WO2016197305A1 - Coating composition - Google Patents

Coating composition Download PDF

Info

Publication number
WO2016197305A1
WO2016197305A1 PCT/CN2015/080981 CN2015080981W WO2016197305A1 WO 2016197305 A1 WO2016197305 A1 WO 2016197305A1 CN 2015080981 W CN2015080981 W CN 2015080981W WO 2016197305 A1 WO2016197305 A1 WO 2016197305A1
Authority
WO
WIPO (PCT)
Prior art keywords
cured
block copolymer
amphiphilic block
curable composition
composition
Prior art date
Application number
PCT/CN2015/080981
Other languages
French (fr)
Inventor
Yanli FENG
Qiubai PENG
Yu-Peng Lee
Original Assignee
Blue Cube Ip Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Blue Cube Ip Llc filed Critical Blue Cube Ip Llc
Priority to PCT/CN2015/080981 priority Critical patent/WO2016197305A1/en
Priority to TW105117350A priority patent/TW201700651A/en
Publication of WO2016197305A1 publication Critical patent/WO2016197305A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/182Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing using pre-adducts of epoxy compounds with curing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4246Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof polymers with carboxylic terminal groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4246Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof polymers with carboxylic terminal groups
    • C08G59/4253Rubbers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins

Definitions

  • the present invention is related to a coating composition and more specifically to a high solids coating composition; and a process for preparing the high solids coating composition.
  • Epoxy based anti-corrosion coatings are widely used for the protection of metal and concrete substrates. In addition to anti-corrosion performance, it is very important for epoxy based coatings to exhibit other essential properties such as toughness as well as low volatile organic compounds (VOC) which are required in certain coating applications.
  • solid epoxy resins such as D.E.R. 671 have been widely used in anti-corrosion coatings to incorporate better toughness to the coatings.
  • the known solid epoxy resins are not suitable for use as low VOC coatings because such epoxy resins exist in the solid state. A large amount (e.g., greater than 30 percent based on volume) of solvent is required to dissolve the solid epoxy resins and dilute the resins sufficiently for use. This requirement hinders the solid epoxy resin from being used in low VOC, high solids applications.
  • liquid epoxy resins such as D.E.R. 331 have also been used for coatings.
  • the coatings based on liquid epoxy resin requires less solvent, however, such coatings are very brittle.
  • reactive diluents can be used to significantly reduce the viscosity of a coating formulation or system but such reactive diluents can compromise the reactivity or functionality of the resin, which will lead to long drying times for such resin or to poor chemical resistance of the coating.
  • aliphatic epoxy resins such as D.E.R. 736, D.E.R. 732, and D.E.R. 852 have also been used for coatings.
  • Aliphatic epoxy resins can improve the flexibility of a coating but such aliphatic epoxy resins still compromise the reactivity of resin, which will lead to long drying times as well.
  • U.S. Patent No. 8,021,586 discloses amphiphilic block copolymer-toughened epoxy resins and powder coatings made therefrom.
  • the above patent discloses a curable solid resin composition which is useful for powder coating, wherein the composition includes an epoxy resin, an amphiphilic block copolymer containing an epoxy resin immiscible block segment and an epoxy resin miscible block segment; and optionally, a curing agent.
  • anti-corrosion is not a property of a coating that is mentioned since the coating composition disclosed is used for preparing a powder coating, not a high solids coating.
  • the amphiphilic block copolymer disclosed in the above patent is not a carboxyl group terminated amphiphilic block copolymer or an epoxy group terminated amphiphilic block copolymer.
  • thermosettable composition containing a combination of an amphiphilic block copolymer and a polyol; and a thermoset product prepared from the thermosettable composition.
  • the above publication discloses a thermosettable composition for preparing curable thermoset products.
  • the thermosettable composition includes an amphiphilic block copolymer, a polyol, an epoxy resin having oxirane rings, and an anhydride hardener containing anhydride ring and catalyst.
  • no carboxyl group terminated amphiphilic block copolymer or epoxy group terminated amphiphilic block copolymer is used as a toughener or toughening agent.
  • the composition disclosed in the above publication is not used for coating applications; and anti-corrosion is not a property that is mentioned in the above publication.
  • WO2013/138994 discloses a modified epoxy resin composition used in high solids coatings.
  • the epoxy resin composition is useful in a low volatile organic compound high solids coating composition, which is useful for coating a substrate, such as metal, plastic, wood, stone, glass, fabric, concrete, primed surfaces, previously painted surfaces and cementitious substrates.
  • the coating composition of WO2013/138994 does not disclose a carboxyl group terminated amphiphilic block copolymer or an epoxy group terminated amphiphilic block copolymer used as toughener or toughening agent.
  • PCT Patent Application No. PCT/CN13/084305, filed September 26, 2013, discloses an epoxy system for nano toughening and providing a transparent appearance to a coating.
  • An amphiphilic block copolymer based on ethylene oxide/butylene oxide (EO/BO) for nano phase separation and transparent appearance is disclosed in the above PCT patent application.
  • Anti-corrosion properties for coating applications are not disclosed in the above PCT patent application.
  • U.S. Patent Application Publication No. 2011/0114257A1 discloses a reaction product based on amphiphilic block copolymers and the use of such copolymers as impact modifiers for coatings.
  • Amphiphilic block copolymers based on EO/BO as impact modifiers are disclosed in the above publication, but no anti-corrosion properties for coating applications are disclosed.
  • U.S. Patent Application Publication No. discloses a method of toughening epoxy resins and toughened epoxy resin composites prepared from the resins.
  • the above publication discloses a novel toughener selected from the group of polyurea, polyurethane and poly (urea-urethane) using a facile synthesis method.
  • the toughener forms thick-interface particles and creates an effective toughness improvement for epoxy resins.
  • neither a carboxyl group terminated amphiphilic block copolymer nor an epoxy group terminated amphiphilic block copolymer is disclosed as toughener for epoxy resins.
  • the above publication does not disclose anti-corrosion performance for high solids coatings.
  • the present invention is directed to a high solids curable coating formulation, system, or composition.
  • One embodiment of the curable coating composition of the present invention includes, for example: (a) at least one epoxy resin (such as D.E.R. 331 or Oudraflex LC. 301) , (b) at least one curing agent, and (c) at least one amphiphilic block copolymer toughener such as a carboxyl group terminated amphiphilic block copolymer (such as FORTEGRA 202) or an epoxy group terminated amphiphilic block copolymer (such as FORTEGRA 202 adduct) .
  • an epoxy terminated amphiphilic block copolymer such as FORTEGRA 202 adduct.
  • FORTEGRA 202 adduct is a reaction product of FORTEGRA 202 with an epoxy resin such as D.E.R. 331 wherein the final FORTEGRA 202 adduct product is terminated by epoxy groups.
  • the amphiphilic block copolymers, such as FORTEGRA 202 and FORTEGRA 202 adduct are used as a toughener or toughening agent in the coating composition.
  • the coating composition of the present invention offers at least two benefits: (1) better impact resistance and flexibility, and (2) better anti-corrosion performance.
  • Another embodiment of the present invention is directed to a process for preparing the above curable coating composition suitable for preparing a coating.
  • Still another embodiment of the present invention is directed to a cured product prepared by curing the above curable coating composition on a substrate.
  • Yet another embodiment of the present invention is directed to a process for producing the above cured coating product.
  • the present invention realizes the benefit of excellent impact resistance and flexibility and excellent anti-corrosion performance in a high solids coating.
  • “High solids” and “high solids content” herein, with reference to a composition means a solid content of greater than 70 percent (%) based on volume.
  • the solid content of the composition generally is more than 70 %based on volume in one embodiment, more than 75 %based on volume in another embodiment, and more than 80 %based on volume in still another embodiment.
  • Low volatile organic compounds (VOC) herein, with reference to a coating composition, means a solvent content of less than 250 g/L.
  • Epoxy resin immiscible block segment herein, with reference to a composition, means an oxide segment, such as an ethylene oxide (EO) segment, that is not miscible with an epoxide resin.
  • EO ethylene oxide
  • Epoxy resin miscible block segment herein, with reference to a composition, means an oxide segment, such as a butylene oxide (BO) segment, that is miscible with an epoxide resin.
  • BO butylene oxide
  • One broad embodiment of the present invention is directed to a curable coating formulation or composition which is useful for coating substrates or parts and forming an anti-corrosion coating on the substrates or parts, particularly parts used in the marine, steel structure, maintenance, and transportation industries.
  • the curable composition useful as a coating composition in general contains (a) at least one epoxy resin, (b) at least one amphiphilic block copolymer toughening agent such as for example at least one carboxyl group terminated amphiphilic block copolymer or at least one epoxy group terminated amphiphilic block copolymer, and (c) at least one curing agent.
  • the coating composition may include reactive diluents, pigments, fillers, solvents, and other additives.
  • the curable composition is first prepared and then the curable composition is cured to form a cured coating material, particularly for forming an anti-corrosion coating on a substrate.
  • the epoxy resin compound, component (a) , useful in preparing the present invention curable epoxy resin coating composition can be any conventional epoxy resin compound.
  • the epoxy resin can be a single epoxy resin compound used alone or a mixture of two or more epoxy compounds used in combination, i.e., component (a) of the curable epoxy resin coating composition which is cured to form the coating material of the present invention includes at least one epoxy resin.
  • the epoxy resin (a) includes, but is not limited to, aliphatic epoxy resins, cycloaliphatic epoxy resins, bisphenol A epoxy resins, bisphenol F epoxy resins, phenol novolac epoxy resins, cresol-novolac epoxy resins, biphenyl epoxy resins, polyfunctional epoxy resins, naphthalene epoxy resins, divinylbenzene dioxide, 2-glycidylphenylglycidyl ether, dicyclopentadiene-type epoxy resins, phosphorous containing epoxy resin, multi-aromatic resin type epoxy resins, and mixture therefore.
  • epoxy resins useful in the present invention include, for example, trimethylpropane epoxide; cyclohexanedimethanol diglycidyl ether; diglycidyl-1, 2-cyclohexane dicarboxylate; diglycidyl ether of bisphenol A; diglycidyl ether of bisphenol F; resorcinol diglycidyl ether; triglycidyl ethers of para-aminophenols; halogen (for example, chlorine or bromine) -containing epoxy resins such as diglycidyl ether of tetrabromobisphenol A; epoxidized phenol novolac; epoxidized bisphenol A novolac; an oxazolidone-modified epoxy resin; an epoxy-terminated polyoxazolidone; and mixtures thereof.
  • epoxy resins useful in the present invention include, for example, trimethylpropane epoxide; cyclohexanedimethanol diglycidyl ether
  • Suitable commercially available epoxy resin compounds utilized in the composition of the present invention may be for example the D.E.R. TM 300 series, the D.E.N. TM 400 series, the D.E.R. TM 500 series, the D.E.R. TM 600 series and the D.E.R. TM 700 series of epoxy resins commercially available from The Dow Chemical Company.
  • epoxy resins useful in the present invention can include LERs, such as D.E.R. 331 (a bisphenol A diglycidyl ether) , D.E.R. 354 (abisphenol F diglycidyl ether) , D.E.R. 324 (a diluent modified epoxy resin) , D.E.R.
  • D.E.R. 324, D.E.R. 330, D.E.R. 331, D.E.R. 332, D.E.R. 354, and D.E.R. 353 are commercially available epoxy resins from The Dow Chemical Company.
  • epoxy resin compounds useful in the present invention include for example Oudraflex LC301, a modified bisphenol A diglycidyl ether.
  • a preferred embodiment of the epoxy resin compound useful in the present invention may include a liquid epoxy resin, such as D.E.R. 331 a diglycidylether of bisphenol A (DGEBPA) having an epoxide equivalent weight of from about 182 to about 192, a viscosity of from about 11 Pa ⁇ s to about 14 Pa ⁇ s and a density of about 1.16 g/cc.
  • DGEBPA diglycidylether of bisphenol A
  • the concentration of the epoxy resin compound used in the curable composition of the present invention may range generally from about 5 weight percent (wt %) to about 100 wt %in one embodiment, from about 10 wt %to about 100 wt %in another embodiment, and from about 20 wt %to about 80 wt %in still another embodiment, based on the total weight of all of the components present in the curable coating composition.
  • the hardener compound, component (b) (also referred to as a curing agent or crosslinking agent) useful in preparing the present invention curable coating composition can be selected from one or more of the following compounds: including, for example, an anhydride hardener, an amine hardener, a phenol novolac hardener, an imidazole hardener, or mixtures thereof.
  • Anhydride hardeners include, but are not limited to, for example, phthalic acid anhydride and derivatives thereof, nadic acid anhydride and derivatives, trimellitic acid anhydride and derivatives, pyromellitic acid anhydride and derivatives thereof, benzophenonetetracarboxylic acid anhydride and derivatives thereof, dodecenylsuccinic acid anhydride and derivatives thereof, poly (ethyloctadecanedioic acid) anhydride and derivatives thereof, hexahydrophthalic anhydride, methyl hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methyl tetrahydrophthalic anhydride, nadic acid anhydride, methyl nadic acid anhydride, and mixtures thereof.
  • the above anhydride hardeners can be used alone or in an admixture thereof.
  • Methyl nadic acid anhydride is one example of a particularly harden
  • Amine hardeners include, but are not limited to, for example, dicydiamide (DICY) ; polyamide; phenalkamine; polyester amine; ethylenediamine (EDA) ; diethylenetriamine (DETA) ; triethylenetetramine (TETA) ; trimethyl hexane diamine (TMDA) ; hexamethylene diamine (HMDA) ; N- (2-aminoethyl) -1, 3-propanediamine (N3-Amine) ; N, N’-1, 2-ethanediylbis-1, 3-propanediamine (N4-amine) ; dipropylene triamine; m-xylylenediamine (mXDA) ; isophorone diamine (IPDA) ; diaminodiphenylmethane (DDM) ; diaminodiphenylsulfone (DDS) ; 2-Ethyl-6-methylaniline (MEA) ; tris (dimethyl
  • Imidazole hardeners include, but are not limited to, for example, 2-methyl imidazole, 2-ethyl-4-methylimidazole, 2-isopropylimidazole, 1-propylimidazole, 2-heptadecylimidazole, and mixtures thereof.
  • the hardener is used to react with the epoxy groups of the epoxy resin.
  • the concentration of the hardener compound used in the curable coating composition of the present invention may range generally from about 0.1 wt %to about 60 wt %in one embodiment, from about 1 wt %to about 50 wt %in another embodiment, and from about 10 wt %to about 50 wt %in yet another embodiment, based on the total weight of the components in the curable formulation.
  • an amphiphilic block copolymer toughening agent which can include for example a carboxyl group terminated amphiphilic block copolymer, an epoxy group terminated amphiphilic block copolymer, and mixtures thereof.
  • the toughener compound is advantageously used to enhance corrosion and toughness performance of a thermoset (i.e., a coating) prepared from the curable composition.
  • the concentration of the amphiphilic block copolymer toughening agent used in the curable coating composition of the present invention may range generally from about 0.1 wt %to about 90 wt %in one embodiment, from about 0.1 wt %to about 30 wt %in another embodiment, and from about 1 wt %to about 29 wt %in yet another embodiment, based on the total weight of the components in the curable formulation.
  • optional compounds can be added to the composition.
  • the optional compounds that may be added to the composition of the present invention may include compounds that are normally used in curable resin compositions known to those skilled in the art.
  • the optional components used in the composition preferably are used in a concentration sufficient to prepare the composition with minimal impact to the thermal and mechanical properties of the composition or to the final product made from the composition.
  • Optional compounds that can be added to the composition may include, for example, compounds that can be added to the composition to enhance application properties (e.g., surface tension modifiers or flow aids) , reliability properties (e.g., adhesion promoters) , reaction rates, selectivities of the reaction, and/or catalyst lifetime.
  • application properties e.g., surface tension modifiers or flow aids
  • reliability properties e.g., adhesion promoters
  • reaction rates e.g., selectivities of the reaction, and/or catalyst lifetime.
  • the inorganic filler can be selected from the group consisting of silica, talc, quartz, mica, and mixtures thereof.
  • the filler can be a flame retardant filler which can be selected from the group consisting of aluminum trihydroxide, magnesium hydroxide, boehmite, and mixtures thereof.
  • the concentration of the optional filler compound, when used in the curable coating composition of the present invention may range generally from 0 wt %to about 90 wt %in one embodiment, from about 0.01 wt %to about 80 wt %in another embodiment, and from about 0.01 wt %to about 70 wt %in yet another embodiment, based on the total weight of the components in the curable formulation.
  • Solvents useful in the present invention may include, but are not limited to, for example, methyl ethyl ketone (MEK) , dimethylformamide (DMF) , ethyl alcohol (EtOH) , propylene glycol methyl ether (PM) , propylene glycol methyl ether acetate (PMA) , xylene, and mixtures thereof.
  • MEK methyl ethyl ketone
  • DMF dimethylformamide
  • EtOH ethyl alcohol
  • PM propylene glycol methyl ether
  • PMA propylene glycol methyl ether acetate
  • xylene xylene
  • the concentration of the optional solvent compound, when used in the curable coating composition of the present invention may range generally from 0 wt %to about 80 wt %in one embodiment, from about 0.01 wt %to about 60 wt %in another embodiment, and from about 0.01 wt %to about 50 wt %in yet another embodiment, based on the total weight of the components in the curable formulation.
  • Other optional compounds or additives that can be added to the coating composition may include, for example, dispersant additives; deformer additives; flowing additives; co-curing agents; catalysts; other solvents; other fillers; pigments; other toughening agents; flexibilizing agents; processing aides; flow modifiers; adhesion promoters; diluents; stabilizers; plasticizers; curing catalysts; catalyst de-activators; other flame retardants; aromatic hydrocarbon resins; coal tar pitch; petroleum pitch; carbon nanotubes; graphene; carbon black; carbon fibers; or mixtures thereof.
  • the amount of the optional compounds, when used in the composition of the present invention may be for example, from 0 wt %to about 10 wt %in one embodiment, from about 0.1 wt %to about 8 wt %in another embodiment; and from about 0.1 wt %to about 5 wt %in yet another embodiment.
  • the thermosetting composition may further include a second thermosetting resin different from the epoxy resin (a) and different from the hardener (b) .
  • the second thermosetting resin may include a polyurethane, an acrylate, and mixtures thereof.
  • the optional second thermosetting resin compound useful for preparing the curable coating composition of the present invention may include for example a polyurethane or an acrylate.
  • the concentration of the second thermosetting resin compound used in the curable coating composition of the present invention may range generally from 0 wt %to about 60 wt %in one embodiment, from about 0.01 wt %to about 50 wt %in another embodiment, from about 1 wt %to about 40 wt %in still another embodiment, and from about 10 wt %to about 30 wt %in yet another embodiment, based on the total weight of the components in the curable formulation.
  • the second thermosetting composition may further include, optionally, at least one solvent and/or may further include one or more additives chosen from the list of optional additives described above.
  • the concentration of the additives, when used, may be the concentrations as described above for optional components.
  • the optional additives may include for example, additional flame retardants, additional toughening agents different from carboxyl group terminated or epoxy terminated amphiphilic block copolymer (c) , curing inhibitors, wetting agents, colorants, thermoplastics, processing aids, dyes, UV-blocking compounds, fluorescent compounds, and mixtures thereof.
  • additional flame retardants additional toughening agents different from carboxyl group terminated or epoxy terminated amphiphilic block copolymer (c)
  • curing inhibitors wetting agents, colorants, thermoplastics, processing aids, dyes, UV-blocking compounds, fluorescent compounds, and mixtures thereof.
  • the composition of the present invention is produced by first admixing, blending or mixing: (a) the epoxy resin described above; (b) the curing agent described above; and (c) the amphiphilic block copolymer toughening agent described above; and then mixing the components for a predetermined amount of time to produce a curable coating composition which can subsequently be cured by heating.
  • the composition may include any one or more of the above-described optional compounds as desired.
  • the preparation of the curable composition of the present invention may be achieved by blending, in known mixing equipment, (a) at least one epoxy resin; (b) at least one curing agent; (c) at least one amphiphilic block copolymer toughening agent; and optionally (d) any other desirable additive (s) .
  • any of the above-mentioned optional additives may be added to the composition during the mixing or prior to the mixing to form the curable composition.
  • All the compounds of the composition are typically mixed and dispersed at a temperature enabling the preparation of an effective curable composition having the desired balance of properties for a particular application.
  • the temperature during the mixing of all components may be generally from about -10 °C to about 40 °C in one embodiment, and from about 0 °C to about 30 °C in another embodiment.
  • composition of the present invention may be a batch or a continuous process.
  • the mixing equipment used in the process may be any vessel and ancillary equipment well known to those skilled in the art.
  • the curable composition exhibits a low viscosity sufficient to allow the curable composition to be processable and handleable in conventional formulation equipment.
  • the curable composition prepared by the above process advantageously exhibits a low viscosity of less than or equal to ( ⁇ ) about 5,000 m Pa ⁇ s at 25 °C.
  • the viscosity of curable composition can be from about 100 m Pa ⁇ s to about 5,000 m Pa ⁇ s in one embodiment, from about 200 m Pa ⁇ s to about 4,000 m Pa ⁇ s in another embodiment, and from about 500 m Pa ⁇ s to about 3,000 m Pa ⁇ s in still another embodiment at 25 °C.
  • One embodiment of the present invention includes curing the curable composition discussed above to form a cured coating.
  • the curing of the curable composition may be carried out at a predetermined temperature and for a predetermined period of time sufficient to cure the composition to form a cured coating material.
  • the coating composition can be first applied to the substrate by methods well known in the art such as brushing, rolling, spraying, and the like. Then, the substrate with the coating composition on the substrate can be heated to cure the composition.
  • the process for producing the cured coating material of the present invention includes carrying out the curing reaction at process conditions to enable the preparation of an effective cured material having the desired balance of properties for a particular application, particularly for forming the coating product.
  • the reaction temperature to carry out the reaction process for preparing the cured material can be in the range of from about -10 °C to about 200 °C in one embodiment, from about 10 °C to about 150 °C in another embodiment, and from about 0 °C to about 80 °C in still another embodiment.
  • the time to carry out the reaction process for preparing the cured material may be generally from about 0.01 hour (hr) to about 14 days in one embodiment, from about 0.1 hr to about 7 days in another embodiment, and from 1 hr to about 24 hr in still another embodiment.
  • the preparation of the cured coating material of the present invention, and/or any of the steps thereof, may be a batch or a continuous process.
  • the equipment employed to carry out the reaction includes equipment known to those skilled in the art.
  • the reaction product or cured coating of the present invention exhibits unexpected and unique properties.
  • the cured coating exhibits better anti-corrosion properties, flexibility, impact resistance, low VOC and an enhanced adhesion better than a cured coating made from a curable composition without the toughener of the present invention.
  • the beneficial performance properties of the cured coating are improved over conventional cured coating products made from conventional curable compositions containing conventional curing agents and catalysts; and that do not contain the amphiphilic block copolymer toughening agent of the present invention.
  • the cured coating of the present invention may advantageously be anti-corrosive.
  • the anti-corrosive properties of the cured coating product mainly include a wet adhesion after a salt spray test, and a creep rust/disbondment and blistering after a salt spray test for 1,000 hr according to the test procedures described in ASTM B117.
  • the cured coating of the present invention exhibits an excellent wet adhesion property, generally at least about “4B” in one embodiment after 1,000 hr salt spray test.
  • the wet adhesion property of the cured coating material can be measured by the method described in ASTM D3359.
  • the cured coating of the present invention exhibits an improved creep rust/disbondment performance after 1,000 hr salt spray test of generally less than 15/15 mm in one embodiment and less than 5/7 mm in another embodiment.
  • the creep rust/disbondment performance properties of the cured coating material can be measured by the method described in ASTM D610.
  • the cured coating of the present invention exhibits an excellent blistering performance after 1,000 hr salt spray test of at least about “8F” in one embodiment.
  • the blistering property of the cured coating material can be measured by the method described in ASTM D-714.
  • the cured coating of the present invention may also advantageously exhibit a high toughness property which is indicated by flexibility as well as impact strength.
  • the flexibility property and the impact strength property may differ depending on whether a clear coating product is desired or a pigmented coating product is desired.
  • the flexibility of any coating product of the present invention can be less than 13 mm, in one embodiment, and less than 5 mm in still another embodiment.
  • a cured clear coating of the present invention may exhibit a flexibility property of generally less than about 13 mm; and less than about 5 mm in another embodiment.
  • a cured pigment coating of the present invention may exhibit a flexibility property of generally less than 38 mm in one embodiment; and less than about 15 mm in another embodiment.
  • the flexibility of a cured pigmented coating product of the present invention can be less than 5 mm.
  • the impact strength properties may differ depending on whether a clear coating product is desired or a pigmented coating product is desired.
  • the impact strength properties of any coating product of the present invention can be more than 20 centimeters times kilogram (cm ⁇ kg) in one embodiment; and more than 50 cm ⁇ kg in another embodiment.
  • a cured pigment coating of the present invention may exhibit impact strength properties of generally greater than about 20 cm ⁇ kg and greater than about 50 cm ⁇ kg in another embodiment.
  • the cured coating of the present invention may also advantageously exhibit a low VOC property.
  • the cured coating of the present invention exhibits a low VOC property of generally less than about 250 g/L in one embodiment.
  • Some non-limiting examples of enduse applications wherein the cured coating product of present invention may be used include, for example, coatings for the marine, steel structure, maintenance, and transportation industries.
  • FORTEGRA 202 adduct is an epoxy terminated amphiphilic block copolymer with an epoxy equivalent weight (EEW) of 360; and is prepared as follows:
  • FORTEGRA 202, 400 g, and D.E.R. 331, 600 g is added into a 2 liter (L) flask. Then, the resulting mixture is stirred at 200 revolutions per minute (rpm) , open chilling water and purge nitrogen (N 2 ) . The temperature of the reaction mixture is raised to 120 °C and the reaction is then maintained at 120 °C for 2 hr. The epoxide equivalent weight (EEW) of the resultant mixture is tested, and if the EEW of the mixture is higher than 330, the reaction is stopped. The reaction mixture is then cooled to 60 °C and a sample is poured out into a beaker. The sample is then analyzed and determined to be FORTEGRA 202 adduct.
  • rpm revolutions per minute
  • N 2 purge nitrogen
  • the clear coating formulations described in Table II are prepared by blending the components in a vessel at room temperature (about 23 °C) for about 0.5 hr.
  • Formulations of Comparative Example 1, Comparative Example 2, Comparative Example 3 and Inventive Example 1, Inventive Example 2 and Inventive Example 3 described in Table II above, are based on OUDRAFlex LC 301 epoxy resin. From the performance results described in Table IV above, it can be seen that Inventive Example 1, Inventive Example 2 and Inventive Example 3 (with 1.5 %/3 %/5 %added toughening agent FORTEGRA 202 adduct [in total formula] , respectively) in 80 %volume solid (VS) epoxy coating formulations, FORTEGRA 202 adduct provides a significant improved flexibility and impact resistance.
  • Formulations of Comparative Example 4, Comparative Example 5, Inventive Example 4, and Inventive Example 5 are based on D.E.R.
  • the pigmented coating formulations described in Table V are prepared by blending the components in a vessel and heating the mixture at room temperature for about 0.5 hr to about 1 hr.

Abstract

A curable composition including: (a) at least one epoxy resin; (b) at least one curing agent; and (c) at least one amphiphilic block copolymer toughening agent; wherein the curable composition has a low volatile organic component (VOC) property of less than about 250 g/L as measured by ASTM D2369; and wherein the curable composition, when cured, provides an anticorrosive cured coating product with improved properties such as flexibility, impact resistance, and corrosion resistance.

Description

COATING COMPOSITION FIELD
The present invention is related to a coating composition and more specifically to a high solids coating composition; and a process for preparing the high solids coating composition.
BACKGROUND
Epoxy based anti-corrosion coatings are widely used for the protection of metal and concrete substrates. In addition to anti-corrosion performance, it is very important for epoxy based coatings to exhibit other essential properties such as toughness as well as low volatile organic compounds (VOC) which are required in certain coating applications. Heretofore, solid epoxy resins such as D.E.R. 671 have been widely used in anti-corrosion coatings to incorporate better toughness to the coatings. However, the known solid epoxy resins are not suitable for use as low VOC coatings because such epoxy resins exist in the solid state. A large amount (e.g., greater than 30 percent based on volume) of solvent is required to dissolve the solid epoxy resins and dilute the resins sufficiently for use. This requirement hinders the solid epoxy resin from being used in low VOC, high solids applications.
Heretofore, liquid epoxy resins such as D.E.R. 331 have also been used for coatings. The coatings based on liquid epoxy resin requires less solvent, however, such coatings are very brittle.
In some instances, reactive diluents can be used to significantly reduce the viscosity of a coating formulation or system but such reactive diluents can compromise the reactivity or functionality of the resin, which will lead to long drying times for such resin or to poor chemical resistance of the coating.
Heretofore, aliphatic epoxy resins such as D.E.R. 736, D.E.R. 732, and D.E.R. 852 have also been used for coatings. Aliphatic epoxy resins can improve the flexibility of a coating but such aliphatic epoxy resins still compromise the reactivity of resin, which will lead to long drying times as well.
For example, U.S. Patent No. 8,021,586 discloses amphiphilic block copolymer-toughened epoxy resins and powder coatings made therefrom. The above patent  discloses a curable solid resin composition which is useful for powder coating, wherein the composition includes an epoxy resin, an amphiphilic block copolymer containing an epoxy resin immiscible block segment and an epoxy resin miscible block segment; and optionally, a curing agent. In the above patent, anti-corrosion is not a property of a coating that is mentioned since the coating composition disclosed is used for preparing a powder coating, not a high solids coating. Also, the amphiphilic block copolymer disclosed in the above patent is not a carboxyl group terminated amphiphilic block copolymer or an epoxy group terminated amphiphilic block copolymer.
U.S. Patent Application Publication No. 2011/0319523A1 discloses a thermosettable composition containing a combination of an amphiphilic block copolymer and a polyol; and a thermoset product prepared from the thermosettable composition. The above publication discloses a thermosettable composition for preparing curable thermoset products. The thermosettable composition includes an amphiphilic block copolymer, a polyol, an epoxy resin having oxirane rings, and an anhydride hardener containing anhydride ring and catalyst. In the above publication, no carboxyl group terminated amphiphilic block copolymer or epoxy group terminated amphiphilic block copolymer is used as a toughener or toughening agent. The composition disclosed in the above publication is not used for coating applications; and anti-corrosion is not a property that is mentioned in the above publication.
WO2013/138994 discloses a modified epoxy resin composition used in high solids coatings. In WO2013/138994, the epoxy resin composition is useful in a low volatile organic compound high solids coating composition, which is useful for coating a substrate, such as metal, plastic, wood, stone, glass, fabric, concrete, primed surfaces, previously painted surfaces and cementitious substrates. However, the coating composition of WO2013/138994 does not disclose a carboxyl group terminated amphiphilic block copolymer or an epoxy group terminated amphiphilic block copolymer used as toughener or toughening agent.
PCT Patent Application No. PCT/CN13/084305, filed September 26, 2013, discloses an epoxy system for nano toughening and providing a transparent appearance to a coating. An amphiphilic block copolymer based on ethylene oxide/butylene oxide (EO/BO) for nano phase separation and transparent appearance is disclosed in the above PCT patent  application. Anti-corrosion properties for coating applications are not disclosed in the above PCT patent application.
U.S. Patent Application Publication No. 2011/0114257A1 discloses a reaction product based on amphiphilic block copolymers and the use of such copolymers as impact modifiers for coatings. Amphiphilic block copolymers based on EO/BO as impact modifiers are disclosed in the above publication, but no anti-corrosion properties for coating applications are disclosed.
U.S. Patent Application Publication No. discloses a method of toughening epoxy resins and toughened epoxy resin composites prepared from the resins. The above publication discloses a novel toughener selected from the group of polyurea, polyurethane and poly (urea-urethane) using a facile synthesis method. The toughener forms thick-interface particles and creates an effective toughness improvement for epoxy resins. In the above publication, neither a carboxyl group terminated amphiphilic block copolymer nor an epoxy group terminated amphiphilic block copolymer is disclosed as toughener for epoxy resins. In addition, the above publication does not disclose anti-corrosion performance for high solids coatings.
There is a need in the industry for a high solids coating formulation or composition that uses a carboxyl group terminated amphiphilic block copolymer or an epoxy group terminated amphiphilic block copolymer and that provides a high solids coating with anti-corrosion performance and other essential properties to the coating such as toughness and low volatile organic compounds.
SUMMARY
The present invention is directed to a high solids curable coating formulation, system, or composition. One embodiment of the curable coating composition of the present invention includes, for example: (a) at least one epoxy resin (such as D.E.R. 331 or Oudraflex LC. 301) , (b) at least one curing agent, and (c) at least one amphiphilic block copolymer toughener such as a carboxyl group terminated amphiphilic block copolymer (such as FORTEGRA 202) or an epoxy group terminated amphiphilic block copolymer (such as FORTEGRA 202 adduct) .
In one preferred embodiment, an epoxy terminated amphiphilic block copolymer is used such as FORTEGRA 202 adduct. FORTEGRA 202 adduct is a reaction  product of FORTEGRA 202 with an epoxy resin such as D.E.R. 331 wherein the final FORTEGRA 202 adduct product is terminated by epoxy groups. The amphiphilic block copolymers, such as FORTEGRA 202 and FORTEGRA 202 adduct are used as a toughener or toughening agent in the coating composition. The coating composition of the present invention offers at least two benefits: (1) better impact resistance and flexibility, and (2) better anti-corrosion performance.
Another embodiment of the present invention is directed to a process for preparing the above curable coating composition suitable for preparing a coating.
Still another embodiment of the present invention is directed to a cured product prepared by curing the above curable coating composition on a substrate.
Yet another embodiment of the present invention is directed to a process for producing the above cured coating product.
The present invention realizes the benefit of excellent impact resistance and flexibility and excellent anti-corrosion performance in a high solids coating.
DETAILED DESCRIPTION
“High solids” and “high solids content” herein, with reference to a composition, means a solid content of greater than 70 percent (%) based on volume. For example, the solid content of the composition generally is more than 70 %based on volume in one embodiment, more than 75 %based on volume in another embodiment, and more than 80 %based on volume in still another embodiment.
“Low volatile organic compounds (VOC) ” herein, with reference to a coating composition, means a solvent content of less than 250 g/L.
“Epoxy resin immiscible block segment” herein, with reference to a composition, means an oxide segment, such as an ethylene oxide (EO) segment, that is not miscible with an epoxide resin.
“Epoxy resin miscible block segment” herein, with reference to a composition, means an oxide segment, such as a butylene oxide (BO) segment, that is miscible with an epoxide resin.
One broad embodiment of the present invention is directed to a curable coating formulation or composition which is useful for coating substrates or parts and forming an anti-corrosion coating on the substrates or parts, particularly parts used in the marine, steel structure, maintenance, and transportation industries. The curable composition useful as a coating composition in general contains (a) at least one epoxy resin, (b) at least one amphiphilic block copolymer toughening agent such as for example at least one carboxyl group terminated amphiphilic block copolymer or at least one epoxy group terminated amphiphilic block copolymer, and (c) at least one curing agent. Optionally, the coating composition may include reactive diluents, pigments, fillers, solvents, and other additives. In a preferred embodiment of the present invention, the curable composition is first prepared and then the curable composition is cured to form a cured coating material, particularly for forming an anti-corrosion coating on a substrate.
The epoxy resin compound, component (a) , useful in preparing the present invention curable epoxy resin coating composition can be any conventional epoxy resin compound. The epoxy resin can be a single epoxy resin compound used alone or a mixture of two or more epoxy compounds used in combination, i.e., component (a) of the curable epoxy resin coating composition which is cured to form the coating material of the present invention includes at least one epoxy resin.
The epoxy resin (a) includes, but is not limited to, aliphatic epoxy resins, cycloaliphatic epoxy resins, bisphenol A epoxy resins, bisphenol F epoxy resins, phenol novolac epoxy resins, cresol-novolac epoxy resins, biphenyl epoxy resins, polyfunctional epoxy resins, naphthalene epoxy resins, divinylbenzene dioxide, 2-glycidylphenylglycidyl ether, dicyclopentadiene-type epoxy resins, phosphorous containing epoxy resin, multi-aromatic resin type epoxy resins, and mixture therefore.
A few non-limiting embodiments of epoxy resins useful in the present invention include, for example, trimethylpropane epoxide; cyclohexanedimethanol diglycidyl ether; diglycidyl-1, 2-cyclohexane dicarboxylate; diglycidyl ether of bisphenol A; diglycidyl ether of bisphenol F; resorcinol diglycidyl ether; triglycidyl ethers of para-aminophenols; halogen (for example, chlorine or bromine) -containing epoxy resins such as diglycidyl ether of tetrabromobisphenol A; epoxidized phenol novolac; epoxidized bisphenol A novolac; an oxazolidone-modified epoxy resin; an epoxy-terminated polyoxazolidone; and mixtures thereof.
Suitable commercially available epoxy resin compounds utilized in the composition of the present invention may be for example the D.E.R. TM 300 series, the D.E.N. TM 400 series, the D.E.R. TM 500 series, the D.E.R. TM 600 series and the D.E.R. TM 700 series of epoxy resins commercially available from The Dow Chemical Company. For example, epoxy resins useful in the present invention can include LERs, such as D.E.R. 331 (a bisphenol A diglycidyl ether) , D.E.R. 354 (abisphenol F diglycidyl ether) , D.E.R. 324 (a diluent modified epoxy resin) , D.E.R. 353 (a low viscosity epoxy resin blend) and other well known epoxy resins and blends of the above known epoxy resins. D.E.R. 324, D.E.R. 330, D.E.R. 331, D.E.R. 332, D.E.R. 354, and D.E.R. 353 are commercially available epoxy resins from The Dow Chemical Company.
Other commercially available epoxy resin compounds useful in the present invention include for example Oudraflex LC301, a modified bisphenol A diglycidyl ether.
As an illustration, a preferred embodiment of the epoxy resin compound useful in the present invention may include a liquid epoxy resin, such as D.E.R. 331 a diglycidylether of bisphenol A (DGEBPA) having an epoxide equivalent weight of from about 182 to about 192, a viscosity of from about 11 Pa·s to about 14 Pa·s and a density of about 1.16 g/cc.
An extensive enumeration of epoxy resins useful in the present invention can be found in Lee, H. and Neville, K., “Handbook of Epoxy Resins, ” McGraw-Hill Book Company, New York, 1967, Chapter 2, pages 257-307; incorporated herein by reference. The preparation of epoxy compounds useful in the present invention is described for example in Kirk-Othmer, Encyclopedia of Chemical Technology, 3rd Ed., Vol. 9, pp 267-289, incorporated herein by reference. Other suitable epoxy resins useful as component (a) in the present invention are disclosed in, for example, U.S. Patent Nos. 3,018,262; 7,163,973; 6,887,574; 6,632,893; 6,242,083; 7,037,958; 6,572,971; 6,153,719; 5,137,990; 6,451,898; and 5,405,688; PCT Publication WO 2006/052727; and U.S. Patent Application Publication Nos. 20060293172 and 20050171237, all of which are incorporated herein by reference.
In general, the concentration of the epoxy resin compound used in the curable composition of the present invention may range generally from about 5 weight percent (wt %) to about 100 wt %in one embodiment, from about 10 wt %to about 100 wt %in another embodiment, and from about 20 wt %to about 80 wt %in still another  embodiment, based on the total weight of all of the components present in the curable coating composition.
The hardener compound, component (b) , (also referred to as a curing agent or crosslinking agent) useful in preparing the present invention curable coating composition can be selected from one or more of the following compounds: including, for example, an anhydride hardener, an amine hardener, a phenol novolac hardener, an  imidazole hardener, or mixtures thereof.
Anhydride hardeners include, but are not limited to, for example, phthalic acid anhydride and derivatives thereof, nadic acid anhydride and derivatives, trimellitic acid anhydride and derivatives, pyromellitic acid anhydride and derivatives thereof, benzophenonetetracarboxylic acid anhydride and derivatives thereof, dodecenylsuccinic acid anhydride and derivatives thereof, poly (ethyloctadecanedioic acid) anhydride and derivatives thereof, hexahydrophthalic anhydride, methyl hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methyl tetrahydrophthalic anhydride, nadic acid anhydride, methyl nadic acid anhydride, and mixtures thereof. The above anhydride hardeners can be used alone or in an admixture thereof. Methyl nadic acid anhydride is one example of a particularly hardener suitable for the present invention.
Amine hardeners include, but are not limited to, for example, dicydiamide (DICY) ; polyamide; phenalkamine; polyester amine; ethylenediamine (EDA) ; diethylenetriamine (DETA) ; triethylenetetramine (TETA) ; trimethyl hexane diamine (TMDA) ; hexamethylene diamine (HMDA) ; N- (2-aminoethyl) -1, 3-propanediamine (N3-Amine) ; N, N’-1, 2-ethanediylbis-1, 3-propanediamine (N4-amine) ; dipropylene triamine; m-xylylenediamine (mXDA) ; isophorone diamine (IPDA) ; diaminodiphenylmethane (DDM) ; diaminodiphenylsulfone (DDS) ; 2-Ethyl-6-methylaniline (MEA) ; tris (dimethylaminomethyl) phenol (DMP-30) ; and mixtures thereof.
Imidazole hardeners include, but are not limited to, for example, 2-methyl imidazole, 2-ethyl-4-methylimidazole, 2-isopropylimidazole, 1-propylimidazole, 2-heptadecylimidazole, and mixtures thereof. The hardener is used to react with the epoxy groups of the epoxy resin.
In general, the concentration of the hardener compound used in the curable coating composition of the present invention may range generally from about 0.1 wt %to  about 60 wt %in one embodiment, from about 1 wt %to about 50 wt %in another embodiment, and from about 10 wt %to about 50 wt %in yet another embodiment, based on the total weight of the components in the curable formulation.
In general, the toughener compound, component (c) , useful in preparing the present invention curable coating composition includes for example an amphiphilic block copolymer toughening agent which can include for example a carboxyl group terminated amphiphilic block copolymer, an epoxy group terminated amphiphilic block copolymer, and mixtures thereof.
In a preferred embodiment, the toughener compound, component (c) , useful for preparing the curable coating composition of the present invention may include for example a carboxyl group terminated amphiphilic block copolymer (e.g., FORTEGRA 202) ; an epoxy group terminated amphiphilic block copolymer (e.g., an adduct of FORTEGRA 202) ; and mixtures thereof. The toughener compound is advantageously used to enhance corrosion and toughness performance of a thermoset (i.e., a coating) prepared from the curable composition.
In general, the concentration of the amphiphilic block copolymer toughening agent used in the curable coating composition of the present invention may range generally from about 0.1 wt %to about 90 wt %in one embodiment, from about 0.1 wt %to about 30 wt %in another embodiment, and from about 1 wt %to about 29 wt %in yet another embodiment, based on the total weight of the components in the curable formulation.
In preparing the curable coating composition of the present invention, optional compounds can be added to the composition. The optional compounds that may be added to the composition of the present invention may include compounds that are normally used in curable resin compositions known to those skilled in the art. The optional components used in the composition preferably are used in a concentration sufficient to prepare the composition with minimal impact to the thermal and mechanical properties of the composition or to the final product made from the composition.
Optional compounds that can be added to the composition may include, for example, compounds that can be added to the composition to enhance application properties (e.g., surface tension modifiers or flow aids) , reliability properties (e.g., adhesion promoters) , reaction rates, selectivities of the reaction, and/or catalyst lifetime.
For example, it may be advantageous to add a filler as an optional component in the coating composition. When the composition contains for example an inorganic filler, the inorganic filler can be selected from the group consisting of silica, talc, quartz, mica, and mixtures thereof. In another embodiment, the filler can be a flame retardant filler which can be selected from the group consisting of aluminum trihydroxide, magnesium hydroxide, boehmite, and mixtures thereof.
In general, the concentration of the optional filler compound, when used in the curable coating composition of the present invention, may range generally from 0 wt %to about 90 wt %in one embodiment, from about 0.01 wt %to about 80 wt %in another embodiment, and from about 0.01 wt %to about 70 wt %in yet another embodiment, based on the total weight of the components in the curable formulation.
Another optional compound that can be added to the composition may include, for example, a solvent. Solvents useful in the present invention may include, but are not limited to, for example, methyl ethyl ketone (MEK) , dimethylformamide (DMF) , ethyl alcohol (EtOH) , propylene glycol methyl ether (PM) , propylene glycol methyl ether acetate (PMA) , xylene, and mixtures thereof.
In general, the concentration of the optional solvent compound, when used in the curable coating composition of the present invention, may range generally from 0 wt %to about 80 wt %in one embodiment, from about 0.01 wt %to about 60 wt %in another embodiment, and from about 0.01 wt %to about 50 wt %in yet another embodiment, based on the total weight of the components in the curable formulation.
Other optional compounds or additives that can be added to the coating composition may include, for example, dispersant additives; deformer additives; flowing additives; co-curing agents; catalysts; other solvents; other fillers; pigments; other toughening agents; flexibilizing agents; processing aides; flow modifiers; adhesion promoters; diluents; stabilizers; plasticizers; curing catalysts; catalyst de-activators; other flame retardants; aromatic hydrocarbon resins; coal tar pitch; petroleum pitch; carbon nanotubes; graphene; carbon black; carbon fibers; or mixtures thereof.
Generally, the amount of the optional compounds, when used in the composition of the present invention, may be for example, from 0 wt %to about 10 wt %in one embodiment, from about 0.1 wt %to about 8 wt %in another embodiment; and from about 0.1 wt %to about 5 wt %in yet another embodiment.
The thermosetting composition may further include a second thermosetting resin different from the epoxy resin (a) and different from the hardener (b) . For example, the second thermosetting resin may include a polyurethane, an acrylate, and mixtures thereof. In a preferred embodiment, the optional second thermosetting resin compound useful for preparing the curable coating composition of the present invention may include for example a polyurethane or an acrylate.
In general, the concentration of the second thermosetting resin compound used in the curable coating composition of the present invention may range generally from 0 wt %to about 60 wt %in one embodiment, from about 0.01 wt %to about 50 wt %in another embodiment, from about 1 wt %to about 40 wt %in still another embodiment, and from about 10 wt %to about 30 wt %in yet another embodiment, based on the total weight of the components in the curable formulation.
The second thermosetting composition may further include, optionally, at least one solvent and/or may further include one or more additives chosen from the list of optional additives described above. The concentration of the additives, when used, may be the concentrations as described above for optional components. The optional additives may include for example, additional flame retardants, additional toughening agents different from carboxyl group terminated or epoxy terminated amphiphilic block copolymer (c) , curing inhibitors, wetting agents, colorants, thermoplastics, processing aids, dyes, UV-blocking compounds, fluorescent compounds, and mixtures thereof. The above list is intended to be exemplary and not limiting.
Generally, the composition of the present invention is produced by first admixing, blending or mixing: (a) the epoxy resin described above; (b) the curing agent described above; and (c) the amphiphilic block copolymer toughening agent described above; and then mixing the components for a predetermined amount of time to produce a curable coating composition which can subsequently be cured by heating. Optionally, the composition may include any one or more of the above-described optional compounds as desired.
For example, the preparation of the curable composition of the present invention may be achieved by blending, in known mixing equipment, (a) at least one epoxy resin; (b) at least one curing agent; (c) at least one amphiphilic block copolymer toughening  agent; and optionally (d) any other desirable additive (s) . Any of the above-mentioned optional additives may be added to the composition during the mixing or prior to the mixing to form the curable composition.
All the compounds of the composition are typically mixed and dispersed at a temperature enabling the preparation of an effective curable composition having the desired balance of properties for a particular application. For example, the temperature during the mixing of all components may be generally from about -10 ℃ to about 40 ℃ in one embodiment, and from about 0 ℃ to about 30 ℃ in another embodiment.
The preparation of composition of the present invention, and/or any of the steps thereof, may be a batch or a continuous process. The mixing equipment used in the process may be any vessel and ancillary equipment well known to those skilled in the art.
In one embodiment, the curable composition exhibits a low viscosity sufficient to allow the curable composition to be processable and handleable in conventional formulation equipment. For example, the curable composition prepared by the above process advantageously exhibits a low viscosity of less than or equal to (≤) about 5,000 m Pa·s at 25 ℃. Generally, the viscosity of curable composition can be from about 100 m Pa·s to about 5,000 m Pa·s in one embodiment, from about 200 m Pa·s to about 4,000 m Pa·s in another embodiment, and from about 500 m Pa·s to about 3,000 m Pa·s in still another embodiment at 25 ℃.
One embodiment of the present invention includes curing the curable composition discussed above to form a cured coating. For example, the curing of the curable composition may be carried out at a predetermined temperature and for a predetermined period of time sufficient to cure the composition to form a cured coating material.
To form a coating substrate, the coating composition can be first applied to the substrate by methods well known in the art such as brushing, rolling, spraying, and the like. Then, the substrate with the coating composition on the substrate can be heated to cure the composition.
In general, the process for producing the cured coating material of the present invention includes carrying out the curing reaction at process conditions to enable the preparation of an effective cured material having the desired balance of properties for a  particular application, particularly for forming the coating product. For example, the reaction temperature to carry out the reaction process for preparing the cured material can be in the range of from about -10 ℃ to about 200 ℃ in one embodiment, from about 10 ℃ to about 150 ℃ in another embodiment, and from about 0 ℃ to about 80 ℃ in still another embodiment.
For example, the time to carry out the reaction process for preparing the cured material may be generally from about 0.01 hour (hr) to about 14 days in one embodiment, from about 0.1 hr to about 7 days in another embodiment, and from 1 hr to about 24 hr in still another embodiment.
The preparation of the cured coating material of the present invention, and/or any of the steps thereof, may be a batch or a continuous process. The equipment employed to carry out the reaction includes equipment known to those skilled in the art.
The reaction product or cured coating of the present invention (i.e., the cross-linked coating product made from the present invention curable composition) exhibits unexpected and unique properties. For example, the cured coating exhibits better anti-corrosion properties, flexibility, impact resistance, low VOC and an enhanced adhesion better than a cured coating made from a curable composition without the toughener of the present invention. The beneficial performance properties of the cured coating are improved over conventional cured coating products made from conventional curable compositions containing conventional curing agents and catalysts; and that do not contain the amphiphilic block copolymer toughening agent of the present invention. For example, the cured coating of the present invention may advantageously be anti-corrosive. The anti-corrosive properties of the cured coating product mainly include a wet adhesion after a salt spray test, and a creep rust/disbondment and blistering after a salt spray test for 1,000 hr according to the test procedures described in ASTM B117.
In general, the cured coating of the present invention exhibits an excellent wet adhesion property, generally at least about “4B” in one embodiment after 1,000 hr salt spray test. The wet adhesion property of the cured coating material can be measured by the method described in ASTM D3359. In general, the cured coating of the present invention exhibits an improved creep rust/disbondment performance after 1,000 hr salt spray test of generally less than 15/15 mm in one embodiment and less than 5/7 mm in another  embodiment. The creep rust/disbondment performance properties of the cured coating material can be measured by the method described in ASTM D610.
In general, the cured coating of the present invention exhibits an excellent blistering performance after 1,000 hr salt spray test of at least about “8F” in one embodiment. The blistering property of the cured coating material can be measured by the method described in ASTM D-714.
The cured coating of the present invention may also advantageously exhibit a high toughness property which is indicated by flexibility as well as impact strength. The flexibility property and the impact strength property may differ depending on whether a clear coating product is desired or a pigmented coating product is desired. In general, the flexibility of any coating product of the present invention can be less than 13 mm, in one embodiment, and less than 5 mm in still another embodiment.
In one preferred embodiment, a cured clear coating of the present invention may exhibit a flexibility property of generally less than about 13 mm; and less than about 5 mm in another embodiment. In another preferred embodiment, a cured pigment coating of the present invention may exhibit a flexibility property of generally less than 38 mm in one embodiment; and less than about 15 mm in another embodiment. In other embodiments, the flexibility of a cured pigmented coating product of the present invention can be less than 5 mm.
The impact strength properties may differ depending on whether a clear coating product is desired or a pigmented coating product is desired. In general, the impact strength properties of any coating product of the present invention can be more than 20 centimeters times kilogram (cm·kg) in one embodiment; and more than 50 cm·kg in another embodiment.
In another preferred embodiment, a cured pigment coating of the present invention may exhibit impact strength properties of generally greater than about 20 cm·kg and greater than about 50 cm·kg in another embodiment.
The cured coating of the present invention may also advantageously exhibit a low VOC property. The cured coating of the present invention exhibits a low VOC property of generally less than about 250 g/L in one embodiment.
Some non-limiting examples of enduse applications wherein the cured coating product of present invention may be used include, for example, coatings for the marine, steel structure, maintenance, and transportation industries.
EXAMPLES
The following examples and comparative examples further illustrate the present invention in detail but are not to be construed to limit the scope thereof.
In the following Examples, various materials, terms and designations are used such as for example the raw materials listed in Table I as follows:
Table I–Raw Materials
Product Description Supplier
Xylene Solvent Sinopharm Chemical Reagent Co.
Butanol Solvent Sinopharm Chemical Reagent Co.
D.E.R. 331 Epoxy resin The Dow Chemical Company
D.E.R. 852 Epoxy resin The Dow Chemical Company
D.E.R. 660X80 Epoxy resin The Dow Chemical Company
FORTEGRA 202 adduct (F202 A)  Epoxy toughening agent The Dow Chemical Company
FORTEGRA 202 Epoxy toughening agent The Dow Chemical Company
Anti-terra 203 Dispersant additive BYK
Bentone Thickener Elementise
Iron oxide red Pigment Zhejiang Huayuan Pigment Co.
Talc Filler Shanghai Extender Co.
Barytes Filler Shanghai Extender Co.
BYK066N Defoamer BYK
Aluminum paste Anti-corrosive pigment Henan Metallic Pigment Co.
Silicone 6040 Adhesion additive Dow Corning
D.E.H. 641 Phenalkamine hardener The Dow Chemical Company
DMP30 Amine catalyst The Dow Chemical Company
Inventive Examples 1-8 and Comparative Examples 1-6
General Synthesis Procedure for FORTEGRA 202 Adduct
FORTEGRA 202 adduct (F202A) is an epoxy terminated amphiphilic block copolymer with an epoxy equivalent weight (EEW) of 360; and is prepared as follows:
FORTEGRA 202, 400 g, and D.E.R. 331, 600 g, is added into a 2 liter (L) flask. Then, the resulting mixture is stirred at 200 revolutions per minute (rpm) , open chilling water and purge nitrogen (N2) . The temperature of the reaction mixture is raised to 120 ℃ and the reaction is then maintained at 120 ℃ for 2 hr. The epoxide equivalent weight (EEW) of the resultant mixture is tested, and if the EEW of the mixture is higher than 330, the reaction is stopped. The reaction mixture is then cooled to 60 ℃ and a sample is poured out into a beaker. The sample is then analyzed and determined to be FORTEGRA 202 adduct.
General Synthesis Procedure for Clear Coating Formulations
The clear coating formulations described in Table II are prepared by blending the components in a vessel at room temperature (about 23 ℃) for about 0.5 hr.
Table II–Formulation of Clear Coatings
Figure PCTCN2015080981-appb-000001
(a) CE=Comparative Example
(b) IE=Inventive Example
Samples of the above formulations of Table II were then subjected to the tests described in Table III. The results of the testing are described in Table IV.
Table III-Tests
Performance Testing Method
Pendulum Hardness, seconds ASTM D 4366 (1994)
Cross Cut Adhesion Test ATSM D3002 (2002)
Impact resistance, cm·kg DIN EN ISO 6272 (2011)
Flexibility, mm ISO6860 (2006)
Thickness, μm ISO 02808 (2007)
Cone & Plate Viscosity ASTM 4287 (1994)
Salt Spray Test, 1000h test on Q-panel ASTM B117 (2003)
Table IV–Hardness/Impact/Flexibility Test Results of Clear Coatings
Figure PCTCN2015080981-appb-000002
(a) CE=Comparative Example
(b) IE=Inventive Example
Formulations of Comparative Example 1, Comparative Example 2, Comparative Example 3 and Inventive Example 1, Inventive Example 2 and Inventive Example 3 described in Table II above, are based on OUDRAFlex LC 301 epoxy resin.  From the performance results described in Table IV above, it can be seen that Inventive Example 1, Inventive Example 2 and Inventive Example 3 (with 1.5 %/3 %/5 %added toughening agent FORTEGRA 202 adduct [in total formula] , respectively) in 80 %volume solid (VS) epoxy coating formulations, FORTEGRA 202 adduct provides a significant improved flexibility and impact resistance. Formulations of Comparative Example 4, Comparative Example 5, Inventive Example 4, and Inventive Example 5 are based on D.E.R. 331 epoxy resin; and D.E.R. 852 (a flexible epoxy resin) was added in Comparative Example 4 and Comparative Example 5. Fortegra 202 adduct was added in the formulation of Inventive Example 4. Fortegra 202 was added in the formulation of Inventive Example 5. From the performance results, it can be seen that both FORTEGRA 202 and FORTEGRA 202 adduct can give good adhesion as well as better impact resistance from reverse and forward. Also, Inventive Example 4 and Inventive Example 5 show similar performance in adhesion, impact resistance and flexibility, which means that in a high solids coating formulation, FORTEGRA 202 and FORTEGRA 202 adduct give a similar improved contribution to toughness.
General Synthesis Procedure for Pigmented Coating Formulations
The pigmented coating formulations described in Table V are prepared by blending the components in a vessel and heating the mixture at room temperature for about 0.5 hr to about 1 hr.
Samples of the formulations described in Table V were then subjected to the tests described in Table III above. The results of the testing are described in Table VI.
Table V–Pigmented Formulations
Figure PCTCN2015080981-appb-000003
(a) CE=Comparative Example
(b) IE=Inventive Example
Figure PCTCN2015080981-appb-000004

Claims (14)

  1. A curable coating composition comprising:
    (a) at least one epoxy resin;
    (b) at least one curing agent; and
    (c) at least one amphiphilic block copolymer toughening agent; wherein the toughening agent is a carboxyl group terminated amphiphilic block copolymer, an epoxy group terminated amphiphilic block copolymer; or mixtures thereof;
    wherein the curable composition is a liquid having a low volatile organic component (VOC) property of less than about 250 g/L as measured by ASTM D2369; and
    wherein the curable composition, when cured, provides an anticorrosive cured product having an increase in one or more properties compared to a cured product cured from a curable composition without the at least one amphiphilic block copolymer toughening agent, component (c) .
  2. The curable coating composition of claim 1, wherein the curable composition, when cured, provides an anticorrosive cured product having an increase in (i) flexibility, (ii) impact resistance, and (iii) corrosion resistance compared to a cured product cured from a curable composition without the at least one amphiphilic block copolymer toughening agent, component (c) .
  3. The curable coating composition of claim 1, wherein the at least one epoxy resin is aliphatic epoxy resins, cycloaliphatic epoxy resins, bisphenol A epoxy resins, bisphenol F epoxy resins, phenol novolac epoxy resins, cresol-novolac epoxy resins, biphenyl epoxy resins, polyfunctional epoxy resins, naphthalene epoxy resins, divinylbenzene dioxide, 2-glycidylphenylglycidyl ether, dicyclopentadiene-type epoxy resins, phosphorous containing epoxy resin, multi aromatic resin type epoxy resins, or mixture therefore.
  4. The curable coating composition of claim 1, wherein the concentration of the at least one epoxy resin is from about 5 weight percent to about 100 weight percent.
  5. The curable coating composition of claim 1, wherein the at least one curing agent is an anhydride hardener, an amine hardener, a phenol novolac hardener, an imidazole hardener, or mixtures thereof.
  6. The curable coating composition of claim 1, wherein the concentration of the at least one curing agent is from about 0.1 weight percent to about 60 weight percent.
  7. The curable coating composition of claim 1, wherein the concentration of the at least one toughening agent is from about 0.1 weight percent to about 90 weight percent.
  8. A process for preparing a curable coating composition comprising admixing:
    (a) at least one epoxy resin;
    (b) at least one curing agent; and
    (c) at least one amphiphilic block copolymer toughening agent; wherein the toughening agent is a carboxyl group terminated amphiphilic block copolymer, an epoxy group terminated amphiphilic block copolymer; or mixtures thereof;
    wherein the curable composition is a liquid having a low VOC property of less than about 250 g/L as measured by ASTM D2369; and
    wherein the curable composition, when cured, provides an anticorrosive cured product having an increase in one or more properties compared to a cured product cured from a curable composition without the at least one amphiphilic block copolymer toughening agent, component (c) .
  9. The process of claim 8, wherein the curable composition, when cured, provides an anticorrosive cured product having an increase in (i) flexibility, (ii) impact resistance, and (iii) corrosion resistance compared to a cured product cured from a curable composition without the at least one amphiphilic block copolymer toughening agent, component (c) .
  10. A cured coating product comprising the reaction product of a curable composition including the following components:
    (a) at least one epoxy resin;
    (b) at least one curing agent; and
    (c) at least one amphiphilic block copolymer toughening agent; wherein the toughening agent is a carboxyl group terminated amphiphilic block copolymer, an epoxy group terminated amphiphilic block copolymer; or mixtures thereof;
    wherein the curable composition is a liquid having a low volatile organic component (VOC) property of less than about 250 g/L as measured by ASTM D2369; and
    wherein the cured coating product is an anticorrosive cured product having an increase in one or more properties compared to a cured product cured from a curable composition without the at least one amphiphilic block copolymer toughening agent, component (c) .
  11. The cured coating of claim 10, wherein the cured product has an increase in (i) flexibility, (ii) impact resistance, and (iii) corrosion resistance compared to a cured product cured from a curable composition without the at least one amphiphilic block copolymer toughening agent, component (c) .
  12. A process for preparing a cured product comprising the steps of:
    (I) preparing a curable composition by admixing:
    (a) at least one epoxy resin;
    (b) at least one curing agent; and
    (c) at least one amphiphilic block copolymer toughening agent; wherein the toughening agent is a carboxyl group terminated amphiphilic block copolymer, an epoxy group terminated amphiphilic block copolymer; or mixtures thereof;
    wherein the curable composition is a liquid having a low VOC property of less than about 250 g/L as measured by ASTM D2369; and
    wherein the curable composition, when cured, provides an anticorrosive cured product having an increase in one or more properties compared to a cured product cured from a curable composition without the at least one amphiphilic block copolymer toughening agent, component (c) ; and
    (II) heating the curable coating composition of step (I) to form a cured product.
  13. The process of claim 12, wherein the cured product has an increase in (i) flexibility, (ii) impact resistance, and (iii) corrosion resistance compared to a cured product cured from a curable composition without the at least one amphiphilic block copolymer toughening agent, component (c) .
  14. The process of claim 12, wherein the heating step (II) is carried out at a temperature of from about –10 ℃ to about 200 ℃.
PCT/CN2015/080981 2015-06-08 2015-06-08 Coating composition WO2016197305A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/080981 WO2016197305A1 (en) 2015-06-08 2015-06-08 Coating composition
TW105117350A TW201700651A (en) 2015-06-08 2016-06-02 Coating compositions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/080981 WO2016197305A1 (en) 2015-06-08 2015-06-08 Coating composition

Publications (1)

Publication Number Publication Date
WO2016197305A1 true WO2016197305A1 (en) 2016-12-15

Family

ID=57502781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/080981 WO2016197305A1 (en) 2015-06-08 2015-06-08 Coating composition

Country Status (2)

Country Link
TW (1) TW201700651A (en)
WO (1) WO2016197305A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109797026A (en) * 2019-02-22 2019-05-24 焦作市倍特矿业设备有限公司 A kind of efficient anti-sticking lubricant of wet sprayer and preparation method thereof
CN113025162A (en) * 2021-03-16 2021-06-25 青岛爱尔家佳新材料股份有限公司 Zinc stearate graphene composite anticorrosive paint and preparation method thereof
WO2021137537A1 (en) * 2020-01-02 2021-07-08 코오롱인더스트리 주식회사 Epoxy resin, epoxy paint composition containing same, coating film formed by epoxy paint composition, and substrate with coating film adhered thereto
CN113980541A (en) * 2021-11-29 2022-01-28 国网山东省电力公司电力科学研究院 Organic-inorganic hybrid high-solid anticorrosive paint, and preparation method and application thereof
US11292871B2 (en) 2017-06-09 2022-04-05 Hexion Inc. Epoxy resin systems for composites
CN114591044A (en) * 2022-01-26 2022-06-07 北京固斯特国际化工有限公司 Salt-resistant, reinforcing, repairing, corrosion-resistant and anti-permeability coating for concrete structure of seawater cooling tower and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006052730A1 (en) * 2004-11-10 2006-05-18 Dow Global Technologies Inc. Amphiphilic block copolymer-toughened epoxy resins and powder coatings made therefrom
WO2010007150A2 (en) * 2008-07-18 2010-01-21 Sika Technology Ag Reaction products based on amphiphilic block copolymers and their use as impact modifier
WO2010102421A1 (en) * 2009-03-09 2010-09-16 Dow Global Technologies Inc. A thermosettable composition containing a combination of an amphiphilic block copolymer and a polyol and a thermoset product therefrom
US20110294963A1 (en) * 2010-05-27 2011-12-01 Far East University Method of toughening epoxy resin and toughened epoxy resin composite
WO2013138994A1 (en) * 2012-03-20 2013-09-26 Dow Global Technologies Llc A modified epoxy resin composition used in high solids coating
WO2015042823A1 (en) * 2013-09-26 2015-04-02 Dow Global Technologies Llc A curable epoxy resin composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006052730A1 (en) * 2004-11-10 2006-05-18 Dow Global Technologies Inc. Amphiphilic block copolymer-toughened epoxy resins and powder coatings made therefrom
WO2010007150A2 (en) * 2008-07-18 2010-01-21 Sika Technology Ag Reaction products based on amphiphilic block copolymers and their use as impact modifier
WO2010102421A1 (en) * 2009-03-09 2010-09-16 Dow Global Technologies Inc. A thermosettable composition containing a combination of an amphiphilic block copolymer and a polyol and a thermoset product therefrom
US20110294963A1 (en) * 2010-05-27 2011-12-01 Far East University Method of toughening epoxy resin and toughened epoxy resin composite
WO2013138994A1 (en) * 2012-03-20 2013-09-26 Dow Global Technologies Llc A modified epoxy resin composition used in high solids coating
WO2015042823A1 (en) * 2013-09-26 2015-04-02 Dow Global Technologies Llc A curable epoxy resin composition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11292871B2 (en) 2017-06-09 2022-04-05 Hexion Inc. Epoxy resin systems for composites
CN109797026A (en) * 2019-02-22 2019-05-24 焦作市倍特矿业设备有限公司 A kind of efficient anti-sticking lubricant of wet sprayer and preparation method thereof
WO2021137537A1 (en) * 2020-01-02 2021-07-08 코오롱인더스트리 주식회사 Epoxy resin, epoxy paint composition containing same, coating film formed by epoxy paint composition, and substrate with coating film adhered thereto
CN113025162A (en) * 2021-03-16 2021-06-25 青岛爱尔家佳新材料股份有限公司 Zinc stearate graphene composite anticorrosive paint and preparation method thereof
CN113980541A (en) * 2021-11-29 2022-01-28 国网山东省电力公司电力科学研究院 Organic-inorganic hybrid high-solid anticorrosive paint, and preparation method and application thereof
CN114591044A (en) * 2022-01-26 2022-06-07 北京固斯特国际化工有限公司 Salt-resistant, reinforcing, repairing, corrosion-resistant and anti-permeability coating for concrete structure of seawater cooling tower and application thereof

Also Published As

Publication number Publication date
TW201700651A (en) 2017-01-01

Similar Documents

Publication Publication Date Title
WO2016197305A1 (en) Coating composition
AU2007323759B2 (en) Epoxy resins comprising a cycloaliphatic diamine curing agent
US8063157B2 (en) Curing agents for epoxy resins
US20140121299A1 (en) Adducts as tougheners in thermosettable epoxy systems
JPS5998126A (en) Water base epoxy resin composition
KR101239296B1 (en) Low temperature curable epoxy compositions
KR20150079622A (en) Ambient cure weatherable coatings
JP2020041144A (en) Epoxy composition containing core-shell rubber
US20160009853A1 (en) Composition and method of making water borne epoxy hardener for use in two-component epoxy self levelling compounds with long pot life, fast cure and low shrinkage characteristics
EP2785762A2 (en) Liquid accelerator composition for hardeners
US8148451B2 (en) Production of stable water dispersion epoxy phosphate ester resins and their aqueous coating compositions
JP2013534954A (en) Powder coating composition
KR20090072456A (en) Epoxy curing agent for rapid low temperature curing, epoxy paint composition having the same and method of forming a paint coating layer using the composition
EP2997067B1 (en) Hardeners for cold-curing epoxy systems
US5798398A (en) Epoxy curing agent comprising a metaxylylenediamine-epichlorohydrin adduct
EP1786849B1 (en) Polyaminoamide-monoepoxy adducts
EP2931781B1 (en) Modified epoxy resins
US10246607B2 (en) Resin composition, coating composition and article by using the same
JP5361686B2 (en) Liquid amine-based latent curing agent composition
WO2016053641A1 (en) Adduct composition
WO2022165729A1 (en) Epoxy curing agents and uses thereof
WO2016187380A1 (en) Epoxy coating composition
WO2023208831A1 (en) Epoxy-resin modified composition used for coating or sealing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15894575

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15894575

Country of ref document: EP

Kind code of ref document: A1