WO2016197660A1 - 一种载频间协作方法及装置 - Google Patents

一种载频间协作方法及装置 Download PDF

Info

Publication number
WO2016197660A1
WO2016197660A1 PCT/CN2016/077127 CN2016077127W WO2016197660A1 WO 2016197660 A1 WO2016197660 A1 WO 2016197660A1 CN 2016077127 W CN2016077127 W CN 2016077127W WO 2016197660 A1 WO2016197660 A1 WO 2016197660A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier frequency
information
communication node
transmit beam
control channel
Prior art date
Application number
PCT/CN2016/077127
Other languages
English (en)
French (fr)
Inventor
鲁照华
陈艺戬
肖华华
陈宪明
赵晶
王瑜新
戴博
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US15/580,296 priority Critical patent/US20180167174A1/en
Priority to EP16806558.9A priority patent/EP3307001B1/en
Publication of WO2016197660A1 publication Critical patent/WO2016197660A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • This application relates to, but is not limited to, the field of communications.
  • wireless communication networks such as cloud computing, Internet of Things, mobile Internet, mobile video telephony, mobile video conferencing, online games, online video, online music, Image downloads, microblogs, communities, etc.
  • wireless data services will grow by 500 to 1000 times in the next 10 years, with an average annual increase of 1.6 to 2 times.
  • the way to increase the bandwidth of the spectrum is the most direct way to quickly increase the capacity of the wireless network.
  • the spectrum resources used in the traditional wireless communication system are mainly concentrated in the low frequency band (for example, below 6 GHz), and have the characteristics of less available spectrum resources, large coverage, and strong electromagnetic wave diffraction capability, and the design needs to prioritize the improvement of spectrum efficiency.
  • the development and utilization of high frequency bands (for example, above 6 GHz) is an inevitable trend.
  • the high frequency band has many available spectrum resources, fast attenuation of transmission energy, and poor diffraction ability of electromagnetic waves. Its design philosophy should give priority to coverage rather than spectral efficiency.
  • the current carrier-frequency cooperation is mainly concentrated in the low frequency band. Because the characteristics of the carrier frequency are relatively consistent, the method adopted in the fourth generation mobile communication system is also very simple.
  • This paper proposes a carrier-to-frequency cooperation scheme to fully utilize the system capacity enhancement brought by the use of high frequency bands in the fifth generation mobile communication system, and improve the service quality of the entire mobile communication system.
  • a carrier-to-frequency cooperation method includes:
  • the first communication node sends the description information of the second carrier frequency to the second communication node by using the first carrier frequency, where the description information of the second carrier frequency includes one of the following: the transmit beam information of the second carrier frequency, The second carrier frequency pilot information, the second carrier frequency control channel information, the second carrier frequency data channel information, and the second carrier frequency hybrid automatic repeat request HARQ timing information, The time information of the second communication node working at the second carrier frequency.
  • the transmit beam information of the second carrier frequency includes one of: a number of transmit beams, a transmit beam set information, and indication information of a resource of the transmit beam.
  • the number of the transmit beams is smaller than the total number of transmit beams on the second carrier frequency.
  • determining the description information of the second carrier frequency includes:
  • the transmit beam includes a first transmit beam set and a second transmit beam set.
  • a sending period of the transmitting beam in the first transmit beam set is greater than a sending period of the transmit beam in the second transmit beam set.
  • the sending beam set information includes: a correspondence between the at least one transmit beam in the first transmit beam set and the X transmit beams in the second transmit beam set, where X is greater than 1.
  • the pilot information of the second carrier frequency includes one of: a pilot type, indication information of a time-frequency resource used by different types of pilots, and a feedback mode corresponding to different types of pilots, based on different pilots.
  • a pilot type indication information of a time-frequency resource used by different types of pilots
  • a feedback mode corresponding to different types of pilots, based on different pilots.
  • the pilot type includes a first pilot type and a second pilot type, where the number of ports corresponding to the first pilot type is greater than the number of ports corresponding to the second pilot type.
  • the codebook sets used in the feedback modes of the different pilot types are different.
  • the channel estimation parameter comprises a parameter related to a channel estimation algorithm used by the second communication node.
  • control channel information of the second carrier frequency includes one of the following:
  • the transmission period of the control channel, the control information carried by the control channel, and the indication information of the resource used by the control channel is not limited
  • a transmission period of the control channel sent on the second carrier frequency is smaller than a control channel sent on the first carrier frequency.
  • the number of bits describing the resource allocation information in the control information carried by the control channel sent on the second carrier frequency is less than The number of bits of the resource allocation information is described in the control information carried by the control channel sent on the first carrier frequency.
  • the bandwidth occupied by the control channel sent on the second carrier frequency is greater than that sent by the first carrier frequency.
  • the bandwidth occupied by the control channel is greater than that sent by the first carrier frequency.
  • control channel has multiple types, and different types of the control channels have different transmission periods.
  • control channel is a unicast control channel.
  • the data channel information of the second carrier frequency includes one of the following:
  • the extended sequence information used when the second communication node transmits data and the second communication node sends indication information of a carrier frequency used for retransmitting data.
  • the extended sequence information used by the second communications node to send data includes one of the following:
  • the generation method of the spreading sequence, the mapping relationship between the spreading sequence and the transmission resource, and the selection of the spreading sequence choose a method.
  • the carrier frequency used by the second communication node to transmit retransmission data is different from the first carrier frequency and the second carrier frequency.
  • the description information of the second carrier frequency further includes:
  • the second communication node generates a transmission time t2 of the ACK or NAK information for the decoding condition of the downlink data packet transmitted at the time t1 on the second carrier frequency.
  • the difference t2-t1 between the sending time t2 of the ACK or NAK information and the sending time t1 of the downlink data packet is smaller than the ACK or NAK information corresponding to a downlink data packet sent by the first carrier frequency.
  • the HARQ timing information of the second carrier frequency includes:
  • the time at which the second communication node feeds back the HARQ information to the physical layer data packet sent by the second carrier frequency precedes the physical The end of the transmission of the layer packet.
  • the length of the physical layer data packet sent by the second carrier frequency is greater than the maximum physical layer data packet length allowed to be sent on the first carrier frequency.
  • the time information that the second communications node operates at the second carrier frequency refers to a time period in which the second communications node receives the control channel in the second carrier frequency.
  • a carrier-to-frequency cooperation method includes:
  • the second communication node receives the description information of the second carrier frequency that is sent by the first communication node by using the first carrier frequency, and the description information of the second carrier frequency includes one of the following: the transmit beam information of the second carrier frequency, The pilot information of the second carrier frequency, the control channel information of the second carrier frequency, the data channel information of the second carrier frequency, and the hybrid automatic repeat request HARQ timing information of the second carrier frequency, Time information of the second communication node operating at the second carrier frequency;
  • the second communication node operates according to the description information of the second carrier frequency.
  • the transmit beam information of the second carrier frequency includes one of: a number of transmit beams, a transmit beam set information, and indication information of a resource of the transmit beam.
  • the number of transmit beams N is smaller than the total number of transmit beams on the second carrier frequency.
  • the transmit beam includes a first transmit beam set and a second transmit beam set.
  • a sending period of the sending beam in the first sending beam set is greater than a sending period of the sending beam in the second sending beam set;
  • the operating by the second communications node according to the description information of the second carrier frequency includes:
  • the second communication node selects the received transmit beam set according to the transmit beam set information in the description information of the second carrier frequency.
  • the sending beam set information includes: a correspondence between the at least one transmit beam in the first transmit beam set and the X transmit beams in the second transmit beam set, where X is greater than 1.
  • the operating, by the second communications node, according to the description information of the second carrier frequency includes:
  • the second communication node works on the second carrier frequency
  • first receiving a transmit beam in the first transmit beam set and selecting one or more transmit signals with the best signal reception quality, based on the second carrier frequency
  • the correspondence between the selected transmit beam and the transmit beam in the second transmit beam set determines the transmit beam in the second transmit beam set that needs to be received.
  • the pilot information of the second carrier frequency includes one of: a pilot type, indication information of a time-frequency resource used by different types of pilots, and a feedback mode corresponding to different types of pilots, based on different pilots.
  • a pilot type indication information of a time-frequency resource used by different types of pilots
  • a feedback mode corresponding to different types of pilots, based on different pilots.
  • the pilot type includes a first pilot type and a second pilot type
  • the operating by the second communications node according to the description information of the second carrier frequency includes:
  • the second communication node determines, according to the description information of the second carrier frequency, that the number of ports corresponding to the first pilot type is greater than the number of ports corresponding to the second pilot type.
  • the second communication node performs operation according to the description information of the second carrier frequency.
  • the description information of the second carrier frequency include:
  • the second communication node works on the second carrier frequency, obtain global channel information by using the first pilot type, and further determine a second pilot type that needs to be received.
  • the codebook set used in the feedback mode of the different pilot types is different;
  • the operating by the second communications node according to the description information of the second carrier frequency includes:
  • the second communication node When the second communication node operates on the second carrier frequency, determining codebook information based on the first pilot type and/or based on the second pilot type according to a channel condition, and The codebook information is fed back to the first communication node.
  • the channel estimation parameter includes a parameter related to a channel estimation algorithm used by the second communication node
  • the operating by the second communications node according to the description information of the second carrier frequency includes:
  • the corresponding channel estimation algorithm is used according to the description information of the second carrier frequency.
  • control channel information of the second carrier frequency includes one of the following:
  • control channel a transmission period of the control channel, control information carried by the control channel, and indication information of a resource used by the control channel;
  • the operating by the second communications node according to the description information of the second carrier frequency includes:
  • the second communication node receives the control channel on the second carrier frequency according to the description information of the second carrier frequency.
  • a transmission period of the control channel sent on the second carrier frequency is smaller than a control channel sent on the first carrier frequency.
  • the number of bits describing the resource allocation information in the control information carried by the control channel sent on the second carrier frequency is less than The number of bits of the resource allocation information is described in the control information carried by the control channel sent on the first carrier frequency.
  • the second carrier when the frequency band of the second carrier frequency is higher than the frequency band of the first carrier frequency, the second carrier The bandwidth occupied by the control channel sent on the frequency is greater than the bandwidth occupied by the control channel sent on the first carrier frequency.
  • control channel has multiple types, and different types of the control channels have different transmission periods.
  • control channel is a unicast control channel.
  • the data channel information of the second carrier frequency includes one of: extended sequence information used when the second communication node sends data, and an indication that the second communication node sends a carrier frequency used for retransmitting data. information.
  • the extended sequence information used by the second communications node to send data includes one of the following:
  • the operating by the second communications node according to the description information of the second carrier frequency includes:
  • the second communication node transmits data on the second carrier frequency according to the extended sequence information in the description information of the second carrier frequency.
  • the carrier frequency used by the second communication node to transmit retransmission data is different from the first carrier frequency and the second carrier frequency.
  • the description information of the second carrier frequency further includes:
  • the second communication node generates a transmission time t2 of the ACK or NAK information for the decoding condition of the downlink data packet transmitted at the time t1 on the second carrier frequency.
  • the difference t2-t1 between the sending time t2 of the ACK or NAK information and the sending time t1 of the downlink data packet is smaller than the ACK or NAK information corresponding to a downlink data packet sent by the first carrier frequency.
  • the HARQ timing information of the second carrier frequency includes:
  • the second communication node Transmitting the HARQ information to the physical layer data packet sent by the second carrier frequency before the transmission end time of the physical layer data packet;
  • the operating by the second communications node according to the description information of the second carrier frequency includes:
  • the second communication node feeds back HARQ information to the physical layer data packet sent by the second carrier frequency according to the description information of the second carrier frequency.
  • the length of the physical layer data packet sent by the second carrier frequency is greater than the maximum physical layer data packet length allowed to be sent on the first carrier frequency.
  • the time information that the second communications node works at the second carrier frequency refers to a time period in which the second communications node receives the control channel in the second carrier frequency
  • the operating by the second communications node according to the description information of the second carrier frequency includes:
  • the second communication node receives the control channel on the second carrier frequency in a corresponding time period according to the description information of the second carrier frequency.
  • a carrier-to-frequency cooperation device includes:
  • Determining a module configured to: determine description information of the second carrier frequency
  • a sending module configured to: send the description information of the second carrier frequency to the second communications node by using the first carrier frequency, where the description information of the second carrier frequency includes one of: a transmit beam of the second carrier frequency Information, the pilot information of the second carrier frequency, the control channel information of the second carrier frequency, the data channel information of the second carrier frequency, and the hybrid automatic repeat request HARQ timing information of the second carrier frequency And time information of the second communication node working at the second carrier frequency.
  • the transmit beam information of the second carrier frequency includes one of: a number of transmit beams, a transmit beam set information, and indication information of a resource of the transmit beam.
  • the number of the transmit beams is smaller than the total number of transmit beams on the second carrier frequency.
  • the determining module is configured to:
  • the transmit beam includes a first transmit beam set and a second transmit beam set.
  • a sending period of the transmitting beam in the first transmit beam set is greater than a sending period of the transmit beam in the second transmit beam set.
  • the sending beam set information includes: a correspondence between the at least one transmit beam in the first transmit beam set and the X transmit beams in the second transmit beam set, where X is greater than 1 .
  • the pilot information of the second carrier frequency includes one of: a pilot type, indication information of a time-frequency resource used by different types of pilots, and a feedback mode corresponding to different types of pilots, based on different pilots.
  • a pilot type indication information of a time-frequency resource used by different types of pilots
  • a feedback mode corresponding to different types of pilots, based on different pilots.
  • the pilot type includes a first pilot type and a second pilot type, where the number of ports corresponding to the first pilot type is greater than the number of ports corresponding to the second pilot type.
  • the codebook sets used in the feedback modes of the different pilot types are different.
  • the channel estimation parameter comprises a parameter related to a channel estimation algorithm used by the second communication node.
  • control channel information of the second carrier frequency includes one of the following:
  • the transmission period of the control channel, the control information carried by the control channel, and the indication information of the resource used by the control channel is not limited
  • a transmission period of the control channel sent on the second carrier frequency is smaller than a control channel sent on the first carrier frequency.
  • the number of bits describing the resource allocation information in the control information carried by the control channel sent on the second carrier frequency is less than The number of bits of the resource allocation information is described in the control information carried by the control channel sent on the first carrier frequency.
  • the bandwidth occupied by the control channel sent on the second carrier frequency is greater than that sent by the first carrier frequency.
  • the bandwidth occupied by the control channel is greater than that sent by the first carrier frequency.
  • control channel has multiple types, and different types of transmission channels of the control channel are sent.
  • the period is different.
  • control channel is a unicast control channel.
  • the data channel information of the second carrier frequency includes one of the following:
  • the extended sequence information used when the second communication node transmits data and the second communication node sends indication information of a carrier frequency used for retransmitting data.
  • the extended sequence information used by the second communications node to send data includes one of the following:
  • a method of generating a spreading sequence, a mapping relationship between a spreading sequence and a transmission resource, and a method of selecting a spreading sequence is a method of generating a spreading sequence, a mapping relationship between a spreading sequence and a transmission resource, and a method of selecting a spreading sequence.
  • the carrier frequency used by the second communication node to transmit retransmission data is different from the first carrier frequency and the second carrier frequency.
  • the description information of the second carrier frequency further includes:
  • the second communication node generates a transmission time t2 of the ACK or NAK information for the decoding condition of the downlink data packet transmitted at the time t1 on the second carrier frequency.
  • the difference t2-t1 between the sending time t2 of the ACK or NAK information and the sending time t1 of the downlink data packet is smaller than the ACK or NAK information corresponding to a downlink data packet sent by the first carrier frequency.
  • the HARQ timing information of the second carrier frequency includes:
  • the time at which the second communication node feeds back the HARQ information to the physical layer data packet sent by the second carrier frequency precedes the physical The end of the transmission of the layer packet.
  • the length of the physical layer data packet sent by the second carrier frequency is greater than the maximum physical layer data packet length allowed to be sent on the first carrier frequency.
  • the time information that the second communications node operates at the second carrier frequency refers to a time period in which the second communications node receives the control channel in the second carrier frequency.
  • An inter-carrier coordination device is disposed in the second communication node, and includes:
  • the receiving module is configured to: receive description information of the second carrier frequency that is sent by the first communications node by using the first carrier frequency, where the description information of the second carrier frequency includes one of: sending beam information of the second carrier frequency The second carrier frequency pilot information, the second carrier frequency control channel information, the second carrier frequency data channel information, and the second carrier frequency hybrid automatic repeat request HARQ timing information, Time information of the second communication node working at the second carrier frequency;
  • the operation module is configured to: operate according to the description information of the second carrier frequency.
  • the transmit beam information of the second carrier frequency includes one of: a number of transmit beams, a transmit beam set information, and indication information of a resource of the transmit beam.
  • the number of transmit beams N is smaller than the total number of transmit beams on the second carrier frequency.
  • the transmit beam includes a first transmit beam set and a second transmit beam set.
  • a sending period of the sending beam in the first sending beam set is greater than a sending period of the sending beam in the second sending beam set;
  • the operation module is set to:
  • the sending beam set information includes: a correspondence between the at least one transmit beam in the first transmit beam set and the X transmit beams in the second transmit beam set, where X is greater than 1.
  • the operation module is set to:
  • the operating module works on the second carrier frequency
  • first receiving a transmit beam in the first transmit beam set and selecting one or more transmit beams with the best signal reception quality, based on the description of the second carrier frequency
  • the correspondence between the selected transmit beam and the transmit beam in the second transmit beam set determines the transmit beam in the second transmit beam set that needs to be received.
  • the pilot information of the second carrier frequency includes one of the following: a pilot type, different types
  • the indication information of the time-frequency resource used by the pilot corresponds to the feedback mode of different types of pilots, and the channel estimation parameters are based on different pilot types.
  • the pilot type includes a first pilot type and a second pilot type
  • the operation module is set to:
  • the operation module is further configured to:
  • the global channel information is obtained by using the first pilot type, thereby determining the second pilot type that needs to be received.
  • the codebook set used in the feedback mode of the different pilot types is different;
  • the operating module performs operations according to the description information of the second carrier frequency, including:
  • the operation module when operating on the second carrier frequency, determines codebook information based on the first pilot type and/or based on the second pilot type according to a channel condition, and the code is This information is fed back to the first communication node.
  • the channel estimation parameter includes a parameter related to a channel estimation algorithm used by the second communication node
  • the operation module is set to:
  • the corresponding channel estimation algorithm is used according to the description information of the second carrier frequency.
  • control channel information of the second carrier frequency includes one of the following:
  • control channel a transmission period of the control channel, control information carried by the control channel, and indication information of a resource used by the control channel;
  • the operation module is set to:
  • a transmission period of the control channel sent on the second carrier frequency is smaller than a control channel sent on the first carrier frequency.
  • the number of bits describing the resource allocation information in the control information carried by the control channel sent on the second carrier frequency is less than The number of bits of the resource allocation information is described in the control information carried by the control channel sent on the first carrier frequency.
  • the bandwidth occupied by the control channel sent on the second carrier frequency is greater than that sent by the first carrier frequency.
  • the bandwidth occupied by the control channel is greater than that sent by the first carrier frequency.
  • control channel has multiple types, and different types of the control channels have different transmission periods.
  • control channel is a unicast control channel.
  • the data channel information of the second carrier frequency includes one of: extended sequence information used when the second communication node sends data, and an indication that the second communication node sends a carrier frequency used for retransmitting data. information.
  • the extended sequence information used by the second communications node to send data includes one of the following:
  • the operation module is configured to: send data on the second carrier frequency according to the extended sequence information in the description information of the second carrier frequency.
  • the carrier frequency used by the second communication node to transmit retransmission data is different from the first carrier frequency and the second carrier frequency.
  • the description information of the second carrier frequency further includes:
  • the second communication node generates a transmission time t2 of the ACK or NAK information for the decoding condition of the downlink data packet transmitted at the time t1 on the second carrier frequency.
  • the difference t2-t1 between the sending time t2 of the ACK or NAK information and the sending time t1 of the downlink data packet is smaller than the ACK or NAK information corresponding to a downlink data packet sent by the first carrier frequency.
  • the HARQ timing information of the second carrier frequency includes:
  • the time at which the second communication node feeds back the HARQ information to the physical layer data packet sent by the second carrier frequency precedes the physical The end time of the transmission of the layer data packet;
  • the operation module is configured to: according to the description information of the second carrier frequency, feed back HARQ information to the physical layer data packet sent by the second carrier frequency at a corresponding time.
  • the length of the physical layer data packet sent by the second carrier frequency is greater than the maximum physical layer data packet length allowed to be sent on the first carrier frequency.
  • the time information that the second communications node works at the second carrier frequency refers to a time period in which the second communications node receives the control channel in the second carrier frequency
  • the operation module is configured to: receive the control channel on the second carrier frequency in a corresponding time period according to the description information of the second carrier frequency.
  • a computer readable storage medium storing computer executable instructions for performing the method of any of the above.
  • the embodiment of the invention provides a carrier-to-frequency cooperation scheme to fully utilize the capability of the system capacity increase brought by using the high frequency band in the fifth generation mobile communication system, and improve the service quality of the entire mobile communication system.
  • FIG. 1 is a schematic diagram of one of carrier frequency cooperation methods according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a second method for cooperation between carrier frequencies according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of one of carrier frequency cooperation devices according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a second carrier-synchronization device according to an embodiment of the present invention.
  • Figure 5 is a schematic illustration of an embodiment of the present invention.
  • a carrier-to-frequency cooperation method includes:
  • Step 101 Determine description information of the second carrier frequency
  • Step 102 The first communications node sends the description information of the second carrier frequency to the second communications node by using the first carrier frequency, where the description information of the second carrier frequency includes at least one of the following: Transmit beam information, pilot information of the second carrier frequency, control channel information of the second carrier frequency, data channel information of the second carrier frequency, and hybrid automatic repeat request HARQ of the second carrier frequency Timing information, time information of the second communication node operating at the second carrier frequency.
  • the description information of the second carrier frequency may be determined by the first communication node, and the description information of the second carrier frequency may be determined by the other node, where the first communication node receives or actively acquires the second The description information of the carrier frequency is then sent to the second communication node.
  • the first communication node may be, but is not limited to, a base station, and the second communication node may be, but is not limited to, a terminal.
  • the transmit beam information of the second carrier frequency includes at least one of the following: a number of transmit beams, transmit beam set information, and indication information of a resource of the transmit beam.
  • the number of the transmit beams is smaller than the total number of transmit beams on the second carrier frequency.
  • the determining the description information of the second carrier frequency may include:
  • the transmit beam set includes at least a first transmit beam set and a second transmit beam set.
  • the sending period of the transmit beam in the first transmit beam set may be greater than the second The transmission period of the transmit beam in the transmit beam set.
  • the direction of at least one of the first transmit beam sets includes a direction of X transmit beams in the second transmit beam set, where X is greater than 1;
  • the sending beam set information may include: a correspondence between the at least one transmit beam in the first transmit beam set and the X transmit beams in the second transmit beam set.
  • the second communication node preferentially receives a transmit beam in the first set of transmit beams.
  • the pilot information of the second carrier frequency includes at least one of: a pilot type, indication information of a time-frequency resource used by different types of pilots, and a feedback mode corresponding to different types of pilots, based on different guides. Frequency type channel estimation parameters.
  • the pilot type includes at least a first pilot type and a second pilot type, where the number of ports corresponding to the first pilot type is greater than the number of ports corresponding to the second pilot type.
  • the second communication node preferentially receives a transmit beam in the first set of transmit beams.
  • the codebook sets used in the feedback modes of the different pilot types are different.
  • the channel estimation parameter includes at least parameters related to a channel estimation algorithm used by the second communication node; wherein channel estimation algorithms corresponding to different pilot types may be different.
  • control channel information of the second carrier frequency includes at least one of the following:
  • the transmission period of the control channel, the control information carried by the control channel, and the indication information of the resource used by the control channel is not limited
  • a transmission period of the control channel sent on the second carrier frequency is smaller than a control channel sent on the first carrier frequency.
  • the number of bits describing the resource allocation information in the control information carried by the control channel sent on the second carrier frequency is less than The number of bits of the resource allocation information is described in the control information carried by the control channel sent on the first carrier frequency.
  • the bandwidth occupied by the control channel sent on the second carrier frequency is greater than that sent by the first carrier frequency. Control channel Bandwidth used.
  • control channel has multiple types, and different types of the control channels have different transmission periods.
  • control channel is a unicast control channel.
  • the data channel information of the second carrier frequency includes at least one of the following:
  • the extended sequence information used when the second communication node transmits data and the second communication node sends indication information of a carrier frequency used for retransmitting data.
  • the extended sequence information used by the second communications node to send data includes at least one of the following:
  • a method of generating a spreading sequence, a mapping relationship between a spreading sequence and a transmission resource, and a method of selecting a spreading sequence is a method of generating a spreading sequence, a mapping relationship between a spreading sequence and a transmission resource, and a method of selecting a spreading sequence.
  • the carrier frequency used by the second communication node to transmit retransmission data is different from the first carrier frequency and the second carrier frequency.
  • the description information of the second carrier frequency further includes:
  • the second communication node generates a transmission time t2 of the ACK or NAK information for the decoding condition of the downlink data packet transmitted at the time t1 on the second carrier frequency.
  • the difference t2-t1 between the sending time t2 of the ACK or NAK information and the sending time t1 of the downlink data packet may be smaller than the ACK or NAK information corresponding to a downlink data packet sent by the first carrier frequency.
  • the difference between the transmission time and the transmission time of the downlink data packet may be smaller than the ACK or NAK information corresponding to a downlink data packet sent by the first carrier frequency.
  • the HARQ timing information of the second carrier frequency includes:
  • the time at which the second communication node feeds back the HARQ information to the physical layer data packet sent by the second carrier frequency precedes the physical The end of the transmission of the layer packet.
  • the length of the physical layer data packet sent by the second carrier frequency is greater than the maximum physical layer data packet length allowed to be sent on the first carrier frequency.
  • the time information of the second communication node working in the second carrier frequency is: a time period in which the second communication node receives the control channel in the second carrier frequency.
  • the embodiment of the invention further provides a computer readable storage medium storing computer executable instructions for performing the above-described carrier-carrier cooperation method.
  • a carrier-to-frequency cooperation method is applied to a second communication node, as shown in FIG. 2, including:
  • Step 201 The second communication node receives the description information of the second carrier frequency that is sent by the first communications node by using the first carrier frequency, where the description information of the second carrier frequency includes at least one of: sending the second carrier frequency Beam information, pilot information of the second carrier frequency, control channel information of the second carrier frequency, data channel information of the second carrier frequency, and hybrid automatic repeat request HARQ timing of the second carrier frequency Information, time information of the second communication node working at the second carrier frequency;
  • Step 202 The second communication node operates according to the description information of the second carrier frequency.
  • the transmit beam information of the second carrier frequency includes at least one of the following: a number of transmit beams, transmit beam set information, and indication information of a resource of the transmit beam.
  • the number of transmit beams N is smaller than the total number of transmit beams on the second carrier frequency.
  • the operation of the second communications node according to the description information of the second carrier frequency may include:
  • the second communication node receives N beams on the second carrier according to the number N of transmission beams in the description information of the second carrier frequency.
  • the transmit beam includes at least a first transmit beam set and a second transmit beam set.
  • the sending period of the sending beam in the first sending beam set may be greater than the sending period of the sending beam in the second sending beam set;
  • the operating, by the second communications node, according to the description information of the second carrier frequency, may include:
  • the second communication node selects the received transmit beam set according to the transmit beam set information in the description information of the second carrier frequency.
  • the direction of at least one of the first transmit beam sets includes a direction of X transmit beams in the second transmit beam set, where X is greater than 1;
  • the transmitting beam set information may include: a correspondence between the at least one transmit beam in the first transmit beam set and the X transmit beams in the second transmit beam set.
  • the operation of the second communications node according to the description information of the second carrier frequency may include:
  • the second communication node works on the second carrier frequency
  • first receiving a transmit beam in the first transmit beam set and selecting one or more transmit signals with the best signal reception quality, based on the second carrier frequency
  • the correspondence between the selected transmit beam and the transmit beam in the second transmit beam set determines the transmit beam in the second transmit beam set that needs to be received.
  • the pilot information of the second carrier frequency includes at least one of: a pilot type, indication information of a time-frequency resource used by different types of pilots, and a feedback mode corresponding to different types of pilots, based on different guides. Frequency type channel estimation parameters.
  • the pilot type includes at least a first pilot type and a second pilot type
  • the operating by the second communications node according to the description information of the second carrier frequency includes:
  • the second communication node determines, according to the description information of the second carrier frequency, that the number of ports corresponding to the first pilot type is greater than the number of ports corresponding to the second pilot type.
  • the operation of the second communications node according to the description information of the second carrier frequency may further include:
  • the second communication node works on the second carrier frequency, obtain global channel information by using the first pilot type, and further determine a second pilot type that needs to be received.
  • the codebook set used in the feedback mode of the different pilot types is different;
  • the operating by the second communications node according to the description information of the second carrier frequency includes:
  • the second communication node When the second communication node operates on the second carrier frequency, determining codebook information based on the first pilot type and/or based on the second pilot type according to a channel condition, and The codebook information is fed back to the first communication node.
  • the channel estimation parameter includes at least a channel estimate used by the second communication node a parameter related to the calculation method; wherein the channel estimation algorithms corresponding to different pilot types may be different;
  • the operating by the second communications node according to the description information of the second carrier frequency includes:
  • the corresponding channel estimation algorithm is used according to the description information of the second carrier frequency.
  • control channel information of the second carrier frequency includes at least one of the following:
  • control channel a transmission period of the control channel, control information carried by the control channel, and indication information of a resource used by the control channel;
  • the operating by the second communications node according to the description information of the second carrier frequency includes:
  • the second communication node receives the control channel on the second carrier frequency according to the description information of the second carrier frequency.
  • a transmission period of the control channel sent on the second carrier frequency is smaller than a control channel sent on the first carrier frequency.
  • the number of bits describing the resource allocation information in the control information carried by the control channel sent on the second carrier frequency is less than The number of bits of the resource allocation information is described in the control information carried by the control channel sent on the first carrier frequency.
  • the bandwidth occupied by the control channel sent on the second carrier frequency is greater than that sent by the first carrier frequency.
  • the bandwidth occupied by the control channel is greater than that sent by the first carrier frequency.
  • control channel has multiple types, and different types of the control channels have different transmission periods.
  • control channel is a unicast control channel.
  • the data channel information of the second carrier frequency includes at least one of: extended sequence information used when the second communication node sends data, and the second communication node sends a carrier frequency used for retransmitting data. Instructions.
  • the extended sequence information used when the second communications node sends data includes at least One of the following:
  • the operating by the second communications node according to the description information of the second carrier frequency includes:
  • the second communication node transmits data on the second carrier frequency according to the extended sequence information in the description information of the second carrier frequency.
  • the carrier frequency used by the second communication node to transmit retransmission data is different from the first carrier frequency and the second carrier frequency.
  • the description information of the second carrier frequency further includes:
  • the second communication node generates a transmission time t2 of the ACK or NAK information for the decoding condition of the downlink data packet transmitted at the time t1 on the second carrier frequency.
  • the difference t2-t1 between the sending time t2 of the ACK or NAK information and the sending time t1 of the downlink data packet may be smaller than the ACK or NAK information corresponding to a downlink data packet sent by the first carrier frequency.
  • the difference between the transmission time and the transmission time of the downlink data packet may be smaller than the ACK or NAK information corresponding to a downlink data packet sent by the first carrier frequency.
  • the HARQ timing information of the second carrier frequency includes:
  • the time at which the second communication node feeds back the HARQ information to the physical layer data packet sent by the second carrier frequency precedes the physical The end time of the transmission of the layer data packet;
  • the operating by the second communications node according to the description information of the second carrier frequency includes:
  • the second communication node feeds back HARQ information to the physical layer data packet sent by the second carrier frequency according to the description information of the second carrier frequency.
  • the length of the physical layer data packet sent by the second carrier frequency is greater than the maximum physical layer data packet length allowed to be sent on the first carrier frequency.
  • the time information that the second communications node works at the second carrier frequency refers to a time period in which the second communications node receives the control channel in the second carrier frequency
  • the operating by the second communications node according to the description information of the second carrier frequency includes:
  • the second communication node receives the control channel on the second carrier frequency in a corresponding time period according to the description information of the second carrier frequency.
  • the embodiment of the invention further provides a computer readable storage medium storing computer executable instructions for performing the above-described carrier-carrier cooperation method.
  • a carrier-to-frequency cooperation device includes:
  • the determining module 31 is configured to: determine description information of the second carrier frequency
  • the sending module 32 is configured to: send the description information of the second carrier frequency to the second communication node by using the first carrier frequency, where the description information of the second carrier frequency includes at least one of the following: Transmit beam information, pilot information of the second carrier frequency, control channel information of the second carrier frequency, data channel information of the second carrier frequency, and hybrid automatic repeat request HARQ of the second carrier frequency Timing information, time information of the second communication node operating at the second carrier frequency.
  • the sending module 32 is disposed in the first communications node; the determining module 31 may be, but is not limited to, being disposed in the first communications node, or may be disposed in other nodes.
  • the transmit beam information of the second carrier frequency includes at least one of the following: a number of transmit beams, transmit beam set information, and indication information of a resource of the transmit beam.
  • the number of the transmit beams may be smaller than the total number of transmit beams on the second carrier frequency.
  • the determining module 31 is configured to: determine, by using the channel state information of the second communications node on the first carrier frequency, that the second carrier frequency is successfully received by the second communications node.
  • the number of directions of the transmitted beams is N, and N is taken as the number of transmit beams.
  • the transmit beam may include at least a first transmit beam set and a second transmit beam set.
  • the sending period of the transmitting beam in the first transmit beam set may be greater than the sending period of the transmit beam in the second transmit beam set.
  • the transmit beam set information may include, but is not limited to, a first transmit beam set.
  • the correspondence between the at least one transmit beam and the X transmit beams in the second set of transmit beams, X is greater than one.
  • the pilot information of the second carrier frequency includes at least one of: a pilot type, indication information of a time-frequency resource used by different types of pilots, and a feedback mode corresponding to different types of pilots, based on different guides. Frequency type channel estimation parameters.
  • the pilot type may include at least a first pilot type and a second pilot type, and the number of ports corresponding to the first pilot type is greater than the number of ports corresponding to the second pilot type.
  • the codebook set used in the feedback mode of the different pilot types may be different.
  • the channel estimation parameter may include at least parameters related to a channel estimation algorithm used by the second communication node.
  • control channel information of the second carrier frequency includes at least one of the following:
  • the transmission period of the control channel, the control information carried by the control channel, and the indication information of the resource used by the control channel is not limited
  • the transmission period of the control channel sent on the second carrier frequency may be smaller than the control channel sent on the first carrier frequency when the frequency band of the second carrier frequency is higher than the frequency band of the first carrier frequency. Send cycle.
  • the number of bits describing the resource allocation information in the control information carried by the control channel sent on the second carrier frequency may be smaller than The number of bits of the resource allocation information is described in the control information carried by the control channel sent on the first carrier frequency.
  • the bandwidth occupied by the control channel sent on the second carrier frequency may be greater than the control sent on the first carrier frequency.
  • the bandwidth occupied by the channel may be greater than the control sent on the first carrier frequency.
  • the control channel may have multiple types, and the transmission periods of different types of the control channels may be different.
  • the control channel can be, but is not limited to, a unicast control channel.
  • the data channel information of the second carrier frequency includes at least one of the following:
  • the extended sequence information used when the second communication node transmits data and the second communication node sends indication information of a carrier frequency used for retransmitting data.
  • the extended sequence information used when the second communication node sends data may include at least one of the following:
  • a method of generating a spreading sequence, a mapping relationship between a spreading sequence and a transmission resource, and a method of selecting a spreading sequence is a method of generating a spreading sequence, a mapping relationship between a spreading sequence and a transmission resource, and a method of selecting a spreading sequence.
  • the carrier frequency used by the second communication node to transmit retransmission data may be different from the first carrier frequency and the second carrier frequency.
  • the description information of the second carrier frequency may further include:
  • the second communication node generates a transmission time t2 of the ACK or NAK information for the decoding condition of the downlink data packet transmitted at the time t1 on the second carrier frequency.
  • the difference t2-t1 between the sending time t2 of the ACK or NAK information and the sending time t1 of the downlink data packet may be smaller than the ACK or NAK information corresponding to a downlink data packet sent by the first carrier frequency.
  • the difference between the transmission time and the transmission time of the downlink data packet may be smaller than the ACK or NAK information corresponding to a downlink data packet sent by the first carrier frequency.
  • the HARQ timing information of the second carrier frequency includes:
  • the time at which the second communication node feeds back the HARQ information to the physical layer data packet sent by the second carrier frequency precedes the physical The end of the transmission of the layer packet.
  • the length of the physical layer data packet sent by the second carrier frequency may be greater than the maximum physical layer data packet length allowed to be sent on the first carrier frequency.
  • the time information that the second communications node operates at the second carrier frequency refers to a time period in which the second communications node receives the control channel in the second carrier frequency.
  • an inter-carrier coordination device is disposed in the second communication node, and includes:
  • the receiving module 41 is configured to: receive description information of the second carrier frequency that is sent by the first communications node by using the first carrier frequency, where the description information of the second carrier frequency includes at least one of: sending the second carrier frequency Beam information, pilot information of the second carrier frequency, control channel information of the second carrier frequency, data channel information of the second carrier frequency, and hybrid automatic repeat request HARQ timing of the second carrier frequency Information, time information of the second communication node working at the second carrier frequency;
  • the operation module 42 is configured to: operate according to the description information of the second carrier frequency.
  • the transmit beam information of the second carrier frequency includes at least one of the following: a number of transmit beams, transmit beam set information, and indication information of a resource of the transmit beam.
  • the number of transmit beams N may be smaller than the total number of transmit beams on the second carrier frequency.
  • the transmit beam may include at least a first transmit beam set and a second transmit beam set.
  • the sending period of the sending beam in the first sending beam set may be greater than the sending period of the sending beam in the second sending beam set;
  • the operation module 42 is configured to: select the received transmit beam set according to the transmit beam set information in the description information of the second carrier frequency.
  • the transmit beam set information may include: a correspondence between the at least one transmit beam in the first transmit beam set and the X transmit beams in the second transmit beam set, where X is greater than 1.
  • the operation module 42 is configured to:
  • the operation module 42 When operating on the second carrier frequency, the operation module 42 first receives a transmit beam in the first transmit beam set, and selects one or more transmit signals with the best received quality, based on the second carrier frequency. In the description information, the correspondence between the selected transmit beam and the transmit beam in the second transmit beam set determines the transmit beam in the second transmit beam set that needs to be received.
  • the pilot information of the second carrier frequency includes at least one of: a pilot type, indication information of a time-frequency resource used by different types of pilots, and a feedback mode corresponding to different types of pilots, based on different guides. Frequency type channel estimation parameters.
  • the pilot type includes at least a first pilot type and a second pilot type
  • the operation module 42 is configured to: determine, according to the description information of the second carrier frequency, that the number of ports corresponding to the first pilot type is greater than the number of ports corresponding to the second pilot type.
  • the operation module 42 is configured to: when working on the second carrier frequency, obtain global channel information by using a first pilot type, and further determine a second pilot type that needs to be received.
  • the codebook set used in the feedback mode of the different pilot types may be different
  • the operation module 42 is configured to: when the operation module 42 operates on the second carrier frequency, based on the channel condition, based on the first pilot type and/or based on the second pilot type Determining the codebook information and feeding back the codebook information to the first communication node.
  • the channel estimation parameter may include at least parameters related to a channel estimation algorithm used by the second communication node;
  • the operation module 42 is configured to: when the operation module 42 operates on the second carrier frequency, use a corresponding channel estimation algorithm according to the description information of the second carrier frequency.
  • control channel information of the second carrier frequency includes at least one of the following:
  • control channel a transmission period of the control channel, control information carried by the control channel, and indication information of a resource used by the control channel;
  • the operation module 42 is configured to receive a control channel on the second carrier frequency according to the description information of the second carrier frequency.
  • the transmission period of the control channel sent on the second carrier frequency may be smaller than the control channel sent on the first carrier frequency when the frequency band of the second carrier frequency is higher than the frequency band of the first carrier frequency. Send cycle.
  • the number of bits describing the resource allocation information in the control information carried by the control channel sent on the second carrier frequency may be smaller than The number of bits describing the resource allocation information in the control information carried by the control channel transmitted on the first carrier frequency.
  • the bandwidth occupied by the control channel sent on the second carrier frequency may be greater than the control sent on the first carrier frequency.
  • the bandwidth occupied by the channel may be greater than the control sent on the first carrier frequency.
  • the control channel may have multiple types, and different types of the control channels are sent.
  • the cycle can be different.
  • the control channel can be, but is not limited to, a unicast control channel.
  • the data channel information of the second carrier frequency includes at least one of: extended sequence information used when the second communication node sends data, and the second communication node sends a carrier frequency used for retransmitting data. Instructions.
  • the extended sequence information used when the second communication node sends data may include at least one of the following:
  • the operation module 42 is configured to:
  • the carrier frequency used by the second communication node to transmit retransmission data may be different from the first carrier frequency and the second carrier frequency.
  • the description information of the second carrier frequency further includes:
  • the second communication node generates a transmission time t2 of the ACK or NAK information for the decoding condition of the downlink data packet transmitted at the time t1 on the second carrier frequency.
  • the difference t2-t1 between the sending time t2 of the ACK or NAK information and the sending time t1 of the downlink data packet may be smaller than the ACK or NAK information corresponding to a downlink data packet sent by the first carrier frequency.
  • the difference between the transmission time and the transmission time of the downlink data packet may be smaller than the ACK or NAK information corresponding to a downlink data packet sent by the first carrier frequency.
  • the HARQ timing information of the second carrier frequency includes:
  • the time at which the second communication node feeds back the HARQ information to the physical layer data packet sent by the second carrier frequency precedes the physical The end time of the transmission of the layer data packet;
  • the operation module 42 is configured to: according to the description information of the second carrier frequency, at a corresponding moment And feeding back HARQ information to the physical layer data packet sent by the second carrier frequency.
  • the length of the physical layer data packet sent by the second carrier frequency may be greater than the maximum physical layer data packet length allowed to be sent on the first carrier frequency.
  • the time information that the second communications node works at the second carrier frequency refers to a time period in which the second communications node receives the control channel in the second carrier frequency
  • the operation module 42 is configured to receive a control channel on the second carrier frequency in a corresponding time period according to the description information of the second carrier frequency.
  • the base station determines the geographical relationship between each other through the channel state information (for example, angle information) of the terminal on the carrier frequency f1, and then determines the The transmit beam with the N directions (N is an integer less than or equal to M) on the frequency f2 may be successfully received by the terminal, and the description information of the carrier frequency f2 includes at least the number N of the transmit beams.
  • the base station sends the description information of the carrier frequency f2 to the terminal through the carrier frequency f1.
  • the advantage of this method is that the terminal can receive less beams on the carrier frequency f2 and reduce the power consumption of the terminal.
  • the description information of the carrier frequency f2 includes at least the transmission beam set information, such as the number of sets and the transmission period of each set, that is greater than the transmission period of the transmit beam in the second transmit beam set.
  • the base station sends the description information of the carrier frequency f2 to the terminal through the carrier frequency f1.
  • the advantage of this approach is that the base station can determine different transmit waves according to different service delay requirements.
  • the bundle set, the terminal can also choose to receive a suitable set of transmit beams according to its own traffic conditions.
  • the direction includes the direction of the X (X is greater than 1) transmit beams in the second set of transmit beams, that is, when the terminal works on the carrier frequency f2, first receives the transmit beams in the first transmit beam set, and selects one or more The signal receives the best quality transmit beam and then determines which of the second transmit beam sets to attempt to receive based on the correspondence of the transmit beams to the transmit beams in the second set of transmit beams.
  • the description information of the carrier frequency f2 includes at least the transmit beam set information, where the beam set information includes: the at least one transmit beam in the first transmit beam set and the X in the second transmit beam set
  • the beam set information includes: the at least one transmit beam in the first transmit beam set and the X in the second transmit beam set
  • the correspondence between the transmission beams, X is an integer greater than one.
  • the base station sends the description information of the carrier frequency f2 to the terminal through the carrier frequency f1.
  • the advantage of this method is that the terminal can quickly determine the optimal base station transmit beam by transmitting beam grading, reduce the terminal energy consumption, and improve the network quality.
  • the description information of the carrier frequency f2 includes at least resources used by the transmission beam, for example, M transmission beams use completely different resources, or M transmission beams are divided into Y groups (Y is greater than The integer of 1), the transmit beams in each group use the same resources, and the resources used by different groups are different.
  • the base station sends the description information of the carrier frequency f2 to the terminal through the carrier frequency f1.
  • the advantage of this mode is that the terminal attempts to receive the transmit beam on different resources through the corresponding relationship between the resource and the transmit beam, and quickly selects the optimal base station transmit beam.
  • pilots on the carrier frequency f2 there are two types of pilots on the carrier frequency f2, which are respectively referred to as a first pilot type and a second pilot type, and the number of antenna ports corresponding to the first pilot type is greater than the second pilot type.
  • the base station sends the description information of the carrier frequency f2 to the terminal through the carrier frequency f1.
  • the advantage of this method is that the terminal obtains global channel information through the first pilot type, and then determines The second pilot type that needs to be received for better beam selection.
  • pilots on the carrier frequency f2 there are two types of pilots on the carrier frequency f2, which are respectively called a first pilot type and a second pilot type, and the codebook set corresponding to the first pilot type is different from the code corresponding to the second pilot type. This collection.
  • the base station sends the description information of the carrier frequency f2 to the terminal through the carrier frequency f1.
  • the advantage of this mode is that the terminal determines the codebook information based on the first pilot type and/or based on the second pilot type according to the channel condition in which the terminal is located, and feeds the codebook information to the base station, the base station. According to the data transmission situation, select the appropriate codebook to transmit the downlink data.
  • pilots on the carrier frequency f2 there are two types of pilots on the carrier frequency f2, which are respectively referred to as a first pilot type and a second pilot type, and the channel estimation algorithm corresponding to the first pilot type is different from the channel corresponding to the second pilot type.
  • the estimation algorithm suggests that the terminal uses a more complex compression sensing technique for the first pilot type and a minimum mean square error mode for the second pilot type.
  • the base station sends the description information of the carrier frequency f2 to the terminal through the carrier frequency f1.
  • the advantage of this method is to inform the terminal to use different channel estimation algorithms and related algorithm parameters according to the requirements of different pilot types, thereby improving the environmental adaptability of the system.
  • the frequency band of the carrier frequency f2 is higher than the frequency band of f1, and the transmission period of the control channel transmitted on the carrier frequency f2 is smaller than the transmission period of the control channel transmitted on the carrier frequency f1.
  • the base station sends the description information of the carrier frequency f2 to the terminal through the carrier frequency f1.
  • the reason for this mode is that the carrier frequency f2 works in the high frequency band, and the available continuous bandwidth is relatively wide. If the OFDM (Orthogonal Frequency Division Multiplexing) method is adopted, the hardware implementation complexity is considered, and the subcarrier spacing design is adopted. The comparison will be relatively large, for example, 300 KHz, so that the transmission period of the control channel can be smaller. When the terminal receives the control channel from the carrier frequency f2, the transmission delay of the system can be reduced, thereby providing a better experience for the user.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the number of bits describing the resource allocation information in the control information carried by the control channel transmitted on the carrier frequency f2 is smaller than the control information carried by the control channel sent on the carrier frequency f1.
  • the base station sends the description information of the carrier frequency f2 to the terminal through the carrier frequency f1.
  • the advantage of this method is that the carrier frequency f2 works in the high frequency band. It can be considered to use the time division method to allocate resources to the terminal instead of using the time-frequency resource block allocation method used by the carrier frequency f1, thereby effectively reducing the description overhead of the resource allocation and improving The overall spectral efficiency of the system.
  • the frequency band of the carrier frequency f2 is higher than the frequency band of the f1, and the bandwidth occupied by the control channel transmitted on the carrier frequency f2 is greater than the bandwidth occupied by the control channel transmitted on the carrier frequency f1.
  • the base station sends the description information of the carrier frequency f2 to the terminal through the carrier frequency f1.
  • the advantage of this method is that the transmission time occupied by the control channel on the carrier frequency f2 is effectively reduced, and the user experience is improved.
  • the frequency band of the carrier frequency f2 is higher than the frequency band of f1, and the control channels transmitted on the carrier frequency f2 have multiple types, and the transmission periods of different types of the control channels are different.
  • control channel is a unicast control channel.
  • the base station sends the description information of the carrier frequency f2 to the terminal through the carrier frequency f1.
  • the advantage of this method is that the unicast control channel of different periods is used to provide services for users according to the service type of the user, and the same terminal can receive multiple periodic unicast control channels according to the needs of the user service, thereby improving system-to-user services. Adaptability.
  • the base station sends the description information of the carrier frequency f2 to the terminal by using the carrier frequency f1.
  • the description information includes a manner of generating the spreading sequence.
  • the advantage of this method is that the terminal can generate a suitable uplink spreading sequence to quickly send uplink data according to the generation manner of the spreading sequence.
  • the base station sends the description information of the carrier frequency f2 to the terminal by using the carrier frequency f1.
  • the description information includes a mapping relationship between the spreading sequence and the sending resource.
  • the advantage of this method is that the terminal can determine the transmission resource according to the selected spreading sequence, or select an appropriate spreading sequence according to the transmission resource, reduce the system control overhead, and fully utilize the characteristics of the spreading method to be sent.
  • the base station sends the description information of the carrier frequency f2 to the terminal by using the carrier frequency f1.
  • the description information includes a method for selecting the spreading sequence.
  • the advantage of this method is that the terminal can flexibly select the appropriate spreading sequence to transmit the uplink data according to the transmission sequence according to the selection method of the spreading sequence. For example, the terminal selects different spreading sequences according to different services, and the delay is high when the delay tolerance is high.
  • the periodic spreading sequence selects a short-period spreading sequence when the delay tolerance is low.
  • the base station sends the description information of the carrier frequency f2 to the terminal by using the carrier frequency f1.
  • the description information includes indication information of the carrier frequency f3 used by the terminal to transmit the retransmission data, and the first transmission data needs to be described.
  • the carrier frequency f3 is different from the carrier frequency f2 and is different from the carrier frequency f1.
  • the advantage of this method is to effectively reduce the complexity of the system design caused by HARQ feedback, and to maintain the timing relationship on part of the carrier frequency as much as possible.
  • the base station sends the description information of the carrier frequency f2 to the terminal by using the carrier frequency f1.
  • the description information includes that the terminal generates an ACK for decoding the downlink data packet sent at the time t1 on the carrier frequency f2.
  • Acknowledgement, acknowledgment) or NAK (Negative Acknowlegment) information transmission time t2 optionally, the difference between the transmission time of the ACK or NAK information and the transmission time of the downlink data packet (t2-t1) is smaller than One of the carriers sent on the carrier frequency f1
  • the difference between the transmission time of the ACK or NAK information corresponding to the row data packet and the transmission time of the downlink data packet For example, when the LTE (Long Term Evolution) mode is adopted on the carrier frequency f1, the difference is 4 ms.
  • the advantage of this approach is to effectively reduce user data transmission delays and improve the user experience.
  • the base station sends the description information of the carrier frequency f2 to the terminal by using the carrier frequency f1.
  • the HARQ timing information of the second carrier frequency includes: the terminal feedbacks the HARQ information of the downlink physical layer data packet sent by the carrier frequency f2. The time when the frequency band of the f2 is higher than the frequency band of the f1, the time at which the terminal feeds back the HARQ information to the downlink physical layer data packet sent by the carrier frequency f2 precedes the transmission end time of the physical layer data packet.
  • the length of the physical layer data packet sent by the carrier frequency f2 is greater than the maximum physical layer data packet length allowed to be sent on the carrier frequency f1.
  • the advantage of this method is that when the transmission data packet is relatively long, the terminal can judge the possible decoding situation of the entire data packet according to the condition of the partially decoded data packet without decoding the data packet, and the decoding situation is The predicted decoding result is fed back to the base station when the data packet is not transmitted, so that the base station makes a scheduling decision in advance, and improves the delay of the system.
  • the base station sends the description information of the carrier frequency f2 to the terminal by using the carrier frequency f1.
  • the description information includes time information of the terminal working at the carrier frequency f2, that is, the terminal is at the carrier frequency f2. The time period during which the control channel is received.
  • the advantage of this method is that the terminal attempts to decode the control channel related to itself on the carrier frequency f2 in the corresponding time period, and does not need to decode the control channel on the carrier frequency f2 in other time periods, thereby reducing the power consumption of the terminal and extending the standby of the terminal. time.
  • the base station determines the geographical relationship between each other through the channel state information (for example, angle information) of the terminal on the carrier frequency f1. Then, it is determined that the transmission beam with N directions (N is an integer less than or equal to M) on the carrier frequency f2 may be successfully received by the terminal, and the description information of the carrier frequency f2 includes at least the number N of transmission beams.
  • the terminal receives the description information of the carrier frequency f2 sent by the base station through the carrier frequency f1.
  • the advantage of this method is that the terminal can receive less beams on the carrier frequency f2 and reduce the power consumption of the terminal.
  • the description information of the carrier frequency f2 includes at least the transmission beam set information, such as the number of sets and the transmission period of each set, that is greater than the transmission period of the transmit beam in the second transmit beam set.
  • the terminal receives the description information of the carrier frequency f2 sent by the base station through the carrier frequency f1.
  • the advantage of this mode is that the base station can determine different sets of transmit beams according to different service delay requirements, and the terminal can also select to receive a suitable set of transmit beams according to its own service conditions.
  • the direction includes the direction of the X (X is greater than 1) transmit beams in the second set of transmit beams, that is, when the terminal works on the carrier frequency f2, first receives the transmit beams in the first transmit beam set, and selects one or more The signal receives the best quality transmit beam and then determines which of the second transmit beam sets to attempt to receive based on the correspondence of the transmit beams to the transmit beams in the second set of transmit beams.
  • the description information of the carrier frequency f2 includes at least the transmit beam set information, where the beam set information includes: the at least one transmit beam in the first transmit beam set and the X in the second transmit beam set
  • the beam set information includes: the at least one transmit beam in the first transmit beam set and the X in the second transmit beam set
  • the correspondence of the transmission beams, X is an integer greater than 1.
  • the terminal receives the description information of the carrier frequency f2 sent by the base station through the carrier frequency f1.
  • the advantage of this method is that the terminal can quickly determine the optimal base station transmit beam by transmitting beam grading, reduce the terminal energy consumption, and improve the network quality.
  • the description information of the carrier frequency f2 includes at least resources used by the transmission beam, for example, M transmission beams use completely different resources, or M transmission beams are divided into Y (Y is greater than 1). Integer) group, the transmit beams in each group use the same resources, and the resources used by different groups are different.
  • the terminal receives the description information of the carrier frequency f2 sent by the base station through the carrier frequency f1.
  • the advantage of this mode is that the terminal attempts to receive the transmit beam on different resources through the corresponding relationship between the resource and the transmit beam, and quickly selects the optimal base station transmit beam.
  • pilots on the carrier frequency f2 there are two types of pilots on the carrier frequency f2, which are respectively referred to as a first pilot type and a second pilot type, and the number of antenna ports corresponding to the first pilot type is greater than the second pilot type.
  • the terminal receives the description information of the carrier frequency f2 sent by the base station through the carrier frequency f1.
  • the advantage of this approach is that the terminal obtains global channel information through the first pilot type, thereby determining the second pilot type that needs to be received, and better performing beam selection.
  • pilots on the carrier frequency f2 there are two types of pilots on the carrier frequency f2, which are respectively called a first pilot type and a second pilot type, and the codebook set corresponding to the first pilot type is different from the code corresponding to the second pilot type. This collection.
  • the terminal receives the description information of the carrier frequency f2 sent by the base station through the carrier frequency f1.
  • the advantage of this mode is that the terminal determines the codebook information based on the first pilot type and/or based on the second pilot type according to the channel condition in which the terminal is located, and feeds the codebook information to the base station, the base station. According to the data transmission situation, select the appropriate codebook to transmit the downlink data.
  • pilots on the carrier frequency f2 there are two types of pilots on the carrier frequency f2, which are respectively referred to as a first pilot type and a second pilot type, and the channel estimation algorithm corresponding to the first pilot type is different from the channel corresponding to the second pilot type.
  • the estimation algorithm suggests that the terminal uses a more complex compression sensing technique for the first pilot type and a minimum mean square error mode for the second pilot type.
  • the terminal receives the description information of the carrier frequency f2 sent by the base station through the carrier frequency f1.
  • the advantage of this method is that the terminal uses different channel estimation algorithms and related algorithm parameters according to the requirements of different pilot types to improve the environmental adaptability of the system.
  • the frequency band of the carrier frequency f2 is higher than the frequency band of f1, and the transmission period of the control channel transmitted on the carrier frequency f2 is smaller than the transmission period of the control channel transmitted on the carrier frequency f1.
  • the terminal receives the description information of the carrier frequency f2 sent by the base station through the carrier frequency f1.
  • the carrier frequency f2 works in the high frequency band, and the available continuous bandwidth is relatively wide. If the OFDM method is adopted, considering the hardware implementation complexity, the subcarrier spacing design is relatively large, for example, 300 KHz, so that the control channel is transmitted. The period can be smaller. When the terminal receives the control channel from the carrier frequency f2, the transmission delay of the system can be reduced to provide a better experience for the user.
  • the number of bits describing the resource allocation information in the control information carried by the control channel transmitted on the carrier frequency f2 is smaller than the control information carried by the control channel sent on the carrier frequency f1.
  • the terminal receives the description information of the carrier frequency f2 sent by the base station through the carrier frequency f1.
  • the advantage of this method is that the carrier frequency f2 works in the high frequency band. It can be considered to use the time division method to allocate resources to the terminal instead of using the time-frequency resource block allocation method used by the carrier frequency f1, thereby effectively reducing the description overhead of the resource allocation and improving The overall spectral efficiency of the system.
  • the frequency band of the carrier frequency f2 is higher than the frequency band of the f1, and the bandwidth occupied by the control channel transmitted on the carrier frequency f2 is greater than the bandwidth occupied by the control channel transmitted on the carrier frequency f1.
  • the terminal receives the description information of the carrier frequency f2 sent by the base station through the carrier frequency f1.
  • the advantage of this method is that the transmission time occupied by the control channel on the carrier frequency f2 is effectively reduced, and the user experience is improved.
  • control channel is a unicast control channel.
  • the terminal receives the description information of the carrier frequency f2 sent by the base station through the carrier frequency f1.
  • the advantage of this method is that the unicast control channel of different periods is used to provide services for users according to the service type of the user, and the same terminal can receive multiple periodic unicast control channels according to the needs of the user service, thereby improving system-to-user services. Adaptability.
  • the terminal receives the description information of the carrier frequency f2 sent by the base station by using the carrier frequency f1.
  • the description information includes a manner of generating the spreading sequence.
  • the advantage of this method is that the terminal can generate a suitable uplink spreading sequence to quickly send uplink data according to the generation manner of the spreading sequence.
  • the terminal receives the description information of the carrier frequency f2 that is sent by the base station by using the carrier frequency f1.
  • the description information includes a mapping relationship between the spreading sequence and the sending resource.
  • the advantage of this method is that the terminal can determine the transmission resource according to the selected spreading sequence, or select an appropriate spreading sequence according to the transmission resource, reduce the system control overhead, and fully utilize the characteristics of the spreading method to be sent.
  • the terminal receives the description information of the carrier frequency f2 sent by the base station by using the carrier frequency f1.
  • the description information includes a method for selecting a spreading sequence.
  • the advantage of this method is that the terminal can flexibly select the appropriate spreading sequence to transmit the uplink data according to the transmission sequence according to the selection method of the spreading sequence. For example, the terminal selects different spreading sequences according to different services, and the delay is high when the delay tolerance is high.
  • the periodic spreading sequence selects a short-period spreading sequence when the delay tolerance is low.
  • the terminal receives the description information of the carrier frequency f2 sent by the base station by using the carrier frequency f1.
  • the description information includes indication information of the carrier frequency f3 used by the terminal to send the retransmission data, and the first transmission data needs to be explained.
  • the carrier frequency f3 is different from the carrier frequency f2 and is different from the carrier frequency f1.
  • the advantage of this method is to effectively reduce the complexity of the system design caused by HARQ feedback, and to maintain the timing relationship on part of the carrier frequency as much as possible.
  • the terminal receives the description information of the carrier frequency f2 sent by the base station by using the carrier frequency f1.
  • the description information includes that the terminal generates an ACK for decoding the downlink data packet sent at the time t1 on the carrier frequency f2.
  • the transmission time t2 of the NAK information optionally, the difference between the transmission time of the ACK or NAK information and the transmission time of the downlink data packet (t2-t1) is smaller than a downlink data sent by the carrier frequency f1.
  • the difference between the transmission time of the ACK or NAK information corresponding to the packet and the transmission time of the downlink data packet For example, when the LTE method is used on the carrier frequency f1, the difference is 4 ms.
  • the advantage of this approach is to effectively reduce user data transmission delays and improve the user experience.
  • the terminal receives the description information of the carrier frequency f2 sent by the base station through the carrier frequency f1.
  • the HARQ timing information of the second carrier frequency includes: the downlink physical layer packet feedback HARQ sent by the terminal to the carrier frequency f2 The time of the information; when the frequency band of the f2 is higher than the frequency band of the f1, the time at which the terminal feeds back the HARQ information to the downlink physical layer data packet sent by the carrier frequency f2 precedes the transmission end time of the physical layer data packet.
  • the length of the physical layer data packet sent by the carrier frequency f2 is greater than the maximum physical layer data packet length allowed to be sent on the carrier frequency f1.
  • the advantage of this method is that when the transmission data packet is relatively long, the terminal can judge the possible decoding situation of the entire data packet according to the condition of the partially decoded data packet without decoding the data packet, and the decoding situation is The predicted decoding result is fed back to the base station when the data packet is not transmitted, so that the base station makes a scheduling decision in advance, and improves the delay of the system.
  • the terminal receives the description information of the carrier frequency f2 sent by the base station by using the carrier frequency f1.
  • the description information includes time information of the terminal working at the carrier frequency f2, that is, the terminal is at the carrier frequency. The time period during which the control channel is received on f2.
  • the advantage of this method is that the terminal attempts to decode the control channel related to itself on the carrier frequency f2 in the corresponding time period, and does not need to decode the control channel on the carrier frequency f2 in other time periods, thereby reducing the power consumption of the terminal and extending the standby of the terminal. time.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • the device/function module/functional unit in the above embodiment When the device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the inter-carrier coordination scheme proposed by the embodiment of the present invention can fully utilize the capability of system capacity enhancement brought by using the high frequency band in the fifth generation mobile communication system, and improve the service quality of the entire mobile communication system.

Abstract

本文公布一种载频间协作方法及装置;方法包括:确定第二载频的描述信息;第一通信节点通过第一载频发送所述第二载频的描述信息给第二通信节点,所述第二载频的描述信息包含以下之一:所述第二载频的发送波束信息,所述第二载频的导频信息,所述第二载频的控制信道信息,所述第二载频的数据信道信息,所述第二载频的混合自动重传请求HARQ时序信息,所述第二通信节点在所述第二载频工作的时间信息。

Description

一种载频间协作方法及装置 技术领域
本申请涉及但不限于通信领域。
背景技术
智能手机、平板电脑等智能终端的出现,导致了无线通信网络数据应用业务的蓬勃发展,如云计算、物联网、移动互联网、手机视频电话、手机视频会议、在线游戏、在线视频、在线音乐、图片下载、微博、社区等,也带动了无线通信网络用户的大规模增加,导致无线数据业务的爆炸式增长。根据权威机构预测,未来10年,无线数据业务将增长500~1000倍,平均每年增长1.6~2倍。
提升无线网络容量的方法有多种,常用的有:(1)增加频谱带宽;(2)加强业务分流;(3)提高网络密度;(4)提升频谱效率。
增加频谱带宽的方式是快速提升无线网络容量最直接的方法。传统的无线通信系统使用的频谱资源范围主要集中在低频段上(例如6GHz以下),具有可用频谱资源少、覆盖范围大、电磁波绕射能力强等特点,设计时需要优先考虑提升频谱效率。为了满足未来的发展需求,第五代移动通信系统中,高频段(例如6GHz以上)的开发利用是必然的趋势,高频段具有可用频谱资源多、传输能量衰减快、电磁波绕射能力差等特点,其设计思想应该优先考虑覆盖能力而不是频谱效率。
目前的载频协作主要集中在低频段上,由于载频的特性比较一致,所以在第四代移动通信系统时采用的方式也非常简单。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
考虑未来无线通信系统中高频段的使用是必然趋势,载频协作中必然会 出现高频段与高频段聚合或低频段与高频段聚合,这方面的研究目前仍然是空白领域,值得深入研究。
本文提出一种载频间协作方案,以充分发挥第五代移动通信系统中使用高频段带来的系统容量提升的能力,提高整个移动通信系统的服务质量。
一种载频间协作方法,包括:
确定第二载频的描述信息;
第一通信节点通过第一载频发送所述第二载频的描述信息给第二通信节点,所述第二载频的描述信息包含以下之一:所述第二载频的发送波束信息,所述第二载频的导频信息,所述第二载频的控制信道信息,所述第二载频的数据信道信息,所述第二载频的混合自动重传请求HARQ时序信息,所述第二通信节点在所述第二载频工作的时间信息。
可选地,所述第二载频的发送波束信息包含以下之一:发送波束个数,发送波束集合信息,发送波束的资源的指示信息。
可选地,所述发送波束个数小于所述第二载频上的总的发送波束个数。
可选地,确定第二载频的描述信息包括:
通过所述第二通信节点在所述第一载频上的信道状态信息,判断出所述第二载频上会被所述第二通信节点成功接收的发送波束的方向个数N,将N作为发送波束个数。
可选地,所述发送波束包含第一发送波束集合和第二发送波束集合。
可选地,所述第一发送波束集合中发送波束的发送周期大于所述第二发送波束集合中发送波束的发送周期。
可选地,所述发送波束集合信息包括:第一发送波束集合中的所述至少一个发送波束与所述第二发送波束集合中的X个发送波束之间的对应关,X大于1。
可选地,所述第二载频的导频信息包含以下之一:导频类型,不同类型导频使用的时频资源的指示信息,对应于不同类型导频的反馈模式,基于不同导频类型的信道估计参数。
可选地,所述导频类型包含第一导频类型和第二导频类型,所述第一导频类型对应的端口数大于所述第二导频类型对应的端口数。
可选地,所述不同导频类型的反馈模式中使用的码本集合是不同的。
可选地,所述信道估计参数包括与所述第二通信节点使用的信道估计算法有关的参数。
可选地,所述第二载频的控制信道信息包含以下之一:
所述控制信道的发送周期,所述控制信道携带的控制信息,发送所述控制信道使用的资源的指示信息。
可选地,所述第二载频的频段高于所述第一载频的频段时,所述第二载频上发送的控制信道的发送周期小于所述第一载频上发送的控制信道的发送周期。
可选地,所述第二载频的频段高于所述第一载频的频段时,所述第二载频上发送的所述控制信道携带的控制信息中描述资源分配信息的比特数小于所述第一载频上发送的控制信道携带的控制信息中描述资源分配信息的比特数。
可选地,所述第二载频的频段高于所述第一载频的频段时,所述第二载频上发送的所述控制信道占用的带宽大于所述第一载频上发送的控制信道占用的带宽。
可选地,所述控制信道有多种类型,不同类型的所述控制信道的发送周期不同。
可选地,所述控制信道是单播控制信道。
可选地,所述第二载频的数据信道信息包含以下之一:
所述第二通信节点发送数据时使用的扩展序列信息,所述第二通信节点发送重传数据使用的载频的指示信息。
可选地,所述第二通信节点发送数据时使用的扩展序列信息包括以下之一:
扩频序列的生成方式,扩频序列与发送资源的映射关系,扩频序列的选 择方法。
可选地,所述第二通信节点发送重传数据使用的载频不同于所述第一载频和所述第二载频。
可选地,所述第二载频的描述信息还包括:
所述第二通信节点针对所述第二载频上在时间t1发送的下行数据包的解码情况生成ACK或NAK信息的发送时间t2。
可选地,所述ACK或NAK信息的发送时间t2与所述下行数据包的发送时间t1的差值t2-t1,小于所述第一载频发送的一个下行数据包对应的ACK或NAK信息的发送时间与该下行数据包的发送时间的差值。
可选地,所述第二载频的HARQ时序信息包括:
所述第二通信节点对所述第二载频发送的物理层数据包反馈HARQ信息的时刻;
当所述第二载频的频段高于所述第一载频的频段时,所述第二通信节点对所述第二载频发送的物理层数据包反馈HARQ信息的时刻先于所述物理层数据包的传输结束时刻。
可选地,所述第二载频发送的所述物理层数据包的长度大于所述第一载频上允许发送的最大物理层数据包长度。
可选地,所述第二通信节点在所述第二载频工作的时间信息是指所述第二通信节点在所述第二载频接收控制信道的时间段。
一种载频间协作方法,包括:
第二通信节点接收第一通信节点通过第一载频发送的第二载频的描述信息,所述第二载频的描述信息包含以下之一:所述第二载频的发送波束信息,所述第二载频的导频信息,所述第二载频的控制信道信息,所述第二载频的数据信道信息,所述第二载频的混合自动重传请求HARQ时序信息,所述第二通信节点在所述第二载频工作的时间信息;
所述第二通信节点根据所述第二载频的描述信息进行操作。
可选地,所述第二载频的发送波束信息包含以下之一:发送波束个数,发送波束集合信息,发送波束的资源的指示信息。
可选地,所述发送波束个数N小于所述第二载频上的总的发送波束个数。
可选地,所述发送波束包含第一发送波束集合和第二发送波束集合。
可选地,所述第一发送波束集合中发送波束的发送周期大于所述第二发送波束集合中发送波束的发送周期;
所述第二通信节点根据所述第二载频的描述信息进行操作包括:
所述第二通信节点根据所述第二载频的描述信息中的发送波束集合信息,选择接收的发送波束集合。
可选地,所述发送波束集合信息包括:第一发送波束集合中的所述至少一个发送波束与所述第二发送波束集合中的X个发送波束的对应关系,X大于1。
可选地,所述第二通信节点根据所述第二载频的描述信息进行操作包括:
所述第二通信节点在所述第二载频上工作时,先接收第一发送波束集合中的发送波束,选择一个或多个信号接收质量最好的发送波束,基于所述第二载频的描述信息中,所选择的发送波束与第二发送波束集合中的发送波束的对应关系,确定需要接收的第二发送波束集合中的发送波束。
可选地,所述第二载频的导频信息包含以下之一:导频类型,不同类型导频使用的时频资源的指示信息,对应于不同类型导频的反馈模式,基于不同导频类型的信道估计参数。
可选地,所述导频类型包含第一导频类型和第二导频类型;
所述第二通信节点根据所述第二载频的描述信息进行操作包括:
所述第二通信节点根据所述第二载频的描述信息确定所述第一导频类型对应的端口数大于所述第二导频类型对应的端口数。
可选地,所述第二通信节点根据所述第二载频的描述信息进行操作还包 括:
所述第二通信节点在所述第二载频上工作时,通过第一导频类型获得全局信道信息,进而确定需要接收的第二导频类型。
可选地,所述不同导频类型的反馈模式中使用的码本集合是不同的;
所述第二通信节点根据所述第二载频的描述信息进行操作包括:
所述第二通信节点在所述第二载频上工作时,根据所处的信道情况基于所述第一导频类型和/或基于所述第二导频类型确定码本信息,并将所述码本信息反馈给所述第一通信节点。
可选地,所述信道估计参数包括与所述第二通信节点使用的信道估计算法有关的参数;
所述第二通信节点根据所述第二载频的描述信息进行操作包括:
所述第二通信节点在所述第二载频上工作时,根据所述第二载频的描述信息使用相应的信道估计算法。
可选地,所述第二载频的控制信道信息包含以下之一:
所述控制信道的发送周期,所述控制信道携带的控制信息,发送所述控制信道使用的资源的指示信息;
所述第二通信节点根据所述第二载频的描述信息进行操作包括:
所述第二通信节点根据所述第二载频的描述信息,在所述第二载频上接收控制信道。
可选地,所述第二载频的频段高于所述第一载频的频段时,所述第二载频上发送的控制信道的发送周期小于所述第一载频上发送的控制信道的发送周期。
可选地,所述第二载频的频段高于所述第一载频的频段时,所述第二载频上发送的所述控制信道携带的控制信息中描述资源分配信息的比特数小于所述第一载频上发送的控制信道携带的控制信息中描述资源分配信息的比特数。
可选地,所述第二载频的频段高于所述第一载频的频段时,所述第二载 频上发送的所述控制信道占用的带宽大于所述第一载频上发送的控制信道占用的带宽。
可选地,所述控制信道有多种类型,不同类型的所述控制信道的发送周期不同。
可选地,所述控制信道是单播控制信道。
可选地,所述第二载频的数据信道信息包含以下之一:所述第二通信节点发送数据时使用的扩展序列信息,所述第二通信节点发送重传数据使用的载频的指示信息。
可选地,所述第二通信节点发送数据时使用的扩展序列信息包括以下之一:
扩频序列的生成方式,扩频序列与发送资源的映射关系,扩频序列的选择方法;
所述第二通信节点根据所述第二载频的描述信息进行操作包括:
所述第二通信节点根据所述第二载频的描述信息中的扩展序列信息,在所述第二载频上发送数据。
可选地,所述第二通信节点发送重传数据使用的载频不同于所述第一载频和所述第二载频。
可选地,所述第二载频的描述信息还包括:
所述第二通信节点针对所述第二载频上在时间t1发送的下行数据包的解码情况生成ACK或NAK信息的发送时间t2。
可选地,所述ACK或NAK信息的发送时间t2与所述下行数据包的发送时间t1的差值t2-t1,小于所述第一载频发送的一个下行数据包对应的ACK或NAK信息的发送时间与该下行数据包的发送时间的差值。
可选地,所述第二载频的HARQ时序信息包括:
所述第二通信节点对所述第二载频发送的物理层数据包反馈HARQ信息的时刻;
当所述第二载频的频段高于所述第一载频的频段时,所述第二通信节点 对所述第二载频发送的物理层数据包反馈HARQ信息的时刻先于所述物理层数据包的传输结束时刻;
所述第二通信节点根据所述第二载频的描述信息进行操作包括:
所述第二通信节点根据所述第二载频的描述信息,在相应时刻对所述第二载频发送的物理层数据包反馈HARQ信息。
可选地,所述第二载频发送的所述物理层数据包的长度大于所述第一载频上允许发送的最大物理层数据包长度。
可选地,所述第二通信节点在所述第二载频工作的时间信息是指所述第二通信节点在所述第二载频接收控制信道的时间段;
所述第二通信节点根据所述第二载频的描述信息进行操作包括:
所述第二通信节点根据所述第二载频的描述信息,在相应的时间段中在所述第二载频上接收控制信道。
一种载频间协作装置,包括:
确定模块,设置为:确定第二载频的描述信息;
发送模块,设置为:通过第一载频发送所述第二载频的描述信息给第二通信节点,所述第二载频的描述信息包含以下之一:所述第二载频的发送波束信息,所述第二载频的导频信息,所述第二载频的控制信道信息,所述第二载频的数据信道信息,所述第二载频的混合自动重传请求HARQ时序信息,所述第二通信节点在所述第二载频工作的时间信息。
可选地,所述第二载频的发送波束信息包含以下之一:发送波束个数,发送波束集合信息,发送波束的资源的指示信息。
可选地,所述发送波束个数小于所述第二载频上的总的发送波束个数。
可选地,所述确定模块是设置为:
通过所述第二通信节点在所述第一载频上的信道状态信息,判断出所述第二载频上会被所述第二通信节点成功接收的发送波束的方向个数N,将N作为发送波束个数。
可选地,所述发送波束包含第一发送波束集合和第二发送波束集合。
可选地,所述第一发送波束集合中发送波束的发送周期大于所述第二发送波束集合中发送波束的发送周期。
可选地,所述发送波束集合信息包括:第一发送波束集合中的所述至少一个发送波束与所述第二发送波束集合中的所述X个发送波束之间的对应关系,X大于1。
可选地,所述第二载频的导频信息包含以下之一:导频类型,不同类型导频使用的时频资源的指示信息,对应于不同类型导频的反馈模式,基于不同导频类型的信道估计参数。
可选地,所述导频类型包含第一导频类型和第二导频类型,所述第一导频类型对应的端口数大于所述第二导频类型对应的端口数。
可选地,所述不同导频类型的反馈模式中使用的码本集合是不同的。
可选地,所述信道估计参数包括与所述第二通信节点使用的信道估计算法有关的参数。
可选地,所述第二载频的控制信道信息包含以下之一:
所述控制信道的发送周期,所述控制信道携带的控制信息,发送所述控制信道使用的资源的指示信息。
可选地,所述第二载频的频段高于所述第一载频的频段时,所述第二载频上发送的控制信道的发送周期小于所述第一载频上发送的控制信道的发送周期。
可选地,所述第二载频的频段高于所述第一载频的频段时,所述第二载频上发送的所述控制信道携带的控制信息中描述资源分配信息的比特数小于所述第一载频上发送的控制信道携带的控制信息中描述资源分配信息的比特数。
可选地,所述第二载频的频段高于所述第一载频的频段时,所述第二载频上发送的所述控制信道占用的带宽大于所述第一载频上发送的控制信道占用的带宽。
可选地,所述控制信道有多种类型,不同类型的所述控制信道的发送周 期不同。
可选地,所述控制信道是单播控制信道。
可选地,所述第二载频的数据信道信息包含以下之一:
所述第二通信节点发送数据时使用的扩展序列信息,所述第二通信节点发送重传数据使用的载频的指示信息。
可选地,所述第二通信节点发送数据时使用的扩展序列信息包括以下之一:
扩频序列的生成方式,扩频序列与发送资源的映射关系,扩频序列的选择方法。
可选地,所述第二通信节点发送重传数据使用的载频不同于所述第一载频和所述第二载频。
可选地,所述第二载频的描述信息还包括:
所述第二通信节点针对所述第二载频上在时间t1发送的下行数据包的解码情况生成ACK或NAK信息的发送时间t2。
可选地,所述ACK或NAK信息的发送时间t2与所述下行数据包的发送时间t1的差值t2-t1,小于所述第一载频发送的一个下行数据包对应的ACK或NAK信息的发送时间与该下行数据包的发送时间的差值。
可选地,所述第二载频的HARQ时序信息包括:
所述第二通信节点对所述第二载频发送的物理层数据包反馈HARQ信息的时刻;
当所述第二载频的频段高于所述第一载频的频段时,所述第二通信节点对所述第二载频发送的物理层数据包反馈HARQ信息的时刻先于所述物理层数据包的传输结束时刻。
可选地,所述第二载频发送的所述物理层数据包的长度大于所述第一载频上允许发送的最大物理层数据包长度。
可选地,所述第二通信节点在所述第二载频工作的时间信息是指所述第二通信节点在所述第二载频接收控制信道的时间段。
一种载频间协作装置,设置于第二通信节点中,包括:
接收模块,设置为:接收第一通信节点通过第一载频发送的第二载频的描述信息,所述第二载频的描述信息包含以下之一:所述第二载频的发送波束信息,所述第二载频的导频信息,所述第二载频的控制信道信息,所述第二载频的数据信道信息,所述第二载频的混合自动重传请求HARQ时序信息,所述第二通信节点在所述第二载频工作的时间信息;
操作模块,设置为:根据所述第二载频的描述信息进行操作。
可选地,所述第二载频的发送波束信息包含以下之一:发送波束个数,发送波束集合信息,发送波束的资源的指示信息。
可选地,所述发送波束个数N小于所述第二载频上的总的发送波束个数。
可选地,所述发送波束包含第一发送波束集合和第二发送波束集合。
可选地,所述第一发送波束集合中发送波束的发送周期大于所述第二发送波束集合中发送波束的发送周期;
所述操作模块是设置为:
根据所述第二载频的描述信息中的发送波束集合信息,选择接收的发送波束集合。
可选地,所述发送波束集合信息包括:第一发送波束集合中的所述至少一个发送波束与所述第二发送波束集合中的X个发送波束的对应关系,X大于1。
可选地,所述操作模块是设置为:
所述操作模块在所述第二载频上工作时,先接收第一发送波束集合中的发送波束,选择一个或多个信号接收质量最好的发送波束,基于所述第二载频的描述信息中,所选择的发送波束与第二发送波束集合中的发送波束的对应关系,确定需要接收的第二发送波束集合中的发送波束。
可选地,所述第二载频的导频信息包含以下之一:导频类型,不同类型 导频使用的时频资源的指示信息,对应于不同类型导频的反馈模式,基于不同导频类型的信道估计参数。
可选地,所述导频类型包含第一导频类型和第二导频类型;
所述操作模块是设置为:
根据所述第二载频的描述信息确定所述第一导频类型对应的端口数大于所述第二导频类型对应的端口数。
可选地,所述操作模块还设置为:
所述操作模块在所述第二载频上工作时,通过第一导频类型获得全局信道信息,进而确定需要接收的第二导频类型。
可选地,所述不同导频类型的反馈模式中使用的码本集合是不同的;
所述操作模块根据所述第二载频的描述信息进行操作包括:
所述操作模块在所述第二载频上工作时,根据所处的信道情况基于所述第一导频类型和/或基于所述第二导频类型确定码本信息,并将所述码本信息反馈给所述第一通信节点。
可选地,所述信道估计参数包括与所述第二通信节点使用的信道估计算法有关的参数;
所述操作模块是设置为:
所述操作模块在所述第二载频上工作时,根据所述第二载频的描述信息使用相应的信道估计算法。
可选地,所述第二载频的控制信道信息包含以下之一:
所述控制信道的发送周期,所述控制信道携带的控制信息,发送所述控制信道使用的资源的指示信息;
所述操作模块是设置为:
根据所述第二载频的描述信息,在所述第二载频上接收控制信道。
可选地,所述第二载频的频段高于所述第一载频的频段时,所述第二载频上发送的控制信道的发送周期小于所述第一载频上发送的控制信道的发送周期。
可选地,所述第二载频的频段高于所述第一载频的频段时,所述第二载频上发送的所述控制信道携带的控制信息中描述资源分配信息的比特数小于所述第一载频上发送的控制信道携带的控制信息中描述资源分配信息的比特数。
可选地,所述第二载频的频段高于所述第一载频的频段时,所述第二载频上发送的所述控制信道占用的带宽大于所述第一载频上发送的控制信道占用的带宽。
可选地,所述控制信道有多种类型,不同类型的所述控制信道的发送周期不同。
可选地,所述控制信道是单播控制信道。
可选地,所述第二载频的数据信道信息包含以下之一:所述第二通信节点发送数据时使用的扩展序列信息,所述第二通信节点发送重传数据使用的载频的指示信息。
可选地,所述第二通信节点发送数据时使用的扩展序列信息包括以下之一:
扩频序列的生成方式,扩频序列与发送资源的映射关系,扩频序列的选择方法;
所述操作模块是设置为:根据所述第二载频的描述信息中的扩展序列信息,在所述第二载频上发送数据。
可选地,所述第二通信节点发送重传数据使用的载频不同于所述第一载频和所述第二载频。
可选地,所述第二载频的描述信息还包括:
所述第二通信节点针对所述第二载频上在时间t1发送的下行数据包的解码情况生成ACK或NAK信息的发送时间t2。
可选地,所述ACK或NAK信息的发送时间t2与所述下行数据包的发送时间t1的差值t2-t1,小于所述第一载频发送的一个下行数据包对应的ACK或NAK信息的发送时间与该下行数据包的发送时间的差值。
可选地,所述第二载频的HARQ时序信息包括:
所述第二通信节点对所述第二载频发送的物理层数据包反馈HARQ信息的时刻;
当所述第二载频的频段高于所述第一载频的频段时,所述第二通信节点对所述第二载频发送的物理层数据包反馈HARQ信息的时刻先于所述物理层数据包的传输结束时刻;
所述操作模块是设置为:根据所述第二载频的描述信息,在相应时刻对所述第二载频发送的物理层数据包反馈HARQ信息。
可选地,所述第二载频发送的所述物理层数据包的长度大于所述第一载频上允许发送的最大物理层数据包长度。
可选地,所述第二通信节点在所述第二载频工作的时间信息是指所述第二通信节点在所述第二载频接收控制信道的时间段;
所述操作模块是设置为:根据所述第二载频的描述信息,在相应的时间段中在所述第二载频上接收控制信道。
一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述任一项的方法。
本发明实施例提出一种载频间协作方案,以充分发挥第五代移动通信系统中使用高频段带来的系统容量提升的能力,提高整个移动通信系统的服务质量。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明实施例载频间协作方法之一的示意图;
图2为本发明实施例载频间协作方法之二的示意图;
图3为本发明实施例载频间协作装置之一的示意图;
图4为本发明实施例载频间协作装置之二的示意图;
图5为本发明实施例的示意图。
本发明的实施方式
下面将结合附图及实施例对本发明的实施方式进行说明。
需要说明的是,如果不冲突,本发明实施例以及实施例中的特征可以相互结合。另外,虽然在流程图中示出了逻辑顺序,但是在一些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
一种载频间协作方法,如图1所示,包括:
步骤101,确定第二载频的描述信息;
步骤102,第一通信节点通过第一载频发送所述第二载频的描述信息给第二通信节点,所述第二载频的描述信息至少包含以下之一:所述第二载频的发送波束信息,所述第二载频的导频信息,所述第二载频的控制信道信息,所述第二载频的数据信道信息,所述第二载频的混合自动重传请求HARQ时序信息,所述第二通信节点在所述第二载频工作的时间信息。
其中,可以但不限于由第一通信节点确定第二载频的描述信息;也可以由其它节点确定所述第二载频的描述信息,所述第一通信节点接收或主动获取所述第二载频的描述信息后发送给所述第二通信节点。
其中,所述第一通信节点可以但不限于为基站,所述第二通信节点可以但不限于为终端。
可选地,所述第二载频的发送波束信息至少包含以下之一:发送波束个数,发送波束集合信息,发送波束的资源的指示信息。
可选地,所述发送波束个数小于所述第二载频上的总的发送波束个数。
其中,所述确定第二载频的描述信息可以包括:
通过所述第二通信节点在所述第一载频上的信道状态信息,判断出所述第二载频上会被所述第二通信节点成功接收的发送波束的方向个数N,将N作为发送波束个数。
可选地,所述发送波束集合至少包含第一发送波束集合和第二发送波束集合。
其中,所述第一发送波束集合中发送波束的发送周期可以大于所述第二 发送波束集合中发送波束的发送周期。
其中,所述第一发送波束集合中的至少一个发送波束的方向包含所述第二发送波束集合中X个发送波束的方向,X大于1;
所述发送波束集合信息可以包括:第一发送波束集合中的所述至少一个发送波束与所述第二发送波束集合中的所述X个发送波束之间的对应关系。
所述第二通信节点优先接收所述第一发送波束集合中的发送波束。
可选地,所述第二载频的导频信息至少包含以下之一:导频类型,不同类型导频使用的时频资源的指示信息,对应于不同类型导频的反馈模式,基于不同导频类型的信道估计参数。
可选地,所述导频类型至少包含第一导频类型和第二导频类型,所述第一导频类型对应的端口数大于所述第二导频类型对应的端口数。
所述第二通信节点优先接收所述第一发送波束集合中的发送波束。
可选地,所述不同导频类型的反馈模式中使用的码本集合是不同的。
可选地,所述信道估计参数至少包括与所述第二通信节点使用的信道估计算法有关的参数;其中,不同导频类型对应的信道估计算法可以不同。
可选地,所述第二载频的控制信道信息至少包含以下之一:
所述控制信道的发送周期,所述控制信道携带的控制信息,发送所述控制信道使用的资源的指示信息。
可选地,所述第二载频的频段高于所述第一载频的频段时,所述第二载频上发送的控制信道的发送周期小于所述第一载频上发送的控制信道的发送周期。
可选地,所述第二载频的频段高于所述第一载频的频段时,所述第二载频上发送的所述控制信道携带的控制信息中描述资源分配信息的比特数小于所述第一载频上发送的控制信道携带的控制信息中描述资源分配信息的比特数。
可选地,所述第二载频的频段高于所述第一载频的频段时,所述第二载频上发送的所述控制信道占用的带宽大于所述第一载频上发送的控制信道占 用的带宽。
可选地,所述控制信道有多种类型,不同类型的所述控制信道的发送周期不同。
可选地,所述控制信道是单播控制信道。
可选地,所述第二载频的数据信道信息至少包含以下之一:
所述第二通信节点发送数据时使用的扩展序列信息,所述第二通信节点发送重传数据使用的载频的指示信息。
可选地,所述第二通信节点发送数据时使用的扩展序列信息至少包括以下之一:
扩频序列的生成方式,扩频序列与发送资源的映射关系,扩频序列的选择方法。
可选地,所述第二通信节点发送重传数据使用的载频不同于所述第一载频和所述第二载频。
可选地,所述第二载频的描述信息还包括:
所述第二通信节点针对所述第二载频上在时间t1发送的下行数据包的解码情况生成ACK或NAK信息的发送时间t2。
其中,所述ACK或NAK信息的发送时间t2与所述下行数据包的发送时间t1的差值t2-t1,可以小于所述第一载频发送的一个下行数据包对应的ACK或NAK信息的发送时间与该下行数据包的发送时间的差值。
可选地,所述第二载频的HARQ时序信息包括:
所述第二通信节点对所述第二载频发送的物理层数据包反馈HARQ信息的时刻;
当所述第二载频的频段高于所述第一载频的频段时,所述第二通信节点对所述第二载频发送的物理层数据包反馈HARQ信息的时刻先于所述物理层数据包的传输结束时刻。
可选地,所述第二载频发送的所述物理层数据包的长度大于所述第一载频上允许发送的最大物理层数据包长度。
可选地,所述第二通信节点在所述第二载频工作的时间信息为:所述第二通信节点在所述第二载频接收控制信道的时间段。
本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述的载频间协作方法。
一种载频间协作方法,应用于第二通信节点,如图2所示,包括:
步骤201,第二通信节点接收第一通信节点通过第一载频发送的第二载频的描述信息,所述第二载频的描述信息至少包含以下之一:所述第二载频的发送波束信息,所述第二载频的导频信息,所述第二载频的控制信道信息,所述第二载频的数据信道信息,所述第二载频的混合自动重传请求HARQ时序信息,所述第二通信节点在所述第二载频工作的时间信息;
步骤202,所述第二通信节点根据所述第二载频的描述信息进行操作。
可选地,所述第二载频的发送波束信息至少包含以下之一:发送波束个数,发送波束集合信息,发送波束的资源的指示信息。
可选地,所述发送波束个数N小于所述第二载频上的总的发送波束个数。
其中,所述第二通信节点根据所述第二载频的描述信息进行操作可以包括:
所述第二通信节点根据所述第二载频的描述信息中的发送波束个数N,在所述第二载波上接收N个波束。
可选地,所述发送波束至少包含第一发送波束集合和第二发送波束集合。
其中,所述第一发送波束集合中发送波束的发送周期可以大于所述第二发送波束集合中发送波束的发送周期;
所述第二通信节点根据所述第二载频的描述信息进行操作可以包括:
所述第二通信节点根据所述第二载频的描述信息中的发送波束集合信息,选择接收的发送波束集合。
其中,所述第一发送波束集合中的至少一个发送波束的方向包含所述第二发送波束集合中X个发送波束的方向,X大于1;
所述发送波束集合信息可以包括:第一发送波束集合中的所述至少一个发送波束与所述第二发送波束集合中的X个发送波束的对应关系。
其中,所述第二通信节点根据所述第二载频的描述信息进行操作可以包括:
所述第二通信节点在所述第二载频上工作时,先接收第一发送波束集合中的发送波束,选择一个或多个信号接收质量最好的发送波束,基于所述第二载频的描述信息中,所选择的发送波束与第二发送波束集合中的发送波束的对应关系,确定需要接收的第二发送波束集合中的发送波束。
可选地,所述第二载频的导频信息至少包含以下之一:导频类型,不同类型导频使用的时频资源的指示信息,对应于不同类型导频的反馈模式,基于不同导频类型的信道估计参数。
可选地,所述导频类型至少包含第一导频类型和第二导频类型;
所述第二通信节点根据所述第二载频的描述信息进行操作包括:
所述第二通信节点根据所述第二载频的描述信息确定所述第一导频类型对应的端口数大于所述第二导频类型对应的端口数。
其中,所述第二通信节点根据所述第二载频的描述信息进行操作还可以包括:
所述第二通信节点在所述第二载频上工作时,通过第一导频类型获得全局信道信息,进而确定需要接收的第二导频类型。
可选地,所述不同导频类型的反馈模式中使用的码本集合是不同的;
所述第二通信节点根据所述第二载频的描述信息进行操作包括:
所述第二通信节点在所述第二载频上工作时,根据所处的信道情况基于所述第一导频类型和/或基于所述第二导频类型确定码本信息,并将所述码本信息反馈给所述第一通信节点。
可选地,所述信道估计参数至少包括与所述第二通信节点使用的信道估 计算法有关的参数;其中,不同导频类型对应的信道估计算法可以不同;
所述第二通信节点根据所述第二载频的描述信息进行操作包括:
所述第二通信节点在所述第二载频上工作时,根据所述第二载频的描述信息使用相应的信道估计算法。
可选地,所述第二载频的控制信道信息至少包含以下之一:
所述控制信道的发送周期,所述控制信道携带的控制信息,发送所述控制信道使用的资源的指示信息;
所述第二通信节点根据所述第二载频的描述信息进行操作包括:
所述第二通信节点根据所述第二载频的描述信息,在所述第二载频上接收控制信道。
可选地,所述第二载频的频段高于所述第一载频的频段时,所述第二载频上发送的控制信道的发送周期小于所述第一载频上发送的控制信道的发送周期。
可选地,所述第二载频的频段高于所述第一载频的频段时,所述第二载频上发送的所述控制信道携带的控制信息中描述资源分配信息的比特数小于所述第一载频上发送的控制信道携带的控制信息中描述资源分配信息的比特数。
可选地,所述第二载频的频段高于所述第一载频的频段时,所述第二载频上发送的所述控制信道占用的带宽大于所述第一载频上发送的控制信道占用的带宽。
可选地,所述控制信道有多种类型,不同类型的所述控制信道的发送周期不同。
可选地,所述控制信道是单播控制信道。
可选地,所述第二载频的数据信道信息至少包含以下之一:所述第二通信节点发送数据时使用的扩展序列信息,所述第二通信节点发送重传数据使用的载频的指示信息。
可选地,所述第二通信节点发送数据时使用的扩展序列信息至少包括以 下之一:
扩频序列的生成方式,扩频序列与发送资源的映射关系,扩频序列的选择方法;
所述第二通信节点根据所述第二载频的描述信息进行操作包括:
所述第二通信节点根据所述第二载频的描述信息中的扩展序列信息,在所述第二载频上发送数据。
可选地,所述第二通信节点发送重传数据使用的载频不同于所述第一载频和所述第二载频。
可选地,所述第二载频的描述信息还包括:
所述第二通信节点针对所述第二载频上在时间t1发送的下行数据包的解码情况生成ACK或NAK信息的发送时间t2。
其中,所述ACK或NAK信息的发送时间t2与所述下行数据包的发送时间t1的差值t2-t1,可以小于所述第一载频发送的一个下行数据包对应的ACK或NAK信息的发送时间与该下行数据包的发送时间的差值。
可选地,所述第二载频的HARQ时序信息包括:
所述第二通信节点对所述第二载频发送的物理层数据包反馈HARQ信息的时刻;
当所述第二载频的频段高于所述第一载频的频段时,所述第二通信节点对所述第二载频发送的物理层数据包反馈HARQ信息的时刻先于所述物理层数据包的传输结束时刻;
所述第二通信节点根据所述第二载频的描述信息进行操作包括:
所述第二通信节点根据所述第二载频的描述信息,在相应时刻对所述第二载频发送的物理层数据包反馈HARQ信息。
可选地,所述第二载频发送的所述物理层数据包的长度大于所述第一载频上允许发送的最大物理层数据包长度。
可选地,所述第二通信节点在所述第二载频工作的时间信息是指所述第二通信节点在所述第二载频接收控制信道的时间段;
所述第二通信节点根据所述第二载频的描述信息进行操作包括:
所述第二通信节点根据所述第二载频的描述信息,在相应的时间段中在所述第二载频上接收控制信道。
本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述的载频间协作方法。
如图3所示,一种载频间协作装置,包括:
确定模块31,设置为:确定第二载频的描述信息;
发送模块32,设置为:通过第一载频发送所述第二载频的描述信息给第二通信节点,所述第二载频的描述信息至少包含以下之一:所述第二载频的发送波束信息,所述第二载频的导频信息,所述第二载频的控制信道信息,所述第二载频的数据信道信息,所述第二载频的混合自动重传请求HARQ时序信息,所述第二通信节点在所述第二载频工作的时间信息。
其中,所述发送模块32设置于第一通信节点中;所述确定模块31可以但不限于设置于所述第一通信节点中,也可以设置在其它节点中。
可选地,所述第二载频的发送波束信息至少包含以下之一:发送波束个数,发送波束集合信息,发送波束的资源的指示信息。
其中,所述发送波束个数可以小于所述第二载频上的总的发送波束个数。
其中,所述确定模块31是设置为:通过所述第二通信节点在所述第一载频上的信道状态信息,判断出所述第二载频上会被所述第二通信节点成功接收的发送波束的方向个数N,将N作为发送波束个数。
其中,所述发送波束可以至少包含第一发送波束集合和第二发送波束集合。
其中,所述第一发送波束集合中发送波束的发送周期可以大于所述第二发送波束集合中发送波束的发送周期。
其中,所述发送波束集合信息可以但不限于包括:第一发送波束集合中 的所述至少一个发送波束与所述第二发送波束集合中的X个发送波束之间的对应关系,X大于1。
可选地,所述第二载频的导频信息至少包含以下之一:导频类型,不同类型导频使用的时频资源的指示信息,对应于不同类型导频的反馈模式,基于不同导频类型的信道估计参数。
其中,所述导频类型可以至少包含第一导频类型和第二导频类型,所述第一导频类型对应的端口数大于所述第二导频类型对应的端口数。
其中,所述不同导频类型的反馈模式中使用的码本集合可以是不同的。
其中,所述信道估计参数可以至少包括与所述第二通信节点使用的信道估计算法有关的参数。
可选地,所述第二载频的控制信道信息至少包含以下之一:
所述控制信道的发送周期,所述控制信道携带的控制信息,发送所述控制信道使用的资源的指示信息。
其中,所述第二载频的频段高于所述第一载频的频段时,所述第二载频上发送的控制信道的发送周期可以小于所述第一载频上发送的控制信道的发送周期。
其中,所述第二载频的频段高于所述第一载频的频段时,所述第二载频上发送的所述控制信道携带的控制信息中描述资源分配信息的比特数,可以小于所述第一载频上发送的控制信道携带的控制信息中描述资源分配信息的比特数。
其中,所述第二载频的频段高于所述第一载频的频段时,所述第二载频上发送的所述控制信道占用的带宽可以大于所述第一载频上发送的控制信道占用的带宽。
其中,所述控制信道可以有多种类型,不同类型的所述控制信道的发送周期可以不同。
其中,所述控制信道可以但不限于是单播控制信道。
可选地,所述第二载频的数据信道信息至少包含以下之一:
所述第二通信节点发送数据时使用的扩展序列信息,所述第二通信节点发送重传数据使用的载频的指示信息。
其中,所述第二通信节点发送数据时使用的扩展序列信息可以至少包括以下之一:
扩频序列的生成方式,扩频序列与发送资源的映射关系,扩频序列的选择方法。
其中,所述第二通信节点发送重传数据使用的载频可以不同于所述第一载频和所述第二载频。
可选地,所述第二载频的描述信息还可以包括:
所述第二通信节点针对所述第二载频上在时间t1发送的下行数据包的解码情况生成ACK或NAK信息的发送时间t2。
其中,所述ACK或NAK信息的发送时间t2与所述下行数据包的发送时间t1的差值t2-t1,可以小于所述第一载频发送的一个下行数据包对应的ACK或NAK信息的发送时间与该下行数据包的发送时间的差值。
可选地,所述第二载频的HARQ时序信息包括:
所述第二通信节点对所述第二载频发送的物理层数据包反馈HARQ信息的时刻;
当所述第二载频的频段高于所述第一载频的频段时,所述第二通信节点对所述第二载频发送的物理层数据包反馈HARQ信息的时刻先于所述物理层数据包的传输结束时刻。
其中,所述第二载频发送的所述物理层数据包的长度可以大于所述第一载频上允许发送的最大物理层数据包长度。
可选地,所述第二通信节点在所述第二载频工作的时间信息是指所述第二通信节点在所述第二载频接收控制信道的时间段。
其它实现细节可参见前文的方法部分。
如图4所示,一种载频间协作装置,设置于第二通信节点中,包括:
接收模块41,设置为:接收第一通信节点通过第一载频发送的第二载频的描述信息,所述第二载频的描述信息至少包含以下之一:所述第二载频的发送波束信息,所述第二载频的导频信息,所述第二载频的控制信道信息,所述第二载频的数据信道信息,所述第二载频的混合自动重传请求HARQ时序信息,所述第二通信节点在所述第二载频工作的时间信息;
操作模块42,设置为:根据所述第二载频的描述信息进行操作。
可选地,所述第二载频的发送波束信息至少包含以下之一:发送波束个数,发送波束集合信息,发送波束的资源的指示信息。
其中,所述发送波束个数N可以小于所述第二载频上的总的发送波束个数。
其中,所述发送波束可以至少包含第一发送波束集合和第二发送波束集合。
其中,所述第一发送波束集合中发送波束的发送周期可以大于所述第二发送波束集合中发送波束的发送周期;
所述操作模块42是设置为:根据所述第二载频的描述信息中的发送波束集合信息,选择接收的发送波束集合。
其中,所述发送波束集合信息可以包括:第一发送波束集合中的所述至少一个发送波束与所述第二发送波束集合中的X个发送波束的对应关系,X大于1。
其中,所述操作模块42是设置为:
所述操作模块42在所述第二载频上工作时,先接收第一发送波束集合中的发送波束,选择一个或多个信号接收质量最好的发送波束,基于所述第二载频的描述信息中,所选择的发送波束与第二发送波束集合中的发送波束的对应关系,确定需要接收的第二发送波束集合中的发送波束。
可选地,所述第二载频的导频信息至少包含以下之一:导频类型,不同类型导频使用的时频资源的指示信息,对应于不同类型导频的反馈模式,基于不同导频类型的信道估计参数。
其中,所述导频类型至少包含第一导频类型和第二导频类型;
所述操作模块42是设置为:根据所述第二载频的描述信息确定所述第一导频类型对应的端口数大于所述第二导频类型对应的端口数。
其中,所述操作模块42是设置为:在所述第二载频上工作时,通过第一导频类型获得全局信道信息,进而确定需要接收的第二导频类型。
其中,所述不同导频类型的反馈模式中使用的码本集合可以是不同的;
所述操作模块42是设置为:所述操作模块42在所述第二载频上工作时,根据所处的信道情况基于所述第一导频类型和/或基于所述第二导频类型确定码本信息,并将所述码本信息反馈给所述第一通信节点。
其中,所述信道估计参数可以至少包括与所述第二通信节点使用的信道估计算法有关的参数;
所述操作模块42是设置为:所述操作模块42在所述第二载频上工作时,根据所述第二载频的描述信息使用相应的信道估计算法。
可选地,所述第二载频的控制信道信息至少包含以下之一:
所述控制信道的发送周期,所述控制信道携带的控制信息,发送所述控制信道使用的资源的指示信息;
所述操作模块42是设置为:根据所述第二载频的描述信息,在所述第二载频上接收控制信道。
其中,所述第二载频的频段高于所述第一载频的频段时,所述第二载频上发送的控制信道的发送周期可以小于所述第一载频上发送的控制信道的发送周期。
其中,所述第二载频的频段高于所述第一载频的频段时,所述第二载频上发送的所述控制信道携带的控制信息中描述资源分配信息的比特数可以小于所述第一载频上发送的控制信道携带的控制信息中描述资源分配信息的比特数。
其中,所述第二载频的频段高于所述第一载频的频段时,所述第二载频上发送的所述控制信道占用的带宽可以大于所述第一载频上发送的控制信道占用的带宽。
其中,所述控制信道可以有多种类型,不同类型的所述控制信道的发送 周期可以不同。
其中,所述控制信道可以但不限于是单播控制信道。
可选地,所述第二载频的数据信道信息至少包含以下之一:所述第二通信节点发送数据时使用的扩展序列信息,所述第二通信节点发送重传数据使用的载频的指示信息。
其中,所述第二通信节点发送数据时使用的扩展序列信息可以至少包括以下之一:
扩频序列的生成方式,扩频序列与发送资源的映射关系,扩频序列的选择方法;
所述操作模块42是设置为:
根据所述第二载频的描述信息中的扩展序列信息,在所述第二载频上发送数据。
其中,所述第二通信节点发送重传数据使用的载频可以不同于所述第一载频和所述第二载频。
可选地,所述第二载频的描述信息还包括:
所述第二通信节点针对所述第二载频上在时间t1发送的下行数据包的解码情况生成ACK或NAK信息的发送时间t2。
其中,所述ACK或NAK信息的发送时间t2与所述下行数据包的发送时间t1的差值t2-t1,可以小于所述第一载频发送的一个下行数据包对应的ACK或NAK信息的发送时间与该下行数据包的发送时间的差值。
可选地,所述第二载频的HARQ时序信息包括:
所述第二通信节点对所述第二载频发送的物理层数据包反馈HARQ信息的时刻;
当所述第二载频的频段高于所述第一载频的频段时,所述第二通信节点对所述第二载频发送的物理层数据包反馈HARQ信息的时刻先于所述物理层数据包的传输结束时刻;
所述操作模块42是设置为:根据所述第二载频的描述信息,在相应时刻 对所述第二载频发送的物理层数据包反馈HARQ信息。
其中,所述第二载频发送的所述物理层数据包的长度可以大于所述第一载频上允许发送的最大物理层数据包长度。
可选地,所述第二通信节点在所述第二载频工作的时间信息是指所述第二通信节点在所述第二载频接收控制信道的时间段;
所述操作模块42是设置为:根据所述第二载频的描述信息,在相应的时间段中在所述第二载频上接收控制信道。
其它实现细节可参见前文的方法部分。
下面结合附图5和实施例A1~A18从基站角度作进一步地描述。
实施例A1
假设载频f2上总的发送波束有M(M为大于1的整数)个,基站通过终端在载频f1上的信道状态信息(例如角度信息)确定彼此之间的地理位置关系,然后判断载频f2上有N个方向(N为小于或等于M的整数)的发送波束可能会被终端成功接收,则载频f2的描述信息至少包含发送波束的个数N。
基站通过载频f1发送所述载频f2的描述信息给终端。
这种方式的好处是终端可以在载频f2上少接收一些波束,降低终端的能耗。
实施例A2
假设载频f2上的发送波束有M个,所述M个发送波束分成两组,分别称为第一发送波束集合、第二发送波束集合,所述第一发送波束集合中发送波束的发送周期大于所述第二发送波束集合中发送波束的发送周期,则载频f2的描述信息至少包含发送波束集合信息,例如集合个数和每个集合的发送周期。
基站通过载频f1发送所述载频f2的描述信息给终端。
这种方式的好处是基站可以根据不同的业务时延需求确定不同的发送波 束集合,终端也可以根据自己的业务情况选择接收合适的发送波束集合。
实施例A3
假设载频f2上的发送波束有M个,所述M个发送波束分成两组,分别称为第一发送波束集合、第二发送波束集合,所述第一发送波束集合中的至少一个发送波束的方向包含所述第二发送波束集合中X个(X大于1)发送波束的方向,即终端在载频f2上工作时,先接收第一发送波束集合中的发送波束,选择一个或多个信号接收质量最好的发送波束,然后基于这些发送波束与第二发送波束集合中的发送波束的对应关系确定需要尝试接收第二发送波束集合中的哪些发送波束。因此,载频f2的描述信息至少包含发送波束集合信息,所述波束集合信息包括:所述第一发送波束集合中的所述至少一个发送波束与所述第二发送波束集合中的所述X个发送波束之间的对应关系,X为大于1的整数。
基站通过载频f1发送所述载频f2的描述信息给终端。
这种方式的好处是通过发送波束分级的方式让终端快速确定最优的基站发送波束,降低终端能耗,提升网络质量。
实施例A4
假设载频f2上的发送波束有M个,则载频f2的描述信息至少包含发送波束使用的资源,例如M个发送波束使用完全不同的资源,或M个发送波束分成Y组(Y为大于1的整数),每组中的发送波束使用相同的资源,不同组使用的资源不同。
基站通过载频f1发送所述载频f2的描述信息给终端。
这种方式的好处是终端通过资源与发送波束的对应关系尝试在不同资源上接收发送波束,快速选择最优的基站发送波束。
实施例A5
假设载频f2上的导频类型有两种,分别称为第一导频类型和第二导频类型,所述第一导频类型对应的天线端口数大于第二导频类型。
基站通过载频f1发送所述载频f2的描述信息给终端。
这种方式的好处是终端通过第一导频类型获得全局信道信息,进而确定 需要接收的第二导频类型,更好地进行波束选择。
实施例A6
假设载频f2上的导频类型有两种,分别称为第一导频类型和第二导频类型,所述第一导频类型对应的码本集合不同于第二导频类型对应的码本集合。
基站通过载频f1发送所述载频f2的描述信息给终端。
这种方式的好处是终端根据自己所处的信道情况基于所述第一导频类型和/或基于所述第二导频类型确定码本信息,并将所述码本信息反馈给基站,基站根据数据传输情况选择合适的码本传输下行数据。
实施例A7
假设载频f2上的导频类型有两种,分别称为第一导频类型和第二导频类型,所述第一导频类型对应的信道估计算法不同于第二导频类型对应的信道估计算法,例如针对第一导频类型建议终端使用复杂度较高的压缩感知技术,针对第二导频类型使用最小均方误差方式。
基站通过载频f1发送所述载频f2的描述信息给终端。
这种方式的好处是根据不同导频类型的需求通知终端使用不同的信道估计算法及相关所述的算法参数,提高系统的环境适应性。
实施例A8
假设载频f2的频段高于f1的频段,所述载频f2上发送的控制信道的发送周期小于所述载频f1上发送的控制信道的发送周期。
基站通过载频f1发送所述载频f2的描述信息给终端。
这种方式的原因是载频f2工作在高频段,可用的连续带宽比较宽,如果采用OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)方式,考虑到硬件实现复杂度,子载波间隔设计的会比较大,例如300KHz,这样控制信道的发送周期就可以小一些,当终端从载频f2接收控制信道时可降低系统的传输时延,为用户提供更好的体验。
实施例A9
假设载频f2的频段高于f1的频段,所述载频f2上发送的控制信道携带的控制信息中描述资源分配信息的比特数小于所述载频f1上发送的控制信道携带的控制信息中描述资源分配信息的比特数。
基站通过载频f1发送所述载频f2的描述信息给终端。
这种方式的好处是载频f2工作在高频段,可以考虑使用时分方式来为终端分配资源,而不是采用载频f1使用的时频资源块分配方式,从而有效降低资源分配的描述开销,提高系统的整体频谱效率。
实施例A10
假设载频f2的频段高于f1的频段,所述载频f2上发送的控制信道占用的带宽大于所述载频f1上发送的控制信道占用的带宽。
基站通过载频f1发送所述载频f2的描述信息给终端。
这种方式的好处是有效降低载频f2上控制信道占用的传输时间,改善用户的业务体验。
实施例A11
假设载频f2的频段高于f1的频段,所述载频f2上发送的控制信道有多种类型,不同类型的所述控制信道的发送周期不同。
可选地,所述控制信道为单播控制信道。
基站通过载频f1发送所述载频f2的描述信息给终端。
这种方式的好处是根据用户的业务类型使用不同周期的单播控制信道为用户提供服务,同一终端也可根据用户业务的需要可接收多种周期的单播控制信道,改善了系统对用户业务的适应性。
实施例A12
假设载频f2上终端的数据信道发送采用扩频的方式。
基站通过载频f1发送所述载频f2的描述信息给终端,可选地,所述描述信息包括所述扩频序列的生成方式。
这种方式的好处是终端可以根据扩频序列的生成方式生成合适的上行扩频序列快速发送上行数据。
实施例A13
假设载频f2上终端的数据信道发送采用扩频的方式。
基站通过载频f1发送所述载频f2的描述信息给终端,可选地,所述描述信息包括所述扩频序列与发送资源的映射关系。
这种方式的好处是终端可根据选择的扩频序列确定发送资源,或者根据发送资源选择合适的扩频序列,减少系统控制开销,充分利用扩频方式想发就发的特性。
实施例A14
假设载频f2上终端的数据信道发送采用扩频的方式。
基站通过载频f1发送所述载频f2的描述信息给终端,可选地,所述描述信息包括所述扩频序列的选择方法。
这种方式的好处是终端可根据扩频序列的选择方法灵活根据传输需要选择合适的扩频序列发送上行数据,例如终端根据不同的业务选择不同的扩频序列,时延容忍度高时选择长周期扩频序列,时延容忍度低时选择短周期扩频序列。
实施例A15
基站通过载频f1发送所述载频f2的描述信息给终端,可选地,所述描述信息包括所述终端发送重传数据所使用的载频f3的指示信息,需要说明首传数据在载频f2上发送。可选地,所述载频f3不同于所述载频f2,也不同于所述载频f1。
这种方式的好处是有效减少系统由于HARQ反馈带来的系统设计的复杂性,尽可能保持部分载频上的时序关系。
实施例A16
基站通过载频f1发送所述载频f2的描述信息给终端,可选地,所述描述信息包括所述终端针对所述载频f2上在时刻t1发送的下行数据包的解码情况生成ACK(Acknowledgement,确认)或NAK(Negative Acknowlegment,没有应答)信息的发送时间t2,可选地,所述ACK或NAK信息的发送时间与所述下行数据包的发送时间的差值(t2-t1)小于所述载频f1上发送的一个下 行数据包对应的ACK或NAK信息的发送时间与该下行数据包的发送时间的差值,例如载频f1上采用LTE(Long Term Evolution,长期演进)方式时,该差值为4ms。
这种方式的好处是有效减少用户数据传输时延,改善用户体验。
实施例A17
基站通过载频f1发送所述载频f2的描述信息给终端,可选地,所述第二载频的HARQ时序信息包括:所述终端对载频f2发送的下行物理层数据包反馈HARQ信息的时刻;所述f2的频段高于f1的频段时,所述终端对载频f2发送的下行物理层数据包反馈HARQ信息的时刻先于所述物理层数据包的传输结束时刻。
可选地,所述载频f2发送的所述物理层数据包的长度大于所述载频f1上允许发送的最大物理层数据包长度。
这种方式的好处是当传输数据包比较长时,终端可以在未解码完该数据包的情况下根据已经解码的部分数据包的情况判断整个数据包的可能的解码情况,并将该解码情况在所述数据包未发送完成时将预测解码结果反馈给基站,以使基站提前做出调度决定,改善系统的时延。
实施例A18
基站通过载频f1发送所述载频f2的描述信息给终端,可选地,所述描述信息包括所述终端在所述载频f2工作的时间信息,即所述终端在所述载频f2上接收所述控制信道的时间段。
这种方式的好处是终端在对应时间段内尝试解码载频f2上与自己有关的控制信道,其他时间段则不需要解码载频f2上的控制信道,降低终端的能耗,延长终端的待机时间。
下面结合附图5和实施例B1~18从终端角度作进一步地描述。
实施例B1
假设载频f2上总的发送波束有M(M为大于1的整数)个,基站通过终端在载频f1上信道状态信息(例如角度信息)确定彼此之间的地理位置关系, 然后判断载频f2上有N个方向(N为小于或等于M的整数)的发送波束可能会被终端成功接收,则载频f2的描述信息至少包含发送波束的个数N。
终端接收基站通过载频f1发送的所述载频f2的描述信息。
这种方式的好处是终端可以在载频f2上少接收一些波束,降低终端的能耗。
实施例B2
假设载频f2上的发送波束有M个,所述M个发送波束分成两组,分别称为第一发送波束集合、第二发送波束集合,所述第一发送波束集合中发送波束的发送周期大于所述第二发送波束集合中发送波束的发送周期,则载频f2的描述信息至少包含发送波束集合信息,例如集合个数和每个集合的发送周期。
终端接收基站通过载频f1发送的所述载频f2的描述信息。
这种方式的好处是基站可以根据不同的业务时延需求确定不同的发送波束集合,终端也可以根据自己的业务情况选择接收合适的发送波束集合。
实施例B3
假设载频f2上的发送波束有M个,所述M个发送波束分成两组,分别称为第一发送波束集合、第二发送波束集合,所述第一发送波束集合中的至少一个发送波束的方向包含所述第二发送波束集合中X个(X大于1)发送波束的方向,即终端在载频f2上工作时,先接收第一发送波束集合中的发送波束,选择一个或多个信号接收质量最好的发送波束,然后基于这些发送波束与第二发送波束集合中的发送波束的对应关系确定需要尝试接收第二发送波束集合中的哪些发送波束。因此,载频f2的描述信息至少包含发送波束集合信息,所述波束集合信息包括:所述第一发送波束集合中的所述至少一个发送波束与所述第二发送波束集合中的所述X个发送波束的对应关系,X为大于1的整数。
终端接收基站通过载频f1发送的所述载频f2的描述信息。
这种方式的好处是通过发送波束分级的方式让终端快速确定最优的基站发送波束,降低终端能耗,提升网络质量。
实施例B4
假设载频f2上的发送波束有M个,则载频f2的描述信息至少包含发送波束使用的资源,例如M个发送波束使用完全不同的资源,或M个发送波束分成Y(Y为大于1的整数)组,每组中的发送波束使用相同的资源,不同组使用的资源不同。
终端接收基站通过载频f1发送的所述载频f2的描述信息。
这种方式的好处是终端通过资源与发送波束的对应关系尝试在不同资源上接收发送波束,快速选择最优的基站发送波束。
实施例B5
假设载频f2上的导频类型有两种,分别称为第一导频类型和第二导频类型,所述第一导频类型对应的天线端口数大于第二导频类型。
终端接收基站通过载频f1发送的所述载频f2的描述信息。
这种方式的好处是终端通过第一导频类型获得全局信道信息,进而确定需要接收的第二导频类型,更好地进行波束选择。
实施例B6
假设载频f2上的导频类型有两种,分别称为第一导频类型和第二导频类型,所述第一导频类型对应的码本集合不同于第二导频类型对应的码本集合。
终端接收基站通过载频f1发送的所述载频f2的描述信息。
这种方式的好处是终端根据自己所处的信道情况基于所述第一导频类型和/或基于所述第二导频类型确定码本信息,并将所述码本信息反馈给基站,基站根据数据传输情况选择合适的码本传输下行数据。
实施例B7
假设载频f2上的导频类型有两种,分别称为第一导频类型和第二导频类型,所述第一导频类型对应的信道估计算法不同于第二导频类型对应的信道估计算法,例如针对第一导频类型建议终端使用复杂度较高的压缩感知技术,针对第二导频类型使用最小均方误差方式。
终端接收基站通过载频f1发送的所述载频f2的描述信息。
这种方式的好处是终端根据不同导频类型的需求使用不同的信道估计算法及相关所述的算法参数,提高系统的环境适应性。
实施例B8
假设载频f2的频段高于f1的频段,所述载频f2上发送的控制信道的发送周期小于所述载频f1上发送的控制信道的发送周期。
终端接收基站通过载频f1发送的所述载频f2的描述信息。
这种方式的原因是载频f2工作在高频段,可用的连续带宽比较宽,如果采用OFDM方式,考虑到硬件实现复杂度,子载波间隔设计的会比较大,例如300KHz,这样控制信道的发送周期就可以小一些,当终端从载频f2接收控制信道时可降低系统的传输时延,为用户提供更好的体验。
实施例B9
假设载频f2的频段高于f1的频段,所述载频f2上发送的控制信道携带的控制信息中描述资源分配信息的比特数小于所述载频f1上发送的控制信道携带的控制信息中描述资源分配信息的比特数。
终端接收基站通过载频f1发送的所述载频f2的描述信息。
这种方式的好处是载频f2工作在高频段,可以考虑使用时分方式来为终端分配资源,而不是采用载频f1使用的时频资源块分配方式,从而有效降低资源分配的描述开销,提高系统的整体频谱效率。
实施例B10
假设载频f2的频段高于f1的频段,所述载频f2上发送的控制信道占用的带宽大于所述载频f1上发送的控制信道占用的带宽。
终端接收基站通过载频f1发送的所述载频f2的描述信息。
这种方式的好处是有效降低载频f2上控制信道占用的传输时间,改善用户的业务体验。
实施例B11
假设载频f2的频段高于f1的频段,所述载频f2上发送的控制信道有多 种类型,不同类型的所述控制信道的发送周期不同。
可选地,所述控制信道为单播控制信道。
终端接收基站通过载频f1发送的所述载频f2的描述信息。
这种方式的好处是根据用户的业务类型使用不同周期的单播控制信道为用户提供服务,同一终端也可根据用户业务的需要可接收多种周期的单播控制信道,改善了系统对用户业务的适应性。
实施例B12
假设载频f2上终端的数据信道发送采用扩频的方式。
终端接收基站通过载频f1发送的所述载频f2的描述信息,可选地,所述描述信息包括所述扩频序列的生成方式。
这种方式的好处是终端可以根据扩频序列的生成方式生成合适的上行扩频序列快速发送上行数据。
实施例B13
假设载频f2上终端的数据信道发送采用扩频的方式。
终端接收基站通过载频f1发送的所述载频f2的描述信息,可选地,所述描述信息包括所述扩频序列与发送资源的映射关系。
这种方式的好处是终端可根据选择的扩频序列确定发送资源,或者根据发送资源选择合适的扩频序列,减少系统控制开销,充分利用扩频方式想发就发的特性。
实施例B14
假设载频f2上终端的数据信道发送采用扩频的方式。
终端接收基站通过载频f1发送的所述载频f2的描述信息,可选地,所述描述信息包括扩频序列的选择方法。
这种方式的好处是终端可根据扩频序列的选择方法灵活根据传输需要选择合适的扩频序列发送上行数据,例如终端根据不同的业务选择不同的扩频序列,时延容忍度高时选择长周期扩频序列,时延容忍度低时选择短周期扩频序列。
实施例B15
终端接收基站通过载频f1发送的所述载频f2的描述信息,可选地,所述描述信息包括所述终端发送重传数据所使用的载频f3的指示信息,需要说明首传数据在载频f2上发送。可选地,所述载频f3不同于所述载频f2,也不同于所述载频f1。
这种方式的好处是有效减少系统由于HARQ反馈带来的系统设计的复杂性,尽可能保持部分载频上的时序关系。
实施例B16
终端接收基站通过载频f1发送的所述载频f2的描述信息,可选地,所述描述信息包括所述终端针对所述载频f2上在时刻t1发送的下行数据包的解码情况生成ACK或NAK信息的发送时间t2,可选地,所述ACK或NAK信息的发送时间与所述下行数据包的发送时间的差值(t2-t1)小于所述载频f1上发送的一个下行数据包对应的ACK或NAK信息的发送时间与该下行数据包的发送时间的差值,例如载频f1上采用LTE方式时,该差值为4ms。
这种方式的好处是有效减少用户数据传输时延,改善用户体验。
实施例B17
终端接收基站通过载频f1发送的所述载频f2的描述信息,可选地,所述第二载频的HARQ时序信息包括:所述终端对载频f2发送的下行物理层数据包反馈HARQ信息的时刻;所述f2的频段高于f1的频段时,所述终端对载频f2发送的下行物理层数据包反馈HARQ信息的时刻先于所述物理层数据包的传输结束时刻。
可选地,所述载频f2发送的所述物理层数据包的长度大于所述载频f1上允许发送的最大物理层数据包长度。
这种方式的好处是当传输数据包比较长时,终端可以在未解码完该数据包的情况下根据已经解码的部分数据包的情况判断整个数据包的可能的解码情况,并将该解码情况在所述数据包未发送完成时将预测解码结果反馈给基站,以使基站提前做出调度决定,改善系统的时延。
实施例B18
终端接收基站通过载频f1发送的所述载频f2的描述信息,可选地,所述描述信息包括所述终端在所述载频f2工作的时间信息,即所述终端在所述载频f2上接收所述控制信道的时间段。
这种方式的好处是终端在对应时间段内尝试解码载频f2上与自己有关的控制信道,其他时间段则不需要解码载频f2上的控制信道,降低终端的能耗,延长终端的待机时间。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如系统、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。
上述实施例中的装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
工业实用性
本发明实施例所提出的载频间协作方案,可以充分发挥第五代移动通信系统中使用高频段带来的系统容量提升的能力,提高整个移动通信系统的服务质量。

Claims (35)

  1. 一种载频间协作方法,包括:
    确定第二载频的描述信息;
    第一通信节点通过第一载频发送所述第二载频的描述信息给第二通信节点,所述第二载频的描述信息至少包含以下之一:所述第二载频的发送波束信息,所述第二载频的导频信息,所述第二载频的控制信道信息,所述第二载频的数据信道信息,所述第二载频的混合自动重传请求HARQ时序信息,所述第二通信节点在所述第二载频工作的时间信息。
  2. 如权利要求1所述的方法,其中,所述第二载频的发送波束信息包含以下之一:发送波束个数,发送波束集合信息,发送波束的资源的指示信息。
  3. 如权利要求2所述的方法,其中:
    所述发送波束个数小于所述第二载频上的总的发送波束个数。
  4. 如权利要求3所述的方法,其中,确定第二载频的描述信息包括:
    通过所述第二通信节点在所述第一载频上的信道状态信息,判断出所述第二载频上会被所述第二通信节点成功接收的发送波束的方向个数N,将N作为发送波束个数。
  5. 如权利要求2所述的方法,其中:
    所述发送波束包含第一发送波束集合和第二发送波束集合。
  6. 如权利要求5所述的方法,其中:
    所述第一发送波束集合中发送波束的发送周期大于所述第二发送波束集合中发送波束的发送周期。
  7. 如权利要求5所述的方法,其中:
    所述发送波束集合信息包括:第一发送波束集合中的所述至少一个发送波束与所述第二发送波束集合中的X个发送波束之间的对应关,X大于1。
  8. 如权利要求1所述的方法,其中,所述第二载频的导频信息包含以下之一:导频类型,不同类型导频使用的时频资源的指示信息,对应于不同类 型导频的反馈模式,基于不同导频类型的信道估计参数。
  9. 如权利要求8所述的方法,其中:
    所述导频类型包含第一导频类型和第二导频类型,所述第一导频类型对应的端口数大于所述第二导频类型对应的端口数;和/或
    所述信道估计参数包括与所述第二通信节点使用的信道估计算法有关的参数。
  10. 如权利要求8所述的方法,其中:
    所述不同导频类型的反馈模式中使用的码本集合是不同的。
  11. 如权利要求1所述的方法,其中,所述第二载频的控制信道信息包含以下之一:
    所述控制信道的发送周期,所述控制信道携带的控制信息,发送所述控制信道使用的资源的指示信息。
  12. 如权利要求11所述的方法,其中:
    所述第二载频的频段高于所述第一载频的频段时,所述第二载频上发送的控制信道的发送周期小于所述第一载频上发送的控制信道的发送周期;和/或
    所述第二载频的频段高于所述第一载频的频段时,所述第二载频上发送的所述控制信道携带的控制信息中描述资源分配信息的比特数小于所述第一载频上发送的控制信道携带的控制信息中描述资源分配信息的比特数;和/或
    所述第二载频的频段高于所述第一载频的频段时,所述第二载频上发送的所述控制信道占用的带宽大于所述第一载频上发送的控制信道占用的带宽。
  13. 如权利要求11所述的方法,其中:
    所述控制信道有多种类型,不同类型的所述控制信道的发送周期不同。
  14. 如权利要求13所述的方法,其中:
    所述控制信道是单播控制信道。
  15. 如权利要求1所述的方法,其中,所述第二载频的数据信道信息包 含以下之一:
    所述第二通信节点发送数据时使用的扩展序列信息,所述第二通信节点发送重传数据使用的载频的指示信息。
  16. 如权利要求15所述的方法,其中,所述第二通信节点发送数据时使用的扩展序列信息包括以下之一:
    扩频序列的生成方式,扩频序列与发送资源的映射关系,扩频序列的选择方法。
  17. 如权利要求1所述的方法,其中,所述第二载频的描述信息还包括:
    所述第二通信节点针对所述第二载频上在时间t1发送的下行数据包的解码情况生成ACK或NAK信息的发送时间t2。
  18. 如权利要求17所述的方法,其中:
    所述ACK或NAK信息的发送时间t2与所述下行数据包的发送时间t1的差值t2-t1,小于所述第一载频发送的一个下行数据包对应的ACK或NAK信息的发送时间与该下行数据包的发送时间的差值。
  19. 如权利要求1所述的方法,其中,所述第二载频的HARQ时序信息包括:
    所述第二通信节点对所述第二载频发送的物理层数据包反馈HARQ信息的时刻;
    当所述第二载频的频段高于所述第一载频的频段时,所述第二通信节点对所述第二载频发送的物理层数据包反馈HARQ信息的时刻先于所述物理层数据包的传输结束时刻。
  20. 如权利要求19所述的方法,其中:
    所述第二载频发送的所述物理层数据包的长度大于所述第一载频上允许发送的最大物理层数据包长度。
  21. 一种载频间协作方法,包括:
    第二通信节点接收第一通信节点通过第一载频发送的第二载频的描述信 息,所述第二载频的描述信息至少包含以下之一:所述第二载频的发送波束信息,所述第二载频的导频信息,所述第二载频的控制信道信息,所述第二载频的数据信道信息,所述第二载频的混合自动重传请求HARQ时序信息,所述第二通信节点在所述第二载频工作的时间信息;
    所述第二通信节点根据所述第二载频的描述信息进行操作。
  22. 如权利要求21所述的方法,其中,所述第二载频的发送波束信息包含以下之一:发送波束个数,发送波束集合信息,发送波束的资源的指示信息;
    所述发送波束包含第一发送波束集合和第二发送波束集合。
  23. 如权利要求22所述的方法,其中:
    所述第一发送波束集合中发送波束的发送周期大于所述第二发送波束集合中发送波束的发送周期;
    所述第二通信节点根据所述第二载频的描述信息进行操作包括:
    所述第二通信节点根据所述第二载频的描述信息中的发送波束集合信息,选择接收的发送波束集合。
  24. 如权利要求22所述的方法,其中:
    所述发送波束集合信息包括:第一发送波束集合中的所述至少一个发送波束与所述第二发送波束集合中的X个发送波束的对应关系,X大于1;
    所述第二通信节点根据所述第二载频的描述信息进行操作包括:
    所述第二通信节点在所述第二载频上工作时,先接收第一发送波束集合中的发送波束,选择一个或多个信号接收质量最好的发送波束,基于所述第二载频的描述信息中,所选择的发送波束与第二发送波束集合中的发送波束的对应关系,确定需要接收的第二发送波束集合中的发送波束。
  25. 如权利要求21所述的方法,其中:所述第二载频的导频信息至少包含以下之一:导频类型,不同类型导频使用的时频资源的指示信息,对应于不同类型导频的反馈模式,基于不同导频类型的信道估计参数;
    所述导频类型至少包含第一导频类型和第二导频类型;
    所述第二通信节点根据所述第二载频的描述信息进行操作包括:
    所述第二通信节点根据所述第二载频的描述信息确定所述第一导频类型对应的端口数大于所述第二导频类型对应的端口数。
  26. 如权利要求25所述的方法,其中,所述第二通信节点根据所述第二载频的描述信息进行操作还包括:
    所述第二通信节点在所述第二载频上工作时,通过第一导频类型获得全局信道信息,进而确定需要接收的第二导频类型。
  27. 如权利要求25所述的方法,其中:
    所述不同导频类型的反馈模式中使用的码本集合是不同的;
    所述第二通信节点根据所述第二载频的描述信息进行操作包括:
    所述第二通信节点在所述第二载频上工作时,根据所处的信道情况基于所述第一导频类型和/或基于所述第二导频类型确定码本信息,并将所述码本信息反馈给所述第一通信节点。
  28. 如权利要求25所述的方法,其中:
    所述信道估计参数包括与所述第二通信节点使用的信道估计算法有关的参数;
    所述第二通信节点根据所述第二载频的描述信息进行操作包括:
    所述第二通信节点在所述第二载频上工作时,根据所述第二载频的描述信息使用相应的信道估计算法。
  29. 如权利要求21所述的方法,其中,所述第二载频的控制信道信息包含以下之一:
    所述控制信道的发送周期,所述控制信道携带的控制信息,发送所述控制信道使用的资源的指示信息;
    所述第二通信节点根据所述第二载频的描述信息进行操作包括:
    所述第二通信节点根据所述第二载频的描述信息,在所述第二载频上接收控制信道。
  30. 如权利要求21所述的方法,其中:
    所述第二载频的数据信道信息包含以下之一:所述第二通信节点发送数据时使用的扩展序列信息,所述第二通信节点发送重传数据使用的载频的指示信息;
    所述第二通信节点发送数据时使用的扩展序列信息包括以下之一:
    扩频序列的生成方式,扩频序列与发送资源的映射关系,扩频序列的选择方法;
    所述第二通信节点根据所述第二载频的描述信息进行操作包括:
    所述第二通信节点根据所述第二载频的描述信息中的扩展序列信息,在所述第二载频上发送数据。
  31. 如权利要求30所述的方法,还包括:
    所述第二通信节点发送重传数据使用的载频不同于所述第一载频和所述第二载频。
  32. 如权利要求21所述的方法,其中,所述第二载频的HARQ时序信息包括:
    所述第二通信节点对所述第二载频发送的物理层数据包反馈HARQ信息的时刻;
    当所述第二载频的频段高于所述第一载频的频段时,所述第二通信节点对所述第二载频发送的物理层数据包反馈HARQ信息的时刻先于所述物理层数据包的传输结束时刻;
    所述第二通信节点根据所述第二载频的描述信息进行操作包括:
    所述第二通信节点根据所述第二载频的描述信息,在相应时刻对所述第二载频发送的物理层数据包反馈HARQ信息。
  33. 如权利要求21所述的方法,其中:
    所述第二通信节点在所述第二载频工作的时间信息为:所述第二通信节点在所述第二载频接收控制信道的时间段;
    所述第二通信节点根据所述第二载频的描述信息进行操作包括:
    所述第二通信节点根据所述第二载频的描述信息,在相应的时间段中在 所述第二载频上接收控制信道。
  34. 一种载频间协作装置,包括:
    确定模块,设置为:确定第二载频的描述信息;
    发送模块,设置为:通过第一载频发送所述第二载频的描述信息给第二通信节点,所述第二载频的描述信息至少包含以下之一:所述第二载频的发送波束信息,所述第二载频的导频信息,所述第二载频的控制信道信息,所述第二载频的数据信道信息,所述第二载频的混合自动重传请求HARQ时序信息,所述第二通信节点在所述第二载频工作的时间信息。
  35. 一种载频间协作装置,设置于第二通信节点中,包括:
    接收模块,设置为:接收第一通信节点通过第一载频发送的第二载频的描述信息,所述第二载频的描述信息至少包含以下之一:所述第二载频的发送波束信息,所述第二载频的导频信息,所述第二载频的控制信道信息,所述第二载频的数据信道信息,所述第二载频的混合自动重传请求HARQ时序信息,所述第二通信节点在所述第二载频工作的时间信息;
    操作模块,设置为:根据所述第二载频的描述信息进行操作。
PCT/CN2016/077127 2015-06-08 2016-03-23 一种载频间协作方法及装置 WO2016197660A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/580,296 US20180167174A1 (en) 2015-06-08 2016-03-23 Inter-carrier frequency cooperation method and device
EP16806558.9A EP3307001B1 (en) 2015-06-08 2016-03-23 Inter-carrier frequency cooperation method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510308889.4A CN106304354B (zh) 2015-06-08 2015-06-08 一种载频间协作方法及装置
CN201510308889.4 2015-06-08

Publications (1)

Publication Number Publication Date
WO2016197660A1 true WO2016197660A1 (zh) 2016-12-15

Family

ID=57502809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/077127 WO2016197660A1 (zh) 2015-06-08 2016-03-23 一种载频间协作方法及装置

Country Status (4)

Country Link
US (1) US20180167174A1 (zh)
EP (1) EP3307001B1 (zh)
CN (1) CN106304354B (zh)
WO (1) WO2016197660A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018121539A1 (zh) * 2016-12-30 2018-07-05 华为技术有限公司 一种数据传输的方法及发送端设备、接收端设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107835042B (zh) * 2016-09-14 2020-12-01 华为技术有限公司 同步波束发送接收方法、网络设备、终端及系统
CN108282314B (zh) * 2017-01-06 2022-04-29 中兴通讯股份有限公司 资源指示方法、装置、基站及终端
CN110971384A (zh) * 2019-11-15 2020-04-07 深圳职业技术学院 一种终端辅助的信息传输方法
CN111935836A (zh) * 2020-08-13 2020-11-13 深圳职业技术学院 一种物联网中控制信息传输的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101132215A (zh) * 2006-08-25 2008-02-27 上海贝尔阿尔卡特股份有限公司 演进多媒体广播多播业务基站、用户设备和方法
WO2009130569A2 (en) * 2008-04-21 2009-10-29 Nortel Networks Limited Apparatus, system, and method for a remote radio module with relay capability
CN102036314A (zh) * 2009-09-28 2011-04-27 夏普株式会社 跨载频指示处理方法和用户设备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2386038A (en) * 2002-02-27 2003-09-03 Motorola Inc Channel estimation in a radio receiver
KR101265632B1 (ko) * 2006-12-12 2013-05-22 엘지전자 주식회사 참조 신호 전송, 참조 신호 전송 패턴 설정, 자원 블록설정 및 할당을 위한 방법 및 장치
CA2679611A1 (en) * 2007-03-01 2008-09-12 Ntt Docomo, Inc. Base station apparatus and communication control method
US9049687B2 (en) * 2008-05-05 2015-06-02 Industrial Technology Research Institute System and method for providing multicast and/or broadcast services
EP2749072B1 (en) * 2011-09-30 2018-05-30 SCA IPLA Holdings Inc. Communications terminal and method of communicating
US8903454B2 (en) * 2011-11-07 2014-12-02 Alcatel Lucent Base station and radio unit for creating overlaid sectors with carrier aggregation
US9137077B2 (en) * 2011-11-10 2015-09-15 Xiao-an Wang Heterogeneous pilots
US9439174B2 (en) * 2012-03-27 2016-09-06 Samsung Electronics Co., Ltd. Method and apparatus for transmitting beam information in wireless communication system
US10097321B2 (en) * 2014-05-08 2018-10-09 Qualcomm Incorporated Cooperative techniques between lower-frequency carriers and millimeter-wave channels for discovery and synchronization and beamforming
EP3145241A4 (en) * 2014-06-03 2017-06-07 Huawei Technologies Co. Ltd. Communication method in heterogeneous network, macro base station, micro base station, and user equipment
US9681309B2 (en) * 2014-08-05 2017-06-13 Qualcomm Incorporated Methods exploiting asymmetric capabilities for contention-based random access in mm-wave access systems
EP3188548A4 (en) * 2014-09-23 2017-07-05 Huawei Technologies Co., Ltd. Terminal, base station, base station controller and millimetre wave honeycomb communication method
EP3217737B1 (en) * 2014-12-29 2019-09-25 Huawei Technologies Co., Ltd. Method and apparatus for aligning beams of antennae of high-low frequency co-station network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101132215A (zh) * 2006-08-25 2008-02-27 上海贝尔阿尔卡特股份有限公司 演进多媒体广播多播业务基站、用户设备和方法
WO2009130569A2 (en) * 2008-04-21 2009-10-29 Nortel Networks Limited Apparatus, system, and method for a remote radio module with relay capability
CN102036314A (zh) * 2009-09-28 2011-04-27 夏普株式会社 跨载频指示处理方法和用户设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3307001A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018121539A1 (zh) * 2016-12-30 2018-07-05 华为技术有限公司 一种数据传输的方法及发送端设备、接收端设备
US11234138B2 (en) 2016-12-30 2022-01-25 Huawei Technologies Co., Ltd. Data transmission method, transmitting device, and receiving device

Also Published As

Publication number Publication date
EP3307001A4 (en) 2018-06-20
EP3307001A1 (en) 2018-04-11
CN106304354A (zh) 2017-01-04
US20180167174A1 (en) 2018-06-14
EP3307001B1 (en) 2021-07-21
CN106304354B (zh) 2019-02-15

Similar Documents

Publication Publication Date Title
US11595973B2 (en) Method for processing uplink control information and terminal
Jacobsen et al. System level analysis of uplink grant-free transmission for URLLC
TWI492594B (zh) 用於無線網路可擴展及可縮放控制通道之方法及裝置
US8588201B2 (en) Method and apparatus for improving RF coverage area in a wireless network
JP6745360B2 (ja) ダウンリンク送信の設定
WO2016197660A1 (zh) 一种载频间协作方法及装置
US20140098782A1 (en) Enhancement for lte communication systems
CN107950065A (zh) 无线系统中的成帧、调度和同步
US20100177717A1 (en) Grouping based resource allocation method, method for transmitting signal using the same, and grouping based resource allocation controller
KR20200054068A (ko) 무선 통신 시스템에서 서브밴드 기반 채널 접속 방법 및 장치
KR20210011282A (ko) 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 장치
KR20200080864A (ko) 무선 통신 시스템에서 채널 접속을 위한 장치 및 방법
US10218489B2 (en) Wireless backhaul configuration
WO2018171494A1 (zh) 波束指示方法及装置
CN104471998B (zh) 用于分配上行链路子帧的资源的方法和网络节点
KR20200057482A (ko) 무선 통신 시스템에서 통신을 수행하는 방법 및 장치
WO2019031507A1 (ja) 通信装置および通信方法
CN114362899A (zh) 由用户终端或基站执行的方法、用户终端及基站
WO2021147091A1 (en) Dynamically enabling and disabling physical downlink shared channel scheduling using downlink control information
US10292178B2 (en) Method and apparatus for reporting channel status in cellular radio communication system
WO2019031552A1 (ja) 基地局装置および通信方法
US10798714B2 (en) Apparatus and method for allocating resources in wireless communication system
CN114362901A (zh) Ue协作方法和终端
US20230164829A1 (en) Method and device for transmitting uplink data in wireless communication system
US11490391B2 (en) Configuring multiple transmissions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16806558

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15580296

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016806558

Country of ref document: EP