WO2016197990A1 - 频带共享网络的pdcch调度及功率调整的方法及装置 - Google Patents

频带共享网络的pdcch调度及功率调整的方法及装置 Download PDF

Info

Publication number
WO2016197990A1
WO2016197990A1 PCT/CN2016/085734 CN2016085734W WO2016197990A1 WO 2016197990 A1 WO2016197990 A1 WO 2016197990A1 CN 2016085734 W CN2016085734 W CN 2016085734W WO 2016197990 A1 WO2016197990 A1 WO 2016197990A1
Authority
WO
WIPO (PCT)
Prior art keywords
degree
aggregation
frequency band
dci
candidate
Prior art date
Application number
PCT/CN2016/085734
Other languages
English (en)
French (fr)
Inventor
韩亚洁
陈琼
秦洪峰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016197990A1 publication Critical patent/WO2016197990A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks

Definitions

  • This application relates to, but is not limited to, the field of wireless communication technology.
  • LTE Long Term Evolution
  • GSM Global System for Mobile Communication
  • GSM Global System for Mobile communications
  • LTE traffic channel can avoid interference by scheduling, and downlink control channel can not completely avoid interference, thus affecting Communication quality of LTE.
  • the physical downlink control channel (Physical Downlink Control Channel, hereinafter referred to as PDCCH) channel in the related art is sent in multiple formats, for example, the following downlink control information (DCI) format, which is carried in the DCI.
  • DCI downlink control information
  • PDSCH Physical Downlink Shared Channel
  • the PDCCH channel is scheduled by using a Control Channel Element (CCE) as a unit, so that DCIs of different users have different code rates, and adaptive scheduling is performed; and interleaving is performed before PDCCH channel resource mapping, so that one user
  • CCE Control Channel Element
  • a different network (such as a GSM network) can cause interference to LTE. Due to the particularity of PDCCH channel mapping, LTE cannot completely avoid interference. Therefore, it will affect the downlink communication of LTE.
  • the present invention provides a method and a device for PDCCH scheduling and power adjustment of a frequency band sharing network, which are used to solve the problem that when the LTE network and the different network are shared in the network band in the related art, the different network causes interference to the LTE network, especially the physical downlink control channel.
  • the interference of the PDCCH which affects the communication quality of the LTE, makes the performance of the physical downlink control channel PDCCH in the frequency band shared network stable, ensures the downlink communication quality of the LTE in the shared frequency band, and makes the frequency band shared network communication efficient and reliable.
  • a method for PDCCH scheduling and power adjustment of a frequency band shared network comprising:
  • the first wireless communication network acquires frequency band occupation information and signal transmission power information of the second wireless communication network in the shared frequency band, and filters the physical layer cell identifier PCI according to the frequency band occupancy information, so that the physical control format indication channel PCFICH and the physical hybrid automatic Retransmitting the indication channel PHICH to a frequency band outside the shared frequency band;
  • the first wireless communication network calculates, according to the PCI of the current cell, the number distribution Hist (CCE) of the resource elements RE in the shared frequency band in the schedulable control channel element CCE;
  • the first wireless communication network adjusts the degree of aggregation of the scheduled downlink control information DCI, determines the minimum interference candidate level in conjunction with the Hist (CCE), and schedules the DCI; wherein the minimum interference candidate level is the aggregation a candidate level with a number of corresponding REs of zero or a candidate level with the smallest number of corresponding REs at each degree of aggregation and the smallest proportion;
  • the degree of aggregation is the number of the CCEs, where one CCE corresponds to 36 REs, and each degree of aggregation corresponds to a determined number of candidate levels; the candidate level is optional under the corresponding degree of aggregation The location of the CCE.
  • the first wireless communication network adjusts the degree of aggregation of the scheduled downlink control information DCI, determines the minimum interference candidate level according to the Hist (CCE), and schedules the DCI, including:
  • the first wireless communication network adjusts the degree of aggregation of the DCI, and combines the Hist (CCE) Determining a zero interference candidate level and scheduling the DCI;
  • the first wireless communication network determines the minimum interference candidate level when the zero interference candidate level does not exist, and schedules the DCI.
  • the first wireless communication network adjusts the degree of aggregation of the DCI, determines a zero interference candidate level in conjunction with the Hist (CCE), and schedules the DCI, including:
  • the first wireless communication network in conjunction with the Hist (CCE), is configured to count the number of REs in each of the candidate levels in the determined number of candidate levels corresponding to the degree of aggregation, and determine the number of the zero interference candidate levels. Number and schedule the DCI.
  • the first wireless communication network in combination with the Hist (CCE), statistics the number of REs in each of the candidate levels in the determined number of candidate levels corresponding to the degree of aggregation, and determines the zero interference.
  • the number of candidate levels, and scheduling the DCI including:
  • the first wireless communication network groups the number of REs in each of the candidate levels in the determined number of candidate levels corresponding to the degree of aggregation into a number set RQ, and counts the elements in the RQ with a value of 0.
  • the candidate level corresponding to the element having the value of 0 in the RQ is a zero interference candidate level
  • the first wireless communication network determines that the zero interference candidate level is multiple, and select one of the zero interference candidate levels to schedule the DCI;
  • the first wireless communication network determines that the zero interference candidate level is one when the number of the elements is equal to 1, and selects the zero interference candidate level to schedule the DCI;
  • the first wireless communication network determines that the zero interference candidate level does not exist, and reduces the aggregation degree
  • the first wireless communication network combines the number of REs in each of the candidate levels in the determined number of candidate levels corresponding to the adjusted degree of aggregation into an RQ, and re-statistics the elements in the RQ with a value of 0. .
  • the first wireless communication network determines the minimum interference candidate level when the zero interference candidate level does not exist, and performs scheduling on the DCI, including:
  • the first wireless communication network reduces the degree of aggregation to a minimum value of 1, and the zero interference candidate level When not present, the candidate level with the smallest number of corresponding REs in each degree of aggregation is counted, and the proportion of the least number of REs under the degree of aggregation is calculated;
  • the first wireless communication network determines that the candidate level of the smallest degree of aggregation is the minimum interference candidate level, and schedules the DCI.
  • a device for PDCCH scheduling and power adjustment of a frequency band shared network comprising:
  • the screening module is configured to: obtain frequency band occupation information and signal transmission power information of the second wireless communication network in the shared frequency band, and filter the physical layer cell identifier PCI according to the frequency band occupancy information, so that the physical control format indication channel PCFICH and the physical hybrid Automatic retransmission indication channel PHICH mapping to a frequency band outside the shared frequency band;
  • the statistics module is configured to: according to the PCI of the current cell that is filtered by the screening module, the number of the resource elements RE in the shared frequency band in the schedulable control channel element CCE is Hist (CCE);
  • a determining module configured to: adjust a degree of aggregation of the scheduled downlink control information DCI, determine a minimum interference candidate level according to the Hist (CCE) obtained by the statistics module, and schedule the DCI; wherein the minimum interference candidate a candidate level in which the number of corresponding REs is zero at the degree of aggregation or a candidate level in which the number of corresponding REs is the smallest and the proportion is the smallest at each degree of polymerization;
  • the power adjustment module is configured to: adjust the transmit power of the DCI according to the minimum interference candidate level and the signal transmit power information determined by the determining module.
  • the degree of aggregation is the number of the CCEs, where one CCE corresponds to 36 REs, and each degree of aggregation corresponds to a determined number of candidate levels; the candidate level is optional under the corresponding degree of aggregation The location of the CCE.
  • the determining module includes:
  • a zero-interference determination sub-module configured to: adjust a degree of aggregation of the DCI, determine a zero interference candidate level in conjunction with the Hist (CCE) obtained by the statistics module, and schedule the DCI;
  • the minimum interference determination submodule is configured to: when the zero interference determination submodule determines that the zero interference candidate level does not exist, determine the minimum interference candidate level, and schedule the DCI.
  • the zero interference determination submodule includes:
  • the aggregation degree determining unit is configured to: according to the near-far point of the user equipment UE in the frequency band sharing network Characteristic, determining a degree of aggregation for scheduling the DCI;
  • the zero interference determining unit is configured to: combine the Hist (CCE) obtained by the statistic module, and count the number of REs in each of the candidate levels in the determined number of candidate levels corresponding to the degree of aggregation, and determine The number of zero interference candidate levels is described, and the DCI is scheduled.
  • CCE Hist
  • the zero interference determining unit includes:
  • the statistic subunit is configured to: set the number of REs in each of the candidate levels in the determined number of candidate levels corresponding to the degree of aggregation to form a number set RQ, and count the elements in the RQ with a value of 0.
  • the candidate level corresponding to the element having the value of 0 in the RQ is a zero interference candidate level
  • a first zero interference determination subunit configured to: when the number of the elements counted by the statistical subunit is greater than 1, determine that the zero interference candidate level is multiple, and select one of the zero interference candidate level pairs Describe the DCI for scheduling;
  • the second interference determination subunit is configured to: when the number of the elements counted by the statistical subunit is equal to 1, determine that the zero interference candidate level is one, and select the zero interference candidate level to DCI scheduling;
  • the aggregation degree adjustment subunit is configured to: when the number of the elements counted by the statistical subunit is equal to 0, determine that the zero interference candidate level does not exist, and adjust the aggregation degree;
  • the statistic sub-unit is further configured to: form an RQ by using the number of REs in each of the candidate levels in the determined number of candidate levels corresponding to the adjusted degree of aggregation as an element, and re-stating the RQ value.
  • the minimum interference determination submodule includes:
  • the statistical calculation unit is configured to: when the degree of aggregation is reduced to a minimum value of 1, and the zero interference candidate level does not exist, the candidate level with the smallest number of corresponding REs in each of the aggregation degrees is counted, and the number of calculations is calculated.
  • the minimum interference determining unit is configured to: determine that the candidate level of the aggregation degree with the smallest proportion calculated by the statistical calculation unit is the minimum interference candidate level, and schedule the DCI.
  • a network side device comprising: PDCCH scheduling and power adjustment device of a frequency band sharing network according to any one of the above.
  • the apparatus determines the minimum interference candidate level by adjusting the aggregation degree of the scheduled downlink control information, and combines the number distribution of the REs in the shared frequency band in the statistical schedulable CCE, thereby scheduling and transmitting the downlink control information in the PDCCH.
  • the power adjustment reduces the interference caused by the different network to the LTE network when the LTE network and the different network are shared in the network band, especially the interference of the physical downlink control channel PDCCH, so that the performance of the PDCCH in the band sharing network is stable and ensures
  • the downlink communication quality of LTE in the shared frequency band makes the frequency band sharing network communication efficient and reliable.
  • FIG. 1 is a flowchart of a method for PDCCH scheduling and power adjustment of a frequency band sharing network according to an embodiment of the present disclosure
  • FIG. 2 is a correspondence table between a degree of aggregation of PDCCHs and a number of candidate levels of a frequency band sharing network in a PDCCH scheduling and power adjustment method of a frequency band sharing network according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart of a method for PDCCH scheduling and power adjustment of another frequency band sharing network according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of an apparatus for PDCCH scheduling and power adjustment of a frequency band sharing network according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of a determining module in a device for PDCCH scheduling and power adjustment of a frequency band sharing network according to an embodiment of the present disclosure
  • FIG. 6 is a flowchart of still another method for PDCCH scheduling and power adjustment of a frequency band sharing network according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of an application of a method for PDCCH scheduling and power adjustment of a frequency band sharing network according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of another application of a method for PDCCH scheduling and power adjustment of a frequency band sharing network according to an embodiment of the present invention.
  • the present invention is directed to the related art, when the LTE network and the different network are shared in the network band, the different network causes interference to the LTE network, especially the interference to the physical downlink control channel (PDCCH), thereby affecting the communication quality of the LTE network, and provides a A method for PDCCH scheduling and power adjustment of a frequency band shared network, by adjusting the degree of aggregation of the scheduled downlink control information, and determining the minimum interference candidate by combining the number distribution of resource elements in the shared frequency band in the statistical schedulable control channel element Level, thereby scheduling the downlink control information in the PDCCH and adjusting the transmit power, thereby reducing interference caused by the different network to the LTE network when the LTE network and the different network are shared in the network band, especially for the physical downlink control channel (PDCCH)
  • the interference of LTE makes the performance of PDCCH in the band sharing network stable, and ensures the downlink communication quality of LTE in the shared frequency band, thereby making the frequency band sharing network communication efficient and reliable.
  • FIG. 1 is a flowchart of a method for PDCCH scheduling and power adjustment of a frequency band sharing network according to an embodiment of the present invention.
  • the method for PDCCH scheduling and power adjustment of the frequency band sharing network provided in this embodiment may include steps 11 to 14:
  • Step 11 The first wireless communication network acquires the frequency band occupation information and the signal transmission power information of the second wireless communication network in the shared frequency band, and filters the physical layer identifier (PCI) according to the frequency band occupancy information.
  • PCI physical layer identifier
  • a Physical Control Format Indicator Channel (PCFICH) and a Physical Hybrid Automatic Repeat Request Indicator Channel (PHICH) are mapped to a frequency band outside the shared frequency band.
  • Step 12 The first wireless communication network collects, according to the PCI of the current cell, the number distribution of resource elements (Resource Element, RE: RE) in the schedulable CCE in the shared frequency band, that is, Hist (CCE).
  • Step 13 The first wireless communication network adjusts the degree of aggregation of the scheduled DCI, determines the minimum interference candidate level in combination with Hist (CCE), and schedules the DCI; wherein the minimum interference candidate level is zero for the corresponding RE under the aggregation degree.
  • CCE Hist
  • Candidate level or the number of corresponding REs at each degree of aggregation is the least and The smallest candidate level.
  • step 14 the transmit power of the DCI is adjusted according to the minimum interference candidate level and the signal transmission power information.
  • the PDCCH scheduling and power adjustment method of the frequency band sharing network determines the aggregation degree of the scheduled downlink control information, and determines the number distribution of resource elements in the shared frequency band in the statistical schedulable control channel element.
  • the minimum interference candidate level so that the downlink control information in the PDCCH is scheduled and the transmit power is adjusted, which reduces the interference caused by the different network to the LTE network when the LTE network and the different network are shared in the network band, especially for the physical downlink control channel.
  • the interference of the PDCCH makes the performance of the PDCCH in the band sharing network stable, ensuring the downlink communication quality of the LTE in the shared frequency band, thereby making the band sharing network communication efficient and reliable.
  • the degree of aggregation in the step 13 of the embodiment of the present invention is the number of CCEs, where one CCE corresponds to 36 REs, and each degree of aggregation corresponds to the determined number of candidate levels; the candidate level is corresponding to the degree of aggregation.
  • Optional CCE location is the number of CCEs, where one CCE corresponds to 36 REs, and each degree of aggregation corresponds to the determined number of candidate levels; the candidate level is corresponding to the degree of aggregation.
  • the aggregation degree value set is different according to different spaces of the DCI mapping.
  • For each degree of aggregation there is a corresponding number of candidate levels, as shown in FIG. 2, which is a PDCCH aggregation degree and candidate of a frequency band sharing network in a PDCCH scheduling and power adjustment method of a frequency band sharing network according to an embodiment of the present invention.
  • the number of levels corresponds to the table.
  • the corresponding table shows the correspondence between the degree of aggregation (L) and the number of candidate levels (M) for different types of spaces.
  • step 13 may include steps 131-132:
  • Step 131 The first wireless communication network adjusts the degree of aggregation of the scheduled DCI, determines a zero interference candidate level in combination with Hist (CCE), and schedules the DCI.
  • CCE Hist
  • Step 132 The first wireless communication network determines a minimum interference candidate level when the zero interference candidate level does not exist, and schedules the DCI.
  • step 131 may include steps 1311 to 1312:
  • Step 1311 The first wireless communication network is based on a user equipment (User Experience, referred to as: UE) determines the degree of aggregation of the scheduled DCI in the near-far point characteristic in the band sharing network.
  • the degree of polymerization in this embodiment also corresponds to the determined number of candidate levels.
  • Step 1312 The first wireless communication network combines Hist (CCE), and counts the number of REs in each candidate level in the determined number of candidate levels corresponding to the degree of aggregation, determines the number of zero interference candidate levels, and schedules the DCI. .
  • CCE Hist
  • step 1312 may include step 13121 to step 13124:
  • Step 13121 The first wireless communication network forms a number set (RQ) of the number of REs in each candidate level in the determined number of candidate levels corresponding to the degree of aggregation, and counts the element with the value of 0 in the RQ, where The candidate level corresponding to the element with a value of 0 in the RQ is a zero interference candidate level.
  • RQ number set
  • Step 13122 The first wireless communication network determines that the number of zero interference candidates is multiple when the number of elements is greater than 1, and selects one of the zero interference candidate levels to schedule the DCI.
  • Step 13123 When the number of elements is equal to 1, the first wireless communication network determines that the zero interference candidate level is one, and selects the zero interference candidate level to schedule the DCI;
  • Step 13124 When the number of elements is equal to 0, the first wireless communication network determines that the zero interference candidate level does not exist, and adjusts the degree of aggregation; subsequently, the adjusted degree of aggregation corresponds to each of the determined number of candidate levels.
  • the number of REs in the candidate level is such that the elements form a set of numbers RQ, and the element whose value in the RQ is 0 is re-stated, that is, step 13121 is re-executed.
  • step 132 may include steps 1321 to 1322:
  • Step 1321 The first wireless communication network adjusts the aggregation degree to a minimum value of 1, and when the zero interference candidate level does not exist, the candidate level with the smallest number of corresponding REs in each aggregation degree is counted, and the RE with the least number of calculations is calculated.
  • Step 1322 The first wireless communication network determines that the candidate level of the smallest degree of aggregation is the minimum interference candidate level, and schedules the DCI.
  • the PDCCH scheduling and power adjustment method of the frequency band sharing network provided by the embodiment of the present invention, by adjusting the aggregation degree of the scheduled downlink control information, and combining the statistics of the number of resource elements in the shared frequency band in the schedulable control channel element , determine the minimum interference candidate level, and thus
  • the downlink control information in the PDCCH is scheduled and the transmit power is adjusted, which reduces the interference caused by the different network to the LTE network when the LTE network and the different network are shared in the network band, especially the interference of the physical downlink control channel PDCCH, so that the LTE is
  • the performance of the PDCCH in the band sharing network is stable, ensuring the downlink communication quality of the LTE in the shared frequency band, thereby making the band sharing network communication efficient and reliable.
  • FIG. 4 is a schematic structural diagram of an apparatus for PDCCH scheduling and power adjustment of a frequency band sharing network according to an embodiment of the present invention.
  • the device provided in this embodiment includes:
  • the screening module 21 is configured to: acquire frequency band occupation information and signal transmission power information of the second wireless communication network in the shared frequency band, and filter the PCI according to the frequency band occupancy information, so that the PCFICH and the PHICH are mapped to a frequency band outside the shared frequency band;
  • the statistics module 22 is configured to: according to the PCI of the current cell that is filtered by the screening module 21, the number of the REs in the shared frequency band in the configurable CCE, that is, Hist (CCE);
  • the determining module 23 is configured to: adjust the degree of aggregation of the scheduled DCI, determine the minimum interference candidate level according to the Hist (CCE) obtained by the statistic module 22, and schedule the DCI; wherein the minimum interference candidate level is corresponding to the aggregation degree a candidate level with a zero number of REs or a candidate level with the least number of corresponding REs at each degree of aggregation and the smallest proportion;
  • the power adjustment module 24 is configured to adjust the transmit power of the DCI according to the minimum interference candidate level and the signal transmit power information determined by the determining module 23.
  • the determining module 23 adjusts the degree of aggregation of the scheduling to the number of CCEs, where one CCE corresponds to 36 REs, and each degree of aggregation corresponds to a determined number of candidate levels; the candidate level is a corresponding aggregation.
  • the location of the optional CCE is a corresponding aggregation.
  • the aggregation degree value set is different according to different spaces of the DCI mapping.
  • There is a corresponding number of candidate levels under each degree of aggregation and as shown in FIG. 2, the correspondence between the degree of aggregation (L) and the number of candidate levels (M) corresponding to different types of spaces is listed.
  • FIG. 5 it is a schematic structural diagram of a determining module in a device for PDCCH scheduling and power adjustment of a frequency band sharing network according to an embodiment of the present invention.
  • the determining module 23 in this embodiment may include:
  • the zero interference determination sub-module 231 is configured to: adjust the degree of aggregation of the scheduled DCI, determine the zero interference candidate level in conjunction with the Hist (CCE) obtained by the statistics module 22, and schedule the DCI;
  • the minimum interference determination sub-module 232 is configured to: when the zero interference determination sub-module 231 determines that the zero interference candidate level does not exist, determine the minimum interference candidate level, and schedule the DCI.
  • the zero interference determination submodule 231 in this embodiment may include:
  • the aggregation degree determining unit is configured to: determine the degree of aggregation of the scheduled DCI according to the near-far feature of the UE in the band sharing network; the degree of aggregation in the embodiment also corresponds to the determined number of candidate levels;
  • the zero interference determining unit is configured to: combine the Hist (CCE) obtained by the statistic module 22, and count the number of REs in each candidate level in the determined number of candidate levels corresponding to the degree of aggregation, and determine the number of zero interference candidate levels. And scheduling DCI.
  • CCE Hist
  • the zero interference determining unit 2312 in this embodiment may include:
  • the statistic subunit is set to: the number of REs in each candidate level in the candidate level corresponding to the degree of aggregation is an element to form a number set RQ, and the element having the value of 0 in the RQ is counted, wherein, in the RQ
  • the candidate level corresponding to the element with a value of 0 is a zero interference candidate level;
  • the first zero interference determining subunit is configured to: when the number of elements counted by the statistical subunit is greater than 1, determine that the zero interference candidate level is multiple, and select one of the zero interference candidate levels to schedule the DCI;
  • the second interference determination subunit is configured to: when the number of elements counted by the statistical subunit is equal to 1, determine that the zero interference candidate level is one, and select the zero interference candidate level to schedule the DCI;
  • the aggregation degree adjustment subunit is configured to: when the number of elements counted by the statistical subunit is equal to 0, determine that the zero interference candidate level does not exist, reduce the aggregation degree; and perform the recalculation by the execution statistics subunit;
  • the statistic subunit is further configured to: re-set the number of REs in each of the candidate levels in the determined number of candidate levels corresponding to the adjusted degree of aggregation to form an RQ, and calculate that the RQ has a value of 0. element.
  • the minimum interference determination submodule may include:
  • the statistical calculation unit is configured to: when the aggregation degree is reduced to a minimum value of 1, and the zero interference candidate level does not exist, the candidate level with the smallest number of corresponding REs under each aggregation degree is counted, and the RE with the smallest number is calculated.
  • the minimum interference determining unit is configured to: determine the proportion of the calculation calculated by the statistical calculation unit
  • the candidate level of the small degree of aggregation is the minimum interference candidate level, and the DCI is scheduled.
  • the apparatus for PDCCH scheduling and power adjustment of the frequency band sharing network determines the minimum number of distributions of REs in the shared frequency band by combining the statistics of the aggregation degree of the scheduled downlink control information.
  • the interference candidate level is used to perform scheduling and transmission power adjustment on the downlink control information in the PDCCH, which reduces interference caused by the different network to the LTE network when the LTE network and the different network are shared in the network band, in particular, the physical downlink control channel PDCCH
  • the interference of LTE makes the performance of PDCCH in the band sharing network stable, and ensures the downlink communication quality of LTE in the shared frequency band, thereby making the frequency band sharing network communication efficient and reliable.
  • FIG. 6 is a flowchart of still another method for PDCCH scheduling and power adjustment of a frequency band sharing network according to an embodiment of the present invention.
  • the method of PDCCH scheduling and power adjustment of the frequency band sharing network will be described in detail below with reference to the flowchart shown in FIG. 6.
  • the method provided in this embodiment may include steps 101 to 105:
  • Step 101 According to the information of the shared network shared frequency band, the LTE filters the PCI, so that the PCFICH and the PHICH avoid the interference of the different network.
  • the different network in this embodiment refers to the second wireless communication network in the foregoing embodiment, and LTE refers to the first wireless communication network in the foregoing embodiment;
  • the LTE acquires the frequency band occupancy of the different wireless network through the shared frequency band network element, and shuns the PCFICH and the PHICH channel to fall into the shared frequency band by screening the PCI, thereby ensuring the performance of the two channels.
  • the resource mapping of the PCFICH and the PHICH in the LTE is segmented, and the mapping location is related to the PCI.
  • the mapping of the two channels can be avoided to avoid the interference band of the different network, and the two downlink physical channels are guaranteed. Performance.
  • the PCFICH is used to notify the UE of the size of the control region of the downlink subframe, that is, the Orthogonal Frequency Division Multiplexing (OFDM) symbol occupied by the control region.
  • the PCFICH is used to indicate the number of OFDM symbols used to transmit the PDCCH in one downlink subframe.
  • Step 102 The distribution of the number of REs of each CCE of the PDCCH in the interference area, that is, Hist (CCE), is calculated in each Transmission Time Interval (TTI).
  • CCE Hist
  • the LTE configures network parameters according to the network management of the LTE, including the bandwidth, the control channel occupation symbol indicates the CFI, and the PHICH group configuration parameter Ng, and counts the number of resource elements RE that each TTI can schedule the CCE to fall into the interference region.
  • Distribution Hist (CCE) Distribution Hist
  • One CCE is composed of 9 REGs (RE Groups, referred to as: RE groups), one REG contains 4 or 6 REs, and one CCE consists of 36 REs.
  • the resource allocation of the PCFICH and the PHICH is in units of REGs; and the relatively large CCEs are defined for the resource allocation of the PDCCH with a relatively large amount of data;
  • Step 103 Under initial aggregation degree, determine whether there is a zero interference candidate level
  • step 103 in this embodiment may include steps 1031 to 1032:
  • Step 1031 Initially determine a degree of aggregation N of the scheduled DCI according to the near-far feature of the UE in the frequency band sharing network, and the candidate level at the degree of aggregation N is K;
  • the degree of aggregation N represents the number of control channel elements CCE
  • the candidate level K represents the CCE position that is selectable under the corresponding degree of aggregation.
  • the aggregation degree value set is different according to different spaces of the DCI mapping.
  • There is a corresponding number of candidate levels under each degree of aggregation and as shown in FIG. 2, the correspondence between the degree of aggregation (L) and the number of candidate levels (M) corresponding to different types of spaces is listed.
  • Step 1032 according to the degree of polymerization N determined in step 1031, combined with Hist (CCE), select the available zero interference candidate level m;
  • the set TQ is referred to as a zero interference candidate level, and is used as an optimal candidate level for scheduling DCI;
  • Step A2 Perform the following classification processing on the statistical zero interference candidate level TQ, which has the following cases:
  • any candidate level m may be selected for DCI scheduling
  • step 104 is performed;
  • Step 104 Adjust the degree of polymerization N, and perform another zero interference candidate level screening on all the degree of polymerization units whose degree of polymerization is less than N;
  • the degree of polymerization in the collection is arranged in descending order, that is, C1 is the maximum degree of polymerization smaller than the degree of polymerization N, and Cj is the minimum degree of polymerization less than the degree of polymerization N.
  • TQ(k) 0, indicating that there is a zero interference candidate level under the degree of polymerization W, that is, C(k), and then processing according to step A2 in step 1032 in step 103; W is smaller than the initial aggregation degree N according to the principle of near-far point in the UE, so power adjustment is required;
  • Step B2 If there is no C(k) equal to 0 in the TQ, that is, there is no zero interference candidate level, it is determined that the candidate level of the aggregation degree with the smallest proportion is the minimum interference candidate level, and the aggregation degree corresponding to the minimum interference candidate level is used as Optimal change in degree of polymerization W.
  • the following steps can be performed:
  • Step B21 the candidate level with the smallest number of corresponding REs under each degree of polymerization is counted, and the proportion of the minimum number of REs under the degree of aggregation is calculated.
  • step B22 it is determined that the candidate level of the degree of aggregation with the smallest proportion is the minimum interference candidate level.
  • Step 105 Perform DCI transmission power adjustment according to the optimal change degree of polymerization DC and the minimum interfered RE ratio of the DCI.
  • the power adjustment principle may be: considering the relative performance relationship between the optimal change degree of polymerization W and the initial degree of polymerization N, and the degree of interference, increasing the DCI transmit power under the optimal change degree of polymerization W In order to improve the demodulation performance of DCI and ensure DCI anti-interference ability.
  • the UE can change the aggregation degree W, the proportion of the interfered RE, and the interference strength, and can define a power adjustment set and perform DCI adaptive power adjustment.
  • the minimum interference candidate level is determined, thereby performing downlink control information in the PDCCH.
  • the scheduling and transmission power adjustment reduces the interference caused by the different network to the LTE network when the LTE network and the different network are shared in the network band, especially the interference to the physical downlink control channel PDCCH, so that the PDCCH performance of the LTE in the frequency band sharing network.
  • the stability ensures the downlink communication quality of LTE in the shared frequency band, thereby making the frequency band sharing network communication efficient and reliable.
  • FIG. 7 is a schematic diagram of an application of a method for PDCCH scheduling and power adjustment of a frequency band sharing network according to an embodiment of the present invention.
  • a shared frequency band network of GSM and LTE is taken as an example.
  • the downlink communication scenario is assumed to be: LTE is 20 megabytes (M) system bandwidth; GSM is 2-way voice, and each channel occupies 200 kilohertz (kHz).
  • the frequency band is a shared frequency band with the LTE shared band resource 200 kHz from the LTE left and right band start carrier positions, that is, the LTE carriers 1 to 14 and 1187 to 1200 (the carrier index is counted from 1).
  • There is power control after GSM access assuming that the power of GSM to LTE per RE is 15 dB higher than that of LTE.
  • This example takes the DCI2A scheduling of the user UE1 as an example, and includes the following steps:
  • Step C1 Filter the PCI according to the model of the shared frequency band, so that the PCFICH and PHICH channels avoid the carrier positions shared by GSM and LTE.
  • the LTE cell identity PCI (values 0-503) is traversed, and the PCFICH and PHICH mapping are obtained to completely avoid the available PCI of the shared frequency band.
  • the available PCI is the available cell identifier of the LTE network in the shared frequency band. Under the filtered PCI, the above two channels completely avoid the interference effect, and the performance is not degraded.
  • Step C2 According to the PCI of the current cell, the number of the REs in the shared frequency band in all the CCEs in the subframe is counted, that is, Hist (CCE), and the shared frequency band scheduling and power adjustment are performed on the DCI of the PDCCH channel.
  • CCE Hist
  • the index of the starting position CCE of the DCI2A scheduling is calculated according to the UE identifier is 4, and the corresponding candidate level is 2.
  • Step C4 performing screening of the optimal change degree of polymerization
  • Step C5 Adjust the transmit power of the DCI2A.
  • the final DCI2A adopts 2CCE under the candidate level 4, and the power is transmitted at a higher ⁇ dB than the 4CCE scheduling.
  • the band sharing network communication is efficient and reliable.
  • FIG. 8 is a schematic diagram of another application of a method for PDCCH scheduling and power adjustment of a frequency band sharing network according to an embodiment of the present invention.
  • the shared frequency band network of GSM and LTE is also taken as an example.
  • LTE is 20M system bandwidth
  • GSM is 2-way voice, each channel occupies 200 kHz band, and is in the left and right frequency bands of LTE.
  • the initial carrier position is 200 kHz from the LTE shared band resource, that is, LTE carriers 1 to 14 and 1187 to 1200 (the carrier index is counted from 1) as a shared frequency band.
  • power control after GSM access assuming that the power of GSM to LTE per RE is 15 dB higher than that of LTE.
  • This example takes the DCI1A scheduling of the user UE2 as an example, and includes the following steps:
  • Step D1 Filter the PCI according to the model of the shared frequency band, so that the PCFICH and PHICH channels avoid the carrier positions shared by GSM and LTE.
  • the LTE cell identity PCI (values 0-503) is traversed, and the PCFICH and PHICH mapping are obtained to completely avoid the available PCI of the shared frequency band.
  • the available PCI is the available cell identifier of the LTE network in the shared frequency band. Under the filtered PCI, the above two channels completely avoid the interference effect, and the performance is not degraded.
  • Step D2 According to the PCI of the current cell, the number of the REs in the shared frequency band in all the CCEs in the subframe is counted, that is, Hist (CCE), and the shared frequency band scheduling and power adjustment are performed on the DCI of the PDCCH channel.
  • CCE Hist
  • Step D4 performing optimal change polymerization degree screening
  • Step D5 Adjust the transmit power of DCI1A.
  • the transmission power of the DCI 1A needs to be adjusted here.
  • the lift ⁇ dB is used here.
  • the final DCI1A adopts 1CCE under candidate level 3, and the power is transmitted at a higher ⁇ dB than the 4CCE scheduling.
  • the minimum interference candidate level is determined, thereby performing downlink control information in the PDCCH.
  • the scheduling and transmission power adjustment reduces the interference caused by the different network to the LTE network when the LTE network and the different network are shared in the network band, especially the interference to the physical downlink control channel PDCCH, so that the PDCCH performance of the LTE in the frequency band sharing network.
  • the stability ensures the downlink communication quality of LTE in the shared frequency band, thereby making the frequency band sharing network communication efficient and reliable.
  • all or part of the steps of the above embodiments may also be implemented using an integrated circuit.
  • the steps may be separately fabricated into individual integrated circuit modules, or a plurality of modules or steps may be fabricated into a single integrated circuit module.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • the device/function module/functional unit in the above embodiment When the device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the embodiment of the present invention determines the minimum interference candidate level by adjusting the aggregation degree of the scheduled downlink control information, and combines the number distribution of REs in the shared frequency band in the statistical schedulable CCE, thereby scheduling the downlink control information in the PDCCH.
  • the adjustment of the transmit power reduces the interference caused by the different network to the LTE network when the LTE network and the different network are shared in the network band, especially the interference of the physical downlink control channel PDCCH, so that the performance of the PDCCH in the band sharing network is stable.
  • the downlink communication quality of LTE in the shared frequency band is ensured, so that the frequency band sharing network communication is efficient and reliable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种频带共享网络的PDCCH调度及功率调整的方法及装置,该方法包括:获取第二无线通信网络在共享频带中的频带占用信息和信号发射功率信息,根据频带占用信息筛选PCI,使PCFICH和PHICH映射到共享频带之外的频带;根据当前小区的PCI,统计可调度CCE中RE在共享频带中的个数分布;调整调度DCI的聚合度,结合个数分布确定最小干扰候选级,对该DCI进行调度;根据该最小干扰候选级和信号发射功率信息,调整DCI的发射功率。

Description

频带共享网络的PDCCH调度及功率调整的方法及装置 技术领域
本申请涉及但不限于无线通信技术领域。
背景技术
随着无线通信技术的发展,有限的网络频谱的高效利用成为无线通信的一个问题。网络频谱共享即为在本运营商A和异运营商B之间实现共享频谱分配的应用,但是网络频谱共享会带来一些问题,主要指两种网络的相互干扰。相关技术中,长期演进(Long Term Evolution,简称为:LTE)网络也有网络频谱共享的应用,例如LTE与全球移动通信系统(Global System for Mobile Communication,简称为:GSM)网络的网络频带共享。GSM主要为语音通信,为优先级高网络;LTE主要为数据通信。在GL(GSM&LTE)共享频带过程中,当GSM与LTE有交叠频带时,GSM会对LTE造成干扰,LTE业务信道可以通过调度避开干扰,而下行控制信道却无法完全避开干扰,从而影响LTE的通信质量。
相关技术中的的物理下行控制信道(Physical Downlink Control Channel,简称为:PDCCH)信道以多种格式发送,例如以下行控制信息(Downlink Control Information,简称为:DCI)format发送,该DCI中承载了物理下行共享信道(Physical Downlink Shared Channel,简称为:PDSCH)的调度和控制信息,如PDSCH的传输格式、资源分配和上行调度许可等。PDCCH信道采用控制信道元素(Control Channel Element,简称为:CCE)为单元进行调度,使得不同用户的DCI具有不同的码率,完成自适应调度;在PDCCH信道资源映射前采用交织运算,使得一个用户的DCI在整个频带上打散映射,从而增强PDCCH信道的频选增益,提高控制信道的鲁棒性。
在频谱共享网络中,异网络(例如GSM网络)会对LTE造成干扰。由于PDCCH信道映射的特殊性,使得LTE无法完全避开干扰。因此,就会对LTE的下行通信造成影响。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本文提供一种频带共享网络的PDCCH调度及功率调整的方法及装置,用以解决相关技术中LTE网络与异网络在网络频带共享时,异网络对LTE网络造成干扰,特别是对物理下行控制信道PDCCH的干扰,从而影响LTE的通信质量的问题,使得LTE在频带共享网络中物理下行控制信道PDCCH的性能稳定,确保了共享频带下LTE的下行通信质量,从而使得频带共享网络通信高效可靠。
一种频带共享网络的PDCCH调度及功率调整的方法,包括:
第一无线通信网络获取第二无线通信网络在共享频带中的频带占用信息和信号发射功率信息,根据所述频带占用信息筛选物理层小区标识PCI,以使物理控制格式指示信道PCFICH和物理混合自动重传指示信道PHICH映射到所述共享频带之外的频带;
所述第一无线通信网络根据当前小区的PCI,统计可调度的控制信道元素CCE中资源元素RE在所述共享频带中的个数分布Hist(CCE);
所述第一无线通信网络调整调度下行控制信息DCI的聚合度,结合所述Hist(CCE)确定最小干扰候选级,并对所述DCI进行调度;其中,所述最小干扰候选级为所述聚合度下对应RE的个数为零的候选级或在每个聚合度下对应RE的个数最少且所占比例最小的候选级;
根据所述最小干扰候选级和所述信号发射功率信息,调整所述DCI的发射功率。
可选地,所述聚合度为所述CCE的个数,其中,一个CCE对应36个RE,每个聚合度对应确定个数的候选级;所述候选级为对应的聚合度下可选的CCE的位置。
可选地,所述第一无线通信网络调整调度下行控制信息DCI的聚合度,结合所述Hist(CCE)确定最小干扰候选级,并对所述DCI进行调度,包括:
所述第一无线通信网络调整调度所述DCI的聚合度,结合所述Hist(CCE) 确定零干扰候选级,并对所述DCI进行调度;
所述第一无线通信网络在所述零干扰候选级不存在时,确定所述最小干扰候选级,并对所述DCI进行调度。
可选地,所述第一无线通信网络调整调度所述DCI的聚合度,结合所述Hist(CCE)确定零干扰候选级,并对所述DCI进行调度,包括:
所述第一无线通信网络根据用户设备UE在频带共享网络中的近远点特性,确定调度所述DCI的聚合度;
所述第一无线通信网络结合所述Hist(CCE),统计所述聚合度对应的确定个数的候选级内每个所述候选级中RE的个数,确定所述零干扰候选级的个数,并对所述DCI进行调度。
可选地,所述第一无线通信网络结合所述Hist(CCE),统计所述聚合度对应的确定个数的候选级内每个所述候选级中RE的个数,确定所述零干扰候选级的个数,并对所述DCI进行调度,包括:
所述第一无线通信网络将所述聚合度对应的确定个数的候选级内每个所述候选级中RE的个数为元素组成一个数集合RQ,统计所述RQ内值为0的元素,其中,所述RQ内值为0的元素对应的候选级为零干扰候选级;
所述第一无线通信网络在所述元素的个数大于1时,确定所述零干扰候选级为多个,选取其中一个零干扰候选级对所述DCI进行调度;
所述第一无线通信网络在所述元素的个数等于1时,确定所述零干扰候选级为一个,选取所述零干扰候选级对所述DCI进行调度;
所述第一无线通信网络在所述元素的个数等于0时,确定所述零干扰候选级不存在时,调小所述聚合度;
所述第一无线通信网络将调整后的聚合度对应的确定个数的候选级内每个所述候选级中RE的个数为元素组成一个RQ,重新统计所述RQ内值为0的元素。
可选地,所述第一无线通信网络在所述零干扰候选级不存在时,确定所述最小干扰候选级,并对所述DCI进行调度,包括:
所述第一无线通信网络调小所述聚合度至最小值1,且所述零干扰候选级 不存在时,统计每个所述聚合度下对应RE的个数最少的候选级,计算个数最少的RE在所属聚合度下所占比例;
所述第一无线通信网络确定所占比例最小的聚合度的候选级为所述最小干扰候选级,并对所述DCI进行调度。
一种频带共享网络的PDCCH调度及功率调整的装置,包括:
筛选模块,设置为:获取第二无线通信网络在共享频带中的频带占用信息和信号发射功率信息,根据所述频带占用信息筛选物理层小区标识PCI,以使物理控制格式指示信道PCFICH和物理混合自动重传指示信道PHICH映射到所述共享频带之外的频带;
统计模块,设置为:根据所述筛选模块筛选得到的当前小区的PCI,统计可调度的控制信道元素CCE中资源元素RE在所述共享频带中的个数分布Hist(CCE);
确定模块,设置为:调整调度下行控制信息DCI的聚合度,结合所述统计模块得到的所述Hist(CCE)确定最小干扰候选级,并对所述DCI进行调度;其中,所述最小干扰候选级为所述聚合度下对应RE的个数为零的候选级或在每个聚合度下对应RE的个数最少且所占比例最小的候选级;
功率调整模块,设置为:根据所述确定模块确定的所述最小干扰候选级和所述信号发射功率信息,调整所述DCI的发射功率。
可选地,所述聚合度为所述CCE的个数,其中,一个CCE对应36个RE,每个聚合度对应确定个数的候选级;所述候选级为对应的聚合度下可选的CCE的位置。
可选地,所述确定模块包括:
零干扰确定子模块,设置为:调整调度所述DCI的聚合度,结合所述统计模块得到的所述Hist(CCE)确定零干扰候选级,并对所述DCI进行调度;
最小干扰确定子模块,设置为:在所述零干扰确定子模块确定出所述零干扰候选级不存在时,确定所述最小干扰候选级,并对所述DCI进行调度。
可选地,所述零干扰确定子模块包括:
聚合度确定单元,设置为:根据用户设备UE在频带共享网络中的近远点 特性,确定调度所述DCI的聚合度;
零干扰确定单元,设置为:结合所述统计模块得到的所述Hist(CCE),统计所述聚合度对应的确定个数的候选级内每个所述候选级中RE的个数,确定所述零干扰候选级的个数,并对所述DCI进行调度。
可选地,所述零干扰确定单元包括:
统计子单元,设置为:将所述聚合度对应的确定个数的候选级内每个所述候选级中RE的个数为元素组成一个数集合RQ,统计所述RQ内值为0的元素,其中,所述RQ内值为0的元素对应的候选级为零干扰候选级;
第一零干扰确定子单元,设置为:在所述统计子单元统计出的所述元素的个数大于1时,确定所述零干扰候选级为多个,选取其中一个零干扰候选级对所述DCI进行调度;
第二零干扰确定子单元,设置为:在所述统计子单元统计出的所述元素的个数等于1时,确定所述零干扰候选级为一个,选取所述零干扰候选级对所述DCI进行调度;
聚合度调整子单元,设置为:在所述统计子单元统计出的所述元素的个数等于0时,确定所述零干扰候选级不存在时,调小所述聚合度;
所述统计子单元,还设置为:将调整后的聚合度对应的确定个数的候选级内每个所述候选级中RE的个数为元素组成一个RQ,重新统计所述RQ内值为0的元素。
可选地,所述最小干扰确定子模块包括:
统计计算单元,设置为:调小所述聚合度至最小值1,且所述零干扰候选级不存在时,统计每个所述聚合度下对应RE的个数最少的候选级,计算个数最少的RE在所属聚合度下所占比例;
最小干扰确定单元,设置为:确定所述统计计算单元计算得到的所占比例最小的聚合度的候选级为所述最小干扰候选级,并对所述DCI进行调度。
一种网络侧设备,包括上述任一项所述的频带共享网络的PDCCH调度及功率调整的装置。
本发明实施例提供的频带共享网络的PDCCH调度及功率调整的方法及 装置,通过对调度下行控制信息的聚合度的调整,同时结合统计的可调度CCE中RE在共享频带中的个数分布,确定最小干扰候选级,从而对PDCCH中的下行控制信息进行调度及发射功率的调整,降低了LTE网络与异网络在网络频带共享时,异网络对LTE网络造成的干扰,特别是对物理下行控制信道PDCCH的干扰,使得LTE在频带共享网络中PDCCH的性能稳定,确保了共享频带下LTE的下行通信质量,从而使得频带共享网络通信高效可靠。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明实施例提供的一种频带共享网络的PDCCH调度及功率调整的方法的流程图;
图2为本发明实施例提供的频带共享网络的PDCCH调度及功率调整的方法中一种频带共享网络的PDCCH的聚合度与候选级个数对应表;
图3为本发明实施例提供另一种频带共享网络的PDCCH调度及功率调整的方法的流程图;
图4为本发明实施例提供的一种频带共享网络的PDCCH调度及功率调整的装置的结构示意图;
图5为本发明实施例提供的频带共享网络的PDCCH调度及功率调整的装置中一种确定模块的结构示意图;
图6为本发明实施例提供的又一种频带共享网络的PDCCH调度及功率调整的方法的流程图;
图7为本发明实施例提供的频带共享网络的PDCCH调度及功率调整的方法的一种应用示意图;
图8为本发明实施例提供的频带共享网络的PDCCH调度及功率调整的方法的另一种应用示意图。
本发明的实施方式
下文中将结合附图对本发明的实施方式进行详细说明。需要说明的是, 在不冲突的情况下,本文中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸根据一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
本发明针对相关技术中LTE网络与异网络在网络频带共享时,异网络对LTE网络造成干扰,特别是对物理下行控制信道(PDCCH)的干扰,从而影响LTE网络的通信质量的问题,提供一种频带共享网络的PDCCH调度及功率调整的方法,通过对调度下行控制信息的聚合度的调整,同时结合统计的可调度控制信道元素中资源元素在共享频带中的个数分布,确定最小干扰候选级,从而对PDCCH中的下行控制信息进行调度及发射功率的调整,降低了LTE网络与异网络在网络频带共享时,异网络对LTE网络造成的干扰,特别是对物理下行控制信道(PDCCH)的干扰,使得LTE在频带共享网络中PDCCH的性能稳定,确保了共享频带下LTE的下行通信质量,从而使得频带共享网络通信高效可靠。
如图1所示,为本发明实施例提供一种频带共享网络的PDCCH调度及功率调整的方法的流程图。本实施例提供的频带共享网络的PDCCH调度及功率调整的方法可以包括步骤11~步骤14:
步骤11,第一无线通信网络获取第二无线通信网络在共享频带中的频带占用信息和信号发射功率信息,根据该频带占用信息筛选物理层小区标识(Physical Cell Identifier,简称为:PCI),以使物理控制格式指示信道(Physical Control Format Indicator Channel,简称为:PCFICH)和物理混合自动重传指示信道(Physical Hybrid Automatic Repeat Request Indicator Channel,PHICH)映射到该共享频带之外的频带。
步骤12,第一无线通信网络根据当前小区的PCI,统计可调度的CCE中资源元素(Resource Element,简称为:RE)在共享频带中的个数分布,即Hist(CCE)。
步骤13,第一无线通信网络调整调度DCI的聚合度,结合Hist(CCE)确定最小干扰候选级,并对DCI进行调度;其中,该最小干扰候选级为聚合度下对应RE的个数为零的候选级或在每个聚合度下对应RE的个数最少且所占 比例最小的候选级。
步骤14,根据最小干扰候选级和信号发射功率信息,调整DCI的发射功率。
本发明实施例的频带共享网络的PDCCH调度及功率调整的方法,通过对调度下行控制信息的聚合度的调整,结合统计的可调度控制信道元素中资源元素在共享频带中的个数分布,确定最小干扰候选级,从而对PDCCH中的下行控制信息进行调度和发射功率的调整,降低了LTE网络与异网络在网络频带共享时,异网络对LTE网络造成的干扰,特别是对物理下行控制信道PDCCH的干扰,使得LTE在频带共享网络中PDCCH的性能稳定,确保了共享频带下LTE的下行通信质量,从而使得频带共享网络通信高效可靠。
可选地,本发明实施例步骤13中的聚合度为CCE的个数,其中,一个CCE对应36个RE,每个聚合度对应确定的候选级个数;该候选级为对应的聚合度下可选的CCE的位置。
可选地,根据DCI映射的空间不同,聚合度取值集合不同。每个聚合度下有对应的候选级个数,如图2所示,为本发明实施例提供的频带共享网络的PDCCH调度及功率调整的方法中一种频带共享网络的PDCCH的聚合度与候选级个数对应表,图2所示对应表中列出不同类型空间对应的聚合度(L)与候选级个数(M)的对应关系。
可选地,如图3所示,为本发明实施例提供另一种频带共享网络的PDCCH调度及功率调整的方法的流程图。在上述图1所示实施例的基础上,本发明实施例中提供的方法中,步骤13可以包括步骤131~132:
步骤131,第一无线通信网络调整调度DCI的聚合度,结合Hist(CCE)确定零干扰候选级,并对DCI进行调度。
步骤132,第一无线通信网络在零干扰候选级不存在时,确定最小干扰候选级,并对DCI进行调度。
可选地,在本发明的一个实施例中,步骤131可以包括步骤1311~步骤1312:
步骤1311,第一无线通信网络根据用户设备(User Experience,简称为: UE)在频带共享网络中的近远点特性,确定调度DCI的聚合度。本实施例中的聚合度同样对应确定个数的候选级。
步骤1312,第一无线通信网络结合Hist(CCE),统计聚合度对应的确定个数的候选级内每个候选级中RE的个数,确定零干扰候选级的个数,并对DCI进行调度。
可选地,在本发明的一个实施例中,步骤1312可以包括步骤步骤13121~步骤步骤13124:
步骤13121,第一无线通信网络将聚合度对应的确定个数的候选级内每个候选级中RE的个数为元素组成一个数集合(RQ),统计该RQ内值为0的元素,其中,RQ内值为0的元素对应的候选级为零干扰候选级。
步骤13122,第一无线通信网络在元素的个数大于1时,确定零干扰候选级为多个,选取其中一个零干扰候选级对DCI进行调度;
步骤13123,第一无线通信网络在元素的个数等于1时,确定零干扰候选级为一个,选取该零干扰候选级对DCI进行调度;
步骤13124,第一无线通信网络在元素的个数等于0时,确定零干扰候选级不存在时,调小聚合度;随后,将调整后的聚合度对应的确定个数的候选级内每个候选级中RE的个数为元素组成一个数集合RQ,重新统计该RQ内值为0的元素,即是重新执行步骤13121。
可选地,在本发明的一个实施例中,步骤132可以包括步骤1321~步骤1322:
步骤1321,第一无线通信网络调小聚合度至最小值1,且零干扰候选级不存在时,统计每个聚合度下对应RE的个数最少的候选级,计算个数最少的RE在其所属聚合度下所占比例;
步骤1322,第一无线通信网络确定所占比例最小的聚合度的候选级为最小干扰候选级,并对DCI进行调度。
本发明实施例提供的频带共享网络的PDCCH调度及功率调整的方法,通过对调度下行控制信息的聚合度的调整,同时结合统计的可调度控制信道元素中资源元素在共享频带中的个数分布,确定最小干扰候选级,从而对 PDCCH中的下行控制信息进行调度及发射功率的调整,降低了LTE网络与异网络在网络频带共享时,异网络对LTE网络造成的干扰,特别是对物理下行控制信道PDCCH的干扰,使得LTE在频带共享网络中PDCCH的性能稳定,确保了共享频带下LTE的下行通信质量,从而使得频带共享网络通信高效可靠。
如图4所示,为本发明实施例提供的一种频带共享网络的PDCCH调度及功率调整的装置的结构示意图。本实施例提供的装置包括:
筛选模块21,设置为:获取第二无线通信网络在共享频带中的频带占用信息和信号发射功率信息,根据该频带占用信息筛选PCI,以使PCFICH和PHICH映射到共享频带之外的频带;
统计模块22,设置为:根据筛选模块21筛选得到的当前小区的PCI,统计可调度的CCE中RE在共享频带中的个数分布,即Hist(CCE);
确定模块23,设置为:调整调度DCI的聚合度,结合统计模块22得到的该Hist(CCE)确定最小干扰候选级,并对该DCI进行调度;其中,该最小干扰候选级为聚合度下对应RE的个数为零的候选级或在每个聚合度下对应RE的个数最少且所占比例最小的候选级;
功率调整模块24,设置为:根据确定模块23确定的最小干扰候选级及信号发射功率信息,调整DCI的发射功率。
可选地,本实施例中确定模块23调整调度的聚合度为CCE的个数,其中,一个CCE对应36个RE,每个聚合度对应确定个数的候选级;该候选级为对应的聚合度下可选的CCE的位置。
可选地,根据DCI映射的空间不同,聚合度取值集合不同。每个聚合度下有对应的候选级个数,同样如图2所示,列出不同类型空间对应的聚合度(L)与候选级个数(M)的对应关系。
可选地,如图5所示,为本发明实施例提供的频带共享网络的PDCCH调度及功率调整的装置中一种确定模块的结构示意图。本实施例中的确定模块23可以包括:
零干扰确定子模块231,设置为:调整调度DCI的聚合度,结合统计模块22得到的Hist(CCE)确定零干扰候选级,并对DCI进行调度;
最小干扰确定子模块232,设置为:在零干扰确定子模块231确定出零干扰候选级不存在时,确定最小干扰候选级,并对DCI进行调度。
可选地,本实施例中的零干扰确定子模块231可以包括:
聚合度确定单元,设置为:根据UE在频带共享网络中的近远点特性,确定调度DCI的聚合度;本实施例中的聚合度同样对应确定个数的候选级;
零干扰确定单元,设置为:结合统计模块22得到的Hist(CCE),统计聚合度对应的确定个数的候选级内每个候选级中RE的个数,确定零干扰候选级的个数,并对DCI进行调度。
可选地,本实施例中的零干扰确定单元2312可以包括:
统计子单元,设置为:将聚合度对应的确定个数的候选级内每个候选级中RE的个数为元素组成一个数集合RQ,统计该RQ内值为0的元素,其中,RQ内值为0的元素对应的候选级为零干扰候选级;
第一零干扰确定子单元,设置为:在统计子单元统计出的元素的个数大于1时,确定零干扰候选级为多个,选取其中一个零干扰候选级对DCI进行调度;
第二零干扰确定子单元,设置为:在统计子单元统计出的元素的个数等于1时,确定零干扰候选级为一个,选取该零干扰候选级对DCI进行调度;
聚合度调整子单元,设置为:在统计子单元统计出的元素的个数等于0时,确定零干扰候选级不存在时,调小所述聚合度;并重新由执行统计子单元执行;
统计子单元,还设置为:重新将调整后的聚合度对应的确定个数的候选级内每个所述候选级中RE的个数为元素组成一个RQ,统计所述RQ内值为0的元素。
可选地,在本发明的一个实施例中,最小干扰确定子模块可以包括:
统计计算单元,设置为:调小所述聚合度至最小值1,且零干扰候选级不存在时,统计每个聚合度下对应RE的个数最少的候选级,计算个数最少的RE在其所属聚合度下所占比例;
最小干扰确定单元,设置为:确定统计计算单元计算得到的所占比例最 小的聚合度的候选级为最小干扰候选级,并对DCI进行调度。
本发明实施例提供的频带共享网络的PDCCH调度及功率调整的装置,通过对调度下行控制信息的聚合度的调整,同时结合统计的可调度CCE中RE在共享频带中的个数分布,确定最小干扰候选级,从而对PDCCH中的下行控制信息进行调度及发射功率的调整,降低了LTE网络与异网络在网络频带共享时,异网络对LTE网络造成的干扰,特别是对物理下行控制信道PDCCH的干扰,使得LTE在频带共享网络中PDCCH的性能稳定,确保了共享频带下LTE的下行通信质量,从而使得频带共享网络通信高效可靠。
如图6所示,为本发明实施例提供的又一种频带共享网络的PDCCH调度及功率调整的方法的流程图。
下面结合图6所示流程图详细说明频带共享网络的PDCCH调度及功率调整的方法。本实施例提供的方法可以包括步骤101~步骤105:
步骤101:根据异网络共享频带信息,LTE筛选PCI,使得PCFICH和PHICH避开异网络的干扰;
本实施例中的异网络指上述实施例中的第二无线通信网络,LTE指上述实施例中的第一无线通信网络;
在本实施例中,LTE通过共享频带网络网元获取异无线网络频带占用情况,通过筛选PCI来避开PCFICH和PHICH信道落入共享频带,从而保证了两个信道的性能。
在实际应用中,LTE中的PCFICH和PHICH的资源映射分段,且映射位置和PCI有关,通过筛选PCI可以使得两种信道的映射避开异网络的干扰频带,保证了这两个下行物理信道的性能。
本实施例中需要说明的是,PCFICH用于通知UE对应下行子帧的控制区域的大小,即控制区域所占的正交频分复用(Orthogonal Frequency Division Multiplexing,简称为:OFDM)符号的个数;或者说,PCFICH用于指示一个下行子帧中用于传输PDCCH的OFDM符号的个数。
步骤102:统计每个传输时间间隔(Transmission Time Interval,简称为:TTI)中PDCCH的每个CCE落入干扰区域的RE个数分布,即Hist(CCE);
在本实施例中,LTE根据LTE的网管配置网络参数,包括带宽,控制信道占用符号指示CFI,PHICH的组配置参数Ng,统计每个TTI可调度CCE落入干扰区域的资源元素RE的个数分布Hist(CCE)。
其中,一个CCE由9个REG(RE Group,简称为:RE组)构成,一个REG中包含4个或6个RE两种情况,一个CCE由36个RE构成;
PCFICH,PHICH的资源分配是以REG为单位的;而定义相对较大的CCE,是为了用于数据量相对较大的PDCCH的资源分配;
LTE中,CCE的编号和分配是连续的。如果系统分配了PCFICH和PHICH后剩余REG的数量为NREG,那么PDCCH可用的CCE的数目为NCCE=NREG/9向下取整。CCE的编号为从0开始到NCCE-1。
步骤103:初始聚合度下,判断是否存在零干扰候选级;
可选地,本实施例中的步骤103可以包括步骤1031~步骤1032:
步骤1031,根据UE在频带共享网络中近远点特性,初步确定调度DCI的聚合度N,且在该聚合度N下的候选级为K;
在本实施例中,聚合度N表示控制信道元素CCE的个数,候选级K表示对应聚合度下可选的CCE位置。
可选地,根据DCI映射的空间不同,聚合度取值集合不同。每个聚合度下有对应的候选级个数,同样如图2所示,列出不同类型空间对应的聚合度(L)与候选级个数(M)的对应关系。
步骤1032,根据步骤1031中确定的聚合度N,结合Hist(CCE),选取可用的零干扰候选级m;
在实际应用中,在该聚合度N的所有候选级K下,统计DCI落入共享频带的RE个数集合RQ,RQ={REnum(0),REnum(1),…REnum(K-1)}。根据统计,进行如下步骤:
步骤A1:统计RQ中为0的REnum(i),其中,i=0,…K-1,形成集合TQ。
在本实施例中,集合TQ称为零干扰候选级,将其作为调度DCI的最优候选级;
步骤A2:对统计的零干扰候选级TQ进行如下分类处理,有以下几种情况:
如果集合TQ的元素的个数大于1,说明可选的零干扰候选级有多个,此时可选取任意一个候选级m进行DCI调度;
例如,还可以兼顾与其他UE调度的避开和调度资源利用率最大化原则进行筛选;
如果集合TQ中元素的个数等于1,说明可选的零干扰候选级仅有这一个,此时可以选取该候选级进行DCI调度;
如果集合TQ中元素的个数为0,说明没有可选的零干扰候选级;则执行步骤104;
步骤104:调整聚合度N,对聚合度小于N的所有聚合度单元进行再次的零干扰候选级筛选;
在实际应用中,假设小于聚合度N的聚合度集合为CQ,CQ={C1,…Cj}。集合中的聚合度按照从大到小的顺序排列,即C1为小于聚合度N的最大聚合度,Cj为小于聚合度N的最小聚合度。在本实施例中,对CQ中每个聚合度进行零干扰候选级统计,得到各个聚合度下的零干扰候选级集合TQ={TQ(C1),…TQ(Cj)},根据统计结果,执行如下步骤:
步骤B1:按照C1到Cj的顺序,找到TQ={TQ(C1),…TQ(Cj)}中最先统计的TQ(k)等于0的聚合度为C(k),作为最优更改聚合度W;
在本实施例中,TQ(k)=0,说明聚合度W下,即C(k)下存在零干扰候选级,则按照步骤103中的步骤1032中的步骤A2进行处理;由于该聚合度W较根据UE中近远点原则的初始聚合度N要小,所以,需要做功率调整;
步骤B2:如果TQ中没有等于0的C(k),即没有零干扰候选级,则确定所占比例最小的聚合度的候选级为最小干扰候选级,该最小干扰候选级对应的聚合度作为最优更改聚合度W。可以执行如下步骤:
步骤B21,统计各聚合度下对应RE的个数最少的候选级,计算个数最少RE在其所属聚合度下所占比例;
步骤B22,确定所占比例最小的聚合度的候选级为最小干扰候选级。
步骤105:根据DCI的最优更改聚合度W和最小被干扰RE比例,进行DCI发射功率调整。
在本实施例中,功率调整原则可以为:考虑最优更改聚合度W和初始聚合度N之间的相对性能关系,以及被干扰的程度,增大最优更改聚合度W下的DCI发射功率,从而提升DCI的解调性能,保证DCI抗干扰能力。
当然,本发明实施例中的功率调整原则不唯一,可以在充分考虑UE更改聚合度W、被干扰RE比例以及干扰强度,可定义功率调整集合,进行DCI自适应功率调整。
本发明实施例中通过对调度下行控制信息的聚合度的调整,同时结合统计的可调度CCE中RE在共享频带中的个数分布,确定最小干扰候选级,从而对PDCCH中的下行控制信息进行调度及发射功率的调整,降低了LTE网络与异网络在网络频带共享时,异网络对LTE网络造成的干扰,特别是对物理下行控制信道PDCCH的干扰,使得LTE在频带共享网络中PDCCH的性能稳定,确保了共享频带下LTE的下行通信质量,从而使得频带共享网络通信高效可靠。
如图7所示,为本发明实施例提供的频带共享网络的PDCCH调度及功率调整的方法的一种应用示意图。
本实施例以GSM与LTE的共享频带网络为例予以示出,这里假设下行的通信场景为:LTE为20兆(M)系统带宽;GSM为2路语音,每路占用200千赫兹(kHz)频带,在LTE的左右频带起始载波位置起与LTE共享频带资源200kHz,即LTE载波1~14和1187~1200(载波索引从1开始计数)为共享频带。GSM接入后有功率控制,假设在GSM对LTE每RE上功率比LTE的功率高15dB。
本实施例以用户UE1的DCI2A调度为例,包括如下步骤:
步骤C1:根据共享频带的模型,筛选PCI,使得PCFICH和PHICH信道避开GSM和LTE共享的载波位置。
例如,遍历LTE小区标识PCI(取值0~503),获取PCFICH和PHICH映射完全避开共享频带的可用PCI。
在本实施例中,可用PCI为共享频带下LTE组网可用小区标识,在筛选的PCI下,上述两种信道完全避开干扰影响,性能无损。
步骤C2:根据当前小区的PCI,统计该子帧下所有CCE中RE在共享频带中的个数分布,即Hist(CCE),对PDCCH信道的DCI进行共享频带的调度和功率调整。
步骤C3:用户UE1为近点专有空间DCI2A调度。例如,以初始选用聚合度N=4CCE进行调度。
根据UE标识计算DCI2A调度的起始位置CCE的索引为4,对应候选级为2个。统计CCE索引4~15上的资源元素RE在所述共享频带中的个数分布Hist=[1 2 2 2 1 1 0 1 0 0 3 1]。按照初始聚合度N=4统计DCI落入共享频带的RE个数集合RQ(N=4)={REnum(0)=1+2+2+2=7,REnum(1)=1+1+0+1=3},即在聚合度为4的非零干扰聚合度候选级
Figure PCTCN2016085734-appb-000001
所以,没有零干扰候选级。
步骤C4:进行最优更改聚合度的筛选;
在本实施例中,小于初始聚合度N的聚合度集合为CQ{C1=2,C2=1}。
在聚合度为2时,统计该聚合度所有候选级(6个)DCI落入共享频带的RE个数集合RQ(N=2)={REnum(0)=1+2=3,REnum(1)=2+2=4,REnum(2)=1+1=2,REnum(3)=0+1=1,REnum(4)=0+0=0,REnum(5)=3+1=4};
即在聚合度为2的非零干扰聚合度候选级TQ(N=2)={m|RQ(N=2)(m)=0}=4。所以在聚合度为2选候选级m=4的位置进行DCI2A的调度。
步骤C5:对DCI2A的发射功率进行调整。
由于最优更改聚合度W=2小于初始聚合度N=4,所以,这里需要对DCI2A的发射功率进行调整。考虑不同聚合度下的性能差异,这里采用抬升αdB。
根据上述的过程,最终DCI2A采用2CCE在候选级4下,功率较4CCE调度时高αdB进行发射。
本发明实施例中通过对调度下行控制信息的聚合度的调整,同时结合统计的可调度CCR中RE在共享频带中的个数分布,确定最小干扰候选级,从而对PDCCH中的下行控制信息进行调度及发射功率的调整,降低了LTE网络与 异网络在网络频带共享时,异网络对LTE网络造成的干扰,特别是对物理下行控制信道PDCCH的干扰,使得LTE在频带共享网络中PDCCH的性能稳定,确保了共享频带下LTE的下行通信质量,从而使得频带共享网络通信高效可靠。
如图8所示,为本发明实施例提供的频带共享网络的PDCCH调度及功率调整的方法的另一种应用示意图。
本实施例同样以GSM与LTE的共享频带网络为例予以示出,这里假设下行的通信场景为:LTE为20M系统带宽;GSM为2路语音,每路占用200kHz频带,在LTE的左右频带起始载波位置起与LTE共享频带资源200kHz,即LTE载波1~14和1187~1200(载波索引从1开始计数)为共享频带。GSM接入后有功率控制,假设在GSM对LTE每RE上功率比LTE的功率高15dB。
本实施例以用户UE2的DCI1A调度为例,包括如下步骤:
步骤D1:根据共享频带的模型,筛选PCI,使得PCFICH和PHICH信道避开GSM和LTE共享的载波位置。
例如,遍历LTE小区标识PCI(取值0~503),获取PCFICH和PHICH映射完全避开共享频带的可用PCI。
在本实施例中,可用PCI为共享频带下LTE组网可用小区标识,在筛选的PCI下,上述两种信道完全避开干扰影响,性能无损。
步骤D2:根据当前小区的PCI,统计该子帧下所有CCE中RE在共享频带中的个数分布,即Hist(CCE),对PDCCH信道的DCI进行共享频带的调度和功率调整。
步骤D3:用户UE2为中点专有DCI1A调度。例如,以初始选用N=4CCE进行调度。
根据UE标识计算DCI1A调度的起始位置为0,候选级为2个。统计CCE索引0~11上的Hist=[1 2 1 0 0 3 1 2 0 2 3 1]。按照初始聚合度N=4统计DCI落入共享频带的RE个数集合RQ(N=4)={REnum(0)=1+2+1+0=4,REnum(1)=3+1+2+0=6},即在聚合度为4的非零干扰聚合度候选级
Figure PCTCN2016085734-appb-000002
Figure PCTCN2016085734-appb-000003
所以,没有零干扰候选级。
步骤D4:进行最优更改聚合度筛选;
在本实施例中,小于初始聚合度N的聚合度集合为CQ{C1=2,C2=1}。
在聚合度为2时,统计该聚合度所有候选级(6个)DCI落入共享频带的RE个数集合RQ(N=2)={REnum(0)=1+2=3,REnum(1)=1+0=1,REnum(2)=0+3=3,REnum(3)=1+2=3,REnum(4)=0+2=2,REnum(5)=3+1=4};即在聚合度为2的非零干扰聚合度候选级
Figure PCTCN2016085734-appb-000004
Figure PCTCN2016085734-appb-000005
在聚合度为1时,统计该聚合度所有候选级(6个)DCI落入共享频带的RE个数集合RQ(N=1)={REnum(0)=1,REnum(1)=2,REnum(2)=1,REnum(3)=0,REnum(4)=0,REnum(5)=3};即在聚合度为1的非零干扰聚合度候选级TQ(N=1)={m|RQ(N=1)(m)=0}={3,4}。
步骤D5:对DCI1A的发射功率进行调整。
由于最优更改聚合度W=1小于初始聚合度N=4,所以,这里需要对DCI1A的发射功率进行调整。考虑不同聚合度下的性能差异,这里采用抬升βdB。
根据上述的过程,最终DCI1A采用1CCE在候选级3下,功率较4CCE调度时高βdB进行发射。
本发明实施例中通过对调度下行控制信息的聚合度的调整,同时结合统计的可调度CCE中RE在共享频带中的个数分布,确定最小干扰候选级,从而对PDCCH中的下行控制信息进行调度及发射功率的调整,降低了LTE网络与异网络在网络频带共享时,异网络对LTE网络造成的干扰,特别是对物理下行控制信道PDCCH的干扰,使得LTE在频带共享网络中PDCCH的性能稳定,确保了共享频带下LTE的下行通信质量,从而使得频带共享网络通信高效可靠。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(根据系统、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这 些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。
上述实施例中的装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
工业实用性
本发明实施例通过对调度下行控制信息的聚合度的调整,同时结合统计的可调度CCE中RE在共享频带中的个数分布,确定最小干扰候选级,从而对PDCCH中的下行控制信息进行调度及发射功率的调整,降低了LTE网络与异网络在网络频带共享时,异网络对LTE网络造成的干扰,特别是对物理下行控制信道PDCCH的干扰,使得LTE在频带共享网络中PDCCH的性能稳定,确保了共享频带下LTE的下行通信质量,从而使得频带共享网络通信高效可靠。

Claims (13)

  1. 一种频带共享网络的PDCCH调度及功率调整的方法,包括:
    第一无线通信网络获取第二无线通信网络在共享频带中的频带占用信息和信号发射功率信息,根据所述频带占用信息筛选物理层小区标识PCI,以使物理控制格式指示信道PCFICH和物理混合自动重传指示信道PHICH映射到所述共享频带之外的频带;
    所述第一无线通信网络根据当前小区的PCI,统计可调度的控制信道元素CCE中资源元素RE在所述共享频带中的个数分布Hist(CCE);
    所述第一无线通信网络调整调度下行控制信息DCI的聚合度,结合所述Hist(CCE)确定最小干扰候选级,并对所述DCI进行调度;其中,所述最小干扰候选级为所述聚合度下对应RE的个数为零的候选级或在每个聚合度下对应RE的个数最少且所占比例最小的候选级;
    根据所述最小干扰候选级和所述信号发射功率信息,调整所述DCI的发射功率。
  2. 根据权利要求1所述的频带共享网络的PDCCH调度及功率调整的方法,其中,所述聚合度为所述CCE的个数,其中,一个CCE对应36个RE,每个聚合度对应确定个数的候选级;所述候选级为对应的聚合度下可选的CCE的位置。
  3. 根据权利要求2所述的频带共享网络的PDCCH调度及功率调整的方法,其中,所述第一无线通信网络调整调度下行控制信息DCI的聚合度,结合所述Hist(CCE)确定最小干扰候选级,并对所述DCI进行调度,包括:
    所述第一无线通信网络调整调度所述DCI的聚合度,结合所述Hist(CCE)确定零干扰候选级,并对所述DCI进行调度;
    所述第一无线通信网络在所述零干扰候选级不存在时,确定所述最小干扰候选级,并对所述DCI进行调度。
  4. 根据权利要求3所述的频带共享网络的PDCCH调度及功率调整的方法,其中,所述第一无线通信网络调整调度所述DCI的聚合度,结合所述Hist(CCE)确定零干扰候选级,并对所述DCI进行调度,包括:
    所述第一无线通信网络根据用户设备UE在频带共享网络中的近远点特性,确定调度所述DCI的聚合度;
    所述第一无线通信网络结合所述Hist(CCE),统计所述聚合度对应的确定个数的候选级内每个所述候选级中RE的个数,确定所述零干扰候选级的个数,并对所述DCI进行调度。
  5. 根据权利要求4所述的频带共享网络的PDCCH调度及功率调整的方法,其中,所述第一无线通信网络结合所述Hist(CCE),统计所述聚合度对应的确定个数的候选级内每个所述候选级中RE的个数,确定所述零干扰候选级的个数,并对所述DCI进行调度,包括:
    所述第一无线通信网络将所述聚合度对应的确定个数的候选级内每个所述候选级中RE的个数为元素组成一个数集合RQ,统计所述RQ内值为0的元素,其中,所述RQ内值为0的元素对应的候选级为零干扰候选级;
    所述第一无线通信网络在所述元素的个数大于1时,确定所述零干扰候选级为多个,选取其中一个零干扰候选级对所述DCI进行调度;
    所述第一无线通信网络在所述元素的个数等于1时,确定所述零干扰候选级为一个,选取所述零干扰候选级对所述DCI进行调度;
    所述第一无线通信网络在所述元素的个数等于0时,确定所述零干扰候选级不存在时,调小所述聚合度;
    所述第一无线通信网络将调整后的聚合度对应的确定个数的候选级内每个所述候选级中RE的个数为元素组成一个RQ,重新统计所述RQ内值为0的元素。
  6. 根据权利要求5所述的频带共享网络的PDCCH调度及功率调整的方法,其中,所述第一无线通信网络在所述零干扰候选级不存在时,确定所述最小干扰候选级,并对所述DCI进行调度,包括:
    所述第一无线通信网络调小所述聚合度至最小值1,且所述零干扰候选级不存在时,统计每个所述聚合度下对应RE的个数最少的候选级,计算个数最少的RE在所属聚合度下所占比例;
    所述第一无线通信网络确定所占比例最小的聚合度的候选级为所述最小 干扰候选级,并对所述DCI进行调度。
  7. 一种频带共享网络的PDCCH调度及功率调整的装置,应用于第一无线通信网络,包括:
    筛选模块,设置为:获取第二无线通信网络在共享频带中的频带占用信息和信号发射功率信息,根据所述频带占用信息筛选物理层小区标识PCI,以使物理控制格式指示信道PCFICH和物理混合自动重传指示信道PHICH映射到所述共享频带之外的频带;
    统计模块,设置为:根据所述筛选模块筛选得到的当前小区的PCI,统计可调度的控制信道元素CCE中资源元素RE在所述共享频带中的个数分布Hist(CCE);
    确定模块,设置为:调整调度下行控制信息DCI的聚合度,结合所述统计模块得到的所述Hist(CCE)确定最小干扰候选级,并对所述DCI进行调度;其中,所述最小干扰候选级为所述聚合度下对应RE的个数为零的候选级或在每个聚合度下对应RE的个数最少且所占比例最小的候选级;
    功率调整模块,设置为:根据所述确定模块确定的所述最小干扰候选级和所述信号发射功率信息,调整所述DCI的发射功率。
  8. 根据权利要求7所述的频带共享网络的PDCCH调度及功率调整的装置,其中,所述聚合度为所述CCE的个数,其中,一个CCE对应36个RE,每个聚合度对应确定个数的候选级;所述候选级为对应的聚合度下可选的CCE的位置。
  9. 根据权利要求8所述的频带共享网络的PDCCH调度及功率调整的装置,其中,所述确定模块包括:
    零干扰确定子模块,设置为:调整调度所述DCI的聚合度,结合所述统计模块得到的所述Hist(CCE)确定零干扰候选级,并对所述DCI进行调度;
    最小干扰确定子模块,设置为:在所述零干扰确定子模块确定出所述零干扰候选级不存在时,确定所述最小干扰候选级,并对所述DCI进行调度。
  10. 根据权利要求9所述的频带共享网络的PDCCH调度及功率调整的装置,其中,所述零干扰确定子模块包括:
    聚合度确定单元,设置为:根据用户设备UE在频带共享网络中的近远点特性,确定调度所述DCI的聚合度;
    零干扰确定单元,设置为:结合所述统计模块得到的所述Hist(CCE),统计所述聚合度对应的确定个数的候选级内每个所述候选级中RE的个数,确定所述零干扰候选级的个数,并对所述DCI进行调度。
  11. 根据权利要求10所述的频带共享网络的PDCCH调度及功率调整的装置,其中,所述零干扰确定单元包括:
    统计子单元,设置为:将所述聚合度对应的确定个数的候选级内每个所述候选级中RE的个数为元素组成一个数集合RQ,统计所述RQ内值为0的元素,其中,所述RQ内值为0的元素对应的候选级为零干扰候选级;
    第一零干扰确定子单元,设置为:在所述统计子单元统计出的所述元素的个数大于1时,确定所述零干扰候选级为多个,选取其中一个零干扰候选级对所述DCI进行调度;
    第二零干扰确定子单元,设置为:在所述统计子单元统计出的所述元素的个数等于1时,确定所述零干扰候选级为一个,选取所述零干扰候选级对所述DCI进行调度;
    聚合度调整子单元,设置为:在所述统计子单元统计出的所述元素的个数等于0时,确定所述零干扰候选级不存在时,调小所述聚合度;
    所述统计子单元,还设置为:将调整后的聚合度对应的确定个数的候选级内每个所述候选级中RE的个数为元素组成一个RQ,重新统计所述RQ内值为0的元素。
  12. 根据权利要求11所述的频带共享网络的PDCCH调度及功率调整的装置,其中,所述最小干扰确定子模块包括:
    统计计算单元,设置为:调小所述聚合度至最小值1,且所述零干扰候选级不存在时,统计每个所述聚合度下对应RE的个数最少的候选级,计算个数最少的RE在所属聚合度下所占比例;
    最小干扰确定单元,设置为:确定所述统计计算单元计算得到的所占比例最小的聚合度的候选级为所述最小干扰候选级,并对所述DCI进行调度。
  13. 一种网络侧设备,包括如权利要求7-12中任一项所述的频带共享网络的PDCCH调度及功率调整的装置。
PCT/CN2016/085734 2015-10-09 2016-06-14 频带共享网络的pdcch调度及功率调整的方法及装置 WO2016197990A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510648339.7A CN106572474B (zh) 2015-10-09 2015-10-09 频带共享网络的pdcch调度及功率调整的方法及装置
CN201510648339.7 2015-10-09

Publications (1)

Publication Number Publication Date
WO2016197990A1 true WO2016197990A1 (zh) 2016-12-15

Family

ID=57504562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/085734 WO2016197990A1 (zh) 2015-10-09 2016-06-14 频带共享网络的pdcch调度及功率调整的方法及装置

Country Status (2)

Country Link
CN (1) CN106572474B (zh)
WO (1) WO2016197990A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111200818A (zh) * 2018-11-19 2020-05-26 中国电信股份有限公司 干扰规避方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102118758A (zh) * 2011-01-28 2011-07-06 中兴通讯股份有限公司 一种gsm系统和lte系统共享频谱的方法及其系统
EP2434820A1 (en) * 2009-05-18 2012-03-28 ZTE Corporation Method and apparatus for allocating control channel resources
CN103178937A (zh) * 2013-03-21 2013-06-26 上海华为技术有限公司 一种物理信道资源管理方法及基站

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102378255B (zh) * 2010-08-24 2014-07-16 中兴通讯股份有限公司 一种提高物理下行控制信道传输性能的方法及装置
CN102802210B (zh) * 2011-05-23 2015-09-16 中兴通讯股份有限公司 一种物理下行控制信道pdcch小区间的干扰处理方法和系统
CN103313401B (zh) * 2012-03-14 2016-03-02 普天信息技术研究院有限公司 一种调整pdcch格式的方法及装置
CN103369536B (zh) * 2012-03-30 2018-04-27 中兴通讯股份有限公司 一种在长期演进系统中分配小区标识的方法及装置
CN102821470B (zh) * 2012-08-08 2015-09-23 大唐移动通信设备有限公司 一种物理下行控制信道资源分配方法及装置
CN105210398B (zh) * 2013-10-28 2019-10-18 华为技术有限公司 资源处理方法和资源处理装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2434820A1 (en) * 2009-05-18 2012-03-28 ZTE Corporation Method and apparatus for allocating control channel resources
CN102118758A (zh) * 2011-01-28 2011-07-06 中兴通讯股份有限公司 一种gsm系统和lte系统共享频谱的方法及其系统
CN103178937A (zh) * 2013-03-21 2013-06-26 上海华为技术有限公司 一种物理信道资源管理方法及基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TEXAS INSTRUMENTS.: "Aggregation Level of ePDCCH with Localized and Distributed Transmission", 3GPP TSG RAN WG1 MEETING #69 R1-122742, 25 May 2012 (2012-05-25), XP050600925 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111200818A (zh) * 2018-11-19 2020-05-26 中国电信股份有限公司 干扰规避方法和装置
CN111200818B (zh) * 2018-11-19 2022-10-21 中国电信股份有限公司 干扰规避方法和装置

Also Published As

Publication number Publication date
CN106572474B (zh) 2020-12-11
CN106572474A (zh) 2017-04-19

Similar Documents

Publication Publication Date Title
CN109802758B (zh) 管理在新无线电中的搜索空间之间的控制信道盲搜索
US8830936B2 (en) Allocating control channel elements to downlink control channels
JP2022550428A (ja) 情報確定方法、情報調整方法、閾値使用方法、端末、及び基地局
US20110299490A1 (en) Methods and Apparatus for Physical Uplink Control Channel (PUCCH) Load Control by Physical Downlink Control Channel (PDCCH) Restrictions
EP2434820A1 (en) Method and apparatus for allocating control channel resources
CN107205280B (zh) 带宽资源的处理方法及装置
EP2579658A1 (en) Method and device for processing inter-cell interference coordination information
CN104717748A (zh) 物理下行控制信道的资源分配方法和装置
KR20200024653A (ko) 무선 통신 시스템에서 제어 정보 반복 전송 방법 및 장치
US20150334733A1 (en) Data scheduling method and device
EP2566270A1 (en) Base station device and user terminal
CN102404862B (zh) 一种lte系统中pdcch资源分配的方法
WO2021204242A1 (zh) 最大pdcch处理能力分配方法、终端设备及网络设备
US11765755B2 (en) Method and apparatus for transmitting and receiving control channel in wireless communication system
WO2013133301A1 (ja) 無線基地局
CN111867097A (zh) 接收下行控制信息的方法和设备
WO2016197990A1 (zh) 频带共享网络的pdcch调度及功率调整的方法及装置
CN112188624B (zh) 一种lte下行控制信道资源分配方法
CN107623948A (zh) 一种pdcch聚合等级下cce候选位置选择方法和装置
US20230047144A1 (en) Physical downlink control channel monitoring method and apparatus
WO2018188369A1 (zh) 一种资源调度方法及装置
WO2016077950A1 (zh) 一种控制信息处理的方法、装置和系统
WO2016188174A1 (zh) 资源动态分配方法及装置
WO2020135648A1 (zh) 资源调度方法、装置、网络设备和可读存储介质
WO2021062703A1 (en) Systems and methods for determining parameters for uplink and downlink transmissions in wireless communication networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16806888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16806888

Country of ref document: EP

Kind code of ref document: A1