WO2016199685A1 - Illumination device - Google Patents

Illumination device Download PDF

Info

Publication number
WO2016199685A1
WO2016199685A1 PCT/JP2016/066490 JP2016066490W WO2016199685A1 WO 2016199685 A1 WO2016199685 A1 WO 2016199685A1 JP 2016066490 W JP2016066490 W JP 2016066490W WO 2016199685 A1 WO2016199685 A1 WO 2016199685A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
observer
control element
light source
lighting device
Prior art date
Application number
PCT/JP2016/066490
Other languages
French (fr)
Japanese (ja)
Inventor
代工 康宏
Original Assignee
株式会社オルタステクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オルタステクノロジー filed Critical 株式会社オルタステクノロジー
Publication of WO2016199685A1 publication Critical patent/WO2016199685A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/40Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/163Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source

Definitions

  • the present invention relates to a lighting device.
  • the environment in which the observer views the TV or personal computer screen is, for example, a room with a lighting device on the ceiling.
  • the light source of the lighting device enters the observer's field of view while the observer is looking at the screen, the psychological discomfort due to glare is memorized. That is called recognizing glare. If this glare lasts for a long time, secondary harm such as eye pain, stress, or headache may occur.
  • the present invention provides an illuminating device capable of suppressing glare recognized by an observer.
  • An illumination device includes a light source, a light control element that is disposed between the light source and the observer, receives light from the light source, a camera that detects the position of the observer, A control unit that determines a light-blocking region through which an optical path connecting the light source and the observer passes and a light-transmitting region other than the light-blocking region among light control elements, and reduces a light amount of the light-blocking region to a light amount of the light-transmitting region It comprises.
  • an illumination device that can suppress glare recognized by an observer.
  • FIG. 3 is a plan view of the light control element according to the first embodiment.
  • FIG. 5 is a cross-sectional view of the light control element along the line AA ′ shown in FIG. 4.
  • 4A and 4B illustrate an example of a region that is shielded by a light control element.
  • movement of the light control element in an ON state The block diagram of the control apparatus which concerns on 1st Embodiment.
  • FIG. 1 is a diagram for explaining a human visual field range.
  • FIG. 1A is a side view
  • FIG. 1B is a top view.
  • the field of view When the person is facing the front in front, the field of view is about 60 ° up and 75 ° down for each eye. Incidentally, the field of view in the horizontal direction is about 60 ° on the nose side and about 100 ° on the ear side.
  • FIG. 2 is a diagram for explaining how an observer (human, person) 2 is watching the television 3 in the room. If the observer 2 watches the television 3 in front of the front and the elevation angle ⁇ is in the range of 0 ° or more and 60 ° or less, the light of the illumination device 1 directly enters the observer's 2 eye. 2 recognizes glare.
  • glare is reduced by controlling the light from the illumination device 1 entering the eyes of the observer 2.
  • FIG. 3 is a diagram illustrating a configuration of the lighting device 1 according to the first embodiment.
  • FIG. 3A is a side view
  • FIG. 3B is a plan view.
  • the lighting device 1 includes a power cord 10, a lighting body (lighting fixture) 11, a socket 12, a light source 13, a cover 14, a light control element 15, two cameras 16A and 16B, a driver 17, a control device (control unit) 18, And wirings 19-21.
  • the power cord 10 supplies external power to the lighting device 1.
  • the illumination main body (lighting fixture) 11 is a general fixture having a function of turning on and off the light source 13.
  • the socket 12 is connected to the light source 13 and has a function of supplying power to the light source 13.
  • the socket 12 is formed of an insulating resin and includes a power supply terminal connected to the light source 13.
  • the light source 13 is composed of, for example, a fluorescent lamp having a ring shape (also called a circular shape, a ring shape, or a donut shape).
  • a fluorescent lamp having a ring shape (also called a circular shape, a ring shape, or a donut shape).
  • Various types of light sources 13 can be used, and in addition to fluorescent lamps, LEDs (light-emitting diodes) or incandescent lamps may be used.
  • the shape of the light source 13 is not limited to the ring shape, and a straight tube shape (bar shape), a light bulb shape (ball shape), or the like may be used.
  • the cover 14 is connected to the illumination main body 11 and is configured to cover the upper and side portions of the light source 13.
  • the cover 14 is made of a material having translucency, for example.
  • the cover 14 having translucency is made of, for example, polycarbonate resin or acrylic resin having translucency and diffusibility.
  • the planar shape of the cover 14 is, for example, a quadrangle, but may be another shape such as a circle. Further, the cover 14 may include a reflection member that reflects light on the inside.
  • the light control element 15 is disposed below the light source 13 and attached to the cover 14. About the attachment method of the light control element 15, it can select suitably according to the structure of the cover 14, For example, you may use a some attachment metal fitting.
  • the light control element 15 controls the amount of light reaching the observer from the light source 13 by controlling the transmittance of light from the light source 13. A specific configuration of the light control element 15 will be described later.
  • the cameras 16A and 16B are attached to the lower part of the light control element 15.
  • the cameras 16 ⁇ / b> A and 16 ⁇ / b> B are arranged at both ends of the light control element 15 in the X direction passing through the center of the light source 13.
  • the center of the light source 13 is the center of the outer circumference of the light source 13.
  • the cameras 16 ⁇ / b> A and 16 ⁇ / b> B take images toward the lower side of the lighting device 1 and detect an observer present near the lighting device 1.
  • the driver 17 is a drive circuit for the light control element 15, and drives the light control element 15 based on a control signal from the control device 18.
  • the control device 18 controls the operation of the entire lighting device 1.
  • Each of the wirings 19 to 21 includes a signal line and a power supply line.
  • the wiring 19 connects the driver 17 and the control device 18.
  • the wiring 20 connects the camera 16 ⁇ / b> A and the control device 18.
  • the wiring 21 connects the camera 16B and the control device 18.
  • FIG. 4 is a plan view of the light control element 15.
  • FIG. 5 is a cross-sectional view of the light control element 15 along the line AA ′ shown in FIG.
  • the light control element 15 according to the first embodiment is composed of a liquid crystal element.
  • the display method of the light control element 15 is a dot matrix method, and the drive method of the light control element 15 is a TN (Twisted nematic) method.
  • the light control element 15 includes substrates 30 and 31, a liquid crystal layer 32, a sealing material 33, a plurality of lower electrodes 34, a plurality of upper electrodes 35, and polarizing plates 36 and 37.
  • the substrates 30 and 31 are arranged to face each other and are made of a transparent substrate (for example, a glass substrate).
  • the substrate 31 and the polarizing plate 37 are not shown for easy understanding of the configuration of the lower electrode 34 and the upper electrode 35, but the planar shape of the substrate 31 is It is the same as the substrate 30, and the planar shape of the polarizing plate 37 is the same as that of the polarizing plate 36.
  • the liquid crystal layer 32 is sandwiched between the substrates 30 and 31.
  • the liquid crystal layer 32 is composed of TN liquid crystal. That is, the liquid crystal molecules contained in the liquid crystal layer 32 are twisted by 90 ° above and below the liquid crystal layer 32 in the initial state (no electric field).
  • the alignment of the liquid crystal is controlled by an alignment film (not shown) provided so as to sandwich the liquid crystal layer 32.
  • the liquid crystal material constituting the liquid crystal layer 32 is sealed by a sealing material 33 that bonds the substrates 30 and 31 together.
  • the orientation of the liquid crystal molecules is manipulated according to the electric field applied thereto, and the optical characteristics change.
  • a plurality of lower electrodes 34 are provided on the liquid crystal layer 32 side of the substrate 30.
  • the plurality of lower electrodes 34 each have a line shape extending in the Y direction, and are arranged side by side in the X direction.
  • the lower electrode 34 is composed of a transparent electrode, and for example, ITO (indium tin oxide) is used.
  • ITO indium tin oxide
  • the plurality of lower electrodes 34 are arranged at a predetermined interval from each other and are electrically insulated from each other.
  • a plurality of upper electrodes 35 are provided on the liquid crystal layer 32 side of the substrate 31.
  • Each of the plurality of upper electrodes 35 has a line shape extending in the X direction, and is arranged side by side in the Y direction.
  • the upper electrode 35 is composed of a transparent electrode, and for example, ITO is used.
  • the plurality of upper electrodes 35 are arranged at a predetermined interval from each other and are electrically insulated from each other.
  • the orientation of the lower electrode 34 and the upper electrode 35 may be reversed. 4 and 5, the adjacent electrodes are shown in contact with each other in order to avoid complication of the drawings. However, as described above, these adjacent electrodes have a predetermined interval. They are arranged in a space and are electrically insulated from each other. That is, the plurality of lower electrodes 34 and the plurality of upper electrodes 35 can be individually voltage controlled.
  • the light control element 15 has a dot matrix composed of a plurality of dots 38 that are intersecting regions of the plurality of lower electrodes 34 and the plurality of upper electrodes 35.
  • the light control element 15 can control the transmittance of the dots 38 by controlling the voltage between the lower electrode 34 and the upper electrode 35.
  • the polarizing plates 36 and 37 are disposed so as to sandwich the substrates 30 and 31.
  • the polarizing plates 36 and 37 have a transmission axis and an absorption axis orthogonal to each other in a plane orthogonal to the light traveling direction.
  • the polarizing plates 36 and 37 transmit linearly polarized light (linearly polarized light component) having a vibration surface parallel to the transmission axis out of light having vibration surfaces in random directions, and have a vibration surface parallel to the absorption axis. Absorbs linearly polarized light (linearly polarized light component).
  • the polarizing plates 36 and 37 are arranged so that their transmission axes are orthogonal to each other, that is, in an orthogonal Nicol state.
  • Each of the cameras 16A and 16B captures an image below the lighting device 1.
  • the images of the cameras 16A and 16B are sent to the control device 18.
  • the control device 18 detects the position of the observer using the images of the cameras 16A and 16B, subsequently detects the position of the face of the observer, and subsequently detects the position of the eyes of the observer.
  • the position of the observer means the position of the face of the observer, but may be the position of the eyes of the observer (either the right eye or the left eye).
  • FIG. 6 is a perspective view for explaining coordinates for specifying the position of the observer.
  • the center of the light control element 15 (the center of the light source 13) is the center C of the coordinates.
  • the X axis is an axis connecting the cameras 16A and 16B, and the Y axis is an axis orthogonal to the X direction.
  • the center C, the X axis, and the Y axis are defined within a plane including the bottom surface of the light control element 15.
  • the Z axis is an axis extending vertically downward from the center C.
  • FIG. 7 is a diagram for explaining an example of the positional relationship between the observer 2 and the lighting device 1.
  • the inclination angle ⁇ A of the face position of the observer 2 with respect to the camera 16A is assumed to be the inclination angle ⁇ B of the face position of the observer 2 with respect to the camera 16B.
  • the inclination angle ⁇ is an angle with respect to the perpendicular from the camera.
  • the distance d (cm) between the cameras 16A and 16B is assumed.
  • FIG. 8 is a diagram illustrating an example of the tilt angle and azimuth angle of the observer.
  • FIG. 8A is a diagram centering on the camera 16A
  • FIG. 8B is a diagram centering on the camera 16B.
  • the azimuth angle ⁇ A of the observer position with respect to the camera 16A and the azimuth angle ⁇ B of the observer position with respect to the camera 16B are assumed.
  • the circle shown in FIG. 8 represents an example of the position of the observer.
  • a line connecting azimuth angles from 0 ° to 180 ° corresponds to the X axis.
  • the inclination angles ⁇ A and ⁇ B are each 30 ° or more and less than 90 °, and the azimuth angles ⁇ A and ⁇ B are each 0 ° or more and 360 ° or less.
  • the coordinates (X, Y, Z) of the observer are expressed by the following equations (1) to (3).
  • the coordinate Z may be calculated from equation (4).
  • X ⁇ sin ( ⁇ A + ⁇ B ) / 2 sin ( ⁇ A ⁇ B ) ⁇ ⁇ d
  • Y ⁇ sin ⁇ A ⁇ sin ⁇ B ) / sin ( ⁇ A ⁇ B ) ⁇ ⁇ d
  • Z ⁇ sin ⁇ B / tan ⁇ A ⁇ sin ( ⁇ A ⁇ B ) ⁇ ⁇ d
  • Z ⁇ sin ⁇ A / tan ⁇ B ⁇ sin ( ⁇ A ⁇ B ) ⁇ ⁇ d (4)
  • d 34 (cm)
  • ⁇ A 330 °
  • ⁇ B 320 °
  • ⁇ A 40 °
  • ⁇ B 33.1 °.
  • the control device 18 can detect and specify the position of the observer using the images of the cameras 16A and 16B.
  • the light control element 15 has a dot matrix composed of a plurality of dots 38.
  • the light control element 15 can control the transmittance of each dot matrix.
  • the transmittance is controlled by the control device 18.
  • the electric field applied to the first dot becomes substantially zero.
  • the case where this electric field is approximately zero is called an off state.
  • the light is transmitted through the first dot (however, since the polarizing plate is used, the transmittance is about 50%).
  • the transmittance in the off state is not limited to 50% and can be arbitrarily set.
  • the voltage difference between the lower electrode 34 and the upper electrode 35 sandwiching an arbitrary second dot is positive (for example, 5 V)
  • an electric field is applied to the second dot.
  • the case where this electric field is applied is called an on state. In the on state, light cannot pass through the second dot, and the transmittance of the second dot is approximately 0%. That is, the second dot is in a light shielding state.
  • the light control element 15 shields light from a region through which a straight line connecting the light source 13 and the observer passes (transmittance 0%), and transmits light in other regions.
  • FIG. 9 is a diagram illustrating an example of a region where the light control element 15 blocks light. A distance t from the center in the vertical direction of the light source 13 to the bottom surface of the light control element 15 is assumed.
  • FIG. 9A is a side view corresponding to FIG.
  • FIG. 9C is a plan view showing the light shielding region 13A where the light control element 15 shields light.
  • the light shielding region 13A is a region through which a straight line connecting the light source 13 and the observer passes.
  • the light shielding region 13A is also a ring.
  • the light shielding region 13A is expressed by the following equations (7) and (8). Equation (7) represents the inner circle of the light shielding region 13A, and equation (8) represents the outer circle of the light shielding region 13A. (X, Y, Z) are the coordinates of the observer described above, and (x, y, z) are the coordinates of the light shielding region 13A.
  • FIG. 10 is a diagram for explaining the operation of the light control element 15 in the off state.
  • FIG. 10A is a plan view of the light control element 15, and
  • FIG. 10B is a cross-sectional view of the light control element 15 along the line AA ′ in FIG. 10A.
  • all the lower electrodes 34 and all the upper electrodes 35 are set to the same voltage (for example, 0 V).
  • the light control element 15 is in a transmissive state in the entire region. Therefore, the light from the light source 13 passes through the light control element 15 and is irradiated downward over the entire region of the light control element 15.
  • FIG. 11 is a diagram for explaining the operation of the light control element 15 in the ON state.
  • FIG. 11A is a plan view of the light control element 15, and
  • FIG. 11B is a cross-sectional view of the light control element 15 along the line AA ′ in FIG. 11A.
  • a positive voltage difference is given between the predetermined number of lower electrodes 34 and the predetermined number of upper electrodes 35 for controlling the plurality of dots included in the light shielding region 13A.
  • all the lower electrodes 34 are set to 0 V, and a positive voltage (for example, 5 V) is applied to a predetermined number of upper electrodes 35 for controlling a plurality of dots included in the light shielding region 13A.
  • a positive voltage for example, 5 V
  • the width of the light shielding region 13A is substantially the same as the width of the light source 13 but slightly larger.
  • FIG. 12 is a block diagram of the control device 18.
  • the control device 18 includes a video analysis unit 18A, a position detection unit 18B, a glare determination unit 18C, a light shielding region calculation unit 18D, and a voltage control unit 18E.
  • the functional blocks provided in the control device 18 are realized by, for example, a CPU (Central Processing Unit) and a memory in which software for executing a corresponding function is stored.
  • a CPU Central Processing Unit
  • FIG. 13 is a flowchart for explaining the operation of the control device 18.
  • the video analysis unit 18A receives video signals from the cameras 16A and 16B (step S100). Subsequently, the video analysis unit 18A analyzes the video signals received from the cameras 16A and 16B, recognizes the observer, and further recognizes the face of the observer (step S101). Subsequently, the video analysis unit 18A analyzes the video signals received from the cameras 16A and 16B and recognizes the eyes of the observer (step S102). Note that step S102 may be omitted. That is, in the following steps, processing may be performed based on the face of the observer instead of the observer's eyes.
  • the position detection unit 18B calculates the position of the observer's eyes using the analysis result of the video analysis unit 18A (step S103). That is, the position detection unit 18B calculates the inclination angles ⁇ A and ⁇ B and the azimuth angles ⁇ A and ⁇ B between the cameras 16A and 16B and the position of the observer's eyes. Then, using the above-described equations (1) to (4), the position of the observer's eyes (the coordinates of the X axis, the Y axis, and the Z axis) is calculated.
  • the glare determination unit 18C determines whether or not the condition for the observer to recognize the glare is satisfied (step S104). Specifically, the glare determination unit 18C determines whether or not the inclination angles ⁇ A and ⁇ B are in the range of 30 ° or more and less than 90 °, respectively. When the inclination angles ⁇ A and ⁇ B are within this range, the observer recognizes glare, and when the inclination angles ⁇ A and ⁇ B are outside this range, it is determined that the observer does not recognize glare.
  • the light shielding region calculation unit 18D calculates the light shielding region 13A of the light control element 15 (step S105). That is, the light shielding area calculation unit 18D calculates the light shielding area 13A by setting the area where the straight line connecting the light source 13 and the position of the eyes of the observer intersects the light control element 15 as the light shielding area 13A. For example, the light shielding region calculation unit 18D calculates the light shielding region 13A of the light control element 15 using the position of the observer's eyes calculated in step S103 and the above-described equations (7) and (8).
  • the voltage control unit 18E reduces the voltages of the plurality of lower electrodes 34 and the plurality of upper electrodes 35 so that light does not pass through the light shielding region 13A (that is, the light shielding region 13A is turned on). Control is performed (step S106). Thereby, it can suppress that an observer recognizes glare resulting from the light source 13 of the illuminating device 1.
  • step S104 when the glare condition is not satisfied in step S104, the voltage control unit 18E sets the entire region of the light control element 15 to the transmission state (off state) (step S107). Thereby, the light of the light source 13 of the illumination device 1 reaches the observer without being partially blocked.
  • the illumination device 1 includes the light source 13, the light control element 15 that controls the amount of light from the light source 13, and the cameras 16A and 16B that detect the position of the observer. With. Then, the light control element 15 calculates the light shielding region 13A through which the optical path connecting the light source 13 and the observer passes and the transmission region other than the light shielding region 13A, and makes the light amount of the light shielding region 13A smaller than the light amount of the transmission region. To control.
  • the first embodiment it is possible to suppress glare recognized by the observer. Thereby, when an observer is watching television, for example, it can suppress that illumination feels dazzling.
  • the tilt angles ⁇ A and ⁇ B from the cameras 16A and 16B are in the range of 30 ° or more and less than 90 °, the transmittance of the light shielding region 13A is lowered. For this reason, when the conditions for recognizing glare are not satisfied, the light from the light source 13 reaches the observer directly, so that the lighting device 1 can function as a normal lighting fixture.
  • the second embodiment is an example using polymer dispersed liquid crystal (PDLC) or polymer network liquid crystal (PNLC) as the liquid crystal layer.
  • PDLC polymer dispersed liquid crystal
  • PNLC polymer network liquid crystal
  • FIG. 14 is a cross-sectional view of the light control element 15 according to the second embodiment. Similar to the first embodiment, the display method of the light control element 15 according to the second embodiment is a dot matrix method.
  • a liquid crystal layer 32 is provided between the lower electrode 34 and the upper electrode 35.
  • the polarizing plate and the alignment film are unnecessary.
  • the liquid crystal layer 32 is composed of PDLC or PNLC.
  • the PDLC has a structure in which the liquid crystal 32B is dispersed in the polymer layer (polymer network) 32A. That is, the PDLC has a structure in which the liquid crystal 32B is phase-separated in the polymer layer 32A. Alternatively, the liquid crystal 32B in the polymer layer 32A may have a continuous phase.
  • Photopolymer resin can be used as the polymer layer 32A.
  • PDLC irradiates a solution in which liquid crystal is mixed with a photopolymerizable polymer precursor (monomer) by irradiating ultraviolet rays, polymerizes the monomer to form a polymer, and the liquid crystal is dispersed in the polymer network.
  • the liquid crystal 32B for example, nematic liquid crystal having positive (positive) dielectric anisotropy is used. That is, when no voltage is applied to the liquid crystal layer 32, the liquid crystal molecules are randomly arranged in the polymer layer 32A, and when a voltage is applied to the liquid crystal layer 32, the liquid crystal molecules stand in the electric field direction. It becomes a state (a state in which the long axis of the liquid crystal molecules is oriented in the electric field direction).
  • the voltage control unit 18E applies an electric field to the liquid crystal layer 32 by applying a voltage to the lower electrode 34 and the upper electrode 35.
  • an electric field is applied to the liquid crystal layer 32, that is, a high voltage (for example, 5V) is applied to one of the lower electrode 34 and the upper electrode 35, and a low voltage (for example, 0V) is applied to the other.
  • the liquid crystal molecules are aligned in the electric field direction (direction perpendicular to the substrate). In this case, the liquid crystal layer 32 transmits light.
  • the light from the light source 13 can be scattered in the light shielding region 13A. Thereby, it can suppress that an observer recognizes glare.
  • the third embodiment is an example in which an electrochromic element is used as the light control element 15.
  • FIG. 15 is a cross-sectional view of the light control element 15 according to the third embodiment. Similar to the first embodiment, the display method of the light control element 15 according to the third embodiment is a dot matrix method.
  • the light control element 15 is composed of an electrochromic element.
  • An electrochromic element is an element that utilizes a phenomenon called electrochromism in which a redox reaction occurs reversibly when a voltage is applied and is reversibly colored or colorless. Below, an example of an electrochromic element is demonstrated.
  • an electrochromic layer 40 is provided between the lower electrode 34 and the upper electrode 35.
  • the electrochromic layer 40 includes a solution layer 40A and a plurality of particles 40B dispersed in the solution layer 40A.
  • the particle 40B is a charged particle.
  • As the charged particle for example, silver (Ag) having a positive charge is used.
  • the electrochromic layer 40 functions as a reflective layer (mirror) and is in a mirror state. Thereby, the light from the light source 13 is reflected by the electrochromic layer 40, and the amount of light reaching the observer is reduced.
  • the light from the light source 13 can be reflected in the light shielding region 13A. Thereby, it can suppress that an observer recognizes glare.
  • a plate or a film is an expression illustrating the member, and is not limited to the configuration.
  • the polarizing plate is not limited to a plate-like member, and may be a film having other functions described in the specification or other members.
  • the present invention is not limited to the embodiment described above, and can be embodied by modifying the constituent elements without departing from the scope of the invention. Further, the above embodiments include inventions at various stages, and are obtained by appropriately combining a plurality of constituent elements disclosed in one embodiment or by appropriately combining constituent elements disclosed in different embodiments. Various inventions can be configured. For example, even if some constituent elements are deleted from all the constituent elements disclosed in the embodiments, the problems to be solved by the invention can be solved and the effects of the invention can be obtained. Embodiments made can be extracted as inventions.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

This illumination device 1 includes: a light source 13; a light control element 15 that is disposed between the light source 13 and an observer and that receives light from the light source 13; a camera 16 that detects the position of the observer; and a control unit 18 that determines a light blocking region, of the light control element 15, through which an optical path connecting the light source 13 and the observer passes and a transmission region, of the light control element 15, other than the light blocking region and that causes a light quantity in the light blocking region to be less than a light quantity in the transmission region.

Description

照明装置Lighting device
 本発明は、照明装置に関する。 The present invention relates to a lighting device.
 観察者がテレビやパーソナルコンピュータの画面をみる環境は、例えば、天井に照明装置のある室内である。観察者が画面を見ている状況で、観察者の視界に照明装置の光源が入ると、眩しさによる心理的な不快感をおぼえる。それを、グレアを認識する、という。このグレアが長時間続くと、目の痛み、ストレス、又は頭痛など二次的な害が生じることもある。 The environment in which the observer views the TV or personal computer screen is, for example, a room with a lighting device on the ceiling. When the light source of the lighting device enters the observer's field of view while the observer is looking at the screen, the psychological discomfort due to glare is memorized. That is called recognizing glare. If this glare lasts for a long time, secondary harm such as eye pain, stress, or headache may occur.
特開2014-89841号公報Japanese Patent Application Laid-Open No. 2014-89841
 本発明は、観察者が認識するグレアを抑制することが可能な照明装置を提供する。 The present invention provides an illuminating device capable of suppressing glare recognized by an observer.
 本発明の一態様に係る照明装置は、光源と、前記光源と観察者との間に配置され、前記光源からの光を受ける光制御素子と、前記観察者の位置を検知するカメラと、前記光制御素子のうち前記光源と前記観察者とを結ぶ光路が通過する遮光領域と、前記遮光領域以外の透過領域とを判定し、前記遮光領域の光量を前記透過領域の光量より少なくする制御部とを具備する。 An illumination device according to an aspect of the present invention includes a light source, a light control element that is disposed between the light source and the observer, receives light from the light source, a camera that detects the position of the observer, A control unit that determines a light-blocking region through which an optical path connecting the light source and the observer passes and a light-transmitting region other than the light-blocking region among light control elements, and reduces a light amount of the light-blocking region to a light amount of the light-transmitting region It comprises.
 本発明によれば、観察者が認識するグレアを抑制することが可能な照明装置を提供することができる。 According to the present invention, it is possible to provide an illumination device that can suppress glare recognized by an observer.
人間の視界範囲を説明する図。The figure explaining the human visual field range. 室内で観察者がテレビを見ている様子を説明する図。The figure explaining a viewer watching television indoors. 第1実施形態に係る照明装置の構成を示す図。The figure which shows the structure of the illuminating device which concerns on 1st Embodiment. 第1実施形態に係る光制御素子の平面図。FIG. 3 is a plan view of the light control element according to the first embodiment. 図4に示したA-A´線に沿った光制御素子の断面図。FIG. 5 is a cross-sectional view of the light control element along the line AA ′ shown in FIG. 4. 観察者の位置を特定するための座標を説明する斜視図。The perspective view explaining the coordinate for pinpointing an observer's position. 観察者と照明装置との位置関係の一例を説明する図。The figure explaining an example of the positional relationship of an observer and an illuminating device. 観察者の傾斜角及び方位角の一例を説明する図。The figure explaining an example of an observer's inclination | tilt angle and azimuth. 光制御素子が遮光する領域の一例を説明する図。4A and 4B illustrate an example of a region that is shielded by a light control element. オフ状態における光制御素子の動作を説明する図。The figure explaining operation | movement of the light control element in an OFF state. オン状態における光制御素子の動作を説明する図。The figure explaining operation | movement of the light control element in an ON state. 第1実施形態に係る制御装置のブロック図。The block diagram of the control apparatus which concerns on 1st Embodiment. 第1実施形態に係る制御装置の動作を説明するフローチャート。The flowchart explaining operation | movement of the control apparatus which concerns on 1st Embodiment. 第2実施形態に係る光制御素子の断面図。Sectional drawing of the light control element which concerns on 2nd Embodiment. 第3実施形態に係る光制御素子の断面図。Sectional drawing of the light control element which concerns on 3rd Embodiment.
 以下、実施形態について図面を参照して説明する。ただし、図面は模式的または概念的なものであり、各図面の寸法および比率等は必ずしも現実のものと同一とは限らないことに留意すべきである。また、図面の相互間で同じ部分を表す場合においても、互いの寸法の関係や比率が異なって表される場合もある。特に、以下に示す幾つかの実施形態は、本発明の技術思想を具体化するための装置および方法を例示したものであって、構成部品の形状、構造、配置等によって、本発明の技術思想が特定されるものではない。なお、以下の説明において、同一の機能及び構成を有する要素については同一符号を付し、重複説明は必要な場合にのみ行う。 Hereinafter, embodiments will be described with reference to the drawings. However, it should be noted that the drawings are schematic or conceptual, and the dimensions and ratios of the drawings are not necessarily the same as the actual ones. Further, even when the same portion is represented between the drawings, the dimensional relationship and ratio may be represented differently. In particular, the following embodiments exemplify an apparatus and a method for embodying the technical idea of the present invention, and the technical idea of the present invention depends on the shape, structure, arrangement, etc. of components. Is not specified. In the following description, elements having the same function and configuration are denoted by the same reference numerals, and redundant description will be given only when necessary.
 [第1実施形態]
 図1は、人間の視界範囲を説明する図である。図1(a)は側面図であり、図1(b)は上面図である。
[First Embodiment]
FIG. 1 is a diagram for explaining a human visual field range. FIG. 1A is a side view, and FIG. 1B is a top view.
 人間が前方正面を向いた時には、視界の範囲は、片目につき上に60°程度、下に75°程度である。ちなみに、水平方向における視界の範囲は、鼻側に60°程度、耳側に100°程度である。 When the person is facing the front in front, the field of view is about 60 ° up and 75 ° down for each eye. Incidentally, the field of view in the horizontal direction is about 60 ° on the nose side and about 100 ° on the ear side.
 図2は、室内で観察者(人間、人物)2がテレビ3を見ている様子を説明する図である。観察者2が前方正面のテレビ3を見た状態で、仰角αが0°以上60°以下の範囲であれば、観察者2の目に照明装置1の光が直接入ることになり、観察者2は、グレアを認識する。 FIG. 2 is a diagram for explaining how an observer (human, person) 2 is watching the television 3 in the room. If the observer 2 watches the television 3 in front of the front and the elevation angle α is in the range of 0 ° or more and 60 ° or less, the light of the illumination device 1 directly enters the observer's 2 eye. 2 recognizes glare.
 本実施形態では、観察者2の目に入る照明装置1からの光を制御することで、グレアを低減する。 In this embodiment, glare is reduced by controlling the light from the illumination device 1 entering the eyes of the observer 2.
 [1]照明装置1の構成
 図3は、第1実施形態に係る照明装置1の構成を示す図である。図3(a)は側面図であり、図3(b)は平面図である。
[1] Configuration of Lighting Device 1 FIG. 3 is a diagram illustrating a configuration of the lighting device 1 according to the first embodiment. FIG. 3A is a side view, and FIG. 3B is a plan view.
 照明装置1は、電源コード10、照明本体(照明器具)11、ソケット12、光源13、カバー14、光制御素子15、2個のカメラ16A、16B、ドライバー17、制御装置(制御部)18、及び配線19~21を備える。 The lighting device 1 includes a power cord 10, a lighting body (lighting fixture) 11, a socket 12, a light source 13, a cover 14, a light control element 15, two cameras 16A and 16B, a driver 17, a control device (control unit) 18, And wirings 19-21.
 電源コード10は、外部電源を照明装置1に供給する。照明本体(照明器具)11は、光源13を点灯及び消灯させる機能を有する一般的な器具である。 The power cord 10 supplies external power to the lighting device 1. The illumination main body (lighting fixture) 11 is a general fixture having a function of turning on and off the light source 13.
 ソケット12は、光源13に接続されると共に、光源13に給電する機能を有する。ソケット12は、絶縁性を有する樹脂で形成され、光源13に接続される給電端子を備える。 The socket 12 is connected to the light source 13 and has a function of supplying power to the light source 13. The socket 12 is formed of an insulating resin and includes a power supply terminal connected to the light source 13.
 光源13は、例えば、環形(円形、リング状、ドーナツ状などともいう)の蛍光灯から構成される。光源13は、様々な種類のものを用いることができ、蛍光灯の他に、LED(light-emitting diode)、又は白熱灯などを用いても良い。光源13の形状についても、環形に限らず、直管形(棒状)、又は電球形(ボール形)などを用いても良い。 The light source 13 is composed of, for example, a fluorescent lamp having a ring shape (also called a circular shape, a ring shape, or a donut shape). Various types of light sources 13 can be used, and in addition to fluorescent lamps, LEDs (light-emitting diodes) or incandescent lamps may be used. The shape of the light source 13 is not limited to the ring shape, and a straight tube shape (bar shape), a light bulb shape (ball shape), or the like may be used.
 カバー14は、照明本体11に接続されると共に、光源13の上部及び側部を覆うように構成される。カバー14は、例えば、透光性を有する材料から構成される。透光性を有するカバー14は、例えば、透光性と拡散性を有するポリカーボネート樹脂やアクリル樹脂などから構成される。カバー14の平面形状は、例えば四角形であるが、円形など他の形状であっても良い。また、カバー14は、内側に光を反射する反射部材を備えていても良い。 The cover 14 is connected to the illumination main body 11 and is configured to cover the upper and side portions of the light source 13. The cover 14 is made of a material having translucency, for example. The cover 14 having translucency is made of, for example, polycarbonate resin or acrylic resin having translucency and diffusibility. The planar shape of the cover 14 is, for example, a quadrangle, but may be another shape such as a circle. Further, the cover 14 may include a reflection member that reflects light on the inside.
 光制御素子15は、光源13の下方に配置され、カバー14に取り付けられる。光制御素子15の取り付け方法については、カバー14の構成に応じて適宜選択でき、例えば複数の取り付け金具を用いても良い。光制御素子15は、光源13からの光の透過率を制御することで、光源13から観察者に届く光量を制御する。光制御素子15の具体的な構成については後述する。 The light control element 15 is disposed below the light source 13 and attached to the cover 14. About the attachment method of the light control element 15, it can select suitably according to the structure of the cover 14, For example, you may use a some attachment metal fitting. The light control element 15 controls the amount of light reaching the observer from the light source 13 by controlling the transmittance of light from the light source 13. A specific configuration of the light control element 15 will be described later.
 カメラ16A、16Bは、光制御素子15の下部に取り付けられる。カメラ16A、16Bは、光源13の中心を通るX方向において、光制御素子15の両端部に配置される。光源13が図3に示すように環状である場合は、光源13の中心は、光源13の外周円の中心になる。カメラ16A、16Bは、照明装置1の下方に向けて映像を撮影し、照明装置1の付近に存在する観察者を検知する。 The cameras 16A and 16B are attached to the lower part of the light control element 15. The cameras 16 </ b> A and 16 </ b> B are arranged at both ends of the light control element 15 in the X direction passing through the center of the light source 13. When the light source 13 is annular as shown in FIG. 3, the center of the light source 13 is the center of the outer circumference of the light source 13. The cameras 16 </ b> A and 16 </ b> B take images toward the lower side of the lighting device 1 and detect an observer present near the lighting device 1.
 ドライバー17は、光制御素子15用の駆動回路であり、制御装置18からの制御信号に基づいて、光制御素子15を駆動する。制御装置18は、照明装置1全体の動作を制御する。 The driver 17 is a drive circuit for the light control element 15, and drives the light control element 15 based on a control signal from the control device 18. The control device 18 controls the operation of the entire lighting device 1.
 配線19~21はそれぞれ、信号線、及び電源線を含む。配線19は、ドライバー17と制御装置18とを接続する。配線20は、カメラ16Aと制御装置18とを接続する。配線21は、カメラ16Bと制御装置18とを接続する。 Each of the wirings 19 to 21 includes a signal line and a power supply line. The wiring 19 connects the driver 17 and the control device 18. The wiring 20 connects the camera 16 </ b> A and the control device 18. The wiring 21 connects the camera 16B and the control device 18.
 [2]光制御素子15の構成
 次に、光制御素子15の構成について説明する。図4は、光制御素子15の平面図である。図5は、図4に示したA-A´線に沿った光制御素子15の断面図である。第1実施形態に係る光制御素子15は、液晶素子から構成される。光制御素子15の表示方式は、ドットマトリクス方式であり、また、光制御素子15の駆動方式は、TN(Twisted nematic)方式である。
[2] Configuration of Light Control Element 15 Next, the configuration of the light control element 15 will be described. FIG. 4 is a plan view of the light control element 15. FIG. 5 is a cross-sectional view of the light control element 15 along the line AA ′ shown in FIG. The light control element 15 according to the first embodiment is composed of a liquid crystal element. The display method of the light control element 15 is a dot matrix method, and the drive method of the light control element 15 is a TN (Twisted nematic) method.
 光制御素子15は、基板30、31、液晶層32、シール材33、複数の下側電極34、複数の上側電極35、及び偏光板36、37を備える。基板30、31は、対向配置され、透明基板(例えばガラス基板)から構成される。なお、図4の上面図では、下側電極34及び上側電極35の構成の理解を容易にするために、基板31及び偏光板37の図示を省略しているが、基板31の平面形状は、基板30と同じであり、偏光板37の平面形状は、偏光板36と同じである。 The light control element 15 includes substrates 30 and 31, a liquid crystal layer 32, a sealing material 33, a plurality of lower electrodes 34, a plurality of upper electrodes 35, and polarizing plates 36 and 37. The substrates 30 and 31 are arranged to face each other and are made of a transparent substrate (for example, a glass substrate). In the top view of FIG. 4, the substrate 31 and the polarizing plate 37 are not shown for easy understanding of the configuration of the lower electrode 34 and the upper electrode 35, but the planar shape of the substrate 31 is It is the same as the substrate 30, and the planar shape of the polarizing plate 37 is the same as that of the polarizing plate 36.
 液晶層32は、基板30、31間に挟持される。液晶層32は、TN液晶から構成される。すなわち、液晶層32に含まれる液晶分子は、初期状態(無電界時)において、液晶層32の上下で90°ねじれている。液晶の配向は、液晶層32を挟むように設けられた配向膜(図示せず)によって制御される。液晶層32を構成する液晶材料は、基板30、31間を貼り合わせるシール材33によって封止される。液晶層32は、これに印加される電界に応じて液晶分子の配向が操作されて光学特性が変化する。 The liquid crystal layer 32 is sandwiched between the substrates 30 and 31. The liquid crystal layer 32 is composed of TN liquid crystal. That is, the liquid crystal molecules contained in the liquid crystal layer 32 are twisted by 90 ° above and below the liquid crystal layer 32 in the initial state (no electric field). The alignment of the liquid crystal is controlled by an alignment film (not shown) provided so as to sandwich the liquid crystal layer 32. The liquid crystal material constituting the liquid crystal layer 32 is sealed by a sealing material 33 that bonds the substrates 30 and 31 together. In the liquid crystal layer 32, the orientation of the liquid crystal molecules is manipulated according to the electric field applied thereto, and the optical characteristics change.
 基板30の液晶層32側には、複数の下側電極34が設けられる。複数の下側電極34は、それぞれがY方向に延びるライン状を有し、X方向に並んで配置される。下側電極34は、透明電極から構成され、例えばITO(インジウム錫酸化物)が用いられる。複数の下側電極34は、互いに所定の間隔を空けて配置され、互いに電気的に絶縁される。 A plurality of lower electrodes 34 are provided on the liquid crystal layer 32 side of the substrate 30. The plurality of lower electrodes 34 each have a line shape extending in the Y direction, and are arranged side by side in the X direction. The lower electrode 34 is composed of a transparent electrode, and for example, ITO (indium tin oxide) is used. The plurality of lower electrodes 34 are arranged at a predetermined interval from each other and are electrically insulated from each other.
 基板31の液晶層32側には、複数の上側電極35が設けられる。複数の上側電極35は、それぞれがX方向に延びるライン状を有し、Y方向に並んで配置される。上側電極35は、透明電極から構成され、例えばITOが用いられる。複数の上側電極35は、互いに所定の間隔を空けて配置され、互いに電気的に絶縁される。 A plurality of upper electrodes 35 are provided on the liquid crystal layer 32 side of the substrate 31. Each of the plurality of upper electrodes 35 has a line shape extending in the X direction, and is arranged side by side in the Y direction. The upper electrode 35 is composed of a transparent electrode, and for example, ITO is used. The plurality of upper electrodes 35 are arranged at a predetermined interval from each other and are electrically insulated from each other.
 なお、下側電極34と上側電極35との向きは、逆であっても良い。また、図4及び図5では、図面が煩雑になるのを避けるために、隣接する電極が接しているように図示されているが、前述したように、これら隣接する電極は、所定の間隔を空けて配置され、互いに電気的に絶縁される。すなわち、複数の下側電極34及び複数の上側電極35は、個別に電圧制御が可能である。 The orientation of the lower electrode 34 and the upper electrode 35 may be reversed. 4 and 5, the adjacent electrodes are shown in contact with each other in order to avoid complication of the drawings. However, as described above, these adjacent electrodes have a predetermined interval. They are arranged in a space and are electrically insulated from each other. That is, the plurality of lower electrodes 34 and the plurality of upper electrodes 35 can be individually voltage controlled.
 光制御素子15は、複数の下側電極34と複数の上側電極35との交差領域である複数のドット38からなるドットマトリクスを有する。光制御素子15は、下側電極34と上側電極35との電圧を制御することで、ドット38の透過率を制御することができる。 The light control element 15 has a dot matrix composed of a plurality of dots 38 that are intersecting regions of the plurality of lower electrodes 34 and the plurality of upper electrodes 35. The light control element 15 can control the transmittance of the dots 38 by controlling the voltage between the lower electrode 34 and the upper electrode 35.
 偏光板36、37は、基板30、31を挟むように配置される。偏光板36、37は、光の進行方向に直交する平面内において、互いに直交する透過軸及び吸収軸を有する。偏光板36、37は、ランダムな方向の振動面を有する光のうち、透過軸に平行な振動面を有する直線偏光(直線偏光した光成分)を透過し、吸収軸に平行な振動面を有する直線偏光(直線偏光した光成分)を吸収する。偏光板36、37は、互いの透過軸が直交するように、すなわち直交ニコル状態で配置される。 The polarizing plates 36 and 37 are disposed so as to sandwich the substrates 30 and 31. The polarizing plates 36 and 37 have a transmission axis and an absorption axis orthogonal to each other in a plane orthogonal to the light traveling direction. The polarizing plates 36 and 37 transmit linearly polarized light (linearly polarized light component) having a vibration surface parallel to the transmission axis out of light having vibration surfaces in random directions, and have a vibration surface parallel to the absorption axis. Absorbs linearly polarized light (linearly polarized light component). The polarizing plates 36 and 37 are arranged so that their transmission axes are orthogonal to each other, that is, in an orthogonal Nicol state.
 [3]照明装置1の動作
 上記のように構成された照明装置1の動作について説明する。
[3] Operation of Lighting Device 1 The operation of the lighting device 1 configured as described above will be described.
 (観察者の位置の特定)
 まず、観察者の位置を特定する動作について説明する。カメラ16A、16Bはそれぞれ、照明装置1の下方の映像を撮影する。カメラ16A、16Bの映像は、制御装置18に送られる。制御装置18は、カメラ16A、16Bの映像を用いて、観察者の位置を検出し、続いて観察者の顔の位置を検出し、続いて観察者の目の位置を検出する。以後、観察者の位置は、観察者の顔の位置を意味するものとするが、観察者の目(右目及び左目のいずれか一方)の位置としても良い。
(Identification of observer position)
First, an operation for specifying the position of the observer will be described. Each of the cameras 16A and 16B captures an image below the lighting device 1. The images of the cameras 16A and 16B are sent to the control device 18. The control device 18 detects the position of the observer using the images of the cameras 16A and 16B, subsequently detects the position of the face of the observer, and subsequently detects the position of the eyes of the observer. Hereinafter, the position of the observer means the position of the face of the observer, but may be the position of the eyes of the observer (either the right eye or the left eye).
 図6は、観察者の位置を特定するための座標を説明する斜視図である。光制御素子15の中心(光源13の中心)が座標の中心Cである。X軸は、カメラ16A、16Bを結ぶ軸であり、Y軸は、X方向に直交する軸である。中心C、X軸、及びY軸は、光制御素子15の底面を含む平面内で規定される。Z軸は、中心Cから下に垂直に延びる軸である。 FIG. 6 is a perspective view for explaining coordinates for specifying the position of the observer. The center of the light control element 15 (the center of the light source 13) is the center C of the coordinates. The X axis is an axis connecting the cameras 16A and 16B, and the Y axis is an axis orthogonal to the X direction. The center C, the X axis, and the Y axis are defined within a plane including the bottom surface of the light control element 15. The Z axis is an axis extending vertically downward from the center C.
 図7は、観察者2と照明装置1との位置関係の一例を説明する図である。カメラ16Aを基準にした観察者2の顔の位置の傾斜角θ、カメラ16Bを基準にした観察者2の顔の位置の傾斜角θとする。傾斜角θは、カメラからの垂線に対する角度である。カメラ16A、16B間の距離d(cm)とする。 FIG. 7 is a diagram for explaining an example of the positional relationship between the observer 2 and the lighting device 1. The inclination angle θ A of the face position of the observer 2 with respect to the camera 16A is assumed to be the inclination angle θ B of the face position of the observer 2 with respect to the camera 16B. The inclination angle θ is an angle with respect to the perpendicular from the camera. The distance d (cm) between the cameras 16A and 16B is assumed.
 図8は、観察者の傾斜角及び方位角の一例を説明する図である。図8(a)がカメラ16Aを中心にした図、図8(b)がカメラ16Bを中心にした図である。カメラ16Aを基準にした観察者の位置の方位角φ、カメラ16Bを基準にした観察者の位置の方位角φとする。図8に示した丸が観察者の位置の一例を表している。方位角0°から180°を結ぶ線がX軸に対応する。観察者がグレアを認識する範囲としては、傾斜角θ、θはそれぞれ、30°以上90°未満であり、方位角φ、φはそれぞれ、0°以上360°以下である。 FIG. 8 is a diagram illustrating an example of the tilt angle and azimuth angle of the observer. FIG. 8A is a diagram centering on the camera 16A, and FIG. 8B is a diagram centering on the camera 16B. The azimuth angle φ A of the observer position with respect to the camera 16A and the azimuth angle φ B of the observer position with respect to the camera 16B are assumed. The circle shown in FIG. 8 represents an example of the position of the observer. A line connecting azimuth angles from 0 ° to 180 ° corresponds to the X axis. As a range in which the observer recognizes glare, the inclination angles θ A and θ B are each 30 ° or more and less than 90 °, and the azimuth angles φ A and φ B are each 0 ° or more and 360 ° or less.
 観察者の座標(X,Y,Z)は、以下の式(1)~(3)で表される。座標Zは、式(4)から算出しても良い。 

X={-sin(φ+φ)/2sin(φ-φ)}・d  ・・・(1)

Y={sinφ・sinφ)/sin(φ-φ)}・d  ・・・(2)

Z={sinφ/tanθ・sin(φ-φ)}・d  ・・・(3)

Z={sinφ/tanθ・sin(φ-φ)}・d  ・・・(4)

 一例としてd=34(cm)、φ=330°、φ=320°、θ=40°、θ=33.1°とする。この場合、観察者の座標(X,Y,Z)は、X=92(cm)、Y=62.9(cm)、Z=149.99(cm)である。このように、制御装置18は、カメラ16A、16Bの映像を用いて、観察者の位置を検出及び特定することができる。
The coordinates (X, Y, Z) of the observer are expressed by the following equations (1) to (3). The coordinate Z may be calculated from equation (4).

X = {− sin (φ A + φ B ) / 2 sin (φ A −φ B )} · d (1)

Y = {sin φ A · sin φ B ) / sin (φ A −φ B )} · d (2)

Z = {sin φ B / tan θ A · sin (φ A −φ B )} · d (3)

Z = {sin φ A / tan θ B · sin (φ A −φ B )} · d (4)

As an example, d = 34 (cm), φ A = 330 °, φ B = 320 °, θ A = 40 °, and θ B = 33.1 °. In this case, the coordinates (X, Y, Z) of the observer are X = 92 (cm), Y = 62.9 (cm), and Z = 149.99 (cm). As described above, the control device 18 can detect and specify the position of the observer using the images of the cameras 16A and 16B.
 (光制御素子15の動作)
 次に、光制御素子15の動作について説明する。前述したように、光制御素子15は、複数のドット38からなるドットマトリクスを有する。光制御素子15は、ドットマトリクスのそれぞれの透過率を制御することができる。この透過率の制御は、制御装置18によって行われる。
(Operation of Light Control Element 15)
Next, the operation of the light control element 15 will be described. As described above, the light control element 15 has a dot matrix composed of a plurality of dots 38. The light control element 15 can control the transmittance of each dot matrix. The transmittance is controlled by the control device 18.
 任意の第1ドットを挟む下側電極34と上側電極35との電圧差を概略ゼロにすると、第1ドットに印加される電界が概略ゼロになる。この電界が概略ゼロである場合をオフ状態と呼ぶ。オフ状態の場合、光は、第1ドットを透過する(ただし、偏光板を用いているので透過率は50%程度である)。オフ状態の透過率は、50%に限らず、任意に設定可能である。 When the voltage difference between the lower electrode 34 and the upper electrode 35 sandwiching an arbitrary first dot is made substantially zero, the electric field applied to the first dot becomes substantially zero. The case where this electric field is approximately zero is called an off state. In the off state, the light is transmitted through the first dot (however, since the polarizing plate is used, the transmittance is about 50%). The transmittance in the off state is not limited to 50% and can be arbitrarily set.
 一方、任意の第2ドットを挟む下側電極34と上側電極35との電圧差を正(例えば5V)にすると、第2ドットに電界が印加される。この電界が印加される場合をオン状態と呼ぶ。オン状態の場合、光は第2ドットを透過できず、第2ドットの透過率は概略0%である。すなわち、第2ドットは、遮光状態となる。 On the other hand, when the voltage difference between the lower electrode 34 and the upper electrode 35 sandwiching an arbitrary second dot is positive (for example, 5 V), an electric field is applied to the second dot. The case where this electric field is applied is called an on state. In the on state, light cannot pass through the second dot, and the transmittance of the second dot is approximately 0%. That is, the second dot is in a light shielding state.
 本実施形態では、光制御素子15は、光源13と観察者とを結ぶ直線が通る領域を遮光し(透過率0%)、それ以外の領域において光を透過する。 In the present embodiment, the light control element 15 shields light from a region through which a straight line connecting the light source 13 and the observer passes (transmittance 0%), and transmits light in other regions.
 図9は、光制御素子15が遮光する領域の一例を説明する図である。光源13の垂直方向における中心から光制御素子15の底面までの距離tとする。図9(b)は、z=-tにおける平面図である。図9(a)は、図9(b)に対応する側面図である。 FIG. 9 is a diagram illustrating an example of a region where the light control element 15 blocks light. A distance t from the center in the vertical direction of the light source 13 to the bottom surface of the light control element 15 is assumed. FIG. 9B is a plan view at z = −t. FIG. 9A is a side view corresponding to FIG.
 光源13の内周円の半径r、外周円の半径Rとする。光源13は、以下の式(5)、(6)で表される。(x,y)は、光源13の座標である。

+y=r  ・・・(5)

+y=R  ・・・(6)

 図9(c)は、光制御素子15が遮光する遮光領域13Aを示す平面図である。図9(c)は、z=0における平面図である。
The radius r of the inner circle of the light source 13 and the radius R of the outer circle are set. The light source 13 is represented by the following formulas (5) and (6). (X, y) is the coordinates of the light source 13.

x 2 + y 2 = r 2 (5)

x 2 + y 2 = R 2 (6)

FIG. 9C is a plan view showing the light shielding region 13A where the light control element 15 shields light. FIG. 9C is a plan view at z = 0.
 遮光領域13Aは、光源13と観察者とを結ぶ直線が通る領域である。光源13がリング(環)である場合、遮光領域13Aもリングとなる。遮光領域13Aは、以下の式(7)、(8)で表される。式(7)が遮光領域13Aの内周円を表し、式(8)が遮光領域13Aの外周円を表している。(X,Y,Z)は、前述した観察者の座標であり、(x,y,z)は、遮光領域13Aの座標である。

{x-[t/(t+Z)]X}+{y-[t/(t+Z)]Y}={rZ/(t+Z)}
                          ・・・(7)

{x-[t/(t+Z)]X}+{y-[t/(t+Z)]Y}={RZ/(t+Z)}
                          ・・・(8)

 そして、光制御素子15は、式(7)の内周円と式(8)の外周円とで挟まれる遮光領域13Aに含まれるドットを遮光(透過率0%)する。
The light shielding region 13A is a region through which a straight line connecting the light source 13 and the observer passes. When the light source 13 is a ring (ring), the light shielding region 13A is also a ring. The light shielding region 13A is expressed by the following equations (7) and (8). Equation (7) represents the inner circle of the light shielding region 13A, and equation (8) represents the outer circle of the light shielding region 13A. (X, Y, Z) are the coordinates of the observer described above, and (x, y, z) are the coordinates of the light shielding region 13A.

{X− [t / (t + Z)] X} 2 + {y− [t / (t + Z)] Y} 2 = {rZ / (t + Z)} 2
... (7)

{X− [t / (t + Z)] X} 2 + {y− [t / (t + Z)] Y} 2 = {RZ / (t + Z)} 2
... (8)

Then, the light control element 15 shields the dots included in the light shielding region 13A sandwiched between the inner circumference circle of Expression (7) and the outer circumference circle of Expression (8) (transmittance is 0%).
 図10は、オフ状態における光制御素子15の動作を説明する図である。図10(a)が光制御素子15の平面図であり、図10(b)が図10(a)のA-A´線に沿った光制御素子15の断面図である。 FIG. 10 is a diagram for explaining the operation of the light control element 15 in the off state. FIG. 10A is a plan view of the light control element 15, and FIG. 10B is a cross-sectional view of the light control element 15 along the line AA ′ in FIG. 10A.
 オフ状態において、全ての下側電極34と全ての上側電極35とは、同電圧(例えば0V)に設定される。この場合、光制御素子15は、全領域において透過状態となる。よって、光源13からの光は、光制御素子15を透過し、光制御素子15の全領域にわたって下方に照射される。 In the off state, all the lower electrodes 34 and all the upper electrodes 35 are set to the same voltage (for example, 0 V). In this case, the light control element 15 is in a transmissive state in the entire region. Therefore, the light from the light source 13 passes through the light control element 15 and is irradiated downward over the entire region of the light control element 15.
 図11は、オン状態における光制御素子15の動作を説明する図である。図11(a)が光制御素子15の平面図であり、図11(b)が図11(a)のA-A´線に沿った光制御素子15の断面図である。 FIG. 11 is a diagram for explaining the operation of the light control element 15 in the ON state. FIG. 11A is a plan view of the light control element 15, and FIG. 11B is a cross-sectional view of the light control element 15 along the line AA ′ in FIG. 11A.
 オン状態において、遮光領域13Aに含まれる複数のドットを制御するための所定数の下側電極34と所定数の上側電極35との間には、正の電圧差が与えられる。例えば、全ての下側電極34を0Vとし、遮光領域13Aに含まれる複数のドットを制御するための所定数の上側電極35に正電圧(例えば5V)を印加する。これにより、遮光領域13Aにおいて光源13からの光が透過せず、遮光領域13A以外の領域(透過領域)において光源13からの光が透過する。 In the ON state, a positive voltage difference is given between the predetermined number of lower electrodes 34 and the predetermined number of upper electrodes 35 for controlling the plurality of dots included in the light shielding region 13A. For example, all the lower electrodes 34 are set to 0 V, and a positive voltage (for example, 5 V) is applied to a predetermined number of upper electrodes 35 for controlling a plurality of dots included in the light shielding region 13A. Thereby, the light from the light source 13 does not transmit in the light shielding region 13A, and the light from the light source 13 transmits in a region (transmission region) other than the light shielding region 13A.
 なお、遮光領域13Aの幅は、光源13の幅と概略同じがそれより少し大きいことが望ましい。 Note that it is desirable that the width of the light shielding region 13A is substantially the same as the width of the light source 13 but slightly larger.
 (制御装置18の動作)
 次に、制御装置18の一連の動作について説明する。図12は、制御装置18のブロック図である。制御装置18は、映像解析部18A、位置検出部18B、グレア判定部18C、遮光領域算出部18D、及び電圧制御部18Eを備える。制御装置18が備える機能ブロックは、例えば、CPU(Central Processing Unit)と、対応する機能を実行するためのソフトウェアが格納されたメモリとによって実現される。
(Operation of the control device 18)
Next, a series of operations of the control device 18 will be described. FIG. 12 is a block diagram of the control device 18. The control device 18 includes a video analysis unit 18A, a position detection unit 18B, a glare determination unit 18C, a light shielding region calculation unit 18D, and a voltage control unit 18E. The functional blocks provided in the control device 18 are realized by, for example, a CPU (Central Processing Unit) and a memory in which software for executing a corresponding function is stored.
 図13は、制御装置18の動作を説明するフローチャートである。映像解析部18Aは、カメラ16A、16Bから映像信号を受ける(ステップS100)。続いて、映像解析部18Aは、カメラ16A、16Bから受けた映像信号を解析し、観察者を認識し、さらに観察者の顔を認識する(ステップS101)。続いて、映像解析部18Aは、カメラ16A、16Bから受けた映像信号を解析し、観察者の目を認識する(ステップS102)。なお、ステップS102は省略しても良い。すなわち、以下のステップにおいて、観察者の目の代わりに観察者の顔を基準にして処理を行うようにしても良い。 FIG. 13 is a flowchart for explaining the operation of the control device 18. The video analysis unit 18A receives video signals from the cameras 16A and 16B (step S100). Subsequently, the video analysis unit 18A analyzes the video signals received from the cameras 16A and 16B, recognizes the observer, and further recognizes the face of the observer (step S101). Subsequently, the video analysis unit 18A analyzes the video signals received from the cameras 16A and 16B and recognizes the eyes of the observer (step S102). Note that step S102 may be omitted. That is, in the following steps, processing may be performed based on the face of the observer instead of the observer's eyes.
 続いて、位置検出部18Bは、映像解析部18Aの解析結果を用いて、観察者の目の位置を算出する(ステップS103)。すなわち、位置検出部18Bは、カメラ16A、16Bと観察者の目の位置との間の傾斜角θ、θ、及び方位角φ、φを算出する。そして、前述した式(1)~(4)を用いて、観察者の目の位置(X軸、Y軸、Z軸の座標)を算出する。 Subsequently, the position detection unit 18B calculates the position of the observer's eyes using the analysis result of the video analysis unit 18A (step S103). That is, the position detection unit 18B calculates the inclination angles θ A and θ B and the azimuth angles φ A and φ B between the cameras 16A and 16B and the position of the observer's eyes. Then, using the above-described equations (1) to (4), the position of the observer's eyes (the coordinates of the X axis, the Y axis, and the Z axis) is calculated.
 続いて、グレア判定部18Cは、観察者がグレアを認識する条件を満たすか否かを判定する(ステップS104)。具体的には、グレア判定部18Cは、傾斜角θ、θがそれぞれ30°以上90°未満の範囲であるか否かを判定する。傾斜角θ、θがこの範囲である場合、観察者はグレアを認識し、傾斜角θ、θがこの範囲以外である場合、観察者はグレアを認識しないと判定される。 Subsequently, the glare determination unit 18C determines whether or not the condition for the observer to recognize the glare is satisfied (step S104). Specifically, the glare determination unit 18C determines whether or not the inclination angles θ A and θ B are in the range of 30 ° or more and less than 90 °, respectively. When the inclination angles θ A and θ B are within this range, the observer recognizes glare, and when the inclination angles θ A and θ B are outside this range, it is determined that the observer does not recognize glare.
 ステップS104においてグレアの条件を満たす場合、遮光領域算出部18Dは、光制御素子15の遮光領域13Aを算出する(ステップS105)。すなわち、遮光領域算出部18Dは、光源13と観察者の目の位置とを結ぶ直線が光制御素子15と交わる領域を遮光領域13Aとし、この遮光領域13Aを算出する。例えば、遮光領域算出部18Dは、ステップS103で算出した観察者の目の位置と、前述した式(7)、(8)とを用いて、光制御素子15の遮光領域13Aを算出する。 When the glare condition is satisfied in step S104, the light shielding region calculation unit 18D calculates the light shielding region 13A of the light control element 15 (step S105). That is, the light shielding area calculation unit 18D calculates the light shielding area 13A by setting the area where the straight line connecting the light source 13 and the position of the eyes of the observer intersects the light control element 15 as the light shielding area 13A. For example, the light shielding region calculation unit 18D calculates the light shielding region 13A of the light control element 15 using the position of the observer's eyes calculated in step S103 and the above-described equations (7) and (8).
 続いて、電圧制御部18Eは、遮光領域13Aにおいて光が透過しないように(すなわち、遮光領域13Aをオン状態にするように)、複数の下側電極34と複数の上側電極35との電圧を制御する(ステップS106)。これにより、照明装置1の光源13に起因して、観察者がグレアを認識するのを抑制できる。 Subsequently, the voltage control unit 18E reduces the voltages of the plurality of lower electrodes 34 and the plurality of upper electrodes 35 so that light does not pass through the light shielding region 13A (that is, the light shielding region 13A is turned on). Control is performed (step S106). Thereby, it can suppress that an observer recognizes glare resulting from the light source 13 of the illuminating device 1.
 一方、ステップS104においてグレアの条件を満たさない場合、電圧制御部18Eは、光制御素子15の全領域を透過状態(オフ状態)にする(ステップS107)。これにより、照明装置1の光源13の光が部分的に遮光されることなく観察者に届く。 On the other hand, when the glare condition is not satisfied in step S104, the voltage control unit 18E sets the entire region of the light control element 15 to the transmission state (off state) (step S107). Thereby, the light of the light source 13 of the illumination device 1 reaches the observer without being partially blocked.
 [4]効果
 以上詳述したように第1実施形態では、照明装置1は、光源13と、光源13からの光量を制御する光制御素子15と、観察者の位置を検知するカメラ16A、16Bとを備える。そして、光制御素子15は、光源13と観察者とを結ぶ光路が通過する遮光領域13Aと、遮光領域13A以外の透過領域とを算出し、遮光領域13Aの光量を透過領域の光量より少なくするように制御する。
[4] Effects As described in detail above, in the first embodiment, the illumination device 1 includes the light source 13, the light control element 15 that controls the amount of light from the light source 13, and the cameras 16A and 16B that detect the position of the observer. With. Then, the light control element 15 calculates the light shielding region 13A through which the optical path connecting the light source 13 and the observer passes and the transmission region other than the light shielding region 13A, and makes the light amount of the light shielding region 13A smaller than the light amount of the transmission region. To control.
 従って第1実施形態によれば、観察者が認識するグレアを抑制することが可能となる。これにより、観察者が例えばテレビを見ている場合に、照明が眩しく感じるのを抑制できる。 Therefore, according to the first embodiment, it is possible to suppress glare recognized by the observer. Thereby, when an observer is watching television, for example, it can suppress that illumination feels dazzling.
 また、カメラ16A、16Bからの傾斜角θ、θが30°以上90°未満の範囲である場合に、遮光領域13Aの透過率を低くするようにしている。このため、グレアを認識する条件を満たさない場合には、光源13の光が観察者に直接届くため、照明装置1を通常の照明器具として機能させることができる。 Further, when the tilt angles θ A and θ B from the cameras 16A and 16B are in the range of 30 ° or more and less than 90 °, the transmittance of the light shielding region 13A is lowered. For this reason, when the conditions for recognizing glare are not satisfied, the light from the light source 13 reaches the observer directly, so that the lighting device 1 can function as a normal lighting fixture.
 [第2実施形態]
 第2実施形態は、液晶層として、高分子分散型液晶(PDLC:Polymer Dispersed Liquid Crystal)、又は高分子ネットワーク型液晶(PNLC:Polymer Network Liquid Crystal)を用いた実施例である。
[Second Embodiment]
The second embodiment is an example using polymer dispersed liquid crystal (PDLC) or polymer network liquid crystal (PNLC) as the liquid crystal layer.
 図14は、第2実施形態に係る光制御素子15の断面図である。第1実施形態と同様に、第2実施形態に係る光制御素子15の表示方式は、ドットマトリクス方式である。 FIG. 14 is a cross-sectional view of the light control element 15 according to the second embodiment. Similar to the first embodiment, the display method of the light control element 15 according to the second embodiment is a dot matrix method.
 図14(a)に示すように、下側電極34と上側電極35との間には、液晶層32が設けられる。第2実施形態に係る光制御素子15では、偏光板、及び配向膜は不要である。 As shown in FIG. 14A, a liquid crystal layer 32 is provided between the lower electrode 34 and the upper electrode 35. In the light control element 15 according to the second embodiment, the polarizing plate and the alignment film are unnecessary.
 液晶層32は、PDLC、又はPNLCにより構成される。PDLCは、高分子層(高分子ネットワーク)32A内に液晶32Bが分散された構造を有しており、すなわち高分子層32A内において液晶32Bが相分離した構造を有する。或いは、高分子層32A内の液晶32Bが連続相を有していても良い。 The liquid crystal layer 32 is composed of PDLC or PNLC. The PDLC has a structure in which the liquid crystal 32B is dispersed in the polymer layer (polymer network) 32A. That is, the PDLC has a structure in which the liquid crystal 32B is phase-separated in the polymer layer 32A. Alternatively, the liquid crystal 32B in the polymer layer 32A may have a continuous phase.
 高分子層32Aとしては光硬化樹脂を用いることができる。例えば、PDLCは、光重合型の高分子前駆体(モノマー)に液晶を混合させた溶液に紫外線を照射し、モノマーを重合させてポリマーを形成し、そのポリマーのネットワーク中に液晶が分散される。液晶32Bとしては、例えば、誘電率異方性が正(ポジ型)のネマティック液晶が用いられる。すなわち、液晶層32に電圧が印加されない場合は、液晶分子が高分子層32A内にランダムに配置した状態となり、液晶層32に電圧が印加された場合は、液晶分子が電界方向に立っている状態(液晶分子の長軸が電界方向に向いている状態)となる。 Photopolymer resin can be used as the polymer layer 32A. For example, PDLC irradiates a solution in which liquid crystal is mixed with a photopolymerizable polymer precursor (monomer) by irradiating ultraviolet rays, polymerizes the monomer to form a polymer, and the liquid crystal is dispersed in the polymer network. . As the liquid crystal 32B, for example, nematic liquid crystal having positive (positive) dielectric anisotropy is used. That is, when no voltage is applied to the liquid crystal layer 32, the liquid crystal molecules are randomly arranged in the polymer layer 32A, and when a voltage is applied to the liquid crystal layer 32, the liquid crystal molecules stand in the electric field direction. It becomes a state (a state in which the long axis of the liquid crystal molecules is oriented in the electric field direction).
 電圧制御部18E(及びドライバー17)は、下側電極34及び上側電極35に電圧を印加することで、液晶層32に電界を印加する。図14(b)に示すように、液晶層32に電界を印加、すなわち、下側電極34及び上側電極35の一方に高電圧(例えば5V)、他方に低電圧(例えば0V)を印加した場合、液晶分子が電界方向(基板に垂直な方向)に配列する。この場合、液晶層32は、光を透過する。 The voltage control unit 18E (and the driver 17) applies an electric field to the liquid crystal layer 32 by applying a voltage to the lower electrode 34 and the upper electrode 35. As shown in FIG. 14B, an electric field is applied to the liquid crystal layer 32, that is, a high voltage (for example, 5V) is applied to one of the lower electrode 34 and the upper electrode 35, and a low voltage (for example, 0V) is applied to the other. The liquid crystal molecules are aligned in the electric field direction (direction perpendicular to the substrate). In this case, the liquid crystal layer 32 transmits light.
 一方、図14(c)に示すように、液晶層32に電界を印加しない、すなわち、下側電極34及び上側電極35を同電圧(例えば0V)にする場合、液晶分子がランダムに配置される。この場合、液晶層32に入射した光が散乱し、外部からは白濁した状態として観察される。 On the other hand, as shown in FIG. 14C, when no electric field is applied to the liquid crystal layer 32, that is, when the lower electrode 34 and the upper electrode 35 are set to the same voltage (for example, 0 V), the liquid crystal molecules are randomly arranged. . In this case, the light incident on the liquid crystal layer 32 is scattered and is observed as a cloudy state from the outside.
 第2実施形態によれば、遮光領域13Aにおいて光源13の光を散乱させることができる。これにより、観察者がグレアを認識するのを抑制できる。 According to the second embodiment, the light from the light source 13 can be scattered in the light shielding region 13A. Thereby, it can suppress that an observer recognizes glare.
 [第3実施形態]
 第3実施形態は、光制御素子15としてエレクトロクロミック素子を用いた実施例である。
[Third Embodiment]
The third embodiment is an example in which an electrochromic element is used as the light control element 15.
 図15は、第3実施形態に係る光制御素子15の断面図である。第1実施形態と同様に、第3実施形態に係る光制御素子15の表示方式は、ドットマトリクス方式である。光制御素子15は、エレクトロクロミック素子から構成される。エレクトロクロミック素子は、電圧を印加すると可逆的に酸化還元反応が起こり、可逆的に着色化又は無色化されるエレクトロクロミズムという現象を利用した素子である。以下に、エレクトロクロミック素子の一例について説明する。 FIG. 15 is a cross-sectional view of the light control element 15 according to the third embodiment. Similar to the first embodiment, the display method of the light control element 15 according to the third embodiment is a dot matrix method. The light control element 15 is composed of an electrochromic element. An electrochromic element is an element that utilizes a phenomenon called electrochromism in which a redox reaction occurs reversibly when a voltage is applied and is reversibly colored or colorless. Below, an example of an electrochromic element is demonstrated.
 図15(a)に示すように、下側電極34と上側電極35との間には、エレクトロクロミック層40が設けられる。エレクトロクロミック層40は、溶液層40Aと、溶液層40Aに分散された複数の粒子40Bとを備える。粒子40Bは、荷電粒子であり、荷電粒子としては、例えば正の電荷を有する銀(Ag)が用いられる。 As shown in FIG. 15A, an electrochromic layer 40 is provided between the lower electrode 34 and the upper electrode 35. The electrochromic layer 40 includes a solution layer 40A and a plurality of particles 40B dispersed in the solution layer 40A. The particle 40B is a charged particle. As the charged particle, for example, silver (Ag) having a positive charge is used.
 図15(b)に示すように、下側電極34及び上側電極35を同電位、例えば両者を短絡した場合、エレクトロクロミック層40に電界が印加されず、粒子40Bは、溶液層40A内にランダムに分散している。この場合、エレクトロクロミック層40に入射した光は透過する。 As shown in FIG. 15B, when the lower electrode 34 and the upper electrode 35 are at the same potential, for example, when both are short-circuited, an electric field is not applied to the electrochromic layer 40, and the particles 40B are random in the solution layer 40A. Are distributed. In this case, the light incident on the electrochromic layer 40 is transmitted.
 一方、図15(c)に示すように、下側電極34よりも低い電圧を上側電極35に印加した場合(例えば、下側電極34に正電圧、上側電極35に0Vを印加した場合)、正の電荷を有する粒子40Bは、上側電極35に引き寄せられる。この場合、エレクトロクロミック層40は、反射層(ミラー)として機能し、ミラー状態となる。これにより、光源13からの光は、エレクトロクロミック層40によって反射され、観察者に届く光量が減少する。 On the other hand, as shown in FIG. 15C, when a voltage lower than the lower electrode 34 is applied to the upper electrode 35 (for example, when a positive voltage is applied to the lower electrode 34 and 0 V is applied to the upper electrode 35), The particles 40 </ b> B having a positive charge are attracted to the upper electrode 35. In this case, the electrochromic layer 40 functions as a reflective layer (mirror) and is in a mirror state. Thereby, the light from the light source 13 is reflected by the electrochromic layer 40, and the amount of light reaching the observer is reduced.
 第3実施形態によれば、遮光領域13Aにおいて光源13の光を反射させることができる。これにより、観察者がグレアを認識するのを抑制できる。 According to the third embodiment, the light from the light source 13 can be reflected in the light shielding region 13A. Thereby, it can suppress that an observer recognizes glare.
 本明細書において、板やフィルムは、その部材を例示した表現であり、その構成に限定されるものではない。例えば、偏光板は、板状の部材に限定されるものではなく、明細書で記載した機能を有するフィルムやその他の部材であっても良い。 In the present specification, a plate or a film is an expression illustrating the member, and is not limited to the configuration. For example, the polarizing plate is not limited to a plate-like member, and may be a film having other functions described in the specification or other members.
 本発明は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲内で、構成要素を変形して具体化することが可能である。さらに、上記実施形態には種々の段階の発明が含まれており、1つの実施形態に開示される複数の構成要素の適宜な組み合わせ、若しくは異なる実施形態に開示される構成要素の適宜な組み合わせにより種々の発明を構成することができる。例えば、実施形態に開示される全構成要素から幾つかの構成要素が削除されても、発明が解決しようとする課題が解決でき、発明の効果が得られる場合には、これらの構成要素が削除された実施形態が発明として抽出されうる。 The present invention is not limited to the embodiment described above, and can be embodied by modifying the constituent elements without departing from the scope of the invention. Further, the above embodiments include inventions at various stages, and are obtained by appropriately combining a plurality of constituent elements disclosed in one embodiment or by appropriately combining constituent elements disclosed in different embodiments. Various inventions can be configured. For example, even if some constituent elements are deleted from all the constituent elements disclosed in the embodiments, the problems to be solved by the invention can be solved and the effects of the invention can be obtained. Embodiments made can be extracted as inventions.

Claims (10)

  1.  光源と、
     前記光源と観察者との間に配置され、前記光源からの光を受ける光制御素子と、
     前記観察者の位置を検知するカメラと、
     前記光制御素子のうち前記光源と前記観察者とを結ぶ光路が通過する遮光領域と、前記遮光領域以外の透過領域とを判定し、前記遮光領域の光量を前記透過領域の光量より少なくする制御部と
     を具備することを特徴とする照明装置。
    A light source;
    A light control element disposed between the light source and an observer and receiving light from the light source;
    A camera for detecting the position of the observer;
    Control for determining a light-shielding region through which an optical path connecting the light source and the observer passes among the light control elements and a transmission region other than the light-shielding region, and making the light amount of the light-shielding region smaller than the light amount of the transmission region And a lighting device.
  2.  前記光制御素子は、ドットマトリクス型であることを特徴とする請求項1に記載の照明装置。 The lighting device according to claim 1, wherein the light control element is a dot matrix type.
  3.  前記光制御素子は、TN(twisted nematic)型液晶素子であることを特徴とする請求項1に記載の照明装置。 The lighting device according to claim 1, wherein the light control element is a TN (twisted nematic) type liquid crystal element.
  4.  前記制御部は、前記遮光領域の透過率を前記透過領域の透過率より低くすることを特徴とする請求項3に記載の照明装置。 The lighting device according to claim 3, wherein the control unit makes the transmittance of the light shielding region lower than the transmittance of the transmission region.
  5.  前記光制御素子は、高分子分散型液晶素子であることを特徴とする請求項1に記載の照明装置。 The lighting device according to claim 1, wherein the light control element is a polymer-dispersed liquid crystal element.
  6.  前記制御部は、前記遮光領域の液晶層に電界を印加せず、前記透過領域の液晶層に電界を印加することを特徴とする請求項5に記載の照明装置。 The lighting device according to claim 5, wherein the control unit does not apply an electric field to the liquid crystal layer in the light shielding region, but applies an electric field to the liquid crystal layer in the transmission region.
  7.  前記光制御素子は、エレクトロクロミック素子であることを特徴とする請求項1に記載の照明装置。 The lighting device according to claim 1, wherein the light control element is an electrochromic element.
  8.  前記制御部は、前記遮光領域のエレクトロクロミック層に電界を印加し、前記透過領域のエレクトロクロミック層に電界を印加しないことを特徴とする請求項7に記載の照明装置。 The lighting device according to claim 7, wherein the control unit applies an electric field to the electrochromic layer in the light-shielding region and does not apply an electric field to the electrochromic layer in the transmissive region.
  9.  前記光源の上部及び側部を覆い、前記光制御素子を支持するカバーをさらに具備することを特徴とする請求項1に記載の照明装置。 The illumination device according to claim 1, further comprising a cover that covers an upper portion and a side portion of the light source and supports the light control element.
  10.  前記光源は、リング状であることを特徴とする請求項1に記載の照明装置。 The lighting device according to claim 1, wherein the light source has a ring shape.
PCT/JP2016/066490 2015-06-10 2016-06-02 Illumination device WO2016199685A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015117342A JP6575156B2 (en) 2015-06-10 2015-06-10 Lighting device
JP2015-117342 2015-06-10

Publications (1)

Publication Number Publication Date
WO2016199685A1 true WO2016199685A1 (en) 2016-12-15

Family

ID=57503692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066490 WO2016199685A1 (en) 2015-06-10 2016-06-02 Illumination device

Country Status (2)

Country Link
JP (1) JP6575156B2 (en)
WO (1) WO2016199685A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005145219A (en) * 2003-11-14 2005-06-09 Noba Denko Kk Anti-glare device for vehicle
JP2009198814A (en) * 2008-02-21 2009-09-03 Sharp Corp Shading control device
JP2012204184A (en) * 2011-03-25 2012-10-22 Toshiba Corp Light-emitting device
JP2014175224A (en) * 2013-03-11 2014-09-22 Toshiba Corp Illuminating device and control method of illuminating device
JP2014204550A (en) * 2013-04-04 2014-10-27 パナソニック株式会社 Device and system for wireless power transmission

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005145219A (en) * 2003-11-14 2005-06-09 Noba Denko Kk Anti-glare device for vehicle
JP2009198814A (en) * 2008-02-21 2009-09-03 Sharp Corp Shading control device
JP2012204184A (en) * 2011-03-25 2012-10-22 Toshiba Corp Light-emitting device
JP2014175224A (en) * 2013-03-11 2014-09-22 Toshiba Corp Illuminating device and control method of illuminating device
JP2014204550A (en) * 2013-04-04 2014-10-27 パナソニック株式会社 Device and system for wireless power transmission

Also Published As

Publication number Publication date
JP2017004750A (en) 2017-01-05
JP6575156B2 (en) 2019-09-18

Similar Documents

Publication Publication Date Title
CN210894924U (en) Display panel and display device
CN107636517B (en) Liquid crystal display device with switchable viewing angle and viewing angle switching method
US9316858B2 (en) Display device
US20180031758A1 (en) Display apparatus
US8692737B2 (en) Display device including light-transmitting cover with a lens portion
US9229252B2 (en) Stereographic display apparatus and vehicle headlight
JP6929344B2 (en) Display panel and display device and organic electroluminescent display device
US20150179139A1 (en) Display apparatus
JP2011100051A (en) Liquid crystal display device
CN105549238A (en) Switchable peep-proof display device and backlight
CN106773233B (en) 3 d display device and switch unit
CN109991783B (en) Liquid crystal element and lighting device
JP5911176B2 (en) Display device
WO2017122245A1 (en) Optical device, and window with light distribution function
JP2011209690A (en) Liquid crystal display device
US20240337872A1 (en) Electronic device
WO2021248620A1 (en) Photochromic touch-control display apparatus
TW201502690A (en) Projection screen and projection system thereof
WO2012060306A1 (en) Display system, mobile terminal, and electronic equipment
WO2016199685A1 (en) Illumination device
JP2017151242A (en) Display device
US11928990B2 (en) Display system
EP3859427B1 (en) Optical processing device and near-eye display apparatus
KR20180018883A (en) Backlight Unit And Display Device Having The Same
US20240126133A1 (en) Light path control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16807392

Country of ref document: EP

Kind code of ref document: A1