a constant β. However, 0 ≦ β ≦ α ≦ 1. These target brake force thresholds are respectively stored in the recording means 27 and read out as necessary.
 次に推定範囲変更手段26は、上位ECU3から与えられた目標ブレーキ力Fが、目標ブレーキ力スレッショルドFthe以上であるか否かを判定する(ステップa3)。目標ブレーキ力Fが目標ブレーキ力スレッショルドFthe以上であるとの判定で(ステップa3:yes)、推定範囲変更手段26は、現在の推定範囲(測定範囲)の限界値nを「1」拡大する(ステップa4)。この限界値nは、例えば昇順にナンバリングして複数用意された推定範囲の限界値パターンのナンバーを示すものとする。その後本処理を終了する。 Next, the estimated range changing means 26 determines whether or not the target brake force F r given from the host ECU 3 is equal to or greater than the target brake force threshold F the (step a3). In the determination of the target braking force F r is the target braking force threshold F the above (Step a3: yes), the estimated range changing means 26, "1" limit value n of the current estimation range (measuring range) larger (Step a4). This limit value n indicates, for example, the number of limit value patterns in an estimated range prepared by numbering in ascending order. Thereafter, this process is terminated.
 目標ブレーキ力Fが目標ブレーキ力スレッショルドFthe未満であるとの判定で(ステップa3:no)、ステップa5に移行する。このステップa5において、推定範囲変更手段26により、上位ECU3からの目標ブレーキ力Fが目標ブレーキ力スレッショルドFthd以下であると判定されると(ステップa5:yes)、推定範囲変更手段26は、現在の推定範囲(測定範囲)の限界値nを「1」縮小する(ステップa6)。その後本処理を終了する。目標ブレーキ力Fが目標ブレーキ力スレッショルドFthdより大きいとの判定で(ステップa5:no)、本処理を終了する。 In the determination of the target braking force F r is less than the target brake force threshold F the (step a3: no), the process proceeds to step a5. In this step a5, the estimation range changing unit 26, when the target braking force F r from the upper ECU3 is determined to be equal to or less than the target brake force threshold F thd (step a5: yes), the estimated range changing means 26, The limit value n of the current estimated range (measurement range) is reduced by “1” (step a6). Thereafter, this process is terminated. Target braking force F r is the determination of the target braking force threshold F thd larger (Step a5: no), the process ends.
 この図5の実装例によると、特に、推定範囲の限界値を拡大および縮小するための前提条件としてそれぞれ閾値判定を行う(ステップa3,a5)、いわゆる所定のヒステリシスを設ける構成としているため、頻繁な推定範囲の変化を防止し得る。 According to the implementation example of FIG. 5, the threshold value determination is performed as a precondition for enlarging and reducing the limit value of the estimation range (steps a3 and a5), and so-called predetermined hysteresis is provided. It is possible to prevent a change in the estimated range.
 図6は、推定ブレーキ力の推定範囲を変更する際、目標ブレーキと閾値、およびカウンタを設ける例を示すフローチャートである。本処理開始後、推定範囲変更手段26は、目標ブレーキ力の閾値Fth(Fth:目標ブレーキ力スレッショルド)を設定する(ステップb1)。目標ブレーキ力スレッショルドFthは、推定ブレーキ力の測定範囲R(R<R<…)に任意定数γを乗じて定められる。但し、0≦γ≦1である。 FIG. 6 is a flowchart illustrating an example in which a target brake, a threshold value, and a counter are provided when the estimated range of the estimated brake force is changed. After the start of this process, the estimated range changing means 26 sets a target brake force threshold value F th (F th : target brake force threshold) (step b1). The target brake force threshold F th is determined by multiplying the measurement range R n (R 1 <R 2 <...) Of the estimated brake force by an arbitrary constant γ. However, 0 ≦ γ ≦ 1.
 次に推定範囲変更手段26は、上位ECU3からの目標ブレーキ力Fが目標ブレーキ力スレッショルドFth以上であるか否かを判定する(ステップb2)。目標ブレーキ力Fが目標ブレーキ力スレッショルドFth以上であるとの判定で(ステップb2:yes)、推定範囲変更手段26は、範囲拡大用のカウンタCに「1」を加える更新を行い(ステップb3)、範囲縮小用のカウンタCを「0」にリセットする(ステップb4)。カウンタCは、目標ブレーキ力Fが目標ブレーキ力スレッショルドFth以上となってからの時間を計時するものである。 Then estimation range changing unit 26 determines whether or not the target braking force F r from the upper ECU3 is target braking force threshold F th or more (step b2). In the determination of the target braking force F r is the target braking force threshold F th or more (Step b2: yes), the estimation range changing unit 26 performs updating to add "1" to the counter C e for range extension ( step b3), and resets the counter C d for the range reduced to "0" (step b4). Counter C e is for target braking force F r is measuring the time from when the target braking force threshold F th or more.
 次に推定範囲変更手段26は、ステップb3で更新したカウンタCが、範囲拡大用のカウンタ閾値Cthe(Cthe:カウンタスレッショルド(範囲拡大))以上であるか否かを判定する(ステップb5)。カウンタCがカウンタスレッショルドCthe以上であるとの判定で(ステップb5:yes)、推定範囲変更手段26は、現在の推定範囲の限界値nを「1」拡大する(ステップb6)。その後本処理を終了する。カウンタCがカウンタスレッショルドCthe未満であるとの判定で(ステップb5:no)、本処理を終了する。 Next, the estimated range changing means 26 determines whether or not the counter C e updated in step b3 is equal to or greater than the range expansion counter threshold C the (C the : counter threshold (range expansion)) (step b5). ). Counter C e is the determination of the at counter threshold C the above (Step b5: yes), the estimated range changing means 26 "1" larger limit value n of the current estimation range (step b6). Thereafter, this process is terminated. Counter C e is the determination that it is less than the counter threshold C the (Step b5: no), the process ends.
 ステップb2において、目標ブレーキ力Fが目標ブレーキ力スレッショルドFth未満であるとの判定で(ステップb2:no)、範囲拡大用のカウンタCを「0」にリセットし(ステップb7)、範囲縮小用のカウンタCに「1」を加える更新を行う(ステップb8)。なおカウンタCは、目標ブレーキ力Fが目標ブレーキ力スレッショルドFth未満となってからの時間を計時するものである。次に推定範囲変更手段26は、ステップb8で更新したカウンタCが、範囲縮小用のカウンタ閾値Cthd(Cthd:カウンタスレッショルド(範囲縮小))以上であるか否かを判定する(ステップb9)。 In step b2, it is determined in the target braking force F r is less than the target brake force threshold F th (Step b2: no), the counter C e for range extension is reset to "0" (step b7), range Update is performed by adding “1” to the counter C d for reduction (step b8). Note counter C d is for target braking force F r is measuring the time from when below the target braking force threshold F th. Next, the estimated range changing means 26 determines whether or not the counter C d updated in step b8 is equal to or greater than the range reduction counter threshold C thd (C thd : counter threshold (range reduction)) (step b9). ).
 カウンタCがカウンタスレッショルドCthd以上であるとの判定で(ステップb9:yes)、推定範囲変更手段26は、現在の推定範囲の限界値nを「1」縮小する(ステップb10)。その後本処理を終了する。カウンタCがカウンタスレッショルドCthd未満であるとの判定で(ステップb9:no)、本処理を終了する。 When it is determined that the counter C d is equal to or greater than the counter threshold C thd (step b9: yes), the estimation range changing unit 26 reduces the limit value n of the current estimation range by “1” (step b10). Thereafter, this process is terminated. If it is determined that the counter C d is less than the counter threshold C thd (step b9: no), this process is terminated.
 図6の実装例によると、特に、カウンタC,Cを設けて僅かな時間だけ推定範囲を超過するような場合を、推定範囲が変化する条件から除外することができる。推定範囲変更手段26は、具体的には、上記の具現化モデルを用いて、前述と同様に演算を行って結果を出力しうるハードウエア回路またはプロセッサ(不図示)上のソフトウエア関数で構成されている。 According to the implementation example of FIG. 6, in particular, the case where the estimated range is exceeded for a short time by providing the counters C e and C d can be excluded from the conditions for changing the estimated range. Specifically, the estimation range changing means 26 is configured by a hardware function or a software function on a processor (not shown) capable of performing the same operation as described above and outputting the result using the above-described implementation model. Has been.
 以上説明した電動ブレーキ装置DBによれば、ブレーキ力推定手段17のA/D変換器17bは、外部からの入力により推定ブレーキ力の推定範囲を可変とする可変式のものとしたため、電動ブレーキ装置DBのように、推定ブレーキ力における常用域とそうでない領域がある程度想定できる場合、例えば、推定範囲を常用域に設定し、推定範囲変更手段26により必要に応じて推定範囲を拡大する。これにより、推定ブレーキ力の推定範囲毎に必要な分解能を達成することが容易になる。したがって、従来技術のような高精度な荷重センサを構成することなく、常用域において制御精度の向上を図ることができる。 According to the electric brake device DB described above, the A / D converter 17b of the brake force estimating means 17 is a variable type that makes the estimated range of the estimated brake force variable by an external input. In the case where the normal range and the non-normal region in the estimated braking force can be assumed to some extent as in the case of DB, for example, the estimation range is set to the normal range, and the estimation range is expanded as necessary by the estimation range changing means 26. This makes it easy to achieve the necessary resolution for each estimated range of the estimated braking force. Therefore, it is possible to improve the control accuracy in the normal range without configuring a highly accurate load sensor as in the prior art.
 他の実施形態について説明する。以下の説明においては、各形態で先行する形態で説明している事項に対応している部分には同一の参照符号を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り先行して説明している形態と同様とする。同一の構成から同一の作用効果を奏する。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。 Other embodiments will be described. In the following description, the same reference numerals are assigned to the portions corresponding to the matters described in the preceding forms in each embodiment, and overlapping descriptions are omitted. When only a part of the configuration is described, the other parts of the configuration are the same as those described in advance unless otherwise specified. The same effect is obtained from the same configuration. Not only the combination of the parts specifically described in each embodiment, but also the embodiments can be partially combined as long as the combination does not hinder.
 図2に示すように、ブレーキロータ(図示せず)の回転角速度を推定するロータ角速度推定手段28を設け、制御装置2に温度推定手段29を設けても良い。この温度推定手段29は、ロータ角速度推定手段28で推定された回転角速度からブレーキロータ8(図1)または摩擦部材9(図1)の温度を推定するものである。これらロータ角速度推定手段28および温度推定手段29を設けた構成において、推定範囲変更手段26は、温度推定手段29で推定された温度が定められた温度以上となったとき、推定範囲の限界値を変更前の限界値より拡大する。 As shown in FIG. 2, rotor angular speed estimation means 28 for estimating the rotational angular speed of a brake rotor (not shown) may be provided, and temperature estimation means 29 may be provided in the control device 2. The temperature estimation means 29 estimates the temperature of the brake rotor 8 (FIG. 1) or the friction member 9 (FIG. 1) from the rotational angular speed estimated by the rotor angular speed estimation means 28. In the configuration in which the rotor angular velocity estimation means 28 and the temperature estimation means 29 are provided, the estimation range changing means 26 sets the limit value of the estimation range when the temperature estimated by the temperature estimation means 29 is equal to or higher than a predetermined temperature. It expands from the limit value before the change.
 推定範囲変更手段26は、温度推定手段29で推定された温度が定められた温度未満となったとき前記推定範囲の限界値を変更前の限界値より縮小するよう変更する。前記定められた温度は、試験やシミュレーション等の結果により定められ、記録手段27に書き換え可能に保存される。摩擦部材9(図1)をブレーキロータ8(図1)に押し付けるとき、摩擦部材9(図1)とブレーキロータ8(図1)の摩擦係数はその温度によって変化する。そうすると、摩擦部材9(図1)をブレーキロータ8(図1)に押し付けることに起因する発熱に基づいて、推定範囲の限界値を変更する。 The estimated range changing unit 26 changes the limit value of the estimated range to be smaller than the limit value before the change when the temperature estimated by the temperature estimating unit 29 becomes lower than a predetermined temperature. The determined temperature is determined by a result of a test, simulation, or the like, and is stored in the recording unit 27 so as to be rewritable. When the friction member 9 (FIG. 1) is pressed against the brake rotor 8 (FIG. 1), the friction coefficient between the friction member 9 (FIG. 1) and the brake rotor 8 (FIG. 1) varies depending on the temperature. Then, the limit value of the estimated range is changed based on the heat generated by pressing the friction member 9 (FIG. 1) against the brake rotor 8 (FIG. 1).
 図7は、この電動ブレーキ装置を搭載する車両において、ブレーキ力および車速から推定される各輪の発熱量に基づいて、推定ブレーキ力の推定範囲を変更する例を示すフローチャートである。本処理開始後、温度推定手段29(図2)は、ロータ角速度推定手段28(図2)で推定された回転角速度に基づいて、離散化時間t=kにおける車速v(k)を演算し、この車速からブレーキで発生する熱流速(の変化量)Δ⌒Jを推定する(ステップc1)。なお、この明細書において、符号の先頭の「⌒」は推定値であることを示すが、この「⌒」の符号は省くことがある。また、図7では「⌒」は他の符号の上に付してある。 FIG. 7 is a flowchart showing an example in which the estimated range of the estimated braking force is changed based on the calorific value of each wheel estimated from the braking force and the vehicle speed in a vehicle equipped with this electric brake device. After the start of this processing, the temperature estimation means 29 (FIG. 2) calculates the vehicle speed v (k) at the discretization time t = k based on the rotational angular speed estimated by the rotor angular speed estimation means 28 (FIG. 2). From this vehicle speed, a heat flow rate (change amount) Δ⌒J generated by the brake is estimated (step c1). In this specification, the symbol “⌒” at the beginning of the code indicates an estimated value, but the symbol “⌒” may be omitted. Further, in FIG. 7, “⌒” is added on other symbols.
 次に温度推定手段29は、各輪の大まかな発生熱流速Δ⌒Jxxを推定する(ステップc2)。この発生熱流速Δ⌒Jxxは、各輪のブレーキ力Fbxxをブレーキ力の総和Fballで除した値に、ステップc1で推定した熱流速Δ⌒Jを乗じて求められる。その後、温度推定手段29は、各輪毎の発生熱流速Δ⌒Jxxから摩擦部材9(図1)の温度⌒T(k)を推定する(ステップc3)。 Next, the temperature estimation means 29 estimates a roughly generated heat flow rate Δ⌒J xx of each wheel (step c2). The generated heat flow rate Δ⌒J xx is obtained by multiplying the value obtained by dividing the brake force F bxx of each wheel by the total brake force F ball by the heat flow rate Δ⌒J estimated in step c1. Thereafter, the temperature estimation means 29 estimates the temperature ⌒T (k) of the friction member 9 (FIG. 1) from the generated heat flow rate Δ⌒J xx for each wheel (step c3).
 次に、推定範囲変更手段26は、推定された温度⌒T(k)に基づいて、推定範囲Rを拡大または縮小するよう変更する(ステップc4)。このとき、推定範囲Rは、推定温度に対する閾値やカウンタを用いて前述の図5,図6のような処理により変更することができる。その後本処理を終了する。なお、電動ブレーキ装置に別途サーミスタ等の温度センサを設けて温度⌒T(k)を推定しても良い。 Then, the estimated range changing means 26, on the basis of the estimated temperature ⌒T (k), is changed to increase or decrease the estimation range R n (step c4). In this case, the estimated range R n is, FIG. 5 described above using a threshold, a counter for estimated temperature can be changed by the processing shown in FIG 6. Thereafter, this process is terminated. Note that the temperature セ ン サ T (k) may be estimated by providing a temperature sensor such as a thermistor separately in the electric brake device.
 このようにブレーキ力および車速から、各輪の大まかな発熱量を推定し、この発熱量に基づいて推定範囲を変化させる。このとき、発熱に基づいた推定範囲の変更は、摩擦部材9(図1)の摩擦係数の変動に対応する目的であり、推定ブレーキ力は例えばブレーキ荷重などの、摩擦係数の影響を受ける推定を行う例を示している。この構成によると、摩擦部材9(図1)とブレーキロータ8(図1)の摩擦係数の変動に対応して推定範囲の限界値を木目細かく変更することができる。 As described above, the rough heat generation amount of each wheel is estimated from the braking force and the vehicle speed, and the estimation range is changed based on the heat generation amount. At this time, the change of the estimation range based on the heat generation is for the purpose of dealing with the fluctuation of the friction coefficient of the friction member 9 (FIG. 1), and the estimated braking force is estimated to be affected by the friction coefficient such as a brake load. An example is shown. According to this configuration, it is possible to finely change the limit value of the estimation range corresponding to the variation of the friction coefficient of the friction member 9 (FIG. 1) and the brake rotor 8 (FIG. 1).
 図2に示すように、ブレーキ力推定手段17は、推定範囲変更手段26により推定ブレーキ力の推定範囲の限界値を変更した後、定められた時間内において、回転角推定手段24で推定された回転角度とブレーキ力との定められた関係に基づいて、推定ブレーキ力を求めるようにしても良い。前記定められた時間は、試験やシミュレーションの結果により定められ、記録手段27に書き換え可能に保存される。 As shown in FIG. 2, the brake force estimation means 17 is estimated by the rotation angle estimation means 24 within a predetermined time after the limit value of the estimated brake force estimation range is changed by the estimation range change means 26. The estimated braking force may be obtained based on a predetermined relationship between the rotation angle and the braking force. The predetermined time is determined by the result of the test or simulation, and is stored in the recording means 27 so as to be rewritable.
 図8は、推定ブレーキ力の推定範囲の限界値を変更した後、定められた時間内は、ブレーキ力推定結果を用いずに電動モータ4(図1)の制御を行う例を示すフローチャートである。この例では、例えば、センサ素子(図示せず)のレジスタの書き換え時間など、ブレーキ力の推定範囲を変化させるための時間が必要な場合において、推定範囲が変化した後の所定時間は、ブレーキ力推定結果を用いずに電動ブレーキ装置の制御を行う例を示す。例えば、電動モータ4(図1)の回転角度とブレーキ力との関係を事前にある程度測定しておけば、制御精度は低下するものの大まかな制御は可能であり、前記所定時間が僅かな時間であれば実用上問題は無いと考えられる。 FIG. 8 is a flowchart showing an example in which the electric motor 4 (FIG. 1) is controlled without using the brake force estimation result within a predetermined time after changing the limit value of the estimated range of the estimated brake force. . In this example, for example, when a time for changing the estimated range of the braking force is required, such as a rewrite time of a register of a sensor element (not shown), the predetermined time after the estimated range is changed is the braking force. An example is shown in which the electric brake device is controlled without using the estimation result. For example, if the relationship between the rotation angle of the electric motor 4 (FIG. 1) and the braking force is measured to some extent in advance, rough control is possible although the control accuracy is reduced, and the predetermined time is a short time. If there is, there is no problem in practical use.
 図8に示すように、本処理開始後、推定範囲変更手段26(図2)により推定ブレーキ力の推定範囲を変更した後(ステップd1)、ブレーキ力推定手段17(図2)は、(例えば離散化時間t=kにおける)サンプルkにおける推定範囲R(k)が一つ前のサンプル(k-1)における推定範囲R(k-1)と同一か否かを判定する(ステップd2)。同一であるとの判定で(ステップd2:yes)、ブレーキ力推定手段17(図2)はカウンタCidから「1」減じる更新を行う(ステップd3)。その後ステップd5に移行する。 As shown in FIG. 8, after the start of this process, after the estimated range of the estimated braking force is changed by the estimated range changing means 26 (FIG. 2) (step d1), the braking force estimating means 17 (FIG. 2) It is determined whether or not the estimation range R (k) in the sample k (at the discretization time t = k) is the same as the estimation range R (k−1) in the previous sample (k−1) (step d2). In determining that it is identical (Step d2: yes), the braking force estimating means 17 (FIG. 2) performs the update subtracting "1" from the counter C id (Step d3). Thereafter, the process proceeds to step d5.
 サンプルkにおける推定範囲が一つ前のサンプル(k-1)における推定範囲と同一ではないと判定されると(ステップd2:no)、ブレーキ力推定手段17(図2)はカウンタCidの値を推定範囲が変化した後の所定時間Cupdとする(ステップd4)。その後ステップd5に移行する。このステップd5において、ブレーキ力推定手段17はカウンタCidの値が「0」以上か否かを判定する。 When it is determined that the estimated range in the sample k is not the same as the estimated range in the previous sample (k−1) (step d2: no), the brake force estimating means 17 (FIG. 2) determines the value of the counter Cid . Is a predetermined time C upd after the estimated range is changed (step d4). Thereafter, the process proceeds to step d5. In step d5, the brake force estimating means 17 determines whether or not the value of the counter Cid is “0” or more.
 カウンタCidの値が「0」以上であるとの判定で(ステップd5:yes)、ブレーキ力推定手段17(図2)は、目標モータ角度θを目標値rにセットし、モータ角度θを制御量yにセットする(ステップd6)。その後ステップd9に移行する。カウンタCidの値が「0」未満であるとの判定で(ステップd5:no)、ブレーキ力推定手段17(図2)はカウンタCidを「0」にリセットする(ステップd7)。次に、目標ブレーキ力Fを目標値rにセットし、推定ブレーキ力Fbを制御量yにセットする(ステップd8)。ステップd9では制御演算を実行し、その後本処理を終了する。 When it is determined that the value of the counter C id is equal to or greater than “0” (step d5: yes), the brake force estimation means 17 (FIG. 2) sets the target motor angle θ r to the target value r, and the motor angle θ Is set to the control amount y (step d6). Thereafter, the process proceeds to step d9. When it is determined that the value of the counter C id is less than “0” (step d5: no), the brake force estimating means 17 (FIG. 2) resets the counter C id to “0” (step d7). Then, we set the target braking force F r to the target value r, setting the estimated braking force Fb on the controlled variable y (step d8). In step d9, a control calculation is executed, and then this process is terminated.
 図9は、図5乃至図8のいずれかの動作を実装した際の、ブレーキ力の変化に応じた推定範囲の変化を示す図である。推定範囲変更手段26(図2)により、推定ブレーキ力の推定範囲の限界値を変更することで、電動ブレーキ装置の常用域において十分な分解能を有するブレーキ力推定手段17の構成を行うことが容易となり、制御精度向上や低コスト化を可能とする。またブレーキ力推定手段17のいわゆる検出レンジを逐次更新することで、レンジオーバーとなるような電動ブレーキ装置の制御が困難となる事態を回避することができる。前記ブレーキ力は目標ブレーキ力を用いると速やかな推定範囲変更を行えるため好適であるが、推定ブレーキ力を用いることもできる。あるいは前記の両方を用いてもよい。 FIG. 9 is a diagram showing a change in the estimated range according to a change in the braking force when the operation of any of FIGS. 5 to 8 is implemented. By changing the limit value of the estimated range of the estimated brake force by the estimated range changing unit 26 (FIG. 2), it is easy to configure the brake force estimating unit 17 having sufficient resolution in the normal range of the electric brake device. Thus, control accuracy can be improved and costs can be reduced. In addition, by sequentially updating the so-called detection range of the brake force estimating means 17, it is possible to avoid a situation where it becomes difficult to control the electric brake device that would cause the range to be over. When the target braking force is used as the braking force, it is preferable because the estimated range can be changed quickly, but the estimated braking force can also be used. Alternatively, both of the above may be used.
 図10に示すように、さらに他の実施形態として、ブレーキ力推定手段17は、回転角推定手段24で推定されたアナログ信号からなる回転角度をA/D変換器17bでA/D変換したデジタル信号と、ブレーキ力との関係を試験やシミュレーション等により予め求めて関係設定手段17cに格納しておき、回転角推定手段24からの回転角度と目標ブレーキ力との関係に基づいて推定ブレーキ力を求めても良い。なお図示しないが、電流検出手段22(図2)からのモータ電流と目標ブレーキ力との関係を上記と同様に関係設定手段17cに格納しておき、これらモータ電流と目標ブレーキ力とに基づいて推定ブレーキ力を求めても良い。 As shown in FIG. 10, as still another embodiment, the brake force estimating means 17 is a digital signal obtained by A / D converting the rotation angle formed by the analog signal estimated by the rotation angle estimating means 24 with an A / D converter 17b. The relationship between the signal and the braking force is obtained in advance by testing or simulation and stored in the relationship setting means 17c, and the estimated braking force is calculated based on the relationship between the rotation angle from the rotation angle estimating means 24 and the target braking force. You may ask. Although not shown, the relationship between the motor current from the current detection means 22 (FIG. 2) and the target brake force is stored in the relationship setting means 17c in the same manner as described above, and based on these motor current and target brake force. The estimated braking force may be obtained.
 以上、図面を参照しながら実施形態に基づいてこの発明を実施するための好適な形態を説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではない。この発明の範囲は上記した説明ではなくて請求の範囲によって示される。当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内またはこれと均等の範囲内のものと解釈される。 As mentioned above, although the suitable form for implementing this invention based on embodiment was demonstrated referring drawings, embodiment disclosed this time is an illustration and restrictive at no points. The scope of the present invention is shown not by the above description but by the claims. Those skilled in the art will readily appreciate various changes and modifications within the obvious scope upon reviewing this specification. Therefore, such changes and modifications should be construed as being within the scope of the invention defined by the claims or within the scope equivalent thereto.
2…制御装置
4…電動モータ
6…直動機構(摩擦部材操作手段)
8…ブレーキロータ
9…摩擦部材
17…ブレーキ力推定手段
24…回転角推定手段
26…推定範囲変更手段
28…ロータ角速度推定手段
29…温度推定手段
DB…電動ブレーキ装置
2 ... Control device 4 ... Electric motor 6 ... Linear motion mechanism (friction member operation means)
DESCRIPTION OF SYMBOLS 8 ... Brake rotor 9 ... Friction member 17 ... Brake force estimation means 24 ... Rotation angle estimation means 26 ... Estimation range change means 28 ... Rotor angular velocity estimation means 29 ... Temperature estimation means DB ... Electric brake device

Claims (6)

  1.  ブレーキロータと、このブレーキロータに接触させる摩擦部材と、この摩擦部材を前記ブレーキロータに接触させる摩擦部材操作手段と、この摩擦部材操作手段を駆動する電動モータと、前記摩擦部材を前記ブレーキロータに押し付けることにより発生するブレーキ力の推定値である推定ブレーキ力を求めるブレーキ力推定手段と、前記電動モータを制御して前記推定ブレーキ力を目標ブレーキ力に追従制御する制御装置とを備える電動ブレーキ装置であって、
     前記制御装置は、前記目標ブレーキ力および前記推定ブレーキ力のいずれか一方または両方に基づいて、前記ブレーキ力推定手段による前記推定ブレーキ力の推定範囲の限界値を変更する推定範囲変更手段を有する電動ブレーキ装置。
    A brake rotor, a friction member to be brought into contact with the brake rotor, a friction member operation means for bringing the friction member into contact with the brake rotor, an electric motor for driving the friction member operation means, and the friction member to the brake rotor Electric brake device comprising: brake force estimating means for obtaining an estimated brake force that is an estimated value of a brake force generated by pressing; and a control device that controls the electric motor to control the estimated brake force following the target brake force. Because
    The control device includes an electric range change unit that changes a limit value of an estimated range of the estimated brake force by the brake force estimation unit based on one or both of the target brake force and the estimated brake force. Brake device.
  2.  請求項1に記載の電動ブレーキ装置において、前記推定範囲変更手段は、次の条件群、
     前記目標ブレーキ力および前記推定ブレーキ力のいずれか一方または両方が前記推定範囲における閾値を超過したとき、
     前記推定範囲における閾値と前記いずれか一方または両方のブレーキ力との偏差の絶対値が所定値以内かつ前記いずれか一方または両方のブレーキ力の変化量が所定値以上であるとき、および
     前記いずれか一方または両方のブレーキ力が前記閾値を超過している超過時間が所定の時間を超えたとき、
     のうち、少なくともいずれか一つ以上の条件に基づいて、前記推定範囲の限界値を変更前の限界値より拡大するよう変更する電動ブレーキ装置。
    The electric brake device according to claim 1, wherein the estimation range changing means includes the following condition group:
    When one or both of the target braking force and the estimated braking force exceed a threshold value in the estimated range,
    When the absolute value of the deviation between the threshold value in the estimated range and the one or both of the braking forces is within a predetermined value and the amount of change in either or both of the braking forces is greater than or equal to a predetermined value, and either When the excess time when one or both braking forces exceed the threshold exceeds a predetermined time,
    The electric brake device that changes the limit value of the estimated range to be larger than the limit value before the change based on at least one of the conditions.
  3.  請求項1または請求項2に記載の電動ブレーキ装置において、前記推定範囲変更手段は、次の条件群、
     前記目標ブレーキ力および前記推定ブレーキ力のいずれか一方または両方が前記推定範囲における閾値を下回ったとき、
     前記推定範囲における閾値と前記いずれか一方または両方のブレーキ力との偏差の絶対値が所定値以内かつ前記いずれか一方または両方のブレーキ力の変化量が所定値以下であるとき、および
     前記いずれか一方または両方のブレーキ力が前記閾値を下回っている時間が所定の時間を超えたとき、
     のうち、少なくともいずれか一つを含む条件に基づいて、前記推定範囲の限界値を変更前の限界値より縮小するよう変更する電動ブレーキ装置。
    The electric brake device according to claim 1 or 2, wherein the estimated range changing means includes the following condition group:
    When one or both of the target braking force and the estimated braking force falls below a threshold value in the estimated range,
    When the absolute value of the deviation between the threshold value in the estimated range and the one or both of the braking forces is within a predetermined value and the amount of change in the braking force of either one or both is less than or equal to the predetermined value; When the time during which one or both braking forces are below the threshold exceeds a predetermined time,
    An electric brake device that changes the limit value of the estimated range to be smaller than the limit value before the change based on a condition including at least one of them.
  4.  請求項1ないし請求項3のいずれか1項に記載の電動ブレーキ装置において、前記電動モータの回転角度を推定する回転角推定手段を設け、前記ブレーキ力推定手段は、前記推定範囲変更手段により前記推定ブレーキ力の推定範囲の限界値を変更した後、定められた時間内において、前記回転角推定手段で推定された前記回転角度と前記ブレーキ力との定められた関係に基づいて、前記推定ブレーキ力を求める電動ブレーキ装置。 4. The electric brake device according to claim 1, further comprising: a rotation angle estimation unit that estimates a rotation angle of the electric motor, wherein the brake force estimation unit is configured to perform the estimation range change unit by the estimation range change unit. After changing the limit value of the estimated range of the estimated brake force, the estimated brake force is determined based on the determined relationship between the rotation angle and the brake force estimated by the rotation angle estimating means within a determined time. Electric brake device that demands power.
  5.  請求項1ないし請求項4のいずれか1項に記載の電動ブレーキ装置において、前記ブレーキ力推定手段が、前記摩擦部材が前記ブレーキロータを押圧するときの押圧力を推定する荷重センサを含む電動ブレーキ装置。 5. The electric brake device according to claim 1, wherein the brake force estimating unit includes a load sensor that estimates a pressing force when the friction member presses the brake rotor. 6. apparatus.
  6.  請求項1ないし請求項5のいずれか1項に記載の電動ブレーキ装置において、前記ブレーキロータの回転角速度を推定するロータ角速度推定手段を設け、
     前記制御装置に、前記ロータ角速度推定手段で推定された前記回転角速度から前記ブレーキロータの温度を推定する温度推定手段を設け、
     前記推定範囲変更手段は、前記温度推定手段で推定された温度が定められた温度以上となったとき前記推定範囲の限界値を変更前の限界値より拡大し、前記温度推定手段で推定された温度が定められた温度未満となったとき前記推定範囲の限界値を変更前の限界値より縮小するよう変更する電動ブレーキ装置。
    The electric brake device according to any one of claims 1 to 5, further comprising a rotor angular velocity estimating means for estimating a rotational angular velocity of the brake rotor,
    The controller is provided with temperature estimating means for estimating the temperature of the brake rotor from the rotational angular speed estimated by the rotor angular speed estimating means,
    The estimated range changing means expands the limit value of the estimated range from the limit value before the change when the temperature estimated by the temperature estimating means is equal to or higher than a predetermined temperature, and is estimated by the temperature estimating means An electric brake device that changes a limit value of the estimated range to be smaller than a limit value before the change when the temperature becomes lower than a predetermined temperature.
PCT/JP2016/066720 2015-06-11 2016-06-06 Electric braking device WO2016199709A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015118585A JP6466261B2 (en) 2015-06-11 2015-06-11 Electric brake device
JP2015-118585 2015-06-11

Publications (1)

Publication Number Publication Date
WO2016199709A1 true WO2016199709A1 (en) 2016-12-15

Family

ID=57503454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066720 WO2016199709A1 (en) 2015-06-11 2016-06-06 Electric braking device

Country Status (2)

Country Link
JP (1) JP6466261B2 (en)
WO (1) WO2016199709A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023059245A (en) * 2021-10-14 2023-04-26 株式会社日立製作所 Smart brake system and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT523549A1 (en) * 2020-03-13 2021-09-15 Greenbrakes Gmbh ELECTROMECHANICAL BRAKING SYSTEM

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003202042A (en) * 2001-10-22 2003-07-18 Tokico Ltd Electric disk brake and control program for the disk brake
JP2013029413A (en) * 2011-07-28 2013-02-07 Ntn Corp Magnetic type load sensor for direct-acting actuator and direct-acting actuator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5272949B2 (en) * 2009-07-28 2013-08-28 トヨタ自動車株式会社 Vehicle vibration suppression control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003202042A (en) * 2001-10-22 2003-07-18 Tokico Ltd Electric disk brake and control program for the disk brake
JP2013029413A (en) * 2011-07-28 2013-02-07 Ntn Corp Magnetic type load sensor for direct-acting actuator and direct-acting actuator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023059245A (en) * 2021-10-14 2023-04-26 株式会社日立製作所 Smart brake system and method
JP7285364B2 (en) 2021-10-14 2023-06-01 株式会社日立製作所 Smart braking system and method

Also Published As

Publication number Publication date
JP2017001559A (en) 2017-01-05
JP6466261B2 (en) 2019-02-06

Similar Documents

Publication Publication Date Title
WO2016194830A1 (en) Electrically powered brake device
US10377355B2 (en) Electric brake device
US10427661B2 (en) Electric brake device
US7385365B2 (en) Method for the detection of abnormalities of electric motors
WO2016190212A1 (en) Electrically powered brake device
US10759402B2 (en) Electric braking system
WO2015174314A1 (en) Electric brake device
US11292442B2 (en) Electromechanical brake system
US10100891B2 (en) Electric brake device
WO2016199709A1 (en) Electric braking device
JP2017035993A (en) Electric brake device
WO2016181898A1 (en) Electric motor device and electric linear motion actuator
CN109789858B (en) Electric brake device
JP6502172B2 (en) Electric brake device
JP2019151331A (en) Electric brake device
WO2018052068A1 (en) Electric brake apparatus
JP2019172251A (en) Electric brake device
JP6906398B2 (en) Electric brake device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16807416

Country of ref document: EP

Kind code of ref document: A1