WO2016197998A1 - 一种通信方法、终端及通信系统 - Google Patents

一种通信方法、终端及通信系统 Download PDF

Info

Publication number
WO2016197998A1
WO2016197998A1 PCT/CN2016/085879 CN2016085879W WO2016197998A1 WO 2016197998 A1 WO2016197998 A1 WO 2016197998A1 CN 2016085879 W CN2016085879 W CN 2016085879W WO 2016197998 A1 WO2016197998 A1 WO 2016197998A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
signal
component
antenna component
polarized
Prior art date
Application number
PCT/CN2016/085879
Other languages
English (en)
French (fr)
Inventor
陈曦
秦钧
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US15/772,110 priority Critical patent/US10530458B2/en
Publication of WO2016197998A1 publication Critical patent/WO2016197998A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission

Definitions

  • This document relates to, but is not limited to, the field of communications, and in particular, to a communication method, terminal, and communication system.
  • Multipath propagation will make the signals received at the receiving end different in amplitude, phase, frequency and arrival time, which means that the multipath signals obtained by multipath propagation have different fading characteristics.
  • MIMO Multiple-Input Multiple-Output
  • the method is to reduce the correlation between the receiving antennas and ensure that the fading characteristics of the multipath signals received by different antennas are different, thereby implementing space division multiplexing to improve downlink throughput. In an ideal case, the distance between the receiving antennas As long as it is greater than half of the wavelength.
  • the above method of space division multiplexing is no longer applicable in some special communication environments, such as direct-view communication environments.
  • the conventional method is used for space division. It will have little effect.
  • a typical direct-view communication environment is not uncommon.
  • the most typical one should be Air to Ground (ATG).
  • ATG Air to Ground
  • the flying height of the aircraft is about 10,000 meters, it can be around 400 thousand.
  • the range of meters remains visual, so the direct view diameter between the base station and the airborne platform is dominant.
  • the water surface it is mainly a diffuse reflection surface. Very few multipath signals that reflect, refract and diffract reach the airborne stage, so the correlation between the receiving antennas is strong, even if the spacing between the two antennas of the airborne station is increased.
  • Embodiments of the present invention provide a communication method, a terminal, and a communication system, which are capable of performing spatial division multiplexing of signals in a direct-view environment.
  • the embodiment of the invention provides a communication method, which is applied between a terminal and a base station in a direct-view communication environment;
  • the method further includes: the terminal sending, by using the first polarized antenna, a third signal to the base station.
  • the sending, by the terminal, the third signal to the base station by using the first polarized antenna includes: dividing the third signal into two paths and respectively passing the first antenna component and the second antenna component Sent to the base station.
  • the first polarized antenna comprises a linearly polarized antenna or a circularly polarized antenna.
  • the first polarized antenna is a linearly polarized antenna
  • the first antenna component and the second antenna component are orthogonally polarized
  • the first antenna component and the second antenna component are orthogonally polarized
  • the angle between the first antenna component and the horizontal plane is +45°, and the angle between the second antenna component and the horizontal plane is -45°;
  • the first antenna component is parallel to a horizontal plane and the second antenna component is perpendicular to a horizontal plane.
  • the embodiment of the invention further provides a communication method, which is applied between a terminal and a base station in a direct-view communication environment;
  • the first polarized antenna includes a first antenna component and a second antenna component having different polarities
  • the line includes a third antenna component and a fourth antenna component having different polarities, the first antenna component and the third antenna component having the same polarity, and the second antenna component and the fourth antenna component are of the same polarity;
  • the embodiment of the invention further provides a terminal, which is applied to a direct view communication environment
  • first polarized antenna having the same polarity as a second polarized antenna of the base station, the first polarized antenna including a first antenna component and a second antenna component, the first antenna component and The second antenna component is configured to receive the first signal and the second signal transmitted by the base station.
  • it also includes:
  • a signal processing module configured to process the first signal and the second signal received by the first antenna component and the second antenna component.
  • the first antenna component and the second antenna component are further configured to send a third signal to the base station.
  • the method further includes: a signal offloading module, the signal offloading module is configured to divide the third signal into two paths and send to the base station by using the first antenna component and the second antenna component.
  • the first polarized antenna comprises a linearly polarized antenna or a circularly polarized antenna.
  • the embodiment of the invention further provides a communication system, which is applied to a direct vision communication environment; and includes a base station and at least one terminal;
  • the base station includes a second polarized antenna, the second polarized antenna includes a third antenna component and a fourth antenna component having different polarities, and the third antenna component is configured to send a first signal to the terminal, where the a four antenna component configured to transmit a second signal to the terminal;
  • the terminal includes a first polarized antenna, and the first polarized antenna includes a first antenna component and a second antenna component having different polarities, and the first antenna component and the third antenna component have the same polarity
  • the second antenna component is of the same polarity as the fourth antenna component, and the first antenna component and the second antenna component are configured to receive the first signal and the second signal transmitted by the base station.
  • the terminal comprises an airborne station.
  • the communication method, terminal and communication system provided by the embodiments of the present invention utilize a direct-view environment, and there are few multipath signals that are reflected, refracted and diffracted, and the signal polarization characteristics are maintained well, and are set at the base station and the terminal.
  • the polarized antennas with the same polarity transmit and receive signals, so that the signals can only be received by the antenna components with the same polarity as the antenna components of the transmitting end, forming a scene of MIMO direct communication channel, which greatly improves the direct vision path.
  • the probability of spatial separation and multiplexing of the environment increases the throughput and capacity of the ground-to-air communication downlink.
  • FIG. 1 is a schematic diagram of a communication method according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of a MIMO direct communication channel
  • FIG. 3 is a schematic diagram of a communication method according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic structural diagram of a terminal according to Embodiment 3 of the present invention.
  • FIG. 5 is a schematic structural diagram of another terminal according to Embodiment 3 of the present invention.
  • FIG. 6 is a schematic structural diagram of a communication system according to Embodiment 4 of the present invention.
  • the embodiment of the present invention provides a signal transmission manner to implement space division multiplexing in a direct view environment.
  • signals rarely change, such as reflection, refraction, and diffraction, causing a signal transmission path to change. Since the polarization characteristics are kept good, the base station and the terminal are provided with the same polarized antenna for transmitting and receiving signals, so that the signal can be received only by the antenna component having the same polarity as the base station transmitting antenna component.
  • a scene of direct channel MIMO is formed, thereby improving the space division multiplexing rate of the signal downlink.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • FIG. 1 This embodiment mainly explains the related steps performed by the terminal in the process of implementing the foregoing concept. For details, please refer to FIG. 1:
  • a first polarized antenna having the same polarity as a second polarized antenna of the base station is disposed on the terminal, where the first polarized antenna includes a first antenna component and a second antenna component having different polarities;
  • S102 Receive, by using the first polarized antenna, a first signal and a second signal that are sent by the base station by using the second polarized antenna.
  • the antenna set by the terminal is generally an omnidirectional antenna, but this method can hardly achieve space division multiplexing in a direct view environment. Therefore, this embodiment changes the terminal and selects polarization at the terminal.
  • the antenna has a channel similar to the direct communication channel between the first polarized antenna of the terminal and the second polarized antenna disposed at the base station.
  • FIG. 2 is a schematic diagram of a MIMO direct communication channel.
  • a channel between the antenna 211 and the antenna 221 is a first channel
  • a channel between the antenna 212 and the antenna 222 is a second channel.
  • the signal transmitted by the antenna 211 of the transmitting end 21 can only be received by the antenna 221 at the receiving end 22.
  • the antenna 222 of the receiving end 22 can only receive the signal transmitted by the antenna 212 of the transmitting end 21, that is, from the transmitting.
  • the signal transmitted by an antenna of terminal 21 has its own dedicated channel to reach the dedicated antenna at the receiving end, and is not received by other antennas.
  • the first polarized antenna may include a circularly polarized antenna or a linearly polarized antenna.
  • the first polarized antenna is a circularly polarized antenna
  • the first of the corresponding first polarized antennas The antenna component may be a left-handed polarized antenna and the second antenna component may be a right-handed circularly polarized antenna.
  • the first polarized antenna is a linearly polarized antenna, as long as the first antenna component and the second antenna component are orthogonally polarized, the first antenna component and the second antenna component can have various options.
  • the first antenna component and the second antenna component are arranged at an angle of +45° to the horizontal plane and an angle of -45°, respectively, or to maintain the first antenna component with the horizontal plane.
  • the second antenna component is perpendicular to the horizontal plane.
  • the first polarized antenna provided by the terminal must be the same polarity as the second polarized antenna set by the base station. Therefore, when the second polarized antenna of the base station is a linearly polarized antenna, and the two antenna components are arranged at an angle of +45° with the horizontal plane and an angle of -45°, The first antenna component and the second antenna component of the terminal can only be disposed at an angle of +45° and -45° to the horizontal plane, respectively.
  • the terminal can only be a circularly polarized antenna, and the first antenna component and the second antenna component can only be a left-handed circularly polarized antenna and a right-handed circularly polarized antenna.
  • the terminal receives the first signal sent by the base station through the second polarized antenna by using the first antenna component of the first polarized antenna, and receives the second signal sent by the base station by using the second polarized antenna by using the second antenna component of the first polarized antenna .
  • the terminal After receiving the first signal and the second signal sent by the base station, the terminal also performs corresponding processing on the received signal.
  • the third signal transmitted by the first antenna component of the first polarized antenna of the terminal can only be received by the antenna component of the second antenna of the base station having the same polarity as the first antenna component.
  • the transmission diversity is generally used in the terminal to improve the quality of the received signal. Diversity technology is used to compensate for fading channel loss. It usually uses the uncorrelated characteristics of independent samples of the same signal in a wireless propagation environment, and uses a combination of certain signals to improve the received signal, thereby resisting the adverse effects caused by fading. . Therefore, the present invention further provides an embodiment.
  • the terminal side before transmitting the third signal, may divide the third signal into two paths, and then send the two antenna components of the first polarized antenna respectively, so that The two antenna components of the second polarized antenna on the base station side can receive the third signal.
  • the specific implementation manner is: first antenna component and second antenna component of the first polarized antenna Connected to the power splitter respectively, before the terminal sends the third signal to the base station, the third signal is passed through the power splitter, and the two signals output by the power splitter are respectively sent through the first antenna component and the second antenna component.
  • the signal splitting in this embodiment is not necessarily implemented by a power splitter, but may also be implemented by other devices.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • This embodiment implements the process of the present invention from both sides of the terminal and the base station.
  • FIG. 3 For details, refer to FIG. 3:
  • the base station sends the first signal and the second signal to the terminal by using the third antenna component and the fourth antenna component of the second polarized antenna respectively; that is, the base station sends the first signal by using the third antenna component of the second polarized antenna,
  • the fourth antenna component of the second polarized antenna transmits a second signal to the terminal.
  • the terminal receives, by the first antenna component and the second antenna component of the first polarized antenna, the first signal and the second signal that are sent by the base station by using the second polarized antenna.
  • the terminal receives the first signal sent by the base station through the second polarized antenna through the first antenna component of the first polarized antenna, and receives the second sent by the base station through the second polarized antenna through the second antenna component of the first polarized antenna. signal.
  • the first polarized antenna includes a first antenna component and a second antenna component having different polarities
  • the second polarized antenna includes a third antenna component and a fourth antenna component having different polarities, due to the first polarized antenna and the second pole
  • the antennas have the same polarity, so the first antenna component and the third antenna component have the same polarity, and the second antenna component and the fourth antenna component have the same polarity.
  • the first polarized antenna and the second polarized antenna may include a circularly polarized antenna or a linearly polarized antenna, when the first polarized antenna and the second polarized antenna are circularly polarized antennas.
  • the first antenna component and the third antenna component may be left-handed circularly polarized antennas.
  • the second antenna component and the fourth antenna component may be right-handed circularly polarized antennas.
  • the first polarized antenna and the second polarized antenna are linearly polarized antennas, it is necessary to ensure orthogonal polarization of the first antenna component and the second antenna component.
  • the first antenna component and the second antenna component are respectively arranged at an angle of +45° with the horizontal plane and an angle of -45°, or the first antenna component is horizontal with the horizontal plane and second.
  • the antenna components are perpendicular to the horizontal plane.
  • the first signal and the second signal are respectively sent through two antenna components of the second polarized antenna, because in the embodiment, the first polarized antenna and the second polarized antenna are linearly polarized antennas, and the first antenna component Orthogonally polarized with the second antenna component, arranged at an angle of +45° with the horizontal plane and an angle of -45°, while the third antenna component and the fourth antenna component are also +45° from the horizontal plane.
  • the angle is arranged in an angle of -45°, so that the first antenna component is only used to receive the first signal transmitted by the third antenna component, and the second antenna component is only used to receive the second antenna component. signal.
  • the third signal transmitted by the first antenna component of the first polarized antenna of the terminal can only be received by the third antenna component of the second polarized antenna of the base station having the same polarity as the first antenna component.
  • the correct rate of the decision of the number is generally used in the terminal to improve the quality of the received signal by using transmit diversity.
  • Diversity technology is used to compensate for fading channel loss. It usually uses the uncorrelated characteristics of independent samples of the same signal in a wireless propagation environment, and uses a combination of certain signals to improve the received signal, thereby resisting the adverse effects caused by fading. .
  • the terminal side can divide the third signal into two paths, and then separately send out the two antenna components of the first polarized antenna.
  • the specific implementation manner includes: The first antenna component and the second antenna component of the polarized antenna are respectively connected to the power splitter, and before the terminal sends the third signal to the base station, the third signal is passed through the power splitter to output two signals of the power splitter. It is emitted through the first antenna component and the second antenna component, respectively.
  • the base station when the base station receives the third signal transmitted by the terminal through the first polarized antenna, two antenna components in the second polarized antenna can be received, and then the base station receives the third antenna component and the fourth antenna component.
  • the signal combination obtains the third signal, thereby increasing the strength of the third signal received by the base station, and facilitating the base station to correctly determine the received signal.
  • Embodiments of the present invention also provide a computer readable storage medium storing computer executable instructions for performing any of the methods described above.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the present embodiment provides a terminal 40, which includes a first polarized antenna 401, and optionally includes a signal processing module 402, as shown in FIG.
  • the first polarized antenna 401 has the same polarity as the second polarized antenna of the base station, and includes a first antenna component 4011 and a second antenna component 4012.
  • the first polarized antenna 401 may include a circularly polarized antenna or a linearly polarized antenna.
  • the first polarized antenna 401 is a circularly polarized antenna
  • the corresponding first polarized antenna 401 The first antenna component 4011 and the second antenna component 4012 may be a left-hand circularly polarized antenna and a right-handed circularly polarized antenna, respectively.
  • the first antenna component 4011 and the second antenna component 4012 may have A variety of options, in engineering experience, generally more commonly used is that the first antenna component 4011 and the second antenna component 4012 are arranged at an angle of +45° with the horizontal plane and an angle of -45°, respectively, or The first antenna component 4011 is level with the horizontal plane and the second antenna component 4012 is perpendicular to the horizontal plane.
  • the first polarized antenna 401 provided by the terminal 40 must have the same polarity as the second polarized antenna set by the base station, so when the second polarized antenna of the base station is a linearly polarized antenna, and two of them When the antenna components are arranged at an angle of +45° with the horizontal plane and an angle of -45°, the first polarized antenna 401 provided by the terminal 40 can only be at an angle of +45° to the horizontal plane and Linearly polarized antennas arranged in an angle of 45°.
  • the first polarized antenna 401 is configured to receive the first signal and the second signal sent by the base station, receive the first signal sent by the base station by using the second polarized antenna by using the first antenna component 4011, and receive the base station by using the second antenna component 4012. The second signal sent by the polarized antenna.
  • Signal processing module 402 in terminal 40 is arranged to process the received signals.
  • the third signal transmitted by the first antenna component 4011 of the first polarized antenna 401 on the terminal side can only be the same antenna with the same polarity as the first antenna component 4011 in the second polarized antenna on the base station side.
  • the part was received. Since the transmission power of the terminal 40 is generally low, in order to improve the correct rate of the base station's decision on the received signal, the present invention also provides an embodiment in which the terminal uses the transmit diversity to improve the signal received by the base station. Quality, diversity technology is used to compensate for fading channel loss. It usually uses the uncorrelated characteristics of independent samples of the same signal in a wireless propagation environment, and uses a combination of certain signals to improve the received signal, thereby resisting fading. Bad effects. As shown in FIG.
  • the terminal 40 includes, in addition to the first polarized antenna 401 and the signal processing module 402 that implements space division multiplexing, a signal offloading module 403 that is indispensable for implementing transmit diversity.
  • the signal shunting module 403 is arranged to split the third signal into two paths before transmitting the third signal, and then separately transmitted by the two antenna components of the first polarized antenna 401, such that two of the second polarized antennas on the base station side
  • the antenna component can receive the third signal.
  • the specific signal offloading module 403 may be a power splitter.
  • the specific implementation manner includes: connecting the first antenna component 4011 and the second antenna component 4012 of the first polarized antenna 401 to the power splitter, respectively, to the base station at the terminal 40. Before transmitting the third signal, the third signal is passed through the power splitter, and the two signals output by the power splitter are respectively sent through the first antenna component 4011 and the second antenna component 4012.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the embodiment provides a communication system 6, which includes a base station 61 and at least one terminal 62, as shown in FIG.
  • the base station 61 includes a second polarized antenna 611, and the second polarized antenna 611 includes a third of different polarities.
  • the antenna component 6111 and the fourth antenna component 6112, and the third antenna component 6111 and the fourth antenna component 6112 are respectively disposed to transmit the first signal and the second signal to the terminal 62.
  • the terminal 62 includes a first polarized antenna 621, and the first polarized antenna 621 includes a first antenna component 6211 and a second antenna component 6212 having different polarities.
  • the first antenna component 6211 and the third antenna component 6111 have the same polarity, and the second The antenna component 6212 and the fourth antenna component 6112 are of the same polarity, and the first antenna component 6211 and the second antenna component 6212 are arranged to receive the first signal and the second signal transmitted by the base station 61.
  • the first polarized antenna 621 and the second polarized antenna 611 may include a circularly polarized antenna or a linearly polarized antenna, and the first polarized antenna 621 and the second polarized antenna 611 are round when the first polarized antenna 621 and the second polarized antenna 611 are disposed.
  • the first antenna component 6211 and the third antenna component 6111 may be left-handed circularly polarized antennas.
  • the second antenna component 6212 and the fourth antenna component 6112 may be right-handed circularly polarized antennas.
  • the first polarized antenna 621 and the second polarized antenna 611 are linearly polarized antennas, it is only necessary to ensure that the first antenna component 6211 and the second antenna component 6212 are orthogonally polarized, and there are various ways to satisfy this condition.
  • the first antenna component 6211 and the second antenna component 6212 are respectively arranged at an angle of +45° with the horizontal plane and an angle of -45°, or the first antenna component. 6211 is level with the horizontal plane and the second antenna component 6212 is perpendicular to the horizontal plane.
  • the first signal and the second signal are respectively sent through the two antenna components of the second polarized antenna 611.
  • the first polarized antenna 621 and the second polarized antenna 611 are linearly polarized antennas
  • the first An antenna component 6211 and the second antenna component 6212 are orthogonally polarized, arranged at an angle of +45° with the horizontal plane and an angle of -45°
  • the third antenna component 6111 and the fourth antenna component 6112 are also Arranging at an angle of +45° with the horizontal plane and an angle of -45°
  • the first antenna component 6211 is only used to receive the first signal transmitted by the third antenna component 6111
  • the second antenna component 6212 is only used.
  • the second signal transmitted by the fourth antenna component 6112 is received.
  • Terminal 62 also includes a signal processing module 622 arranged to process the received first and second signals.
  • the third signal transmitted by the first antenna component 6211 of the first polarized antenna 621 can only be the third antenna of the second polarized antenna 611 having the same polarity as the first antenna component 6211.
  • the component 6111 receives it. Since the transmission power of the terminal 62 is generally low, in order to improve The correct rate of the decision of the base station 61 on the received signal will generally improve the quality of the signal received by the base station 61 in the manner in which the terminal 62 employs transmit diversity. Diversity technology is used to compensate for fading channel loss. It usually uses the uncorrelated characteristics of independent samples of the same signal in a wireless propagation environment, and uses a combination of certain signals to improve the received signal, thereby resisting the adverse effects caused by fading. .
  • the terminal 62 included in the communication system 6 provided in this embodiment further includes a signal offloading module 623.
  • the signal shunting module 623 splits the third signal into two paths before transmitting the third signal, and then is configured by the first polarized antenna 621.
  • the two antenna components are respectively sent out, and the specific signal distribution module 623 can be a power splitter.
  • the specific implementation manner is as follows: connecting the first antenna component 6211 and the second antenna component 6212 of the first polarization antenna 621 to the power split respectively. Before the terminal 62 sends the third signal to the base station 61, the third signal is passed through the power splitter, and the two signals output by the power splitter are respectively sent through the first antenna component 6211 and the second antenna component 6212.
  • both antenna components in the second polarized antenna 611 can be received, and then the base station 61 sets the third antenna component 6111.
  • the combination of the signals received by the four antenna components 6112 obtains a third signal of better signal quality, thereby increasing the strength of the third signal received by the base station 61, facilitating the base station 61 to correctly determine the received signal.
  • the terminal 62 may include an onboard station, which refers to a communication device disposed on a high altitude flight device, such as an aircraft.
  • an onboard station refers to a communication device disposed on a high altitude flight device, such as an aircraft.
  • the terminal 62 is an airborne station, the probability of spatially multiplexing the ground-to-air communication environment in the ground-to-air communication can be greatly improved, thereby improving the throughput and capacity of the ground-to-air communication downlink, and deploying the ground-to-air communication. And performance improvement has important practical significance.
  • each module/unit in the foregoing embodiment may be implemented in the form of hardware, for example, by implementing an integrated circuit to implement its corresponding function, or may be implemented in the form of a software function module, for example, executing a program in a storage and a memory by a processor. / instruction to achieve its corresponding function.
  • the invention is not limited to any specific form of combination of hardware and software.
  • the above technical solution greatly improves the probability of hollow sub-multiplexing in the direct-viewing environment, thereby improving the throughput and capacity of the ground-to-air communication downlink.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种通信方法、终端及通信系统,应用于直视径通信环境中的终端与基站之间;在终端上设置与基站的第二极化天线极性相同的第一极化天线,第一极化天线包括极性不同的第一天线部件和第二天线部件;通过第一极化天线接收基站通过第二极化天线发送的第一信号和第二信号。

Description

一种通信方法、终端及通信系统 技术领域
本文涉及但不限于通信领域,尤其涉及一种通信方法、终端及通信系统。
背景技术
信号在传输过程中受地形、地物影响而产生反射、折射与衍射等现象,使信号沿着不同的路径传播,这称为多径传播。多径传播会使接收端接收到的信号在幅度、相位、频率和达到时间上都不尽相同,这也就是所说多径传播获得的多径信号的衰落特性不同。传统地面无线通信中的多入多出(Multiple-Input Multiple-Output,MIMO)正是利用了信号在传输过程中受地形地物的影响会产生不同衰落的特点,在终端侧采用增大天线间距的方式来减小接收天线之间的相关性,保证不同的天线接收的多径信号的衰落特性不同,从而实现空分复用来提升下行吞吐量,在理想情况下,接收天线之间的距离只要大于波长的一半就可以了。
但是上述空分复用的方式在一些比较特殊的通信环境中,比如直视径通信环境,就不再适用。直视径通信环境中信号的发送端与接收端之间不存在使信号传播路径发生改变的障碍物,信号到达接收端的路径单一,不会出现幅度、相位、频率以及到达时间不同等现象。因此,在这种环境下再使用减小接收天线之间的相关性的做法来保证天线接收衰落特性不同的信号的做法已不再适用,当然,在这种环境下使用传统方式来空分复用也就收效甚微。
典型的直视径通信环境并不少见,最典型的应该是地空通信(Air to Ground,ATG),在ATG系统中,由于飞机的飞行高度在1万米左右,可以和周围半径为400千米的范围保持视通,因此基站和机载台之间以直视径为主。除了水面外,主要是漫反射面,很少有反射、折射和衍射的多径信号到达机载台,所以接收天线之间的相关性很强,即使机载台的两个天线的间距被增大到几十米,已经大于10倍波长,远远超过地面移动通信系统宏蜂窝一般要求(接收天线之间的距离只要波长的一半),依然无法保证信号的衰落特性不同。因此,传统的降低MIMO天线相关性的方法在直视径环境中作用效果甚微,这种空分复用的方式不适合直视径环境。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提出了一种通信方法、终端及通信系统,能够在直视径环境中实现的信号下行的空分复用。
本发明实施例提供一种通信方法,应用于直视径通信环境中的终端与基站之间;包括:
在所述终端上设置与所述基站的第二极化天线极性相同的第一极化天线,所述第一极化天线包括极性不同的第一天线部件和第二天线部件;
通过所述第一极化天线接收所述基站通过所述第二极化天线发送的第一信号和第二信号。
可选的,还包括:所述终端通过所述第一极化天线向所述基站发送第三信号。
可选的,所述终端通过所述第一极化天线向所述基站发送第三信号包括:将所述第三信号分成两路并分别通过所述第一天线部件与所述第二天线部件发送给所述基站。
可选的,所述第一极化天线包括线极化天线或圆极化天线。
可选的,当所述第一极化天线为线极化天线时,所述第一天线部件与所述第二天线部件正交极化,所述第一天线部件和所述第二天线部件的排列方式包括以下两种中的任意一种:
所述第一天线部件与水平面的夹角为+45°,所述第二天线部件与水平面的夹角为-45°;
所述第一天线部件与水平面平行,所述第二天线部件与水平面垂直。
本发明实施例还提供一种通信方法,应用于直视径通信环境中的终端与基站之间;包括:
在所述终端和所述基站分别设置第一极化天线和第二极化天线,所述第一极化天线包括极性不同的第一天线部件和第二天线部件,所述第二极化天 线包括极性不同的第三天线部件与第四天线部件,所述第一天线部件与所述第三天线部件极性相同,所述第二天线部件与所述第四天线部件极性相同;
所述基站通过所述第二极化天线的所述第三天线部件与所述第四天线部件分别向所述终端发送第一信号与第二信号;
所述终端通过所述第一极化天线的所述第一天线部件和所述第二天线部件接收所述基站通过所述第二极化天线发送的第一信号和第二信号。
本发明实施例还提供一种终端,应用于直视径通信环境;包括:
第一极化天线,所述第一极化天线与基站的第二极化天线极性相同,所述第一极化天线包括第一天线部件和第二天线部件,所述第一天线部件与所述第二天线部件设置为接收所述基站发送的第一信号和第二信号。
可选的,还包括:
信号处理模块,所述信号处理模块设置为对所述第一天线部件与所述第二天线部件接收的所述第一信号和所述第二信号进行处理。
可选的,所述第一天线部件与所述第二天线部件还设置为向所述基站发送第三信号。
可选的,还包括:信号分流模块,所述信号分流模块设置为将所述第三信号分成两路并通过第一天线部件和第二天线部件发送给所述基站。
可选的,所述第一极化天线包括线极化天线或圆极化天线。
本发明实施例还提供一种通信系统,应用于直视径通信环境;包括基站与至少一个终端;
所述基站包括第二极化天线,所述第二极化天线包括极性不同的第三天线部件与第四天线部件,所述第三天线部件设置为向终端发送第一信号,所述第四天线部件设置为向终端发送第二信号;
所述终端包括第一极化天线,所述第一极化天线包括极性不同的第一天线部件与第二天线部件,所述第一天线部件与所述第三天线部件极性相同,所述第二天线部件与所述第四天线部件极性相同,所述第一天线部件与所述第二天线部件设置为接收所述基站发送的第一信号和第二信号。
可选的,所述终端包括机载台。
本发明实施例的有益效果是:
本发明实施例提供的通信方法、终端及通信系统利用了直视径环境中,很少有经过反射、折射和衍射的多径信号,信号极化特性保持良好的特点,通过在基站与终端设置极性相同的极化天线进行信号的发送与接收,使信号在终端只能被与发送端天线部件极性相同的天线部件接收到,形成了MIMO直通信道的场景,大幅度提高了直视径环境中空分复用的几率,从而提高了地空通信下行的吞吐量和容量。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明实施例一提供的一种通信方法示意图;
图2为MIMO直通信道示意图;
图3为本发明实施例二提供的一种通信方法示意图;
图4为本发明实施例三提供的一种终端结构示意图;
图5为本发明实施例三提供的另一种终端结构示意图;
图6为本发明实施例四提供的通信系统结构示意图。
本发明的实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。
由于在直视径通信环境中,无法保证多径信号衰落特性的不同,所以采用传统增大天线间距来减小天线之间的相关性的方式无法实现信号下行的空分复用。所以本发明实施例提供一种信号传输的方式来实现直视径环境中的空分复用,直视径环境中,信号极少发生反射、折射以及衍射等致使信号传递路径改变的现象,信号极化特性保持良好,所以在基站与终端设置极性相同的极化天线进行信号的发送与接收,能够使信号在终端只能被与基站发射天线部件极性相同的天线部件接收到,以此形成直通信道MIMO的场景,从而提高信号下行的空分复用率。
实施例一:
本实施例主要对在实现上述构思的过程中,终端所执行的相关步骤进行详细解释,具体的请参考图1:
S101,在终端上设置与基站的第二极化天线极性相同的第一极化天线,该第一极化天线包括极性不同的第一天线部件和第二天线部件;
S102,通过第一极化天线接收基站通过第二极化天线发送的第一信号和第二信号。
传统的方式中,终端设置的天线一般是全向天线,但是这种方式在直视径环境中几乎不能实现空分复用,所以,本实施例在终端做了改变,选择在终端设置极化天线,让终端的第一极化天线和设置在基站的第二极化天线之间的信道类似直通信道。
图2为MIMO直通信道的示意图,天线211与天线221之间的信道为第一信道,天线212与天线222之间的信道为第二信道。发射端21的天线211发射的信号在接收端22只有天线221能接收到,同样的,接收端22的天线222也只能接收到发射端21的天线212所发射的信号,也就是说从发射端21某一天线发射出来的信号有其专门的信道让其到达接收端专门的天线,而不至于被其他天线接收到。
在本实施例中,第一极化天线可以包括圆极化天线或者是线极化天线,当设置的第一极化天线是圆极化天线时,相应的该第一极化天线的第一天线部件可以是左旋极化天线,第二天线部件可以是右旋圆极化天线。当设置的第一极化天线是线极化天线时,只要保证第一天线部件和第二天线部件正交极化即可,所以第一天线部件和第二天线部件可以有多种选择,从工程经验来说,一般比较常用的方式是第一天线部件和第二天线部件分别以与水平面成+45°的夹角和-45°的夹角的方式排列,或者第一天线部件与水平面保持水平,第二天线部件与水平面保持垂直。
当然,为了形成直通信道,终端设置的第一极化天线必须与基站设置的第二极化天线的极性相同。所以,当基站的第二极化天线是线极化天线,且其两个天线部件以与水平面成+45°的夹角和-45°的夹角的方式排列时,终 端的第一天线部件和第二天线部件只能以分别与水平面成+45°和-45°夹角的方式设置。当基站的第二极化天线是圆极化天线时,终端也只能为圆极化天线,第一天线部件和第二天线部件只能是左旋圆极化天线和右旋圆极化天线。
终端利用第一极化天线的第一天线部件接收基站通过第二极化天线发送的第一信号,利用第一极化天线的第二天线部件接收基站通过第二极化天线发送的第二信号。
终端接收到基站发送的第一信号和第二信号后,还会对接收到的信号进行相应的处理。
在信号上行的过程中,由终端第一极化天线的第一天线部件发送的第三信号只能由基站第二天线中极性与第一天线部件相同的天线部件接收到。由于终端的发射功率一般比较低,为了提高基站对接收到的信号判决的正确率,一般会在终端采用发射分集的方式来改善接收信号的质量。分集技术是用来补偿衰落信道损耗的,它通常利用无线传播环境中同一信号的独立样本之间不相关的特点,使用将一定的信号合并的方式来改善接收信号,从而抵抗衰落引起的不良影响。因此本发明还提供一种实施例,在该实施例中,发射第三信号之前,终端侧可以将第三信号分成两路,然后由第一极化天线的两个天线部件分别发送出去,这样在基站侧的第二极化天线的两个天线部件都可以接收到第三信号,在本实施例中,具体的实现方式为:将第一极化天线的第一天线部件与第二天线部件分别连接到功分器上,在终端向基站发送第三信号之前,先让第三信号通过功分器,将功分器输出的两个信号分别通过第一天线部件与第二天线部件发出。可以理解的是,本实施例中将信号分路的不一定是由功分器实现,也可以由其他器件实现。
实施例二:
本实施例从终端与基站两侧全面的介绍实现本发明的过程,具体的请参考图3:
S301,在终端和基站分别设置极性相同的第一极化天线和第二极化天线;即在终端设置第一极化天线,在基站设置第二极化天线,第一极化天线和第二极化天线极性相同。
S302,基站通过第二极化天线的第三天线部件与第四天线部件分别向终端发送第一信号与第二信号;即基站通过第二极化天线的第三天线部件发送第一信号,通过第二极化天线的第四天线部件向终端发送第二信号。
S303,终端通过第一极化天线的第一天线部件和第二天线部件接收基站通过第二极化天线发送的第一信号和第二信号。
即终端通过第一极化天线的第一天线部件接收基站通过第二极化天线发送的第一信号,通过第一极化天线的第二天线部件接收基站通过第二极化天线发送的第二信号。
第一极化天线包括极性不同的第一天线部件和第二天线部件,第二极化天线包括极性不同的第三天线部件与第四天线部件,由于第一极化天线和第二极化天线极性相同,所以第一天线部件与第三天线部件极性相同,第二天线部件与第四天线部件极性相同。
在本实施例中,第一极化天线和第二极化天线可以包括圆极化天线或者是线极化天线,当设置的第一极化天线和第二极化天线是圆极化天线时,第一天线部件和第三天线部件可以是左旋圆极化天线,相应的,第二天线部件和第四天线部件可以是右旋圆极化天线。当设置的第一极化天线和第二极化天线是线极化天线时,需要保证第一天线部件和第二天线部件正交极化,满足这个条件的方式有多种,在工程实现上,一般比较常用的方式是第一天线部件和第二天线部件分别以与水平面成+45°的夹角和-45°的夹角的方式排列,或者第一天线部件与水平面保持水平且第二天线部件与水平面保持垂直。
第一信号和第二信号分别通过第二极化天线的两个天线部件发出,由于在本实施例中,第一极化天线与第二极化天线为线极化天线,且第一天线部件与第二天线部件正交极化,以与水平面成+45°的夹角和-45°的夹角的方式排列,同时第三天线部件与第四天线部件也以与水平面成+45°的夹角和-45°的夹角的方式排列,所以,第一天线部件只用于接收第三天线部件发送的第一信号,第二天线部件也只用于接收第四天线部件发送的第二信号。
另外,在信号上行的过程中,由终端第一极化天线的第一天线部件发送的第三信号只能由基站第二极化天线中极性与第一天线部件相同的第三天线部件接收到。由于终端的发射功率一般比较低,为了提高基站对接收到的信 号的判决的正确率,一般会在终端采用发射分集的方式来改善接收信号的质量。分集技术是用来补偿衰落信道损耗的,它通常利用无线传播环境中同一信号的独立样本之间不相关的特点,使用将一定的信号合并的方式来改善接收信号,从而抵抗衰落引起的不良影响。所以在发射第三信号之前,终端侧可以将第三信号分成两路,然后由第一极化天线的两个天线部件分别发送出去,在本实施例中,具体的实现方式包括:将第一极化天线的第一天线部件与第二天线部件分别连接到功分器上,在终端向基站发送第三信号之前,先让第三信号通过功分器,将功分器输出的两个信号分别通过第一天线部件与第二天线部件发出。
因此,基站在接收终端通过第一极化天线发送的第三信号时,第二极化天线中的两个天线部件都可以接收到,然后基站将第三天线部件与第四天线部件接收到的信号组合获得第三信号,以此来提高基站接收到的第三信号的强度,便于基站对接收到的信号进行正确的判决。
本发明实施例还提出了一种计算机可读存储介质,存储有计算机可执行指令,计算机可执行指令用于执行上述描述的任意一个方法。
实施例三:
本实施例提供一种终端40,该终端40包括第一极化天线401,可选的,还包括:信号处理模块402,如图4所示:
第一极化天线401与基站的第二极化天线极性相同,其包括第一天线部件4011和第二天线部件4012。
在本实施例中,第一极化天线401可以包括圆极化天线或者是线极化天线,当设置的第一极化天线401是圆极化天线时,相应的该第一极化天线401的第一天线部件4011和第二天线部件4012可以分别是左旋圆极化天线和右旋圆极化天线。当设置的第一极化天线401是线极化天线时,只要保证第一天线部件4011和第二天线部件4012正交极化即可,所以第一天线部件4011和第二天线部件4012可以有多种选择,从工程经验来说,一般比较常用的方式是第一天线部件4011和第二天线部件4012分别以与水平面成+45°的夹角和-45°的夹角的方式排列,或者第一天线部件4011与水平面保持水平,第二天线部件4012与水平面保持垂直。
为了形成直通信道,终端40设置的第一极化天线401必须与基站设置的第二极化天线的极性相同,所以,当基站的第二极化天线是线极化天线,且其两个天线部件以与水平面成+45°的夹角和-45°的夹角的方式排列时,终端40设置的第一极化天线401也只能是以与水平面成+45°的夹角和-45°的夹角的方式排列排列的线极化天线。
第一极化天线401设置为接收基站发送的第一信号和第二信号,利用第一天线部件4011接收基站通过第二极化天线发送的第一信号,利用第二天线部件4012接收基站通过第二极化天线发送的第二信号。
终端40中的信号处理模块402设置为对接收到的信号进行处理。
在信号上行的过程中,由终端侧的第一极化天线401的第一天线部件4011发送的第三信号只能由基站侧第二极化天线中极性与第一天线部件4011相同的天线部件接收到。由于终端40的发射功率一般比较低,为了提高基站对接收到的信号的判决的正确率,本发明还提供一种实施例,该实施例中的终端利用发射分集来提高基站接收到的信号的质量,分集技术是用来补偿衰落信道损耗的,它通常利用无线传播环境中同一信号的独立样本之间不相关的特点,使用将一定的信号合并的方式来改善接收信号,从而抵抗衰落引起的不良影响。如图5所示,终端40除了包括实现空分复用的第一极化天线401和信号处理模块402外,还包括实现发射分集必不可少的信号分流模块403。信号分流模块403设置为在发射第三信号之前将第三信号分成两路,然后由第一极化天线401的两个天线部件分别发送出去,这样在基站侧的第二极化天线的两个天线部件都可以接收到第三信号。具体的信号分流模块403可以为功分器,具体的实现方式包括:将第一极化天线401的第一天线部件4011与第二天线部件4012分别连接到功分器上,在终端40向基站发送第三信号之前,先让第三信号通过功分器,将功分器输出的两个信号分别通过第一天线部件4011与第二天线部件4012发出。
实施例四:
本实施例提供一种通信系统6,该通信系统包括基站61与至少一个终端62,如图6所示:
基站61包括第二极化天线611,第二极化天线611包括极性不同的第三 天线部件6111与第四天线部件6112,第三天线部件6111与第四天线部件6112分别设置为向终端62发送第一信号和第二信号。
终端62包括第一极化天线621,第一极化天线621包括极性不同的第一天线部件6211与第二天线部件6212,第一天线部件6211与第三天线部件6111极性相同,第二天线部件6212与第四天线部件6112极性相同,第一天线部件6211与第二天线部件6212设置为接收基站61发送的第一信号和第二信号。
在本实施例中,第一极化天线621和第二极化天线611可以包括圆极化天线或者是线极化天线,当设置的第一极化天线621和第二极化天线611是圆极化天线时,第一天线部件6211和第三天线部件6111可以是左旋圆极化天线,相应的,第二天线部件6212和第四天线部件6112可以是右旋圆极化天线。当设置的第一极化天线621和第二极化天线611是线极化天线时,只需保证第一天线部件6211和第二天线部件6212正交极化,满足这个条件的方式有多种,在工程实现上,一般比较常用的方式是第一天线部件6211和第二天线部件6212分别以与水平面成+45°的夹角和-45°的夹角的方式排列,或者第一天线部件6211与水平面保持水平且第二天线部件6212与水平面保持垂直。
第一信号和第二信号分别通过第二极化天线611的两个天线部件发出,由于在本实施例中,第一极化天线621与第二极化天线611为线极化天线,且第一天线部件6211与第二天线部件6212正交极化,以与水平面成+45°的夹角和-45°的夹角的方式排列,同时第三天线部件6111与第四天线部件6112也以与水平面成+45°的夹角和-45°的夹角的方式排列,所以,第一天线部件6211只用于接收第三天线部件6111发送的第一信号,第二天线部件6212也只用于接收第四天线部件6112发送的第二信号。
终端62还包括一个设置为对接收到的第一信号和第二信号进行处理的信号处理模块622。
另外,在信号上行的过程中,由第一极化天线621的第一天线部件6211发送的第三信号只能由第二极化天线611中极性与第一天线部件6211相同的第三天线部件6111接收到。由于终端62的发射功率一般比较低,为了提高 基站61对接收到的信号的判决的正确率,一般会在终端62采用发射分集的方式来改善基站61接收到的信号的质量。分集技术是用来补偿衰落信道损耗的,它通常利用无线传播环境中同一信号的独立样本之间不相关的特点,使用将一定的信号合并的方式来改善接收信号,从而抵抗衰落引起的不良影响。所以本实施例提供的通信系统6中包含的终端62还包括一个信号分流模块623,信号分流模块623在发射第三信号之前,将第三信号分成两路,然后由第一极化天线621的两个天线部件分别发送出去,具体的信号分流模块623可以为功分器,具体的实现方式为:将第一极化天线621的第一天线部件6211与第二天线部件6212分别连接到功分器上,在终端62向基站61发送第三信号之前,先让第三信号通过功分器,将功分器输出的两个信号分别通过第一天线部件6211与第二天线部件6212发出。
因此,基站61在接收终端62通过第一极化天线621发送的第三信号时,第二极化天线611中的两个天线部件都可以接收到,然后基站61将第三天线部件6111与第四天线部件6112接收到的信号组合获得信号质量更好的第三信号,以此来提高基站61接收到的第三信号的强度,便于基站61对接收到的信号进行正确的判决。
在本实施例中,终端62可以包括机载台,这里所说的机载台指的是设置在高空飞行设备上的通信装置,比如设置在飞机上。当终端62为机载台时,可以由此实现地空通信中的大幅度提高地空通信环境中空分复用的几率,从而提高地空通信下行的吞吐量和容量,对于地空通信的部署和性能提升具有重要的现实意义。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件(例如处理器)完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,例如通过集成电路来实现其相应功能,也可以采用软件功能模块的形式实现,例如通过处理器执行存储与存储器中的程序/指令来实现其相应功能。本发明不限于任何特定形式的硬件和软件的结合。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。
工业实用性
上述技术方案大幅度提高了直视径环境中空分复用的几率,从而提高了地空通信下行的吞吐量和容量。

Claims (13)

  1. 一种通信方法,应用于直视径通信环境中的终端与基站之间;包括:
    在所述终端上设置与所述基站的第二极化天线极性相同的第一极化天线,所述第一极化天线包括极性不同的第一天线部件和第二天线部件;
    通过所述第一极化天线接收所述基站通过所述第二极化天线发送的第一信号和第二信号。
  2. 如权利要求1所述的通信方法,还包括:
    所述终端通过所述第一极化天线向所述基站发送第三信号。
  3. 如权利要求2所述的通信方法,其中,所述终端通过所述第一极化天线向所述基站发送第三信号包括:将所述第三信号分成两路并分别通过所述第一天线部件与所述第二天线部件发送给所述基站。
  4. 如权利要求1-3任一项所述的通信方法,其中,所述第一极化天线包括线极化天线或圆极化天线。
  5. 如权利要求4所述的通信方法,其中,当所述第一极化天线为线极化天线时,所述第一天线部件与所述第二天线部件正交极化,所述第一天线部件和所述第二天线部件的排列方式包括以下两种中的任意一种:
    所述第一天线部件与水平面的夹角为+45°,所述第二天线部件与水平面的夹角为-45°;
    所述第一天线部件与水平面平行,所述第二天线部件与水平面垂直。
  6. 一种通信方法,应用于直视径通信环境中的终端与基站之间;包括:
    在所述终端和所述基站分别设置第一极化天线和第二极化天线,所述第一极化天线包括极性不同的第一天线部件和第二天线部件,所述第二极化天线包括极性不同的第三天线部件与第四天线部件,所述第一天线部件与所述第三天线部件极性相同,所述第二天线部件与所述第四天线部件极性相同;
    所述基站通过所述第二极化天线的所述第三天线部件与所述第四天线部件分别向所述终端发送第一信号与第二信号;
    所述终端通过所述第一极化天线的所述第一天线部件和所述第二天线部 件接收所述基站通过所述第二极化天线发送的第一信号和第二信号。
  7. 一种终端,应用于直视径通信环境;包括:
    第一极化天线,所述第一极化天线与基站的第二极化天线极性相同,所述第一极化天线包括第一天线部件和第二天线部件,所述第一天线部件与所述第二天线部件设置为接收所述基站发送的第一信号和第二信号。
  8. 如权利要求7所述的终端,还包括:
    信号处理模块,所述信号处理模块设置为对所述第一天线部件与所述第二天线部件接收的所述第一信号和所述第二信号进行处理。
  9. 如权利要求7所述的终端,所述第一天线部件与所述第二天线部件还设置为向所述基站发送第三信号。
  10. 如权利要求9所述的终端,还包括:信号分流模块,所述信号分流模块设置为将所述第三信号分成两路并通过第一天线部件和第二天线部件发送给所述基站。
  11. 如权利要求7-10任一项所述的终端,其中,所述第一极化天线包括线极化天线或圆极化天线。
  12. 一种通信系统,应用于直视径通信环境;包括基站与至少一个终端;
    所述基站包括第二极化天线,所述第二极化天线包括极性不同的第三天线部件与第四天线部件,所述第三天线部件与所述第四天线部件分别设置为向终端发送第一信号和第二信号;
    所述终端包括第一极化天线,所述第一极化天线包括极性不同的第一天线部件与第二天线部件,所述第一天线部件与所述第三天线部件极性相同,所述第二天线部件与所述第四天线部件极性相同,所述第一天线部件与所述第二天线部件设置为接收所述基站发送的第一信号和第二信号。
  13. 如权利要求12所述通信系统,其中,所述终端包括机载台。
PCT/CN2016/085879 2015-10-30 2016-06-15 一种通信方法、终端及通信系统 WO2016197998A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/772,110 US10530458B2 (en) 2015-10-30 2016-06-15 Communication method, terminal and communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510728028.1 2015-10-30
CN201510728028.1A CN106656285B (zh) 2015-10-30 2015-10-30 一种通信方法、终端及通信系统

Publications (1)

Publication Number Publication Date
WO2016197998A1 true WO2016197998A1 (zh) 2016-12-15

Family

ID=57503017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/085879 WO2016197998A1 (zh) 2015-10-30 2016-06-15 一种通信方法、终端及通信系统

Country Status (3)

Country Link
US (1) US10530458B2 (zh)
CN (1) CN106656285B (zh)
WO (1) WO2016197998A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021134708A1 (zh) * 2019-12-31 2021-07-08 深圳迈瑞生物医疗电子股份有限公司 监护设备、无线通讯设备及接收方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107733453A (zh) * 2017-11-15 2018-02-23 苏州汉明科技有限公司 无线ap设备
KR102644271B1 (ko) * 2020-03-02 2024-03-06 삼성전자주식회사 무선 통신을 위한 안테나 배치 시스템 및 방법
US11683737B1 (en) * 2021-04-22 2023-06-20 T-Mobile Innovations Llc mmWave to Wi-Fi control signal offloading in the event of fading in the mmWave system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102938670A (zh) * 2011-08-15 2013-02-20 北京为邦远航无线技术有限公司 用于飞机的地空宽带无线通信系统及方法
CN103354979A (zh) * 2011-02-09 2013-10-16 高通股份有限公司 高速数据速率的航空器对地通信天线系统
US20140266932A1 (en) * 2013-03-13 2014-09-18 Smartsky Networks LLC Antenna element with high gain toward the horizon

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7590191B1 (en) * 2006-05-01 2009-09-15 Nigel Macrae Means for transmitting two signals on the same frequency at the same time for use in mobile and fixed applications
WO2012015252A2 (ko) * 2010-07-29 2012-02-02 엘지전자 주식회사 무선 통신 시스템에서 프리코딩된 신호 송수신 방법 및 장치
US10014915B2 (en) * 2012-11-12 2018-07-03 Aerohive Networks, Inc. Antenna pattern matching and mounting
JP5992850B2 (ja) * 2013-03-18 2016-09-14 パナソニック株式会社 アンテナ切換装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103354979A (zh) * 2011-02-09 2013-10-16 高通股份有限公司 高速数据速率的航空器对地通信天线系统
CN102938670A (zh) * 2011-08-15 2013-02-20 北京为邦远航无线技术有限公司 用于飞机的地空宽带无线通信系统及方法
US20140266932A1 (en) * 2013-03-13 2014-09-18 Smartsky Networks LLC Antenna element with high gain toward the horizon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021134708A1 (zh) * 2019-12-31 2021-07-08 深圳迈瑞生物医疗电子股份有限公司 监护设备、无线通讯设备及接收方法

Also Published As

Publication number Publication date
US20180316410A1 (en) 2018-11-01
CN106656285B (zh) 2021-03-16
CN106656285A (zh) 2017-05-10
US10530458B2 (en) 2020-01-07

Similar Documents

Publication Publication Date Title
WO2016197998A1 (zh) 一种通信方法、终端及通信系统
US20080111740A1 (en) Radio communication system and radio communication apparatus
TW201240378A (en) Real-time calibration of an air to ground communication system
WO2016090909A1 (zh) 一种天线及有源天线系统
US8948239B1 (en) Methods and apparatus for multi-polarization antenna systems
US10187130B2 (en) Apparatus and method to configure antenna beam width
WO2015067152A1 (zh) 天线系统、天线和基站
US20160261308A1 (en) Architecture for cancelling self interference and enabling full duplex communications
WO2015117532A1 (zh) 双极化天线系统doa-bf权值估计方法和装置
Wang et al. Analysis of MIMO diversity improvement using circular polarized antenna
KR102289946B1 (ko) 편파 빔형성 통신 방법 및 장치
US20140044213A1 (en) Method and apparatus for transmitting data
US8934562B2 (en) Expansion assembly for MIMO system
EP2611055B1 (en) Sending method and device for 8-antenna downlink control channel
EP4329213A1 (en) Apparatus, method, program products for maximizing desired multi-transmission point signal to inter-layer-group-interference via ue beam control
Pan et al. Performance evaluation of 3D MIMO LTE-Advanced system
JP2013541256A5 (zh)
JP7244302B2 (ja) Hapsマルチフィーダリンクにおける干渉キャンセリング
JP2009159453A (ja) 無線通信システム、偏波面調整方法、基地局、及びセンサ局
CN104380719A (zh) Mimo信号发送和接收设备以及包括至少一个这种设备的系统
CN105009369B (zh) 针对极低海拔来扩展轴比带宽
KR20160080847A (ko) 다중 사용자 동시 전송을 위한 다중 편파 전송 시스템 및 방법
CN204441485U (zh) 一种平面裂缝阵列天线功分馈电网络
TWI609529B (zh) 使用於碟盤天線的多元接收器設備與系統
KR102390680B1 (ko) 양방향 mimo 안테나장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16806896

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15772110

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16806896

Country of ref document: EP

Kind code of ref document: A1