WO2016199280A1 - Air conditioning system and air conditioning method - Google Patents

Air conditioning system and air conditioning method Download PDF

Info

Publication number
WO2016199280A1
WO2016199280A1 PCT/JP2015/066928 JP2015066928W WO2016199280A1 WO 2016199280 A1 WO2016199280 A1 WO 2016199280A1 JP 2015066928 W JP2015066928 W JP 2015066928W WO 2016199280 A1 WO2016199280 A1 WO 2016199280A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
indoor
air conditioning
value
air
Prior art date
Application number
PCT/JP2015/066928
Other languages
French (fr)
Japanese (ja)
Inventor
亮 堀江
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/066928 priority Critical patent/WO2016199280A1/en
Publication of WO2016199280A1 publication Critical patent/WO2016199280A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices

Definitions

  • the present invention relates to an air conditioning system and an air conditioning method including a plurality of indoor units that share an air conditioning target area to be air-conditioned.
  • an air conditioner that has been equipped with a radiation sensor that detects the heat radiated from the air-conditioning target area on the front side of the air intake port of the indoor unit, and performs power consumption reduction processing using the result of heat detection by the radiation sensor Is known (see, for example, Patent Document 1).
  • the power consumption reduction process in Patent Document 1 is to operate the indoor unit with the smaller load of the two indoor units when it is determined that the air state of the air-conditioning target area is uncomfortable. is there.
  • the power consumption reduction processing for example, the total value in the air conditioning system of COP (Coefficient of Performance) indicating energy efficiency increases between a plurality of indoor units, which may lead to a reduction in power consumption of the air conditioning system.
  • COP Coefficient of Performance
  • all of the plurality of indoor units include a radiation sensor or a component having a detection function corresponding to the radiation sensor.
  • a radiation sensor or a component having a detection function corresponding to the radiation sensor.
  • the power consumption cannot be reduced similarly. Furthermore, even when the content of the power consumption reduction process differs between the indoor units, the power consumption cannot be reduced sufficiently.
  • the present invention has been made to solve the above-described problems, and provides an air conditioning system and an air conditioning method that efficiently reduce power consumption through operation control of a plurality of indoor units having the same air-conditioning target area.
  • the purpose is to do.
  • An air conditioning system includes a plurality of indoor units that share an air-conditioning target area to be air-conditioned, an outdoor unit that performs air conditioning of the air-conditioning target area in cooperation with the plurality of indoor units, and air in the air-conditioning target area
  • a state detection unit that detects a state value indicating a state
  • a control unit that controls operations of the plurality of indoor units based on the state value detected by the state detection unit.
  • a change information acquisition unit that sequentially switches one of the indoor units to operate for a set time and acquires change information indicating a change in the state value according to each of all the indoor units from the state detection unit;
  • An air conditioning control unit that reduces the load of the indoor unit specified by the minimum efficiency unit specifying unit when the state value detected by the state detection unit reaches a preset target value during operation of the internal unit; I have it.
  • the air conditioning method includes a plurality of indoor units that share an air-conditioning target area to be air-conditioned, an outdoor unit that performs air conditioning of the air-conditioning target area in cooperation with the plurality of indoor units, and air in the air-conditioning target area.
  • An air conditioning method using an air conditioning system including a state detection unit that detects a state value indicating a state, and a control unit that controls operations of a plurality of indoor units based on the state value detected by the state detection unit.
  • the control unit sequentially switches one of the plurality of indoor units to operate for a set time, and changes state information indicating changes in state values according to each of all the indoor units from the state detection unit.
  • the indoor unit having the lowest efficiency in the air-conditioning target area is identified.
  • the state value detected by the state detection unit reaches a preset target value during the operation of the low efficiency unit and each indoor unit, the load of the indoor unit specified in the lowest efficiency unit specification step And a load reducing step for reducing the load.
  • the present invention can identify the indoor unit having the lowest efficiency (energy efficiency) in the air-conditioning target area based on the change information corresponding to the plurality of indoor units acquired from the state detection unit, the state detection When the state value acquired from the unit reaches the target value, the load on the identified indoor unit can be reduced, and the power consumption can be efficiently reduced.
  • the air conditioning system of FIG. 1 it is a schematic diagram which shows the state in which the indoor unit which has a state detection part is performing heating operation.
  • the air conditioning system of FIG. 1 it is a schematic diagram which shows the state in which the indoor unit provided in the same indoor space as the indoor unit which has a state detection part is performing heating operation.
  • the air conditioning system of FIG. 1 it is a schematic diagram which shows the state which reduced the load of one indoor unit.
  • FIG. 1 is a schematic diagram showing an overall configuration of an air conditioning system according to the present embodiment.
  • an outdoor unit 90 that performs air conditioning and ventilation of the indoor space 100.
  • the plurality of indoor units 20-j and the outdoor unit 90 are connected by a refrigerant pipe to form a refrigerant circuit.
  • Each of the plurality of indoor units 20-j has a control unit 30-j that controls driving of an indoor heat exchanger, an indoor blower, an indoor expansion valve, and the like (not shown) provided therein.
  • the outdoor unit 90 includes a control unit 90A that controls driving of a compressor, an outdoor heat exchanger, an indoor blower, an outdoor expansion valve, and the like (not shown).
  • the plurality of control units 30-j and the control unit 90A are configured to control the operation of the air conditioning system 10 in cooperation by transmitting and receiving various control signals. Note that j indicated by the reference numerals of each indoor unit 20-j and each control unit 30-j has a plurality of values with the total number of indoor units arranged in the indoor space 100 as an upper limit.
  • the indoor unit 20-1 that is one of the plurality of indoor units 20-j includes a state detection unit 80 that detects a state value indicating an air state of an air-conditioning target area that is an air-conditioning target.
  • the indoor unit 20-1 in the present embodiment has, as the state detection unit 80, a radiation sensor that detects the temperature of the floor surface 110 around the indoor unit 20-1 (hereinafter referred to as “floor temperature”).
  • the state detection unit 80 includes, for example, a thermopile, and detects the floor temperature around the indoor unit 20-1 as a state value by detecting infrared rays radiated from the floor surface 110.
  • each air conditioning target area of each indoor unit 20-j is included in the indoor space 100, and each indoor unit 20-j may share the air conditioning target area.
  • each indoor unit 20-j may share the air conditioning target area.
  • the indoor space 100 is small, there is a high possibility that all the indoor units 20-j share the air conditioning target area.
  • the adjacent indoor units 20-j are likely to share the air-conditioning target area.
  • FIG. 2 is a block diagram showing a functional configuration of the control unit 30-1 included in the air conditioning system 10.
  • the control unit 30-1 controls the operations of the plurality of indoor units 20-j based on the state value detected by the state detection unit 80.
  • the control unit 30-1 of the indoor unit 20-1 includes a change information acquisition unit 40, a minimum efficiency unit specifying unit 50, an air conditioning control unit 60, and a storage unit 70. Yes.
  • the storage unit 70 stores data and calculation results used by the control unit 30-1 for various calculations.
  • the storage unit 70 can be configured by an HDD (Hard Disk Drive), a flash memory, or the like.
  • the change information acquisition unit 40 sequentially switches one of the plurality of indoor units 20-j and operates it for a set fixed time. Further, the change information acquisition unit 40 acquires change information indicating a change in the state value corresponding to each of all the indoor units 20-j from the state detection unit 80. That is, the change information acquisition unit 40 realizes a so-called initialization function.
  • the change information acquisition unit 40 receives from the state detection unit 80, as change information, an initial value that is a state value before operating any one of the plurality of indoor units 20-j, It is configured to acquire an elapsed value that is a state value when a predetermined time has elapsed since the indoor unit 20-j was operated.
  • the change information acquisition unit 40 has a function of transmitting an operation start command and an operation stop command to the air conditioning control unit 60 in order to sequentially switch and operate one of the plurality of indoor units 20-j. Yes. After acquiring the initial value in any one of the indoor units 20-j, the change information acquisition unit 40 transmits an operation drive command to the air conditioning control unit 60 in order to operate the indoor unit 20-j. An operation stop command is transmitted when time elapses.
  • the minimum-efficiency machine specifying unit 50 is an area indicating the energy efficiency in the air-conditioning target area based on each change information acquired by the change information acquiring unit 40 and the rated capacity and energy efficiency of each indoor unit 20-j.
  • the indoor unit 20-j having the minimum effectiveness is specified.
  • the minimum efficiency machine specifying unit 50 includes an efficiency calculation selecting unit 50A and an effectiveness calculation specifying unit 50B.
  • the efficiency calculation / selection unit 50A has an indoor unit 20 in which the area air conditioning efficiency, which is a value obtained by dividing the difference between the initial value and the elapsed value by the rated capacity, is larger than the area air conditioning efficiency of the indoor unit 20-1 having the state detection unit 80. -M (m is a value of one or more of two or more natural numbers) is selected. That is, the efficiency calculation selection unit 50A selects the indoor unit 20-m having the same air conditioning target area as the indoor unit 20-1.
  • the air conditioning control unit 60 drives or stops each indoor unit 20-j according to the operation drive command or the operation stop command transmitted from the change information acquisition unit 40, and performs heating operation, cooling operation, air blowing operation, and operation stop. Etc. are controlled.
  • the air conditioning system 10 performs heating operation according to the rating conditions of JIS standard (Japanese Industrial Standard). The same applies to other operations.
  • the air conditioning control unit 60 also determines the room specified by the effectiveness calculation specifying unit 50B of the minimum efficiency machine specifying unit 50 when the state value detected by the state detecting unit 80 reaches a preset target value. This reduces the load on the machine 20-j.
  • the load is the amount of heat (heating load) that each indoor unit 20-j must supply to the indoor space 100 in cooperation with the outdoor unit 90 during heating operation, or the indoor unit 20-j is outdoor during cooling operation.
  • This is the amount of heat (cooling load) that must be removed from the indoor space 100 in cooperation with the machine 90. That is, “reducing the load on the indoor unit 20-j” means reducing the power supplied to the indoor unit 20-j.
  • the efficiency calculation selection unit 50A selects the indoor unit 20-m having the same air conditioning target area as the indoor unit 20-1, the indoor unit 20-m having the same air conditioning target area as the indoor unit 20-1 is selected.
  • the minimum efficiency machine specifying unit 50 may be configured not to include the efficiency calculation selecting unit 50A.
  • the air conditioning system 10 includes only a part of the plurality of indoor units 20-j arranged in the same indoor space 100, that is, a plurality of indoor units that share an air conditioning target area with the indoor unit 20-1. You may have.
  • the change information acquisition unit 40, the minimum efficiency machine specifying unit 50, and the air conditioning control unit 60 described above can be realized by hardware such as a circuit device that realizes these functions, for example, a microcomputer such as a DSP, a CPU, or the like It can also be realized as software executed on the arithmetic device.
  • FIG. 3 is a schematic diagram showing a state in which the indoor unit 20-1 having the state detection unit 80 is performing the heating operation.
  • FIG. 4 is a schematic diagram illustrating a state in which the indoor unit 20-2 provided in the same indoor space 100 as the indoor unit 20-1 having the state detection unit 80 is performing a heating operation.
  • FIG. 5 is a schematic diagram showing a state where the load of one indoor unit 20-2 is lowered in the air conditioning system 10.
  • the indoor unit 20-2 does not have the state detection unit 80, and the energy efficiency of the indoor unit 20-1 is larger than the energy efficiency of the indoor unit 20-2.
  • the initial value T 10 is the state value before the indoor unit 20-1 starts heating operation Obtained from the state detection unit 80 and stored in the storage unit 70. Then, as shown in FIG. 3, the indoor unit 20-1 is operated for heating, and warm air 121 is blown into the indoor space 100 for a certain period of time. In the meantime, the indoor unit 20-2 is stopped.
  • change information acquiring unit 40 stores to get the elapsed value T 1 is the state value after the heating operation by the indoor unit 20-1 from the state detection unit 80 in the storage unit 70 .
  • the change information acquiring unit 40 to the state value is detected in the state detection unit 80 is reduced to approximately the initial value T 10
  • the indoor unit 20 Let -1 carry out cooling or air blowing operation.
  • the change information acquisition unit 40 sets both the indoor units 20-1 and 20-2 to a stopped state, and an initial value T 20 that is a state value before the indoor unit 20-2 starts the heating operation. Is acquired from the state detection unit 80 and stored in the storage unit 70.
  • the indoor unit 20-2 is operated for heating, and warm air 122 is blown into the indoor space 100 for a certain period of time.
  • the indoor unit 20-1 is stopped.
  • change information acquiring unit 40 and stores to get the elapsed value T 2 is a state value after the heating operation by the indoor unit 20-2 from the state detection unit 80 in the storage unit 70 .
  • the minimum-efficiency machine specifying unit 50 stores the initial value T 10 , the elapsed value T 1 , the initial value T 20 , and the elapsed value T 2 stored in the storage unit 70 and the rated heating capacity Q of the indoor unit 20-1. 1 and the energy efficiency APF 1 , the rated heating capacity Q 2 of the indoor unit 20-2, and the energy efficiency APF 2 are specified, which of the indoor unit 20-1 and the indoor unit 20-2 has the smaller area effectiveness. To do. Here, it is assumed that the minimum efficiency unit specifying unit 50 has specified the indoor unit 20-2.
  • the air conditioning control unit 60 is specified by the minimum efficiency unit specifying unit 50 when the state value acquired from the state detecting unit 80 reaches the target value during the operation of the indoor unit 20-1 and the indoor unit 20-2. Reduce the load on the indoor unit 20-2. In other words, as shown in FIG. 5, the amount of warm air 122 from the indoor unit 20-2 is reduced.
  • the minimum efficiency unit specifying unit 50 specifies the indoor unit with the smaller area effectiveness based on the change information corresponding to the indoor unit 20-1 and the indoor unit 20-2. If the indoor unit 20-2 is specified by the minimum efficiency unit specifying unit 50, the state value acquired from the state detecting unit 80 during operation of the indoor unit 20-1 and the indoor unit 20-2 becomes the target value. When reaching, the air conditioning control unit 60 executes a process of reducing the load of the indoor unit 20-2 whose energy efficiency in the air conditioning target area is lower than that of the indoor unit 20-1. For this reason, according to the air conditioning system 10, the power consumption as the whole system can be reduced more effectively.
  • FIG. 6 is a flowchart illustrating processing for measuring a change in the indoor environment according to the switching operation of the plurality of indoor units. Based on FIG. 6, the process of acquiring the initial value T j0 and the elapsed value T j according to the switching operation of the plurality of indoor units 20-j will be described.
  • the change information acquiring unit 40 stores the initial value T 10 obtained from the state detection unit 80 in the storage unit 70 (FIG. 6: step S101).
  • "1" of the subscripts in the initial value T 10 corresponds to the "j" of the indoor 20-j.
  • the subscript “0” means an initial value.
  • the change information acquisition unit 40 transmits an operation start command for heating operation to the air conditioning control unit 60.
  • the change information acquisition unit 40 waits until a predetermined time elapses (FIG. 6: Step S103 / No), and is measured by the state detection unit 80 when the predetermined time elapses (FIG. 6: Step S103 / Yes). It acquires the status value as an elapsed value T 1 (Fig. 6: step S104). Then, the change information acquisition unit 40 transmits an operation stop command to the air conditioning control unit 60, and the air conditioning control unit 60 stops the heating operation of the indoor unit 20-1 (FIG. 6: step S105).
  • step S101 ⁇ S105 the control unit 30-1 acquires the initial value T 10 and the elapsed value T 1 measured in the state detecting unit 80, thereby, the indoor unit 20-1 on the air-conditioning target area conditioning The effect can be obtained quantitatively.
  • the change information acquiring unit 40 determines whether less than a preset reference value (FIG. 6: step S106).
  • Change information acquiring unit 40 when the elapsed value T 1 is not less than the reference value (Fig. 6: step S106 / No), and transmits the operation stop command of the cooling or heating operation to the air conditioning control unit 60.
  • the air conditioning control unit 60 causes the indoor unit 20-1 to start the cooling or blowing operation in response to the operation stop command transmitted from the change information acquisition unit 40 (FIG. 6: step S107).
  • Change information acquiring unit 40, to the state value is detected in the state detection unit 80 becomes the initial value T 10, to continue the cooling or air blowing operation by the indoor unit 20-1 (FIG. 6: step S108 / No).
  • change information acquiring unit 40 transmits the operation stop command to the air conditioner control unit 60
  • the air conditioning controller 60 stops the cooling or heating operation of the indoor unit 20-1.
  • the change information acquiring unit 40 acquires the measured state values in the state detecting unit 80 as the initial value T 20, and stores the acquired initial value T 20 in the storage unit 70 (FIG. 6: step S109).
  • change information acquiring unit 40 when the elapsed value T 1 is less than the reference value (Fig. 6: step S106 / Yes), and obtains the measured state values in the state detecting unit 80 as the initial value T 20, acquires and stores the the initial value T 20 in the storage unit 70 (FIG. 6: step S109).
  • change information acquiring unit 40 transmits the operation start command for the heating operation to the air conditioning control unit 60.
  • the air conditioning control unit 60 causes the indoor unit 20-2 to start the heating operation in response to the operation start command transmitted from the change information acquisition unit 40 (FIG. 6: step S110).
  • the change information acquisition unit 40 waits until a predetermined time elapses (FIG. 6: step S111 / No), and is measured by the state detection unit 80 when the predetermined time elapses (FIG. 6: step S111 / Yes). It acquires the status value as an elapsed value T 2 (FIG. 6: step S112). Then, the change information acquisition unit 40 transmits an operation stop command to the air conditioning control unit 60, and the air conditioning control unit 60 stops the heating operation of the indoor unit 20-2 (FIG. 6: Step S113).
  • control unit 30-1 provides an indoor unit that may share an air-conditioning target area with the indoor unit 20-1, and A series of processes in steps S106 to S113 are executed for the number of units.
  • a series of processes in steps S106 to S113 are executed for the number of units.
  • the initial value T k0 and the elapsed value T k corresponding to each of the indoor units 20- k are acquired and stored in the storage unit 70. Thereby, the air conditioning effect exerted on the air conditioning target area by the indoor unit 20-k can be obtained quantitatively.
  • the air conditioning system 10 is configured to acquire the initial value T k0 and the elapsed value T k for all the indoor units 20-k that may share the air-conditioning target area with the indoor unit 20-1. Yes.
  • the process of acquiring each change information is performed. explain.
  • the unnecessary data acquired in the change information acquisition process can be selected in the minimum efficiency machine specifying process described later.
  • the air-conditioning target area may be different from that of the indoor unit 20-1.
  • the change information acquisition process may be performed.
  • steps S106 to S108 is performed when the state value (floor temperature) detected by the state detection unit 80 becomes too high while the acquisition processing of the initial value T j0 and the elapsed value T j is continued.
  • This is a process (environment adjustment process).
  • Environment adjusting step comprises the steps of reducing by performing cooling or air blowing operation using the indoor unit 20-j of performing heating operation immediately before, until the state value (bed temperature) is the initial value T 10 equivalent temperature It is.
  • the environmental adjustment process is a process that takes into account that the air conditioning effect is evaluated based on a value obtained by subtracting the initial value T j0 from the elapsed value T j in the lowest efficiency machine specifying process (see FIG. 7) described later. . That is, the initial value T j0 and the elapsed value T j are the area air conditioning efficiency used when selecting the indoor unit 20-m having the same air conditioning target area as the indoor unit 20-1, and the air conditioning target area of the indoor unit 20-1. This is data used when calculating the area effectiveness used when comparing the efficiency within the network. For this reason, the accuracy of the initial value T j0 and the elapsed value T j affects the accuracy of specifying the indoor unit by the minimum efficiency unit specifying unit 50.
  • the change information corresponding to the other indoor unit 20-k is acquired in an environment different from the indoor unit 20-1, the desired air conditioning effect varies, and the minimum efficiency unit specifying process does not function sufficiently. It will be.
  • the initial value T k0 corresponding to each indoor unit 20-k can be acquired in an environment similar to that of the indoor unit 20-1, The machine identification accuracy can be improved.
  • the state value obtained from the state detection unit 80 has been exemplified a process of performing cooling or air blowing operation until a value equivalent to the initial value T 10 or the initial value T 10
  • the present invention is not limited to this, and a process of reducing the state value acquired from the state detection unit 80 to the reference value may be employed.
  • the reference value may be appropriately changed in consideration of the initial value T 10 and the external environment or the like.
  • FIG. 7 is a flowchart showing a process for identifying an indoor unit having the smallest area effectiveness. Based on FIG. 7, a process for specifying an indoor unit having the lowest efficiency in the air-conditioning target area targeted by the indoor unit 20-1 will be described.
  • the control unit 30-1 identifies indoor units that do not prioritize driving using the driving non-priority flag Funpri.
  • the flag name “Funpri” of the driving non-priority flag is merely an example, and other flag names may be adopted.
  • the unique information of the indoor unit 20-j will be described as “j” for convenience.
  • the efficiency calculation selection unit 50A defines the operation non-priority flag Funpri and performs initialization (FIG. 7: step S201). Next, the efficiency calculation / selection unit 50A acquires each rated heating capacity Qj from each indoor unit 20-j (FIG. 7: step S202).
  • the efficiency calculation selection unit 50A calculates the area air conditioning efficiency for each indoor unit 20-j by the following equation 1. That is, the efficiency calculation selecting unit 50A, by dividing the elapsed value a value obtained by subtracting the initial value T j0 from T j (difference value of the initial value T j0 and the elapsed value T j) at the rated heating capacity Qj, the indoor The area air conditioning efficiency of each machine 20-j is calculated (FIG. 7: Step S203).
  • the control unit 30-1 can extract all the indoor units 20-m sharing the air conditioning target area with the indoor unit 20-1.
  • the effectiveness calculation specifying unit 50B calculates the area effectiveness of the indoor unit 20-1 and the area effectiveness of the indoor unit 20-m selected by the efficiency calculation selection unit 50A by the following equation 2. That is, the area effectiveness is an index representing the magnitude of temperature change (amount of heat) obtained with respect to the applied electric input in the air conditioning target area.
  • APF j is the year-round energy consumption efficiency of each indoor unit 20-j (FIG. 7: Step S205).
  • the effectiveness calculation / specification unit 50B compares the size relationships of the area effectiveness calculated by Expression 2 and specifies the indoor unit 20-j having the smallest area effectiveness. Then, the effectiveness calculation specifying unit 50B substitutes the specific information “j” of the specified indoor unit 20-j for the driving non-priority flag Funpri (FIG. 7: Step S206).
  • the energy efficiency in the air conditioning target area is reduced in the indoor unit 20-1 and the group composed of the indoor unit 20-m sharing the air conditioning target area with the indoor unit 20-1.
  • the lowest indoor unit 20-j is designated by the driving non-priority flag Funpri.
  • FIG. 8 is a flowchart showing a process for reducing the load on the indoor unit. Based on FIG. 8, processing for reducing the load on the indoor unit specified by the minimum efficiency unit specifying unit 50 will be described.
  • the air conditioning control unit 60 acquires the state value from the state detection unit 80 constantly or at predetermined time intervals, and executes comparison between the acquired state value and the target value until the state value reaches the target value (FIG. 8: Step S302 / No).
  • the air conditioning control unit 60 refers to the value of the operation non-priority flag Funpri when the state value acquired from the state detection unit 80 reaches the target value (FIG. 8: Yes in Step S302) (FIG. 8: In step S303), the load on the indoor unit 20-j corresponding to the value of the operation non-priority flag Funpri is reduced (FIG. 8: step S304).
  • the efficiency machine specifying step can be performed at an arbitrary timing. That is, after the room change information acquisition step is performed, the least efficient machine specifying step may be performed after a period of time, or the change information acquisition step may be continuously performed a plurality of times. When the change information acquisition process is continuously performed a plurality of times, the result of the lowest efficiency machine specifying process can be evaluated using the change information acquired at each time. In addition, the change information acquisition process may be performed again after performing the lowest efficiency machine specifying process.
  • the minimum efficiency unit specifying unit 50 is in the air conditioning target area targeted by the indoor unit 20-1. Identify the indoor unit with the lowest energy efficiency. Therefore, if an indoor unit other than the indoor unit 20-1 is specified by the minimum efficiency unit specifying unit 50, the air conditioning control unit 60 acquires the state acquired from the state detection unit 80 during the operation of each indoor unit 20-j. When the value reaches the target value, the load on the indoor unit can be reduced instead of the indoor unit 20-1. That is, according to the air conditioning system 10, the power consumption as the whole system can be reduced more efficiently.
  • the air conditioning system 10 obtains the operation non-priority flag Funpri, so that the indoor unit having lower energy efficiency in the air-conditioning target area than the indoor unit 20-1, that is, operation non-priority. If there is an indoor unit designated by the flag Funpri, the load on the indoor unit can be reduced instead of the indoor unit 20-1. For this reason, power consumption can be reduced more efficiently.
  • the air conditioning system 10 it is possible to reduce electric power by changing the processing content by the control unit 30-1 without changing the basic configuration of the air conditioning system.
  • it can be realized by an existing indoor unit by changing software installed in the air conditioning system.
  • the air conditioning system control software recognizes the presence of the indoor unit 20-1 having the state detection unit 80 and other indoor units that share the air-conditioning target area, and recognizes the low energy efficient indoor unit.
  • power consumption can be reduced.
  • the arithmetic processing (formula calculation) related to the power consumption reduction processing can be simplified as compared with the conventional case. That is, for example, when designing the installation position of each indoor unit on the assumption that a large number of indoor units are installed, the conventional configuration operates in a transition period (target) in this embodiment. It is difficult to predict the operation until the value is reached, and manual calculation is difficult. On the other hand, since the air conditioning system 10 automatically performs a simple calculation, it is possible to realize a rapid process without complicated calculations. In addition, the increase in capacity can be minimized when the above-described software change is dealt with. Further, according to the air conditioning system 10, even when an indoor unit is additionally installed in the same indoor space as the indoor unit 20-1, power consumption reduction processing can be performed as appropriate.
  • the embodiments described above are preferred specific examples of the air conditioning system and the air conditioning method, and the technical scope of the present invention is not limited to these embodiments.
  • the change information acquisition unit 40 sequentially switches one of the plurality of indoor units 20-j to perform cooling operation for a predetermined time, and changes the state value corresponding to each of all the indoor units 20-j. You may make it acquire the change information (initial value and elapsed value) to show from the state detection part 80.
  • the change information acquisition unit 40 causes the indoor unit to perform a heating operation to increase the accuracy of the acquired data.
  • the minimum-efficiency unit specifying unit 50 performs the air-conditioning target targeted by the indoor unit 20-1 based on each change information acquired by the change information acquiring unit 40 and the cooling rated capacity and energy efficiency of each indoor unit. You may make it identify the indoor unit with the minimum area effectiveness which shows the efficiency in an area.
  • control unit 70 is provided inside the control unit 30-1, but the storage unit 70 may be provided outside the control unit 30-1.
  • the control unit 30-1 of the indoor unit 20-1 functions as the change information acquisition unit 40, the minimum efficiency unit specifying unit 50, and the air conditioning control unit 60 has been described as an example.
  • the control unit 90 ⁇ / b> A of the outdoor unit 90 may function as at least one of the change information acquisition unit 40, the minimum efficiency unit specifying unit 50, and the air conditioning control unit 60.
  • a remote controller (not shown) on the air conditioning system 10 may be designed to function as the change information acquisition unit 40, the minimum efficiency machine specifying unit 50, and the air conditioning control unit 60.
  • the installer of the air conditioning system 10 can perform the power consumption reduction process, and the user can change the processing content. That is, according to the air conditioning system 10, various changes such as a layout change of the indoor space 100, a change in the installation position of the indoor unit, a change in air flow due to a change in the filter of the indoor unit, and addition of a model equipped with a radiation sensor are supported. Thus, power consumption can be reduced efficiently.
  • the present invention is not limited to this, and the state detection unit 80 is configured by combining, for example, a suction sensor, a humidity sensor, or various sensors. It may be what you did. That is, each of the above processes may be performed based on the detection value of a suction sensor or a humidity sensor.
  • a process of reducing the load of the indoor unit specified by the minimum efficiency unit specifying unit 50 a process of reducing the current supplied to the indoor unit is adopted instead of the process of reducing the power supplied to the indoor unit. Thus, power consumption may be reduced.
  • AFJ year-round energy consumption efficiency
  • COP coefficient of performance
  • SEER seasonal energy efficiency Ratio
  • the air conditioning system 10 performed a heating operation according to the rated conditions of JIS specification was illustrated, if it is a condition which can understand heating capability, it will comply with the conditions of an intermediate value, etc. Then, the heating operation may be performed. The same applies to the cooling operation and the air blowing operation.
  • FIG. 1 and FIGS. 3 to 5 do not limit the arrangement of the indoor unit 20-1 having the state detection unit 80. That is, in the situation shown in FIGS. 3 to 5, for example, the arrangement of the indoor unit 20-1 and the indoor unit 20-2 may be switched. In the situation as shown in FIG. 1, the indoor unit 20-1 having the state detection unit 80 may be disposed so as to be sandwiched between other indoor units in the central portion of the indoor space 100 or the like.
  • the air conditioning system 10 which has the one outdoor unit 90 is illustrated, it is not limited to this, The air conditioning system 10 has two or more arbitrary number of outdoor units 90. It is good also as a structure which has.
  • 10 air conditioning system 20-j indoor unit, 30-j control unit, 40 change information acquisition unit, 50 minimum efficiency unit identification unit, 50A efficiency calculation selection unit, 50B effectiveness calculation identification unit, 60 air conditioning control unit, 70 storage Unit, 80 state detection unit, 90 outdoor unit, 90A outdoor unit control unit.

Abstract

A control unit of the air conditioning system according to the present invention has: a variation information acquiring unit for causing one of a plurality of indoor devices to switch and operate for a set certain time and acquiring variation information indicating a variation in a state value corresponding to each of all the indoor devices; a minimum efficiency device specifying unit for specifying the indoor device having the lowest efficiency in an air conditioning subject area on the basis of the variation information; and an air conditioning control unit for reducing the load of the indoor device specified by the minimum efficiency device specifying unit when the state value during operation of the indoor devices reaches a target value.

Description

空気調和システム及び空気調和方法Air conditioning system and air conditioning method
 本発明は、空調の対象となる空調対象エリアを共有する複数の室内機を備えた空気調和システム及び空気調和方法に関する。 The present invention relates to an air conditioning system and an air conditioning method including a plurality of indoor units that share an air conditioning target area to be air-conditioned.
 従来から、室内機の空気吸込口の表側に、空調対象エリアから輻射される熱を検知する輻射センサを備え、輻射センサによる熱検知の結果を利用して、消費電力低減処理を行う空気調和機が知られている(例えば特許文献1参照)。 Conventionally, an air conditioner that has been equipped with a radiation sensor that detects the heat radiated from the air-conditioning target area on the front side of the air intake port of the indoor unit, and performs power consumption reduction processing using the result of heat detection by the radiation sensor Is known (see, for example, Patent Document 1).
 特許文献1における消費電力低減処理は、空調対象エリアの空気状態が不快な状態であると判定された場合に、2台の室内機のうち、負荷が小さい方の室内機を稼働させるというものである。消費電力低減処理によれば、例えばエネルギー効率を示すCOP(Coefficient of Performance)の空気調和システムにおける総合値が、複数の室内機間で高まるため、空気調和システムの消費電力の低減に繋がり得る。 The power consumption reduction process in Patent Document 1 is to operate the indoor unit with the smaller load of the two indoor units when it is determined that the air state of the air-conditioning target area is uncomfortable. is there. According to the power consumption reduction processing, for example, the total value in the air conditioning system of COP (Coefficient of Performance) indicating energy efficiency increases between a plurality of indoor units, which may lead to a reduction in power consumption of the air conditioning system.
特開2014-156977号公報JP 2014-156977 A
 しかしながら、特許文献1の空気調和システムにおいて、期待する消費電力の低減効果を得るためには、複数の室内機の全てが、輻射センサ又は輻射センサに相当する検出機能をもつ構成部材を備えている必要がある。すなわち、特許文献1の空気調和システムでは、輻射センサを備える室内機と同一の室内空間に、空調対象エリア内でのエネルギー効率が低く且つ輻射センサを備えていない室内機が設置されている場合、輻射センサを備える室内機が消費電力低減処理を行っている間にも、他の室内機の運転が高負荷で行われる。このため、空気調和システム全体としての消費電力の低減を図ることができない。 However, in the air conditioning system of Patent Document 1, in order to obtain an expected power consumption reduction effect, all of the plurality of indoor units include a radiation sensor or a component having a detection function corresponding to the radiation sensor. There is a need. That is, in the air conditioning system of Patent Document 1, when an indoor unit that has low energy efficiency in the air-conditioning target area and is not equipped with a radiation sensor is installed in the same indoor space as the indoor unit equipped with a radiation sensor, While the indoor unit including the radiation sensor is performing the power consumption reduction process, the other indoor units are operated with a high load. For this reason, reduction of the power consumption as the whole air conditioning system cannot be aimed at.
 また、全ての室内機が空調対象エリアの空気状態を検出する検出装置を備えていても、各検出装置の検出方法の原理が異なっていれば、同様に消費電力を低減することができない。さらに、消費電力低減処理の内容が各室内機間で異なる場合にも、十分に消費電力を低減することができない。 In addition, even if all the indoor units are provided with a detection device that detects the air state of the air-conditioning area, if the principle of the detection method of each detection device is different, the power consumption cannot be reduced similarly. Furthermore, even when the content of the power consumption reduction process differs between the indoor units, the power consumption cannot be reduced sufficiently.
 本発明は、上記のような課題を解決するためになされたものであり、空調対象エリアを同じくする複数の室内機の動作制御により消費電力を効率よく低減する空気調和システム及び空気調和方法を提供することを目的とする。 The present invention has been made to solve the above-described problems, and provides an air conditioning system and an air conditioning method that efficiently reduce power consumption through operation control of a plurality of indoor units having the same air-conditioning target area. The purpose is to do.
 本発明に係る空気調和システムは、空調の対象となる空調対象エリアを共有する複数の室内機と、複数の室内機と連携して空調対象エリアの空調を行う室外機と、空調対象エリアの空気状態を示す状態値を検出する状態検出部と、状態検出部において検出される状態値をもとに、複数の室内機の動作を制御する制御部と、を有し、制御部は、複数の室内機のうちの一台を順次切り替えて設定された一定時間の間運転させ、全ての室内機のそれぞれに応じた状態値の変化を示す変化情報を状態検出部から取得する変化情報取得部と、変化情報取得部において取得された各変化情報と、各室内機の定格能力及びエネルギー効率とに基づいて、空調対象エリア内での効率を示すエリア有効度が最小である室内機を特定する最小効率機特定部と、各室内機の運転中に、状態検出部において検出された状態値が、予め設定された目標値に到達したとき、最小効率機特定部において特定された室内機の負荷を下げる空調制御部と、を有するものである。 An air conditioning system according to the present invention includes a plurality of indoor units that share an air-conditioning target area to be air-conditioned, an outdoor unit that performs air conditioning of the air-conditioning target area in cooperation with the plurality of indoor units, and air in the air-conditioning target area A state detection unit that detects a state value indicating a state, and a control unit that controls operations of the plurality of indoor units based on the state value detected by the state detection unit. A change information acquisition unit that sequentially switches one of the indoor units to operate for a set time and acquires change information indicating a change in the state value according to each of all the indoor units from the state detection unit; The minimum to identify the indoor unit having the minimum area effectiveness indicating the efficiency in the air-conditioning target area based on each change information acquired in the change information acquisition unit and the rated capacity and energy efficiency of each indoor unit Efficiency machine identification section and each An air conditioning control unit that reduces the load of the indoor unit specified by the minimum efficiency unit specifying unit when the state value detected by the state detection unit reaches a preset target value during operation of the internal unit; I have it.
 また、本発明に係る空気調和方法は、空調の対象となる空調対象エリアを共有する複数の室内機、複数の室内機と連携して空調対象エリアの空調を行う室外機、空調対象エリアの空気状態を示す状態値を検出する状態検出部、及び状態検出部において検出される状態値をもとに複数の室内機の動作を制御する制御部を備えた空気調和システムによる空気調和方法であって、制御部が、複数の室内機のうちの一台を順次切り替えて設定された一定時間の間運転させ、全ての室内機のそれぞれに応じた状態値の変化を示す変化情報を状態検出部から取得する変化情報取得工程と、変化情報取得工程において取得された各変化情報と、各室内機の定格能力及びエネルギー効率とに基づいて、空調対象エリア内での効率が最も低い室内機を特定する最低効率機特定工程と、各室内機の運転中に、状態検出部において検出された状態値が、予め設定された目標値に到達したとき、最低効率機特定工程において特定された室内機の負荷を下げる負荷低下工程と、を有している。 The air conditioning method according to the present invention includes a plurality of indoor units that share an air-conditioning target area to be air-conditioned, an outdoor unit that performs air conditioning of the air-conditioning target area in cooperation with the plurality of indoor units, and air in the air-conditioning target area. An air conditioning method using an air conditioning system including a state detection unit that detects a state value indicating a state, and a control unit that controls operations of a plurality of indoor units based on the state value detected by the state detection unit. The control unit sequentially switches one of the plurality of indoor units to operate for a set time, and changes state information indicating changes in state values according to each of all the indoor units from the state detection unit. Based on the change information acquisition process to be acquired, each change information acquired in the change information acquisition process, and the rated capacity and energy efficiency of each indoor unit, the indoor unit having the lowest efficiency in the air-conditioning target area is identified. When the state value detected by the state detection unit reaches a preset target value during the operation of the low efficiency unit and each indoor unit, the load of the indoor unit specified in the lowest efficiency unit specification step And a load reducing step for reducing the load.
 本発明は、状態検出部から取得した複数の室内機に応じた変化情報をもとに、空調対象エリア内での効率(エネルギー効率)が最も低い室内機を特定することができるため、状態検出部から取得する状態値が目標値に到達したときに、特定した室内機の負荷を下げることができ、消費電力を効率よく低減することができる。 Since the present invention can identify the indoor unit having the lowest efficiency (energy efficiency) in the air-conditioning target area based on the change information corresponding to the plurality of indoor units acquired from the state detection unit, the state detection When the state value acquired from the unit reaches the target value, the load on the identified indoor unit can be reduced, and the power consumption can be efficiently reduced.
本発明の実施の形態に係る空気調和システムの全体構成を示す模式図である。It is a mimetic diagram showing the whole air harmony system composition concerning an embodiment of the invention. 図1の空気調和システムが有する制御部の機能構成を示すブロック図である。It is a block diagram which shows the function structure of the control part which the air conditioning system of FIG. 1 has. 図1の空気調和システムにおいて、状態検出部を有する室内機が暖房運転を行っている状態を示す模式図である。In the air conditioning system of FIG. 1, it is a schematic diagram which shows the state in which the indoor unit which has a state detection part is performing heating operation. 図1の空気調和システムにおいて、状態検出部を有する室内機と同一の室内空間内に設けられた室内機が暖房運転を行っている状態を示す模式図である。In the air conditioning system of FIG. 1, it is a schematic diagram which shows the state in which the indoor unit provided in the same indoor space as the indoor unit which has a state detection part is performing heating operation. 図1の空気調和システムにおいて、一方の室内機の負荷を下げた状態を示す模式図である。In the air conditioning system of FIG. 1, it is a schematic diagram which shows the state which reduced the load of one indoor unit. 図1の空気調和システムの動作のうち、複数の室内機の切替運転に応じた室内環境の変化を測定する処理を示すフローチャートである。It is a flowchart which shows the process which measures the change of the indoor environment according to the switching driving | operation of several indoor units among operation | movement of the air conditioning system of FIG. 図1の空気調和システムの動作のうち、エリア有効度が最小である室内機を特定する処理を示すフローチャートである。It is a flowchart which shows the process which specifies the indoor unit with the smallest area effectiveness among operation | movement of the air conditioning system of FIG. 図1の空気調和システムの動作のうち、室内機の負荷を下げる処理を示すフローチャートである。It is a flowchart which shows the process which reduces the load of an indoor unit among operation | movement of the air conditioning system of FIG.
[実施の形態]
 図1は、本実施の形態に係る空気調和システムの全体構成を示す模式図である。図1に示すように、空気調和システム10は、同一の室内空間100に配設された複数の室内機20-j(j=1、2、…)と、複数の室内機20-jと連携して室内空間100の空調及び換気を行う室外機90と、を有している。複数の室内機20-jと室外機90とは、冷媒配管によって接続され、冷媒回路を構成している。
[Embodiment]
FIG. 1 is a schematic diagram showing an overall configuration of an air conditioning system according to the present embodiment. As shown in FIG. 1, the air conditioning system 10 is linked to a plurality of indoor units 20-j (j = 1, 2,...) Disposed in the same indoor space 100 and a plurality of indoor units 20-j. And an outdoor unit 90 that performs air conditioning and ventilation of the indoor space 100. The plurality of indoor units 20-j and the outdoor unit 90 are connected by a refrigerant pipe to form a refrigerant circuit.
 複数の室内機20-jは、それぞれ、内部に設けられた室内熱交換器、室内送風機、及び室内膨張弁等(図示せず)の駆動を制御する制御部30-jを有している。また、室外機90は、圧縮機、室外熱交換器、室内送風機、及び室外膨張弁等(図示せず)の駆動を制御する制御部90Aを有している。複数の制御部30-jと制御部90Aとは、各種の制御信号を送受信することにより、連携して空気調和システム10の動作を制御するように構成されている。なお、各室内機20-j及び各制御部30-jの符号に示すjは、室内空間100に配設された室内機の総数を上限として複数の値をとる。 Each of the plurality of indoor units 20-j has a control unit 30-j that controls driving of an indoor heat exchanger, an indoor blower, an indoor expansion valve, and the like (not shown) provided therein. The outdoor unit 90 includes a control unit 90A that controls driving of a compressor, an outdoor heat exchanger, an indoor blower, an outdoor expansion valve, and the like (not shown). The plurality of control units 30-j and the control unit 90A are configured to control the operation of the air conditioning system 10 in cooperation by transmitting and receiving various control signals. Note that j indicated by the reference numerals of each indoor unit 20-j and each control unit 30-j has a plurality of values with the total number of indoor units arranged in the indoor space 100 as an upper limit.
 複数の室内機20-jのうちの一台である室内機20-1は、自身が空調の対象とする空調対象エリアの空気状態を示す状態値を検出する状態検出部80を有している。本実施の形態における室内機20-1は、状態検出部80として、室内機20-1の周辺における床面110の温度(以下「床温度」という。)を検出する輻射センサを有している。すなわち、状態検出部80は、例えばサーモパイルを含んで構成され、床面110が輻射する赤外線を検知することにより、状態値として、室内機20-1の周辺の床温度を検出するものである。 The indoor unit 20-1 that is one of the plurality of indoor units 20-j includes a state detection unit 80 that detects a state value indicating an air state of an air-conditioning target area that is an air-conditioning target. . The indoor unit 20-1 in the present embodiment has, as the state detection unit 80, a radiation sensor that detects the temperature of the floor surface 110 around the indoor unit 20-1 (hereinafter referred to as “floor temperature”). . That is, the state detection unit 80 includes, for example, a thermopile, and detects the floor temperature around the indoor unit 20-1 as a state value by detecting infrared rays radiated from the floor surface 110.
 ここで、各室内機20-jのそれぞれの空調対象エリアは、室内空間100に含まれるものであり、各室内機20-jは、空調対象エリアを共有することがある。例えば室内空間100が狭い場合には、全ての室内機20-jが空調対象エリアを共有する可能性が高い。また、隣接する室内機20-j同士は、空調対象エリアを共有する可能性が高い。 Here, each air conditioning target area of each indoor unit 20-j is included in the indoor space 100, and each indoor unit 20-j may share the air conditioning target area. For example, when the indoor space 100 is small, there is a high possibility that all the indoor units 20-j share the air conditioning target area. In addition, the adjacent indoor units 20-j are likely to share the air-conditioning target area.
 図2は、空気調和システム10が有する制御部30-1の機能構成を示すブロック図である。制御部30-1は、状態検出部80において検出される状態値をもとに、複数の室内機20-jの動作を制御するものである。図2に示すように、室内機20-1の制御部30-1は、変化情報取得部40と、最小効率機特定部50と、空調制御部60と、記憶部70と、を有している。 FIG. 2 is a block diagram showing a functional configuration of the control unit 30-1 included in the air conditioning system 10. The control unit 30-1 controls the operations of the plurality of indoor units 20-j based on the state value detected by the state detection unit 80. As shown in FIG. 2, the control unit 30-1 of the indoor unit 20-1 includes a change information acquisition unit 40, a minimum efficiency unit specifying unit 50, an air conditioning control unit 60, and a storage unit 70. Yes.
 記憶部70は、制御部30-1が各種演算等に用いるデータ及び演算結果等を記憶するものである。記憶部70は、HDD(Hard Disk Drive)又はフラッシュメモリ等により構成することができる。 The storage unit 70 stores data and calculation results used by the control unit 30-1 for various calculations. The storage unit 70 can be configured by an HDD (Hard Disk Drive), a flash memory, or the like.
 変化情報取得部40は、複数の室内機20-jのうちの一台を順次切り替えて、設定された一定時間の間運転させるものである。また、変化情報取得部40は、全ての室内機20-jのそれぞれに対応する状態値の変化を示す変化情報を状態検出部80から取得するものである。すなわち、変化情報取得部40は、いわゆる初期化機能を実現するものである。 The change information acquisition unit 40 sequentially switches one of the plurality of indoor units 20-j and operates it for a set fixed time. Further, the change information acquisition unit 40 acquires change information indicating a change in the state value corresponding to each of all the indoor units 20-j from the state detection unit 80. That is, the change information acquisition unit 40 realizes a so-called initialization function.
 本実施の形態において、変化情報取得部40は、状態検出部80から、変化情報として、複数の室内機20-jのうちの任意の一台を運転させる前の状態値である初期値と、当該室内機20-jを運転させてから一定時間が経過したときの状態値である経過値と、を取得するように構成されている。 In the present embodiment, the change information acquisition unit 40 receives from the state detection unit 80, as change information, an initial value that is a state value before operating any one of the plurality of indoor units 20-j, It is configured to acquire an elapsed value that is a state value when a predetermined time has elapsed since the indoor unit 20-j was operated.
 また、変化情報取得部40は、複数の室内機20-jのうちの一台を順次切り替えて運転させるために、空調制御部60へ運転開始指令及び運転停止指令を送信する機能を有している。変化情報取得部40は、何れか一台の室内機20-jにおける初期値を取得した後、当該室内機20-jを運転させるために、空調制御部60へ運転駆動指令を送信し、一定時間が経過したときに運転停止指令を送信するように構成されている。 The change information acquisition unit 40 has a function of transmitting an operation start command and an operation stop command to the air conditioning control unit 60 in order to sequentially switch and operate one of the plurality of indoor units 20-j. Yes. After acquiring the initial value in any one of the indoor units 20-j, the change information acquisition unit 40 transmits an operation drive command to the air conditioning control unit 60 in order to operate the indoor unit 20-j. An operation stop command is transmitted when time elapses.
 最小効率機特定部50は、変化情報取得部40において取得された各変化情報と、各室内機20-jの定格能力及びエネルギー効率とに基づいて、空調対象エリア内でのエネルギー効率を示すエリア有効度が最小である室内機20-jを特定するものである。最小効率機特定部50は、効率算出選定部50Aと、有効度算出特定部50Bと、を有している。 The minimum-efficiency machine specifying unit 50 is an area indicating the energy efficiency in the air-conditioning target area based on each change information acquired by the change information acquiring unit 40 and the rated capacity and energy efficiency of each indoor unit 20-j. The indoor unit 20-j having the minimum effectiveness is specified. The minimum efficiency machine specifying unit 50 includes an efficiency calculation selecting unit 50A and an effectiveness calculation specifying unit 50B.
 効率算出選定部50Aは、初期値と経過値との差分を定格能力で割った値であるエリア空調効率が、状態検出部80を有する室内機20-1のエリア空調効率よりも大きい室内機20-m(mは2以上の自然数のうちの一つ又は複数の値)を選定するものである。すなわち、効率算出選定部50Aは、室内機20-1と空調対象エリアを同じくする室内機20-mを選定するものである。 The efficiency calculation / selection unit 50A has an indoor unit 20 in which the area air conditioning efficiency, which is a value obtained by dividing the difference between the initial value and the elapsed value by the rated capacity, is larger than the area air conditioning efficiency of the indoor unit 20-1 having the state detection unit 80. -M (m is a value of one or more of two or more natural numbers) is selected. That is, the efficiency calculation selection unit 50A selects the indoor unit 20-m having the same air conditioning target area as the indoor unit 20-1.
 有効度算出特定部50Bは、状態検出部80を有する室内機20-1及び効率算出選定部50Aにおいて選定された室内機20-mのそれぞれのエリア空調効率に、各々の室内機20-j(j=1及びm)のエネルギー効率を乗じた値を、当該各室内機20-jのエリア有効度として算出するものである。また、有効度算出特定部50Bは、算出したエリア有効度が最小となる室内機20-jを特定するものである。 The effectiveness calculation specifying unit 50B determines the area air conditioning efficiency of each of the indoor units 20-j (the indoor unit 20-1 having the state detection unit 80 and the indoor unit 20-m selected by the efficiency calculation selection unit 50A). A value obtained by multiplying the energy efficiency of j = 1 and m) is calculated as the area effectiveness of each indoor unit 20-j. Further, the effectiveness calculation specifying unit 50B specifies the indoor unit 20-j having the smallest calculated area effectiveness.
 空調制御部60は、変化情報取得部40から送信される運転駆動指令又は運転停止指令に応じて、各室内機20-jを駆動又は停止させ、暖房運転、冷房運転、送風運転、及び運転停止等を制御するものである。なお、空気調和システム10は、暖房運転を、JIS規格(日本工業規格)の定格条件に則して実行する。他の運転についても同様である。 The air conditioning control unit 60 drives or stops each indoor unit 20-j according to the operation drive command or the operation stop command transmitted from the change information acquisition unit 40, and performs heating operation, cooling operation, air blowing operation, and operation stop. Etc. are controlled. In addition, the air conditioning system 10 performs heating operation according to the rating conditions of JIS standard (Japanese Industrial Standard). The same applies to other operations.
 また、空調制御部60は、状態検出部80において検出される状態値が、予め設定された目標値に到達した際に、最小効率機特定部50の有効度算出特定部50Bにおいて特定された室内機20-jの負荷を下げるものである。 The air conditioning control unit 60 also determines the room specified by the effectiveness calculation specifying unit 50B of the minimum efficiency machine specifying unit 50 when the state value detected by the state detecting unit 80 reaches a preset target value. This reduces the load on the machine 20-j.
 ここで、負荷とは、暖房運転時に各室内機20-jが室外機90と連携して室内空間100へ供給しなければならない熱量(暖房負荷)、又は冷房運転時に室内機20-jが室外機90と連携して室内空間100から除去しなければならない熱量(冷房負荷)である。すなわち、「室内機20-jの負荷を下げる」とは、室内機20-jへの供給電力を低下させることを意味する。 Here, the load is the amount of heat (heating load) that each indoor unit 20-j must supply to the indoor space 100 in cooperation with the outdoor unit 90 during heating operation, or the indoor unit 20-j is outdoor during cooling operation. This is the amount of heat (cooling load) that must be removed from the indoor space 100 in cooperation with the machine 90. That is, “reducing the load on the indoor unit 20-j” means reducing the power supplied to the indoor unit 20-j.
 なお、効率算出選定部50Aは、室内機20-1と空調対象エリアを同じくする室内機20-mを選定するものであるため、室内機20-1と空調対象エリアを同じくする室内機20-mが予め分かっている場合等においては、最小効率機特定部50が効率算出選定部50Aを有しない構成としてもよい。また、空気調和システム10は、同一の室内空間100に配設された複数の室内機20-jのうちの一部、すなわち、室内機20-1と空調対象エリアを共有する複数の室内機のみを有していてもよい。 Since the efficiency calculation selection unit 50A selects the indoor unit 20-m having the same air conditioning target area as the indoor unit 20-1, the indoor unit 20-m having the same air conditioning target area as the indoor unit 20-1 is selected. When m is known in advance, the minimum efficiency machine specifying unit 50 may be configured not to include the efficiency calculation selecting unit 50A. In addition, the air conditioning system 10 includes only a part of the plurality of indoor units 20-j arranged in the same indoor space 100, that is, a plurality of indoor units that share an air conditioning target area with the indoor unit 20-1. You may have.
 上述した変化情報取得部40、最小効率機特定部50、及び空調制御部60は、これらの機能を実現する回路デバイスなどのハードウェアで実現することもできるし、例えばDSP等のマイコン又はCPU等の演算装置上で実行されるソフトウェアとして実現することもできる。 The change information acquisition unit 40, the minimum efficiency machine specifying unit 50, and the air conditioning control unit 60 described above can be realized by hardware such as a circuit device that realizes these functions, for example, a microcomputer such as a DSP, a CPU, or the like It can also be realized as software executed on the arithmetic device.
 次に、図3~図5を参照して、室内空間100に2台の室内機20-1及び室内機20-2が設けられている場合の消費電力低減処理の概要を説明する。図3は、状態検出部80を有する室内機20-1が暖房運転を行っている状態を示す模式図である。図4は、状態検出部80を有する室内機20-1と同一の室内空間100内に設けられた室内機20-2が暖房運転を行っている状態を示す模式図である。図5は、空気調和システム10において、一方の室内機20-2の負荷を下げた状態を示す模式図である。 Next, an outline of the power consumption reduction process when two indoor units 20-1 and 20-2 are provided in the indoor space 100 will be described with reference to FIGS. FIG. 3 is a schematic diagram showing a state in which the indoor unit 20-1 having the state detection unit 80 is performing the heating operation. FIG. 4 is a schematic diagram illustrating a state in which the indoor unit 20-2 provided in the same indoor space 100 as the indoor unit 20-1 having the state detection unit 80 is performing a heating operation. FIG. 5 is a schematic diagram showing a state where the load of one indoor unit 20-2 is lowered in the air conditioning system 10.
 ここでは、室内機20-2が、状態検出部80を有しておらず、室内機20-1のエネルギー効率が、室内機20-2のエネルギー効率よりも大きいこと(エネルギー効率について「室内機20-1>室内機20-2」の関係があること)を想定する。なお、室内機20-1と室内機20-2とは、空調の対象となる空調対象エリアを共有しているものとする。 Here, the indoor unit 20-2 does not have the state detection unit 80, and the energy efficiency of the indoor unit 20-1 is larger than the energy efficiency of the indoor unit 20-2. 20-1> indoor unit 20-2 ”). It is assumed that the indoor unit 20-1 and the indoor unit 20-2 share an air-conditioning target area to be air-conditioned.
 室内機20-1及び室内機20-2の双方が停止している状態において、変化情報取得部40は、室内機20-1が暖房運転を開始する前の状態値である初期値T10を状態検出部80から取得して記憶部70に記憶させる。そして、図3に示すように、室内機20-1を暖房運転させて、一定時間の間、暖気121を室内空間100に送風する。その間、室内機20-2は停止させておく。 In the state where both the indoor unit 20-1 and the indoor unit 20-2 is stopped, change information acquiring unit 40, the initial value T 10 is the state value before the indoor unit 20-1 starts heating operation Obtained from the state detection unit 80 and stored in the storage unit 70. Then, as shown in FIG. 3, the indoor unit 20-1 is operated for heating, and warm air 121 is blown into the indoor space 100 for a certain period of time. In the meantime, the indoor unit 20-2 is stopped.
 次いで、一定時間が経過したときに、変化情報取得部40は、室内機20-1による暖房運転後の状態値である経過値Tを状態検出部80から取得して記憶部70に記憶させる。このとき、経過値Tが予め設定された基準値以上であれば、変化情報取得部40は、状態検出部80において検出される状態値が初期値T10程度に低下するまで、室内機20-1に冷房又は送風運転を実施させる。 Then, when the predetermined time elapses, change information acquiring unit 40, and stores to get the elapsed value T 1 is the state value after the heating operation by the indoor unit 20-1 from the state detection unit 80 in the storage unit 70 . At this time, if the elapsed value T 1 is a preset reference value or more, the change information acquiring unit 40, to the state value is detected in the state detection unit 80 is reduced to approximately the initial value T 10, the indoor unit 20 Let -1 carry out cooling or air blowing operation.
 次に、変化情報取得部40は、室内機20-1及び20-2の双方が停止している状態とし、室内機20-2が暖房運転を開始する前の状態値である初期値T20を状態検出部80から取得して記憶部70に記憶させる。次いで、図4に示すように、室内機20-2を暖房運転させて、一定時間の間、暖気122を室内空間100に送風する。その間、室内機20-1は停止させておく。そして、一定時間が経過したときに、変化情報取得部40は、室内機20-2による暖房運転後の状態値である経過値Tを状態検出部80から取得して記憶部70に記憶させる。 Next, the change information acquisition unit 40 sets both the indoor units 20-1 and 20-2 to a stopped state, and an initial value T 20 that is a state value before the indoor unit 20-2 starts the heating operation. Is acquired from the state detection unit 80 and stored in the storage unit 70. Next, as shown in FIG. 4, the indoor unit 20-2 is operated for heating, and warm air 122 is blown into the indoor space 100 for a certain period of time. In the meantime, the indoor unit 20-1 is stopped. When the predetermined time has elapsed, change information acquiring unit 40, and stores to get the elapsed value T 2 is a state value after the heating operation by the indoor unit 20-2 from the state detection unit 80 in the storage unit 70 .
 次に、最小効率機特定部50は、記憶部70に記憶された初期値T10、経過値T、初期値T20、及び経過値Tと、室内機20-1の定格暖房能力Q及びエネルギー効率APFと、室内機20-2の定格暖房能力Q及びエネルギー効率APFとに基づき、室内機20-1及び室内機20-2のうちでエリア有効度が小さい方を特定する。ここでは、最小効率機特定部50が室内機20-2を特定したと仮定する。 Next, the minimum-efficiency machine specifying unit 50 stores the initial value T 10 , the elapsed value T 1 , the initial value T 20 , and the elapsed value T 2 stored in the storage unit 70 and the rated heating capacity Q of the indoor unit 20-1. 1 and the energy efficiency APF 1 , the rated heating capacity Q 2 of the indoor unit 20-2, and the energy efficiency APF 2 are specified, which of the indoor unit 20-1 and the indoor unit 20-2 has the smaller area effectiveness. To do. Here, it is assumed that the minimum efficiency unit specifying unit 50 has specified the indoor unit 20-2.
 そして、空調制御部60は、室内機20-1及び室内機20-2の運転中に、状態検出部80から取得した状態値が目標値に到達したとき、最小効率機特定部50において特定された室内機20-2の負荷を下げる。すなわち、図5に示すように、室内機20-2からの暖気122の送風量を低下させる。 The air conditioning control unit 60 is specified by the minimum efficiency unit specifying unit 50 when the state value acquired from the state detecting unit 80 reaches the target value during the operation of the indoor unit 20-1 and the indoor unit 20-2. Reduce the load on the indoor unit 20-2. In other words, as shown in FIG. 5, the amount of warm air 122 from the indoor unit 20-2 is reduced.
 以上のように、最小効率機特定部50は、室内機20-1及び室内機20-2に応じた変化情報をもとに、エリア有効度が小さい方の室内機を特定する。そして、最小効率機特定部50により室内機20-2が特定されていれば、室内機20-1及び室内機20-2の運転中に、状態検出部80から取得した状態値が目標値に到達したとき、空調制御部60は、空調対象エリア内でのエネルギー効率が室内機20-1よりも低い室内機20-2の負荷を低下させる処理を実行する。このため、空気調和システム10によれば、システム全体としての消費電力を、より有効に低減させることができる。 As described above, the minimum efficiency unit specifying unit 50 specifies the indoor unit with the smaller area effectiveness based on the change information corresponding to the indoor unit 20-1 and the indoor unit 20-2. If the indoor unit 20-2 is specified by the minimum efficiency unit specifying unit 50, the state value acquired from the state detecting unit 80 during operation of the indoor unit 20-1 and the indoor unit 20-2 becomes the target value. When reaching, the air conditioning control unit 60 executes a process of reducing the load of the indoor unit 20-2 whose energy efficiency in the air conditioning target area is lower than that of the indoor unit 20-1. For this reason, according to the air conditioning system 10, the power consumption as the whole system can be reduced more effectively.
 続いて、図1、図2、及び図6~図8を参照して、空気調和システム10による消費電力低減処理の動作を、変化情報取得工程と、最低効率機特定工程と、負荷低下工程とに分けて、より詳細に説明する。 Subsequently, referring to FIG. 1, FIG. 2, and FIG. 6 to FIG. 8, the operation of the power consumption reduction processing by the air conditioning system 10 is changed into a change information acquisition step, a minimum efficiency machine identification step, a load reduction step. This will be described in more detail.
(変化情報取得工程)
 図6は、複数の室内機の切替運転に応じた室内環境の変化を測定する処理を示すフローチャートである。図6に基づいて、複数の室内機20-jの切替運転に応じた初期値Tj0及び経過値Tの取得処理を説明する。
(Change information acquisition process)
FIG. 6 is a flowchart illustrating processing for measuring a change in the indoor environment according to the switching operation of the plurality of indoor units. Based on FIG. 6, the process of acquiring the initial value T j0 and the elapsed value T j according to the switching operation of the plurality of indoor units 20-j will be described.
 変化情報取得部40は、全ての室内機20-j(j=1、2、・・・)を停止させた状態において、状態検出部80が検出した室内機20-1の周囲の床温度(状態値)を初期値T10として取得する。また、変化情報取得部40は、状態検出部80から取得した初期値T10を記憶部70に記憶させる(図6:ステップS101)。
 ここで、初期値T10における添え字の「1」は、室内機20-jにおける「j」に対応する。また、添え字の「0」は、初期値であることを意味する。
The change information acquisition unit 40, in a state where all the indoor units 20-j (j = 1, 2,...) Are stopped, the floor temperature around the indoor unit 20-1 detected by the state detection unit 80 ( It acquires the status value) as the initial value T 10. The change information acquiring unit 40 stores the initial value T 10 obtained from the state detection unit 80 in the storage unit 70 (FIG. 6: step S101).
Here, "1" of the subscripts in the initial value T 10 corresponds to the "j" of the indoor 20-j. The subscript “0” means an initial value.
 次に、初期値T10を取得した直後に、変化情報取得部40は、暖房運転の運転開始指令を空調制御部60に送信する。空調制御部60は、変化情報取得部40から送信された運転開始指令に応じて、室内機20-1に暖房運転を開始させ、室内機20-k(k=2、3、・・・)の停止状態を維持する(図6:ステップS102)。 Next, immediately after acquiring the initial value T 10 , the change information acquisition unit 40 transmits an operation start command for heating operation to the air conditioning control unit 60. The air conditioning control unit 60 causes the indoor unit 20-1 to start the heating operation in response to the operation start command transmitted from the change information acquisition unit 40, and the indoor unit 20-k (k = 2, 3,...). (FIG. 6: Step S102).
 変化情報取得部40は、一定時間が経過するまで待機し(図6:ステップS103/No)、一定時間が経過したときに(図6:ステップS103/Yes)、状態検出部80において測定された状態値を経過値Tとして取得する(図6:ステップS104)。そして、変化情報取得部40は、運転停止指令を空調制御部60に送信し、空調制御部60が、室内機20-1の暖房運転を停止させる(図6:ステップS105)。 The change information acquisition unit 40 waits until a predetermined time elapses (FIG. 6: Step S103 / No), and is measured by the state detection unit 80 when the predetermined time elapses (FIG. 6: Step S103 / Yes). It acquires the status value as an elapsed value T 1 (Fig. 6: step S104). Then, the change information acquisition unit 40 transmits an operation stop command to the air conditioning control unit 60, and the air conditioning control unit 60 stops the heating operation of the indoor unit 20-1 (FIG. 6: step S105).
 上記ステップS101~S105において、制御部30-1は、状態検出部80において測定された初期値T10及び経過値Tを取得し、これにより、室内機20-1が空調対象エリアに及ぼす空調効果を定量的に得ることができる。 In step S101 ~ S105, the control unit 30-1 acquires the initial value T 10 and the elapsed value T 1 measured in the state detecting unit 80, thereby, the indoor unit 20-1 on the air-conditioning target area conditioning The effect can be obtained quantitatively.
 続いて、変化情報取得部40は、経過値Tが、予め設定された基準値未満であるか否かを判定する(図6:ステップS106)。変化情報取得部40は、経過値Tが基準値以上である場合に(図6:ステップS106/No)、冷房又は暖房運転の運転停止指令を空調制御部60へ送信する。空調制御部60は、変化情報取得部40から送信された運転停止指令に応じて、室内機20-1に冷房又は送風運転を開始させる(図6:ステップS107)。変化情報取得部40は、状態検出部80において検出される状態値が初期値T10となるまで、室内機20-1による冷房又は送風運転を継続させる(図6:ステップS108/No)。 Then, the change information acquiring unit 40, the elapsed value T 1 is, determines whether less than a preset reference value (FIG. 6: step S106). Change information acquiring unit 40, when the elapsed value T 1 is not less than the reference value (Fig. 6: step S106 / No), and transmits the operation stop command of the cooling or heating operation to the air conditioning control unit 60. The air conditioning control unit 60 causes the indoor unit 20-1 to start the cooling or blowing operation in response to the operation stop command transmitted from the change information acquisition unit 40 (FIG. 6: step S107). Change information acquiring unit 40, to the state value is detected in the state detection unit 80 becomes the initial value T 10, to continue the cooling or air blowing operation by the indoor unit 20-1 (FIG. 6: step S108 / No).
 そして、状態検出部80において検出される状態値が初期値T10に到達したときに(図6:ステップS108/Yes)、変化情報取得部40は、運転停止指令を空調制御部60に送信し、空調制御部60が、室内機20-1の冷房又は暖房運転を停止させる。また、変化情報取得部40は、状態検出部80において測定された状態値を初期値T20として取得し、取得した初期値T20を記憶部70に記憶させる(図6:ステップS109)。 Then, when the state value is detected in the state detection unit 80 reaches the initial value T 10 (FIG. 6: step S108 / Yes), change information acquiring unit 40 transmits the operation stop command to the air conditioner control unit 60 The air conditioning controller 60 stops the cooling or heating operation of the indoor unit 20-1. The change information acquiring unit 40 acquires the measured state values in the state detecting unit 80 as the initial value T 20, and stores the acquired initial value T 20 in the storage unit 70 (FIG. 6: step S109).
 一方、変化情報取得部40は、経過値Tが基準値未満である場合(図6:ステップS106/Yes)、状態検出部80において測定された状態値を初期値T20として取得し、取得した初期値T20を記憶部70に記憶させる(図6:ステップS109)。 On the other hand, change information acquiring unit 40, when the elapsed value T 1 is less than the reference value (Fig. 6: step S106 / Yes), and obtains the measured state values in the state detecting unit 80 as the initial value T 20, acquires and stores the the initial value T 20 in the storage unit 70 (FIG. 6: step S109).
 初期値T20を取得した直後に、変化情報取得部40は、暖房運転の運転開始指令を空調制御部60へ送信する。空調制御部60は、変化情報取得部40から送信された運転開始指令に応じて、室内機20-2に暖房運転を開始させる(図6:ステップS110)。 Immediately after obtaining an initial value T 20, change information acquiring unit 40 transmits the operation start command for the heating operation to the air conditioning control unit 60. The air conditioning control unit 60 causes the indoor unit 20-2 to start the heating operation in response to the operation start command transmitted from the change information acquisition unit 40 (FIG. 6: step S110).
 変化情報取得部40は、一定時間が経過するまで待機し(図6:ステップS111/No)、一定時間が経過したときに(図6:ステップS111/Yes)、状態検出部80において測定された状態値を経過値Tとして取得する(図6:ステップS112)。そして、変化情報取得部40は、運転停止指令を空調制御部60に送信し、空調制御部60が、室内機20-2の暖房運転を停止させる(図6:ステップS113)。 The change information acquisition unit 40 waits until a predetermined time elapses (FIG. 6: step S111 / No), and is measured by the state detection unit 80 when the predetermined time elapses (FIG. 6: step S111 / Yes). It acquires the status value as an elapsed value T 2 (FIG. 6: step S112). Then, the change information acquisition unit 40 transmits an operation stop command to the air conditioning control unit 60, and the air conditioning control unit 60 stops the heating operation of the indoor unit 20-2 (FIG. 6: Step S113).
 続いて、制御部30-1は、室内機20-2の他にも、室内機20-1と空調対象エリアを共有する可能性のある室内機が設けられている場合に、当該室内機の台数分だけ上記ステップS106~S113における一連の処理を実行する。室内機20-1と空調対象エリアを共有する複数の室内機20-kが存在する状況としては、例えば、図1に示すように、同一の室内空間100に配設されている場面が想定される。 Subsequently, in addition to the indoor unit 20-2, the control unit 30-1 provides an indoor unit that may share an air-conditioning target area with the indoor unit 20-1, and A series of processes in steps S106 to S113 are executed for the number of units. As a situation in which there are a plurality of indoor units 20-k that share an air-conditioning target area with the indoor unit 20-1, for example, as shown in FIG. The
 すなわち、制御部30-1は、室内機20-1と空調対象エリアを共有する可能性のある複数の室内機20-k(k=2、3、・・・)に対し、上記ステップS106~S113の処理を順次実行することにより、各室内機20-kのそれぞれに応じた初期値Tk0及び経過値Tを取得して記憶部70に記憶させる。これにより、室内機20-kが空調対象エリアに及ぼす空調効果を定量的に得ることができる。 That is, the control unit 30-1 performs steps S106 to S106 for a plurality of indoor units 20-k (k = 2, 3,...) That may share an air-conditioning target area with the indoor unit 20-1. By sequentially executing the process of S113, the initial value T k0 and the elapsed value T k corresponding to each of the indoor units 20- k are acquired and stored in the storage unit 70. Thereby, the air conditioning effect exerted on the air conditioning target area by the indoor unit 20-k can be obtained quantitatively.
 ここで、空気調和システム10は、室内機20-1と空調対象エリアを共有する可能性のある全ての室内機20-kに対する初期値Tk0及び経過値Tを取得するように構成されている。本実施の形態では、同一の室内空間100に設けられた室内機20-kが、室内機20-1と空調対象エリアを同じくする可能性があるものとして、各々の変化情報を取得する処理を説明する。 Here, the air conditioning system 10 is configured to acquire the initial value T k0 and the elapsed value T k for all the indoor units 20-k that may share the air-conditioning target area with the indoor unit 20-1. Yes. In the present embodiment, assuming that the indoor unit 20-k provided in the same indoor space 100 may have the same air-conditioning target area as the indoor unit 20-1, the process of acquiring each change information is performed. explain.
 なお、変化情報取得工程において取得した不要なデータは、後述する最低効率機特定工程において取捨選択することができる。もっとも、同一の室内空間100に配設された室内機20-kであっても、室内機20-1とは空調対象エリアが異なる場合があるため、当該事情が明らかな場合は、当該室内機を除いた上で変化情報取得処理を行うようにしてもよい。 In addition, the unnecessary data acquired in the change information acquisition process can be selected in the minimum efficiency machine specifying process described later. However, even if the indoor unit 20-k is disposed in the same indoor space 100, the air-conditioning target area may be different from that of the indoor unit 20-1. Alternatively, the change information acquisition process may be performed.
 ところで、ステップS106~S108の処理は、初期値Tj0及び経過値Tの取得処理を継続する中で、状態検出部80において検出される状態値(床温度)が高くなり過ぎた場合に実施する工程(環境調整工程)である。環境調整工程は、直前に暖房運転を行った室内機20-jを用いて冷房又は送風運転を行うことにより、状態値(床温度)が初期値T10と同等の温度となるまで低下させる工程である。 By the way, the processing of steps S106 to S108 is performed when the state value (floor temperature) detected by the state detection unit 80 becomes too high while the acquisition processing of the initial value T j0 and the elapsed value T j is continued. This is a process (environment adjustment process). Environment adjusting step comprises the steps of reducing by performing cooling or air blowing operation using the indoor unit 20-j of performing heating operation immediately before, until the state value (bed temperature) is the initial value T 10 equivalent temperature It is.
 環境調整工程は、後述する最低効率機特定工程(図7参照)において、経過値Tから初期値Tj0を減算した値をもとに空調効果を評価することを念頭に採り入れた工程である。すなわち、初期値Tj0及び経過値Tは、室内機20-1と空調対象エリアを同じくする室内機20-mを選定するときに用いるエリア空調効率と、室内機20-1の空調対象エリア内での効率を比較するときに用いるエリア有効度とを算出する際に利用するデータである。このため、初期値Tj0及び経過値Tの精度は、最小効率機特定部50による室内機の特定精度に影響を及ぼす。 The environmental adjustment process is a process that takes into account that the air conditioning effect is evaluated based on a value obtained by subtracting the initial value T j0 from the elapsed value T j in the lowest efficiency machine specifying process (see FIG. 7) described later. . That is, the initial value T j0 and the elapsed value T j are the area air conditioning efficiency used when selecting the indoor unit 20-m having the same air conditioning target area as the indoor unit 20-1, and the air conditioning target area of the indoor unit 20-1. This is data used when calculating the area effectiveness used when comparing the efficiency within the network. For this reason, the accuracy of the initial value T j0 and the elapsed value T j affects the accuracy of specifying the indoor unit by the minimum efficiency unit specifying unit 50.
 より具体的に説明すると、室内機20-j(j=n:nは任意の自然数)に応じた経過値Tが高くなればなるほど、室内から室外への放熱量が大きくなり、すなわち、状態検出部80において検出される状態値の低下量が大きく不安定な状態となる。よって、状態検出部80から取得した経過値Tが一定値よりも高い状態で、室内機20-j(j=n+1)に応じた初期値Tj0及び経過値Tを取得して最低効率機特定処理に用いると、当該室内機20-j(j=n+1)の空調効果を、室内機20-1よりも小さく見積もってしまうことになる。このように、室内機20-1とは異なる環境で、他の室内機20-kに応じた変化情報を取得すると、求めたい空調効果にばらつきが生じ、最低効率機特定処理が十分に機能しないこととなる。 More specifically, the higher the elapsed value T j corresponding to the indoor unit 20-j (j = n: n is an arbitrary natural number), the greater the amount of heat released from the room to the outside, that is, the state The state value detected by the detection unit 80 is greatly reduced and becomes unstable. Therefore, in the state where the elapsed value T j acquired from the state detection unit 80 is higher than a certain value, the initial value T j0 and the elapsed value T j corresponding to the indoor unit 20-j (j = n + 1) are acquired and the lowest efficiency is obtained. When used for the unit specifying process, the air conditioning effect of the indoor unit 20-j (j = n + 1) is estimated to be smaller than that of the indoor unit 20-1. As described above, when the change information corresponding to the other indoor unit 20-k is acquired in an environment different from the indoor unit 20-1, the desired air conditioning effect varies, and the minimum efficiency unit specifying process does not function sufficiently. It will be.
 この点、本実施の形態では、各室内機20-kに応じた初期値Tk0を、室内機20-1と同程度の環境下で取得することができるため、最低効率機特定処理における室内機の特定精度を向上することができる。 In this regard, in the present embodiment, since the initial value T k0 corresponding to each indoor unit 20-k can be acquired in an environment similar to that of the indoor unit 20-1, The machine identification accuracy can be improved.
 なお、本実施の形態の環境調整工程では、状態検出部80から取得する状態値が、初期値T10又は初期値T10と同等の値となるまで冷房又は送風運転を行う処理を例示したが、これに限定されず、状態検出部80から取得する状態値を基準値まで低下させる処理を採用してもよい。また、基準値は、初期値T10及び外部環境等を考慮して適宜変更するようにしてもよい。 In the environment adjustment process of this embodiment, the state value obtained from the state detection unit 80, has been exemplified a process of performing cooling or air blowing operation until a value equivalent to the initial value T 10 or the initial value T 10 However, the present invention is not limited to this, and a process of reducing the state value acquired from the state detection unit 80 to the reference value may be employed. The reference value may be appropriately changed in consideration of the initial value T 10 and the external environment or the like.
(最低効率機特定工程)
 図7は、エリア有効度が最小である室内機を特定する処理を示すフローチャートである。図7に基づいて、室内機20-1が対象とする空調対象エリア内での効率が最も低い室内機を特定する処理を説明する。制御部30-1は、運転非優先フラグFunpriを用いて運転を優先しない室内機を識別する。もっとも、運転非優先フラグのフラグ名「Funpri」はあくまで例示であり、他のフラグ名を採用してもよい。また、本実施の形態では、室内機20-jの固有の情報を便宜上「j」として説明する。
(Minimum efficiency machine identification process)
FIG. 7 is a flowchart showing a process for identifying an indoor unit having the smallest area effectiveness. Based on FIG. 7, a process for specifying an indoor unit having the lowest efficiency in the air-conditioning target area targeted by the indoor unit 20-1 will be described. The control unit 30-1 identifies indoor units that do not prioritize driving using the driving non-priority flag Funpri. However, the flag name “Funpri” of the driving non-priority flag is merely an example, and other flag names may be adopted. In the present embodiment, the unique information of the indoor unit 20-j will be described as “j” for convenience.
 効率算出選定部50Aは、運転非優先フラグFunpriを定義し、初期化を行う(図7:ステップS201)。次いで、効率算出選定部50Aは、各室内機20-jからそれぞれの定格暖房能力Qjを取得する(図7:ステップS202)。 The efficiency calculation selection unit 50A defines the operation non-priority flag Funpri and performs initialization (FIG. 7: step S201). Next, the efficiency calculation / selection unit 50A acquires each rated heating capacity Qj from each indoor unit 20-j (FIG. 7: step S202).
 次に、効率算出選定部50Aは、室内機20-jごとのエリア空調効率を下記式1により算出する。すなわち、効率算出選定部50Aは、経過値Tから初期値Tj0を減算した値(初期値Tj0と経過値Tとの差分値)を定格暖房能力Qjで除することにより、各室内機20-jのそれぞれのエリア空調効率を算出する(図7:ステップS203)。 Next, the efficiency calculation selection unit 50A calculates the area air conditioning efficiency for each indoor unit 20-j by the following equation 1. That is, the efficiency calculation selecting unit 50A, by dividing the elapsed value a value obtained by subtracting the initial value T j0 from T j (difference value of the initial value T j0 and the elapsed value T j) at the rated heating capacity Qj, the indoor The area air conditioning efficiency of each machine 20-j is calculated (FIG. 7: Step S203).
  [数1]
   エリア空調効率=(T-Tj0)/Qj(j=1、2、・・・) … (1)
[Equation 1]
Area air conditioning efficiency = (T j −T j0 ) / Qj (j = 1, 2,...) (1)
 次いで、効率算出選定部50Aは、室内機20-1のエリア空調効率である「(T-T10)/Q」と、室内機20-k(k=2、3、・・・)のエリア空調効率である「(T-Tk0)/Q」とを比較し、室内機20-1よりもエリア空調効率が大きな室内機20-m(mは2以上の自然数のうちの一つ又は複数の値)を選定する。そして、効率算出選定部50Aは、室内機20-1及び選定した室内機20-mの固有の情報を、初期値Tj0及び経過値Tと関連づけて記憶部70に記憶させる。すなわち、効率算出選定部50Aは、「(T-T10)/Q<(T-Tk0)/Q」の関係を満たす全てのj(j=1及びm)を記憶部70に記憶させる(図7:ステップS204)。
 ステップS204により、制御部30-1は、室内機20-1と空調対象エリアを共有している全ての室内機20-mを抽出することができる。
Next, the efficiency calculation selection unit 50A sets “(T 1 -T 10 ) / Q 1 ” as the area air conditioning efficiency of the indoor unit 20-1, and the indoor unit 20-k (k = 2, 3,...). Compared with “(T k −T k0 ) / Q k ”, the area air conditioning efficiency of the indoor unit 20-m (m is a natural number of 2 or more Select one or more values. The efficiency calculation selecting unit 50A, the specific information of the indoor unit 20-1 and the selected indoor unit 20-m, in the storage unit 70 in association with the initial value T j0 and elapsed value T j. That is, the efficiency calculation / selection unit 50A stores all j (j = 1 and m) satisfying the relationship “(T 1 −T 10 ) / Q 1 <(T k −T k0 ) / Q k ”. (FIG. 7: Step S204).
By step S204, the control unit 30-1 can extract all the indoor units 20-m sharing the air conditioning target area with the indoor unit 20-1.
 次に、有効度算出特定部50Bは、室内機20-1のエリア有効度と、効率算出選定部50Aによって選定された室内機20-mのエリア有効度とを、下記式2により算出する。すなわち、エリア有効度とは、空調対象エリア内において、加えた電気入力に対して得られる温度変化(熱量)の大きさを表す指標である。ここで、APFは、各室内機20-jの通年エネルギー消費効率である(図7:ステップS205)。 Next, the effectiveness calculation specifying unit 50B calculates the area effectiveness of the indoor unit 20-1 and the area effectiveness of the indoor unit 20-m selected by the efficiency calculation selection unit 50A by the following equation 2. That is, the area effectiveness is an index representing the magnitude of temperature change (amount of heat) obtained with respect to the applied electric input in the air conditioning target area. Here, APF j is the year-round energy consumption efficiency of each indoor unit 20-j (FIG. 7: Step S205).
  [数2]
   エリア有効度=APFj×(T-Tj0)/Qj … (2)
[Equation 2]
Area validity = APFj × (T j −T j0 ) / Qj (2)
 次いで、有効度算出特定部50Bは、式2により算出した各エリア有効度の大小関係を比較し、エリア有効度が最小となる室内機20-jを特定する。そして、有効度算出特定部50Bは、特定した室内機20-jの固有の情報「j」を運転非優先フラグFunpriに代入する(図7:ステップS206)。 Next, the effectiveness calculation / specification unit 50B compares the size relationships of the area effectiveness calculated by Expression 2 and specifies the indoor unit 20-j having the smallest area effectiveness. Then, the effectiveness calculation specifying unit 50B substitutes the specific information “j” of the specified indoor unit 20-j for the driving non-priority flag Funpri (FIG. 7: Step S206).
 最低効率機特定工程における各処理の結果、室内機20-1及び室内機20-1と空調対象エリアを共有する室内機20-mにより構成されたグループにおいて、当該空調対象エリアでのエネルギー効率が最も低い室内機20-jが、運転非優先フラグFunpriによって指定される。 As a result of each process in the lowest efficiency unit specifying process, the energy efficiency in the air conditioning target area is reduced in the indoor unit 20-1 and the group composed of the indoor unit 20-m sharing the air conditioning target area with the indoor unit 20-1. The lowest indoor unit 20-j is designated by the driving non-priority flag Funpri.
(負荷低下工程)
 図8は、室内機の負荷を下げる処理を示すフローチャートである。図8に基づき、最小効率機特定部50において特定された室内機の負荷を下げる処理を説明する。
(Load reduction process)
FIG. 8 is a flowchart showing a process for reducing the load on the indoor unit. Based on FIG. 8, processing for reducing the load on the indoor unit specified by the minimum efficiency unit specifying unit 50 will be described.
 空調制御部60は、空調対象エリアを共有する室内機20-j(j=1及びm)の運転中に、状態検出部80において検出された状態値を取得し(図8:ステップS301)、取得した状態値が目標値に到達したか否かを判定する(図8:ステップS302)。 The air conditioning control unit 60 acquires the state value detected by the state detecting unit 80 during the operation of the indoor unit 20-j (j = 1 and m) sharing the air conditioning target area (FIG. 8: step S301). It is determined whether or not the acquired state value has reached the target value (FIG. 8: Step S302).
 空調制御部60は、常時又は所定の時間間隔で状態検出部80から状態値を取得し、取得した状態値と目標値との比較を、当該状態値が目標値に到達するまで実行する(図8:ステップS302/No)。そして、空調制御部60は、状態検出部80から取得した状態値が目標値に到達したときに(図8:ステップS302/Yes)、運転非優先フラグFunpriの値を参照して(図8:ステップS303)、運転非優先フラグFunpriの値に対応する室内機20-jの負荷を下げる(図8:ステップS304)。 The air conditioning control unit 60 acquires the state value from the state detection unit 80 constantly or at predetermined time intervals, and executes comparison between the acquired state value and the target value until the state value reaches the target value (FIG. 8: Step S302 / No). The air conditioning control unit 60 refers to the value of the operation non-priority flag Funpri when the state value acquired from the state detection unit 80 reaches the target value (FIG. 8: Yes in Step S302) (FIG. 8: In step S303), the load on the indoor unit 20-j corresponding to the value of the operation non-priority flag Funpri is reduced (FIG. 8: step S304).
 上記においては、図6及び図7の処理を一連の動作として説明したが、変化情報取得工程(図6参照)が過去一度でも実施され、その履歴が空気調和システム10内に存在すれば、最低効率機特定工程(図7参照)は、任意のタイミングで実施することができる。すなわち、室変化情報取得工程を実施した後、期間をおいて最低効率機特定工程を実施してもよいし、変化情報取得工程を複数回連続で実施してもよい。変化情報取得工程を複数回連続して実施した場合には、各回で取得した変化情報を用いて、最低効率機特定処理の結果を評価することができる。また、最低効率機特定工程を実施した後に、再度変化情報取得工程を実施するようにしてもよい。 In the above description, the processing of FIG. 6 and FIG. 7 has been described as a series of operations. However, if the change information acquisition step (see FIG. 6) has been performed once in the past and the history exists in the air conditioning system 10, The efficiency machine specifying step (see FIG. 7) can be performed at an arbitrary timing. That is, after the room change information acquisition step is performed, the least efficient machine specifying step may be performed after a period of time, or the change information acquisition step may be continuously performed a plurality of times. When the change information acquisition process is continuously performed a plurality of times, the result of the lowest efficiency machine specifying process can be evaluated using the change information acquired at each time. In addition, the change information acquisition process may be performed again after performing the lowest efficiency machine specifying process.
 以上のように、最小効率機特定部50は、状態検出部80から取得した複数の室内機20-jに応じた変化情報をもとに、室内機20-1が対象とする空調対象エリア内でのエネルギー効率が最も低い室内機を特定する。したがって、最小効率機特定部50により室内機20-1以外の室内機が特定されていれば、空調制御部60は、各室内機20-jの運転中に、状態検出部80から取得する状態値が目標値に到達したとき、当該室内機の負荷を室内機20-1の代わりに低下させることができる。すなわち、空気調和システム10によれば、システム全体としての消費電力を、より効率よく低減することができる。 As described above, based on the change information corresponding to the plurality of indoor units 20-j acquired from the state detection unit 80, the minimum efficiency unit specifying unit 50 is in the air conditioning target area targeted by the indoor unit 20-1. Identify the indoor unit with the lowest energy efficiency. Therefore, if an indoor unit other than the indoor unit 20-1 is specified by the minimum efficiency unit specifying unit 50, the air conditioning control unit 60 acquires the state acquired from the state detection unit 80 during the operation of each indoor unit 20-j. When the value reaches the target value, the load on the indoor unit can be reduced instead of the indoor unit 20-1. That is, according to the air conditioning system 10, the power consumption as the whole system can be reduced more efficiently.
 ところで、従来の空気調和システムでは、輻射センサによって検出した床温度が目標温度に到達した際に、該輻射センサを備えた室内機の負荷を下げるという処理を実行する。これに対し、本実施の形態における空気調和システム10は、運転非優先フラグFunpriを得ることにより、室内機20-1よりも空調対象エリア内でのエネルギー効率が低い室内機、すなわち、運転非優先フラグFunpriで指定された室内機が存在すれば、当該室内機の負荷を室内機20-1の代わりに下げることができる。このため、より効率よく消費電力を低減することができる。 By the way, in the conventional air conditioning system, when the floor temperature detected by the radiation sensor reaches the target temperature, a process of reducing the load of the indoor unit equipped with the radiation sensor is executed. On the other hand, the air conditioning system 10 according to the present embodiment obtains the operation non-priority flag Funpri, so that the indoor unit having lower energy efficiency in the air-conditioning target area than the indoor unit 20-1, that is, operation non-priority. If there is an indoor unit designated by the flag Funpri, the load on the indoor unit can be reduced instead of the indoor unit 20-1. For this reason, power consumption can be reduced more efficiently.
 また、空気調和システム10によれば、空気調和システムの基本的な構成を変更することなく、制御部30-1による処理内容を変更することにより、電力の低減を図ることができる。例えば、空気調和システムに搭載されたソフトウェアを変更することにより、既存の室内機によっても実現することができる。すなわち、空気調和システムの制御ソフトウェアに対し、状態検出部80を持つ室内機20-1と空調対象エリアを共有する他の室内機の存在を認知し、低エネルギー効率の室内機を認識するための判定フラグを取得する処理内容を組み込むことにより、消費電力の低減を図ることができる。 Further, according to the air conditioning system 10, it is possible to reduce electric power by changing the processing content by the control unit 30-1 without changing the basic configuration of the air conditioning system. For example, it can be realized by an existing indoor unit by changing software installed in the air conditioning system. In other words, the air conditioning system control software recognizes the presence of the indoor unit 20-1 having the state detection unit 80 and other indoor units that share the air-conditioning target area, and recognizes the low energy efficient indoor unit. By incorporating the processing content for obtaining the determination flag, power consumption can be reduced.
 さらに、空気調和システム10によれば、消費電力低減処理に関する演算処理(式計算)を、従来よりも簡略化することができる。すなわち、例えば、多数の室内機を設置することを想定して、各室内機の据付位置の設計を行うときに、従来の構成では、本実施の形態が対象とする過渡期での運転(目標値に到達するまでの運転)を予想することが難しく、手動での計算が困難である。一方、空気調和システム10は、簡単な計算を自動的に行うため、煩雑な計算を伴わずに迅速な処理を実現することができる。加えて、前述したソフトウェアの変更対応の際に、容量の増加を最小限に抑えることができる。また、空気調和システム10によれば、室内機20-1と同一の室内空間に室内機を追加で据付けたような場合にも、適宜、消費電力低減処理を実施することができる。 Furthermore, according to the air conditioning system 10, the arithmetic processing (formula calculation) related to the power consumption reduction processing can be simplified as compared with the conventional case. That is, for example, when designing the installation position of each indoor unit on the assumption that a large number of indoor units are installed, the conventional configuration operates in a transition period (target) in this embodiment. It is difficult to predict the operation until the value is reached, and manual calculation is difficult. On the other hand, since the air conditioning system 10 automatically performs a simple calculation, it is possible to realize a rapid process without complicated calculations. In addition, the increase in capacity can be minimized when the above-described software change is dealt with. Further, according to the air conditioning system 10, even when an indoor unit is additionally installed in the same indoor space as the indoor unit 20-1, power consumption reduction processing can be performed as appropriate.
 上述した実施の形態は、空気調和システム及び空気調和方法における好適な具体例であり、本発明の技術的範囲は、これらの態様に限定されるものではない。例えば、上記実施の形態では、暖房運転を行うことを想定して各処理内容を説明したが、これに限定されるものではない。すなわち、変化情報取得部40が、複数の室内機20-jのうちの一台を順次切り替えて一定時間の間冷房運転させ、全ての室内機20-jのそれぞれに応じた状態値の変化を示す変化情報(初期値及び経過値)を状態検出部80から取得するようにしてもよい。そして、変化情報取得部40が、状態検出部80から取得した経過値が予め設定された基準値よりも高い場合に、当該室内機を暖房運転させ、取得するデータの精度を高めるようにしてもよい。さらに、最小効率機特定部50が、変化情報取得部40において取得された各変化情報と、各室内機の冷房定格能力及びエネルギー効率とに基づいて、室内機20-1が対象とする空調対象エリア内での効率を示すエリア有効度が最小である室内機を特定するようにしてもよい。 The embodiments described above are preferred specific examples of the air conditioning system and the air conditioning method, and the technical scope of the present invention is not limited to these embodiments. For example, in the said embodiment, although each processing content was demonstrated supposing performing heating operation, it is not limited to this. That is, the change information acquisition unit 40 sequentially switches one of the plurality of indoor units 20-j to perform cooling operation for a predetermined time, and changes the state value corresponding to each of all the indoor units 20-j. You may make it acquire the change information (initial value and elapsed value) to show from the state detection part 80. FIG. Then, when the elapsed value acquired from the state detection unit 80 is higher than a preset reference value, the change information acquisition unit 40 causes the indoor unit to perform a heating operation to increase the accuracy of the acquired data. Good. Further, the minimum-efficiency unit specifying unit 50 performs the air-conditioning target targeted by the indoor unit 20-1 based on each change information acquired by the change information acquiring unit 40 and the cooling rated capacity and energy efficiency of each indoor unit. You may make it identify the indoor unit with the minimum area effectiveness which shows the efficiency in an area.
 また、図2では、記憶部70が、制御部30-1の内部に設けられた構成を例示しているが、記憶部70は、制御部30-1の外部に設けられていてもよい。加えて、上記実施の形態では、室内機20-1の制御部30-1が、変化情報取得部40、最小効率機特定部50、及び空調制御部60として機能する場合を例に説明したが、これに限定されず、変化情報取得部40、最小効率機特定部50、及び空調制御部60のうちの少なくとも1つとして、室外機90の制御部90Aが機能するようにしてもよい。 2 illustrates a configuration in which the storage unit 70 is provided inside the control unit 30-1, but the storage unit 70 may be provided outside the control unit 30-1. In addition, in the above embodiment, the case where the control unit 30-1 of the indoor unit 20-1 functions as the change information acquisition unit 40, the minimum efficiency unit specifying unit 50, and the air conditioning control unit 60 has been described as an example. The control unit 90 </ b> A of the outdoor unit 90 may function as at least one of the change information acquisition unit 40, the minimum efficiency unit specifying unit 50, and the air conditioning control unit 60.
 さらに、空気調和システム10上のリモコン(図示せず)が、変化情報取得部40、最小効率機特定部50、及び空調制御部60として機能するように設計してもよい。このようにすれば、例えば、空気調和システム10の施工者が消費電力低減処理を実施できると共に、使用者による処理内容の変更も可能となる。すなわち、空気調和システム10によれば、室内空間100のレイアウト変更、室内機の取付位置の変更、室内機のフィルタ変更による気流変化、及び輻射センサ搭載機種の追加等といった種々の変更等に対応して、消費電力を効率よく低減することができる。 Furthermore, a remote controller (not shown) on the air conditioning system 10 may be designed to function as the change information acquisition unit 40, the minimum efficiency machine specifying unit 50, and the air conditioning control unit 60. In this way, for example, the installer of the air conditioning system 10 can perform the power consumption reduction process, and the user can change the processing content. That is, according to the air conditioning system 10, various changes such as a layout change of the indoor space 100, a change in the installation position of the indoor unit, a change in air flow due to a change in the filter of the indoor unit, and addition of a model equipped with a radiation sensor are supported. Thus, power consumption can be reduced efficiently.
 また、本実施の形態では、状態検出部80として輻射センサを採用した例を説明したが、これに限定されず、状態検出部80は、例えば、吸込みセンサ又は湿度センサあるいは各種センサを組み合わせて構成したものであってもよい。すなわち、吸込みセンサ又は湿度センサ等の検出値をもとに上記各処理を行うようにしてもよい。加えて、最小効率機特定部50において特定された室内機の負荷を下げる処理として、当該室内機に供給する電力を低減させる処理ではなく、当該室内機に供給する電流を低下させる処理を採用して、消費電力の低減を図るようにしてもよい。 In the present embodiment, the example in which the radiation sensor is employed as the state detection unit 80 has been described. However, the present invention is not limited to this, and the state detection unit 80 is configured by combining, for example, a suction sensor, a humidity sensor, or various sensors. It may be what you did. That is, each of the above processes may be performed based on the detection value of a suction sensor or a humidity sensor. In addition, as a process of reducing the load of the indoor unit specified by the minimum efficiency unit specifying unit 50, a process of reducing the current supplied to the indoor unit is adopted instead of the process of reducing the power supplied to the indoor unit. Thus, power consumption may be reduced.
 さらに、本実施の形態では、各室内機20-jのエネルギー効率を示す指標としてAFJ(通年エネルギー消費効率)を採用したが、これに限定されず、COP(成績係数)又はSEER(季節エネルギー効率比)を採用してもよい。また、本実施の形態では、空気調和システム10が、JIS規格の定格条件に則して暖房運転を実行する場合を例示したが、暖房能力がわかる条件であれば、中間値の条件等に則して暖房運転を行うようにしてもよい。冷房運転及び送風運転等についても同様である。 Furthermore, in this embodiment, AFJ (year-round energy consumption efficiency) is adopted as an index indicating the energy efficiency of each indoor unit 20-j. However, the present invention is not limited to this, and COP (coefficient of performance) or SEER (seasonal energy efficiency) Ratio) may be employed. Moreover, in this Embodiment, although the case where the air conditioning system 10 performed a heating operation according to the rated conditions of JIS specification was illustrated, if it is a condition which can understand heating capability, it will comply with the conditions of an intermediate value, etc. Then, the heating operation may be performed. The same applies to the cooling operation and the air blowing operation.
 加えて、図1及び図3~図5は、状態検出部80を有する室内機20-1の配置を限定するものではない。すなわち、図3~図5のような状況にあっては、例えば、室内機20-1と室内機20-2との配置が入れ替わっていてもよい。図1のような状況にあっては、状態検出部80を有する室内機20-1が、室内空間100の中央部等において、他の室内機に挟まれるように配設されていてもよい。 In addition, FIG. 1 and FIGS. 3 to 5 do not limit the arrangement of the indoor unit 20-1 having the state detection unit 80. That is, in the situation shown in FIGS. 3 to 5, for example, the arrangement of the indoor unit 20-1 and the indoor unit 20-2 may be switched. In the situation as shown in FIG. 1, the indoor unit 20-1 having the state detection unit 80 may be disposed so as to be sandwiched between other indoor units in the central portion of the indoor space 100 or the like.
 また、本実施の形態では、室内機20-k(k=2、・・・)が、例えば輻射センサからなる状態検出部80を有しない場合を例示したが、室内機20-2は、状態検出部80又はこれに相当する構成部材を有していてもよい。さらに、本実施の形態では、一台の室外機90を有する空気調和システム10を例示しているが、これに限定されず、空気調和システム10は、2台以上の任意の台数の室外機90を有する構成としてもよい。 Further, in the present embodiment, the case where the indoor unit 20-k (k = 2,...) Does not have the state detection unit 80 made of, for example, a radiation sensor is illustrated, but the indoor unit 20-2 You may have the detection part 80 or the structural member equivalent to this. Furthermore, in this Embodiment, although the air conditioning system 10 which has the one outdoor unit 90 is illustrated, it is not limited to this, The air conditioning system 10 has two or more arbitrary number of outdoor units 90. It is good also as a structure which has.
 10 空気調和システム、20-j 室内機、30-j 制御部、40 変化情報取得部、50 最小効率機特定部、50A 効率算出選定部、50B 有効度算出特定部、60 空調制御部、70 記憶部、80 状態検出部、90 室外機、90A 室外機制御部。 10 air conditioning system, 20-j indoor unit, 30-j control unit, 40 change information acquisition unit, 50 minimum efficiency unit identification unit, 50A efficiency calculation selection unit, 50B effectiveness calculation identification unit, 60 air conditioning control unit, 70 storage Unit, 80 state detection unit, 90 outdoor unit, 90A outdoor unit control unit.

Claims (9)

  1.  空調の対象となる空調対象エリアを共有する複数の室内機と、
     複数の前記室内機と連携して前記空調対象エリアの空調を行う室外機と、
     前記空調対象エリアの空気状態を示す状態値を検出する状態検出部と、
     前記状態検出部において検出される前記状態値をもとに、複数の前記室内機の動作を制御する制御部と、
    を有し、
     前記制御部は、
     複数の前記室内機のうちの一台を順次切り替えて設定された一定時間の間運転させ、全ての前記室内機のそれぞれに応じた前記状態値の変化を示す変化情報を前記状態検出部から取得する変化情報取得部と、
     前記変化情報取得部において取得された前記各変化情報と、前記各室内機の定格能力及びエネルギー効率とに基づいて、前記空調対象エリア内での効率を示すエリア有効度が最小である前記室内機を特定する最小効率機特定部と、
     前記各室内機の運転中に、前記状態検出部において検出された前記状態値が、予め設定された目標値に到達したとき、前記最小効率機特定部において特定された前記室内機の負荷を下げる空調制御部と、を有する空気調和システム。
    A plurality of indoor units that share an air-conditioning target area,
    An outdoor unit that air-conditions the air-conditioning target area in cooperation with a plurality of the indoor units;
    A state detection unit for detecting a state value indicating an air state of the air-conditioning target area;
    A control unit that controls operations of the plurality of indoor units based on the state value detected by the state detection unit;
    Have
    The controller is
    One of the plurality of indoor units is sequentially switched and operated for a set time, and change information indicating a change in the state value according to each of all the indoor units is acquired from the state detection unit. A change information acquisition unit,
    The indoor unit having the minimum area effectiveness indicating the efficiency in the air-conditioning target area based on the change information acquired in the change information acquisition unit and the rated capacity and energy efficiency of the indoor units. A minimum-efficiency machine identification unit that identifies
    During the operation of each indoor unit, when the state value detected by the state detection unit reaches a preset target value, the load of the indoor unit specified by the minimum efficiency unit specifying unit is reduced. An air conditioning system.
  2.  前記変化情報取得部は、
     前記状態検出部から、前記変化情報として、
     複数の前記室内機のうちの任意の一台を運転させる前の前記状態値である初期値と、当該室内機を運転させてから前記一定時間が経過したときの前記状態値である経過値と、を取得する請求項1に記載の空気調和システム。
    The change information acquisition unit
    As the change information from the state detection unit,
    An initial value that is the state value before operating any one of the plurality of indoor units, and an elapsed value that is the state value when the certain time has elapsed since the indoor unit was operated The air conditioning system according to claim 1, wherein
  3.  前記最小効率機特定部は、
     複数の前記室内機のそれぞれについて、前記初期値と前記経過値との差分を前記定格能力で除した値に前記エネルギー効率を乗じた値を前記エリア有効度として算出し、算出した前記エリア有効度が最小となる前記室内機を特定する有効度算出特定部を有する請求項2に記載の空気調和システム。
    The minimum efficiency machine specifying unit is:
    For each of the plurality of indoor units, a value obtained by multiplying the difference between the initial value and the elapsed value by the rated capacity and the energy efficiency is calculated as the area effectiveness, and the area effectiveness is calculated. The air conditioning system according to claim 2, further comprising: an effectiveness calculation specifying unit that specifies the indoor unit having the smallest value.
  4.  前記状態検出部は、複数の前記室内機のうちの一台に設けられ、
     前記最小効率機特定部は、
     前記初期値と前記経過値との差分を前記定格能力で除した値であるエリア空調効率が、前記状態検出部を有する前記室内機のエリア空調効率よりも大きい前記室内機を選定する効率算出選定部を有し、
     前記有効度算出特定部は、
     前記状態検出部が設けられた前記室内機及び前記効率算出選定部において選定された前記室内機のそれぞれの前記エリア有効度を算出し、算出した前記エリア有効度が最小となる前記室内機を特定する請求項3に記載の空気調和システム。
    The state detection unit is provided in one of the plurality of indoor units,
    The minimum efficiency machine specifying unit is:
    Efficiency calculation selection for selecting the indoor unit in which the area air conditioning efficiency, which is a value obtained by dividing the difference between the initial value and the elapsed value by the rated capacity, is larger than the area air conditioning efficiency of the indoor unit having the state detection unit Part
    The effectiveness calculation specifying unit includes:
    The area effectiveness of each of the indoor unit provided with the state detection unit and the indoor unit selected by the efficiency calculation selection unit is calculated, and the indoor unit that minimizes the calculated area effectiveness is specified. The air conditioning system according to claim 3.
  5.  前記変化情報取得部は、
     前記室内機の前記一定時間の運転が暖房運転であるとき、
     前記状態検出部から取得した前記経過値が予め設定された基準値よりも高い場合に、前記室内機を冷房又は送風運転させる請求項2~4の何れか一項に記載の空気調和システム。
    The change information acquisition unit
    When the operation of the indoor unit for a certain period of time is a heating operation,
    The air conditioning system according to any one of claims 2 to 4, wherein the indoor unit is cooled or blown when the elapsed value acquired from the state detection unit is higher than a preset reference value.
  6.  前記変化情報取得部は、
     前記室内機の前記一定時間の運転が冷房運転であるとき、
     前記状態検出部から取得した前記経過値が予め設定された基準値よりも低い場合に、前記室内機を暖房運転させる請求項2~4の何れか一項に記載の空気調和システム。
    The change information acquisition unit
    When the operation of the indoor unit for a certain time is a cooling operation,
    The air conditioning system according to any one of claims 2 to 4, wherein the indoor unit is operated for heating when the elapsed value acquired from the state detection unit is lower than a preset reference value.
  7.  前記状態検出部は、複数の前記室内機のうちの一台に設けられ、
     前記状態検出部を有する前記室内機の前記エネルギー効率は、他の前記室内機の前記エネルギー効率よりも高い請求項1~6の何れか一項の何れか一項に記載の空気調和システム。
    The state detection unit is provided in one of the plurality of indoor units,
    The air conditioning system according to any one of claims 1 to 6, wherein the energy efficiency of the indoor unit having the state detection unit is higher than the energy efficiency of the other indoor units.
  8.  前記状態検出部は、前記空調対象エリアの床温度を前記状態値として検出する輻射センサである請求項1~7の何れか一項に記載の空気調和システム。 The air conditioning system according to any one of claims 1 to 7, wherein the state detection unit is a radiation sensor that detects a floor temperature of the air conditioning target area as the state value.
  9.  空調の対象となる空調対象エリアを共有する複数の室内機、複数の前記室内機と連携して前記空調対象エリアの空調を行う室外機、前記空調対象エリアの空気状態を示す状態値を検出する状態検出部、及び前記状態検出部において検出される前記状態値をもとに複数の前記室内機の動作を制御する制御部を備えた空気調和システムによる空気調和方法であって、
     前記制御部が、
     複数の前記室内機のうちの一台を順次切り替えて設定された一定時間の間運転させ、全ての前記室内機のそれぞれに応じた前記状態値の変化を示す変化情報を前記状態検出部から取得する変化情報取得工程と、
     前記変化情報取得工程において取得された前記各変化情報と、各室内機の定格能力及びエネルギー効率とに基づいて、前記空調対象エリア内での効率が最も低い前記室内機を特定する最低効率機特定工程と、
     前記各室内機の運転中に、前記状態検出部において検出された前記状態値が、予め設定された目標値に到達したとき、前記最低効率機特定工程において特定された前記室内機の負荷を下げる負荷低下工程と、を有する空気調和方法。
    A plurality of indoor units that share an air-conditioning target area to be air-conditioned, an outdoor unit that air-conditions the air-conditioning target area in cooperation with the plurality of indoor units, and a state value that indicates an air state of the air-conditioning target area An air conditioning method using an air conditioning system including a state detection unit and a control unit that controls operations of the plurality of indoor units based on the state values detected by the state detection unit,
    The control unit is
    One of the plurality of indoor units is sequentially switched and operated for a set time, and change information indicating a change in the state value according to each of all the indoor units is acquired from the state detection unit. Change information acquisition process to
    Based on each change information acquired in the change information acquisition step and the rated capacity and energy efficiency of each indoor unit, the lowest efficiency unit specification that specifies the indoor unit having the lowest efficiency in the air conditioning target area Process,
    During the operation of each indoor unit, when the state value detected by the state detection unit reaches a preset target value, the load on the indoor unit specified in the lowest efficiency unit specifying step is reduced. An air conditioning method comprising: a load reducing step.
PCT/JP2015/066928 2015-06-11 2015-06-11 Air conditioning system and air conditioning method WO2016199280A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/066928 WO2016199280A1 (en) 2015-06-11 2015-06-11 Air conditioning system and air conditioning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/066928 WO2016199280A1 (en) 2015-06-11 2015-06-11 Air conditioning system and air conditioning method

Publications (1)

Publication Number Publication Date
WO2016199280A1 true WO2016199280A1 (en) 2016-12-15

Family

ID=57504881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066928 WO2016199280A1 (en) 2015-06-11 2015-06-11 Air conditioning system and air conditioning method

Country Status (1)

Country Link
WO (1) WO2016199280A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593539A (en) * 1991-10-01 1993-04-16 Matsushita Electric Ind Co Ltd Controller for air conditioning system
JP2006064283A (en) * 2004-08-26 2006-03-09 Ntt Power & Building Facilities Inc Air conditioner monitoring system and method
JP2008057818A (en) * 2006-08-30 2008-03-13 Ntt Facilities Inc Operation control method of air conditioning system
US20090199580A1 (en) * 2008-02-08 2009-08-13 Coolit Systems Inc. Air conditioning system control
JP2011241990A (en) * 2010-05-14 2011-12-01 Mitsubishi Electric Building Techno Service Co Ltd Air conditioner controller

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593539A (en) * 1991-10-01 1993-04-16 Matsushita Electric Ind Co Ltd Controller for air conditioning system
JP2006064283A (en) * 2004-08-26 2006-03-09 Ntt Power & Building Facilities Inc Air conditioner monitoring system and method
JP2008057818A (en) * 2006-08-30 2008-03-13 Ntt Facilities Inc Operation control method of air conditioning system
US20090199580A1 (en) * 2008-02-08 2009-08-13 Coolit Systems Inc. Air conditioning system control
JP2011241990A (en) * 2010-05-14 2011-12-01 Mitsubishi Electric Building Techno Service Co Ltd Air conditioner controller

Similar Documents

Publication Publication Date Title
JP6125104B2 (en) Air conditioning control device, air conditioning control method, and program
JP5058325B2 (en) Air conditioning system controller and air conditioning system
US8249751B2 (en) Power saving air-conditioning system
US10962243B2 (en) Air conditioning system with dehumidification mode
JP6808033B2 (en) Air conditioning system
US10088211B2 (en) Air-conditioning apparatus
CN112567183B (en) Air conditioner, control device, air conditioning method, and storage medium
JP6270996B2 (en) Air conditioner
JP5642121B2 (en) Air conditioner
JP5528390B2 (en) Air conditioning apparatus, air conditioning method and program
US10496057B2 (en) HVAC system, a method for operating the HVAC system and a HVAC controller configured for the same
JP6161452B2 (en) Air conditioner system
JP6221058B2 (en) Air conditioning system
JP5619056B2 (en) Air conditioner
JP2013130384A (en) Air conditioner
WO2020035908A1 (en) Air-conditioning device, control device, air-conditioning method, and program
KR101151321B1 (en) Multi system air conditioner and control method thereof
JP5730689B2 (en) Air conditioning operation control system
JP6188939B2 (en) Air conditioning system
WO2019159241A1 (en) Air-conditioning system, air-conditioning control device, air-conditioning control method and program
US20150362231A1 (en) Gas heat pump air conditioning system
WO2016199280A1 (en) Air conditioning system and air conditioning method
JP2007093152A (en) Air-conditioner system
WO2020035907A1 (en) Air-conditioning device, control device, air-conditioning method, and program
EP3208550B1 (en) Air conditioning apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15894965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15894965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP