WO2016197879A1 - 一种柔性太阳能电池组件 - Google Patents

一种柔性太阳能电池组件 Download PDF

Info

Publication number
WO2016197879A1
WO2016197879A1 PCT/CN2016/084653 CN2016084653W WO2016197879A1 WO 2016197879 A1 WO2016197879 A1 WO 2016197879A1 CN 2016084653 W CN2016084653 W CN 2016084653W WO 2016197879 A1 WO2016197879 A1 WO 2016197879A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
flexible solar
cell module
module according
driving device
Prior art date
Application number
PCT/CN2016/084653
Other languages
English (en)
French (fr)
Inventor
陈惠远
Original Assignee
陈惠远
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陈惠远 filed Critical 陈惠远
Publication of WO2016197879A1 publication Critical patent/WO2016197879A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to the field of solar cell technologies, and in particular, to a flexible solar cell module that can be deformed.
  • the first technical problem to be solved by the present invention is to provide a flexible solar cell module capable of deforming with a light angle, so that the solar cell per unit area absorbs light. It does not require a chasing device, and has the advantages of high photoelectric conversion efficiency, low power consumption, and low cost.
  • a flexible solar cell module of the present invention comprises a flexible solar cell, a bracket, a driving device and a control device.
  • the driving device is mounted on the bracket, and the driving device is connected with the flexible solar cell for driving the flexible solar cell to deform along the illumination angle.
  • the control device is used to control the drive unit.
  • the control device includes a power supply, a control circuit, a sensor circuit, a single chip microcomputer, and a clock circuit.
  • the power supply supplies power to the control device, and the single chip microcomputer is connected to the clock circuit, the control circuit, and the sensor circuit, respectively, and the sensor circuit and the control circuit are The connection and control circuit are connected to the drive unit.
  • a further feature of the invention is that the flexible solar cell is a spherical flexible solar cell.
  • a further feature of the present invention is that it further includes a reflecting device disposed on the bracket and located between the backlight surface of the spherical flexible solar cell and the bracket.
  • a further feature of the invention is that the reflecting means is a planar reflecting device.
  • planar reflecting device is a flat mirror.
  • a further feature of the invention is that the reflecting means is a concentrating device.
  • a further feature of the invention is that the concentrating device is a concave mirror.
  • the focal point of the concave mirror is at the same point as the center of the spherical flexible solar cell.
  • a further feature of the present invention is that a photoreceptor is further provided, the photoreceptor is disposed on the flexible solar cell, and the photoreceptor is coupled to the control device.
  • a further feature of the invention is that the photoreceptor is a phototransistor, a light intensity sensor or a photoresistor.
  • a further feature of the invention is that the drive means is an electric push rod, and one end of the electric push rod is coupled to the bracket and the other end is coupled to the outer or inner surface of the flexible solar cell.
  • a further feature of the invention is that the drive means is a hydraulic push rod and one end of the hydraulic push rod is coupled to the bracket and the other end is coupled to the outer or inner surface of the flexible solar cell.
  • a further feature of the invention is that the power source is coupled to the flexible solar cell.
  • the flexible solar cell module provided by the technical solution has a driving device and a control device, and the control device controls the driving device according to different illumination angles, thereby deforming the flexible solar cell, so that the utilization rate of the flexible solar cell is greatly improved.
  • the area solar cell absorbs a large amount of light, thereby improving the photoelectric conversion efficiency.
  • the flexible solar cell module provided by the technical solution has no chasing device compared with the prior art, so the energy consumption of the work itself is very low, the cost is low, and the floor space is small, which is favorable for popularization and use.
  • the flexible solar cell module provided by the technical solution has a reflecting device, so that the flexible solar cell on one side of the backlight can receive light as well, and the flexible solar cell module occupying the same space has a larger size than the prior art.
  • the light-receiving area is more efficient.
  • the flexible solar cell is a spherical flexible solar cell, and the focal point of the concave mirror is the same as the center of the spherical flexible solar cell, so that the sun reflected by the concave mirror
  • the light is uniformly irradiated in the direction perpendicular to the surface of the spherical flexible solar cell, which greatly increases the absorption of light by the solar cell per unit area, thereby improving the photoelectric conversion efficiency of the present technical solution.
  • the flexible solar cell module provided by the technical solution has a photoreceptor, and the control device automatically controls the driving device to drive the flexible solar cell to deform according to the illumination angle or intensity information collected by the photoreceptor, thereby making the flexibility provided by the technical solution.
  • the control device automatically controls the driving device to drive the flexible solar cell to deform according to the illumination angle or intensity information collected by the photoreceptor, thereby making the flexibility provided by the technical solution.
  • the driving device in the flexible solar cell module provided by the technical solution is an electric push rod or a hydraulic push rod, and the driving device has high precision, small volume, light weight, and low power consumption.
  • FIG. 1 is a schematic structural view of a first embodiment of a flexible solar cell module according to the present invention
  • FIG. 2 is a schematic structural view of a control device of a flexible solar cell module according to the present invention.
  • FIG. 3 is a schematic structural view of a second embodiment of a flexible solar cell module according to the present invention.
  • FIG. 4 is a schematic structural view of a third embodiment of a flexible solar cell module according to the present invention.
  • FIG. 5 is a schematic structural view of a fourth embodiment of a flexible solar cell module according to the present invention.
  • FIG. 6 is a schematic view showing the working principle of a flat solar panel
  • FIG. 7 is a schematic view showing the working principle of a flat panel solar panel having a one-dimensional chasing device
  • FIG. 8 is a schematic view showing the working principle of a spherical flexible solar cell
  • FIG. 9 is a schematic view showing the working principle of a spherical flexible solar cell with a light-tracking device
  • FIG. 10 is a schematic view showing the working principle of the deformation of the spherical flexible solar cell.
  • a flexible solar cell module comprises a flexible solar cell 1, a support 2, a driving device 3 and a control device 4.
  • the driving device 3 is mounted on the bracket 2, and the driving device 3 and the flexible solar cell
  • the 1-phase connection is used to drive the flexible solar cell 1 to be deformed with the illumination angle
  • the control device 4 is used to control the driving device 3.
  • the control device 4 includes a power source 41, a control circuit 42, a sensor circuit 43, a single chip microcomputer 44, and a clock circuit 45.
  • the power source 41 supplies power to the control device 4 as a whole.
  • the power source 41 is a battery or a commercial power source, and the single chip microcomputer 44 and the clock circuit 45
  • the control circuit 42 and the sensor circuit 43 are respectively connected, and the sensor circuit 43 is connected to the control circuit 42, and the control circuit 42 is connected to the drive device 3 to provide a drive signal to the drive device 3.
  • the driving device 3 is an electric push rod.
  • the driving device 3 is a linear motion driving device such as an electric push rod or a hydraulic push rod.
  • a clock interval is preset in the clock circuit 45 in the control device 4, and the clock circuit 45 sends a single time interval every time interval is reached.
  • the slicer 44 has a clock signal.
  • the microcontroller 44 sends a control signal to the control circuit 42.
  • the control circuit 42 further controls the extension or shortening of the motorized push rod to ensure that the light-receiving surface of the flexible solar cell 1 receives illumination as much as possible.
  • the sensor circuit 43 is responsible for giving the microcontroller 44 a signal when the electric actuator is moved to the most distal or proximal end.
  • a flexible solar cell module includes a flexible solar cell 1, a bracket 2, a driving device 3, and a control device 4.
  • the driving device 3 is mounted on the bracket 2, and the driving device 3 and the flexible solar cell are provided.
  • the 1-phase connection is used to drive the flexible solar cell 1 to be deformed with the illumination angle, and the control device 4 is used to control the driving device 3.
  • the control device 4 includes a power source 41, a control circuit 42, a sensor circuit 43, a single chip microcomputer 44, and a clock circuit 45.
  • the power source 41 supplies power to the control device 4 as a whole.
  • the power source 41 is a battery or a commercial power source, and the single chip microcomputer 44 and the clock circuit 45
  • the control circuit 42 and the sensor circuit 43 are respectively connected, and the sensor circuit 43 is connected to the control circuit 42, and the control circuit 42 is connected to the drive device 3 to provide a drive signal to the drive device 3.
  • the driving device 3 is a linear motion driving device such as an electric push rod or a hydraulic push rod.
  • the flexible solar cell 1 is a spherical flexible solar cell
  • the driving device 3 is an electric push rod
  • the electric push rod is two, both disposed outside the spherical flexible solar cell, and two electric push rods.
  • One end is fixedly connected to the bracket 2, and the other end is horizontally connected to both ends of the outer surface of the spherical flexible solar cell through a strip connecting block 31.
  • the reflecting device 5 is disposed on the bracket 2, and the reflecting device 5 is located between the backlight surface of the spherical flexible solar cell and the bracket 2.
  • the reflecting device 5 is a plane mirror, a snow surface or other Planar reflective device with mirror.
  • the clock circuit 45 in the control device 4 is pre-set with a time interval. Each time a time interval is reached, the clock circuit 45 sends a clock signal to the single chip microcomputer 44. Further, the single chip microcomputer 44 sends a control signal to the control circuit 42, the control circuit 42 further controls the extension or shortening of the electric push rod, so that the spherical flexible solar cell is The vertical flat shape, the spherical shape, and the horizontal flat shape are repeatedly deformed to ensure that the light receiving surface of the flexible solar cell 1 receives light as much as possible in the entire area.
  • the sensor circuit 43 is responsible for giving the microcontroller 44 a signal when the electric actuator is moved to the most distal or proximal end.
  • the spherical flexible solar cell has a flat shape in the vertical direction when no external force acts.
  • the sunlight is directed at the horizontally flat spherical flexible solar cell; in the morning, the sunlight is slanted downward, and the two electric push rods are respectively contracted outward to stretch the originally vertical flat spherical flexible solar cell into Spherical; at noon, the sunlight is incident vertically downward, and the electric push rod continues to contract outward, and the spherical flexible solar cell is stretched into a horizontal flat shape by horizontally arranged strip connecting blocks.
  • a flexible solar cell module includes a flexible solar cell 1, a bracket 2, a driving device 3, and a control device 4.
  • the driving device 3 is mounted on the bracket 2, and the driving device 3 and the flexible solar cell are provided.
  • the 1-phase connection is used to drive the flexible solar cell 1 to be deformed with the illumination angle, and the control device 4 is used to control the driving device 3.
  • the control device 4 includes a power source 41, a control circuit 42, a sensor circuit 43, a single chip microcomputer 44, and a clock circuit 45.
  • the power source 41 supplies power to the control device 4 as a whole.
  • the power source 41 is connected to the flexible solar cell 1 and the flexible solar cell 1 is generated.
  • the power is supplied to the power source 41.
  • the single chip microcomputer 44 is connected to the clock circuit 45, the control circuit 42, and the sensor circuit 43, respectively, and the sensor circuit 43 is connected to the control circuit 42, and the control circuit 42 is connected to the driving device 3, which is the driving device 3.
  • the driving device 3 is a linear motion driving device such as an electric push rod or a hydraulic push rod.
  • the flexible solar cell 1 is a spherical flexible solar cell
  • the driving device 3 is an electric push rod
  • the electric push rod is two, both disposed outside the spherical flexible solar cell, and two electric push rods.
  • One end is fixedly connected to the bracket 2, and the other end is horizontally connected to both ends of the outer surface of the spherical flexible solar cell through a strip connecting block 31.
  • the flexible solar cell module provided in this embodiment further includes a reflecting device 5, the reflecting device 5 is disposed on the bracket 2, and the reflecting device 5 is located between the backlight surface of the spherical flexible solar cell and the bracket 2, and the reflecting device 5 is a concave mirror or the like.
  • a concentrating device having a concentrating effect in this embodiment, The reflecting device 5 is a concave mirror, and the focal point of the concave mirror is located at the same point as the spherical center of the spherical flexible solar cell, so as to illuminate the sunlight on the concave mirror so that the concave mirror reflects the light perpendicular to the backlight surface.
  • Directional illumination of the surface of a spherical flexible solar cell is disposed on the bracket 2, and the reflecting device 5 is located between the backlight surface of the spherical flexible solar cell and the bracket 2, and the reflecting device 5 is a concave mirror or the like.
  • the flexible solar cell module provided in this embodiment further includes a plurality of photoreceptors 6 uniformly disposed on the outer surface of the flexible solar cell 1, and the photoreceptor 6 is connected to the control device 4, and the photoreceptor 6 is Any one of a phototransistor, a light intensity sensor, or a photoresistor.
  • the control device 4 sends a control signal to the control circuit 42 according to information such as the illumination angle or light intensity collected by the photoreceptor 6, and the control circuit 42 further controls the extension or shortening of the electric push rod.
  • the spherical flexible solar cell is repeatedly deformed between a vertical flat shape, a spherical shape, and a horizontal flat shape to ensure that the light receiving surface of the flexible solar cell 1 receives light as much as possible in a full area.
  • the sensor circuit 43 is responsible for giving the microcontroller 44 a signal when the electric actuator is moved to the most distal or proximal end.
  • the spherical flexible solar cell has a flat shape in the vertical direction when no external force acts.
  • the sunlight is directed at the horizontally flat spherical flexible solar cell; in the morning, the sunlight is slanted downward, and the two electric push rods are respectively contracted outward to stretch the originally vertical flat spherical flexible solar cell into Spherical; at noon, the sunlight is incident vertically downward, and the electric push rod continues to contract outward, and the spherical flexible solar cell is stretched into a horizontal flat shape by horizontally arranged strip connecting blocks.
  • a flexible solar cell module includes a flexible solar cell 1, a bracket 2, a driving device 3 and a control device 4, and the driving device 3 is mounted on the bracket 2, and the driving device 3 and the flexible solar cell
  • the 1-phase connection is used to drive the flexible solar cell 1 to be deformed with the illumination angle
  • the control device 4 is used to control the driving device 3.
  • the control device 4 includes a power source 41, a control circuit 42, a sensor circuit 43, a single chip microcomputer 44, and a clock circuit 45.
  • the power source 41 supplies power to the control device 4 as a whole.
  • the power source 41 is a battery or a commercial power source, and the power generated by the flexible solar cell 1 is Provided to the power source 41, the single chip microcomputer 44 is connected to the clock circuit 45, the control circuit 42, and the sensor circuit 43, respectively, and the sensor circuit 43 and the control The circuit 42 is connected, and the control circuit 42 is connected to the drive unit 3 to provide a drive signal to the drive unit 3.
  • the driving device 3 is a linear motion driving device such as an electric push rod or a hydraulic push rod.
  • the flexible solar cell 1 is a spherical flexible solar cell
  • the driving device 3 is an electric push rod
  • the electric push rod is two, both disposed inside the spherical flexible solar cell, and two electric push rods.
  • One end is fixedly connected to the bracket 2, and the other end is horizontally connected to the inner surface of the spherical flexible solar cell through a strip connecting block 31, and the two electric push rods are located on a straight line passing through the center of the spherical flexible solar cell.
  • the flexible solar cell module provided in this embodiment further includes a reflecting device 5, the reflecting device 5 is disposed on the bracket 2, and the reflecting device 5 is located between the backlight surface of the spherical flexible solar cell and the bracket 2, and the reflecting device 5 is a concave mirror or the like.
  • a concentrating device having a concentrating effect in the embodiment, the reflecting device 5 is a concave mirror, and the focal point of the concave mirror is located at the same point as the center of the spherical flexible solar cell, thereby illuminating the concave mirror
  • the sunlight is irradiated in a direction perpendicular to the surface of the spherical flexible solar cell of the backlight surface after being reflected by the concave mirror.
  • the flexible solar cell module provided in this embodiment further includes a plurality of photoreceptors 6 uniformly disposed on the outer surface of the flexible solar cell 1, and the photoreceptor 6 is connected to the control device 4, and the photoreceptor 6 is Any one of a phototransistor, a light intensity sensor, or a photoresistor.
  • the control device 4 sends a control signal to the control circuit 42 according to information such as the illumination angle or light intensity collected by the photoreceptor 6, and the control circuit 42 further controls the extension or shortening of the electric push rod.
  • the spherical flexible solar cell is repeatedly deformed between a vertical flat shape, a spherical shape, and a horizontal flat shape to ensure that the light receiving surface of the flexible solar cell 1 receives light as much as possible in a full area.
  • the sensor circuit 43 is responsible for giving the microcontroller 44 a signal when the electric actuator is moved to the most distal or proximal end. Specifically, the spherical flexible solar cell is flat in the horizontal direction when no external force acts.
  • the sunlight is directed at the horizontally flat spherical flexible solar cell; in the morning, the sunlight is slanted downward, and the two electric push rods are respectively contracted outward to stretch the originally vertical flat spherical flexible solar cell into Spherical; at noon, the sun is incident vertically downwards, the electric push rod continues to contract outward, and the spherical flexible solar power is passed through the horizontally arranged strip connection block The pool is stretched to a horizontal flat shape.
  • AB is a flat solar panel having an area S, and an angle between AB and the horizon is ⁇ .
  • the flat panel has an area of S and an angle ⁇ with the horizon.
  • the spherical panel has the advantage of a large solar contact surface area, and can directly illuminate half of the surface area of the sphere regardless of the angle of the solar illumination, and can maximize the utilization of solar energy by selecting a reflective medium.
  • sunlight can directly illuminate the upper left hemisphere AMB, which can be reflected
  • the range is the lower right hemisphere ANB.
  • the light AC and the light ray BD are parallel tangents of the ball.
  • the spherical solar direct surface AMB is half of the spherical panel, and the solar absorption rate is 100%; the solar reflective surface ANB is also half of the spherical panel.
  • the solar absorption rate depends on the refractive index of the reflecting surface, which is determined by the material properties of the reflecting surface. Assuming that the reflecting surface has a reflectance of ⁇ , the effective ratio of the reflected light is ⁇ *50%, and the surface area of the spherical flexible solar cell is S.
  • the effective area of direct solar energy is: (1 + ⁇ ) * 50% * S;
  • Case 3 If ice is selected as the reflection medium, the reflectance of ice is about 60 to 70%, that is, the utilization efficiency of the solar panel is 80% to 85%.
  • the actual chasing angle of the flat battery chasing system is about +/- 30°.
  • the photoelectric conversion energy of the flat panel chase can be calculated by the following formula:
  • A is the surface area of the flat photovoltaic cell, which is a constant amount
  • e loss 1 is the deformation energy loss of the system
  • ⁇ 1 is the photoelectric conversion efficiency of the thin film battery
  • can be expressed as: ⁇ max is the maximum angle at which the plate can be rotated. T The duration of the day is long.
  • the direction vector of the incident ray is: w is a solar constant, then:
  • Analytical formula is 4 / 3w ⁇ r2, so the power photoelectrically converted 4 / 3w ⁇ r2 ⁇ 2-e 2 loss.
  • an illumination cross-sectional area approximation may be used instead.
  • w is a solar constant
  • a is the short axis length of the elliptical section
  • a max is the maximum short axis length
  • T is the illumination duration of one day
  • is the angle between the incident angle of the ray and the x axis. It can be seen that a and ⁇ are both The function of time, e loss 3 is the deformation energy loss of the system, and ⁇ 3 is the photoelectric conversion efficiency of the thin film battery.
  • c is the long axis length of the elliptical cross section and can be expressed by the following formula:
  • A is the surface area of the ellipsoid and is a constant amount.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种柔性太阳能电池组件,包括柔性太阳能电池(1)、支架(2)、驱动装置(3)和控制设备(4),所述驱动装置(3)安装于所述支架(2)上,所述驱动装置(3)与所述柔性太阳能电池(1)相连接,用于驱动所述柔性太阳能电池(1)随光照角度发生形变,所述控制设备(4)用于控制所述驱动装置(3)。柔性太阳能电池组件无需追光装置,具有光电转换效率高、功耗低、成本低的优点。

Description

一种柔性太阳能电池组件 技术领域
本发明涉及太阳能电池技术领域,尤其涉及一种能够变形的柔性太阳能电池组件。
背景技术
随着全球能源危机日益严重,人们迫切希望可以找到一种可持续发展的清洁能源。太阳能作为一种取之不尽的天然能源,日益受到全世界的关注。而太阳能光伏发电系统就是利用太阳能发展的主要形式之一,因此太阳能电池板应运而生。
众所周知,提高太阳能电池板的光电转换功率,首先需要提高单位面积太阳能电池板对光的吸收的量,与接收太阳光线的电池板的有效面积、光照时间与光照角度,以及电池板材质相关。在有效面积和电池板材质相同条件下,光照时间与光照角度是关键的变量。然而,现有的大多平板式太阳能电池板尽管体积较大,对光的单位面积吸收量却与光照角度的变化关联甚小,至于设有追光组件的平板式太阳能电池板虽然提高了对光的单位面积吸收量,由于追光组件的功耗大、成本高,严重制约其推广使用。
发明内容
针对上述现有技术的缺陷及存在的技术问题,本发明解决的首要技术问题是提供一种柔性太阳能电池组件,该组件能够随光照角度发生形变,使其单位面积太阳能电池对光的吸收量大,且无需追光装置,具有光电转换效率高、功耗低、成本低的优点。
实现上述目的的技术方案是:
本发明的一种柔性太阳能电池组件,包括柔性太阳能电池、支架、驱动装置和控制设备,驱动装置安装于支架上,驱动装置与柔性太阳能电池相连接,用于驱动柔性太阳能电池随光照角度发生形变,控制设备用于控制驱动装置。
本发明的进一步特征为,控制设备包括电源、控制电路、传感器电路、单片机和时钟电路,电源为控制设备供电,单片机与时钟电路、控制电路、传感器电路分别相连接,且传感器电路与控制电路相连接,控制电路与驱动装置相连接。
本发明的进一步特征为,柔性太阳能电池为球形柔性太阳能电池。
本发明的进一步特征为,还包括反射装置,反射装置设置于支架上,且位于球形柔性太阳能电池的背光面与支架之间。
本发明的进一步特征为,反射装置为平面反射设备。
本发明的进一步特征为,平面反射设备为平面镜。
本发明的进一步特征为,反射装置为聚光设备。
本发明的进一步特征为,聚光设备为凹面反射镜。
本发明的进一步特征为,凹面反射镜的焦点与球形柔性太阳能电池的球心位于同一点。
本发明的进一步特征为,还包括感光器,感光器设置于柔性太阳能电池上,且感光器与控制设备相连接。
本发明的进一步特征为,感光器为光电三极管、光强传感器或光敏电阻。
本发明的进一步特征为,驱动装置为电动推杆,且电动推杆的一端与支架相连接,另一端与柔性太阳能电池的外表面或内表面相连接。
本发明的进一步特征为,驱动装置为液压推杆,且液压推杆的一端与支架相连接,另一端与柔性太阳能电池的外表面或内表面相连接。
本发明的进一步特征为,电源与柔性太阳能电池相连接。
本发明由于采用了以上技术方案,使其具有以下有益效果是:
1、本技术方案提供的柔性太阳能电池组件,由于具有驱动装置和控制设备,控制设备根据光照角度的不同控制驱动装置工作,进而柔性太阳能电池发生形变,使得柔性太阳能电池的利用率大大提高,单位面积太阳能电池对光的吸收量大,从而提高了光电转换效率。
2、本技术方案提供的柔性太阳能电池组件,与现有技术相比,无任何追光装置,因此自身工作耗能非常低、成本低,且占地面积小,利于推广使用。
3、本技术方案提供的柔性太阳能电池组件,由于具有反射装置,使得背光一面的柔性太阳能电池同样能够接受到光照,与现有技术相比,占用同样空间大小的柔性太阳能电池组件具有更大的受光面积,工作效率更高。
4、本技术方案提供的柔性太阳能电池组件中,柔性太阳能电池为球形柔性太阳能电池,且凹面反射镜的聚焦点与球形柔性太阳能电池的球心为同一点,从而使得经凹面反射镜反射的太阳光均垂直于球形柔性太阳能电池表面的方向照射,大大提高了单位面积太阳能电池对光的吸收量大,进而提高本技术方案的光电转换效率。
5、本技术方案提供的柔性太阳能电池组件,由于具有感光器,控制设备根据感光器采集到的光照角度或强度信息,自动控制驱动装置驱动柔性太阳能电池发生形变,从而使得本技术方案提供的柔性太阳能电池组件在工作时,始终保持很高的光电装换效率。
6、本技术方案提供的柔性太阳能电池组件中的驱动装置为电动推杆或液压推杆,该驱动装置不仅精度高、体积小、重量轻,而且功耗非常低。
附图说明
图1为本发明一种柔性太阳能电池组件的实施例一结构示意图;
图2为本发明一种柔性太阳能电池组件的控制设备结构示意图;
图3为本发明一种柔性太阳能电池组件的实施例二结构示意图;
图4为本发明一种柔性太阳能电池组件的实施例三结构示意图;
图5为本发明一种柔性太阳能电池组件的实施例四结构示意图;
图6为平板太阳能电池板工作原理示意图;
图7为具有一维追光装置的平板太阳能电池板的工作原理示意图;
图8为球形柔性太阳能电池工作原理示意图;
图9为具有追光装置的球形柔性太阳能电池工作原理示意图;
图10为球形柔性太阳能电池变形工作原理示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
如图1和图2所示,一种柔性太阳能电池组件,包括柔性太阳能电池1、支架2、驱动装置3和控制设备4,驱动装置3安装于支架2上,且驱动装置3与柔性太阳能电池1相连接,用于驱动柔性太阳能电池1随光照角度发生形变,控制设备4用于控制驱动装置3。
其中,控制设备4包括电源41、控制电路42、传感器电路43、单片机44和时钟电路45,电源41为控制设备4整体进行供电,该电源41为蓄电池或为市电,单片机44与时钟电路45、控制电路42、传感器电路43分别相连接,且传感器电路43与控制电路42相连接,控制电路42与驱动装置3相连接,为驱动装置3提供驱动信号。且在本实施例中,驱动装置3为电动推杆。驱动装置3为电动推杆或液压推杆等直线运动的驱动设备。
本实施例提供的柔性太阳能电池组件在工作时,控制设备4中的时钟电路45内预设有一个时间间隔,每达到一个时间间隔,时钟电路45发送给单 片机44一个时钟信号,进一步地,单片机44发送控制信号到控制电路42,控制电路42进一步控制电动推杆伸长或缩短,以确保柔性太阳能电池1的受光面尽可能全面积接收光照。传感器电路43负责当电动推杆运动到最远端或最近端时给单片机44一个信号。
实施例二
如图2和图3所示,一种柔性太阳能电池组件,包括柔性太阳能电池1、支架2、驱动装置3和控制设备4,驱动装置3安装于支架2上,且驱动装置3与柔性太阳能电池1相连接,用于驱动柔性太阳能电池1随光照角度发生形变,控制设备4用于控制驱动装置3。
其中,控制设备4包括电源41、控制电路42、传感器电路43、单片机44和时钟电路45,电源41为控制设备4整体进行供电,该电源41为蓄电池或为市电,单片机44与时钟电路45、控制电路42、传感器电路43分别相连接,且传感器电路43与控制电路42相连接,控制电路42与驱动装置3相连接,为驱动装置3提供驱动信号。驱动装置3为电动推杆或液压推杆等直线运动的驱动设备。
具体地,在本实施例中,柔性太阳能电池1为球形柔性太阳能电池,驱动装置3为电动推杆,且电动推杆为两个,均设置于球形柔性太阳能电池的外部,两个电动推杆的一端分别与支架2固定连接,另一端均通过一个条形连接块31水平连接于球形柔性太阳能电池外表面的两端。
还包括反射装置5,反射装置5设置于支架2上,且该反射装置5位于球形柔性太阳能电池的背光面与支架2之间,在本实施例中,反射装置5为平面镜、冰雪面或其它具有镜面的平面反射设备。
本实施例提供的柔性太阳能电池组件在工作时,控制设备4中的时钟电路45内预设有一个时间间隔,每达到一个时间间隔,时钟电路45发送给单片机44一个时钟信号,进一步地,单片机44发送控制信号到控制电路42,控制电路42进一步控制电动推杆伸长或缩短,使得球形柔性太阳能电池在 竖直扁平状、球形、水平扁平状之间反复形变,以确保柔性太阳能电池1的受光面尽可能全面积接收光照。传感器电路43负责当电动推杆运动到最远端或最近端时给单片机44一个信号。具体为地,球形柔性太阳能电池在没有外力作用时为竖直方向的扁平状。早上时,太阳光水平射向竖直扁平的球形柔性太阳能电池;上午时,太阳光斜向下照射,两个电动推杆分别向外侧收缩,将原本竖直扁平的球形柔性太阳能电池拉伸为球形;中午时,太阳光垂直向下入射,电动推杆继续向外侧收缩,通过水平设置的条状连接块将球形柔性太阳能电池拉伸为水平的扁平状。
实施例三
如图2和图4所示,一种柔性太阳能电池组件,包括柔性太阳能电池1、支架2、驱动装置3和控制设备4,驱动装置3安装于支架2上,且驱动装置3与柔性太阳能电池1相连接,用于驱动柔性太阳能电池1随光照角度发生形变,控制设备4用于控制驱动装置3。
其中,控制设备4包括电源41、控制电路42、传感器电路43、单片机44和时钟电路45,电源41为控制设备4整体进行供电,该电源41与柔性太阳能电池1相连接,柔性太阳能电池1产生的电能提供给电源41,单片机44与时钟电路45、控制电路42、传感器电路43分别相连接,且传感器电路43与控制电路42相连接,控制电路42与驱动装置3相连接,为驱动装置3提供驱动信号。驱动装置3为电动推杆或液压推杆等直线运动的驱动设备。
具体地,在本实施例中,柔性太阳能电池1为球形柔性太阳能电池,驱动装置3为电动推杆,且电动推杆为两个,均设置于球形柔性太阳能电池的外部,两个电动推杆的一端分别与支架2固定连接,另一端均通过一个条形连接块31水平连接于球形柔性太阳能电池外表面的两端。
本实施例提供的柔性太阳能电池组件还包括反射装置5,反射装置5设置于支架2上,且该反射装置5位于球形柔性太阳能电池背光面与支架2之间,反射装置5为凹面反射镜等具有聚光作用的聚光设备,在本实施例中, 反射装置5为凹面反射镜,且凹面反射镜的焦点与球形柔性太阳能电池的球心位于同一点上,从而照射到凹面反射镜上的阳光,使得经凹面反射镜反射后均垂直于背光面的球形柔性太阳能电池表面的方向照射。
本实施例提供的柔性太阳能电池组件还包括多个感光器6,多个感光器6均匀地设置于柔性太阳能电池1的外表面上,且感光器6与控制设备4相连接,感光器6为光电三极管、光强传感器或光敏电阻中的任意一种。
本实施例提供的柔性太阳能电池组件在工作时,控制设备4根据感光器6采集的光照角度或光强等信息,发送控制信号给控制电路42,控制电路42进一步控制电动推杆伸长或缩短,使得球形柔性太阳能电池在竖直扁平状、球形、水平扁平状之间反复形变,以确保柔性太阳能电池1的受光面尽可能全面积接收光照。传感器电路43负责当电动推杆运动到最远端或最近端时给单片机44一个信号。具体为地,球形柔性太阳能电池在没有外力作用时为竖直方向的扁平状。早上时,太阳光水平射向竖直扁平的球形柔性太阳能电池;上午时,太阳光斜向下照射,两个电动推杆分别向外侧收缩,将原本竖直扁平的球形柔性太阳能电池拉伸为球形;中午时,太阳光垂直向下入射,电动推杆继续向外侧收缩,通过水平设置的条状连接块将球形柔性太阳能电池拉伸为水平的扁平状。
实施例四
如图2和图5所示,一种柔性太阳能电池组件,包括柔性太阳能电池1、支架2、驱动装置3和控制设备4,驱动装置3安装于支架2上,且驱动装置3与柔性太阳能电池1相连接,用于驱动柔性太阳能电池1随光照角度发生形变,控制设备4用于控制驱动装置3。
其中,控制设备4包括电源41、控制电路42、传感器电路43、单片机44和时钟电路45,电源41为控制设备4整体进行供电,该电源41为蓄电池或市电,柔性太阳能电池1产生的电能提供给电源41,单片机44与时钟电路45、控制电路42、传感器电路43分别相连接,且传感器电路43与控 制电路42相连接,控制电路42与驱动装置3相连接,为驱动装置3提供驱动信号。驱动装置3为电动推杆或液压推杆等直线运动的驱动设备。
具体地,在本实施例中,柔性太阳能电池1为球形柔性太阳能电池,驱动装置3为电动推杆,且电动推杆为两个,均设置于球形柔性太阳能电池的内部,两个电动推杆的一端分别与支架2固定连接,另一端均通过一个条形连接块31水平连接于球形柔性太阳能电池的内表面,且两个电动推杆位于经过球形柔性太阳能电池球心的一条直线上。
本实施例提供的柔性太阳能电池组件还包括反射装置5,反射装置5设置于支架2上,且该反射装置5位于球形柔性太阳能电池背光面与支架2之间,反射装置5为凹面反射镜等具有聚光作用的聚光设备,在本实施例中,反射装置5为凹面反射镜,且凹面反射镜的焦点与球形柔性太阳能电池的球心位于同一点上,从而照射到凹面反射镜上的阳光,使得经凹面反射镜反射后均垂直于背光面的球形柔性太阳能电池表面的方向照射。
本实施例提供的柔性太阳能电池组件还包括多个感光器6,多个感光器6均匀地设置于柔性太阳能电池1的外表面上,且感光器6与控制设备4相连接,感光器6为光电三极管、光强传感器或光敏电阻中的任意一种。
本实施例提供的柔性太阳能电池组件在工作时,控制设备4根据感光器6采集的光照角度或光强等信息,发送控制信号给控制电路42,控制电路42进一步控制电动推杆伸长或缩短,使得球形柔性太阳能电池在竖直扁平状、球形、水平扁平状之间反复形变,以确保柔性太阳能电池1的受光面尽可能全面积接收光照。传感器电路43负责当电动推杆运动到最远端或最近端时给单片机44一个信号。具体为地,球形柔性太阳能电池在没有外力作用时为水平方向的扁平状。早上时,太阳光水平射向竖直扁平的球形柔性太阳能电池;上午时,太阳光斜向下照射,两个电动推杆分别向外侧收缩,将原本竖直扁平的球形柔性太阳能电池拉伸为球形;中午时,太阳光垂直向下入射,电动推杆继续向外侧收缩,通过水平设置的条状连接块将球形柔性太阳能电 池拉伸为水平的扁平状。
下面将本技术方案与现有技术进行详细对比,进一步说明本技术方案的有益效果:
一、光照垂直面积的计算
1、现有技术中的平板太阳能电池板
如图6所示,假设AB为平板太阳能电池板,其面积为S,AB与地平线夹角为α。
情形1:太阳光与地平线平行时,太阳光在太阳板AB垂直照射面即为OA,则垂直照射面积=s×sinα;情形2:太阳光与太阳板垂直时,太阳光在太阳板AB垂直照射面积就是S;情形3:太阳光与地平线垂直时,太阳光在太阳板AB垂直照射面即为OA,则垂直照射面积=s×cosα。
假设α=60°,则三种情形的太阳光照射到平板太阳能电池板的垂直照射面积为:
Figure PCTCN2016084653-appb-000001
2、现有技术中具有一维追光装置的平板太阳能电池板
如图7所示,围绕Y轴的一维追光情形:
假设平板太阳能电池板面积为S,与地平线夹角为α。
Figure PCTCN2016084653-appb-000002
即当α=45度,太阳直射面积最大为
Figure PCTCN2016084653-appb-000003
则全天单位时间平均照射面积为
Figure PCTCN2016084653-appb-000004
3、球形柔性太阳能电池板
如图8所示,球形电池板具有太阳光接触表面积大的优点,且无论太阳照射角度如何,均可直接照射球体表面积的一半,且可通过选择反射介质进行最大化利用太阳能。假设太阳光可直接照射范围为左上半球AMB,可反射 范围为右下半球ANB。其中光线AC和光线BD为球的平行切线。
步骤1:任意角度的太阳光直接照射球体表面的一半,假设球体半径为R,则直接照射到球体表面积=2πR2;如假设反射光与直射光方向完全相反,在理想状态下,间接反射到球体表面积最大时=2πR2
步骤2:太阳光直射的有效面积为太阳能电池板可吸收的部分表面积=圆AOB的面积=πR2,为太阳光照射面积的一半,即太阳直射有效比率为50%。
结论1:通过比较上述三种太阳能电池,球形柔性太阳能电池板无需使用追光装置,即相当于一个实时与太阳光直射平面太阳能电池板,实际利用率较高且稳定。
4、本发明采用的球形柔性太阳能电池加反射装置
如图8所示,球体太阳能直射面AMB为球形电池板的一半,太阳能吸收率为100%;太阳能反射面ANB也为球形电池板的一半。太阳能吸收率取决于反射面的折射率,由反射面的材料特性决定,假设反射面的反射率为δ,则反射光直射有效比例为δ*50%,球形柔性太阳能电池的表面积为S。
太阳能直射有效面积即为:(1+δ)*50%*S;
太阳能电池板总的太阳能吸收率=(1+δ)*50%;
太阳的直射比率为50%,则太阳能利用效率η=(1+δ)*50%。
情形1:若选择无色玻璃作为反射介质,普通无色玻璃的可见光反射率在8~10%左右,即此时太阳能电池板的利用效率=54%~55%。
情形2:若选择雪作为反射介质,雪的反射率在80~90%左右,即此时太阳能电池板的利用效率=90%~95%。
情形3:若选择冰作为反射介质,冰的反射率在60~70%左右,即此时太阳能电池板的利用效率=80%~85%。
情形4:若选择以镜面作为反射介质,反射率在85~90%左右,镀银玻璃可达到95%,新型纳米镜子可达到99.9%,此时的太阳能电池板的利用率接近100%。
结论:根据上述分析和计算,在同等日照条件下,假设对于平板式追光装置,假设不存在驱动电池板所需的能耗,且不考虑由于时间和季节变化,太阳高度和角度变化导致驱动的路径增长,能耗增加;假设对于球体聚光装置,不考虑反射后重叠、以及由于反射镜与球体的距离及反射镜面积导致的不同程度的阴影问题,则有:同样面积的球形柔性太阳能电池板,采用平板追光式太阳能电池低于球形柔性太阳能电池加聚设备的光电利用率;在自然雪地、冰面等自然条件下,无需额外增加反射装置,可明显提高了光的利用率,具体如下表:
Figure PCTCN2016084653-appb-000005
二、光电转换效率计算
方案1、平板追光方案整体光电转换效率理论计算:
如图7所示,考虑到平板电池的自重以及追光结构的复杂程度与代价,实际应用的平板电池追光系统的可追光角度在+/-30°左右。
则平板追的光电转换能量可以通过如下式计算:
Figure PCTCN2016084653-appb-000006
A为平板光电池的表面积,为一个恒定量,e损耗1为系统的变形电能损耗,η1为薄膜电池的光电转换效率,φ可以表示为:
Figure PCTCN2016084653-appb-000007
φmax此处为平板可转的最大角度,
Figure PCTCN2016084653-appb-000008
T一天的光照时长。
方案2、球体聚光加追光方案整体光电转换效率理论计算:
如图9所示,球体的解析式为:x2+y2+z2=r2
因此球体的任意一点的法向量可以表示为:
Figure PCTCN2016084653-appb-000009
入射光线的方向向量为:
Figure PCTCN2016084653-appb-000010
w为一个太阳常数,则:
Figure PCTCN2016084653-appb-000011
D:x2+z2=r2
上式的解析为4/3wπr2,因此光电转换的后的功率为4/3wπr2η2-e 耗2
方案3、球形电池变形方案整体光电转换效率理论计算:
如图10所示,由于椭球的表面法向与光线的入射方向的积分中包括隐函数,因此为了简化整体的效率转换计算,可以使用光照横截面积近似代替。
设光照能量在一天中的不变,为一个太阳常数w,入射光线的方向向量为:
Figure PCTCN2016084653-appb-000012
Figure PCTCN2016084653-appb-000013
D为椭圆横截面的解析表达,则:
Figure PCTCN2016084653-appb-000014
Figure PCTCN2016084653-appb-000015
w为一个太阳常数,a为椭圆截面的短轴长度,amax为最大的短轴长度,T一天的光照时长,θ为光线入射角与x轴的夹角,可以看出a与θ都是时间的函数,e损耗3为系统的变形电能损耗,η3为薄膜电池的光电转换效率。c为椭圆横截面的长轴长度,可以用如下公式表示:
c=3A/4πa-2a
其中A为椭球的表面积,为一个恒定量。
从上述的计算可以得出:在相同表面积的情况下三种方案的效率平板追光最高,柔性变形次之,圆形追光最后,但同时平板追光的所需损耗的能量最大,其余两者几乎不会有能量损失。因此效率归纳如下表:
  方案1 方案2 方案3
光电转换效率 25% 18% 18%
整体效率(归一化) 1 0.68 0.73
在整体效率上平板追光方案最高,但是方案2与方案3所占空间的大小要远远小于方案1(至少小50%),因此在相同占地空间情况下的方案3的整体效率要高于方案1。
以上结合附图实施例对本发明进行了详细说明,本领域中普通技术人员可根据上述说明对本发明做出种种变化例。因而,实施例中的某些细节不应构成对本发明的限定,本发明将以所附权利要求书界定的范围作为本发明的保护范围。

Claims (14)

  1. 一种柔性太阳能电池组件,其特征在于:包括柔性太阳能电池、支架、驱动装置和控制设备,所述驱动装置安装于所述支架上,且所述驱动装置与所述柔性太阳能电池相连接,用于驱动所述柔性太阳能电池随光照角度发生形变,所述控制设备用于控制所述驱动装置。
  2. 根据权利要求1所述的一种柔性太阳能电池组件,其特征在于:所述控制设备包括电源、控制电路、传感器电路、单片机和时钟电路,所述电源为控制设备供电,所述单片机与时钟电路、控制电路、传感器电路分别相连接,且所述传感器电路与控制电路相连接,所述控制电路与驱动装置相连接。
  3. 根据权利要求1所述的一种柔性太阳能电池组件,其特征在于:所述柔性太阳能电池为球形柔性太阳能电池。
  4. 根据权利要求3所述的一种柔性太阳能电池组件,其特征在于:还包括反射装置,所述反射装置设置于支架上,且位于所述球形柔性太阳能电池的背光面与所述支架之间。
  5. 根据权利要求4所述的一种柔性太阳能电池组件,其特征在于:所述反射装置为平面反射设备。
  6. 根据权利要求5所述的一种柔性太阳能电池组件,其特征在于:所述平面反射设备为平面镜。
  7. 根据权利要求4所述的一种柔性太阳能电池组件,其特征在于:所述反射装置为聚光设备。
  8. 根据权利要求7所述的一种柔性太阳能电池组件,其特征在于:所述聚光设备为凹面反射镜。
  9. 根据权利要求8所述的一种柔性太阳能电池组件,其特征在于:所述凹面反射镜的焦点与所述球形柔性太阳能电池的球心位于同一点。
  10. 根据权利要求1所述的一种柔性太阳能电池组件,其特征在于:还包括感光器,所述感光器设置于所述柔性太阳能电池上,且所述感光器与所述控制设备相连接。
  11. 根据权利要求10所述的一种柔性太阳能电池组件,其特征在于:所述感光器为光电三极管、光强传感器或光敏电阻。
  12. 根据权利要求1-11中任意一项所述的一种柔性太阳能电池组件,其特征在于:所述驱动装置为电动推杆,且所述电动推杆的一端与所述支架相连接,另一端与所述柔性太阳能电池的外表面或内表面相连接。
  13. 根据权利要求1-11中任意一项所述的一种柔性太阳能电池组件,其特征在于:所述驱动装置为液压推杆,且所述液压推杆的一端与所述支架相连接,另一端与所述柔性太阳能电池的外表面或内表面相连接。
  14. 根据权利要求2所述的一种柔性太阳能电池组件,其特征在于:所述电源与所述柔性太阳能电池相连接。
PCT/CN2016/084653 2015-06-12 2016-06-07 一种柔性太阳能电池组件 WO2016197879A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510325295.4 2015-06-12
CN201510325295.4A CN104917449B (zh) 2015-06-12 2015-06-12 一种柔性太阳能电池组件

Publications (1)

Publication Number Publication Date
WO2016197879A1 true WO2016197879A1 (zh) 2016-12-15

Family

ID=54086220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/084653 WO2016197879A1 (zh) 2015-06-12 2016-06-07 一种柔性太阳能电池组件

Country Status (2)

Country Link
CN (1) CN104917449B (zh)
WO (1) WO2016197879A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104917449B (zh) * 2015-06-12 2017-03-08 陈惠远 一种柔性太阳能电池组件
CN107833933A (zh) * 2017-11-28 2018-03-23 高邮久创信息科技有限公司 一种柔性太阳能组件的高效层压方法
CN108494341A (zh) * 2018-05-16 2018-09-04 南通欧贝黎新能源电力股份有限公司 一种适用于半球形和平面两种太阳能电池板的支架

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102263146A (zh) * 2010-05-27 2011-11-30 富士迈半导体精密工业(上海)有限公司 太阳能电池装置
CN202076959U (zh) * 2011-05-03 2011-12-14 广西神达新能源有限公司 一种聚光型太阳能发电装置
CN102820362A (zh) * 2011-06-09 2012-12-12 刘莹 一种可调节光伏系统受光强度的辅助装置
US8746620B1 (en) * 2013-01-23 2014-06-10 Sunlight Photonics Inc. Adaptive solar airframe
CN103918176A (zh) * 2011-09-02 2014-07-09 原子能及能源替代委员会 非平坦光伏设备
CN104917449A (zh) * 2015-06-12 2015-09-16 陈惠远 一种柔性太阳能电池组件
CN204721289U (zh) * 2015-06-12 2015-10-21 陈惠远 一种柔性太阳能电池组件

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003056633A1 (fr) * 2001-12-25 2003-07-10 Josuke Nakata Appareil semi-conducteur d'emission et de reception de lumiere
CN100380685C (zh) * 2002-06-21 2008-04-09 中田仗祐 光电或发光用器件及其制造方法
DE102008033352A1 (de) * 2008-07-16 2010-01-21 Concentrix Solar Gmbh Solarzellenchips mit neuer Geometrie und Verfahren zu deren Herstellung
JP5180306B2 (ja) * 2008-08-08 2013-04-10 京セミ株式会社 採光型太陽電池モジュール
CN204244150U (zh) * 2014-12-23 2015-04-01 南京机电职业技术学院 一种利用球形太阳能发电器进行发电的太阳能发电架
CN204272010U (zh) * 2014-12-31 2015-04-15 九州方园新能源股份有限公司 一种增加晶体硅太阳能电池组件转换效率的装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102263146A (zh) * 2010-05-27 2011-11-30 富士迈半导体精密工业(上海)有限公司 太阳能电池装置
CN202076959U (zh) * 2011-05-03 2011-12-14 广西神达新能源有限公司 一种聚光型太阳能发电装置
CN102820362A (zh) * 2011-06-09 2012-12-12 刘莹 一种可调节光伏系统受光强度的辅助装置
CN103918176A (zh) * 2011-09-02 2014-07-09 原子能及能源替代委员会 非平坦光伏设备
US8746620B1 (en) * 2013-01-23 2014-06-10 Sunlight Photonics Inc. Adaptive solar airframe
CN104917449A (zh) * 2015-06-12 2015-09-16 陈惠远 一种柔性太阳能电池组件
CN204721289U (zh) * 2015-06-12 2015-10-21 陈惠远 一种柔性太阳能电池组件

Also Published As

Publication number Publication date
CN104917449B (zh) 2017-03-08
CN104917449A (zh) 2015-09-16

Similar Documents

Publication Publication Date Title
WO2018161423A1 (zh) 双面发电的平单轴跟踪光伏支架
US10020413B2 (en) Fabrication of a local concentrator system
WO2016197879A1 (zh) 一种柔性太阳能电池组件
TW201110386A (en) Non-imaging light concentrator
CN106016790B (zh) 具备阳光自动跟踪的阳光导入装置
Song et al. Development of a fiber daylighting system based on the parallel mechanism and direct focus detection
US4572160A (en) Heliotropic solar heat collector system
CN103199743A (zh) 一种可控双状态反光聚光太阳能集热发电装置
CN115956338A (zh) 一种增强组件光强的单轴跟踪系统
CN101043187A (zh) 一种反射聚光太阳能光伏发电装置
WO2021103411A1 (zh) 一种组装式角度可调的折板形光伏组件及其光伏系统
CN201248018Y (zh) 全方向太阳光球形聚光装置
KR100600934B1 (ko) 태양광 집광장치
US20200091363A1 (en) Novel lighting system using a solar collector panel
US20220336688A1 (en) Photovoltaic solar collection system and natural illumination apparatus for building integration
CN102356345A (zh) 太阳能聚光装置
CN204721289U (zh) 一种柔性太阳能电池组件
CN210093170U (zh) 一种光伏发电系统
TWI510733B (zh) 引太陽光於室內照明裝置
CN104698577B (zh) 一种焦点固定式非球面太阳聚光器
CN113225013A (zh) 一种利用圆的渐开线进行聚光的太阳能发电装置
CN102636869A (zh) 一种高聚光倍数聚光均匀的复合平面槽式聚光器
CN111106795A (zh) 球体自适应太阳能采集装置
US10199527B2 (en) Solar concentrator and illumination apparatus
CN220544974U (zh) 一种带有聚光槽的光伏板及太阳能装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16806777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16806777

Country of ref document: EP

Kind code of ref document: A1