WO2016198602A1 - Système de rétroaction haptique à des fins de rééducation - Google Patents

Système de rétroaction haptique à des fins de rééducation Download PDF

Info

Publication number
WO2016198602A1
WO2016198602A1 PCT/EP2016/063300 EP2016063300W WO2016198602A1 WO 2016198602 A1 WO2016198602 A1 WO 2016198602A1 EP 2016063300 W EP2016063300 W EP 2016063300W WO 2016198602 A1 WO2016198602 A1 WO 2016198602A1
Authority
WO
WIPO (PCT)
Prior art keywords
haptic feedback
feedback system
mrf
ferrofluid
glove
Prior art date
Application number
PCT/EP2016/063300
Other languages
English (en)
Inventor
Ernst Jan BOS
Reinier Ansgar HILL
Original Assignee
Hapticore Holding B.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hapticore Holding B.V. filed Critical Hapticore Holding B.V.
Publication of WO2016198602A1 publication Critical patent/WO2016198602A1/fr

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1124Determining motor skills
    • A61B5/1125Grasping motions of hands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/22Ergometry; Measuring muscular strength or the force of a muscular blow
    • A61B5/224Measuring muscular strength
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/6804Garments; Clothes
    • A61B5/6806Gloves
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/014Hand-worn input/output arrangements, e.g. data gloves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/10Cooling bags, e.g. ice-bags

Definitions

  • the present invention relates to a haptic feedback system intended for rehabilitation, such as hand rehabilitation, or other application such as e.g. simulation and/or training or robotic control, for instance in surgery, or in medical or therapeutic diagnostics.
  • controllable fluid device for rehabilitation of an injured or weakened complex appendages such as the hands and feet.
  • the controllable fluid device includes a reservoir which contains a sufficient amount of controllable fluid such as a Magneto- rheological fluid.
  • Electromagnetic Modeling and Design of Haptic Interface Prototypes Based on Magnetorheological Fluids there is described the design and implementation of innovative haptic interfaces based on Magnetorheological fluids (MRFs).
  • MRFs Magnetorheological fluids
  • One aim of the present invention is to provide an improved haptic feedback system intended for rehabilitation, such as hand or foot
  • a haptic feedback system comprising a container enclosing a Magneto-Rheological Fluid (MRF), or a ferrofluid, and a solenoid, or enclosing only vacuum, wherein in the case of a MRF or ferrofluid this responds to a magnetic field created by the solenoid, said haptic feedback system also comprising a glove or sock with one or more sensors, a feedback system involving a software algorithm, and a computer unit with a display screen.
  • MRF Magneto-Rheological Fluid
  • Electromagnetic Modeling and Design of Haptic Interface Prototypes Based on Magnetorheological Fluids the idea is to create an object inside of the MRF liquid by applying a directed magnetic field.
  • the system and method is directed to solidifying the MRF or ferrofluid liquid and use the visual interface to create the illusion of an object.
  • This approach is very simple and viable in comparison to the methods disclosed in the documents above. Since the visual stimulus is leading, a very convincing haptic feedback can be created.
  • the viscosity of the liquid is a known factor at various current settings, so the force applied by the fingers can be calculated in a very precise manner. This is of great importance for one primary application of the present invention, namely hand rehabilitation and diagnostics.
  • the container encloses a
  • Magneto-Rheological Fluid or a ferrofluid and a solenoid.
  • a MRF is different from a ferrofluid as the latter has smaller particles.
  • MR fluid particles are primarily on the micrometre-scale and are too dense for Brownian motion to keep them suspended (in the lower density carrier fluid).
  • Ferrofluid particles are primarily nanoparticles that are suspended by
  • magnetorheological fluids which e.g. are mixture of particles and nanowires, are totally possible to use according to the present invention.
  • the present invention also embodies only using vacuum in the container. This is also possible according to the present invention to provide a glove or sock of which the size is possible to alter only by use of a negative pressure or the vacuum.
  • the present invention is directed to using the speed of the sensor feedback system to create virtual objects based on coordinates, not on their actual shape. As such, the present invention is not directed to building actual shapes but instead solidifying the complete liquid when e.g. the hand reaches the specific coordinates of a virtual object. This is a very clear difference when comparing the present invention with the articles disclosed above. Brief description of the drawing
  • the system according to the present invention comprises a container enclosing a Magneto-Rheological Fluid (MRF), or ferrofluid, and a solenoid with a coil.
  • MRF Magneto-Rheological Fluid
  • the glove has several position sensors. In this case a virtual sphere is also shown.
  • some other specific units according to this embodiment are also shown in fig. 1. Specific embodiments of the invention
  • the container comprises a membrane which by means of force affects the resulting vacuum.
  • a membrane which by means of force affects the resulting vacuum.
  • the container is of course open in the end intended for the user to enter with his or her hand in the glove.
  • the glove is an integrated part of the container and as such forms a closed system.
  • the vacuum is applied to this closed system by expanding a membrane enlarging the glove. The user enters the glove and the vacuum can be reduced for optimal fit. This approach can also be used to measure the volume of the hand.
  • the system according to the present invention comprises a glove when intended for hand rehabilitation.
  • this specific unit may be of another type adjusted to fit the body part of the user intended to be inserted.
  • a sock may be used instead of a glove.
  • the position of the glove (or sock) and as such the hand (or foot) of the user is the input to the system of the present invention. This is in general an important aspect of the methodology according to the present invention.
  • vacuum is used and the glove entry is on one side of the system.
  • the system comprises a cylinder possible to access on both sides, which enables to train the left hand and the right hand separately in one and the same unit. By compressing one glove, the other may be deflated and vice versa.
  • the size of the glove or sock is possible to alter.
  • the container encloses vacuum, and wherein the vacuum enables to change the size of the glove or sock.
  • a system according to the present invention which only comprises a container enclosing vacuum, i.e. no MRF or ferrofluid, and also comprising the feedback data system may function as a very simple alternative for some specific applications. In this case, the system may in fact also be without sensors, in its most simple embodiment.
  • Such alternatives according to the present invention, which are totally vacuum-directed may be of special interest for patients having joint movement restrictions, paralysis or swollen hands.
  • the one or more sensors are multiple gyroscopes, flexsensors, pressure sensors, force sensors, stretch sensors, hall sensors, or accelerometers.
  • any type of sensor capable of position/movement/pressure sensing is possible to use according to the present invention.
  • multiple gyroscopes per finger installed on the glove relay attitude gives information back to the controller.
  • An integrated predictive hand movement algorithm translates angles to a very accurate model of the hand, which is then displayed on the display screen of the system.
  • Another example according to the present invention is to use pressure sensor(s) in diagnostics / therapeutics to determine the maximum hand strength.
  • the device according to the present invention either uses a separate sensor glove or sensors integrated in the glove that is part of the device.
  • the haptic feedback system has means for introducing a virtual object to the computer system, which virtual object then is displayed on the screen.
  • the virtual object on the screen corresponds to coordinates in the container.
  • the tactile feedback is based on the input of sensor data from a device controlled with the system according to the invention.
  • the properties of the MRF or ferrofluid may vary according to the present invention.
  • the viscosity of the MRF is proportionate to the electrical current put through the solenoid.
  • the haptic feedback system may be mobile, e.g. by the container being arranged on a frame with wheels. For hand rehabilitation purposes this may facilitate for the user.
  • the present invention is also related to a method involving the haptic feedback system. According to one embodiment there is disclosed a method for performing a haptic feedback operation in a haptic feedback system according to the present invention, said method comprising
  • a method for performing a haptic feedback operation in a haptic feedback system comprising introducing an object to the computer system based on sensor input of a controlled device, which input is then translated to coordinates in the container that corresponds to the real life, and which operation allows for an electrical current to be applied to the solenoid which in turn solidifies the MRF or ferrofluid.
  • the electrical current is cut when the grip on the coordinates is let go by a user operating the glove or sock, which renders the MRF or ferrofluid to become liquid again immediately so that a hand, foot or other insertable body part of the user inserted in the MRF or ferrofluid can move freely again.
  • the present invention is also related to use of a system according to the invention.
  • one possible use is for hand rehabilitation or for foot/ankle rehabilitation.
  • Other possible uses according to the present invention are e.g. diagnostics, robotics control, microsurgery, (surgery-) simulation (virtual surgery), gaming, bomb dismantling, in the sex industry or for art works etc.
  • the present invention also finds use in simultaneous stimulation with for example electrical muscle stimulation (EMS/NMES) and in diagnostics including electromyogram (EMG).
  • EMS/NMES electrical muscle stimulation
  • EMG electromyogram
  • the device according to the present invention may be equipped with other specific features of interest for some applications.
  • the system is arranged with active cooling which allows the temperature of the liquid to be controlled, which provides an optimal environment to practice for e.g. rheumatoid arthritis patients.
  • a vibration sensation can be created in the liquid at various frequencies to provide feedback. This may also be used for
  • therapeutic applications such as sensory threshold detection of nerve conditions and desensibilisation of hypersensitive patients.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Physiology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rehabilitation Tools (AREA)
  • Prostheses (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

La présente invention concerne un système de rétroaction haptique qui comprend un récipient renfermant un fluide magnétorhéologique (MRF) ou un ferrofluide et un solénoïde ou ne contenant que du vide. Dans le cas d'un MRF ou d'un ferrofluide, ledit système répond à un champ magnétique créé par le solénoïde, ledit système de rétroaction haptique comprenant également un gant ou une chaussette comportant un ou plusieurs capteurs, un système de rétroaction mettant en œuvre un algorithme logiciel et une unité informatique dotée d'un écran d'affichage.
PCT/EP2016/063300 2015-06-12 2016-06-10 Système de rétroaction haptique à des fins de rééducation WO2016198602A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE1550803-9 2015-06-12
SE1550803 2015-06-12

Publications (1)

Publication Number Publication Date
WO2016198602A1 true WO2016198602A1 (fr) 2016-12-15

Family

ID=56148371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/063300 WO2016198602A1 (fr) 2015-06-12 2016-06-10 Système de rétroaction haptique à des fins de rééducation

Country Status (1)

Country Link
WO (1) WO2016198602A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109542236A (zh) * 2018-12-05 2019-03-29 合肥工业大学 具有手指位置同步测量和指尖力反馈功能的外骨骼手套
CN110192841A (zh) * 2019-05-27 2019-09-03 山东大学 基于多方向瞬时突变扰动力矩效应的抓握测试装置及方法
CN110869886A (zh) * 2017-06-30 2020-03-06 微软技术许可有限责任公司 触觉反馈系统
CN111149143A (zh) * 2017-09-28 2020-05-12 株式会社耐奥飞特 钉板训练方法及其程序
US10692637B2 (en) 2017-03-27 2020-06-23 Ecole Plytechnique Federale De Lausanne (Epfl) Electromagnetic actuator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997033648A1 (fr) * 1996-03-11 1997-09-18 Lord Corporation Dispositifs de reeducation a fluide modifiable comprenant un reservoir de fluide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997033648A1 (fr) * 1996-03-11 1997-09-18 Lord Corporation Dispositifs de reeducation a fluide modifiable comprenant un reservoir de fluide

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BLAKE J ET AL: "Haptic Glove With MR Brakes for Virtual Reality", IEEE / ASME TRANSACTIONS ON MECHATRONICS, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 14, no. 5, 1 October 2009 (2009-10-01), pages 606 - 615, XP011345296, ISSN: 1083-4435, DOI: 10.1109/TMECH.2008.2010934 *
DAVID J CASSAR ET AL: "A force feedback glove based on Magnetorheological Fluid: Preliminary design issues", MELECON 2010 - 2010 15TH IEEE MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, IEEE, PISCATAWAY, NJ, USA, 26 April 2010 (2010-04-26), pages 618 - 623, XP031683335, ISBN: 978-1-4244-5793-9 *
SCOTT H WINTER ET AL: "Use of Magnetorheological Fluid in a Force Feedback Glove", IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATIONENGINEERING, IEEE SERVICE CENTER, NEW YORK, NY, US, vol. 15, no. 1, 1 March 2007 (2007-03-01), pages 2 - 8, XP011174741, ISSN: 1534-4320, DOI: 10.1109/TNSRE.2007.891401 *
Y.J. NAM, M.K. PARK, R. YAMANE: "Smart glove: hand master using magneto-rheological fluid actuators", SPIE, PO BOX 10 BELLINGHAM WA 98227-0010 USA, 1 March 2007 (2007-03-01), XP040430759 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10692637B2 (en) 2017-03-27 2020-06-23 Ecole Plytechnique Federale De Lausanne (Epfl) Electromagnetic actuator
CN110869886A (zh) * 2017-06-30 2020-03-06 微软技术许可有限责任公司 触觉反馈系统
CN111149143A (zh) * 2017-09-28 2020-05-12 株式会社耐奥飞特 钉板训练方法及其程序
CN109542236A (zh) * 2018-12-05 2019-03-29 合肥工业大学 具有手指位置同步测量和指尖力反馈功能的外骨骼手套
CN109542236B (zh) * 2018-12-05 2021-10-26 合肥工业大学 具有手指位置同步测量和指尖力反馈功能的外骨骼手套
CN110192841A (zh) * 2019-05-27 2019-09-03 山东大学 基于多方向瞬时突变扰动力矩效应的抓握测试装置及方法

Similar Documents

Publication Publication Date Title
WO2016198602A1 (fr) Système de rétroaction haptique à des fins de rééducation
Schorr et al. Fingertip tactile devices for virtual object manipulation and exploration
Oh et al. State of the art of medical devices featuring smart electro-rheological and magneto-rheological fluids
Pamungkas et al. Electro-tactile feedback system to enhance virtual reality experience
Leonardis et al. A wearable fingertip haptic device with 3 DoF asymmetric 3-RSR kinematics
Fisch et al. Haptic devices for virtual reality, telepresence, and human-assistive robotics
EP3343319A1 (fr) Appareil destiné à générer fournir une sensation tactile
Ooka et al. Virtual object manipulation system with substitutive display of tangential force and slip by control of vibrotactile phantom sensation
Munih et al. Rehabilitation robotics
Hamza-Lup et al. Haptic systems in user interfaces: state of the art survey
Hasegawa et al. Bilateral control of elbow and shoulder joints using functional electrical stimulation between humans and robots
CN105824248B (zh) 一种变阻抗和基于事件的触觉反馈控制方法
US8624714B2 (en) Virtual simulator having an eddy current brake for providing haptic feedback
Ma et al. Sensing and force-feedback exoskeleton robotic (SAFER) glove mechanism for hand rehabilitation
Jones Perspectives on the evolution of tactile, haptic, and thermal displays
D’Antonio et al. A dual arm haptic exoskeleton for dynamical coupled manipulation
Chen et al. Development of an augmented reality force feedback virtual surgery training platform
Oh et al. Design of tactile device for medical application using magnetorheological fluid
Krishnan et al. Retracted Chapter: Development of Magnetic Control System for Electric Wheel Chair Using Tongue
Deng et al. Design and development of a pulsed electromagnetic micro-actuator for 3D virtual tactile displays
Schmidtler et al. Influence of size-weight illusion on usability in haptic human-robot collaboration
Song et al. MR fluid interface of endovascular catheterization based on haptic sensation
Umesawa et al. Development and evaluation of a device for inducing kinesthetic illusion of dual joint movements
Vaibhav et al. Applications of haptics technology in advance robotics
Wei et al. Development of an upper limb rehabilitation robot system for bilateral training

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16730774

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 22.03.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16730774

Country of ref document: EP

Kind code of ref document: A1